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Introduction

2.2

In his epic book Pattern Design, Day suggested that success in designing depends
largely upon insight into how design works and it must be realised that the beauty
of pattern is not so much due to the nature of its elements as to the right use of
them as units in a rhythmic scheme.! There are a number of different possibilities
which may be used to arrange elements in the form of a rhythmic scheme (or
regularly repeating design). The geometric principles describing each different
arrangement may be defined and classed by means of a distinct system. This
system may then be used to compare the relationships between and properties of
any one type of regularly repeating design with another.

The system used to classify designs by symmetry group is based on the geo-
metric characteristics of the underlying structures of the designs rather than the
symmetrical properties of the individual design units from which they are com-
prised. The arrangement of the elements, or design units (whether they are sym-
metric or not), determines the geometric characteristics of the design’s
underlying structure. These characteristics may be analysed, defined and classed
in a particular group. The primary objective of this chapter is to define and
explain the range of concepts, terminology and geometric principles relevant to
the classification of designs by their symmetry groups. Following this an exten-
sive range of construction techniques is described and illustrated for each group.

Symmetry and its relevance to designs

2.3

The theoretical perspectives presented in this chapter, and those following on
throughout this book, are applicable to planar designs, that is, the geometric
analyses and categorisations apply to designs which lie on a flat surface rather
than those which occur in three dimensions. With regard to the symmetry of a
design, Washburn describes it as a type of order with specific geometric parame-
ters and that as a mathematical measure it proves useful for the classification and
comparison of patterns on cultural materials.2

Symmetric designs give both a pleasing visual effect of balance and order,
whilst also providing an element of intrigue and fascination through which the
geometrical properties and structural framework are successively analysed. Davis
and Hersh observed that, through intuition, the artist is often an unconscious
mathematician, discovering, rediscovering, and exploring ideas of spatial
arrangement, symmetry, periodicities, combinatorics and transformations and
discovering, in a visual sense, theorems of geometry.3 Thus, although rules of
symmetry may be arrived at intuitively, and through artistic exploration, as stated
by Washburn and Crowe, systematic classificatory schemes rather than general
concepts like style can better support the process of hypothesis building.# Conse-
quently, a systematic approach enables all geometric combinations and symmet-
ric structures to be investigated and established and then used as a basis upon
which to build artistic exploration.

Symmetry operations

To analyse and classify designs by symmetry group requires examination of
the symmetries present in their structures. Griinbaum and Shephard give a



precise mathematical definition of a symmetry as follows: ‘By a symmetry of a
set S we mean any isometry ¢ which maps S onto itself, that is 6S =S’.> Here
the set S refers to a figure or design and this type of isometry, ¢, is synonymous
to a rigid motion, symmetry operation or symmetry transformation.
Alternatively Washburn and Crowe describe a symmetry motion as the
specific configuration of parts for each design. They go on to say that symmetry
does not describe the parts, but how they are combined and arranged to
make a pattern and that it concerns only one aspect of a pattern’s design — its
structure.

Each of the isometries or symmetry motions etc., may be categorised as one of
the following operations explained in Sections 2.3.1 t0 2.3.6.

2.3.1 Rotational symmetry

A design has n-fold rotational symmetry about a fixed point if, when rotated in its
own plane about that point through 360°/n and integral multiples of that angle, it
coincides with its original position. The fixed point is called the centre of rota-
tion, and 7 is an integer greater than or equal to one which corresponds to the
order of rotation. After n successive rotations of 360°/n, the figure will return to
its original position.

2.3.2 Translational symmetry

A design has translational symmetry if figures in it can be moved to congruent
figures by a glide in any direction, whilst still keeping the same orientation. All
parts of the figures move the same distance in the same direction.

2.3.3 Reflectional symmetry

A design has reflectional symmetry if it can be bisected by one or more ‘mirror’
axes. In this instance the portion on the left hand side of such an axis relates to the
portion on the right hand side by being its mirror image. All the points on the
mirror (reflection) axis remain fixed.

2.3.4 Glide-reflectional symmetry

The symmetry of glide-reflection is a motion combining a reflection and transla-
tion, along the direction of the reflection axis, consecutively. Two successive
glide—reflection operations along an axis are equivalent to one unit of translation
in the same direction.

In addition to these four symmetry operations, there are two other symmetries
which are characteristics of every design: identity and inverse symmetry.

2.3.5 Identity symmetry

This symmetry is equivalent to no movement at all. The figure, or design, is effec-
tively lifted up and put down in exactly the same position such that each point is
mapped onto itself. Alternatively it can be thought of as a 360° rotation about a
point.

2.3.6 Inverse symmetry

For every symmetry of a design there is another symmetry which is the reverse of
it, that is, a symmetry which will take the design back to its original position. This
is referred to as the ‘inverse’ symmetry.

Figure 2.1 shows examples of the symmetry operations described in Sections
2.3.1t02.3.6.

With respect to the identity symmetry, Loeb comments that any figure may
be brought into self-coincidence by the operation of identification (or identity
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A rotational symmetry operation 90°
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the opposite direction —d.
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2.4

symmetry) and that if this operation is the sole symmetric transformation of the
figure, then the figure is called asymmetric.6

Conversely, in Woods’ paper The Geometrical Basis of Pattern design, Part 1,
he describes a figure as being symmetrical when it is possible to find two or more
positions in which it can be exactly superimposed on itself and that the move-
ment necessary to bring the figure from one such equivalent position to another is
said to be a symmetry operation.” One of these positions refers to the identity
symmetry, where the position of the figure remains unchanged, and the other one
or more will correspond to one of the first four symmetry operations described
above (in Sections 2.3.1 t0 2.3.4).

Symmetry group

2.5

The complete set of symmetry operations, or all equivalent positions of a figure,
form its symmetry group. A symmetry group, which is a collection of symmetry
operations, has the following characteristics:

1 It always contains the identity symmetry which leaves the position of the
figure unchanged.

2 Forevery symmetry operation which moves a figure from position A to posi-
tion B, there exists an inverse operation which is able to move the figure back
from position B to its original position A again.

3 Each symmetry operation in the group may be followed by another, and the
resulting operation of the combination of the two is, itself, a member of the
symmetry group. For example, if a design has translational symmetry and
reflectional symmetry in its symmetry group, then the resultant of the two,
which is a glide-reflectional symmetry, is also a member of the group. Simi-
larly, the two operations of a horizontal translation followed by a vertical
translation of a design are equivalent to the resultant which is a diagonal
translation. This translation would also be a symmetry in the group of sym-
metries of the whole design.

Loeb describes how any symmetry group consists of symmetrical operations
which themselves are elements of the group.® (Note that here the term ‘element’ is
used to describe a symmetry motion or movement rather than the unit of the
design itself that was described by Day at the beginning of this chapter.) Loeb
adds that the total number of elements for all distinct equivalent positions of the
figure is called the order of the group, for example an equilateral triangle has the
order six (see Fig. 2.2). The symmetry operations, or elements, form the basis of
the construction and generation of designs.

Throughout the previous definitions, the meanings of the terms ‘figure’ and
‘design’ have been taken for granted. There seems to be no distinct interpretation
of these terms but further comments on each are given below.

Figures and designs

More formally, a figure is defined as either a ‘superficial space enclosed by lines’,
an ‘image’, a ‘diagram’, an ‘illustrative drawing’, a ‘design’ or a ‘pattern’. Thus
the term figure has numerous meanings that could either refer to a single motif or
tile, or the entire pattern or tiling generated from these single units, respectively.

With regard to a design, Washburn and Crowe define it as a specific kind of
figure which admits at least one (non-trivial) isometry.# They therefore consider a
design to be a symmetrical figure which has at least two symmetries, one of which
is the identity symmetry. (In this case the identity symmetry is referred to as the
non-trivial isometry.) This description implies that asymmetric patterns and
irregular tilings are not designs. However, throughout this book, a design will be
used to describe any form of decoration on one plane, that is, an illustration on
a flat surface. (Of course, in many contexts a design may be used to represent
ornament or construction in three dimensions although here, as stated above, it
will be restricted to surface decoration.)

Geometric symmetry in patterns and tilings
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A design may decorate a surface in a number of ways. For example a design
may have no regular repetition in it at all; it may have elements in it which repeat
at regular intervals around a point; it may have elements in it which regularly
repeat by translational symmetry in one direction or by translational symmetry
in at least two non-parallel directions. Those designs which are irregular (and
therefore possess only the identity symmetry) and those which contain elements
which only repeat cyclically around a point are often referred to as “finite designs’.

Classification of finite designs

Classification of designs by symmetry group

Washburn and Crowe define finite designs as those which have a central point
axis around which elements can rotate or through which mirror axes can pass and
that other symmetries such as translation or glide-reflection are not possible in
this category.* Classifying finite designs by symmetry group divides them into
two classes: either the cyclic symmetry group, denoted by cn, or the dihedral sym-
metry group, denoted by dn. Here ‘n’is used to represent a positive integer. (Note
that both ¢ and dn designs have rotational or ‘cyclic’ symmetry, however, in this
instance the term ‘cyclic’ usually refers to those designs which have only rota-
tional symmetry.) Figures 2.3 and 2.4 show some examples of these types of
design.

2.6.1 Cyclic finite designs

A cyclic design, in symmetry group cn, has only n-fold rotational symmetry about
a point at its centre. After n consecutive rotations of 360°/n in one direction
(either anticlockwise or clockwise) about this point, the design will return to its
original position. An asymmetric unit or figure has one-fold rotational symme-
try, in other words n =1 and a rotation by 360°/1 (i.e. a full turn) will return the
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2.7

figure back to its original position. For asymmetric designs the centre of rotation
need not necessarily be at the centre of the design (see Fig. 2.3).

2.6.2 Dihedral finite designs

A dihedral design, in symmetry group dn, has n-fold rotational symmetry about a
point at its centre and also # reflection axes passing through that point (see Fig.
2.4).

Finite designs, cn and dn, are also referred to by Schattsneider, in her article in
Symmetry: Unifying Human Understanding, as ‘rosette designs’® and Loeb
describes how these symmetry groups, formed only by operations which leave at
least one point fixed, are called point groups.® Woods adds that this type of sym-
metry, centred around a point, is sometimes referred to as point symmetry or
central symmetry.? The “point’ symmetry indicates that when symmetry groups
cn and dn are rotated about their centres of rotation precisely one point remains
fixed. When a design in symmetry group dn is reflected about a reflection axis
through its centre, a whole line of points remains fixed. If # is greater or equal to
two (n = 2), the reflection axes of a dn design intersect at a point, that being the
centre of rotation.

Structure of translational designs

A design which decorates a surface by the regular repetition of a unit by transla-
tional symmetry will fall into one of two categories: (i) a monotranslational
design (otherwise known as a one-dimensional design,* a one-sided band,!? a
strip or frieze group, a border,” or a periodic border design®) or (ii) a ditransla-
tional design (otherwise known as a two-dimensional design,* a wallpaper
group!! or wallpaper design,!? a crystallographic group,!? a periodic group,’ a
plane, a network or an all-over pattern,’-19:14 a periodic planar design,’ a plane
group!? or an n-dimensional space group (1 = 2)19).

2.7.1 Minimum criteria of translational symmetry

A finite design has reflectional and/or rotational symmetry but no translational
symmetry in its symmetry group. Washburn and Crowe define a border pattern
(or in this context, a monotranslational design) as one which must satisfy the geo-
metrical condition of having at least one unit of translation in one direction, and
an all-over pattern (or in this context a ditranslational design) as one which must
satisfy the geometrical condition of having at least one unit of translation in two,
non-parallel, directions.* However, throughout this book (and in conjunction
with the definitions given by Schattsneider),® a monotranslational design will be
thought of as one which theoretically and conceptually extends to infinity in two
opposite directions along a straight line and a ditranslational design will be
thought of as one which extends infinitely throughout the whole plane.

2.7.2 Lattice

Every regularly repeating translational design is based on a structural frame-
work. This is represented in the form of an array of points called a net or lattice.
Woods!7 describes the construction of a ditranslational lattice as follows:

Start with a chain of points interval a in some straight line, and . . . . .. make each of
these points a point of another chain, of interval b, making an angle 0 say with the first
chain. We thus obtain an array of points which is such that any translation equal to a
multiple of « in the direction of the first chain, or to a multiple of b in the direction of
the others moves the figure into an equivalent position. Such an array is called a net of
points, . . .

A monotranslational design is also constructed on a framework of points. In
this instance the initial chain of points, interval @, in some straight line, is trans-

Geometric symmetry in patterns and tilings
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Figure 2.5 Lattice construction (a) and division of lattice points into unit cells (b

lated at an angle 0, say by one translation. This results in two parallel lines of
points upon which to base the structure of the design (see Fig. 2.5a).

2.7.3 Unitcell

Similarly, Woods describes how unit cells of a ditranslational design are con-
structed by drawing lines through each point of an a-chain parallel to b, and
through each point of a b-chain parallel to a. The plane is divided into parallelo-
grams, which have sides of lengths ¢ and b and of which one angle is 6. Any such
parallelogram is called a unit cell; it has a net point at each vertex but no others
either inside or on its sides.!”

Classification of designs by symmetry group 15
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Where monotranslational designs are concerned, parallelograms result from
the division of a strip or a band rather than the division of the plane as shown in
Fig.2.5(b).

Note that a parallelogram has four straight sides: two parallel sides of length a
and two parallel sides of length 5. One of the angles, at which these two sets of
lines intersect each other, is 6°. The specific type of parallelogram is determined
by the conditions held by a, b and 6. The results of different combinations of
these variables are given:

1 If a=bandB=90° the parallelogram is a square.

2 If a=b, the parallelogram is a rhombus.

3 Ifa=band6=60° the parallelogram is a special kind if rhombus composed
of two equilateral triangles. (These types of parallelogram are associated
with the ‘hexagonal’ lattice.)

4 Ifa#b,0=90° the parallelogram is a rectangle.

5 1If a#b and 6 #90°, the parallelogram is a just an ordinary parallelogram
(which is also referred to by Kennon!8 as a ‘general parallelogram’) (see Fig.
2.6).

Note that a square is a special form of a rhombus where 8 = 90°. A square is
also a special form of a rectangle where a = . However, with reference to lattice
structures, each of the terms square, rhombic, rectangular, hexagonal and paral-
lelogram is often associated with a particular type of lattice (given in Fig. 2.6)
without awareness of these specific cases. For example, it is important to recog-
nise that design types commonly associated with the rhombic lattice may also be
based on square or hexagonal lattices; those associated with the rectangular
lattice may be based on the square lattice; and those commonly associated with
the parallelogram lattice may have any of the five types of lattice as their underly-
ing structure.

Each cell contains one net point (on combining each piece from the four
corners), hence the cell is called a unit cell (although Schattsneider? refers to it as
a ‘lattice unit’). The union of all the pieces of a figure enclosed within a unit cell,
when rearranged in their appropriate order, fit together to form a complete motif
or tile. Each unit cell of a design has the same shape and content and when suc-
cessively translated in one or two directions, for a monotranslational or ditransla-
tional design, respectively, will create the whole design. Each of the symmetry
groups of the translational designs can be represented by a unit cell according to
the symmetrical properties contained within it. Figure 2.7(a) and (b) shows the
unit cells for the symmetry groups of monotranslational and ditranslational
designs, respectively. The appropriate symmetry group is given under each unit
cell, the notation for which is explained later in this chapter.

2.7.4 Group diagram

Each of the symmetry groups may also be represented by what is referred to as a
‘eroup diagram’.> A group diagram shows all the symmetrical characteristics of a
design’s symmetry group (except translational symmetries which may be repre-
sented by vectors but which are usually omitted). In general, centres of two-,
three-, four- and six-fold rotation are represented by diamonds (or ellipses), equi-
lateral triangles, squares and regular hexagons, respectively, and glide-reflection
and reflection axes are represented by bold dashed and solid straight lines. (These
symbols represent the conventional notation for these symmetrical characteris-
tics and will be used, without additional explanation, throughout the remainder
of this book.) The group diagram may be incorporated into the design as shown
in Fig. 2.8(a(i1)) and (b(ii)) or be separate as shown in Fig. 2.8(a(iii)) and (b(iii)).
For regularly repeating translational designs, a group diagram is equivalent to
filling each of the cells in a lattice with the symmetrical characteristics of its unit
cell. An example of a unit cell for the pattern in Fig. 2.8(b(i)) is represented by the
shaded region in Fig. 2.8(b(iii)).

Geometric symmetry in patterns and tilings
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Finite designs may also be represented by a group diagram but they will only
include a minimal number of symmetries. Any centres of n-fold rotation, other
than those mentioned above, may be represented by regular n-sided figures or n-
pointed stars.

2.7.5 Translation unit

A translation unit is a minimum area of the plane which, when successively trans-
lated in one or two non-parallel directions (for a monotranslational or ditransla-
tional design, respectively) creates the whole design. A translation unit has
the same area as a unit cell but its shape may not necessarily be a parallelogram.
Thus a unit cell is a translation unit but a translation unit is not necessarily a
unit cell.

In a monotranslational design the size of the translation unit is sometimes
referred to as being independent in relation to the size of the unit cell. For
example, Schattsneiderd describes a translation unit (for a border design consist-
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Figure 2.7 Unit cells of translational designs. 4, 2-fold centre of rotation, &, 3-fold centre of rota-
tion; M, 4-fold centre of rotation; @, 6-fold centre of rotation; ,unit cell boun-
dary;......... , centred double cell; , reflection axis;— - - == , glide—reflection
axis

ing of non-interlocking motifs) as a smallest region which, when translated
repeatedly by 7'and —T, produces the whole border design. T refers to a transla-
tion and —T refers to the same translation but in the opposite direction. Similarly,
she describes a translation unit for a border tiling as a minimum block of tiles
which fills out the whole border by translations alone. The areas enclosed by these
translation units may not necessarily fill out the whole unit cell. In some
instances, it is difficult to categorise a monotranslational design as a pattern,
made up of motifs, or as a tiling, made up of tiles, that is, to differentiate between
a pattern and tiling. Therefore, to avoid the problem of having to categorise the
type of design unit(s) enclosed within the translation unit it is simpler to regard
the translation unit as having the same area as a unit cell for both ditranslational
and monotranslational designs.
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With this understanding, a translation unit of a monotranslational (or border)
design has two sides coinciding with parts of the two parallel lines which enclose
the whole design. The remaining two sides, which are also parallel to each
other, may beirregular shapesinstead of straight lines (which is the case for the unit
cell).

The area of a translation unit of a ditranslational design is determined by
the positioning not only of the adjacent motifs or tiles to the left and right,
but also of those above and below it. Consequently, this area is always fixed
and equal to that of the unit cell. Alternative definitions, when differentiating
between the decorative components of the design, are therefore not required. The
opposite edges of a translation unit are always parallel to each other but are not
necessarily straight lines. Figure 2.9(a) and (b) shows examples of translation
units.

2.7.6 Fundamental region

A fundamental region is also referred to as a fundamental domain, an asym-
metric region!? or a generating region.8 It may be defined as the smallest region
of the design which, when acted on repeatedly by the symmetries of its symmetry
group, creates the whole design. The shape of the region is not always unique for
any one design but its area is always the same. Throughout the following discus-
sions, the figure enclosed within a fundamental region will be referred to as a
‘design unit’ and the separate components of the design unit will be referred to as
‘design elements’.

The shape and contents of a fundamental region need not necessarily
be asymmetric (which therefore implies that ‘“asymmetric region’ is not a very suit-
able term for such aregion). For example, see Fig. 2.10 where each shaded area rep-
resents a fundamental region. In Fig. 2.10(a), a p111 monotranslational design has
been constructed on a rhombic parallelogram lattice of points. A fundamental
region has been chosen to coincide with a unit cell in such a way that the long diag-
onal axis of the rhombus forms a line of reflectional symmetry coinciding with one
through the motif. In Fig. 2.10(b), a p1 ditranslational design has been constructed
on a rectangular lattice but again, the fundamental region and design unit shown
both have coinciding reflectional symmetry. Thus these fundamental regions have
been chosen such that their shapes and contents are symmetric rather than asym-
metric. However, in cases such as these, the design unit will have no symmetries
coinciding with those of the design structure.

Figure 2.10(c) illustrates a symmetrically shaped fundamental region
reduced to a form with no symmetries in common with the design structure by
introducing five-fold rotationally symmetric design units whose symmetries
cannot possibly coincide with any regularly repeating translational design. (As
stated in Hauy’s theorem in 1822, it is impossible to construct a translational
design with n-fold rotational symmetry in its structure if # = 5 or is greater than 6,
because of the laws of crystallographic restriction. For example, a plane cannot
be covered with interlocking regular pentagons alone without there being gaps in
between them, or with regular heptagons, octagons or nonagons, etc.) Figure
2.10(d) shows another p1 ditranslational design constructed from the same sym-
metric design unit but in this instance it is contained within an asymmetric funda-
mental region. (Further analysis and discussion involving designs with
symmetric design units are continued in more detail in Chapter 3.)

2.7.6.1 Finite designs

Any finite design may be enclosed within a circle such that its area is just bigenough
to enclose the extremities of the design (see Fig. 2.11(a)). Suppose the centre of the
circleis labelled O. Schattsneider states that for cn designs a wedge (circular sector)
having angle 360°/n at O is a minimal area in which to place the motif.® In this
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Figure 2.9 Examples of translation units of (a) monotranslational and (b) ditranslational designs.




Figure 2.10
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Examples of (a), (b), (c) symmetric and (d) asymmetric fundamental regions.
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Figure 2.11

Examples of fundamental regions of finite designs.

context, ‘a minimal area in which to place the motif’ represents a fundamental
region. For a finite tiling she describes this region as a smallest tile which, when
acted on repeatedly by the generating isometries, fills out the whole tiling. She goes
on to say that in designs which are obviously tilings due to the interlocking nature
of the tiles, it is not necessary to consider an (artificial) circle surrounding the
tiling; the edge of such a tiling provides its own well-defined encircling boundary.

However, because in some instances (as explained in the context of translation
units of monotranslational designs) it is difficult to differentiate between a motif
and a tile (see Fig. 2.11(a)), when referring to a finite design, whatever its form, a
fundamental region will be represented in the form of a circular segment. One
boundary edge will be on the circumference of the circle enclosing the design.
The other two edges are straight or irregular lines, which are rotations of each
other (about the centre O), and radiate outwards from the centre of the circle to
its circumference. For a design in symmetry group cn, the area of the fundamen-
tal region will be 1/n of the area of the enclosing circle and for a design in symme-
try group dn it will be 1/2n of the area of the enclosing circle and the two edges
radiating from the centre will be straight lines. Examples of fundamental regions
of finite designs are represented by the shaded areas in Fig. 2.11(b).

2.7.6.2 Monotranslational designs

Schattsneider comments that, with respect to monotranslational designs, each
can be imagined as being enclosed between two parallel lines (the edges of the
border). In other words, the border can be thought of as being enclosed within a
strip of finite width and infinite length, and having centreline L which is equidis-
tant from the edges.®
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translation unit

Examples of fundamental regions of monotranslational designs. Symmetry groups are
(a) plai, (b) pma2, (c) pAm1l (see section 2.9).

For monotranslational designs, as with finite designs, it is sometimes difficult
to distinguish between a pattern and a tiling. To avoid this categorisation
problem, it is simpler, when determining the translation unit or fundamental
region, for every monotranslational design to be considered as being enclosed in
a parallel-sided strip. At least one edge of the fundamental region will coincide
with part of the boundary edge(s) of the strip enclosing the design, whetheritisa
pattern or a tiling. Each fundamental region, for both monotranslational and
ditranslational designs, is a fraction of the area of the unit cell or translation unit.
Examples of fundamental regions of monotranslational designs are represented
by the dark shaded areas in Fig. 2.12.

2.7.6.3 Ditranslational designs

Illustrations of fundamental regions of ditranslational designs are represented
by the darker shaded areas in Fig. 2.13.

There is much ambiguity in the relevant literature with regard to the differenti-
ation between patterns and tilings for both finite and monotranslational designs.
This may be partly due to the fact that often these types of tiling design are not
considered since a tiling is usually thought of as a type of pattern and/or some-
thing which covers an entire surface rather than such a limited portion of space.
Similarly, ditranslational designs may be difficult to categorise strictly as a
pattern or tiling. In Chapters 4 and 5, which involve finer classification systems,
conditions are imposed on the characteristics of the designs in an attempt to
prevent this confusion arising.

Generating functions

Classification of designs by symmetry group

The symmetries which lie on the boundary of a fundamental region can be
applied to that region to create the whole design. Schattsneider refers to these
symmetry operations as ‘generating functions’, ‘generating symmetries’ or ‘gen-
erators’ of the design.® Although there could be many different symmetries
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Figure 2.13 Examples of fundamental regions of ditranslational designs. Symmetry groups are (a)
pmg, (b) pgg (see section 2.10).

within a design, only a selection of them may be required to generate it. The
smallest set of symmetries able to do this is called the ‘minimal set of
generators’.8 For example, a design in the cyclic symmetry group cn is generated
by n — 1 consecutive applications, to the fundamental region, of the rotation by
360°/n about the centre of the design either clockwise or anticlockwise. This rota-
tion forms the minimal set of generators (even though there is only one of them).
An example illustrating the generation of a ¢3 finite design is given in Fig. 2.14(a).

On the boundary of a fundamental region of a finite design, group dn, there
are two different reflection axes and an n-fold centre of rotation. However,
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only two of these three symmetries are required to create the whole design: either
both reflection axes or one reflection axis and an n-fold rotation (e.g. see the con-
struction of a d4 finite design in Fig. 2.14b(i) and (ii)). On this point, Schattsnei-
der comments how, although the number of isometries in a minimal set of
generators for a design is unique, the choice of these isometries is not always
unique.8 For finite designs, a design in symmetry group cn requires a minimum of
one generator to construct it, whereas a dihedral finite design, group dn, requires
two.

Each fundamental region in the ditranslational design, in Fig. 2.14(c), has one
centre of two-fold rotation, two centres of four-fold rotation, three different
reflection axes (i.e. at three different angles) and a glide-reflection axis passing
through its boundaries. (In addition, the design has translational symmetries
which may be used as generators). However, only a minimal set of three of these
symmetries are required to generate the whole design. For example, applying
either the three reflection axes surrounding the fundamental region or the two
four-fold centres of rotation and a reflection axis (as shown in Fig. 2.14¢(ii) and
(ii1)) would complete the design, as may a number of other combinations of the
symmetries in the symmetry group.

Classification of monotranslational designs

There are seven distinct symmetry groups of monotranslational designs, each of
which is structured between two parallel lines of points. These points are divided
into unit cells, whose shape is determined by the geometrical characteristics of
the design. A p111 or p112 design may be structured on a lattice of any form of
parallelogram (recall that squares, rectangles and rhombi are just special forms
of parallelogram). The remaining five symmetry groups of monotranslational
designs are necessarily structured on rectangular or square lattices owing to the
reflectional symmetries about the transverse and longitudinal axes of the designs.
(Transverse axes lie perpendicular to the longitudinal axis of the strip. The longi-
tudinal axis coincides with the centre line L along the length of the strip enclosing
the design.)

2.9.1 Notation

There is a range of different notation used by various authors to differentiate
between each class of design. The more commonly used international notation
takes the form of a four-term symbol, pxyz. However, in the context of surface-
pattern design, confusion could arise because the letters x and y are symbols
assigned according to symmetrical characteristics which relate to the transverse
and longitudinal axes of the strip which may, conversely, be more easily associ-
ated with y and x axes, respectively. The last term, z, in the pxyz notation may be
thought of (in a three-dimensional context) as being an axis perpendicular to the
flat surface about which rotational symmetry occurs. However in the context of
surface pattern z is always given a number in relation to rotational symmetry
about a point. For designers, and for design classification, a more logical four
term symbol, pyxn, seems more appropriate. The order of symbol allocation
remains the same but in this case, x represents a symmetrical characteristic in the
longitudinal x axis, y represents a symmetrical characteristic in the transverse y
axis and n represents a number 1 or 2 depending upon whether or not there is
two-fold rotational symmetry present. Only two-fold rotation is applicable to
monotranslational designs owing to the nature of the ‘stripe-like’ structure of the
strip, of width W, enclosing the design, which obviously may only be rotated by
180° for it to superimpose onto itself.

For monotranslational designs, the initial letter, ‘p’, in the ‘pyxn’ nota-
tion, which is common to all seven symmetry groups, stands for ‘primitive’
which relates to the basic unit cell. The allocation of symbols to y, x and 7 is as
follows:
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m 1if thereis a transverse reflection axis,

1 otherwise.

m if thereis a longitudinal reflection axis,
a if thereis a glide-reflection axis,

1 otherwise.

2 if there is two-fold rotation,

1 otherwise.

Figure 2.15 shows schematic illustrations of the seven monotranslational sym-
metry groups along with their unit cells and examples of fundamental regions.
Further examples are given in Fig. 2.16.

One method of determining the symmetry group of a monotranslational
design is to follow a sequence of steps of analysis, which successively investigate
the geometrical properties of the design. These eventually lead to the classifica-
tion by symmetry group.

Washburn and Crowe, in their book Symmetries of Culture: Theory and Prac-
tice of Plane Pattern Analysis, popularised the idea of flow diagrams to deduce
the symmetry group of translational designs.* An alternative flow diagram,
which uses a similar procedure of deduction, is given in Fig. 2.17 for the classifi-
cation of monotranslational designs.

Classification of ditranslational designs

Symmetry  Area of
fundamental region and unit cell

group

p111

pial

p1m1

pm11

p112

pma2

pmm2

There are 17 distinct symmetry groups of ditranslational designs, each of which
may be represented by a unit cell. The shape of the unit cell is determined by the

Fundamental region
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Figure 2.16 Further examples of symmetry groups of monotranslational designs.
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Figure 2.17 Flow diagram for symmetry group identification of monotranslational designs. Source:

Classification of designs by symmetry group

derived from Crowe D W and Washburn D K, Material Anthropology: Contemporary
Approaches to Material Culture, Lanham, Maryland, University Press of America, 1987
and Rose B | and Stafford R D, ‘An Elementary Course in Mathematical Symmetry’,
American Mathematical Monthly, 1981 88 59-64.

lattice structure of which there are five different types (as discussed in Sections
2.7.2and 2.7.3 above).

The lattices form what are known as ‘primitive’ cells, containing just one net
point, the vertices of which fall on rotational centres of the highest order of the
design structure. However, for two particular symmetry groups, both of which
are based on the rhombic lattice, a ‘non-primitive’ double-cell is often chosen
which is twice the size and has sides parallel to the diagonals of the primitive unit
cell. The double cell is referred to as the centred cell and it contains two net
points, one at the centre and one divided up at the corners. These double-cells
have sides parallel to reflection axes in their design structures unlike their associ-
ated primitive cells.

2.10.1 Notation

Aswithmonotranslational designs, the universal notation will be used when classi-
fying the seventeen symmetry groups of ditranslational design. Similarly, this
takes the form of a four-term symbol which is usually denoted by pxyz or cxyz
where x, y and z are each allocated a symbol according to the design’s symmetrical
properties. However, since in the use of this notation and in the context of surface-
pattern design, confusion could arise because the letters y and z are symbols
assigned according to the symmetrical characteristics which relate to the x and y
axes and the first term ‘x’in the pxyz is always given a number, a new, less confusing
four-term symbol is proposed, namely ‘pnxy’ or ‘cnx)y’. (Note that the ‘nx)’ of
ditranslational design notation is the reverse of the ‘yxn’ of monotranslational
design notation.) The order of symbol allocation remains the same but in this case
‘n’ represents a number 2, 3, 4 or 6; ‘x’ represents a symmetrical characteristic in
relation to the x axis and ‘y’ a symmetrical characteristic in relation to the y axis.
The positioning of these axes for each unit cell typeis given in Fig. 2.18.

The following system is used for the allocation of numbers or letters to n, x
and y in the pnxy/cnxy notation. For 15 of 17 of the groups, the initial symbol is
‘p> which represents a primitive cell, as opposed to the remaining two cases
where ‘¢’ represents a centred cell. The symbol ‘n’ is assigned an integer 7, where n
is the highest order of rotation in the design (only two-, three-, four- and six-fold
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Figure 2.18

} (p3m1)

{p311) {p31m
m p3m1

p3 p3

(pB11)

Illustrations showing the positioning of x and y axes in relation to the unit cells of
ditranslational designs.

rotation are applicable to ditranslational designs.) The letter ‘x’ is assigned a
symbol which indicates a symmetry axis perpendicular to one side of the unit cell
(or double-cell for the two particular symmetry groups); this will be called the x
axis. Where there is reflectional symmetry, or glide-reflectional symmetry, this
axis lies parallel to a line of reflection/glide-reflection. Where there are both, a
reflection axis takes priority over a glide-reflection axis in assigning the correct
symbols. The letter ‘y’ is assigned a symbol which indicates a symmetry axis (i.e.
the y axis) at 90°, 45° or 30° to the x axis depending upon whether there is two-,
four-, three- or six-fold rotation present, respectively. The following system is
used for the allocation of symbols to the letters n, x and y:
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* n =1 if thereisno rotational symmetry,

2 if two-fold rotational symmetry is the highest order of rotational
symmetry,

3 if three-fold rotational symmetry is the highest order of rotational
symmetry,

4 if four-fold rotational symmetry is the highest order of rotational
symmetry,

6 if six-fold rotational symmetry is the highest order of rotational
symmetry.

« x =m if thereis a reflection axis perpendicular to one side of the unit cell,
i.e. if the x axis is parallel to a reflection axis in the unit cell (see Fig.
2.18),

g if thereis a glide-reflection axis perpendicular to one side of the unit
cell, i.e. if the x axis is parallel to a glide-reflection axis in the unit
cell,

1 otherwise.

* y =m if thereisareflection axis at:

- 90°tothe xaxisif n=2,

—  45°tothe xaxisif n=4,

— 30°tothe x axisif n =3 or 6, i.e. if the y axis is parallel to a reflection
axis in the unit cell (see Fig. 2.18);

g if thereis a glide-reflection axis at:

—  90°tothe xaxisif n=2,

—  45°tothe xaxisif n=4,

— 30° to the x axis if n=3 or 6, i.e. if the y axis is parallel to a
glide-reflection axis in the unit cell;

1 otherwise.

Several of the symmetry groups are frequently represented by an abbreviated
form of this notation which is indicated underneath the international notation in
Fig. 2.18. This shorter form is used in subsequent references to symmetry group
classification.

Figure 2.19 shows schematic illustrations of the 17 symmetry groups with
their unit cells and examples of fundamental regions. Further illustrations of
ditranslational designs are given in Fig. 2.20.

By a procedure similar to that described for monotranslational designs, a step
by step analysis of the geometrical properties of a ditranslational design enables
it to be classed as one of the 17 symmetry groups. The flow diagram in Fig. 2.21
has been derived from the one given by Washburn and Crowe.*

Construction of finite designs

Classification of designs by symmetry group

An irregular design, classed in the finite symmetry group cl, possesses no
symmetrical properties other than the identity symmetry and so its construction
only has to conform to its overall asymmetric characteristic. A regularly
repeating design may be generated by the application of a minimal set of genera-
tors to the fundamental or generating region. Alternatively they may be produced
by applying the generating symmetries about a point or line through a motif
such that design elements overlap each other. In this instance it must be ensured
that the overlapped design elements are not obscured but form part of the
design.

Symmetric finite designs may be constructed in a variety of different ways. The
most suitable is dependent on the exact nature of the design type required. The
first method, discussed in this section (for both symmetry groups cx and dn), ini-
tially involves constructing a circle with radius R, where R is chosen such that the
resulting circle just encloses the extremities of the design. Any design unit added
to a fundamental region must extend to at least one point on the circumference of
this circle, otherwise the circle segment does not satisfy the definition given for a
fundamental region.
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cmm pmm

Flow diagram for symmetry group identification of ditranslational designs. Source:
derived from Schattsneider D, ‘The Plane Symmetry Groups: Their Recognition and
Notation’, American Mathematical Monthly, 1978 85 439-450.

2.11.1 Symmetry group cn

To construct a finite design, of symmetry group cn, the circle is divided into # fun-
damental regions as described in Section 2.7.6.1 above. A design unit (which hasno
reflection axis passing through the centre of the circle) isadded to one fundamental
region and then mapped onto the remaining fundamental regions, to complete the
design, by applying rotational symmetry (as described in Section 2.8).
Alternatively a cn design may be constructed by n — 1 applications of the n-
fold rotational symmetry about a point passing through or close to a motif. This
may result in overlapping design elements and a more intricate design. (Note
that, as stated above, each consecutive design unit must not conceal any parts of
the previous one(s) otherwise the final result will be asymmetric.) Illustrations of
these two methods of ¢n design construction are given in Fig. 2.22(a(i)) and

(a(ii)).

2.11.2 Symmetry group dn

To construct a finite design, symmetry group dn, the circle is divided into 2# fun-
damental regions as described in Section 2.7.6.1 above. A design unit (which has
no reflection axis passing through the centre of the circle) is added to one funda-
mental region and then mapped onto the remaining fundamental regions, to
complete the design, by applying the generating symmetries (as described in
Section 2.8). Examples are given in Fig. 2.22(b(i)) forn =3 and n = 2.
Alternatively a dn design may be derived from a cn or dn/2 (where n is even)
design by superimposition. Applying a reflectional symmetry about an axis
passing through the centre of rotation of a ¢n design will produce a dn design as
shown in Fig. 2.22(b(ii)) for n = 4. Applying a rotation of 360°/n to a copy of dn/2
and then superimposing the two dn/2 designs such that their centres of rotation
coincide will produce a dn design. For example, in Fig. 2.22(b(iii)) a ¢4 design has
been constructed from a d2 design and its rotation by 360°/4 = 90°. Similarly, in
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Fig. 2.22(b(iv)) and (b(v)), d8 and d6 designs have been constructed from d4 and
d3 designs, respectively. (Again, by this method, superimposing one design onto
another must not conceal any parts of the one underneath.)

Construction of monotranslational designs

Classification of designs by symmetry group

The construction of a monotranslational design begins with a strip, width W,
which is based on the lattice of two parallel lines of points as described in Section
2.9 above. Each fundamental region will have at least one boundary edge coincid-
ing with a portion of one or both of the two parallel lines outlining this strip. The
initial design unit added to a fundamental region must touch at least one point on
one or both of these boundaries where possible, otherwise this area does not
satisfy the definition given for a fundamental region.

In this section, construction techniques are illustrated for six different design
types. These are denoted by type (i) to type (vi) and each is built upon the struc-
ture of the previous type. Type (i) forms the basis of the most simple form of con-
struction for each symmetry group. The design types fall into the categories
whose characteristics have been summarised below.

1 Design type (i): a strip is divided into parallelogram-shaped fundamental
regions. Design elements are added to one and then mapped onto all equiva-
lent positions in the strip by applying the generating symmetries of the sym-
metry group. In each case the boundaries of the fundamental region are
included as part of the design unit.

2 Design type (ii): this is derived from type (i) by removing the boundaries of
the parallelogram-shaped fundamental regions chosen for type (i).

3 Design type (iii): the initial division of a strip into parallelogram-shaped fun-
damental regions, as described for design type (i), is altered by exchanging a
straight edge of a fundamental region for an asymmetric one. Thisedgeis then
mapped to all equivalent positions in the strip by applying the generating sym-
metries. The sides of the fundamental regions coinciding with the parallel
edges of the strip and those coinciding with reflection axes cannot be altered
and will be referred to as ‘fixed” edges. This gives a more interlocking type of
tiling design. For symmetry groups pm11 and pmm?2, where the boundaries of
the fundamental regions lie either on reflection axes and/or on the outside
edges of the strip, this alteration is not possible and therefore design type (iii),
and consequently types (iv) to (vi), are not constructable. Conversely, there
may be one, two or three ways of producing interlocking tiles from design type
(1) depending on the number of different ‘sets’ of fundamental region edges.
These are discussed in detail for each symmetry group.

4  Design type (iv): this is derived from type (iii) by adding design elements to
one fundamental region and then mapping them onto the remaining ones by
applying the generating symmetries of the symmetry group. This produces a
patterned interlocking tiling design.

5 Design type (v): this is derived by removing the boundaries of the fundamen-
tal regions chosen for type (iv). If the design elements are initially chosen to
extend towards the boundaries of the fundamental regions (for type (iv)),
each motif appears to interlock with its neighbouring ones, to a lesser or
greater degree, depending on the nature of the initial tiling design. This con-
struction often forms the most visually pleasing type of the six varieties dis-
cussed in this section owing to the resulting appearance of continuity in the
design structure.

6  Design type (vi): this is formed, where possible, by first dividing the strip into
symmetrical shaped fundamental regions (not coinciding with those of type
(1)). Design elements are added to one tile and then mapped onto all the
equivalent positions in the strip by applying the generating symmetries. The
design elements inside the initial fundamental region, if symmetric, must be
suitably positioned so as not to add any extra reflective or rotational symme-
try to the structure of the design.
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It should be noted that the initial fundamental region (including its design unit)
must not have any symmetries coinciding with those of the structure of the strip,
otherwise the symmetry group will be altered or the size of the fundamental region
reduced. The symmetries of the strip are two-fold centres of rotation and trans-
verse reflection axes at any point along its longitudinal axis, and longitudinal
reflectional symmetry with the reflection axis coincides with the centre line L.
However, this still allows the boundaries of each fundamental region to be paral-
lelogram shaped and be included as part of a design unit provided that, together
with the design elements inside them, they do not have any symmetries coinciding
with the strip (e.g. design types (i) and (vi)). Conversely, if the boundaries of the
fundamental regions are asymmetric and chosen to be part of the design unit,
the design elements inside them may have symmetries in common with the
strip because overall each fundamental region is asymmetric (e.g. specific forms of
type (iv)). This circumstance, although not discussed in further detail in this
chapter, may be observed in the p111 design shown in Fig. 2.24(iv(b)), where the
design elements inside the fundamental region have two-fold rotational symmetry.

The design descriptions for types (i) and (ii), for each symmetry group, are
clearly shown in the following illustrations without further explanation. Simi-
larly, types (iv) and (v) are simply derived from type (iii). For design type (v) the
design unit will be taken to be asymmetric to avoid further complication. Design
types (iii) and (vi) require additional definition, for each symmetry group, which
is given below.

Symmetrically shaped design units are discussed in detail in the classification
and construction methods in Chapter 3. For simplicity, in the majority of con-
struction methods discussed in this chapter, the design unit will be taken to be
asymmetric. In the following examples 7', when referred to, represents a transla-
tion parallel to the longitudinal axis of the strip and distance equal to the length
of a side of a unit cell coinciding with the strip edges. G represents a glide-reflec-
tion in the same direction, about the longitudinal centre line L, but of length
1/2T,. In the illustrations throughout this section, the dark shaded area repre-
sents a fundamental region and the figure section number represents the design
type, for example Fig. 2.25(vi) represents a design type (vi).

It is also assumed that no symmetries are induced into the structure by, for
example, the translation of what initially appears to be an asymmetric translation
unit (as shown in Fig. 2.23). Here, the fundamental region is chosen to contain an
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unit cell of a p112 design

Figure 2.23 Example of an asymmetric fundamental region unsuitable for the construction of a
pl11 monotranslational design.
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Classification of designs by symmetry group

asymmetric design unit but on its translation, for the construction of a pl11
design, a p112 design is formed. However, to construct a different symmetry
group to the one planned by this method is a fairly unlikely occurrence.

2.12.1 Symmetry group p111

To construct design type (iii), for symmetry group pl11, one of a fundamental
region’s edges, not coinciding with the boundaries of the strip, is replaced with an
asymmetric one which is then used to replace all the ‘unfixed’ edges by applying
consecutive translations of 7. To construct design type (vi), the parallelogram-
shaped fundamental regions of type (i) may be replaced by fundamental regions
having either two-fold rotational or longitudinal reflectional symmetry. A design
unit is then added to a fundamental region and mapped onto the remaining ones
by applying 7. Figure 2.24 shows some examples of design types (i) to (vi) for
symmetry group pl11.

2.12.2 Symmetry group plal

To construct design type (iii), one of the two ‘unfixed’ edges of a fundamental
region is replaced by an asymmetric one which is then used to replace all the
equivalent edges by applying glide-reflection G. To construct design type (vi) the
parallelogram-shaped fundamental regions of type (i) may be replaced by a strip
of fundamental regions that has longitudinal reflectional symmetry only. Alter-
natively the fundamental regions may form two strips inside the monotransla-
tional design, one of which is a glide-reflection of the other. In this case the shape
of each fundamental region may be two-fold rotationally, transversely and/or
longitudinally reflectively symmetric. A design unit is then added to a fundamen-
tal region and mapped onto the remaining ones by applying G. Figure 2.25 shows
some examples of design types (i) to (vi) for symmetry group plal.

2.12.3 Symmetry group p1ml

To construct design type (iii) one of the two ‘unfixed’ edges of a fundamental
region is replaced by an asymmetric one which is then used to replace all the
equivalent edges by applying a reflection about the longitudinal axis and transla-
tions of 7. To construct design type (vi) the parallelogram-shaped fundamental
regions of type (i) may be replaced by fundamental regions that have either two-
fold rotational or longitudinal reflectional symmetry. A design unit is then added
to a fundamental region and mapped onto the remaining ones by applying the
generating symmetries. Figure 2.26 shows some examples of design types (i) to
(vi) for symmetry group plml.

2.12.4 Symmetry group pm11

For symmetry group pml1, all four sides of the fundamental region are fixed
since they fall on reflection axes or the edges of the strip enclosing the design.
Therefore none of the design types (iii) to (vi) are constructable. Figure 2.27
shows some examples of design types (i) and (ii) for symmetry group pm11.

2.12.5 Symmetry group p112

There are two ways of constructing a type (iii) design, from type (i), for symmetry
group p112. Because there are two different centres of two-fold rotation in a unit
cell, Ry and R,, the asymmetric replacement lines which meet at these points may
be different too. One case of design type (iii) occurs when one straight edge of a
fundamental region, passing through R, say, remains fixed and the one passing
through R, is altered (see the first two examples in Fig. 2.28(iii)). The replacement
edge need not necessarily have the same end points but it must retain the two-fold
rotational symmetry passing through its centre.
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Figure 2.24 Construction of symmetry group p111.
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Classification of designs by symmetry group
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Construction of symmetry group plal.

The other case occurs when both edges joining or passing through R, and R,
are exchanged leaving the fundamental region having just one straight edge along
the outside edge of the strip (see the third example in Fig. 2.28(iii)). One of these
edges, through R, say, must meet the parallel boundaries of the strip whereas the
other through R, could meet the boundaries of the strip or join at a point on the
new edge through R,. (If both of the new edges meet the boundaries of the strip,
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Figure 2.26 Construction of symmetry group p1ma1.
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Figure 2.27

Classification of designs by symmetry group

Construction of symmetry group pm11.

the fundamental region will have two straight sections occurring on opposite
sides of the strip.) In each of these cases the new fundamental region edges
replace all equivalent ones by applying the generating symmetries. To construct
design type (vi) the fundamental regions may only have two-fold rotational sym-
metry or longitudinal reflectional symmetry as shown in Fig. 2.28(vi). A design
unit is then added to a fundamental region and mapped onto the remaining ones
by applying the rotational symmetries in the design structure. Some examples of
design types (i) to (v) for symmetry group p112 are given in Fig. 2.28(i) to (v),
respectively.

2.12.6 Symmetry group pma2

To construct design type (iii), three out of four of the edges of each fundamental
region remain fixed. The only alterable fundamental region boundary has a
centre of two-fold rotation at its centre. Thus, although the replacement for this
edge may have its end points positioned differently from the straight line it is
replacing, it must still have two-fold rotational symmetry about this point. To
construct design type (vi) the only symmetrical alternative to rectangular (or
square)-shaped fundamental regions for a pma2 design is isosceles triangle-
shaped ones. These may be constructed provided that the initial monotransla-
tional design is structured on a rectangular lattice where each rectangle is
composed of two squares (i.e. the unit cell has width W (coinciding with the
width of the strip) and length 2 ). Since the symmetries of these triangles do not
induce any additional symmetrical characteristics in the structure of the strip,
any symmetric or asymmetric design unit can be added to a triangle and mapped
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Figure 2.28 Construction of symmetry group p112.
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onto the remaining ones by applying a set of generators. Figure 2.29 shows some
examples of design types (i) to (vi) for symmetry group pma?2.

2.12.7 Symmetry group pmm?2

For symmetry group pmm?2, all four sides of the fundamental region are fixed
since they fall on reflection axes or the boundaries of the strip enclosing the
design. Therefore none of the remaining design types (iil) to (vi) are con-
structable. Figure 2.30 shows some examples of design types (i) and (ii) for sym-
metry group pmm?2.

Construction of ditranslational designs

Classification of designs by symmetry group

There are numerous different methods which may be used to decorate a plane
with a given design symmetry group, for example a tiling, a patterned tiling or a
pattern. A tiling/pattern may consist of equally or differently shaped tiles/motifs
and in addition the motifs of a pattern may either interlock, join or be separate
from each other. The following sections describe a selection of construction tech-
niques for different design types analogous to those described for monotransla-
tional designs. By initially dividing the plane into a tiling of fundamental regions
it is possible to produce numerous topologically differing design effects (which
relate to the interlocking nature of the design, the details of which are discussed
in Chapter 5). Only the simpler ones will be outlined in the following sections. For
example, in Fig. 2.31 there are two tilings of fundamental regions both of which
may be used in the construction of a pl design. However, the resulting appear-
ance of the design, when the ‘tile’/fundamental region boundaries are removed,
will differ owing to the interlocking relationship between each of the fundamen-
tal regions and its neighbours. For a p1 design there are only two topological ways
of forming a tiling of fundamental regions but for some of the other symmetry
groups the possibilities are numerous.

One method of producing a ditranslational design would be to apply, succes-
sively, a minimal set of generators to a suitably decorated fundamental region.
This would then gradually fill out the whole design. Alternatively, Stevens, in his
book A Handbook of Regular Patterns, describes a process whereby any asym-
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Figure 2.29 Construction of symmetry group pma2.



Figure 2.30

Classification of designs by symmetry group

Construction of symmetry group pmm2.

metrical motif can be stacked with itself to create seven linear bands (monotrans-
lational designs) and 17 planar patterns (ditranslational designs).2°

In a similar vein, Bunce describes how panel or band patterns can be used
to build up a design.2! Following this construction method a monotransla-
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Figure 2.31

Examples of possible tiling structures for symmetry group p1.

tional design is translated at unit intervals in a direction of 6° to its longitudinal
axis. This technique is, effectively, equivalent to consecutively placing strips,
of width W, adjacent to each other to cover the plane. Bunce goes on to say
that since panel designs are usually based on the symmetrical division of a
defined area, when repeated, they exhibit a regular grid appearance. However,
although a formal, rigid-structured, grid-like appearance may result in
the overall design, this property may be reduced by altering the characteristics of
the initial ‘band pattern’ or monotranslational design from which it is
constructed.

This construction procedure enables all 17 symmetry groups of ditransla-
tional design to be constructed by a process which may be suitably adapted for
screen printing (e.g. for textile or paper printing). (For this application, the most
suitable value of 6 is 90°.) In each construction method the top boundary edge of
the initial ‘tiled’ strip (or double strip, where stated) is removed before applying
the consecutive translational symmetries perpendicular to its longitudinal axis.
By employing this technique, ditranslational symmetry groups p1 to pmm may be
constructed from the seven monotranslational designs discussed in Section 2.12.
Symmetry groups with three-, four- and six-fold rotational symmetry may also be
formed by this method but the initial monotranslational design (which, though,
may be classified as one of the seven symmetry groups) requires specific addi-
tional geometrical characteristics in its structure before applying translational
symmetries perpendicular to its longitudinal axis.

In the construction techniques discussed below, reference is made to
three translational symmetry operations: 7' parallel to the longitudinal axis of
the initial monotranslational design and distance equal to the length of a unit
cell; T, parallel to the side of a unit cell (not to the longitudinal axis) and distance
equal to the side’s length (for rectangular and square lattices, this length is W); T
perpendicular to the longitudinal axis and distance 2 W, twice the width of a
strip of unit cells. For some symmetry groups, a reflectional symmetry M is
applied to the initial monotranslational design about an axis coinciding with the
top edge of the strip (which produces a double strip), before consecutive applica-
tions of translation 75. For p3xy and p6xy designs, reflection M is applied to
a tiled strip of fundamental regions, before adding design elements, to establish
the correct structure upon which to build the design. Reference is also made
to a glide-reflection G which is parallel to 7' and of a distance equal to half
its length.

Although, as described previously, symmetry groups pl and p2 may be based
on any form of parallelogram lattice, in this section their structures are restricted
to rectangular ones. Alternative structures will be described in more detail in
Chapter 5. Also, to avoid complication, when exchanging fundamental region
edges for asymmetric ones, as described for the type (iii) monotranslational
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designs, it is assumed that the end points of the edges remain fixed. Construction
methods of six different ditranslational design types (analogous to those for
monotranslational designs) are discussed for each symmetry group. A general
description of each is given below.

1

Design type (i): the first design type involves initially constructing a mono-
translational design type (i) that has triangular, parallelogram or, for symme-
try group p6, kite-shaped fundamental region boundaries, in other words the
fundamental region is chosen, where possible, to be a symmetrical portion of
the unit cell. Reflectional symmetry M may be applied to this design (which is
stated for each symmetry group where applicable) and then the top edge of
the strip is removed before applying consecutively the translational symme-
tries 7, or 7.

Design type (ii): this is derived from monotranslational design type (i) by
removing the boundaries of the fundamental regions/‘tiles’ before applying
reflection M and/or translational symmetries, T, or 73. This reduces a pat-
terned tiling to a pattern which may appear to have a more ‘grid-like’ appear-
ance owing to the straight edges chosen for the fundamental region
boundaries.

Design type (iii): this is derived from monotranslational design type (iii).
Some or all of the edges of the fundamental regions are altered before
removing the top edge of the strip and then applying reflection M and/or the
translational symmetries 7, or T5. This gives a more interlocking type of
tiling design. As with monotranslational designs, the new edges must be posi-
tioned so as not to overlap with each other on application of the generating
symmetries. For symmetry groups where each of the edges of the fundamen-
tal regions lies on a reflection axis, this alteration is not possible and therefore
design type (iii), and consequently types (iv) to (vi), are not constructable.
Conversely, there may be one, two or three ways of producing interlocking
tiles from the initial monotranslational design depending on the number of
different ‘sets” of fundamental region edges. These are discussed in detail
below for each symmetry group.

Design type (iv): this is derived from the monotranslational design used
to construct ditranslational design type (iii). Design elements are added to
one fundamental region and then mapped onto the remaining ones in the
strip before applying reflection M and/or consecutive translations of 7', or
Ty of the symmetry group. This produces a patterned interlocking tiling
design.

Design type (v): this is derived by initially removing the boundaries of the
fundamental regions chosen for the monotranslational design type (iv)
before applying reflection M and/or consecutive translations of 7, or T5. If
the design elements are initially chosen to extend towards the boundaries of
the fundamental regions (for type (iv)), each motif appears to interlock with
its neighbouring motifs resulting in a design with a more continuous and
therefore less disjointed appearance.

Design type (vi): this is formed, where possible, by dividing the initial strip
into symmetrical-shaped fundamental regions (not coinciding with those of
type (i)). This design construction method is only discussed for symmetry
groups plxy, p2xy and pdxy. Figure 2.32 shows examples of a selection (but
not all) of the possible tiling structures suitable for this design type. These
structures illustrate some of the simplest forms of tilings composed of tiles
with two- and four-fold rotational symmetry and longitudinal or transverse
reflectional symmetry in relation to the sides of the initial strip. Design ele-
ments are added to one tile and then mapped onto all the equivalent posi-
tions in the strip before applying reflectional and/or the translational
symmetries. A further version of design type (v) (interlocking motifs without
tile boundaries) may be derived from type (vi). However, the design elements
inside the fundamental regions must not induce any additional symmetries
into the design structure on removal of these ‘tile’ boundaries.
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Figure 2.32

Examples of possible tiling structures for type (vi) ditranslational designs.

This gives a general outline of the construction technique for design types (i)
to (vi) for each group of designs plxy, p2xy, p3xy, pdxy and p6xy. The position-
ing of symmetrical design units is critical therefore in the ditranslational design
construction methods in this chapter, for simplicity, the design unit is generally
taken to be asymmetric. It is also assumed that no additional symmetries are
induced into the design structure on translating the unit cell or translation unit,
such as those described in relation to monotranslational designs in Section 2.12
and illustrated in Fig. 2.23. For symmetry groups where design types (i), (ii) and
(iii) are simply derived from consecutive applications of translation 7, to an asso-
ciated monotranslational design, no further explanation is given. Illustrations of
all six design types are given for symmetry group p1 but only a selection of exam-
ples are shown for subsequent symmetry groups. Any additional versions of
design type (iii) are described for each symmetry group although the design types
(iv) and (v) which may be derived from type (iii) (by an analogous method for
monotranslational designs) are not. Design type (vi) (where reference is made to
the tilings in Fig. 2.32) is self-explanatory for each symmetry group, from the
description given above.

Geometric symmetry in patterns and tilings




In the examples throughout the remainder of this chapter, the light shaded
area represents the initial monotranslational design (or two adjacent monotrans-
lational designs) which is either translated at unit intervals of W (T),) or, where
stated, at unit intervals of 2 (T3) at 90° to the longitudinal axis of the strip. The
darker area in the strip represents a fundamental region. Note that although
tiling and patterned tiling designs may be constructed for screen printing it may
prove more difficult to register tile boundaries. As a result of this, for printing
purposes, design types (ii) and (v) are most appropriate. In each of the illustra-
tions in the following figures the section number represents the design type, for
example Fig. 2.33(iii) represents design type (iii).

2.13.1 Symmetry groups plxy and clxy

There are four ditranslational symmetry groups of the form plxy and ¢1xy which
are abbreviated to p1, pg, pm and cm.

Figure 2.33

Classification of designs by symmetry group

Construction of symmetry group p1.
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Figure 2.33 (cont.)

54 Geometric symmetry in patterns and tilings




Classification of designs by symmetry group

2.13.1.1 Symmetry group pl

Design types (i), (i) and (iii) may be constructed by consecutive applications of
translation T, to the corresponding monotranslational design types (i), (ii) and
(ii1) of p111, as shown in Fig. 2.33(i), (ii) and (iii). A second version of type (iii)
may be constructed by replacing a straight edge of a fundamental region on the
bottom edge of the strip by an asymmetric one and then using it to replace each
adjacent edge, in the longitudinal direction, by repeatedly applying 7. The top
straight edge is removed and then T, is applied at unit intervals. An illustration is
given in the second example of Fig. 2.33(iii). Design type (vi) may be constructed
from any of the tilings 1, 2, 3 or 4.

2.13.1.2 Symmetry group pg

Design types (i), (ii) and (iii) may be constructed by consecutive applications of
translation T, to the corresponding monotranslational design types (i), (ii) and
(ii1) of plal. A second version of type (iii) may be constructed by replacing a
straight edge of a fundamental region on the bottom edge of the strip by an
asymmetric one and then using it to replace each adjacent edge, in the longitudi-
nal direction, by the repeated application of glide-reflection G. The top straight
edge is removed and then T, is applied at unit intervals (see Fig. 2.34(iii)). Design
type (vi) may be constructed from either of the tilings 4 and 5.

2.13.1.3  Symmetry group pm

Design types (i), (ii) and (iii) may be constructed by consecutive applications
of translation T, to the corresponding monotranslational design types (i), (ii)
and (iii) of plml. (A pm ditranslational design may also be constructed by apply-
ing the same translations to a pmll monotranslational design which, in the
context of printing, results in reflection axes occurring parallel to the warp/length
of the fabric/paper as opposed to them being parallel to the weft/width if con-
structed from the initial monotranslational design plml). Symmetry group pm
has only one form of design type (iii) because two edges of each fundamental
region fall on reflection axes, occurring on the boundaries of the strip, which
cannot be altered (see Fig. 2.35). Design type (vi) may be constructed from tilings
6andS8.

2.13.1.4 Symmetry group cm

Design type (i), for symmetry group cm, is constructed by first applying reflection
M to a plal monotranslational design to give a strip with width 2. Consecutive
translations of 775 are then applied to this double strip to complete the patterned
tiling design. Design types (ii) and (iii) are constructed by applying the same oper-
ations to types (ii) and (iii) of monotranslational design plal. Symmetry group
¢m has only one form of design type (iii) because two edges of each fundamental
region fall on reflection axes, occurring on the boundary and longitudinal axis of
the strip, which cannot be altered (see Fig. 2.36). Design type (vi) may be con-
structed from either of the tilings 7 and 8.

2.13.2 Symmetry groups p2xy and c2xy

There are five ditranslational symmetry groups of the form p2xy or ¢2xy which
are abbreviated to p2, pgg, pmg, pmm and cmm.

2.13.2.1 Symmetry group p2

Design types (i), (i) and (iii) may be constructed by consecutive applications of
translation T, to the corresponding monotranslational design types (i), (ii) and
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Figure 2.34

Construction of symmetry group pg.
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Figure 2.35

Classification of designs by symmetry group
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Construction of symmetry group pm.
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Construction of symmetry group cm.

(ii1) of p112. An additional version of type (iii) may be constructed by replacing a
straight edge of a unit cell on the bottom edge of the strip by one having two-fold
rotational symmetry. It is then used to replace each adjacent edge, in the longitu-
dinal direction, by repeatedly applying T'|. The top straight edge is removed and
then T, is applied at unit intervals as shown in Fig. 2.37(iii). Design type (vi) may
be constructed from any of the tilings 1, 2, 3 or 5. A p2 design may also be con-
structed from tiling 7 or tiling 9 although in these cases, the single p112 or p111
strip is two-fold rotated about the midpoint of a top edge or top corner of a fun-
damental region, respectively, to form a double strip, width 2 W, before consecu-
tive applications of 77 (see Fig. 2.37).

2.13.2.2 Symmetry group pgg

A pgg ditranslational design may be constructed by repeatedly applying the
translation, T3, to either two p112 monotranslational designs, one of which is a
glide-reflection of the other, or to two plal monotranslational designs, one of

Geometric symmetry in patterns and tilings




Figure 2.37

Classification of designs by symmetry group

Construction of symmetry group p2.
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Figure 2.37
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(cont.)

which is a two-fold rotation of the other. The first of these two possibilities is dis-
cussed for each design type below. Design types (i), (i1) and (ii1) may each be con-
structed by consecutive applications of translation 75 to a double strip, width
2W, which has been derived from the corresponding monotranslational design
types (1), (i1) and (iii) of p112, respectively. In each case, the double strip consists
of two p112 monotranslational designs, one of which is a glide-reflection of the
other. The glide-reflection axis coincides with a straight edge of the strip and its
distance is equal to half the length of translation T’ (see Fig. 2.38). An additional
version of type (iii) may be constructed by replacing a straight edge of a funda-
mental region, on the bottom edge of the double strip, by an asymmetric one. Itis
then used to replace each adjacent edge, in the longitudinal direction, by repeat-
edly applying glide-reflection G. The central straight longitudinal axis of the
double strip is exchanged for one which is a two-fold rotation, of the new bottom
edge of the strip, about a centre of rotation occurring on the boundary of a fun-
damental region (as shown in Fig. 2.38(iii)). The top straight edge is removed and
then T is applied at unit intervals. Design type (vi) may be constructed from
either a double strip of tiling 5 or tiling 6.

Geometric symmetry in patterns and tilings
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Classification of designs by symmetry group

Construction of symmetry group pgg.
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Figure 2.38
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2.13.2.3 Symmetry group pmg

Design types (i), (ii) and (iii)) may be constructed by consecutive applications of
translation 7, to the corresponding monotranslational design types (i), (ii) and
(ii1) of pma2. (This results in the reflection axes occurring parallel to the
warp/length of the fabric/paper.) An additional version of type (iii) may be con-
structed by replacing a straight edge of a fundamental region, on the bottom
edge of the strip, by an asymmetric one. It is then used to replace each adjacent
edge, in the longitudinal direction, by the repeated application of alternating
two-fold rotation and transverse reflection passing through the corners of each
fundamental region (see Fig. 2.39(iii)). (The axes about which it is reflected coin-
cide with those in the monotranslational pma?2 structure.) The top straight edge is
removed and then 7', is applied at unit intervals. Design type (vi) cannot be con-
structed from any of the tilings 1 to 9 owing to the limitations caused by the
reflection axes occurring in the structure of the design.

2.13.2.4 Symmetry group pmm

Design types (i) and (i) may be constructed by consecutive applications of trans-
lation T}, to the corresponding monotranslational design types (i) and (ii) of
pmm?2. Types (iii) to (vi) cannot be constructed owing to the limitations caused by
the reflection axes occurring in the structure of the design. Figure 2.40 shows
some examples of design types (i) and (ii) for pmm.

2.13.2.5 Symmetry group cmm

A cmm ditranslational design may be constructed by repeatedly applying the
translation T3, to either two pma2 monotranslational designs, one of which is a
reflection of the other, or to two pmm?2 monotranslational designs, one of which
is a glide-reflection of the other. The first of these two possibilities is discussed
for each design type below. Design types (i), (ii) and (iii) may be constructed by
consecutive applications of translation 75 to a double strip, width 2, of the cor-
responding monotranslational design types (i), (i) and (iii) of pma?2, respectively.
The double strip is constructed by applying reflection M to a pma2 monotransla-
tional design (see Fig. 2.41(ii1)). Ditranslational symmetry group cmm has only
one form of design type (iii) which is derived by altering the fundamental region
edges which pass through a centre of rotation. This is because two edges of each
fundamental region fall on reflection axes, occurring on the boundary and longi-
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Construction of symmetry group pmm.

tudinal axis of the strip, which cannot be altered. Two examples of this form are
illustrated in Fig. 2.41(iii). Design type (vi) cannot be constructed from any of the
tilings 1 to 9 owing to the limitations caused by the reflection axes occurring in the
structure of the design.

2.13.3 Symmetry groups p4xy

There are three ditranslational symmetry groups of the form p4xy which
are abbreviated to p4, p4g and p4m. Each of these symmetry groups is based
on a square lattice, therefore the initial strip used to construct these designs
is divided into square parallelograms each of which represents a unit cell. These
are then divided into fundamental regions which, as a strip of a ditransla-
tional design, have reflectional and/or four-fold rotational symmetries occurring
on their boundaries. These symmetries are not a property of a monotransla-
tional design, however they are referred to when filling out the initial strip
pattern. On applying these symmetries, design elements which are mapped onto
positions outside the structure of the initial monotranslational design are not
included.

Geometric symmetry in patterns and tilings
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Classification of designs by symmetry group

Construction of symmetry group cmm.
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2.13.3.1 Symmetry group p4

The construction of a design of type (i) requires the division of each unit cell in
the strip into four square fundamental regions. This strip, if associated with a p4
design, will have alternating centres of two- and four-fold rotational symmetry
occurring through the longitudinal axis of the strip at corners of fundamental
regions (see Fig. 2.42). Applying one of these four-fold rotational symmetries to
design elements inside a square fundamental region will complete a unit cell
which, on repeated application of 7 will form a monotranslational design type
(i). If the top straight edge of the strip is removed and then 7, is applied at unit
intervals, a ditranslational design type (i) is formed and if the boundaries of the
tiles are removed, this gives a type (ii) p4 design. Design type (iii) may be pro-
duced by replacing one of the boundaries of a square fundamental region,
joining a centre of four-fold rotation with the straight edge of the strip, by an
asymmetric one and then mapping it onto all equivalent positions in a unit cell
and the remainder of the strip as described above (see the first example in Fig.
2.42(iii)). Then T, is applied at unit intervals. An alternative version of type (iii)
may be constructed by replacing an edge joining a two-fold centre of rotation to
the boundary of the strip in addition to the previous alteration. This edge is
mapped onto all equivalent positions down the centre of the strip and is used to
replace the bottom edge (as shown in the second example of Fig. 2.42(iii)). The
top straight edge is removed and then T, is applied at unit intervals. Design type
(vi) may be constructed from a double strip of tiling 2 which is based in a square
lattice.

2.13.3.2  Symmetry group p4g

Design type (i) is constructed by dividing each unit cell in the strip into eight
isosceles triangle fundamental regions as shown in Fig. 2.43(i). For a p4g design,
the diagonals represent axes of reflectional symmetry and so are fixed. At their
points of intersection are centres of two-fold rotation and, in each case, half way
between adjacent two-fold centres of rotation, in the longitudinal direction, is a
centre of four-fold rotational symmetry. Applying a reflection and one of these
four-fold rotational symmetries to design elements inside an isosceles triangle-
shaped fundamental region will decorate a unit cell which, on repeated applica-
tion of 7'} will complete a monotranslational design type (i). If the top straight
edge of the strip is removed and then T, is applied at unit intervals, this forms
ditranslational design type (i) and if the boundaries of the tiles are removed, this
gives a type (ii) p4g design. Design type (iii) may be produced by replacing one of
the boundaries of an isosceles triangle fundamental region, joining a centre of
four-fold rotation with the straight edge of the strip, by an asymmetric one and
then mapping it onto equivalent positions as shown in Fig. 2.43(iii). The top
straight edge is removed and then T, is applied at unit intervals. An alternative
version of type (iii) cannot be constructed owing to the limitations caused by the
reflection axes occurring in the structure of the design. Design type (vi) cannot be
constructed from any of the tilings in Fig. 2.32.

2.13.3.3  Symmetry group p4m

Design type (i) is constructed by dividing each unit cell in the strip into eight
isosceles triangle fundamental regions by the method described for p4g. For a
pdm design, each of these diagonal, transverse and longitudinal lines represents
an axis of reflectional symmetry and so is fixed. Applying a diagonal reflectional
symmetry and a four-fold rotation to design elements inside an isosceles triangle-
shaped fundamental region completes a unit cell. Consecutive applications of T
will then generate a monotranslational design type (i). If the top straight edge of
the strip is removed and then 7, is applied at unit intervals, this forms ditransla-
tional design type (i) and if the boundaries of the tiles are removed, this gives a
type (ii) p4m design (see Fig. 2.44). Types (iii) to (vi) cannot be constructed owing
to the limitations caused by the reflection axes occurring in the structure of the

Geometric symmetry in patterns and tilings
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Figure 2.43 Construction of symmetry group p4g.

design. Although, as shown in the first two examples of Fig. 2.44, a straight-sided
strip may be used to construct this type of pattern, in the context of screen print-
ing it is inappropriate to dissect a motif. In the third and fourth examples of Fig.
2.44 a more suitable translation area is represented which may be consecutively
translated by 7,.

2.13.4 Symmetry groups p3xy

There are three ditranslational symmetry groups of the form p3xy which are abbre-
viated to p3, p31m and p3m]1. The translations used in the construction methods

Geometric symmetry in patterns and tilings
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Construction of symmetry group p4m.

for p3xy (and p6xy) are T} and T5. A p3xy ditranslational design may be con-
structed by repeated application of the translation, T3, to two strips of unit cells or
translation units. In cases where unit cell boundaries do not coincide with funda-
mental region boundaries, two strips of translation units are consecutively trans-
lated by T3. In each of the design types discussed below, the initial mono-
translational design is based on a strip of unit cells of a hexagonal lattice, width W.
This is initially divided into rhombi and isosceles triangles before applying reflec-
tion M to produce a double strip, width 2 7, with the correct structure upon which
to build the design. Again, as for p4xy designs, symmetries occurring in the
ditranslational design are used to fill out the double strip although they may not
occur in the monotranslational design structure. Design elements which are map-
ped onto positions outside the structure of the initial ‘double-strip’ monotransla-
tional design are not included since these are accounted for by translation 7.

2.13.4.1 Symmetry group p3

Design type (i) is constructed by first dividing a strip into rhombic fundamental
regions whose vertices fall on centres of three-fold rotation (as shown in
Fig. 2.45). After removing the straight edges of this strip and applying reflection
M to this design a new monotranslational tiling design is formed, width 2W.
Design elements are added to one rhombus which may then be mapped onto the
remaining complete ones in the shaded area by applying the three-fold rotational
symmetries which occur within the edges of the double strip. By applying one set
of three-fold rotational symmetries which occurs at a perpendicular distance
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Figure 2.45

Classification of designs by symmetry group

2/3W from the longitudinal axis of the double strip, adds a line of design
units not contained within the straight-edged double strip. The double strip of
hexagonal translational units is then consecutively translated by 75 to form
design type (i) (as shown in the first example in Fig. 2.45). Design type (ii) is
constructed by removing the rhombic fundamental region boundaries. There
are two possibilities for tiling design type (iii). If one edge of a fundamental
region is replaced by an asymmetric one and then mapped onto all equivalent
positions in the double strip, there still remains another set of edges forming a
hexagonal structure (see Fig. 2.45iii(a)). One of these edges may also be
exchanged for an asymmetric one and mapped onto all equivalent positions as
shown in Fig. 2.45(iii(b)) and (iii(c)). The strip is then translated by consecutive
applications of 773. Design type (vi) cannot be constructed from any of the tilings
in Fig. 2.32.

2.13.4.2  Symmetry group p31m

Design type (i) is constructed by first dividing a strip into rhombi as described
above and then bisecting them into fundamental regions by adding a long
diagonal to each one (as shown in the first example in Fig. 2.46). These diagonals
form a tiling of equilateral triangles all of whose edges fall on axes of reflectional
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(cont.)

symmetry and so are fixed. By applying reflection M to this strip, a new mono-
translational tiling design is formed, width 2. Design elements inside one
triangle may be mapped onto the remaining ones in the double strip by first
applying a three-fold rotation and a reflectional symmetry to complete a unit
cell; then by applying 7 at unit intervals to complete a single strip; finally by
applying a reflection M. One outside edge of the double strip is removed before
consecutively translating it by 775 to form design type (i). Design type (ii) is con-
structed by removing the triangular fundamental region boundaries as shown in
Fig. 2.46(ii).

Construction of design type (iii), where only a selection of the edges of the
fundamental regions interlock, is possible for a p31m design since although some
edges fall on reflection axes and so are fixed, others do not. Type (iii) may be con-
structed by replacing an edge, joining two centres of three-fold rotation posi-
tioned at the centre and vertex of an equilateral triangle, by an asymmetric one;
mapping it to all equivalent positions in the double strip; removing one exterior
edge of the double strip and then translating the strip by consecutive applications
of T (see Fig. 2.46(iii)). Design type (vi) cannot be constructed from any of the
tilings in Fig. 2.32. The second example given in Fig. 2.46(iii) illustrates a more
suitable translation strip, for that particular design shown, which avoids dissect-
ing motifs.

2.13.4.3  Symmetry group p3ml

Design type (i) is constructed by first dividing a strip into rhombi as described
above and then bisecting them into fundamental regions by adding a short diago-
nal to each one. This divides the strip into equilateral triangles whose sides all fall
on axes of reflectional symmetry and so are fixed (see Fig. 2.47). Removing the
straight edges of the strip and applying reflection M to this design forms a mono-
translational tiling design, width 2 . Design elements inside one triangle may be
mapped onto the remaining ones inside a double strip of hexagonal translation
units as shown in the second example in Fig. 2.47. Consecutive applications of
translation 75 are then applied to it to form design type (i). Types (iii) to (vi)
cannot be constructed owing to the limitations caused by the reflection axes
occurring in the structure of the design.
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Figure 2.47 Construction of symmetry group p3mJ1.

2.13.5 Symmetry groups p6xy

There are two ditranslational symmetry groups of the form p6xy which are
abbreviated to p6 and p6m. A p6xy ditranslational design may be constructed by
repeated application of the translation, T3, to two strips of unit cells or transla-
tion units. In each of the design types discussed below, like p3xy designs, the
initial monotranslational design is based on a strip of unit cells of a hexagonal
lattice, width W.

2.13.5.1 Symmetry group p6

Design type (i) is constructed by first dividing a strip, width W, into kite-shaped
fundamental regions whose vertices fall on centres of two-, three- and six-fold
rotation (as shown in the first example in Fig. 2.48). A reflection M applied to this
design forms a new monotranslational tiling design of width 2. Design ele-
ments inside one kite shape may be mapped onto the remaining ones by applying
the two-, three- and six-fold rotational symmetries which occur within the double
strips outside edges. After removing one outside edge of the double strip it is then
consecutively translated by 7’5 to form design type (i). There are two methods of
constructing design type (iii), where only a selection of the edges of the funda-

Geometric symmetry in patterns and tilings
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mental regions interlock. Either the straight lines joining centres of two- and six-
fold rotation remain fixed (which forms an equilateral triangular tiling) and lines
joining centres of two- and three-fold rotation are exchanged or vice versa (which
forms a hexagonal tiling). Examples of tiling designs resulting from these alter-
ations are given in Fig. 2.48(iii(a)) and (iii(b)). Alternatively both of these two
sets of edges may be replaced (see Fig. 2.48iii(c)). Design type (vi) cannot be con-
structed from any of the tilings in Fig. 2.32.

2.13.5.2  Symmetry group pobm

Design type (i) is constructed by first dividing a strip into kite-shaped p6 funda-
mental regions, as described above, and then bisecting each by adding a long
diagonal. This divides the strip into right-angled triangles whose sides all fall on
axes of reflectional symmetry and so are fixed. A reflection M is applied to this
design to form a new monotranslational tiling design, width 2 W (see Fig. 2.49,
construction of type (ii) in two stages). Design elements inside one triangle may
be mapped onto the remaining ones by applying reflectional symmetries which
occur within the edges of the double strip. One outside edge of the double strip is
removed before consecutively translating it by 75 to form design type (i). Types
(iii) to (vi) cannot be constructed owing to the limitations caused by the reflection
axes occurring in the structure of the design.

Summary

The classification system discussed in this chapter is applicable to all forms of
regularly repeating finite, monotranslational and ditranslational designs. It
begins with explanations of the fundamental concepts which form the basis of
subsequent classification systems throughout the remainder of this book. Finite,
monotranslational and ditranslational designs are classified and constructed by
symmetry group and extensively illustrated by schematic and more decorative
forms of illustrations.

Because there are such a vast number of possible design characteristics in one
symmetry group, only a selection of construction methods have been explained
in detail. For example, throughout each of the ditranslational construction tech-
niques discussed in the previous sections, the emphasis has been placed on the
initial structure being based upon a tiling of specific fundamental region bound-
aries. This criteria restricts, to a certain extent, the interlocking relationship of
the design units. No particular attention has been paid to the symmetrical prop-
erties of the individual design units or motifs within the design structure either.
These characteristics are discussed in more detail in Chapters 3, 4 and 5. The for-
mation of a tiling of fundamental regions, as shown in design type (iii), will be
used as a basis for some of the construction methods discussed in these following
chapters.

Throughout the descriptions of ditranslational design construction methods,
reference has been made to screen printing. The initial monotranslational design,
width W, or width 2 where specified (or an integral number of these widths)
may be treated as the translation strip which is incorporated onto the length of
the screen. (To print the design the screen is then translated at unit intervals per-
pendicular to the strip.) Where motifs are split along fundamental region edges,
as shown for symmetry group p4m, a more suitable translation strip may be
devised. For some symmetry groups, such as pm, the construction techniques
have been discussed with the reflection axes having a particular orientation in
relation to the warp or weft (or length and width) of the fabric (or paper) in con-
nection with screen printing. However, should these axes be required to be per-
pendicular to the ones discussed it is only necessary to take a translation strip
with longitudinal axis perpendicular to the ones illustrated in the construction
examples.

Geometric symmetry in patterns and tilings
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