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7.1 GENOME SEQUENCING

The traditional sequencing method involves the fol-
lowing steps: the DNA fragment to be sequenced is
cloned into a vector that provides known primer-
binding sites flanking the cloned sequence. The first
set of sequencing primers is designed based on these
known primer-binding sites. The sequencing runs on
both strands produce two sequencing reads. New pri-
mers are designed from the 30-end of the newly
obtained sequences (Figure 7.1A). In this process, the
sequence reads generated in one direction have
sequence overlaps. Using the sequence overlaps, these
contiguous sequence reads are assembled into a larger
sequence, called a contiga (from contiguous)
(Figure 7.1B; upper and lower panels). The sequencing
method described above involves sequential designing
of primers followed by new sequencing; hence, this
sequencing method is called primer walking. Primer

walking works well for sequencing a complementary
DNA (cDNA) or a large DNA fragment of finite size.
However, primer walking is costly and slow, and it
involves cloning of the fragment. Although it can be
scaled up, primer walking is still not a high-
throughput strategy for sequencing a genome.

Primer walking is an example of directed sequenc-
ing because the primer is designed from a known
region of DNA to guide the sequencing in a specific
direction. In contrast to directed sequencing, shotgun
sequencing of DNA is a more rapid sequencing strat-
egy. As the name suggests, shotgun sequencing
involves random fragmentation of the DNA into small
pieces followed by sequencing of these small frag-
ments. Shotgun sequencing can adopt either a hierar-
chical shotgun sequencing (top-down) approach, or a
whole-genome shotgun (WGS) sequencing (bottom-
up) approach. In the hierarchical shotgun sequencing
approach, the chromosomes are sorted, broken into

�The opinions expressed in this chapter are the author’s own and they do not necessarily reflect the opinions of the FDA, the DHHS,

or the Federal Government.
aA sequence read should not be confused with a sequence contig. In theory, at least two overlapping sequence reads are needed to

construct one sequence contig. In reality, a sequence contig is constructed from many sequence reads.
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large fragments and cloned into vectors that can hold
large DNA fragments, such as bacterial artificial chro-
mosomes (BACs) or yeast artificial chromosomes
(YACs)b. Both ends of each clone are sequenced, pro-
ducing an approximately 500�800-bp read each,
together called paired ends or mate pairs, and the

tiling path is determined based on sequence overlaps.
This is part of the physical mapping processc. The til-
ing path is the smallest set of overlapping clones (i.e.
clones with overlapping DNA fragments) that covers
the entire chromosome or contig (Figure 7.1C).
Therefore, the clones that produce the tiling path

FIGURE 7.1 Sequencing strategy. (A) Directed DNA sequencing by primer walking. This involves sequential designing of primers from a
known region. The first set of sequencing primers are designed based on the primer-binding sites flanking the cloned DNA. New primers are
designed from the 30-end of the newly obtained sequences. (B) The sequence reads have sequence overlaps that help put the contiguous
sequences together in proper order (upper panel). Many such sequence reads are assembled to obtain a sequence contig (lower panel). (C) In
the hierarchical shotgun sequencing approach, the chromosomes are sorted and broken into large fragments. Both ends of each clone are
sequenced and the tiling path is determined based on sequence overlaps. The tiling path (shown as green fragments) is the smallest set of over-
lapping clones that covers the entire chromosome or contig. Once the clones in the tiling path are identified, the larger fragments in these clones
are broken down into smaller fragments, which are then sequenced using a shotgun sequencing strategy. The sequence is put together by a
sequence assembler. (D) A scaffold, or supercontig, is a portion of the chromosome (or genome) sequence that is composed of contigs put
together in correct order. Scaffolds have gaps (upper panel); once the gaps are identified, the goal becomes sequencing those regions and closing
the gaps. The lower panel shows that the scaffold of these three contigs is held together by mate pairs. The thin lines connect the paired ends.

bBACs can hold DNA fragments up to 300 kbp, whereas YACs can hold fragments up to 3000 kbp.
cA physical map of a chromosome is a set of cloned DNA fragments whose position relative to each other in the chromosome is

known. In physical mapping, a large number of clones from the recombinant library of each chromosome are end sequenced to

obtain a fingerprint for each clone. A fingerprint is a unique sequence signature that identifies a specific clone. The information about

such signatures can be obtained by random sequencing or by examining sequence information already existing in the database. For

example, the sequence of a known unique gene in the chromosome will provide the fingerprint for a clone that contains this

sequence. This type of short DNA sequence (usually less than 500 bp) that occurs only once in the chromosome (or genome) is

known as a sequence tagged site (STS). Appropriate overlaps between clones are determined based on such clone-specific

fingerprints. Fingerprinting the clone contigs generates many genomic landmarks along the length of the chromosome. These

landmarks help in the process of accurate sequence assembly, particularly if the genome is rich in repetitive sequences.
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constitute a set of clone contigs (contiguous clones).
Once the clones in the tiling path are identified, the
larger fragments in these clones are broken down into
smaller fragments, which are then sequenced using a
shotgun sequencing strategy. The sequence is put
together by a sequence assembler. During assembly,
the contigs are assembled in correct order to produce
longer supercontigs, also called scaffolds. Scaffolds
usually have gaps (Figure 7.1D; upper panel). Once
the gaps are identified, special care is taken to
sequence the gapped regions; this is part of the finish-
ing process for genome sequencing and assembly
(Figure 7.1D; lower panel).

In the bottom-up WGS sequencing approach, the
DNA is randomly sheared into small pieces, fragments
are size selected and subcloned into a “universal” clon-
ing vector containing “universal” priming sites. Clones
are sequenced. Numerous sequence reads are gener-
ated from numerous small fragments. The sequence is
put together by a sequence assembler with very high
computing capacity. In 1988, Eric Lander and Michael
Waterman published a paper in which they demon-
strated mathematically that at least 8�10-fold sequenc-
ing coverage is needed for the successful assembly of
most of the genome, assuming an even distribution of
sequence reads.1

Both hierarchical shotgun sequencing and WGS
sequencing have advantages and disadvantages.
Hierarchical shotgun sequencing creates a physical
map of the genome; hence, it produces genomic land-
marks that can be helpful in sequence assembly if the
genome is rich in repetitive sequences (like the human
genome). However, hierarchical sequencing is slow
because it proceeds through many steps. The WGS
sequencing approach is rapid and direct, but the
assembly of sequences may run into problems if the
genome is rich in repetitive sequences. The number of
sequencing reads generated in WGS sequencing is
very high; therefore, the computing power needed for
WGS sequence assembly is very high. Currently, the
computing power is less of an issue, but it was an
issue in early days of genome sequencing. Current
genome-sequencing efforts adopt a combination of
both strategies for speed and accuracy. Use of the
next-generation (next-gen) sequencing technique has
further added to the speed because it does not need
cloning of the fragments.

7.2 SEQUENCE ASSEMBLY

Genome assembly from sequence reads is an
algorithm-driven automated process. DNA-sequence-
assembly programs have utilized sequence overlaps
for sequence assembly in correct order. The computa-
tional aspect of assembly algorithms is beyond the
scope of this book. Nevertheless, a few terms will be
discussed in plain language for the sake of familiarity.
Sequence assembly can be done using one of three
approaches: (1) greedy, (2) overlap-layout-consensus
(OLC) and Hamiltonian path, and (3) de Bruijn graph
and Eulerian pathd.

Greedy is a rapid-assembly algorithm, which joins
together the sequence reads that are the most similar to
each other based on as much sequence overlap as possi-
ble. In doing so, the greedy algorithm first compares all
fragments in a pairwise fashion to identify sequences
that have overlaps; next, the sequences that have the best
overlaps are merged; this merging process continues
(iterative process) until all the sequences with overlaps
have been merged. In this process, some reads may not
be assembled, which are shown as gaps. Paired-end
sequencing is used to close the gaps. Many early assem-
blers were based on the greedy algorithm and were
extremely useful, such as Phrap, TIGR assembler, and
CAP. The Phred�Phrap�Consed suite of programs has
been widely used. Phred and Phrap were developed by
Drs Phil Green and Brent Ewing at the University of
Washington, Seattle, in 1998 for the Human Genome
Sequencing project. Phred is base-calling software that
assigns a quality score to each base called. Phrap is de
novo shotgun sequence-assembly software. Consed is
the sequence-assembly editor companion to Phrap, and
it is a tool for viewing, editing, and finishing sequence
assemblies created with Phrap. Many such assembly
suites also include sequence-alignment tools.

The overlap-layout-consensus (OLC) algorithm is
based on all pairwise comparisons, and it generates a
directed graph using reads and overlapse. In the
graph, each sequence is created as a node and an edge
is created between any two nodes whose sequences
overlap. The algorithm then tries to find the
Hamiltonian traversal path of the graph, which con-
tains all the nodes (sequences) exactly once, and com-
bines the overlapping sequences in the nodes into the
sequence of the genome. Some assemblers that utilize

dIf the reader is interested to learn more about the computational aspects behind the key methods in simple terms, a good source to

consult is Bioinformatics for Biologists.2

eA graph is represented by a set of nodes (vertices) and a set of edges (arcs) between the nodes; hence, it can be conceptualized as

balls (nodes) in space with arrows (edges) connecting them. If the edges can be traversed in only one direction, the graph is known

as a directed graph. Each directed edge represents a connection from one “source node” to one “sink node”; the sink node of one

edge forms the source node for any subsequent nodes. The assembly process is like finding the path through the graph in a way that

the path visits every node only once.3
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the OLC algorithm are Arachne, CABOG (Celera
Assembler), Newbler, Minimus, Edena, and MIRA.
Overlap-based approaches have been mostly used for
longer reads (.200 bp). However, overlap-based
assemblers for short reads have also been developed.4

The de Bruijn�graph-based approach has been suc-
cessfully employed in assembling short reads
(,100 bp). However, de Bruijn graph assemblers have
also been successfully used with longer reads.4 Some
assemblers that utilize the de Bruijn�graph algorithm
are Euler-SR, Oases, Velvet, ALLPATH, ABySS, and
SOAPdenovo. Sequence assembly based on significant
sequence overlap, as done using the standard Sanger
method, works well when there are a finite number of
sequence reads to be assembled. However, next-gen
sequencing generates hundreds of millions of sequence
reads. The assembly of such a large number of
sequence reads cannot be done easily using this tradi-
tional method. The problem of scalability is solved by
using the de Bruijn graph. The de Bruijn graph does
not use the actual sequence reads for assembly, but
breaks each sequence read down to smaller sequences
called k-mers. These k-mers are aligned using (k2 1)
sequence overlaps. The actual size of k depends on
sequence coverage, read length, etc., but usually is not
less than half of the actual read length. For example, a
106-base read can be divided into 49 overlapping
58-mers (sequence read length2 k-mer length1 15 #
of k-mers; hence, 1062 581 15 49). Because breaking
one sequence read into k-mers increases the number of
short sequence reads (e.g. just one 106-base read gener-
ates 49 k-mers, each one 58 bases long), it is likely that
the resulting k-mers generated from all sequence reads
will represent nearly all k-mers from the genome for
sufficiently small k. This process seemingly compen-
sates for missing sequence reads—that is, the sequence
reads that could not be generated through sequencing
for a variety of technical reasons.5 Therefore, computa-
tional application of the de Bruijn graph helps alleviate
many problems of de novo sequence assembly, but it
is still not a fool-proof process.

With the improvement of sequence coverage and
computing power, software is being constantly being
developed or improved based on newer algorithms.
Sequence reads can now be accurately assembled
based on overlaps as small as 15 bp.6

A genome sequence assembly can be performed in
two ways: mapping and assembly, or de novo assem-
bly. If the genome has been sequenced before and a
reference genome sequence already exists, then the
newly obtained resequence reads are first mapped to
the reference genome through alignment and then
assembled in proper order; this mode of assembly is
called “mapping and assembly.” Bowtie is an ultrafast,
memory-efficient short-read aligner that helps in

mapping and assembly. It rapidly aligns large sets of
short sequencing reads to a reference sequence, at a
rate of over 25 million 35-bp reads per hour. For reads
longer than about 50 bp, Bowtie 2 is generally faster,
more sensitive, and uses less memory than the original
Bowtie (http://bowtie-bio.sourceforge.net/index.shtml).

In contrast, if there is no reference genome sequence
then the assembly is called “de novo assembly.” For
de novo assembly, paired reads work better than sin-
gle reads because paired reads help generate scaffolds.
Therefore, genome assembly is a hierarchical process;
it is performed in steps beginning from the assembly
of the sequence reads into contigs, assembly of the
contigs into scaffolds (supercontigs), and assembly of
the scaffolds into chromosomes. Many genome assem-
blies remain restricted to scaffold level for a long time
because the gaps can not be easily sequenced. Some
scaffolds can be placed within a chromosome, while
the chromosomal assignment of other scaffolds may
remain difficult.

The de novo genome assembly can be assessed
based on a number of parameters, such as the number
of contigs and scaffolds available and their size, and
the fraction of reads that can be assembled. One
widely used metric to evaluate the quality of assembly
is the contig and scaffold N50 value (see Box 7.1). An
N50 contig is the size of the shortest contig such that
the sum of contigs of that size or longer constitutes at
least 50% of the total size of the assembled contigs. For
example, an N50 contig of 100 kb means that when
contigs of 100 kb or longer are added up, the resulting
size represents at least 50% of the total size of all
assembled contigs. Likewise, an N50 scaffold size is
the length of the shortest scaffold such that the sum of
the scaffolds of that size or longer constitutes at least
50% of the total size of all assembled scaffolds.

Although genome sequencing has become high
throughput and very cheap, and the computational
power in genome-sequence assembly has tremen-
dously increased, the current methods have many pro-
blems, partly owing to the nature of the genome
sequence itself and partly owing to problems inherent
in the sequencing method. Consequently, de novo
sequence assembly is still a major challenge and can be
fraught with errors and missing sequence.7 This makes
finishing a genome sequence and assembly a continu-
ous and long-drawn-out process.

7.3 GENOME ANNOTATION

Genome annotation is the process by which biologi-
cal information is assigned to the genome sequence. It
involves the prediction of exons, introns, regulatory
elements, various signal sequences, alternatively
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spliced variants, noncoding RNAs, etc., that ultimately
reflects the function and sheds light on molecular
(sequence) evolution. Therefore, annotation has a struc-
tural aspect and a functional aspect. Annotation can be
done computationally or manually; the latter requires
human expertise. In reality, both computational and
manual annotations are used to optimize the annotation
process. Expectedly, the existence of similar annotated
genomes greatly facilitates the annotation of newly
sequenced genome. The median gene lengths are roughly
proportional to genome size; hence, bigger genomes have big-
ger genes. Thus, accurate annotation of a larger genome
requires a more contiguous genome assembly in order
to avoid splitting genes across scaffolds.8

In brief, at the beginning of genome annotation,
repeats are identified and masked computationally
(e.g. using RepeatMasker; created by Smit, A.F.A.,
Hubley, R., and Green, P.; http://www.repeatmasker
.org) because repeats, if not removed, can produce false
evidence of gene annotations through spurious BLAST
alignments. Repeats include low-complexity sequences
(homopolymeric runs of nucleotides) and transposable
elements, including long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements
(SINEs). Computational masking of repeat sequence
frequently involves replacing the sequence with “N”.

After repeat masking, the genome assembly is
aligned to known expressed sequence tag (EST), RNA,
and protein sequences; these sequences may include
previously identified transcripts and proteins from the
same organism whose genome is being annotated, or
they may be from other organisms. When sequences
from other organisms are used, evolutionarily con-
served proteins provide useful information. The align-
ment process uses BLAST and BLAT (discussed in
Chapters 2, 5, and 6) in order to rapidly identify
approximate regions of homology. BLAT can also map
these sequences to the genome. The alignment data are
filtered to eliminate marginal alignments as revealed

by low % identity or % similarity. The filtered align-
ment data are then inspected for the presence of redun-
dant sequences, which would be removed. Further
alignment is performed to obtain greater precision of
exon boundaries using splice-site detecting alignment
algorithms, such as Splign (http://www.ncbi.nlm.nih.
gov/sutils/splign/splign.cgi) and Spidey (http://
www.ncbi.nlm.nih.gov/spidey/spideydoc.html). Both
Splign and Spidey compute mRNA/cDNA-to-genome
alignments, including spliced sequence alignments.
Splign was developed by Kapustin et al.9 and Spidey
was developed by Wheelan et al.10 Figure 7.2 shows
how Splign can be used online. The example used is
mouse Slco1a6 mRNA (cDNA) (RefSeq NM_023718.3),
which was mapped to and aligned with the mouse
genome to find the genomic location of the exons and
splice-junction sites. Figure 7.3 shows partial informa-
tion of Splign output.

The final stage of annotation is best done manually
but is being increasingly done computationally.
Although manual annotation is high quality, it is time
consuming, expensive, and labor intensive. In the age
of massive genomic data generation, available geno-
mic information, and increased computational power,
genome annotation projects are increasingly utilizing
automated annotation. The ultimate goal of annota-
tion is to obtain a synthesis of alignment-based evi-
dence with gene predictions to obtain a final set of
gene annotations. Annotation of a genome undergoes
repeated quality-control checks and it is a long ongo-
ing process. The target for annotation is to generate a
“high-quality draft” assembly that is at least 90%
complete.8 RNA sequencing (RNA-seq) data can be
used to greatly improve the accuracy of gene annota-
tions because such data provide strong evidence for
exons, splice sites, and alternatively spliced exons.
The interested reader is urged to read an excellent
overview of eukaryotic genome annotation by Yandell
and Ence.8

BOX 7.1

The N50 contig value can be determined by first sort-

ing all contigs in decreasing order of size, then adding

the contigs until the total added size reaches at least half

of the total size of all assembled contigs. The size of the

smallest contig used in this addition process represents

the N50. The scaffold N50 is calculated in the same fash-

ion using the scaffold size. For example, if the contigs

assembled are 0.43, 0.75, 1, 0.6, 0.8, 0.55, 0.32, and

0.25 Mbp, the total assembled size of all contigs is

4.7 Mbp. Now, organizing the contigs in decreasing

order of size, we get: 1, 0.8, 0.75, 0.6, 0.55, 0.43, 0.32, and

0.25 Mbp. Adding just 1, 0.8, and 0.75 yields 2.55 Mbp,

which is 54% of the total assembled size of all contigs.

The smallest contig used in this addition process is

0.75 Mbp. Therefore, the N50 contig is 0.75 Mbp. The

larger the N50 value, the better is the assembly. Using

the same concept, higher values of N are also used, such

as N60 and N80. If the N50 scaffold length is too short,

additional rounds of shotgun sequencing are

recommended.
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7.3.1 Gene Prediction

Gene prediction, which is part of genome annotation,
involves the identification of putative coding exons in an
unannotated DNA sequence. In other words, gene pre-
diction attempts to predict putative coding sequences.
The process is probabilistic and the putative exons are
scored for the probability of being a true exon.

Gene prediction in prokaryotes (Bacteria and
Archaea) involves fewer confounding factors than in
eukaryotes because in prokaryotes the genome size is
small and gene density is high, with B88% of the
genome containing coding sequences.11 Bacteria do not
have introns (Archaea have introns in rRNA and
tRNA genes12), and the genomes have fewer repeat
sequences. This is in contrast to eukaryotic genomes
that are very large and full of repeat sequences;
the majority of the eukaryotic genome is non-protein-
coding, and the protein-coding genes contain large
introns. Bacterial genes also have Shine�Dalgarno
sequence (consensus AGGAGGT), which is the ribo-
somal binding site that lies upstream of the transla-
tional initiation codon (ATG) but downstream of the
transcription start site. The end of the transcriptional
unit (operon) has a terminator sequence that can form
a stem�loop structure followed by a string of “T”s.

The frequency of certain codons is much higher
because of known codon preferences. These telltale sig-
nals, coupled with high gene density and fewer repeat
sequences in the genomes, tend to make gene predic-
tion in prokaryotes easier than in higher eukaryotes.

Gene prediction in an unannotated genome can be
performed by intrinsic or ab initio prediction, extrin-
sic or evidence-based prediction, and homology-
based prediction.

In the absence of any reference sequence (genome,
EST, protein) from a related organism, gene prediction
relies on intrinsic or ab initio prediction—that is, pre-
diction based on the identification and analysis of
telltale signals of protein-coding genes. In other words,
the prediction is based on the information contained in
the genomic sequence itself. Some of these signals are:
start and stop codons, known codon preferences,
intron splice signals, poly(A) signal sequence, TATA
boxes, cap sites, transcription-factor-binding sites,
Kozak sequence, and termination signals. In addition,
the nucleotide composition differences known to exist
between coding and noncoding regions as well as
many essential features of gene structure are also taken
into account, such as gene density, typical number of
exons/gene, typical exon length, and open reading
frame (ORF)-specific hexamer composition versus

FIGURE 7.2 The use of Splign online. In the box for cDNA, either the sequence or the accession number/GI number can be entered. The
sequence has to be entered in FASTA format. The example used is mouse Slco1a6 mRNA (cDNA) (RefSeq NM_023718.3). The goal is to map
the sequence to and align it with the mouse genome to find the genomic location of the exons and splice-junction sites. The default settings
were maintained.
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ORF-independent hexamer composition (in introns
and intergenic regions).

The nucleotide composition of coding versus noncod-
ing regions is analyzed using probabilistic statistics, such
as various versions of Markov models. For example, the
wobble base (third position in a codon) tends to be higher
in G1C content in a coding region. Thus, if the local
G1C content in a genomic region is significantly higher
than the background, it suggests the likelihood of an ORF
in that region. The sequence can be translated in all six
frames (three sense, three antisense). Because there are 3
stop codons plus 61 amino-acid codons, a random unbi-
ased distribution of bases should produce approximately
1 stop codon for every 20 codons in an ORF search. If the
region is rich in A1T, a stop codon is expected even
before 20 codons because the stop codons (TAA, TAG,
TGA) are A1T rich (7 A1T out of 9 bases). These fea-
tures and generalizations are expected for noncoding
regions, but not for coding regions. Therefore, if an ORF

search of a genomic region produces a translated ORF
that shows a significantly high number of codons, such
as . 50 or so, before a stop codon appears, it suggests
the likelihood of a legitimate ORF. With some exceptions,
the number of codons in most ORFs is far greater than
60; in fact, proteins containing,200 amino acids are still
considered to be small proteins and are known to play
important roles in development.13 Therefore, the ab initio
approach combines statistical analyses along with other
gene signals for gene prediction.

AUGUSTUS (http://bioinf.uni-greifswald.de/augus-
tus/submission) is an ab initio gene-prediction program
that uses the hidden Markov model (HMM; see Box 7.2).
The program has used a diverse training set of approxi-
mately 60 genomes belonging to four different groups of
organisms: animals; Alveolata (single-celled eukaryotes);
plants and algae; and fungi, and is therefore able to pre-
dict genes in a wide range of species. The original version
of AUGUSTUS utilized a purely ab initiomethod and was

FIGURE 7.3 Partial Splign output. Splign has aligned the input sequence to the mouse genome, and has created 15 segments, displayed
under “Segments” link on the left-hand side. In this example, each segment corresponds to one exon. Above the “Segments” link is the
exon�intron organization of the gene, in which each exon is represented by a vertical line. Above the gene diagram is the mRNA diagram, in
which each exon is represented by a box and the length of each box is proportional to the length of the exon. So, exon 15 (the last exon) is the
longest. Above the mRNA, the open reading frame (ORF) is represented by a line. The green line here shows that there is no frameshift in
the input sequence. Any frameshift would be represented by a partial red line. The green dot at the beginning and the red dot at the end
of the ORF denote the start and the stop codon, respectively. Although not shown here, mismatches are denoted by vertical red lines and
insertions/deletions (indels) are denoted by vertical blue lines inside the rectangular boxes representing exons. If the cursor is held close to an
exon in the gene (vertical line), its genomic location appears as long as the cursor is held in place (segment 1 in this example); similarly, if the
cursor is held close to an exon in the mRNA (rectangular box), its location in the mRNA appears (segment 15 in this example). Note that for
the mRNA, the orientation is 50-30 from left to right; hence, segment 15 (exon 15) is at the right, whereas for the gene, the orientation is
50-30 from right to left; hence segment 1 (exon 1) is at the right. This is because the gene is located in the reverse orientation in the genome,
which is indicated by the word “Flip” (right-hand side, circled). In the figure, the location of exon 15 (segment 15) of the mRNA and segment
1 (exon 1) in the genome are shown; one of them is copied and pasted separately in the figure. This is because only one at a time can be
obtained, not both. As soon as a segment is selected, the corresponding vertical line in the gene diagram becomes blue and the corresponding
rectangular box in the mRNA diagram becomes highlighted in yellow with its border becoming blue (in the figure, exon 1). Also, the align-
ment with the genomic sequence is displayed.
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BOX 7.2

THE H IDDEN MARKOV MODEL

Gene-prediction algorithms have become more

sophisticated with the incorporation of statistical meth-

ods, particularly the Markov model and its variants. A

Markov model is a stochastic model—that is, a model to

predict the outcome of a stochastic (random) process.

The simple Markov model is a Markov chain that repre-

sents an ordered sequence of discrete events, moving

from one “state” (event) to another with a certain proba-

bility, called the transition probability. In a Markov

chain, at any given point in time, each current state has

a previous state si, which has evolved into the current

state sj with a transition probability pij, and the current

state sj will evolve into a future state sk with a transition

probability pjk. In this sequence of events, pjk depends on

sj but not si. In other words, a Markov model assumes

that the probability of the future state depends on the

current state but NOT on the past state.

A Markov model predicts the evolution of an observ-

able event that depends on internal factors. The observ-

able event can be called an “output signal” and the

internal factor can be called a “state.” In a Markov model

prediction, both the “output signal” and the “state” are

observable. Markov models are used to predict many

events in day-to-day life, such as stock market perfor-

mance, to make weather forecasts, and so on. In contrast

to Markov models, in the hidden Markov model (HMM)

the “output signal” is observable but the “state” is not.

Examples of HMM from biology are DNA and protein

sequences. A DNA sequence is an observable output sig-

nal (from sequence determination) but the state of the

sequence—that is, whether the sequence belongs to exon

or intron or regulatory element or intergenic region—is

not directly observable. Similarly, the sequence of amino

acids in a protein is an observable output signal (from

sequence determination), but the state of the sequence—

that is, whether the sequence is part of a specific domain

(e.g. a transmembrane domain)—is not directly observ-

able. These hidden states can be modeled and predicted

with certain probabilities by HMM. Consequently, HMMs

have been used in, among other things, gene prediction,

pairwise and multiple sequence alignment, base-calling,

modeling DNA sequencing errors, protein secondary

structure prediction, noncoding RNA (ncRNA) identifica-

tion, RNA structural alignment, acceleration of RNA fold-

ing and alignment, and fast noncoding RNA annotation.14

Markov models can be fixed order or variable order,

as well as inhomogeneous or homogeneous. In a fixed-

order Markov model, the most recent state is predicted

based on a fixed number of the previous state(s), and this

fixed number of previous state(s) is called the order of the

Markov model. For example, a first-order Markov model

predicts that the state of an entity at a particular position

in a sequence depends on the state of one entity at the pre-

ceding position (e.g. in various cis-regulatory elements in

DNA and motifs in proteins). A second-order Markov

model predicts that the state of an entity at a particular

position in a sequence depends on the state of two entities

at the two preceding positions (e.g. in codons in DNA).

Similarly, a fifth-order Markov model predicts the state of

the sixth entity in a sequence based on the previous five

entities (e.g. in hexamers in coding sequence). It has been

observed that the probability of occurrence of pairs of

codons (hexamers) in a coding sequence is significantly

higher than in noncoding sequence. A fifth-order Markov

model calculates the probability of the sixth base based on

the previous five bases in the sequence. In addition to the

order, if the probability of occurrence of the state also

depends on the position within the sequence, the model is

called an inhomogeneous Markov model. In contrast, in a

homogeneous Markov model all positions in the sequence

are described by the same set of conditional probabilities.

Fifth-order Markov models are often used in gene

prediction. For example, GeneMark (http://opal.biology

.gatech.edu/GeneMark/) is a family of gene-prediction

programs that uses an inhomogeneous fifth-order Markov

model. However, a potential problem with a higher-order

(e.g. fifth-order) Markov model is having enough data for

the training set. For example, a fifth-order Markov model

will require 45 (54096) probabilities (probable combina-

tions) to be estimated from the training data. In order to

estimate these probabilities, many occurrences of all possi-

ble k-mers must be present in the data. The lack of avail-

ability of such huge amount of data may limit the

usefulness of a higher-order Markov model. The interpo-

lated Markov model (IMM) overcomes this problem by

combining probabilities from contexts of varying lengths

to make predictions, and by only using those contexts (oli-

gomers) for which sufficient data are available.15 The

IMM method involves sampling dimers (k5 1) to nine-

mers (k5 8) and adding the probabilities of all weighted

k-mers, placing less weight on rare k-mers and more

weight on more abundant k-mers. Therefore, the probabil-

ity of the model is the sum of all probabilities of all

weighted k-mers for which sufficient data are available.

GLIMMER (Gene Locator and Interpolated Markov

ModelER) is a microbial gene prediction and genome

annotation tool that uses IMM and is available to run

online at the NCBI (http://www.ncbi.nlm.nih.gov/

genomes/MICROBES/glimmer_3.cgi). The majority of

gene-prediction software uses HMM for prediction.
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found to be one of the best ab initio algorithms for gene
prediction.16 FGENESH is a very fast and accurate ab
initio gene-prediction program. The SoftBerry home page
(http://linux1.softberry.com/berry.phtml) provides link
to FGENESH and to a diverse set of other bioinformatics
applications. GENSCAN (http://genes.mit.edu/
GENSCAN.html) is another ab initio prediction tool
developed early on by Dr Chris Burge in the research
group of Samuel Karlin at Stanford University17; it also
utilizes HMM. GENSCAN was trained using 570 verte-
brate gene sequences.18 When tested on standardized
sets of human and vertebrate genes, GENSCAN accu-
rately predicted 75 to 80% of exons.17 Figure 7.4 shows
the GENSCAN home page, and Figure 7.5 shows a
GENSCAN analysis of a 932-bp input DNA fragmentf.19

Based on the G1C content, the input sequence is pre-
dicted to belong to isochore 3i (circled).

Ab initio prediction algorithms fail to accurately pre-
dict alternative splicing, very long or short exons,
nested and overlapping genes, any non-canonical

features associated with the gene (e.g. non-ATG start
codon, selenocysteine codons, split start or stop
codons, etc.). Purely ab initio predictions are generally
50% or less accurate at the gene level.

Another approach is extrinsic or evidence-based
prediction, in which some information is available,
such as mRNA, EST, or protein product information.
As more and more genomes have been sequenced and
annotated, and more and more genomic information
has become available, the pure ab initio prediction
algorithms have been modified to incorporate genomic
information and develop extrinsic prediction algo-
rithms. For example, the newer version of AUGUSTUS
combines the prediction ability of an ab initio algorithm
with extrinsic information, such as matches to protein
databases or alignments of genomic sequences, to
improve the prediction accuracy. Because of this
improvement, the new version of AUSGUSTUS is also
able to predict splice variants, which the original algo-
rithm could not do. MAKER 2 (http://www.yandell-lab

FIGURE 7.4 GENSCAN home page. Currently, GENSCAN can analyze an input sequence of up to 1 million bases (circled).

fGenBank: NC_000016.9, Region: 566424782 56643409
iIsochores have been defined as .300-kb-long DNA segments in warm-blooded vertebrates (birds and mammals) with a

characteristic, relatively homogeneous base composition. Based on the G1C content, isochores are classified in two “G1C-poor”

types (L1 and L2) and three “G1C-rich” types (H1�H3). The average G1C content of isochore 3 (H3) is the highest (B 54%) and it

constitutes B 3% of the genome. In general, genes with higher G1C content belong to G1C-rich isochores (types H1�H3). The H2

and H3 isochores together have been termed the “genome core” because of their higher gene concentrations, which makes up about

12% of the genome (9% for H2 and 3% for H3). In the human genome, the H3 isochore apparently contains 25% of the genes, and the

genome core (H21H3 combined) contains about 54% of the genes.
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.org/software/maker.html) is another gene-prediction
and genome-annotation program that combines ab initio
and extrinsic approaches to produce gene annotations
having evidence-based quality values. GenomeScan
(http://genes.mit.edu/genomescan.html) is the succes-
sor of GENSCAN and it performs gene prediction in
humans and other vertebrates. The algorithm utilizes
two principal sources of information: (1) models of
exon�intron and splice-signal composition; and (2)
sequence similarity information, such as BLASTX hits.
The probabilistic model used by GenomeScan is based
on that used by GENSCAN.

Homology-based prediction relies on identifying
significant matches of the query sequence with
sequences in known and annotated genome sequences
from related species. Thus, homology-based predic-
tion relies on comparative genomics, and has been
made possible because the genomes of many organ-
isms have been sequenced. Homology-based predic-
tion is based on the molecular evolutionary principle
that functionally important parts of the genome evolve
at a slower rate compared to the rest of the genome;
therefore, many gene sequences, particularly in related
species, should be highly conserved and therefore
be recognizable by the prediction algorithm.

Consequently, homology-based prediction has a
high level of accuracy, and the greater the number of
available genomes of related species, the greater
the accuracy and completeness of prediction. The
homology-based gene prediction tools align syntenic
regions of unannotated genomes, and utilize a probabi-
listic framework for gene structure prediction. Several
programs have been developed for homology-based pre-
diction, such as SLAM (http://baboon.math.berkeley
.edu/Bsyntenic/slam.html), CEM, and Twinscan/
N-SCAN (http://mblab.wustl.edu/software.html), and
EuGene’Hom (http://tata.toulouse.inra.fr/apps/
eugene/EuGeneHom/cgi-bin/EuGeneHom.pl); for
plant genomes. Comparative-genomics-based gene-
finding programs outperform ab initio gene-finding
programs.20,21

Many of these software programs can be down-
loaded for noncommercial and research purposes to
carry out sequence analysis and gene prediction. A list
of many gene-prediction software programs is avail-
able at the geneprediction.org website (http://www
.geneprediction.org/software.html). Many of these can
be accessed and run online by simply entering the
input sequence either in plain text format or in FASTA
format. The reader can try these links using known

FIGURE 7.5 GENSCAN analysis of a input DNA sequence fragment. The upper left panel shows the analysis output and also the length
of the input sequence (932 bp) and its G1C content (54.51%) (circled). Based on the G1C content, the input sequence is predicted to belong
to isochore 3 (circled). The lower left panel shows a 186-bp predicted ORF and a 61-amino-acid predicted protein. The abbreviations are
explained in the right-hand panel.
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genomic sequence (containing a known gene) and
learn firsthand how each algorithm performs gene pre-
diction and what the different outputs look like. A
flow-chart for practice activity is given below.

Go to the NCBI home page - select “Gene” from
the drop-down list of databases - enter Oatp-5 (or
Slco1a6) in the “Search” space and hit enter - from
the “Results” page, click “Mus musculus
Slco1a6”-scroll down the Slco1a6 page-under the
“NCBI Reference Sequences (RefSeq)” bar, locate the
section “Reference GRCm38.p1 C57BL/6J”-under
this section, locate the heading “NC_000072.6”-under
this heading, click the “GenBank” linkj.

This will take the user to the RefSeq nucleotide
sequence page of chromosome 6 showing VERSION
NC_000072.6 and GI: 372099104. The sequence is
100,382 bases long. Copy the sequence. Now open a
new web browser page - Google “Readseq” (the file
conversion tool) - open Readseq from any of the
sites, such as EBI, NIH, or Indiana University link -
paste the sequence - from the “Output format” drop-
down menu select the format as “Plain/Raw” if plain
text format is desired or “Pearson/Fasta” if FASTA
format is desired, and check the box for “Remove gap
symbols” (or “degap” if using the EBI link). “Submit”
the sequence and the desired sequence format will be
returned without base numbers and gaps. Now copy
this sequence and paste it in any of the gene prediction
tools and run gene prediction. The Readseq link at the
Indiana University site (http://iubio.bio.indiana.edu/
cgi-bin/readseq.cgi) provides an option to download
the sequence file, but the default is “View in browser.”

Although the three approaches have been discussed here sepa-
rately; in reality they are combined to increase the prediction
accuracy. The sequencing and annotation of an ever-
increasing number of prokaryotic and eukaryotic gen-
omes have made it possible to successfully combine all
three approaches. A common current approach for gene
finding involves the following activities: several sets of
gene predictions by different gene finders are compiled,
and alignments from ESTs and proteins to the genome
are constructed. All these data are combined to find the
most plausible gene sequence, either manually or by
using meta tools that combine several predictions and
alignments.16

7.4 PREDICTION OF PROMOTERS,
TRANSCRIPTION-FACTOR-BINDING
SITES, TRANSLATION INITIATION

SITES, AND THE ORF

Many free software packages are available online
for the prediction of putative promoter sequences,

transcription start sites, cis-regulatory elements, trans-
lation initiation sites, and the ORF.

Transcription of all classes of RNA (rRNA, mRNA,
tRNA) in prokaryotes is catalyzed by one RNA poly-
merase, which is a multi-subunit enzyme. It contains a
core polymerase that is composed of five subunits (αI,
αII, β, β0, ω), and a sigma (σ) factor. The sigma factor is
the initiation factor that helps position the core poly-
merase to the promoter. The promoter has two consen-
sus sequences, one at the210 position (TATAAT in
Escherichia coli), also known as the Pribnow box, and
the other at the235 position (TTGACA in E. coli) rela-
tive to the transcription start site. Bacteria possess dif-
ferent types of sigma factors. In E. coli and other
bacteria, the sigma factor that initiates transcription of
housekeeping genes and many other genes has a
molecular weight of 70 kDa (hence σ70). In prokaryotes,
a transcriptional unit (i.e. an operon) may contain one
gene or a number of genes under the control of one
promoter. The transcription of one gene produces
monocistronic RNA, whereas the transcription of
many genes produces polycistronic RNA. Therefore,
the promoter is located upstream of the first gene in a
polycistronic transcriptional unit. Wang et al.22 pre-
dicted operons in Staphylococcus aureus with . 90%
accuracy using a scoring system to annotate the inter-
section between two genes. In other words, this
method identified whether two adjacent genes belong
to the same operon. The scoring system was based on
a number of parameters, such as intergenic distance,
presence/absence of a terminator, comparison with
other known prokaryotic genomes, etc.

Transcription in eukaryotes is carried out by three dif-
ferent RNA polymerases—RNA polymerases I, II, and
III—which all bind to the promoter regions of the respec-
tive genes that will be transcribed. Of these, RNA poly-
merase II (pol II) produces translatable mRNAs. RNA
pol II binds to the promoter, and also interacts with vari-
ous other proteins for transcription. The DNA-binding
proteins bind to specific sequence elements, called cis-
response elements or cis-regulatory elements, that are all
located at variable distances upstream of the transcrip-
tion start site. The eukaryotic promoter can be divided
into the core (or basal), proximal, and distal promoter,
based on function and distance from the transcription
start site.

In general, the transcription start site is determined
by the TATA box (consensus TATAAA) and initiator
(Inr) element (consensus: Y-Y-1 1-N-T/A-Y-Y, where
Y5pyrimidine, 115 transcription start site, N5 any
nucleotide), or by the Inr element and downstream
promoter element (DPE; consensus: (A/G)128 G(A/T)
(C/T)(G/A/C)132) in the case of TATA-less promoters.

jThese commands are current as of July, 2013. They may change if the mouse genome assembly version changes.
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Typically, the core promoter is about 35 bp long, and
can extend either upstream or downstream of the tran-
scription start site (2 35 to1 35).23 The core promoter
may contain two or more of the following sequence
motifs: TATA box, Inr element, and DPE. In most
higher eukaryotic genes, the TATA box is located
approximately 25-nt upstream (usually between230
and225) from the transcription start site. In many
genes, a variation of the classic Inr may be present.24

The proximal promoter is about 250 bp long and can
extend between the2250 and 1250 nt positions, relative
to the transcription start site.25 Two transcription-
activating response elements found in the proximal pro-
moter are the CAAT box (binds the transcription factor
NF-I) and the GC box (binds the transcription factor
Sp1). The CAAT box is located B75 nt upstream of the
transcription start site and has a consensus sequence GG
(T/C)CAATCT. The GC box is located B90 nt upstream
of the transcription start site and has a consensus
sequence GGGCGG. The CAAT box and the GC box
operate as enhancer elements because they can activate
transcription in an orientation-independent manner.

Distal promoter sequences are further upstream of
the proximal promoter elements.26 The majority of
transcription-regulatory protein-binding sites are located
within 500 bp upstream of the transcription start site.
Some regulatory-protein-binding sites can also be
located downstream of the transcription start site.

Prediction of the translation initiation site (TIS) in a
genomic sequence is an important problem to address.
TIS prediction at the genome level is still not a trivial
task because of the noise in the data. Some algorithms
take into account weighted signal-based translation ini-
tiation site scores as well as the coding potential of
sequences flanking TISs. At the gene level, an impor-
tant sequence feature relevant for translation initiation
and identification of the correct ATG codon by the
translation initiation complex is the Kozak sequence.
The original functional Kozak sequence (in the sense
strand of DNA) was described as 50-GCCRCCATGG-30

(where R is a purine, which in most vertebrate
mRNAs is an “A”; ATG is the translation initiation
codon). A shorter and more effective version (50-
ACCATGG-30) of the original Kozak sequence was
also described later. The translation initiation region is
characterized by certain features. Many genes contain
the consensus Kozak sequence while others contain
some variant. Still others may not have any Kozak
sequence at all. The “G” after the ATG (i.e. ATGG) is
the most prevalent base in the vast majority of
mRNAs. If there is an ATG codon before the actual
start codon, the sequence context of that ATG codon—
such as lack of Kozak sequence around it, lack of a

“G” immediately following the ATG, etc.—can help
the ribosome bypass the incorrect ATG and detect the
right ATG codon through scanning (known as leaky
scanning). The incorrect ATG is usually out of frame
with respect to the true initiation codon. If translation
is initiated from the incorrect ATG codon that precedes
the correct ATG codon, the ribosome encounters a pre-
mature stop codon, which is in-frame with the incor-
rect ATG codon. In such cases, translation is initiated
again (reinitiation) from the correct initiation codon.

The National Center for Biotechnology Information
(NCBI) ORF prediction tool ORF Finderk (http://
www.ncbi.nlm.nih.gov/gorf/gorf.html) is a graphical
analysis tool that finds all ORFs of a selectable minimum
size in the six frames (three sense; three antisense), using
the standard or alternative genetic codes. The ORF trans-
lation in three frames is achieved by sliding the transla-
tional frame one base at a time. Because the genetic code
is triplet, moving by three bases will find all possible
frames. Figure 7.6A shows the graphics of computa-
tional translation of mouse Slco1a6 mRNA in six frames.
When the longest predicted ORF (top frame) is clicked,
the sequence and other details of the sequence are
displayed (Figure 7.6B). The entire sequence is not
displayed in the figure. Clicking the “SixFrames” link
shows the six frames (Figure 7.6C). In each of these
frames, the blue vertical lines represent the in-frame
ATG codons and the red lines represent in-frame STOP
codons. As is evident, each of these frames except the
top one is full of in-frame stop codons. The total number
of entries on the right-hand side (15), each with a small
blue square, corresponds to the total number of transla-
tional reading frames present in all six frames combined;
hence, each entry on the right corresponds to one trans-
lational reading frame. Clicking any blue square reveals
the corresponding translational reading frame (both
turn red), and the sequence of the reading frame is
revealed.

There are many online tools available for the predic-
tion of promoters and cis-regulatory elements. These
programs are not all trained on the same training data
set; consequently, the prediction outputs may not be
identical. Thus, it is a good idea to check the prediction
using multiple programs to find out at least the com-
mon elements predicted by different programs. It
should be remembered that the bioinformatic predictions of
the cis-regulatory elements (regulating transcription) as
well as the translation initiation site (i.e. the beginning of
the ORF) need to be experimentally verified. A more than
10% error rate in computationally predicted ORFs com-
pared to experimentally derived values has been reported.
The errors are due to the variation in predicting the
translation initiation site. Such error is partly due to

kTatiana Tatusov and Roman Tatusov are credited on the ORF Finder home page.
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the ORF-prediction algorithm used, and partly due to
the taxon examined. For example, genomes having
high G1C content are particularly susceptible to ORF-
prediction errors because of the existence of the alter-
native start codon GTG.27

Some of the publicly available online tools for the
prediction of promoters, cis-regulatory elements, tran-
scription start sites, translation initiation sites, and the
ORF are listed in Table 7.1. There are many more pre-
diction tools available. The reader can use these tools
to obtain a rapid prediction about an input sequence,
and compare the predictions of different tools.

7.5 RESTRICTION-SITE MAPPING
OF THE INPUT SEQUENCE

Experiments involving DNA often require the
experimenter to use various restriction enzymes.
Restriction enzymes may be used to simply cut the
DNA for gel electrophoresis or for advanced manipu-
lation of DNA, such as making a vector, or a trans-
genic or knockout construct. Two online resources that
can be used to analyze various restriction-enzyme

cutting sites and generate a restriction map of an
input DNA sequence are Webcutter 2.0l (http://rna
.lundberg.gu.se/cutter2/) and NEBCutter 2.038 (http://
tools.neb.com/NEBcutter2/).

7.6 RNA SECONDARY-STRUCTURE
PREDICTION

RNA is single stranded but it can form significant
secondary structure because of intrastrand base pair-
ing. The three-dimensional shape of an RNA is its sec-
ondary structure. Some secondary structures observed
in RNA are short duplexes, stem�loops (hairpin
stem�loops), bulges, internal loops, pseudoknots,
etc. (Figure 7.7A). The secondary structure of an RNA
plays an important role in its maturation, regulation,
and function. In fact, the formation of RNA secondary
structure is the key to some of its functions regulating
gene expression. For example, during translational
reprogramming, or recoding, the gene-encoded read-
ing frame is altered during translation, which allows
for the generation of multiple ORFs from the same
basic ORF encoded by the gene. This is achieved by

FIGURE 7.6 NCBI ORF Finder. (A) Computational translation of mouse Slco1a6 mRNA in six frames, three sense and three antisense. (B)
When the longest predicted ORF (top frame) is clicked, the sequence and other details of the sequence are displayed. Only the upper portion
of the entire sequence is displayed. (C) Clicking the “SixFrames” link shows the six frames.

lr1997 Max Heiman.
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TABLE 7.1 Some Online Tools for Prediction of Promoters, Cis-Regulatory Elements, Transcription Start and Initiation Sites, and the ORF

Online Analysis Tool Comments and URL

BPROM Bacterial promoter prediction. A SoftBerry utility that predicts putative transcription start positions of
bacterial genes regulated by sigma70 promoters. The prediction accuracy is about 80%; the specificity is
also about 80% when tested on equal numbers of promoter and non-promoter sequences. It uses the
signal and content information of the sequence (e.g. consensus sequence). BPROM should be run on a
region between two neighboring ORFs located on the same strand, or on a sequence upstream from an
ORF (most promoters are located within 150 bp upstream of the ORF). BPROM should not be used for
whole genomes, to avoid the many false positives
(http://linux1.softberry.com/berry.phtml?topic5bprom&group5programs&subgroup5gfindb)

Virtual Footprint Prokaryotic promoter prediction. Virtual Footprint is a software suite for analyzing transcription-factor-
binding sites in whole bacterial genomes and their underlying regulatory networks. The result is a list of
potential binding sites and corresponding genes defining the whole regulon. There are two types of
analysis: analysis of a whole prokaryotic genome with one regulator pattern, and analysis of a promoter
region with several regulator patterns28

(http://www.prodoric.de/vfp/vfp_promoter.php)

BDGP
(Berkeley Drosophila Genome
Project)

Prokaryotic and eukaryotic promoter prediction. Neural network promoter prediction (NNPP)-based.
NNPP is method that consists mainly of two recognition features for predicting eukaryotic promoters;
one for recognizing the TATA-box and one for recognizing the initiator element. Both features are
combined into one output unit, which gives output scores between 0 and 1. The default score is set at
0.8. The prediction accuracy for prokaryotic promoters is greater than that for eukaryotic promoters29

(http://www.fruitfly.org/seq_tools/promoter.html)

FindTerm Rho-independent-terminator prediction in the bacterial genome. A SoftBerry utility that predicts
terminators in the bacterial genome. The search utilizes certain known features of bacterial terminators,
such as T-rich regions, possible combinations of spacer lengths, all hairpins etc., and the result output
shows all putative terminators
(http://linux1.softberry.com/berry.phtml?topic5findterm&group5programs&subgroup5gfindb)

Promoter 2.0 Vertebrate pol II transcription start site (TSS) prediction. The program builds on principles that are
common to neural networks and genetic algorithms30

(http://www.cbs.dtu.dk/services/Promoter/)

Tfsitescan Eukaryotic promoter sequence and putative transcription-factor-binding site prediction. Works best
with sequences ofB500 nt. The output is in graphic display and shows expectation scores for the
putative binding sitesa

(http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl)

SoftBerry Search for promoters/
functional motifs

SoftBerry utility providing a suite of prediction tools for promoter/functional motif prediction. For
example:

1. Plant promoter prediction (TSSP)
2. Human pol II promoter prediction (TSSG and TSSW)
3. Human promoter prediction (FPROM)
4. Promoter prediction using orthologous sequences in eukaryotic genome (PromH(G) and PromH(W))
5. Regulatory motif prediction (Nsite)

(http://linux1.softberry.com/berry.phtml?topic5index&group5programs&subgroup5promoter)

WWW Signal Scan Eukaryotic transcriptional elements prediction based on scoring homologies of published cis-regulatory
transcriptional signal sequences (e.g. in TFD, TRANSFAC databases) in the input sequenceb,31

(http://www-bimas.cit.nih.gov/molbio/signal/)

WWW Promoter Scan Eukaryotic promoter prediction based on scoring homologies with eukaryotic pol II promoter
sequences. If the program finds a putative promoter sequence, it reports the sequence range of the
putative promoter, including the TATA box (if present) and the estimated transcription start site32

(http://www-bimas.cit.nih.gov/molbio/proscan/)

Human Core-Promoter Finder Transcription start site (TSS) prediction in human core-promoters. The input genomic DNA sequence
should be longer than 240 bp and less than 2001 bp. The functional core-promoter is assumed to span
between260 and140 nt with respect to the TSS (11). The program is able to localize a TSS to a 100-bp
intervalB60% of the timec.
(http://rulai.cshl.org/tools/genefinder/CPROMOTER/human.htm)

(Continued)
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TABLE 7.1 (Continued)

Online Analysis Tool Comments and URL

EP3 (Easy Promoter Prediction
Program)

Eukaryotic core promoter prediction. Performs very well in identifying regions in human genes that are
associated with transcription initiation. EP3 uses universal properties of the promoter to detect those
regions in a whole-genome context33 (downloadable)
(http://bioinformatics.psb.ugent.be/webtools/ep3/)

Eponine Transcription start site prediction in mammalian genomic sequence. A probabilistic method with
good specificity and excellent positional accuracy. Eponine is estimated to detect. 50% of transcription
start sites, withB70% specificity34 (downloadable from Sanger Center)
(http://www.sanger.ac.uk/resources/software/eponine/)

Footprinter Prediction of regulatory elements in DNA sequences based on phylogenetic footprinting.
Phylogenetic footprinting method identifies regions of DNA that are highly conserved across a set of
orthologous sequences35 (downloadable from the University of Washington (Motif Discovery link)
(http://bio.cs.washington.edu/software)

ORF Finder Open reading frame (ORF) prediction. A very user-friendly ORF finder on the web. It is a graphical
analysis tool that finds all ORFs in the input sequence, using the standard or alternative genetic codes.
The putative ORFs are displayed in six frames, three sense and three antisensed

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)

NetStart 1.0 Translation initiation site prediction. NetStart produces neural network predictions of translation start
sites in vertebrate and Arabidopsis thaliana nucleotide sequences. The program has been trained on
cDNA-like sequences; therefore, it shows better performance for cDNAs and ESTs. It has not been tested
on genomic data36

(http://www.cbs.dtu.dk/services/NetStart/)

ATGPr Translation initiation site prediction. ATGpr can be used to predict whether an initiation codon is
present or absent in a piece of cDNA, and predict which ATG is the initiation codon for cases where
there are multiple ATG codons. The method uses linear discriminant analysis, and has been tested on a
non-redundant data set of 660 sequences37

(http://atgpr.dbcls.jp/)

aMade available by the Institute for Transcriptional Informatics (IFTI) at the IFTI-MIRAGE website.
bWWW implementation by Robin Hart and Rao Parasa.
cThe web version is offered by Michael Zhang.
dTatiana Tatusov and Roman Tatusov are credited on the ORF Finder home page.

FIGURE 7.7 RNA secondary structure. (A) Some secondary structures of RNA. RNA pseudoknots can be more complex than the one
shown here. (B) The transfer-messenger RNA (tmRNA; 10Sa RNA) and trans-translation. Alanine-charged tmRNA helps resume translation of
a 30-end-truncated mRNA by first providing alanine and then providing its own coding sequence, which adds the 11-amino-acid sequence to
the C-terminal of the previously translated truncated polypeptide. The 11-amino-acid sequence tags the protein for degradation.
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switching the reading frame during translation by one
base, the so-called2 1 or1 1 frameshift mechanism.
The efficiency of frame shifting is directly correlated
with the extent of ribosomal pause. The cis-acting struc-
tural motifs of the mRNA that apparently facilitate
ribosomal pause and consequent frame shifting include
a heptanucleotide slippery sequence at the shift site,
and a pseudoknot secondary structure that begins five
or six nucleotides downstream from the shift site.

It is well recognized that the secondary structures of
tRNA and ribozyme are necessary for their function.
The telomerase RNAs in different species of ciliates and
vertebrates have very different sequences but they all
fold into similar secondary structures, strongly suggest-
ing that the conserved secondary structure is important
for the specific function of telomerase RNA.39

The transfer-messenger RNA (tmRNA) in bacteria
that mediates trans-translation also has a unique sec-
ondary structure that is needed for its function. The
phenomenon of trans-translation involves ribosomal
hopping, involving two distinct RNA templates in suc-
cession. In various bacteria, this 10Sa RNA species acts
as an alanyl tRNA because it is charged with alanine by
alanyl-tRNA synthetase. The 10Sa RNA also has mRNA
features because it encodes an 11-amino-acid oligopep-
tide that tags proteins for degradation. Because 10Sa
RNA possesses such dual features of tRNA and mRNA,
it is called transfer-messenger RNA (tmRNA). When
ribosomes carrying a peptidyl-tRNA pause at the end
of a 30-end-truncated mRNA and accept the alanyl-10Sa
RNA molecule as the alanyl-tRNA surrogate, the
alanyl-10Sa RNA first provides the alanine and then
provides its internal reading frame for the translation of
the 11-amino-acid oligopeptide tag. This results in the
incorporation of the oligopeptide tag to the already syn-
thesized truncated polypeptide, which is thus flagged
for degradation (Figure 7.7B).

An example of the importance of RNA secondary
structure in its maturation is the biogenesis of micro RNA
(miRNA). Transcription of a miRNA gene produces pri-
mary miRNA (pri-miRNA), which has a stem�loop
structure with additional internal loops. Processing of
pri-miRNA in the nucleus by Drosha produces precursor
miRNA (pre-miRNA) which has a shortened stem�loop
structure compared to pri-miRNA. Processing of pre-
miRNA in the cytoplasm produces miRNA. The second-
ary structure of these precursors is necessary for the bio-
genesis of miRNA. An RNA hairpin is an essential
secondary structure of RNA that can guide RNA folding,
determine interactions in a ribozyme, protect mRNA
from degradation, serve as a recognition motif for RNA-
binding proteins, and also regulate gene expression.40 A
recent study using a high-throughput sequencing-based
structure-mapping approach in Drosophila melanogaster
and Caenorhabditis elegans transcriptomes identified both

paired (double-stranded) and unpaired (single-stranded)
RNA components. The authors observed that these
RNAs are significantly correlated with specific epigenetic
modifications. They also uncovered highly base-paired
RNAs, many of which likely encode lncRNAs (long non-
coding RNAs). Additionally, they identified conserved
features of mRNA secondary structure that indicate that
RNA folding demarcates regions of protein translation.
Finally, they identified and characterized 546 mRNAs
whose folding pattern is significantly correlated between
these two species even though they are so far apart in
evolution, thereby suggesting that the observed mRNA
secondary structure has some function.41

The formation and stability of RNA secondary
structure are dependent on a number of factors. For
example, more GC base pairs and longer stem regions
result in greater stability of the secondary structure,
whereas unpaired bases, such as bulges and internal
loops, tend to decrease the stability of the secondary
structure. Similarly, the formation of hairpin loops
with more than 10 or less than 5 bases requires more
energy; hence, it reduces the stability of the secondary
structure. In general, a secondary structure is thermo-
dynamically favored (hence more stable) if its forma-
tion releases energy (ΔG is negative, i.e. negative free
energy). Conversely, a secondary structure becomes
thermodynamically unfavorable (hence less stable) if
its formation requires energy (ΔG is positive, i.e. posi-
tive free energy). This fact is used to predict the sec-
ondary structure of a particular sequence. Free
energies are additive, so one can determine the total
free energy of a secondary structure by adding all the
component free energies (as kcal/mole).

Given the importance of RNA secondary structure,
a number of prediction algorithms have been devel-
oped and are available online to analyze an RNA
sequence to predict its putative secondary structure.
Some of the publicly available online tools for RNA
secondary-structure prediction are listed in Table 7.2.

Secondary-structure-predicting algorithms often
generate an output made up of brackets and dots
(sometimes brackets and hyphens). The character
string denoted by brackets and dots represents the
number of residues of the input sequence and their
base-pairing status. In the bracket notation, the base
pairs are indicated by opening and closing parenthe-
ses. Some program outputs have these brackets and
dots above the bases. Some program outputs may con-
tain the base-pairing probability as well (Figure 7.8).

RNA secondary-structure prediction based on ther-
modynamic parameters has been in practice since the
1980s. Such predictions owe their success to the appli-
cation of various experimentally verified thermody-
namic parameters. However, like every other method,
thermodynamic predictions have their limitations. In
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order to circumvent this problem, various probabilistic
and statistical models have been developed that seem-
ingly outperform thermodynamic-parameter-based
predictions.54 Figure 7.8A shows secondary-structure
prediction of the input RNA sequence based on
minimal-free-energy (MFE) calculation by pknotsRG-
MFE. Figure 7.8B shows secondary-structure predic-
tion of the input RNA sequence based on the partition
functions and base-pair probabilities modelm by
IPKnot; the output is the McCaskill model. In contrast,
Figure 7.8C shows an alternative output by IPKnot,
based on a conditional log-linear probabilistic model

known as CONTRAfold.46 The figure also shows the
respective bracket notations of each model. The free
energy of a secondary structure is calculated by
summing energy parameters of respective loop sub-
structures, which can be experimentally determined
and computationally estimated.55

7.7 MICROARRAY ANALYSIS

Most researchers doing microarray experiments use
the analysis software provided by the manufacturer of

TABLE 7.2 Some Online Tools for RNA Secondary-Structure Prediction

Online Analysis Tool Comments and URL

RNAfold RNAfold predicts secondary structures of single-stranded RNA or DNA sequences based on the classic
minimum-free-energy algorithm of Zuker and Stiegler42 as well as the partition-function algorithm of
McCaskill.43 Current limits are 10,000 nt for minimum-free-energy-only predictions and 7500 nt for partition-
function calculations. The server function can be tested using the sample sequence provided44

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)

RNAsoft RNAsoft is a collection of online services for the computational prediction and design of RNA/DNA structures
based on a standard free-energy model.45 The underlying algorithms have been designed and implemented by
members of the Bioinformatics, Empirical and Theoretical Algorithmics (BETA) Lab at the Department of
Computer Science of the University of British Columbia
(http://www.rnasoft.ca/)

CONTRAfold CONTRAfold is a novel secondary-structure prediction method based on conditional log-linear models
(CLLMs), a flexible class of probabilistic models with high prediction accuracy46

(http://contra.stanford.edu/contrafold/server.html)

RNAstructure RNAstructure uses several secondary-structure prediction algorithms, including thermodynamic and partition-
function algorithms. It is a complete package for RNA and DNA secondary-structure prediction and analysis.
It can take different types of experiment mapping data to constrain or restrain structure prediction47

(http://rna.urmc.rochester.edu/RNAstructureWeb/)

IPKnot IPKnot performs integer-programming (IP)-based prediction of RNA pseudoknots. IPknot can also predict the
consensus secondary structure when a multiple alignment of RNA sequences is given48

(http://rna.naist.jp/ipknot/)

CYLOFOLD RNA secondary-structure (including pseudoknot) prediction tool. Some examples of RNA sequences are
provided that can be used to perform a test run. The bracket notation output is in brackets and hyphens instead
of brackets and dots�

(http://cylofold.abcc.ncifcrf.gov/)

CentroidHomfold and
CentroidFold

CentroidHomfold predicts the secondary structure of an input RNA sequence by employing automatically
collected homologous sequences of the target49,50

CentroidFold uses the CONTRAfold model as the default setting to calculate base-pairing probabilities, and
predicts RNA secondary structure using a γ-centroid estimator. Currently, the input sequence should be less
than or equal to 2000 bases51

(http://www.ncrna.org/)

pknotsRG pknotsRG is a tool for predicting RNA secondary structures, including the class of simple recursive
pseudoknots. It uses the thermodynamic energy model extended by some pseudoknot-specific values.52

The program on the BiBiserv is limited to sequences of length up to 800 bases
(http://bibiserv.techfak.uni-bielefeld.de/pknotsrg/submission.html)
pknotsRG will be discontinued and replaced by pKiss in the near future
(http://bibiserv2.cebitec.uni-bielefeld.de/pkiss)

�Made available by Dr Bruce A. Shapiro and his research group at the National Cancer Institute, Frederick, MD.

mPartition functions estimate statistical properties of a system with respect to thermodynamic probabilities, such as melting behavior

and base-pair probabilities; properties and probabilities of a myriad of alternative structures in thermodynamic equilibrium.
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the microarray platforms. Therefore, some basic con-
cepts of microarray data analysis are discussed here.

An outline of the microarray technique has been
discussed in Chapter 3. The system described is also
called two-color or two-channel microarrays because
it involves the use of two different fluorescently
labeled probes; one labeled with the fluorescent dye
Cy3n (fluorescein, with fluorescence emission at
B565 nm; hence green), and the other labeled with the
fluorescent dye Cy5 (biotin, with fluorescence emission
at B665 nm; hence red). The goal of DNA microarray
is to screen the expression profile of genes, and the
technique is useful because of its high-throughput
nature.

Scanning of the microarray slide is the first step
following post-hybridization processing and drying.
The slide is scanned by a laser scanner hooked to a

confocal laser microscope. The laser excites each spot
in the microarray and the fluorescence emission is cap-
tured through a photomultiplier connected to the con-
focal laser microscope. The scanning is done in both
green and red channels (at both wavelengths), each
producing an individual image. The individual images
are merged to obtain a composite image, in which the
spot images can be green, red, or yellow; yellow means
there are equal amounts of green and red fluorescence.
However, the color of all the spots may not be per-
fectly green, red, or yellow, and may show a range,
such as black/dark blue, blue, green, yellow, orange,
and red. The image is usually reported as the ratio of
Cy5 and Cy3 fluorescence intensity.

The next step is image processing. The features on
the array—that is, what is contained in each grid/
spot—are already defined. The image captured is a

FIGURE 7.8 RNA secondary-structure prediction by two web-based programs using default parameters. (A) Prediction using
pknotsRG-MFE of the Bielefeld University Bioinformatics Server (BiBiServ).53 (B and C) Integer-programming (IP)-based prediction using
IPKnot of the Nara Institute of Science and Technology, Japan. The default is the McCaskill model shown in (B); an alternative is the
CONTRAfold model shown in (C). The respective bracket notations are also shown. In the bracket notation, the base pairs are indicated by
opening and closing parentheses. Residues not involved in base pairing are denoted by dots. Every base with a “(” notation below is base-
paired with a downstream base with a “)” notation below it. Some program outputs may also contain the base-pairing probability.

nCy3 (cyanine 3) dye is red (dark pink) in color and Cy5 (cyanine 5) dye is blue in color. However, the absorption and florescence

emission maxima for Cy3 are B547 and B565 nm, respectively, whereas those of Cy5 are B647 and B665 nm, respectively. Hence,

Cy3 is detected as green florescence in the green channel, and Cy5 is detected as red florescence in the red channel. Therefore, the

physical colors of these dyes are not to be confused with their fluorescence emission colors.
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digital image, which is a rectangular array of intensity
values in the spot; each intensity value is a pixel. The
color depth is expressed as bits/pixel; hence the higher
the bits/pixel, the greater is the color depth. During
image processing, the spot boundaries are defined so
that the true signal and the background values can be
assigned. The median background value is then sub-
tracted to obtain the true signal value (Figure 7.9A).
The true signal is the fluorescence intensity due to
specific hybridization, whereas the background signal
is the fluorescence intensity due to non-specific hybrid-
ization that has survived post-hybridization washing,
as well as non-specific binding of the fluorescently
labeled nucleic acid fragments to a “sticky” surface, or
even any dirt on the slide.

The next step is data normalization. Following image
processing and analysis, the data are normalized. The
purpose of normalization is to adjust for differences in
labeling and detection efficiencies for Cy5 and Cy3, as
well as to adjust for any differences in the RNA samples.
Without normalization, the Cy5/Cy3 ratio could be artifi-
cially skewed. Normalized samples are ready for further
analysis. Normalization can be done by (1) the total inten-
sity normalization method, (2) the regression method, or
(3) the ratio statistics method. The regression method is
called the “Lowess” (locally weighted scatterplot
smoothing) method, which is a locally weighted linear
regression used to estimate systemic biases in the data. In
the regression method, which is often used, it is assumed
that mRNAs from closely related samples should be

FIGURE 7.9 Microarray image normalization and clustering. (A) The captured microarray image is digital in nature. A digital image is
composed of pixels, its smallest individual elements; each pixel has a value that represents the brightness of a given color at a point.
Microarray scanners typically capture the color images as 16 bits/pixel. Therefore, the higher the bits/pixel, the greater is the color depth. For
each spot, the true signal intensity is determined by subtracting the median background value. (B) Following image processing, the data are
normalized in order to adjust for differences in labeling and detection efficiencies for Cy5 and Cy3. In the Lowess (locally weighted scatterplot
smoothing; regression) method of normalization, it is assumed that mRNAs from closely related samples should cluster, producing a straight
line in a scatter plot of Cy5 versus Cy3 intensities (or their log2 values), with a slope value close to 1. If such linearity is missing, the data are
normalized to create the desired slope. If the cutoff for significant changes in expression is set at 2, the values ranging between 0.5 and 2 are
not considered to be significant. (C) Hierarchical clustering dendrogram and heat map commonly used to display microarray data. The den-
drogram represents relationships amongst genes and the branch lengths represent the degree of similarity in terms of their expression. In this
method, using a distant matrix method, the algorithm first joins the two closest genes into a cluster; then the next most similar genes are
joined together, and so on. This repetitive agglomeration first creates smaller clusters, which are similarly joined to form larger clusters. This
process continues until all of the genes are joined into one giant cluster.
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expressed at similar levels. Under this assumption these
mRNAs should cluster, producing a straight line in a
scatter plot of Cy5 versus Cy3 intensities (or their log2
values). The scatter plot is thus a ratio-intensity (R-I)
plot. If the labeling and detection efficiencies were the
same for both samples, the slope of the scatter plot
should be 1 or close to 1. If such linearity is missing,
Lowess normalizes the data to create the desired slope.
Normalized data are then used to report the expression
ratios of genes between the samples, such as between the
control and the experimental sample, or between normal
and disease tissue samples. The cutoff for significant
changes in expression can be set at 2—that is, values
ranging between 0.5 and 2 are not considered to be signif-
icant. In this scenario,. 2-fold difference means signifi-
cant upregulation of expression, and, 0.5-fold difference
means significant downregulation of expression.
However, these can be adjusted depending on the experi-
ment, as well as the variability of the data (Figure 7.9B).

Cluster analysis of microarray data is a very widely
used way to demonstrate gene-expression differences
between the objects being studied, such as normal ver-
sus diseased tissue, control versus treatment group.
Because genes involved in a common pathway, genes
that are coordinately regulated, and genes involved in
similar physiological response may be expressed simi-
larly, the expressions of these genes are related.
Microarray expression data can be used to find the
relationships between genes in terms of their expres-
sion and consequently categorize such genes. This
method is called cluster analysis. Therefore, in cluster
analysis, the genes that are upregulated or downregu-
lated in response to a specific condition (exposure, dis-
ease), can be identified and the biological relevance of
such gene expression can be further investigated.
Additionally, such gene expression can also be used as
a biological marker of specific physiological response.
Clustering can be supervised or unsupervised. In
supervised clustering, the expression pattern of the
gene(s) is known and this knowledge is used to group
genes into clusters. In unsupervised clustering, there
is no prior knowledge regarding the expression pattern
of the gene(s) in a specific condition. Similar expres-
sion profiles are then connected to form the groups
until all expression data have been included.

The most widely used method of unsupervised clus-
tering is known as hierarchical clustering. Hierarchical
clustering is commonly used in microarray as well as in
phylogenetic analysis because it computes a tree (den-
drogram). In DNA microarray analysis, the tree repre-
sents relationships amongst genes and the branch
lengths represent the degree of similarity in terms of
their expression. Hierarchical clustering is a bottom-up

agglomerative approach. In this method, the algorithm
starts by calculating the pairwise distance matrix for all
of the genes in the so-called “gene space.” Next, the
algorithm joins the two genes that are the closest into a
cluster. If there are multiple gene pairs that share the
same degree of similarity, then the first cluster is
formed based on some predetermined rule. Then, the
next most similar genes are joined together, and so on.
Once the small clusters are formed, the algorithm com-
putes the pairwise distance matrix for all of the clusters
in the so-called “cluster space.” Next, the algorithm
joins the two small clusters that are the closest into a
larger cluster. This repetitive agglomeration process
continues until all of the genes are joined into one giant
cluster (Figure 7.9C). The other means of unsupervised
clustering is known as k-means clustering. Contrary to
the hierarchical clustering, k-means clustering is a top-
down divisive approach. Obviously it does not produce
dendrograms; instead, in this method data are parti-
tioned into a prespecified set of k-clusters. Another divi-
sive clustering method based on neural networks is
self-organizing maps (SOM). The k-means clustering
and SOM methods will not be further discussed here.

The TM4 suite of tools (http://www.tm4.org/)56

consists of four major applications, Microarray Data
Manager (MADAM), The Institute for Genomic
Research (TIGR) Spotfinder, Microarray Data Analysis
System (MIDAS), and Multiexperiment Viewer (MeV).
TIGR Spotfinder is a microarray image-processing
and quantification tool, whereas TIGR’s MIDAS is a
normalization and filtering tool. Another microarray
image-analysis tool, ScanAlyze, is provided by the
Eisen Lab at http://rana.lbl.gov/EisenSoftware.htm.
The same link at Eisen Lab also provides Cluster and
TreeView, which are cluster-analysis and graphical
visualization software tools. They can perform hierar-
chical clustering, self-organizing maps (SOMs),
k-means clustering, and principal component analy-
sis.57 Another web server for the normalization
and standardization of DNA microarray data is
SNOMADo (http://pevsnerlab.kennedykrieger.org/
snomadinput.html), made available by the Pevsner
Lab at Johns Hopkins University School of Medicine.

7.8 DETECTION OF SEQUENCE
POLYMORPHISM AND THE SNP

DATABASE

Mutations can be point mutations, small deletions
and insertions, or large-scale changes in the chromo-
some. Point mutations can be common or rare types of
mutations. By definition, a point mutation that occurs

or 2000 by Carlo Colantuoni, George Henry, and Jonathan Pevsner.
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in at least 1% of the population is called a single nucle-
otide polymorphism (SNP; pronounced “snip”).

SNPs constitute a very important class of mutations;
they generally occur at a frequency of at least 0.1% (1/
1000 bases) in the genome but may occur more fre-
quently in certain regions. In the human genome,
.65% of all SNPs involve C-T transition mutations.
A set of linked SNPs that tend to inherit together as a
unit is referred to as SNP haplotype. SNPs can occur
in both coding and noncoding regions of genes. SNPs
in the coding region may alter the characteristics of the
protein while SNPs in the regulatory regions may alter
the expression profile of genes.

Some SNPs can predispose people to disease or influ-
ence their response to a drug. For example, two SNPs
in the ApoE gene result in three possible alleles of
the gene: E2, E3 (wild type), and E4. The correspond-
ing protein product of each gene differs by one amino
acid (ApoE2C112,C158, ApoE3C112,R158, ApoE4R112,R158).
Individuals inheriting two E4 alleles have the highest
chance of getting Alzheimer’s disease, while those
inheriting two E2 alleles are the least likely to get the
disease; so the order of risk associated with various
ApoE alleles is E4.E3.E2. Apparently, one amino
acid change in the ApoE protein alters its structure
and function enough to influence the risk of disease
development associated with each allele.58

The International HapMap Project is a multi-country
(USA, UK, Canada, Japan, China, and Nigeria) effort to
identify and catalog genetic similarities and differences
in human beings. In doing so, the project expects to iden-
tify and catalog SNPs and SNP haplotypes that confer
susceptibility/resistance to disease or therapy.

Sequence polymorphisms can be detected through
pairwise alignment of two DNA sequences from
two individuals. Deep resequencing of specific regions of
the genome can also identify sequence polymorphisms.

The NCBI SNP database (dbSNP; http://www.ncbi
.nlm.nih.gov/projects/SNP/ or http://www.ncbi.nlm
.nih.gov/snp/) is the largest public database of short
genetic variations (SNVs). The dbSNP is a broad collec-
tion of simple genetic polymorphisms, which includes
single-base nucleotide substitution (SNPs), small-scale
multi-base deletions or insertions (deletion�insertion
polymorphisms or DIPsp), and retroposable element
insertions and microsatellite repeat variations (also
called short tandem repeats or STRs). Each dbSNP
entry includes the sequence context of the actual poly-
morphism, such as the surrounding sequence; the
occurrence frequency of the polymorphism (by popula-
tion or individual); and the experimental method(s),
protocols, and conditions used to assay the variation.60

A new submission to dbSNP is assigned a unique ss#
(submitted SNP ID number). The submission is veri-
fied by alignment to the appropriate genomic contig. If
several ss# entries map to the same position, the records
are merged into a cluster that is given a unique rs# (ref-
erence SNP cluster ID).

A search was made for the mouse Slco1a6 gene in
dbSNP. The search produced 2092 hits as of July 2013
(Figure 7.10).

Selecting “Summary” from the “Display Settings”
drop-down menu returns the summary of information
on that SNP (figure not shown). Selecting “Graphic
Summary” from the drop-down menu returns the dis-
play shown in Figure 7.10. Clicking “rs266211819”
returns its cluster report. The top portion of the cluster
report is shown in Figure 7.11A. The “Variation Class”
field shows that it is a single nucleotide variation
(SNV), the “RefSNP Alleles” field shows that the SNV
is either A or C (circled). In other words, one of the
alleles would be termed the “A” allele and the other
allele would be termed the “C” allele, and the SNP is
located on the “forward strand” (“Fwd”; circled). The
information is organized into a few sections, such as
GeneView, Map, etc. Figure 7.11B shows that
rs266211819 is an intronic SNP. Clicking “view” in the
“Neighbor SNP” field (circled in Figure 7.11A) shows
that there are two SNPs within 100 bases upstream
and four SNPs within 100 bases downstream of
rs266211819 (Figure 7.12).

Figure 7.13 shows the graphic view of SNP
rs266211819.

The SNP cluster page also has a section on the submit-
ted SNP ID number (ss#) (Figure 7.14A). The
ss370364874 has the longest flanking sequence and is
shown. Clicking on the ss# (Figure 7.14A; circled) returns
the details of the submitted SNP (Figure 7.14B). In the
left-hand top corner there is “Submitter” information.
The “Handle” field provides the submitter information.
Clicking “SC_MOUSE_GENOMES” reveals the submit-
ter contact information. In this case, the submitter is
from the Wellcome Trust Sanger Institute, Cambridge,
UK. In the right-hand top corner is “Resource Links.”
The submission can be viewed by clicking the “view”
field (circled). Figure 7.15A shows the details of the origi-
nal submission, including the SNP (A/C) as well as the
50- and 30-flanking sequences. Note that the original sub-
mission shows the SNP as A/C, but in the NCBI cluster
report (the FASTA sequence part from the cluster report
is displayed in Figure 7.15B) this (A/C) is replaced by
M. This substitution of the original SNP is done follow-
ing the IUPAC (International Union of Pure and Applied
Chemistry) nucleotide codes shown in Table 7.3.

pDIP (deletion�insertion) or indel (insertion�deletion) polymorphisms consist of the presence or absence of short sequences

(typically 1�50 bp).59

1777.8. DETECTION OF SEQUENCE POLYMORPHISM AND THE SNP DATABASE

BIOINFORMATICS FOR BEGINNERS

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/


FIGURE 7.11 Clicking the first entry rs266211819 returns its cluster report. (A) The top portion of the cluster report is shown, see text for
explanation; (B) GeneView shows that the rs266211819 is an intronic SNP.

FIGURE 7.10 A search for the mouse Slco1a6 gene in the SNP database.
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FIGURE 7.12 Neighboring SNPs

of rs266211819. Information retrieved
by clicking “view” in the “Neighbor
SNP” field circled in Figure 7.11A,
showing six flanking SNPs.

FIGURE 7.13 The graphic view

of rs266211819. (A) Holding the cur-
sor next to the green bar with the
rsID (rs266211819) produces a drop-
down menu. (B) Selecting “Zoom to
Sequence At Marker” from this
drop-down menu returns the
sequence and the SNP. Selecting the
bar with the rs# returns the drop-
down menu shown. The drop-down
menu contains information about the
SNP (A/C).

FIGURE 7.14 Submitter infor-

mation for a SNP ID number. See
text for details.
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FIGURE 7.15 IUPAC designation of the SNP in the database. (A) The original submission showing the SNP (A/C) and the flanking
sequence. (B) The substitution of A/C by M in the SNP database following the IUPAC nucleotide codes, as shown in Table 7.3.

TABLE 7.3 IUPAC Codes for Nucleotides

A5 adenine T5 thymine G5guanine C5 cytosine

R5A/G Y5C/T S5G/C W5A/T K5G/T M5A/C

B5C/G/T D5A/G/T H5A/C/T V5A/C/G N5 any base

/ means “or” (e.g. A/G means A or G)
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