
Introduction

As explained previously, there are numerous different ways of classifying designs.
The methods in Chapters 2 and 3 identify a tiling or pattern class by the symme-
try group of its design unit and/or design structure. The following classification
of monomotif, discrete patterns involves the recognition not only of the symme-
tries of the pattern structure but also the group of symmetries in the structure
which pass through a motif. This classification system (as Grünbaum and 
Shephard comment)1 does have its limitations in that it is only applicable to a
particular range of patterns in which there are restrictions imposed on both the
characteristics of the motif and, with its repetition, the pattern it produces. These
designs therefore generally exhibit a more rigid and ordered appearance com-
pared to those of the previous two chapters, because adjacent motifs may not
touch, overlap or intertwine with adjacent motifs.

As discussed in Chapter 2, a motif may possess a variety of different features.
One type of pattern, resulting from the regular repetition of a motif with particu-
lar limitations on its characteristics, is referred to as a monomotif pattern.

Monomotif pattern

Grünbaum and Shephard,1 in their classic work Tilings and Patterns, formally
define a monomotif pattern as follows:

A monomotif pattern P with motif M is a non-empty family {Mi Í i Œ I} of sets in the
plane, labelled by an index-set I, such that the following conditions hold:
P.1 The sets Mi are pairwise disjoint.
P.2 Each Mi is congruent to M and called a copy of M.
P.3 For each pair Mi, Mj of copies of the motif there is an isometry of the plane that

maps P onto itself and Mi onto Mj.

Less formally, a monomotif pattern may be thought of as one in which:

• P.1¢ Each motif does not intersect or connect to (i.e. overlap or touch) any
other motif.

• P.2¢ Each motif is congruent to every other motif in the pattern. (Here, by
congruent, as well as implying ‘direct’ congruence where the motifs are
the same size and shape, a mapping from one motif to any other by
reflection or glide–reflection is included in the definition. Strictly
speaking, ‘congruence’ by reflection is given the term ‘indirect congru-
ence’. It is important to note that certain authors do not include this
reflective mapping in their definition of congruence, for example Shub-
nikov and Koptsik, when discussing whether an object is symmetric or
not, define ‘geometric equality’ as either compatible equality (congru-
ence) or mirror equality.2)

• P.3¢ Each motif can be mapped onto any other motif by a symmetry of the
pattern.

Figure 4.1 shows some examples of monomotif and non-monomotif patterns.
The explanations below discuss whether the conditions: P.1¢ to P.3¢ hold for each
design and consequently whether each one is monomotif or not.
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Examples of (a), (c), (d) monomotif and (b) non-monomotif patterns.Figure 4.1
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In Fig. 4.1(a(i)):

• P.1¢ none of the motifs overlap or touch any other motif
• P.2¢ each motif is congruent to every other motif and
• P.3¢ the only symmetry of the pattern other than translational symmetry 

is glide–reflectional symmetry which, by itself, will generate the whole
design.

The easiest way to test if condition P.3¢ holds is to examine a translation unit.
Figure 4.1(a(ii)) illustrates one way of dividing the pattern into translation units
and Fig. 4.1(a(iii)) shows the symmetries of the design passing through one of
these translation units. Consider the translation unit in Fig. 4.1(a(iii)). If each
motif can be mapped onto any other motif inside it by an isometry of the pattern
(in this case a glide–reflection about axis G) then by subsequent unit translations
of this translation unit, any motif can be mapped onto any other. In this instance,
condition P.3¢ is satisfied, so together with P.1¢ and P.2¢, this implies that the
pattern is monomotif.

In Fig. 4.1(b),

• P.1¢ none of the motifs overlap or touch any other motif
• P.2¢ each motif is congruent to every other motif and
• P.3¢ the only symmetry of the pattern other than translational symmetry is

reflectional symmmetry. However, applying this symmetry to any one
motif will not generate the whole design as explained below.

Consider the translation unit in Fig. 4.1(b(iii)). If each motif can be mapped
onto any other motif inside it by an isometry of the pattern then condition P.3¢ is
satisfied. Let the motifs inside this translation unit be labelled M1, M2, M3 and
M4 as shown. M1 can be mapped onto M2 by reflectional symmetry about reflec-
tion axis M but not to either M3 or M4. This implies that each motif cannot be
mapped onto any other one by a symmetry of the pattern therefore, condition
P.3¢ is not satisfied and so the pattern in Fig. 4.1(b(i)) is not monomotif.

Figures 4.1(c) and (d) show some further illustrations of monomotif patterns
with examples of translation units. In Fig. 4.1(c) a motif is taken to be a con-
tinuous vertical strip comprising a two-fold rotationally symmetric, wavy line. In
Fig. 4.1(d) the motif is one quarter of the translation unit and consists of flowers,
stalks and leaves. In each case the pattern satisfies all three conditions, P.1¢ to P.3¢;
therefore they are both monomotif.

In addition to the monomotif conditions, further restrictions may be imposed
on the motif characteristics which result in the pattern being discrete.

Discrete pattern

A formal definition given by Grünbaum and Shephard1 stated that:

. . . a pattern is discrete if the following conditions hold:
DP.1 The motif M is a bounded and connected set.
DP.2 For some i there is an open set Ei which contains the copy Mi of the motif but does

not meet any other copy of the motif; that is, Mj « Ei = ∆ for all j Œ I such that j π i.

In a more accessible context for designers, these conditions may be thought of as
follows:

• DP.1¢ (i) the motif is bounded, i.e. it is finite and does not continue end-
lessly in any direction.
(ii) the motif is a connected set, i.e. all parts of the motif are joined
together to form one piece only.

• DP.2¢ each motif may be contained within a tile such that no other adjacent
motif intersects that tile or its boundaries.

Figure 4.2 illustrates some discrete and non-discrete patterns and explanations
follow which discuss whether the conditions DP.1¢ and DP.2¢ hold for each
design. First though, it is important to note that the definition of a discrete

4.3

Classification of discrete patterns 133

GSP4  11/27/2000 2:44 PM  Page 133



134 Geometric symmetry in patterns and tilings

Examples of (a) and (b) discrete and (c) and (d) non-discrete patterns.Figure 4.2
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pattern is only applicable to those patterns which are known to be monomotif.
On checking the monomotif conditions for the patterns in Fig. 4.2(a), (b), (c) and
(d), it is found that:

• P.1¢ none of the motifs overlap or touch any other motif
• P.2¢ each motif is congruent to every other motif and
• P.3¢ each motif can be mapped onto any other motif by a symmetry of the

pattern.

Thus, since all three conditions hold for each example, they are all monomotif.
Each pattern may now be analysed in turn to test whether its characteristics fit the
criteria for a discrete pattern.

In both Fig. 4.2(a) and Fig. 4.2(b):

• DP.1¢ (i) each motif is finite and so bounded
• DP.1¢ (ii) each motif does consist of one piece only
• DP.2¢ the motifs are separate from each other and so, since all three condi-

tions are satisfied, the pattern is discrete.

In Fig. 4.2(c):

• DP.1¢ the motif, of which there is only one, continues endlessly and so is
not bounded, hence this pattern is not discrete.

In Fig. 4.2(d):

• DP.1¢ (i) each motif is finite and so bounded
• DP.1¢ (ii) each motif consists of more than one piece (separate flowers,

leaves and stalks), hence this pattern is not discrete.

These examples clearly illustrate that only a proportion of the group of
monomotif patterns is also discrete. This proportion of monomotif discrete pat-
terns forms the subgroup of designs which are classified later in this chapter.

4.3.1 Non-trivial discrete pattern

An additional condition imposed on the subgroup of monomotif, discrete pat-
terns is that they are also non-trivial. This simply means that there is more than
one copy of the motif in each pattern. Examples of trivial and non-trivial,
monomotif discrete patterns are given in Fig. 4.3. The following explanations
discuss whether the non-trivial condition holds for each design.

Figure 4.3(a) illustrates a finite pattern, with a d1 motif, which satisfies all the
criteria for a monomotif discrete pattern. It also has more than one copy of the
motif therefore it is non-trivial. Figure 4.3(b) shows a finite pattern with two
joined, reflectionally symmetric elements as the motif. It satisfies all the criteria
for a monomotif discrete pattern but there is only one copy of the motif, so it is
trivial. If the motif was regarded as being a single element (symmetry group d1),
with the pattern consisting of two copies of the motif, the condition of non-
triviality is not even considered because, in this case, the finite pattern is not
monomotif as condition P.1¢ is not satisfied. In Fig. 4.3(c) the finite pattern is
monomotif and discrete but, as there is only one copy of the motif, it is trivial.

Another feature of a subgroup of the group of non-trivial monomotif discrete
patterns is the characteristic of being ‘primitive’.

Primitive pattern

A pattern is described as being primitive if the only symmetry of each motif,
which coincides with one of the structures of the whole pattern, is the identity
symmetry. A motif may be symmetrical, but if none of its symmetries coincide
(by superimposition) with those of the pattern structure then it is primitive.

The following examples, in Fig. 4.4, illustrate primitive and non-primitive, dis-
crete patterns. (Note that throughout the remainder of this book, to reduce
unnecessary complication, when referring to a discrete pattern, it will be assumed
that it is also monomotif and non-trivial).
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Figure 4.4(a(i)) (which is represented schematically in Fig. 4.4a(ii)) illustrates a
ditranslational discrete pattern composed of individual motifs, each of finite
symmetry group d1. However, none of the vertical reflection axes passing
through the motifs coincide with ones in the design structure. In fact, the only
symmetries of the design structure are translational symmetries and the identity
symmetry. Hence, since there is only the identity symmetry in common with both
the pattern structure and each motif, the pattern is primitive.

Figure 4.4(b) illustrates a monotranslational pattern, symmetry group p112.
Again each motif has bilateral symmetry but since their symmetry axes do not
coincide with any symmetries in the design structure, the pattern is primitive.

Figure 4.4(c) illustrates a ditranslational discrete pattern composed of individ-
ual motifs, each of finite symmetry group c4. However, in this instance each
centre of rotation passing through a motif coincides with one in the design struc-
ture. Hence, since the identity symmetry and centres of four-fold rotational sym-
metry coincide with both the pattern structure and each motif, the pattern is
non-primitive.

The monotranslational pattern in Fig. 4.4(e) has been derived from 
the primitive pattern in Fig. 4.4(d) by joining adjacent asymmetric motifs 
(half butterflies), in other words each pair of motifs has been transformed 
to make one motif (a whole butterfly). Therefore, since in Fig. 4.4(e) reflection
axes of the design structure now pass through each motif, the pattern is 
non-primitive.

The finite patterns in Fig. 4.4(f(i), (ii) and (iii)) illustrate non-primitive, non-
primitive and primitive patterns, respectively.

Note that for symmetry groups p1a1 and p111 the only symmetries in the pat-
terns’ structures, other than the identity symmetry, are glide–reflectional and/or
translational symmetries respectively, neither of which can coincide with one
individual motif of a discrete pattern. Thus, in these two cases and the two
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Examples of (b) and (c) trivial and (a) non-trivial monomotif discrete patterns.Figure 4.3
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equivalent cases for ditranslational discrete patterns (symmetry groups p1 and
pg) the primitive condition always holds. However, as described in Chapter 3, this
does not imply that each inividual motif is necessarily asymmetric (for example
see Fig. 4.4(a)).

The previous illustrations show that although a pattern may be discrete,
it is not necessarily primitive. Only a proportion of the discrete patterns are 
primitive, which leaves the remaining non-primitive discrete patterns to be 
differentiated from each other by their ‘induced motif groups’ or ‘induced
groups’.

Induced motif groups

The induced (motif) group (or induced group) of a discrete pattern relates to the
symmetry of each motif which coincides with one or more of the symmetries in
structure of the whole pattern. It is taken to be the finite symmetry group of the
motif, the symmetries of which coincide with those of the structure. For example,
if each of the motifs of a discrete pattern fall on centres of two-fold rotation of
the pattern structure but do not intersect any reflectional axes, the motifs will
each have at least two-fold rotational symmetry and therefore, the induced group
of the discrete pattern will be c2. All primitive discrete patterns have induced
group c1 since each motif has only the identity symmetry coinciding with the
design structure. Figure 4.5 shows some examples which illustrate the concept 
of induced groups for finite, monotranslational and ditranslational discrete 
patterns.

Figure 4.5(a(i)) shows a finite discrete pattern whose symmetry group is 
d3. Each motif has no symmetries which coincide with the reflection axes of the
underlying structure. Therefore, the pattern is primitive and hence has induced
group c1. Figure 4.5(a(ii)) illustrates a finite, discrete pattern whose symmetry
group is d4. Each motif has two reflection axes but only one which coincides with
one in the underlying structure. Therefore, the induced group is d1 as this is the
symmetry group corresponding to a finite design with one reflection axis. Simi-
larly, Fig. 4.5(a(iii)) shows a finite design with symmetry group d4 and induced
group d1.

Figure 4.5(b) shows a monotranslational discrete pattern whose symmetry
group is pma2. Each motif has one reflection axis which coincides with that of the
underlying structure; therefore the induced group is d1 as this is the symmetry
group corresponding to a finite design with one reflection axis.

Figure 4.5(c) illustrates a monotranslational discrete pattern whose symmetry
group is pma2. Although each motif has two reflection axes, only their centres of
two-fold rotation coincide with ones in the underlying structure. Therefore, the
induced group is c2 as this is the symmetry group corresponding to a finite design
with two-fold rotational symmetry only.

Figure 4.5(d(i) to (vi)) illustrates six ditranslational discrete patterns whose
symmetry groups are p31m, cmm, p4g, p6m, p6m and p3m1, respectively. Their
corresponding induced groups are c3, c2, c4, d6, d2 and d3.

Figure 4.5(e) shows a ditranslational discrete pattern whose symmetry group
is p4m. Each motif has two reflection axes which coincide with ones in the under-
lying structure; therefore, the induced group is d2.

In Fig. 4.5(f) a pmm2 monotranslational discrete pattern has been constructed
from d4 motifs. Each of these motifs has a centre of two-fold rotation and two
perpendicular reflection axes which coincide with ones in the underlying struc-
ture; therefore the induced group is d2.

Figure 4.5(g) illustrates a ditranslational discrete pattern whose symmetry
group is p4m. Each motif has four reflection axes which coincide with those of
the underlying structure; therefore the induced group is d4. Further examples of
induced groups may be derived from referring back to the illustrations in Fig.
4.4(a), (b), (c), (d), (e), (f(i)), (f(ii)) and (f(iii)). These patterns have induced groups
c1, c1, c4, c1, d1, d1, d1 and c1, respectively.
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Examples of (a), (b), (d) and (f(iii)) primitive and (c), (e), (f(i)) and (f(ii)) non-primitive dis-
crete patterns.

Figure 4.4
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(cont.)Figure 4.4

GSP4  11/27/2000 2:44 PM  Page 139



140 Geometric symmetry in patterns and tilings

Examples illustrating induced motif groups of discrete patterns.Figure 4.5

GSP4  11/27/2000 2:44 PM  Page 140



Classification of discrete patterns 141

(cont.)Figure 4.5
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Motif-transitive subgroups

Each of the finite, monotranslational and ditranslational symmetry groups may
be divided into ‘pattern types’ by their induced groups. However, there are three
exceptions where these criteria do not provide sufficient information for dis-
crete pattern classification. For example, the monotranslational symmetry group
pmm2 is divided into three pattern types, two of which have the same induced
group, d1 (as shown in Fig. 4.6(a)). Similarly, the ditranslational symmetry group
p4m is divided into three pattern types, two of which have the same induced
group d1 (these are shown in Fig. 4.6(b)). Also, two of the six pattern types of
symmetry group p6 have the same induced group d1 (see Fig. 4.6(c)). Unlike the
remaining discrete pattern types, the structures and relationships between adja-
cent motifs in these patterns, with the same symmetry group and induced group,
appear to be different. To differentiate between them requires further geometrical
analysis. The mathematical theory for this process requires that a distinction be
made between their ‘motif-transitive subgroups’.

A subgroup of symmetries of a symmetry group may be thought of as a pro-
portion of the symmetries contained within the symmetry group. The proportion
may include the identity, all the symmetries or a selection of the symmetries in the
symmetry group. A subgroup of symmetries in the symmetry group is defined 
as being ‘motif transitive’ if it satisfies the following condition according to
Grünbaum and Shephard1:

Let T(P) be a subgroup of the symmetry group S(P) of a given discrete pattern P.
Then T(P) is called motif transitive if it contains isometries that map any copy Mo of
the motif of P onto any other copy Mj.

In other words, a subgroup of the symmetries in a symmetry group is motif
transitive if symmetries in it are able to map any one motif onto any of the others
in the pattern.

An alternative way of explaining this theory is to imagine generating the design
by mapping a single motif onto its equivalent positions. For example (as shown in
Fig. 4.7(a)) a pm11 monotranslational design, with induced group d1, may be gen-
erated in two different ways: either by translating a d1 motif at unit intervals in the
direction of the longitudinal axis or by continually reflecting a motif about reflec-
tion axes positioned at unit intervals, between adjacent motifs, perpendicular to
the longitudinal axis of the strip. These two sets of symmetries used to generate the
design in this way form subgroups of the symmetry group pm11 and since each can
map one motif onto the remaining ones, they are both motif transitive. In the first
instance, translational symmetry alone, besides the identity, is also used to repre-
sent the monotranslational design symmetry group p111, and second, the parallel
axes of reflectional symmetry described above represent the group pm11. Thus,
these two symmetry groups form motif-transitive subgroups of the discrete
pattern with symmetry group pm11 and induced group d1.

Similarly, one individual motif in the monotranslational discrete pattern type,
with symmetry group p1m1 and induced group d1 (Fig. 4.7(b)), may be mapped
onto the remaining ones either by translational symmetry or glide–reflectional
symmetry about an axis coinciding with the longitudinal axis of the strip.
Thus, these two symmetries form the motif-transitive subgroups p111 and p1a1,
respectively.

By analysing the geometry of the pattern type in Fig. 4.7(c), with symmetry
group pmm2 and induced group d1, it will be noticed that one motif cannot be
mapped onto the remaining ones by translational symmetry alone, therefore 
p111 is not a motif-transitive subgroup of this design. However, one motif can 
be mapped onto the remaining ones by two-fold rotational symmetries only; by
reflection about the longitudinal axis and translations; by alternating two-fold
rotations and transverse reflections; and/or by transverse and longitudinal reflec-
tional symmetries. These different sets of symmetries represent the symmetry
groups p112, pm11, pma2 and pmm2, respectively and form motif-transitive sub-
groups of this monotranslational discrete pattern.

142 Geometric symmetry in patterns and tilings
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Examples of discrete pattern types with the same symmetry groups and induced motif
groups.

Figure 4.6
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Examples illustrating the concept of motif-transitive subgroups.Figure 4.7
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By analysing the geometry of the pattern type in Fig. 4.7(d), with symmetry
group pmm2 and induced group d1, again it will be noticed that one motif cannot
be mapped onto the remaining ones by translational symmetry alone, therefore
p111 is not a motif-transitive subgroup of this design. However, one motif can be
mapped onto the remaining ones by two-fold rotational symmetries only; by
reflections about transverse axes; by alternating two-fold rotations and trans-
verse reflections. These different sets of symmetries represent the symmetry
groups p112, p1m1, and pma2, respectively and form motif-transitive subgroups
of this discrete pattern.

From the analysis of the two pattern types in Fig. 4.7(c) and (d), it is noticed
that although they have the same symmetry group and induced group, they 
have different motif-transitive subgroups which, therefore, characterises them
differently. Thus, in order to class two patterns as the same type, as described by
Grünbaum and Shephard they must have the same symmetry group, induced
group and the same set of motif-transitive subgroups.1

To generate a primitive discrete pattern, all the symmetries in the pattern
structure are required. This implies that only the whole symmetry group itself
forms a motif-transitive subgroup.

In some cases there is more than one form of a motif-transitive subgroup.
For example, Fig. 4.8(a) illustrates the 16 different motif-transitive subgroups 
of the discrete pattern with symmetry group pmm and induced group d2. Note
that there are at least two inequivalent motif-transitive subgroups of pm, p2,
pmg and cmm. For each of these motif-transitive subgroups, the number or 
fraction of motifs contained within a unit cell is different, for example for 
motif-transitive subgroup cmm, there are two, four and eight motifs contained
within a cmm unit cell. This implies that these subgroups are inequivalent 
and must be regarded as being different from each other. Where the symmetries
of the same subgroup are represented in different positions but may be super-
imposed on each other by a translation (e.g. for subgroup p2 in Fig. 4.8(b)) the
motif-transitive subgroups are considered to be equivalent and not counted 
separately.

The motif-transitive subgroups represented by an asterisk in Tables 4.2 and 4.3
(see Sections 4.8 and 4.9, respectively) indicate a subgroup equivalent to the sym-
metry group of the overall design. Again, in these cases, the motif-transitive sub-
group contains equivalent symmetries as the overall symmetry group but a unit
cell contains a larger number or fraction of motifs because not all the symmetries
of the symmetry group are included (for example see Fig. 4.7a(ii)). Where a
motif-transitive subgroup is followed by a number in parentheses, the number
indicates how many inequivalent motif-transitive subgroups there are for that
particular subgroup.

This theoretical perspective resolves the problem of distinguishing between
the three cases where symmetry groups and induced groups coincide. However,
on further analysis it is found that there are two ditranslational pattern types 
in which symmetry groups, induced groups and motif-transitive subgroups 
coincide and yet the structures and relationships between motifs still appear to be
different. The theory for distinguishing between these two pattern structures will
not be described here because there is only one possible pattern type bearing
these characteristics. The analytic differentiation between these patterns is
described in detail by Grünbaum and Shephard1 but in the context of this book
they are merely represented by pattern types Dt(P)48A and Dt(P)48B (see
Section 4.12).

Classification of finite discrete pattern types

The two finite symmetry groups may be divided into three discrete pattern types
as shown in Table 4.1. Symmetry group cn has one associated discrete pattern
type with induced group c1 (i.e. primitive) and symmetry group dn has two asso-
ciated discrete pattern types with induced groups c1 and d1, respectively. Figure

4.7
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Examples illustrating the 16 distinct motif-transitive subgroups of pattern type Dt(P)16.Figure 4.8
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Table 4.1 The three finite discrete pattern types

Motif-
transitive

Pattern type Symmetry group Induced group subgroups

F(P)1n cn c1 primitive

F(P)2n dn c1 primitive

F(P)3n dn d1 cn for all n
dn/2 for even n

Source: derived from Grünbaum B and Shephard G C, Tilings and Patterns, New York,
Freeman and Company, 1987.

Schematic illustrations of the three finite discrete pattern types. Source: derived from
Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company,
1987.

4.9 shows schematic illustrations of these pattern types and further illustrations
are given in Fig. 4.10.

4.7.1 Notation

The notation used to represent the finite discrete pattern types has been derived
from that given by Grünbaum and Shephard who denote the three types by PF1n,
PF2n and PF3n.1 However, in the context of this book, the analogous notation
F(P)1n, F(P)2n and F(P)3n is used where n represents the number of reflection
axes and/or order of rotation of the overall design structure.

The definition of a non-trivial discrete pattern, given in Section 4.3.1, states
that each pattern must have more than one motif. For F(P)1n, this implies that n

Figure 4.9
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must be greater or equal to 2 (i.e. n ≥ 2), since if n = 1 the design consists of one
asymmetric motif of symmetry group c1. For finite pattern type F(P)2n, n ≥ 1
since for the minim condition, when n = 1, there are two motifs. However if n = 1
for finite pattern type F(P)3n, there is just one motif as the one reflection axis
passes through the centre of the motif; therefore n ≥ 2.

Classification of monotranslational discrete pattern types

The seven monotranslational symmetry groups are divided into 15 discrete
pattern types. These are listed in Table 4.2 together with their symmetry groups,
induced groups and motif-transitive subgroups. Schematic illustrations of the
fifteen monotranslational pattern types and further illustrations are given in 
Figs. 4.11 and 4.12.

4.8.1 Notation

The notation used to represent these pattern types has been derived from that
given by Grünbaum and Shephard who denote the 15 monotranslational pattern
types by PS1 to PS15 (where PS stands for ‘strip pattern’). However, in this book,
the analogous notation Mt(P)1 to Mt(P)15 is used where Mt(P) stands for
‘monotranslational pattern type’.

Classification of ditranslational discrete pattern types

The 17 ditranslational symmetry groups are divided into 51 discrete pat-
tern types. These are listed in Table 4.3 together with their symmetry groups,
induced groups and motif-transitive subgroups. Schematic illustrations of the 51
ditranslational pattern types and further illustrations are given in Figs. 4.13 and
4.14.

4.9.1 Notation

The notation used to represent these pattern types has been derived from that
given by Grünbaum and Shephard who denote the 51 monotranslational pattern
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Table 4.2 The 15 monotranslational discrete pattern types

Pattern type Symmetry Induced
group group Motif-transitive subgroups

Mt(P)1 p111 c1 primitive

Mt(P)2 p1a1 c1 primitive

Mt(P)3 p1m1 c1 primitive
Mt(P)4 p1m1 d1 p111, p1a1

Mt(P)5 pm11 c1 primitive
Mt(P)6 pm11 d1 p111, *

Mt(P)7 p112 c1 primitive
Mt(P)8 p112 c2 p111, *

Mt(P)9 pma2 c1 primitive
Mt(P)10 pma2 c2 pm11
Mt(P)11 pma2 d1 p112, p1a1

Mt(P)12 pmm2 c1 primitive
Mt(P)13 pmm2 d1 p112, p1m1, pma2, *
Mt(P)14 pmm2 d1 p112, pm11, pma2(2)
Mt(P)15 pmm2 d2 p111, p112(2), p1a1, p1m1,

pm11(2), pma2(3), *

Source: derived from Grünbaum B and Shephard G C, Tilings and Patterns, New York,
Freeman and Company, 1987.

4.9

4.8
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Schematic illustrations of the 15 monotranslational discrete pattern types. Source:
derived from Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman
and Company, 1987.

Figure 4.11
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types by PP1 to PP51. Here ‘PP’ stands for ‘periodic pattern’.1 However Senechal
states that the points of a lattice are related by shifts called translations. She goes
on to say that a pattern whose symmetry includes translation is said to be
periodic.3 This suggests the inclusion of monotranslational patterns in the group
of ‘periodic patterns’ which may cause confusion if the ‘PP’ notation is adopted.
Therefore, in the context of this book, the PP1 to PP51 notation is replaced by
Dt(P)1 to Dt(P)51, where Dt(P) stands for ‘ditranslational pattern type’.

Construction of finite discrete pattern types

The techniques used to construct finite pattern types F(P)1n to F(P)3n are similar
to those described in Section 2.11 but with additional restrictions imposed on the
initial motif. In each case, the structure is based on the division of a circle into n
or 2n equal sectors depending on the symmetries in the symmetry group, as
described in Chapter 2, Section 2.11. However, in this instance the shaded area (in
the illustrations given in Fig. 4.15) represents a fundamental region or group of
fundamental regions containing the motif.

4.10.1 Finite pattern types, induced group c1

Symmetry groups cn and dn each have one associated primitive pattern type (i.e.
with induced group c1): F(P)1n and F(P)2n, respectively.

To construct F(P)1n and F(P)2n pattern types, the same rules are followed as
those described for the first methods in Sections 2.11.1 and 2.11.2, respectively.
However, the initial design unit added to a fundamental region must be made of
one piece (condition DP¢.1(ii)) and, on application of the generating symmetries,
be separate from the others (condition DP¢.2). This second condition is satisfied
by ensuring that the initial design unit only touches the boundary of the funda-
mental region which coincides with the circumference of the circle and not those
radiating from the circle centre. After applying the generating symmetries to map
this design unit to all equivalent positions in the design, the boundaries of the
fundamental regions are removed to give F(P)1n and F(P)2n pattern types. Exam-
ples are given for n = 8 and n = 4 in Fig. 4.15(a) and (b), respectively.

4.10.2 Finite pattern types, induced group d1

Symmetry group dn is the only finite symmetry group with an associated pattern
type having induced group d1. To construct this finite pattern type, F(P)3n, a dn
motif (made of one piece) is placed in two sectors of a circle, divided into 2n
equal sectors, such that one of its reflection axes bisects the two sectors. The motif
must not touch the circle centre or any other boundary of this ‘double sector’
except the portion on the circle circumference. As described in Section 4.6, a dis-
crete pattern may be generated by applying a motif-transitive subgroup of sym-
metries, of the symmetry group, to a motif. An F(P)3n pattern has motif-transitive
subgroups cn, if n is odd, and cn and dn/2, if n is even (see Table 4.1), that is, if n is
odd, n-fold rotational symmetry may be applied to the dn motif about the circle
centre to complete the design. If n is even, the same rotation may be applied or
reflectional symmetry about axes coinciding with sector boundaries, unoccupied
by the initial motif, and intersecting at angles of 360°/n at the circle centre. The
sector boundaries, dividing the circle into fundamental regions, are then removed
to give an F(P)3n discrete pattern as shown in Fig. 4.15(c) for n = 4.

Construction of monotranslational discrete pattern types

The construction of monotranslational pattern types Mt(P)1 to Mt(P)15 employs
similar techniques to those discussed in Section 2.12. The structure of each pattern
type is based on the division of a strip into fundamental regions as described in
Chapter 2 (design type (iii)). As described previously, the initial design unit added
to a fundamental region must have no symmetries in common with the strip. The
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Further illustrations of monotranslational discrete pattern types.Figure 4.12
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Table 4.3 The 51 ditranslational discrete pattern types

Pattern type Symmetry group Induced group Motif-transitive subgroups

Dt(P)1 p1 c1 primitive

Dt(P)2 pg c1 primitive

Dt(P)3 pm c1 primitive
Dt(P)4 pm d1 p1, pg, cm, *

Dt(P)5 cm c1 primitive
Dt(P)6 cm d1 p1, pg

Dt(P)7 p2 c1 primitive
Dt(P)8 p2 c2 p1, *

Dt(P)9 pgg c1 primitive
Dt(P)10 pgg c2 pg

Dt(P)11 pmg c1 primitive
Dt(P)12 pmg c2 pg, pm, pgg, *
Dt(P)13 pmg d1 pg, p2, pgg

Dt(P)14 pmm c1 primitive
Dt(P)15 pmm d1 pm, p2, pmg(2), cmm
Dt(P)16 pmm d2 p1, pg, pm(2), cm, p2(3), pgg, pmg(2), cmm(3),

*(2)

Dt(P)17 cmm c1 primitive
Dt(P)18 cmm c2 cm, pgg, pmm
Dt(P)19 cmm d1 cm, p2, pgg, pmg
Dt(P)20 cmm d2 p1, pg, cm, p2(2), pgg(2), pmg

Dt(P)21 p3 c1 primitive
Dt(P)22 p3 c3 p1, *

Dt(P)23 p31m c1 primitive
Dt(P)24 p31m c3 cm, p3m1
Dt(P)25 p31m d1 p3
Dt(P)26 p31m d3 p1, pg, cm, p3(2)

Dt(P)27 p3m1 c1 primitive
Dt(P)28 p3m1 d1 p3
Dt(P)29 p3m1 d3 p1, pg, cm, p3(2), p31m

Dt(P)30 p4 c1 primitive
Dt(P)31 p4 c2 *
Dt(P)32 p4 c4 p1, p2(3), *(2)

Dt(P)33 p4g c1 primitive
Dt(P)34 p4g c4 pg, cm, pgg(2), pmm, cmm
Dt(P)35 p4g d1 pgg, p4
Dt(P)36 p4g d2 pg, pgg, p4(2)

Dt(P)37 p4m c1 primitive
Dt(P)38 p4m d1 cmm, p4, p4g, *
Dt(P)39 p4m d1 pmm, p4, p4g
Dt(P)40 p4m d2 cm, pgg, pmm, cmm, p4(2), p4g(2), *
Dt(P)41 p4m d4 p1, pg(2), pm(2), cm(2), p2(3), pgg(3), pmg(3),

pmm(3), cmm(4), p4(3), p4g(3), *(2)

Dt(P)42 p6 c1 primitive
Dt(P)43 p6 c2 p3
Dt(P)44 p6 c3 p2, *
Dt(P)45 p6 c6 p1, p2(2), p3(2)

Dt(P)46 p6m c1 primitive
Dt(P)47 p6m d1 p3m1, p6
Dt(P)48 p6m d1 p31m, p6
Dt(P)49 p6m d2 p3, p31m, p3m1, p6
Dt(P)50 p6m d3 cm, pgg, pmg, cmm, p2, p31m, p3m1, p6(2)
Dt(P)51 p6m d6 p1, pg(2), cm(2), p2(2), pgg(3), pmg(2), cmm,

p3(2), p31m(2), p3m1, p6

Source: derived from Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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simplest way of illustrating this condition is to use an asymmetric design unit
although, as described in Chapter 3, this is not the only possibility. In each case
fundamental region boundaries are used as a guide for incorporating the design
units. They are not included in the overall design and must be removed after the
initial motif has been mapped to all its equivalent positions in the strip. Again, in
the illustrations in Fig. 4.16, each shaded area represents a fundamental region or
group of fundamental regions containing the motif.

Only a limited number of illustrations are given showing the construction of
monotranslational discrete pattern types since they may be derived simply by fol-
lowing the construction techniques discussed in Chapter 2 together with the addi-
tional criteria given above.

4.11.1 Monotranslational pattern types, induced group c1

Each of the seven symmetry groups of monotranslational designs has one associ-
ated primitive discrete pattern type. These are constructed by dividing a strip into
fundamental regions of the required symmetry group. A design unit, with no
symmetries in common with the strip, is then added to one region such that the
only point at which it meets a boundary is at the exterior straight edge(s) of
the strip. It is then mapped onto all the remaining regions, by applying the sym-
metries of the design structure, to complete the pattern type. Figure 4.16(a)
shows an example of this construction for pattern type Mt(P)2 (symmetry 
group p1a1).

4.11.2 Monotranslational pattern types, induced group c2

Symmetry groups p112 and pma2 each have one associated discrete pattern type
with induced group c2. To construct these types of design, a strip is divided into
appropriately shaped fundamental regions. A cn motif (where n is even) is added
to the strip such that it is contained within two fundamental regions and its centre
of rotation coincides with one featured in the design structure. It only intersects
the edges of the fundamental regions which join at the centre of rotation and it
also touches the edges of the fundamental regions which coincide with the edges
of the strip. To map this motif to all its equivalent positions, a motif-transitive
subgroup of pattern type Mt(P)8 or Mt(P)10 may be applied to complete each of
the pattern types, respectively. Figure 4.16(b) shows an example for the construc-
tion of pattern type Mt(P)8, symmetry group p112.

4.11.3 Monotranslational pattern types, induced group d1

Symmetry groups p1m1, pm11 and pma2 each have one associated discrete
pattern type with induced group d1, and pmm2 has two. Again, for each symme-
try group, a strip is divided into fundamental regions and the symmetries of the
group may be incorporated into the design structure. A dn motif (where n is odd)
is added to the strip such that it falls into two fundamental regions and one of its
reflection axes coincides with one featured in the monotranslational design struc-
ture. It does not intersect any boundaries of the two fundamental regions other
than the one which bisects it and the ones which coincide with the boundaries of
the strip. In the case of pmm2, there are two possibilities for the position of the
motif for these characteristics to be satisfied. A motif-transitive subgroup of the
required pattern type is applied to complete the Mt(P)4, Mt(P)6, Mt(P)11,
Mt(P)13 or Mt(P)14 monotranslational design. An example is given in Fig.
4.16(c), for pattern type Mt(P)11, symmetry group pma2.

4.11.4 Monotranslational pattern types, induced group d2

Group pmm2 is the only monotranslational symmetry group with an associated
pattern type having induced group d2. A strip is divided into fundamental regions
and the symmetries of pmm2 may be incorporated into its structure. A dn motif
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Schematic illustrations of the 51 ditranslational discrete pattern types. Source: derived
from Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and
Company, 1987.

Figure 4.13
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(where n is even) is added to the strip such that it falls into four fundamental
regions and two of its perpendicular reflection axes coincide with ones featured in
the monotranslational design structure. It does not intersect any fundamental
region boundaries other than the ones which meet at its centre of rotation and the
edges which coincide with the boundaries of the strip. A motif-transitive sub-
group of Mt(P)15 is applied to complete the monotranslational design. An
example is given in Fig. 4.16(d).

Construction of ditranslational discrete pattern types

The construction of ditranslational pattern types Dt(P)1 to Dt(P)51 follows
similar techniques to those discussed in Section 2.13. Again, in each case, the
boundaries of the fundamental regions are used as a guide for incorporating the
design units. They are not included in the overall design and must be removed
after the initial motif has been mapped to all its equivalent positions in the strip.
The motif is incorporated in one, two, three, four or six fundamental regions for
cyclic induced groups c1, c2, c3, c4 or c6 and two, four, six, eight or twelve funda-
mental regions for induced dihedral groups d1, d2, d3, d4 or d6, respectively. In
each case, the cn (n ≥ 2) or dn motif only intersects the boundaries of the funda-
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mental regions which meet at the centre of the group of fundamental regions.
The motif does not join, at any point, the boundary enclosing the group of fun-
damental regions containing the motif (except when fundamental region bound-
aries meet at a centre of rotation). Thus, when constructing ditranslational
pattern types by methods described in Chapter 2 (i.e. by placing strips of width W
next to each other) the initial design unit must not touch the edges of the strip.
For some non-primitive pattern types it is not always possible to construct the
same strip of fundamental regions described for the associated symmetry groups
in Chapter 2 without splitting the motifs. In these cases, it is more suitable to con-
struct a strip or double strip of whole motifs before consecutively applying the
translations T2 or T3, respectively. These situations may be observed in the illus-
trations in the following sections.

As described previously, the design unit added to the fundamental region must
have no symmetries in common with the design structure. For simplicity, this con-
dition is most easily satisfied by ensuring that the design unit is asymmetric, as in
the schematic illustrations in Fig. 4.13. As described in Chapter 3, additional
symmetries are possible as characteristics of the design unit. However, to take all
the values of N (in connection with the order of symmetry of the design unit) and
induced symmetries into consideration for each pattern type would add further
complication. Hence for simplicity, in the following construction methods the
symmetry of design unit is taken to be asymmetric and consequently the induced
group is the same symmetry group as that of the motif.

Only a limited number of illustrations are given showing the construction of
ditranslational discrete pattern types because they may be derived simply by fol-
lowing the construction techniques discussed in Chapter 2 together with the addi-
tional criteria given above. In the first illustration in each of the Figs. 4.17 to 4.26
the dark shaded area represents a fundamental region or group of fundamental
regions containing the motif and the light shaded area represents an appropriate
strip to which translations T2 or T3 may be applied.

4.12.1 Ditranslational pattern types, induced group c1

Each of the 17 symmetry groups of ditranslational design has one associated
primitive discrete pattern type. These are derived by following exactly the same
construction methods as those described for each symmetry group in Section
2.13 design types (ii) and (v) with the only difference being that the design unit
consists of one piece and must not touch any fundamental region boundaries. An
example is given for Dt(P)2, symmetry group pg, in Fig. 4.17.

4.12.2 Ditranslational pattern types, induced group c2

Symmetry groups p2, pgg, pmg, cmm, p4 and p6 each have one associated discrete
pattern type with induced group c2. To construct these types of design, similar
methods to those described for design types (ii) or (v) in Chapter 2 are followed
but instead of the initial design unit being a c1 motif added to one fundamental
region, a c2 motif is added to two fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure.
The motif must not touch any other edges of the fundamental regions other than
the ones joining at the point of its centre of two-fold rotation. Although the motif
may touch these edges which join at this point, it must not meet any other adja-
cent centres of rotation. This motif is mapped to all its equivalent positions, by
methods described previously, to complete the discrete pattern type with induced
group c2. Examples are given in Fig. 4.18 for pattern types Dt(P)31 (symmetry
group p4) and Dt(P)8 (symmetry group p2). In the first example, the strip of
translation units (derived from Fig. 2.42(iii)) has been altered to accommodate
the c2 motifs. In the second example the lattice strucure is not rectangular and so
the strip would have to be modified if it was used as the initial band for flat screen
printing.
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Further illustrations of ditranslational discrete pattern types.Figure 4.14
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4.12.3 Ditranslational pattern types, induced group c3

Symmetry groups p3, p31m and p6 each have one associated discrete pattern type
with induced group c3. To construct these types of design, similar methods are
followed to those described in Chapter 2 for design types (ii) and (v). However,
instead of the initial design unit being a c1 motif added to one fundamental
region, a c3 motif is added to three fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure
and it must not touch any other boundaries of the fundamental regions other
than the three edges joined to the centre of three-fold rotation. This motif is
mapped to all its equivalent positions, by methods described previously, to com-
plete the discrete pattern type with induced group c3. An example is given for
Dt(P)22, symmetry group p3, in Fig. 4.19.

4.12.4 Ditranslational pattern types, induced group c4

Symmetry groups p4 and p4g each have one associated discrete pattern type with
induced group c4. The initial c4 motif is added to four fundamental regions. Its
centre of rotation must coincide with one featured in the initial monotransla-
tional design structure and it must not touch any other boundaries of the funda-
mental regions other than the four edges joined to the centre of four-fold
rotation. This motif is mapped to all its equivalent positions, by methods
described previously, to complete the discrete pattern type with induced group c4.
Examples are given for discrete pattern types Dt(P)32 and Dt(P)34 (symmetry
groups p4 and p4g, respectively) in Fig. 4.20.

4.12.5 Ditranslational pattern types, induced group c6

Symmetry group p6 has one associated discrete pattern type with induced group
c6. The initial c6 motif is added to six fundamental regions. Its centre of rotation
must coincide with one featured in the initial monotranslational design structure
and it must not touch any other boundaries of the fundamental regions other
than the six edges joined to the centre of six-fold rotation. This motif is mapped
to all its equivalent positions, by methods described previously, to complete the
discrete pattern type with induced group c6. An example is given for Dt(P)45,
symmetry group p6, in Fig. 4.21.

Construction of finite pattern types (a) F(P)1n, (b) F(P)2n and (c) F(P)3n.Figure 4.15
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Construction of monotranslational pattern types.Figure 4.16
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Construction of ditranslational pattern types, induced group c2.Figure 4.18

Construction of ditranslational pattern types, induced group c1.Figure 4.17
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Construction of ditranslational pattern types, induced group c3.

Construction of ditranslational pattern types, induced group c4.

Figure 4.19

Figure 4.20
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4.12.6 Ditranslational pattern types, induced group d1

Symmetry groups pm, cm, pmg, pmm, cmm, p31m, p3m1, p4g each have one asso-
ciated discrete pattern type with induced group d1 and p4m and p6m each have
two. The initial d1 motif is added to two fundamental regions. Its reflection axis
must coincide with one featured in the initial monotranslational design structure.
The motif must not touch any other boundaries of the fundamental regions
other than the one edge bisecting it. This motif is mapped to all its equivalent
positions to complete the discrete pattern type with induced group d1. In the case
of p4m and p6m designs there are two inequivalent discrete patterns with induced
group d1. To construct the two different types of p4m pattern either the initial
motif is placed with its reflection axis perpendicular to a side of the unit cell or its
reflection is placed such that it coincides with a diagonal of the unit cell. These
two cases are illustrated in the second and third examples of Figure 4.22, respec-
tively. Similarly, the two cases of pattern type p6m, with induced group d1, are
produced by placing the reflection axis of the initial motif either parallel to or at
30° to a side of a unit cell. An illustration for the construction of Dt(P)6 (symme-
try group cm) is given in the first example of Fig. 4.22.

4.12.7 Ditranslational pattern types, induced group d2

Symmetry groups pmm, cmm, p4g, p4m and p6m each have one associated dis-
crete pattern type with induced group d2. The initial d2 motif is added to four
fundamental regions. Its reflection axes must coincide with ones featured in the
initial monotranslational design structure. The motif must not touch any other
boundaries of the fundamental regions other than the ones, joined to the point of
two-fold rotation, through its centre. This motif is mapped to all its equivalent
positions to complete the discrete pattern type with induced group d2. Examples
are given for Dt(P)20 and Dt(P)40 (symmetry groups cmm and p4m, respectively)
in Fig. 4.23.

4.12.8 Ditranslational pattern types, induced group d3

Symmetry groups p31m, p3m1 and p6m each have one associated discrete pattern
type with induced group d3. The initial d3 motif is added to six fundamental
regions. Its reflection axes must coincide with ones featured in the initial mono-
translational design structure. The motif must not touch any other boundaries of
the fundamental regions other than the ones, joined to the point of three-fold
rotation, through its centre. This motif is mapped to all its equivalent positions to
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Construction of ditranslational pattern types, induced group c6.Figure 4.21
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Construction of ditranslational pattern types, induced group d1.Figure 4.22
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Construction of ditranslational pattern types, induced group d2.Figure 4.23

complete the discrete pattern type with induced group d3. An example is given for
Dt(P)29, symmetry group p3m1, in Fig. 4.24.

4.12.9 Ditranslational pattern types, induced group d4

Symmetry group p4m has one associated discrete pattern type with induced
group d4. The initial d4 motif is added to eight fundamental regions. Its reflection
axes must coincide with ones featured in the initial monotranslational design
structure. The motif must not touch any other boundaries of the fundamental
regions other than the ones, joined to the point of four-fold rotation, through its
centre. This motif is mapped to all its equivalent positions to complete the dis-
crete pattern type with induced group d4. An example is given for Dt(P)41, sym-
metry group p4m, in Fig. 4.25.

4.12.10 Ditranslational pattern types, induced group d6

Symmetry group p6m has one associated discrete pattern type with induced group
d6. The inital d6 motif is added to twelve fundamental regions. Its reflection axes
must coincide with ones featured in the initial monotranslational design structure.
The motif must not touch any other boundaries of the fundamental regions other
than the ones, joined to the point of six-fold rotation, through its centre. This motif
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Construction of ditranslational pattern types, induced group d3.Figure 4.24

Construction of ditranslational pattern types, induced group d4.

Construction of ditranslational pattern types, induced group d6.

Figure 4.25

Figure 4.26

GSP4  11/27/2000 2:46 PM  Page 169



is mapped to all its equivalent positions to complete the discrete pattern type 
with induced group d6. An example is given for Dt(P)51, symmetry group p6m, in
Fig. 4.26.

Summary

This chapter builds on the concepts and perspectives used by Grünbaum and
Shephard in their classification of discrete patterns.1 The characteristics of dis-
crete patterns and principles involved in categorising these types of designs are
discussed in detail. The classification and construction of the three finite, 15
monotranslational and 51 ditranslational discrete pattern types have been
described and illustrated with numerous examples.

The designs constructed from this classification system may have a more dis-
jointed appearance owing to the requirement for a discrete pattern to be com-
posed of motifs which are separate from each other. In some of the examples
given in the construction of discrete patterns, although the motifs are ‘pairwise
disjoint’ (see Section 4.2) it is sometimes difficult to visualise a motif as being able
to be contained within a tile without this tile overlapping an adjacent motif (as
stated in DP.2 for a discrete pattern, Section 4.3). Because, in some cases, the
motifs are very close together and the scale of the patterns is small in order to
exhibit a sufficient proportion of repeat, the motifs appear to be touching each
other. This may contravene the precise mathematical definition given for a dis-
crete pattern. However, with regard to the classification and construction of dis-
crete patterns in the context of creative surface-pattern design, the less formal
definitions given after the formal statements provide sufficient regulation.

As a consequence of the distinctive ‘separation’ characteristic of the motifs of
a discrete pattern it is possible to construct a type of patterned tiling by incorpo-
rating a tiling in between, or surrounding, the motifs. A similar type of design
was mentioned in Chapter 2 (as shown in the construction of design type (iv))
where the edges of the tiles corresponded to the boundaries of the fundamental
regions. In this instance the design units were permitted to touch the boundaries
of the tiles. Conversely, a tiling design may be derived from a discrete pattern, as
described above, such that each motif is contained within one tile and the bound-
aries of the tiles do not touch the motifs. For ditranslational designs, the tiling
may be thought of as a covering of the plane with tiles having shapes correspond-
ing to the dark shaded areas given in the previous construction techniques for
ditranslational designs (Section 4.12). However, in some of these examples the
dark regions could not be regarded as tiles because each is divided into portions
which meet at a point (e.g. see the first example Figure 4.18). Nevertheless, there
are numerous other ways of dividing a plane into fundamental regions or sur-
rounding a pattern by tiles, other than those discussed in Chapter 2. One particu-
lar type of tiling design which relates to a specific method of enclosing a discrete
pattern is referred to as an isohedral tiling. The analysis, classification and con-
struction of these types of tiling design are discussed in detail in Chapter 5.
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