
Introduction

The concepts involved in classifying discrete patterns described in the previous
chapter may be adapted and developed to form a classification system for tilings.
So far, as discussed in Chapter 2, both pattern and tiling structures have been
analysed in the same way and subsequently divided into symmetry groups. Fol-
lowing this, in Chapters 3 and 4 greater attention was paid to the finer detail of
the symmetrical properties of the motifs. The tiling designs and classification
system discussed in this chapter are closely related to the discrete patterns in
Chapter 4. For example, because the motifs in a discrete pattern are separate from
each other, a tiling design may be incorporated around them to form a patterned
tiling. By doing this in a particular way (described in Section 5.3) a special form
of tiling is produced which is referred to as a ‘Dirichlet tiling’ or ‘Dirichlet
domain’. The discrete pattern may be removed from the design and then the
structure of the remaining tiling may be analysed and classified as a particular
class of ‘isohedral’ tiling. (Dirichlet domains/tilings were named after the mathe-
matician Peter Gustav Lejeune Dirichlet.1 They are also referred to as ‘Voronoi
cells’ or ‘Voronoi regions’, ‘Brillouin zones’ or ‘Wigner-Seitz cells’2 and also
‘domain of influence’ or ‘plesiohedron’1.)

In connection with ditranslational designs, since there are 51 different discrete
pattern types, it would be assumed that each of these may be enclosed within one
Dirichlet tiling, implying that there are 51 different ditranslational isohedral
tiling types. However, this is not the case. The motifs in a discrete pattern type
may be surrounded by more than one form of isohedral tiling and conversely, an
isohedral tiling may form a Dirichlet domain for more than one type of discrete
pattern. For finite and monotranslational discrete patterns, an associated Dirich-
let tiling would be unbounded (i.e. each tile would extend infinitely) thus not sat-
isfying the conditions of a ‘normal’ tiling (see Section 5.2.1). Consequently, in the
following discussions, restrictions will be imposed on the extremities of the tiles
for these types of design.

With reference to finite and monotranslational tilings, as stated in Chapter 2
(Sections 2.7.5 and 2.7.6), it may be difficult to categorise a design as either a
pattern or tiling. A tiling is usually thought of as a type of design made up of
shapes that interlock or neatly join to each other, leaving no gaps, and which
covers an entire plane. However, in the context of this book (where finite and
monotranslational tilings are considered), an appropriate definition for a tiling T
is given by Lenart as a set of m-dimensional entities, called tiles, T = {t1, t2 . . .}
that covers an area of an m-dimensional space without gaps or overlaps. This
area can be the entire space.3 In the context of surface design, the ‘space’ to be
covered is two-dimensional, that is m = 2, as the design will initially be covering 
a flat surface. If the decorated area covers the entire space (with translational
symmetry in at least two non-parallel directions) then the resulting design 
will be referred to as a ditranslational tiling design. If the area is enclosed within 
a strip (with translational symmetry in one direction) then it becomes a mono-
translational tiling design. If it is enclosed within a circle (with no translational
symmetry) it will be referred to as a finite tiling design.

This definition appears to be straightforward but ambiguities may still arise at
limiting cases. For example, each tile has a boundary and when placed next to
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each other these boundaries form lines which, depending on their thickness, may
be regarded as merely a source for division of the plane or, when thicker, as a
background for a pattern. Similarly, designs with many different shaped and/or
complicated tiles may appear more pattern-like than tiling-like and, for example,
some two-coloured designs may either be regarded as a two-coloured tiling or as
a black pattern on a white background or vice versa. Additionally, for finite and
monotranslational tiling designs, their outside boundaries may veer towards
their centres or longitudinal axes, respectively, thus making it difficult to deter-
mine whether it is a pattern or tiling design (see Fig. 5.1).

There is often a grey area within which pattern and tilings may coexist, and it is
difficult (particularly in the context of finite and monotranslational tiling
designs) to arrive at a precise definition which is appropriate in every context.
Consequently, to avoid any ambiguities, the illustrative examples presented in
this chapter have obvious tiling characteristics.

Compared to the classification of finite and monotranslational tilings, the
classification of ditranslational isohedral tilings is more complicated, and
requires further geometrical parameters such as the topology and the relation-
ships between the edges and adjacent tiles to be taken into account. Considering
topological variation, in comparison to the limited variety discussed in Chapter 2
(as described in Section 2.13 and illustrated in Fig. 2.31), provides further scope
for the interlocking nature of fundamental regions and consequently allows
greater freedom in design construction. Thus through these tiling designs a wide
variety of patterned tilings and interlocking patterns may be produced by a
similar method to one of those described for design types (iv) and (v) in Chapter
2. Although the classification and construction methods discussed in this chapter
are, in general, illustrated with tiles and motifs which have very formal and rigid
graphic qualities these are merely to present a clear insight into design structure
upon which surface-pattern designers may build or use as a basis for more free-
flowing creative designs.

Isohedral tiling

The classification system in this chapter is only applicable to a particular range 
of tilings which have the characteristics of being ‘normal’, ‘monohedral’ and 
‘isohedral’.

5.2.1 Normal tiling

Grünbaum and Shephard4 define a tiling T as ‘normal’ if it satisfies the condi-
tions N.1, N.2 and N.3 below:

N.1 Every tile of T is a topological disk. . .
N.2 The intersection of every two tiles of T is a connected set, that is, it does not

consist of two (or more) distinct and disjoint parts . . .
N.3 The tiles of T are uniformly bounded.

These conditions N.1 to N.3 may be thought of as follows:

• N.1¢ Every tile has a boundary edge which joins up with itself and has no
breaks in it.

• N.2¢ If one tile is adjacent to another, they have line segment(s) in common
in the form of one edge only.

• N.3¢ A tile is uniformly bounded if it is small enough to have a circle 
drawn round it and yet large enough to have a circle drawn inside it,
i.e. this condition prevents tiles being either too long or too thin.
The exact, permissible conditions are hard to define but the dimen-
sions of each tile, in this context, will be taken to be of ‘sensible’
proportions.

Examples of tilings which do not satisfy these characteristics, N.1¢, N.2¢ and N.3¢,
are given in Figure 5.2(a), (b) and (c), respectively.

5.2
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Figure 5.1
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Figure 5.2
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A monohedral tiling has a similar description to that of condition P.2¢ of a
monomotif pattern in Section 4.2 in that one tile is congruent to all the others,
that is, all the tiles are the same size and shape. An isohedral tiling, which is a
special form of monohedral tiling, is formally defined by Grünbaum and Shep-
hard4 as follows:

Two tiles T1, T2 of a tiling T are said to be equivalent if the symmetry group S(T) con-
tains a transformation that maps T1 onto T2; the collection of all tiles of T that are
equivalent to T1 is called the transitivity class of T1. If all tiles of T form one transitiv-
ity class we say that T is tile transitive or isohedral.

This definition is comparable to condition P.3¢ of a monomotif pattern, that is,
if each tile can be mapped onto any other tile by a symmetry of the tiling then the
tiling is isohedral. Lenart defines an isohedral tiling more simply by saying that a
monohedral tiling T is called isohedral if, given two tiles ti and tj, there is a symme-
try transformation of the entire tiling which maps ti onto tj.

3

Again, the simplest way to assess whether a translational tiling is isohedral is
to look at a translation unit. If, inside one translation unit, each tile can be
mapped onto any other by an isometry of the tiling, then by subsequent unit
translations, any tile can be mapped onto any other in the whole tiling. Illustra-
tions of monohedral tilings, which are either isohedral or non-isohedral, are
given in Fig. 5.3 with finer details of their characteristics shown in Fig. 5.4.

Figure 5.4(a(i)) shows the incorporation of the group diagram into the first
design (Fig. 5.3(a)) displaying the symmetries present in its structure. Figure
5.4(a(ii)) illustrates one way of dividing the design into translation units. By
analysing the tiles and symmetries which occur in just one translation unit – (Fig.
5.4a(iii)) – note that one tile, for example T1, can be mapped onto the other, T2,
by either horizontal or vertical glide–reflectional symmetry. This implies that,
since tile T1 may be mapped onto the other tile in the translation unit, it is possi-
ble to map it onto any other tile in the remainder of the tiling by applying
glide–reflectional and translational symmetries. Hence, the tiling is isohedral.

Similarly, Fig. 5.4(b(i)), (b(ii)) and (b(iii)) represents equivalent characteristics
for the tiling in Fig. 5.3(b). In this example, each translation unit contains four
tiles: T1, T2, T3 and T4. Tile T1 may be mapped onto tile T2 by two-fold rota-
tional symmetry about a centre of rotation half way along one edge. It may be
mapped onto tile T3 by vertical glide–reflectional symmetry and T4 by horizontal
glide–reflectional symmetry. Therefore, since T1 may be mapped onto each of the
other tiles in the translation unit, it is possible to map it onto any other tile in the
whole tiling and consequently the tiling in Fig. 5.3(b) is isohedral.

Figure 5.4(c) represents equivalent characteristics for the tiling in Fig. 5.3(c).
Each translation unit contains six tiles: T1 to T6. Tile T1 may be mapped onto T3
by two-fold rotational symmetry; onto T4 by vertical glide–reflectional symme-
try; and onto T6 by horizontal glide–reflectional symmetry. However, there is no
symmetry in the tiling which will allow tile T1 to be mapped onto either T2 or T4.
Therefore the tiling in Fig. 5.3(c) is non-isohedral.

Although a finite tiling design does obviously not have translational symme-
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try, it may be analysed in a similar way to determine whether it is isohedral. Pro-
vided that any tile in the design can be mapped onto every other one then the
tiling is isohedral.

5.2.2 k-isohedral

A tiling may be non-isohedral but if T is a tiling with precisely k transitivity
classes then T is called k-isohedral.4

In the previous example, illustrated in Fig. 5.4(c), tiles T1, T3, T4 and T6 are in
equivalent positions since each one can be mapped onto any of the others in this
set of tiles. Thus, if one of these tiles was labelled A, and then copies of this letter
were mapped to all equivalent positions in the tiling, then four out of six of all the
tiles would be labelled A. If one of the remaining unlabelled tiles in the transla-
tion unit was labelled B and then mapped onto all the other possible equivalent
positions, first in the translation unit and then in the remainder of the tiling, then
all the other tiles would be labelled B. Hence, each of the tiles would have had a
tile mapped onto itself (since none of them would be left unlabelled). Conse-
quently, the tiles would have been divided into two sets: those labelled A and
those labelled B, in other words there are two sets of tiles (two transitivity classes)

Figure 5.4
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in this tiling: those equivalent to the position of tile T1 and those equivalent to
the position of tile T2. Therefore the tiling in Fig. 5.3(c) is two-isohedral.

Grünbaum and Shephard4 state that generally if the tiles of a tiling are of n
different shapes then there will be at least n transitivity classes. They go on to say
that in the case of a tiling which is not symmetric, every tile is a transitivity class
on its own. For example, if a tiling consists of, say, two different shaped tiles, there
will be at least two transitivity classes, that is, it will be at least two-isohedral
since, obviously, only tiles of the same size and shape could possibly be mapped
onto each other. The tiling in Fig. 5.5(a) is composed of square and rectangular
tiles. In this case, all the squares form one transitivity class and the rectangles
form another; hence this tiling is two-isohedral.

If a tiling is not symmetric, the only symmetry it possesses is the identity sym-
metry (e.g. see the tiling in Fig. 5.5b). No tile can be mapped onto any other even
if they are congruent. Thus each of the n tiles has to be put in a different set
forming n different transitivity classes, that is an n-isohedral tiling.

However, since the classification system used in this chapter only deals with
tilings which are isohedral and hence monohedral, situations where tilings have
characteristics such as those illustrated in Fig. 5.5 do not arise.

5.2.3 Induced tile groups

An additional distinguishing feature of an isohedral tiling is its ‘induced tile
group’. This is analogous to the induced motif group of a discrete pattern type.
For an isohedral tiling, the induced (tile) group or induced group is taken to be
the finite symmetry group of the tile whose symmetries coincide with that of the
design structure. For example, the isohedral tilings in Fig. 5.6(a), (b), (c) and (d)
have induced groups c1, d2, d1 and d1, respectively.

In some cases, there may be more than one possibility for the positioning of
reflection axes of an induced group. This can only occur when each tile has an
even number of edges. Adopting the notation given by Grünbaum and Shephard,
d1(l) and d1(s) for instance, are used to denote the different positions of reflection
axes of induced group d1.4 Here the ‘(l)’ stands for ‘long’ and indicates that the
reflection axis of the induced group passes through opposite vertices of a tile. ‘(s)’
stands for ‘short’ and indicates that the reflection axis of the induced group
passes through opposite edges (sides) of a tile (see Fig. 5.6(c) and (d)). (The basic
features of tilings are discussed in detail in Section 5.3.) A similar analogy is used
to differentiate between the positioning of reflection axes for tilings with induced
groups d2 and d3. The only exception is tiling Dt(T)35 where the induced tile
group d1(s) represents a reflection axis coinciding with the short bisector as
opposed to the long bisector of each tile.

As mentioned in the introduction Section 5.1, isohedral tiling classification is

Figure 5.5
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closely related to the classification of discrete patterns. As stated by Grünbaum
and Shephard ‘To every discrete periodic pattern P corresponds an isohedral
tiling D(P) . . .’.4 Here, ‘periodic pattern’ is analogous to a regularly repeating
ditranslational pattern and the corresponding tiling, ‘D(P)’, is an isohedral
‘Dirichlet’ tiling. In a similar way, in subsequent discussions and illustrations in
this chapter, this analogy has been applied and adapted to incorporate the analy-
sis and classification of monotranslational and finite tilings.

Dirichlet tiling

Grünbaum and Shephard4 formally define a Dirichlet tiling as follows:

Let F = {Fi | (i Œ I} be any non-empty family of pair-wise disjoint sets in the plane;
with each Fi we associate a tile T(Fi) consisting of all the points P of the plane for
which the distance from P to Fi is less than or equal to the distance from P to each Fj
with j π i. Then {T(Fi) | i Œ I} is a tiling called the Dirichlet tiling associated with F,
which we denote by D(F).

Alternatively, the theory of Dirichlet domains is explained by Kappraff with ref-
erence to schools and the districts to which they are allocated. He explains this by

Figure 5.6
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saying that each point of a school district is nearer to the school in that district
than to any other school (see Fig. 5.7).5 In this context, each school district repre-
sents a tile and each school represents a motif. In connection with isohedral
tilings, when such a tiling is placed over a discrete pattern, if every point within a
tile is closer to the motif contained within it than any other motif in the pattern,
then the tiling is a Dirichlet tiling for that pattern type. Notice that in the example
in Fig. 5.7 the extremities of the outside districts are unbounded. Similarly for
finite and monotranslational pattern types the associated Dirichlet tilings would,
strictly speaking, be unbounded. However, in this book adaptations will be made
to form more practical solutions by insisting on bounded tiles for these classes of
tilings.

Figure 5.8 shows some examples of discrete patterns, their enclosure within
Dirichlet tilings and the resulting associated isohedral tilings.

An isohedral Dirichlet tiling achieves a sense of ‘fitting’ with the discrete
pattern enclosed within it. This does not necessarily imply that both the tiling and
pattern have the same symmetry group. However, if they do, the Dirichlet tiling
may still not be unique. For example, the discrete pattern in Fig. 5.9(a) may be
associated with both the isohedral tilings in Fig. 5.9(b) and (c) by the Dirichlet
relationship. Yet, these tilings appear, conceptually, to be very different despite
the pattern and both tilings having the same symmetry group and induced group.
This is due to the interlocking and joining relationship of adjacent tiles, the struc-
ture of which is described by the topology of the tiling.

Before introducing elements of topology, the following descriptions and dia-
grams (in Fig. 5.10) illustrate the main concepts and terminology used to define
the basic features of a tiling.

• Corners of T: A, B, D, F, G, H, I, J, K and L in tiling A and A, B, C and D in
tiling B. A corner is a point at which two lines join at an angle (π180°).

• Vertices of T: A, C, E, G, I and K in tiling A and A, B, C and D in tiling B. A
vertex is a point at which at least three line segments join together.

• Line segments of T: AB, BD, DF, FG, GH, HI, IJ, JK, KL and LA in tiling A
and AB, BC, CD and DA in tiling B. The line segments correspond to the
sides of a tile T.

• Edges of T: AC, CE, EG, GI, IK and KA and all equivalent lengths in tiling

Figure 5.7
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An example of a Dirichlet domain. Source: derived from Kappraff J, Connections: 
The Geometric Bridge Between Art and Science, New York, McGraw-Hill Inc., 1991, with
permission.
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A and AB, BC, CD and DA and all equivalent positions in tiling B. The edges
are the line segments or combination of line segments between each vertex.

• Valency: The valency of each vertex of tiling A is three and of each vertex of
tiling B is four. The valency of a vertex is the number of edges that meet at
that point.

• Adjacents of T: In tiling A, T1, T2, T3, T4, T5 and T6 are adjacents of tile T
and in tiling B, T2, T4, T6 and T8 are all adjacents of tile T. Two tiles must
have an edge in common to be adjacent to each other.

• Neighbours of T: In tiling A, T1, T2, T3, T4, T5 and T6 are neighbours of tile
T and in tiling B, T1, T2, T3, T4, T5, T6, T7 and T8 are all neighbours of tile T.
Two tiles are neighbours if they have at least one point in common.

Topology of tilings

The two tilings in Fig. 5.9 illustrate that the derivation of Dirichlet tilings from a
discrete pattern type does not necessarily give a one-to-one correspondence and
hence, does not provide sufficient information for the classification of isohedral
tilings. This is observed by Grünbaum and Shephard who state that the classifica-
tion of isohedral tilings by pattern type is deficient in that it takes no account of

Figure 5.8
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Figure 5.9
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Examples of two Dirichlet tilings associated with the same pattern type.

one of the most important features of the tiling, namely its topological type.4 In
other words, since in most cases (as in Fig. 5.9) more than one Dirichlet tiling may
be associated with each ditranslational discrete pattern type, additional features
involved in their topology, such as their vertices and valencies, must be taken into
consideration to enable one form of Dirichlet tiling to be distinguished from
another. Alternatively, Bergamini described topology as a special kind of geome-
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Figure 5.10
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try concerned with the ways in which surfaces can be twisted, bent, pulled
stretched or otherwise deformed from one shape into another.6

5.4.1 Topological equivalence

To deduce whether Dirichlet tilings, associated with a particular pattern type, are
topologically equivalent (i.e. are classed as the same ‘topological type’) involves a
special kind of transformation or mapping referred to as a ‘homeomorphism’.
Grünbaum and Shephard describe two tilings to be of the same topological type
(or to be topologically equivalent) if there is a homeomorphism which maps one
onto the other. They go on to define a homeomorphism as follows4:

A mapping F: E2 Æ E2 of the plane onto itself is called a homeomorphism or topologi-
cal transformation if it is one-to-one and bicontinuous. One-to-one (or bijective) means
that for any two points P, Q in the plane, F(P) = F(Q) if and only if P = Q; this implies
that there exists an inverse transformation F-1 such that F-1(R) = P if and only if F(P)
= R. . . . Bicontinuity means that both F and F-1 are continuous.

In a context more suitable for surface designers, topologically equivalent tilings
may be thought of more simply as follows: if one tiling can be transformed into
another by applying a special kind of mapping or transformation called a
homeomorphism, which squashes, stretches or deforms tiles of the first tiling
without removing or adding any edges, and hence tiles, then the two tilings are
topologically equivalent.

For each of the examples (a) to (d), in Fig. 5.11, tiling A is topologically equiv-
alent to tiling B. In the first example it is easy to see how a form of horizontal
stretch produces tiling B. The homeomorphic transformation in the second, third
and fourth examples is more difficult to visualise. The metamorphosis, for each
example, is given in Fig. 5.12. In the third example, some edges, initially com-
posed of one line segment, have been transformed to those made of two. This
does not alter the topology of the tiling since the number of edges, and hence
tiles, has not increased or decreased.

Similarly, the six tilings in Fig. 5.13(a) to (f ) are all topologically equivalent to
each other despite their tiles edges being composed of one, one, two, three, three
and four line segment(s), respectively. The number of edges remains the same in
each example although their differences in appearance are quite distinct.

The presence of topological equivalence is sometimes difficult to visualise
through a homeomorphic transformation. An alternative method of establishing
whether two tilings are topologically equivalent is to test for ‘combinatorial
equivalence’ because, as stated by Grünbaum and Shephard, for normal tilings
the concepts of topological and combinatorial equivalence coincide.4

5.4.2 Combinatorial equivalence

Two tilings are combinatorially equivalent if the following condition holds4:

Let e(T )denote the set of all elements of a tiling T, that is, the set whose members are
the vertices, edges and tiles of T. A map F of e(T1) onto e(T2) is said to be inclusion-
preserving if, whenever e1, e2 Œ e(T1), then F(e1) includes F(e2) if and only if e1
includes e2. If there exists an inclusion-preserving map between T1 and T2, then T1 and
T2 are said to be combinatorially isomorphic or combinatorially equivalent. If V is any
n-valent vertex of T1, then F(V ) will be an n-valent vertex of the combinatorially
equivalent tiling T2. Similarly, if a tile T of T1 has n adjacents, then so does the corre-
sponding tile F(T ) of T2.

In other words, given two tilings A and B, if each tile in A can be mapped onto a
tile in B such that, for example, a tile a1 in A corresponds to a tile b1 in B, and the
number of edges, vertices and valencies of a1 are the same as those of b1 and they
have the same number of adjacents, then they are combinatorially equivalent.
These conditions must apply to every single tile in A and their corresponding tiles
in B. The relationship between the tiles in A and the tiles in B is one-to-one, that is
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Figure 5.11
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Examples of topologically equivalent tilings.
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Figure 5.12 Metamorphosis of topologically equivalent tilings.

Figure 5.13 Further illustrations of topologically equivalent tilings.
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one tile in A is mapped onto only one tile in B and that same tile in B may only be
mapped back onto the same particular tile in A.

The conditions of combinatorial equivalence may be applied to the tilings in
Fig. 5.11 to confirm their topological equivalence. Examples illustrating their
combinatorial equivalence are given in Fig. 5.14.

For example, in Fig. 5.14(a(i)) each tile has four edges, four vertices (each with
valency four) and four adjacents. Although the shapes of the tiles have been
altered for the tiling in Fig. 5.14(a(ii)), each still retains these characteristics. For
example, tile a11 may be mapped onto b11, a12 onto b12, a13 onto b13, a14 onto b14
. . . a1n onto b1n. Similarly a21 may be mapped onto b21, a22 onto b22, a23 onto b23
. . . a2n onto b2n . . . ann onto bnn and so on until each of the tiles of tiling (a(i))
has been mapped onto one in tiling (a(ii)). Throughout the mapping there has
been no alteration of the tilings’ elements or number of adjacents; therefore they
are combinatorially and hence topologically equivalent.

The tilings in Fig. 5.11(c) are not monohedral. However, since both designs are
periodic, that is, regularly repeating, the combinatorial condition may be
assessed for a translation unit of each tiling. A translation unit for tiling A is com-
posed of six tiles (see Fig. 5.14c(i)). Four tiles each has four edges and four ver-
tices with valencies 3, 3, 4 and 4 (ordered by following the boundary of the tile
starting with the lowest numbered). Each of these tiles also has four adjacents.
One of the square tiles in the translation unit has eight edges and vertices with
valencies 3, 4, 3, 4, 3, 4, 3 and 4 and eight adjacents. The other square tile has ver-
tices with valencies 4, 4, 4 and 4 and four adjacents. These conditions coincide
with the characteristics of the tiles in the translation unit of tiling B (see Fig.
5.14c(ii)). Therefore these two tilings are combinatorially and hence topologically
equivalent.

A translation unit of tiling A, in Fig. 5.11(d), is composed of six tiles (see Fig.
5.14 d(i)). Two tiles each has four edges and four vertices each with valencies 3, 3,
3, 3 and four adjacents; and four tiles each of which has seven edges and seven
vertices each with valencies 3, 3, 3, 3, 3, 3, 3 and seven adjacents. These character-
istics coincide with those of a translation unit of tiling B in Fig. 5.11(d) (see Fig.
5.14d(ii)) therefore these tilings A and B are combinatorially and hence topologi-
cally equivalent.

Both the tilings in Fig. 5.11(b) are isohedral (unlike the other three examples).
Therefore, instead of analysing the characteristics of a translation unit, it is only
necessary to look at one tile of each tiling (since each tile is equivalent to any
other). Figure 5.14(b) shows that each of the tiles in tilings A and B, in Fig.
5.11(b), has the same number of edges and vertices with the same valencies. Also,
they each have the same number of adjacents. Therefore the two corresponding
tilings are combinatorially and hence topologically equivalent.

The principle of combinatorial equivalence is evident in a number of meta-
morphic drawings by M.C. Escher. For example in his XXXIV Emblata, Padlock
design, a chequered black and white parallelogram tiling is transformed into tiles
shaped as bird-like images. Throughout the metamorphic transformation the ele-
ments, valencies and adjacents of each tile remain the same from beginning to
end.7

5.4.2.1 Notation

The notation used to classify tilings by topological type involves vertex valencies.
Since this chapter is concerned with the classification of isohedral tilings, the
classification by topological type will also be limited to this group of tilings.
Consequently, as one tile, in an isohedral tiling, is equivalent to each of the
others, it is only necessary to look at the characteristics of a single tile. Figure
5.15 gives some examples to show how the topological type of an isohedral tiling
is derived.

A single tile, in the first example (Fig. 5.15(a)), has three vertices with valencies
4, 8 and 8. To find the topological type, the smallest vertex valency is noted, and
then the valencies of the other vertices, whilst following the boundary of a tile in
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Examples of combinatorially equivalent tilings.
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Derivation of the topological type of an isohedral tiling.
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one direction. The direction in which to follow the boundary of the tile is deter-
mined by numerical order, that is, by the next lowest valency of an adjacent
vertex. The sides of the tile are then followed by continuing in that same direction
until one circuit of the boundary is completed. Consequently, for the tiling in Fig.
5.15(a), this gives topological type [4. 8. 8] which is reduced to [4.82] in shorthand.
The topological types of the tilings in Fig. 5.15(b), (c) and (d) are derived in the
same way.

Incidence symbols

Amalgamating the topological classification system with an isohedral tiling’s
associated discrete pattern type still does not result in differentiation between all
possible classes of isohedral tiling. Two tilings may be classed in the same symme-
try group, be of the same topological type and even be associated with the same
discrete pattern type but still appear to be quite different. This is due to the rela-
tionship between a tile and its adjacents.

For example, the two tilings illustrated in Fig. 5.16(a(i)) and (b(i)) (which are
schematically illustrated in Fig. 5.16a(ii) and b(ii), respectively) are both in the
same symmetry group, pg, are of the same topological type, 44, and are associ-
ated with the same discrete pattern type, Dt(P)2, but are classed as different iso-
hedral tiling types.

In Fig. 5.16(a(ii)), a tile T is mapped onto its adjacents t1, t2, t3 and t4 
by either glide–reflection or translation, whereas in Fig. 5.16(b(ii)), a tile P is
mapped onto its adjacents, p1, p2, p3 and p4 by glide–reflectional symmetry only.
This difference in the relationship a tile has with its adjacents, may be analysed
and incorporated into a term referred to as the tiling’s ‘incidence symbol’. The
incidence symbol, together with the topological type, distinguishes one isohedral
tiling type from another. Two tilings may be topologically equivalent but have dif-
ferent incidence symbols (for example, the tilings in Fig. 5.16) or conversely they
may have the same incidence symbol and be unlike topologically. Either way, they
would differ under the classification by isohedral tiling type.

Grünbaum and Shephard stated that two tilings are the same isohedral tiling
type if and only if they are of the same topological type and their incidence
symbols [L;A] differ trivially.2 Here the two letters, L and A, in the incidence
symbol, [L;A], represent the tile symbol and the adjacency symbol, respectively.

5.5.1 Tile symbol

The tile symbol, L, consists of a sequence of letters with superscripts which labels
the edges of each tile in a particular order. Figure 5.17 gives some examples to
show how the tile symbol is derived.

An edge of a single tile, in Fig. 5.17(a), is allocated the letter ‘a’ and is orien-
tated by adding an arrow to it to indicate the direction which will be followed
around the boundary of the tile (Fig. 5.17a(i)). (The direction of the first labelled
edge does not matter.) This letter and arrow are then mapped onto equivalent
‘inside’ edges of the tile by using an isometry of the tiling (which in this case is
reflectional symmetry) (see Fig. 5.17a(ii)). The letter ‘b’ and an arrow is then
assigned to an edge following on from an edge labelled ‘a’ (Fig. 5.17a(iii)) which,
again, is mapped onto any other equivalent positions inside the tile. The tile
symbol, L, is determined by following the boundary of the tile in one direction
and noting down the letters in order and adding a superscript ‘+’ if the arrows
point in the same direction as that which is being followed or ‘-’ if the arrow
points in the opposite direction to that being followed. This gives tile symbol a+

b+ b- a- for the tiling in Fig. 5.17(a). (It is conventional and simplest to begin by
labelling consecutive edges alphabetically and to start with the letter ‘a’ when
deriving the tile symbol.)

The same edge-labelling procedure, for the second example, gives the result in
Fig. 5.17(b). As the top and bottom edges of the tile can be mapped onto them-
selves by reflectional symmetry of the tiling, these two are assigned double-
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Examples of different isohedral tiling types with the same topological type, symmetry
group and induced tile group.
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headed arrows. In these cases, there is no superscript added to the letters in the tile
symbol which, for this example, is written a+ b+ c b- a- d.

The tile symbol, for the example in Fig. 5.17(c), is derived in the same way as
for the tiling in Fig. 5.17(d). These two tilings are of the same topological type but
have different tile symbols: a b a b and a+ a+ a+ a+ respectively. In Fig. 5.17(d),
each edge can be mapped onto every other by four-fold rotational symmetry of
the tiling which is why they are all assigned the same letter.

In Fig. 5.17(e), no edge can be mapped onto any other so therefore each edge is
allocated a different letter.

In Fig. 5.17(f ), two-fold rotational symmetry allows some edges to be allo-
cated the same letter resulting in the tile symbol a+ b+ c+ a+ b+ c+. By similar
analysis, but involving reflectional symmetry, the tiling in Fig. 5.17(g) is assigned
the tile symbol a b+ c+ d c- b- .

The tile symbol of a tiling contributes to only half of the incidence symbol.
The remaining component is referred to as the ‘adjacency symbol’.

5.5.2 Adjacency symbol

The adjacency symbol, A, is also a sequence of letters with superscripts. It relates
to the letters contained within the tile symbol. It is derived by first mapping the
labelled inside edges of a tile, used to determine the tile symbol, onto every other
tile in the tiling by using symmetries of the tiling structure. This results in each
edge being allocated two letters and two arrows. The examples in Fig. 5.18 illus-
trate the results of this operation with respect to one tile in each of the tilings in
Fig. 5.17(a) to (g) and the derivation of the resulting adjacency and incidence
symbols.

Figure 5.18(b(ii)) shows a tile which has had its edges labelled with letters and
arrows by the procedure described above. The adjacency symbol is determined by
beginning at the same point as that for the tile symbol and continuing in the same
direction along the same edges whilst noting the edge labels of adjacent tiles in
order. If the parallel arrow of an adjacent tile points in the same direction, a neg-
ative superscript is added to the adjacent letter. If the arrow points in the opposite
direction, a positive superscript is attached. However, in the adjacency symbol
(unlike the tile symbol) if a letter has been noted down once, and whilst following
the boundary of the tile the same letter appears again, it is not repeated a second
time, that is, if the tile symbol consists of four distinct letters (ignoring their
superscripts and repetitions) then the adjacency symbol will consist of four
letters only with their appropriate superscripts. Thus, following this system of
letter allocation, the tiling in Fig. 5.18(b), with tile symbol a+ b+ c b- a- d, is given
the adjacency symbol b- a- d c implying that all tile edges labelled ‘a’ abut edges
labelled ‘b’ with equally orientated arrows; and all edges labelled ‘c’ abut edges
labelled ‘d’ neither of which is orientated, that is, they have double-headed
arrows. The combination of the tile symbol, L, and adjacency symbol, A, gives
the incidence symbol, [L;A], of the tiling which, for the example in Fig. 5.18(b) is
[a+ b+ c b- a- d; b- a- d c].

The adjacency symbol, for the tiling in Fig. 5.18(a), is found by following the
boundary of a tile from the same starting point that was used to derive the tile
symbol and in the same direction as described above. The initial letter of the adja-
cency symbol is ‘b’ as this lies next to the first edge in the tile symbol. The super-
script is negative as the arrows are equally orientated. The next letter is ‘a’ as this
lies next to the second letter in the tile symbol. Again, the superscript is negative.
The third letter in the adjacency symbol would be ‘a’ but since this letter has been
used previously in the adjacency symbol, it is not repeated a second time. Thus,
the tile symbol a+ b+ b- a- leads to the adjacency symbol b- a- which gives the
incidence symbol [a+ b+ b- a-; b- a-]

The same principle has been used to determine the adjacency and incidence
symbols for the remaining tilings in Fig. 5.18(c) to (g).

Of course, the incidence symbol may vary according to how the letters and
arrows were initially allocated to the tiling when first deriving the tile symbol. For
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example, referring to the tiling in Fig. 5.19(a), the tile symbol could have been
derived from a different lettering system, shown in Fig. 5.19(b) or 5.19(c), to give
the corresponding tile, adjacency and incidence symbols. These incidence
symbols must be equivalent since they are taken from the same isohedral tiling. In
essence, they differ ‘trivially’.

The symbols contained within two different, but equivalent, incidence

Figure 5.19
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Examples of isohedral tilings with equivalent incidence symbols.
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symbols may be made to coincide by the reallocation of letters to one of the
tilings. After all, each letter represents a particular edge but its name is not signifi-
cant as long as it is allocated correctly. For simplicity, though, it is most logical to
label the edges in alphabetical order.

The incidence symbols, derived from the labelled tilings in Fig. 5.19(a) to (c)
are listed below.

• Figure 5.19(a) [a+ b+ c b- a- d; b- a- d c] (i)
• Figure 5.19(b) [a b+ c+ d c- b-; d c- b- a] (ii)
• Figure 5.19(c) [a+ b a- c+ d c-; c+ d a+ b] (iii)

Suppose, in (i), the letters were cyclically permuted one step, that is, ‘a’ is replaced
by ‘b’, ‘b’ by ‘c’, ‘c’ by ‘d’ and ‘d’ by ‘a’. Then the incidence symbol becomes [b+ c+

d c- b- a; c- b- a d] which coincides with (ii) except that the starting point for the
tile symbol is p2 instead of p1 (see Fig. 5.19(b)). This confirms that the first and
second incidence symbols differ trivially and so are equivalent.

Alternatively, differences in equivalent incidence symbols may occur due to
arrow orientation instead of, or as well as, edge lettering.

For incidence symbols (ii) and (iii), unorientated edges in these tile symbols
must coincide if the incidence symbols differ trivially. If the edges labelled ‘d’ in
the tile symbols of (ii) and (iii) coincide, then adjacent edges labelled ‘c’ do 
also since ‘c’ occurs next in the sequence in the tile symbol of (ii) and (iii). The
other unorientated edges are labelled ‘a’ in (ii), and ‘b’ in (iii). Suppose, in (iii),
letters a and b are interchanged (remembering that the edge letter does not
matter, but the order and occurrence of superscripts and equally labelled edges
do matter). Then this transforms (iii) to incidence symbol [b+ a b- c+ d c-; c+ d b+

a]. By cyclically permuting the terms in this symbol by one step, which is equiva-
lent to starting the tile symbol at an adjacent vertex (p4 instead of p3), then this
symbol becomes [a b- c+ d c- b+; d b+ a c+]. This is the same as (i) except for the
orientation of the edge labelled ‘b’ (see Fig. 5.19(b)). If this arrow is reorientated,
all the superscripts of the edges labelled ‘b’ in the tile symbol will be reversed as
will the superscripts in the edges labelled ‘c’ in the associated adjacency symbol.
This results in the transformation of the incidence symbol such that it coincides
exactly with that of Fig. 5.19(a). Thus, with some simple reallocation and manip-
ulation of letters, it has been shown that the incidence symbols, in Fig. 5.19(a) to
(c), differ trivially.

This may prove to be a time-consuming procedure when determining an isohe-
dral tiling type. However, after initially deducing the topological type, the group
of possible incidence symbols may be reduced to a minimum by checking certain
characteristics of the tiling. For example, the number of different letters in the tile
symbol restricts the range of possible incidence symbols. Then, by checking the
symmetry group and induced tile group of the tiling the range is reduced further
and, in most cases, enables a ditranslational isohedral tiling to be classified.
However, for some tilings with topological types [36] or [44], the number of differ-
ent letters in the symbol, the symmetry group and tile induced group coincide.
These are listed in Table 5.1.

If the adjacency symbol contains superscripts which are all the same, the clas-
sification is straightforward because, if they are all negative, each edge is a reflec-
tion or glide–reflection of another edge and if they are all positive, each edge is a
two-fold rotation or translation of another edge. If, in addition, each letter in the
tile symbol corresponds to the same one in the adjacency symbol, then every edge
is mapped onto itself by two-fold rotation.

If there is still doubt with regard to classifying the type of an isohedral tiling,
edge lettering reallocation may be necessary and/or more detailed investigation
of edge characteristics. A visual comparison with the uncomplicated illustrations
of the 81 distinct isohedral tilings in Fig. 5.25 may also aid classification. These
examples clearly show the properties of the edges in the tilings and the relation-
ships between them. A tiling which may be classed as one listed in Table 5.1 (and
whose type may be difficult to distinguish) may be more easily identified by
observing its visual characteristics in comparison with those tilings in Fig. 5.25.
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Marked isohedral tilings

In the previous discussion in Section 5.4, it was noted that a Dirichlet tiling, asso-
ciated with a discrete pattern, may not necessarily be unique, in other words more
than one type of isohedral tiling may be derived from a ditranslational discrete
pattern (see Fig. 5.9). This results in 39 of the 51 ditranslational discrete pattern
types forming a basis for 81 different types of isohedral tiling by the Dirichlet
relationship, that is, as stated by Grünbaum and Shephard there exist precisely 81
distinct types of isohedral tilings.4

Conversely, one isohedral tiling may be associated with more than one discrete
pattern type. For example, each of the pattern types Dt(P)24, Dt(P)27 and
Dt(P)47 is associated with the same Dirichlet tiling – an equilateral triangle tiling
(as shown in Fig. 5.20(a)). Similarly, pattern types Dt(P)14, Dt(P)18 and Dt(P)15
may only be enclosed in either a rectangular or square tiling (depending in the
lattice structure of the pattern) and pattern types Dt(P)39, Dt(P)34 and Dt(P)40
may only be enclosed in a square Dirichlet tiling (see Fig. 5.20(b) and (c)). Like-
wise, pattern types Dt(P)28, Dt(P)29 and Dt(P)37 are associated with the tilings
shown in Fig. 5.20(d). Yet, each of these tilings is already a Dirichlet tiling for an
associated discrete pattern of its own where the pattern and tiling have the same
symmetry group and induced group and the tiling forms one of the distinct isohe-
dral tiling types (see Fig. 5.21). To differentiate between the distinct isohedral
tilings and the ones associated with a pattern type with a different symmetry
group and induced motif group, the pattern type is incorporated into the isohe-
dral Dirichlet tiling to form a ‘marked isohedral tiling’ (as shown in Fig. 5.20). A
marked tiling is defined as one in which there is a marking or motif on each tile
where a symmetry of the marked tiling is an isometry which not only maps the
tiles of T onto tiles of T, but also maps each marking on a tile of T onto a
marking on the image tile.4 In other words the symmetries of the marked isohe-
dral tiling must not only map the tiles onto each other but also the motifs posi-
tioned on the tiles onto each other.

Unlike the unmarked tilings, where the symmetries of the discrete pattern 
and Dirichlet tiling coincide, the symmetries of a pattern of a marked tiling 
form a subgroup of the symmetries of the tiling enclosing them, that is, by incor-
porating a pattern into an unmarked tiling the order of symmetry of the tiling 
is reduced. The 12 marked isohedral tilings, combined with the 81 distinct 
ones, form the 93 different types of ditranslational isohedral tiling. The identifi-
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Table 5.1 Isohedral tilings with the same topological type and similar incidence symbols

Topological Isohedral Induced
type tiling type Incidence symbol Symmetry group group

[36] Dt(T)2 [a+ b+ c+ d+ e+ f+; b- a- f+ pg c1
e- d- c+]

Dt(T)3 [a+ b+ c+ d+ e+ f+; c- e+ a- f- pg c1
b+ d-]

Dt(T)5 [a+ b+ c+ d+ e+ f+; a+ e+ d- pgg c1
c- b- f+]

Dt(T)6 [a+ b+ c+ d+ e+ f+; a+ e- c+ pgg c1
f- b- d-]

[44] Dt(T)43 [a+ b+ c+ d+; c- d+ a- b+] pg c1
Dt(T)44 [a+ b+ c+ d+; b- a- d- c-] pg c1
Dt(T)46 [a+ b+ c+ d+; a+ b+ c+ d+] p2 c1
Dt(T)47 [a+ b+ c+ d+; c+ b+ a+ d+] p2 c1
Dt(T)49 [a+ b+ c+ d+; a- b+ c- d+] pmg c1
Dt(T)50 [a+ b+ c+ d+; c+ b- a+ d+] pmg c1
Dt(T)51 [a+ b+ c+ d+; c- b+ a- d+] pgg c1
Dt(T)52 [a+ b+ c+ d+; c- d- a- b-] pgg c1
Dt(T)53 [a+ b+ c+ d+; b- a- c+ d+] pgg c1

GSP5  11/27/2000 3:06 PM  Page 196



cation and classification of the marked isohedral tilings is determined in the same
way as the distinct isohedral tilings, whilst accounting for the reduction in the
order of symmetry of each tiling caused by marking the superimposed discrete
pattern.

The identification and classification of finite and monotranslational isohedral
tilings involves a much simpler process since they form a one-to-one correspon-
dence with their associated discrete pattern types.

Classification of finite isohedral tiling types

Each of the three finite discrete pattern types is associated with one isohedral
tiling type. These tilings are listed in Table 5.2 together with their symmetry
groups, induced tile groups and associated discrete pattern types. Illustrations of
each type are given in Fig. 5.22(a), (b) and (c).

5.7.1 Notation

The notation used for finite isohedral tilings has been derived from that of
the finite discrete pattern types. The three types are denoted by F(T)1n, F(T)2n
and F(T)3n where n represents the number of reflection axes and/or the order 
of rotation of the overall design structure. Because each of these tilings is 
associated with a discrete pattern type, which must satisfy the non-trivial 
condition, the same restrictions apply to the limitations on the values of n 
(see Table 5.2).

Classification of monotranslational isohedral tiling types

Each of the 15 monotranslational discrete pattern types is associated with one
isohedral tiling type. These tilings are listed in Table 5.3 together with their sym-
metry groups, induced tile groups and associated discrete pattern types. Figure
5.23 shows an illustration of each type.

5.7
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Table 5.2 Three finite isohedral tiling types

Isohedral tiling type Symmetry group Induced tile group Pattern type

F(T)1n cn (n ≥ 2) c1 F(P)1n
F(T)2n dn (n ≥ 1) c1 F(P)2n
F(T)3n dn (n ≥ 2) d1 F(P)3n

Table 5.3 The 15 monotranslational isohedral tiling types

Isohedral tiling type Symmetry group Induced tile group Pattern type

Mt(T)1 p111 c1 Mt(T)1
Mt(T)2 p1a1 c1 Mt(T)2
Mt(T)3 p1m1 c1 Mt(T)3
Mt(T)4 p1m1 d1 Mt(T)4
Mt(T)5 pm11 c1 Mt(T)5
Mt(T)6 pm11 d1 Mt(T)6
Mt(T)7 p112 c1 Mt(T)7
Mt(T)8 p112 c2 Mt(T)8
Mt(T)9 pma2 c1 Mt(T)9
Mt(T)10 pma2 c2 Mt(T)10
Mt(T)11 pma2 d1 Mt(T)11
Mt(T)12 pmm2 c1 Mt(T)12
Mt(T)13 pmm2 d1 Mt(T)13
Mt(T)14 pmm2 d1 Mt(T)14
Mt(T)15 pmm2 d2 Mt(T)15

5.8
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Figure 5.20
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Examples of different pattern types associated with the same Dirichlet tiling.
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Figure 5.21
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Distinct isohedral tilings (and their associated pattern types) which are used to form
the marked isohedral tilings.
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Illustrations of finite isohedral tiling types.
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Figure 5.23
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Illustrations of the 15 monotranslational isohedral tiling types.
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5.8.1 Notation

The notation used for monotranslational isohedral tilings has been derived from
that of the monotranslational discrete pattern types. The 15 types are denoted by
Mt(T)1 to Mt(T)15.

Classification of ditranslational isohedral tiling types

Each of the 51 ditranslational discrete pattern types is associated with one or
more isohedral tiling types which results in 12 marked and 81 distinct isohedral
tiling types. These tilings are listed in Table 5.4 together with their topological
types, incidence symbols, symmetry groups, induced tile groups and associated
discrete pattern types. Figure 5.24 shows an illustration of each marked type and
Fig. 5.25 shows an example of each distinct type.

5.9.1 Notation

The notation used for ditranslational isohedral tilings has been derived from that
of the ditranslational discrete pattern types. The 93 types are denoted by Dt(T)1
to Dt(T)93.

Construction of finite isohedral tiling types

The techniques used to construct finite isohedral tilings F(T)1n to F(T)3n, are
adapted from those described in Section 2.11. The circular area enclosing the
design will be divided into fundamental regions (some or all of whose boundaries
are retained) and then the circumference of the circle may be suitably adapted to
produce a finite tiling design.

5.10.1 Finite isohedral tilings, induced group c1

There are two types of finite isohedral tiling design with induced group c1: F(T)1n
(symmetry group cn) and F(T)2n (symmetry group dn).

The simplest method of constructing an F(T)1n design is to begin with a circle,
radius R, and add a line (which is not straight) joining its centre to the boundary.
This line is then rotated, n - 1 times, at consecutive intervals of 360°/n after, if

Figure 5.23
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(cont.)
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necessary, adapting the initial line to ensure that it does not overlap with adjacent
copies of itself (see Fig. 5.26a(i) and a(ii)). The circle may be incorporated as part
of the finished design or the design may be enhanced by joining the point at which
one of these lines touches the circular boundary to an adjacent line segment at
distance r from the circle centre (where r is a proportion of R) (see Fig. 5.26a(iii)).
This line (the shape of which, in this instance, is not important) is also rotated 
n - 1 times through 360°/n. The circular boundary may then be removed to com-
plete the tiling design (Fig. 5.26a(iv)). The initial line may be chosen to be
straight, in which case the secondary joining line must not have both end points
on the circular boundary and have reflectional symmetry passing through the
centre of the circle. The same procedure as above is used to complete the remain-
der of the design (see Fig. 5.26b).

To construct an F(T)2n tiling design, a circle of radius R is divided into 2n
equal sectors. A line (which does not have reflectional symmetry passing through
the circle centre) is used to join one straight edge of a sector to an adjacent one. It
must touch at least one point on the circumference of the circle. This line is then
reflected about axes coinciding with the sector boundaries. The straight sector
edges inside these resulting lines are incorporated in the design whilst the propor-
tions outside them, and the circular boundary are removed (Fig. 5.26(c)).

204 Geometric symmetry in patterns and tilings

Figure 5.24 Illustrations of the 12 marked isohedral tiling types. Source: derived from Grünbaum B
and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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5.10.2 Finite isohedral tilings, induced group d1

There is one type of finite isohedral tiling design with induced group d1: F(T)3n,
in symmetry group dn. It is constructed by the same method as that for group
F(T)2n but in the final stages only alternate straight sector edges inside the
boundary of the tiling are incorporated in the design (see Fig. 5.26(d)). Different
design effects may be created depending upon which of the two sets of alternate
straight sector edges is removed.

Construction of monotranslational isohedral tiling types

The technique used to construct the majority of the monotranslational tiling
types will initially follow the stages described in Section 2.12 for design type (iii),
of dividing a strip, width W, into interlocking fundamental regions. (For symme-
try groups pm11 and pmm2 recall that design type (iii) was not constructable so
the initial design structures for tiling types in these symmetry groups will be based
on rectangular (or square) fundamental regions described for design type (i).)

The design may then be further improved by replacing the straight edges of the
strip with irregular ones. This may be achieved by adding a line (or two lines
where the two opposite edges of a fundamental region coincide with the edges of
the strip) which joins a vertex on the edge of the strip to an adjacent fundamental
region edge in the longitudinal direction. It is then mapped onto all equivalent
positions in the strip by applying the generating symmetries. In some cases more
than one edge of a fundamental region may initially be replaced by a new edge (as
shown for Mt(T)9, symmetry group pma2, in Fig. 5.27f(ii)). However, this/these
new edge(s) must reach at least one point on the edge of the strip. The initial
straight edges of the strip and any boundaries of the fundamental regions
exceeding the tiles in the tiling are then removed to complete the design. This pro-
cedure is illustrated in the examples given throughout the remainder of this
section. The non-primitive tiling types are derived from the primitive tilings by
removing some of the boundaries of the fundamental regions at the end of the
construction procedure.

The symmetric tiles used for the construction of design type (vi) may also be
used as a basis for the construction of monotranslational tilings. However, when
replacing the straight edges of the strip, the new lines added to complete the tiling
must reduce the order of symmetry to the correct tiling type. These forms of
tiling are not discussed in any further detail in this chapter.

5.11.1 Monotranslational isohedral tilings, induced group c1

Each of the seven primitive pattern types has one associated isohedral tiling type
with induced group c1. A strip is divided into fundamental regions by the
methods described for design type (iii) (or type (i) for Mt(T)5 and Mt(T)12) in
Section 2.12. The procedure described above is carried out to produce the tilings
given in Fig. 5.27(a)–(g). These show the isohedral tilings associated with the
primitive pattern types of symmetry groups p111, p1a1, p1m1, pm11, p112,
pma2 and pmm2, respectively. For Mt(T)2, symmetry group p1a1, there are two
methods of construction. In one case the right hand side of a fundamental region
is a glide–reflection of the left hand side and in the other case it is a translation of
the left hand side. In the second case the straight longitudinal axis of the strip
may also be replaced by an alternative one which has glide–reflectional symmetry
(as shown in Fig. 5.27b(ii)). Three methods are given for the construction of
tiling type Mt(T)7, symmetry group p112, which are illustrated in Fig. 5.27(e(i)),
(e(ii)) and (e(iii)).

5.11.2 Monotranslational isohedral tilings, induced group c2

Each of the pattern types Mt(P)8 and Mt(P)10 (in symmetry groups p112 and
pma2, respectively) has one associated isohedral tiling type, Mt(T)8 and
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Figure 5.25 Illustrations of the 81 distinct ditranslational isohedral tiling types. Source: derived
from Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and
Company, 1987.
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Figure 5.25 (cont.)
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Table 5.4 The 93 ditranslational isohedral tiling types

Isohedral Topological Symmetry Induced Pattern
tiling type type Incidence symbol group tile group type

Dt(T)1 [36] [a+ b+ c+ d+ e+ f+; d+ e+ f+ a+ b+c+] p1 c1 Dt(P)1
Dt(T)2 [a+ b+ c+ d+ e+ f+; b- a- f+ e- d-c+] pg c1 Dt(P)2
Dt(T)3 [a+ b+ c+ d+ e+ f+; c- e+ a- f- b+d-] pg c1 Dt(P)2
Dt(T)4 [a+ b+ c+ d+ e+ f+; a+ e+ c+ d+ b+f+] p2 c1 Dt(P)7
Dt(T)5 [a+ b+ c+ d+ e+ f+; a+ e+ d- c- b-f+] pgg c1 Dt(P)9
Dt(T)6 [a+ b+ c+ d+ e+ f+; a+ e- c+ f- b-d-] pgg c1 Dt(P)9
Dt(T)7 [a+ b+ c+ d+ e+ f+; b+ a+ d+ c+ f+e+] p3 c1 Dt(P)21
Dt(T)8 [a+ b+ c+ a+ b+ c+; a+ b+ c+] p2 c2 Dt(P)8
Dt(T)9 [a+ b+ c+ a+ b+ c+; a+ c- b-] pgg c2 Dt(P)10
Dt(T)10 [a+ b+ a+ b+ a+ b+; b+ a+] p3 c3 Dt(P)22
Dt(T)11 [a+ a+ a+ a+ a+ a+; a+] p6 c6 Dt(P)45
Dt(T)12 [a b+ c+ d c- b-; d c- b- a] cm d1(s) Dt(P)6
Dt(T)13 [a b+ c+ d c- b-; d b+ c+ a] pmg d1(s) Dt(P)13
Dt(T)14 [a+ b+ c+ c- b- a; c- b- a-] cm d1(1) Dt(P)6
Dt(T)15 [a+ b+ c+ c- b- a-; a+ b- c+] pmg d1(1) Dt(P)13
Dt(T)16 [a+ b+ c+ c- b- a-; a- c+ b+] p31m d1(1) Dt(P)25
Dt(T)17 [a b+ b- a b+ b-; a b+] cmm d2 Dt(P)20
Dt(T)18 [a b a b a b; b a] p31m d3(s) Dt(P)26
Dt(T)19 [a+ a- a+ a- a+ a-; a-] p3m1 d3(1) Dt(P)29*
Dt(T)20 [a a a a a a; a] p6m d6 Dt(P)51

Dt(T)21 [34.6] [a+ b+ c+ d+ e+; e+ c+ b+ d+ a+] p6 c1 Dt(P)42

Dt(T)22 [33.42] [a+ b+ c+ d+ e+; a- e+ d- c- b+] cm c1 Dt(P)5
Dt(T)23 [a+ b+ c+ d+ e+; a+ e+ c+ d+ b+] p2 c1 Dt(P)7
Dt(T)24 [a+ b+ c+ d+ e+; a- e+ c+ d+ b+] pmg c1 Dt(P)11
Dt(T)25 [a+ b+ c+ d+ e+; a+ e+ d- c- d+] pgg c1 Dt(P)9
Dt(T)26 [a b+ c+ c- b-; a b- c+] cmm d1 Dt(P)19

Dt(T)27 [32.4.3.4] [a+ b+ c+ d+ e+; a+ d- e- b- c-] pgg c1 Dt(P)9
Dt(T)28 [a+ b+ c+ d+ e+; a+ c+ b+ e+ d+] p4 c1 Dt(P)30
Dt(T)29 [a b+ c+ c- b-; a c+ b+] p4g d1 Dt(P)35

Dt(T)30 [3.4.6.4] [a+ b+ c+ d+; a- b- d+ c+] p31m c1 Dt(P)23
Dt(T)31 [a+ b+ c+ d+; b+ a+ d+ c+] p6 c1 Dt(P)42
Dt(T)32 [a+ a- b+ b-; a- b-] p6m d1 Dt(P)48

Dt(T)33 [3.6.3.6] [a+ b+ c+ d+; d+ c+ b+ a+] p3 c1 Dt(P)21
Dt(T)34 [a+ b+ a+ b+; b+ a+] p6 c2 Dt(P)43
Dt(T)35 [a+ b+ b- a-; a- b-] p3m1 d1(s) Dt(P)28*
Dt(T)36 [a+ a- b+ b-; b- a-] p31m d1(1) Dt(P)25
Dt(T)37 [a+ a- a+ a-; a-] p6m d2 Dt(P)49

Dt(T)38 [3.122] [a+ b+ c+; a- c+ b+] p31m c1 Dt(P)23
Dt(T)39 [a+ b+ c+; a+ c+ b+] p6 c1 Dt(P)42
Dt(T)40 [a b+ b-; a b-] p6m d1 Dt(P)48

Dt(T)41 [44] [a+ b+ c+ d+; c+ d+ a+ b+] p1 c1 Dt(P)1
Dt(T)42 [a+ b+ c+ d+; c+ b- a+ d-] pm c1 Dt(P)3
Dt(T)43 [a+ b+ c+ d+; c- d+ a- b+] pg c1 Dt(P)2
Dt(T)44 [a+ b+ c+ d+; b- a- d- c-] pg c1 Dt(P)2
Dt(T)45 [a+ b+ c+ d+; c- b- a- d-] cm c1 Dt(P)5
Dt(T)46 [a+ b+ c+ d+; a+ b+ c+ d+] p2 c1 Dt(P)7
Dt(T)47 [a+ b+ c+ d+; c+ b+ a+ d+] p2 c1 Dt(P)7
Dt(T)48 [a+ b+ c+ d+; a- b- c- d-] pmm c1 Dt(P)14*
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Table 5.4 (cont.)

Isohedral Topological Symmetry Induced Pattern
tiling type type Incidence symbol group tile group type

Dt(T)49 [a+ b+ c+ d+; a- b+ c- d+] pmg c1 Dt(P)11

Dt(T)50 [44] [a+ b+ c+ d+; c+ b- a+ d+] pmg c1 Dt(P)11
Dt(T)51 [a+ b+ c+ d+; c- b+ a- d+] pgg c1 Dt(P)9
Dt(T)52 [a+ b+ c+ d+; c- d- a- b-] pgg c1 Dt(P)9
Dt(T)53 [a+ b+ c+ d+; b- a- c+ d+] pgg c1 Dt(P)9
Dt(T)54 [a+ b+ c+ d+; a- b- c- d+] cmm c1 Dt(P)17
Dt(T)55 [a+ b+ c+ d+; b+ a+ d+ c+] p4 c1 Dt(P)30
Dt(T)56 [a+ b+ c+ d+; b+ a+ c- d-] p4g c1 Dt(P)33
Dt(T)57 [a+ b+ a+ b+; a+ b+] p2 c2 Dt(P)8
Dt(T)58 [a+ b+ a+ b+; a- b+] pmg c2 Dt(P)12
Dt(T)59 [a+ b+ a+ b+; b- a-] pgg c2 Dt(P)10
Dt(T)60 [a+ b+ a+ b+; a- b-] cmm c2 Dt(P)18*
Dt(T)61 [a+ b+ a+ b+; b+ a+] p4 c2 Dt(P)31
Dt(T)62 [a+ a+ a+ a+; a+] p4 c4 Dt(P)32
Dt(T)63 [a+ a+ a+ a+; a-] p4g c4 Dt(P)34*
Dt(T)64 [a b+ c+ c b-; c b- a] pm d1(s) Dt(P)4
Dt(T)65 [a b+ c+ c b-; a b- c] pmm d1(s) Dt(P)15*
Dt(T)66 [a b+ c+ c b-; c b+ a] pmg d1(s) Dt(P)13
Dt(T)67 [a b+ c+ c b-; a b+ c] cmm d1(s) Dt(P)19
Dt(T)68 [a+ b+ b- a-; b- a-] cm d1(1) Dt(P)6
Dt(T)69 [a+ b+ b- a-; a+ b+] pmg d1(1) Dt(P)13
Dt(T)70 [a+ b+ b- a-; a- b-] p4m d1(1) Dt(P)39*
Dt(T)71 [a+ b+ b- a-; b+ a+] p4g d1(1) Dt(P)35
Dt(T)72 [a b a b; a b] pmm d1(s) Dt(P)16
Dt(T)73 [a b a b; b a] p4g d1(s) Dt(P)36
Dt(T)74 [a+ a- a+ a-; a+] cmm d1(1) Dt(P)20
Dt(T)75 [a+ a- a+ a-; a-] p4m d1(1) Dt(P)40*
Dt(T)76 [a a a a; a] p4m d4 Dt(P)41

Dt(T)77 [4.6.12] [a+ b+ c+; a- b- c-] p6m c1 Dt(P)46

Dt(T)78 [4.82] [a+ b+ c+; a+ b- c-] cmm c1 Dt(P)17
Dt(T)79 [a+ b+ c+; a+ c+ b+] p4 c1 Dt(P)30
Dt(T)80 [a+ b+ c+; a- b- c-] p4m c1 Dt(P)37*
Dt(T)81 [a+ b+ c+; a- c+ b+] p4g c1 Dt(P)33
Dt(T)82 [a b+ b-; a b-] p4m d1 Dt(P)38

Dt(T)83 [63] [a+ b+ c+; b- a- c-] cm c1 Dt(P)5
Dt(T)84 [a+ b+ c+; a+ b+ c+] p2 c1 Dt(P)7
Dt(T)85 [a+ b+ c+; a- b+ c+] pmg c1 Dt(P)11
Dt(T)86 [a+ b+ c+; b- a- c+] pgg c1 Dt(P)9
Dt(T)87 [a+ b+ c+; a- b- c-] p3m1 c1 Dt(P)27*
Dt(T)88 [a+ b+ c+; b+ a+ c+] p6 c1 Dt(P)42
Dt(T)89 [a+ a+ a+; a-] p31m c3 Dt(P)24*
Dt(T)90 [a+ a+ a+; a+] p6 c3 Dt(P)44
Dt(T)91 [a b+ b-; a b+] cmm d1 Dt(P)19
Dt(T)92 [a b+ b-; a b-] p6m d1 Dt(P)47*
Dt(T)93 [a a a; a] p6m d3 Dt(P)50

* Indicates that the tiling is one of the marked isohedral tiling types.
Source: derived from Grünbaum B and Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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Mt(T)10, with induced group c2. These may be derived from the primitive isohe-
dral tiling types Mt(T)7 and Mt(T)9, respectively.

Tiling type Mt(T)8 is constructed from Mt(T)7 by removing each edge in
common with two tiles that passes through alternate centres of two-fold rotation
which occur along the longitudinal axis of the strip. Tiling type Mt(T)10 is con-
structed from Mt(T)9 by removing every edge in common with two tiles that
passes through a centre of two-fold rotation along the longitudinal axis of the
strip. Examples showing the construction of Mt(T)8 and Mt(T)10 are given in
Fig. 5.28(a) and (b), respectively.

5.11.3 Monotranslational isohedral tilings, induced group d1

Each of the pattern types Mt(P)4, Mt(P)6, Mt(P)11, Mt(P)13 and Mt(P)14 (in
symmetry groups p1m1, pm11, pma2, pmm2 and pmm2, respectively) has one
associated isohedral tiling type: Mt(T)4, Mt(T)6, Mt(T)11, Mt(T)13 and

Figure 5.26

210 Geometric symmetry in patterns and tilings

Construction of finite tiling types F (T )1n, F (T )2n and F (T )3n.
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Mt(T)14 with induced group d1. These may be derived from the primitive isohe-
dral tiling types Mt(T)3, Mt(T)5, Mt(T)9, Mt(T)12 and Mt(T)12, respectively.

Mt(T)4 is constructed from Mt(T)3 by removing each edge in common with
two tiles that coincides with the longitudinal reflection axis of the strip (see 
Fig. 5.29(a)). Mt(T)6 is constructed from Mt(T)5 by removing each edge in
common with two tiles that coincides with each alternate transverse reflection
axis (see Fig. 5.29(b)). Mt(T)11 is constructed from Mt(T)9 by removing each
edge in common with two tiles that coincides with a transverse reflection axis (see
Fig. 5.29(c)). Mt(T)13 is constructed from Mt(T)12 type by removing each edge
in common with two tiles that coincides with each alternate transverse reflection
axis (see Fig. 5.29(d)). Mt(T)14 is constructed from Mt(T)12 by removing each
edge in common with two tiles that coincides with the longitudinal axis of the
strip (see Fig. 5.29(e)).

5.11.4 Monotranslational isohedral tilings, induced group d2

There is one pattern type Mt(P)15 (in symmetry group pmm2) which has one
associated isohedral tiling type Mt(T)15 with induced group d2. It is constructed
from Mt(T)12 by removing each edge in common with two tiles that coincides
with the longitudinal reflection axis of the strip and each edge in common with
two tiles that coincides with each alternate transverse reflection axis. Examples
are given in Fig. 5.30.

Construction of ditranslational isohedral tiling types

The techniques used to construct ditranslational isohedral tiling designs will
differ from those described in Section 2.13 because the primary concern in this
classification and construction involves establishing and building upon the topo-
logical characteristics of the design. Hence, the following methods will be divided
into 11 sections to coincide with the 11 different topological types of ditransla-
tional isohedral tiling: [36], [34.6], [33.42], [32.4.3.4], [3.4.6.4], [3.6.3.6], [3.122],
[44], [4.6.12], [4.82] and [63].

Having chosen which particular tiling type to construct and established its
topological type (from Table 5.4), a framework is required upon which to build it.
Since its topology is most important, the clearest possible representation of its
topological form seems the most logical basis. A tiling with this characteristic
may not be of the desired symmetry group, induced tile group or have the correct
incidence symbol. However, the required isohedral tiling type may be derived
from its gradual metamorphosis, by the application of topological and geometric
transformations interpreted from the analysis of the incidence symbol.

5.12.1 Regular tiling

The clearest way to illustrate each of the 11 topological types is through a ‘regular
tiling’. A regular tiling is defined by the properties at its vertices as follows: if v
edges meet at a vertex of a tiling (that is, if the valence of the vertex is v) then the
vertex is called regular if the angle between each consecutive pair of edges is 2p/v
(Grünbaum and Shephard).4 In other words, if the angle between each adjacent
pair of edges joining at a vertex is the same (and this is a characteristic of every
vertex in the tiling) then the tiling is regular.

It has been proved that, for monohedral tilings, the number of possible tiling
structures satisfying this criteria is 11. They may be represented by what are
referred to as the ‘Laves tilings’ which are illustrated in Fig. 5.31 (and named after
the crystallographer Fritz Laves (see Grünbaum and Shephard,4 and Engel1).
There are two ‘enantiomorphic’ forms of [34.6], that is one is a reflection of the
other in which, consequently, centres of rotation appear to be left and right orien-
tated. In this context, and in general, they are regarded as being equivalent. This
phenomenon does not occur in the other ten tilings because reflectional symme-
try is present in their structures.
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Figure 5.27 Construction of monotranslational tilings, induced group c1.
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Figure 5.27 (cont.)
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To aid the initial stages of metamorphosis of a Laves tiling into one of the
required isohedral tiling types, the group diagram of the isohedral tiling under
construction may be incorporated into its associated Laves tiling structure. In
some instances there may be a number of options for the initial positioning of the
group diagram since the symmetry group of the isohedral tiling being con-
structed usually forms a subgroup of the symmetry group of the Laves tiling
upon which it is being superimposed. However, after analysing the incidence
symbol, as shown in the examples below, it becomes evident how the edges relate
to each other and consequently where the symmetries are positioned in the tiling
structure. The induced group may also help to give an insight into the appearance
of the final design.

This leaves the analysis and interpretation of the incidence symbol to deter-
mine the precise characteristics of the tiling. Some significant features of the inci-
dence symbol were noted in Section 5.5.2 in connection with the classification of
isohedral tilings. In the context of this book, it has been found that the most
logical steps to follow in constructing these tilings are: first to establish the

214 Geometric symmetry in patterns and tilings

Figure 5.27 (cont.)
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number of possible different shaped edges by finding the number of different dis-
tinct mappings between tile and adjacency symbol; then to transform and label
an edge of the Laves tiling which is mapped onto itself or a copy of itself, either
by rotation or reflection, respectively (a letter in the tile symbol corresponding to
the same letter, with a positive or negative superscript, in the adjacency symbol,
respectively). This edge is then superimposed on the Laves tiling in all equivalent
positions in the tiling by applying symmetries in the group diagram. (Of course,
an edge may remain a straight line provided that it can only be mapped onto
itself, or other edges inside a tile, by the symmetries implied by the incidence
symbol and does not induce any extra symmetries into the design structure.)
From this point, the relationships between edges adjacent to these edges, which
are not mapped onto themselves, will result. For example, an edge in the tile
symbol mapped onto a letter with a positive superscript in the adjacency symbol
implies that either one edge is a translation of another or at one end of this edge
there is a centre of n-fold rotation, depending on the symmetry group of the tiling
structure. The value of n can be deduced from a unit cell incorporated into the
Laves tiling. An edge in the tile symbol mapped onto a letter with a negative
superscript in the adjacency symbol implies that this edge is a glide–reflection of
another edge. Unless an edge is mapped onto itself by either rotation or reflec-
tion, the new edge, superimposed onto the Laves tiling, will be represented by an
asymmetric line.

This analysis of incidence symbols, in association with the following tech-
niques used to construct isohedral tilings, is summarised in Table 5.5. Construc-
tion methods and illustrations are described in detail for one example of each
topological type. In each case, the incidence symbol has been displayed in a verti-
cal format to aid the recognition of the relationships between edges.

5.12.2 Topological type [36]

There are 20 isohedral tiling types with topological type [36]: Dt(T)1 to Dt(T)20.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The discussion below gives an
explanation of the construction of Dt(T)8 which has the following properties:

• Symmetry group: p2 b+ Æ b+

• Induced group: c2 c+ Æ c+
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Table 5.5 Implications of tile and adjacency letters and superscripts

Tile symbol letter Adjacency symbol letter and superscript and
and superscript relationship to tile symbol entry Implication

x+ or x- x+ Same letter, positive The edge is mapped onto itself by two-fold
superscript rotational symmetry

x+ or x- x- Same letter, negative The edge is mapped onto itself by reflectional
superscript symmetry

x+ or x- y+ Different letter, The edge x is mapped onto an edge y by
positive superscript rotational symmetry if x is next to y in the

adjacency symbol and by translational
symmetry it is not

x+ or x- y- Different letter, The edge x is mapped onto edge y by glide–
negative superscript reflectional symmetry

x (no superscript) x (no Same letter, no The edge x is mapped onto itself by two different
superscript superscript perpendicular reflection axes (i.e. it is a

straight line)
x (no superscript) y (no Different letter, no The edge x is mapped onto itself by reflectional

superscript) superscript symmetry and onto edge y by translational
symmetry
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Construction of monotranslational tilings, induced group c2.
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Figure 5.28
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(cont.)

• Incidence symbol: [a+ b+ c+ a+ b+ c+; a+ b+ c+] is written a+ Æ a+

vertically as: a+

b+

c+

From the three distinct mappings in the incidence symbol (a Æ a, b Æ b and c Æ
c) it is deduced that there may be up to three different shaped edges in the tiling.
Since each of the edges ‘a’, ‘b’ and ‘c’ is mapped onto the same letter with a posi-
tive superscript, this implies that each one is mapped onto itself by two-fold rota-
tional symmetry. Also, because each tile has six edges and the first and fourth,
second and fifth, and third and sixth edges have the same labels, this implies that
opposite edges have the same shape. By superimposing a group diagram of p2
onto the Laves tiling [36], it is obvious where centres of two-fold rotational sym-
metry coincide with points on the hexagonal lattice of edges (see Fig. 5.32). (Note
that the symmetries of group diagram p2 form a subgroup of the symmetries of
the Laves tiling [36] (symmetry group p6), so centres of three-fold rotation are not
applicable and centres of six-fold rotation positioned at the centres of the hexa-
gons are reduced to points of two-fold rotation.) One edge may be replaced by an
alternative edge, having two-fold rotational symmetry, which is then mapped
onto all equivalent positions in the tiling. One edge of a tile has this edge orien-
tated and labelled ‘a’.

The edges adjacent to the edge labelled ‘a’ are mapped onto themselves by two-
fold rotational symmetry. One of them is replaced by another different line with
two-fold rotational symmetry which is mapped to all its equivalent positions. The
same operation is carried out for the remaining edge as shown in Fig. 5.32.

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.3 Topological type [34.6]

Dt(T)21 is the only isohedral tiling type with topological type [34.6]. This implies
that the Laves tiling with this topological type is already, in fact, Dt(T)21.
However, it may still be transformed into one of the same type but having a less
rigid appearance. Dt(T)21 has the following properties:

• Symmetry group: p6 b+ Æ c+

• Induced group: c1 c+ Æ b+

• Incidence symbol: [a+ b+ c+ d+ e+; e+ c+ b+ d+ a+] is written a+ Æ e+

vertically as: d+ Æ d+

e+ Æ a+

From the three distinct mappings in the incidence symbol (a Æ e, b Æ c and d Æ
d) it is deduced that there may be up to three different shaped edges in the tiling.
Since edge ‘d’ is mapped onto the same letter with a positive superscript, this
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Figure 5.29 Construction of monotranslational tilings, induced group d1.
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Figure 5.29
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Construction of monotranslational tilings, induced group d1 (cont.)

Figure 5.30 Construction of monotranslational tilings, induced group d2.
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Figure 5.31
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The 11 Laves tilings and their topological types. Source: derived from Grünbaum B and
Shephard G C, Tilings and Patterns, New York, Freeman and Company, 1987.
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implies that there is one edge which is mapped onto itself by two-fold rotational
symmetry in common with the design structure. By superimposing a group
diagram of p6 onto the Laves tiling [34.6], it is obvious which edge satisfies this
criteria because there is only one edge passing through a centre of two-fold rota-
tional symmetry of the unit cell (see Fig. 5.33). (The positioning of the symme-
tries of the group diagram are easily deduced by associating its six-fold centres of
rotation with those occurring in the Laves tiling.) This edge may be replaced by
an alternative edge, having two-fold rotational symmetry, which is then mapped
onto all equivalent positions in the tiling. One edge of a tile has this edge orien-
tated and labelled ‘d’.

The pairs of adjacent edges on either side of the edge labelled ‘d’ are mapped
onto each other by rotational symmetry which may be deduced from the fact that
c+ and b+, in the tile symbol, are mapped onto b+ and c+ in the adjacency symbol,
and similarly for edges a+ and e+. Thus, the edges adjacent to the ones labelled ‘d’
may be exchanged for alternative ones which, again, are mapped onto the remain-
der of the tiling.

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.4 Topological type [33.42]

There are five isohedral tiling types with topological type [33.42]: Dt(T)22 to
Dt(T)26. The last of these gives the classification of the corresponding Laves
tiling, although some of its edges may be exchanged. The discussion below 
gives an explanation of the construction of Dt(T)25 which has the following
properties:

Figure 5.32
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• Symmetry group: pgg b+ Æ e+

• Induced group: c1 c+ Æ d-

• Incidence symbol: [a+ b+ c+ d+ e+; a+ e+ d- c- b+] is written a+ Æ a+

vertically as: d+ Æ c-

e+ Æ b+

The three distinct mappings in the incidence symbol (a Æ a, b Æ e and c Æ d)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that one edge is mapped onto itself
by two-fold rotational symmetry (edge ‘a’), two adjacent edges are mapped onto
each other by glide–reflectional symmetry (edges ‘c’ and ‘d’) and edges labelled
‘b’ and ‘e’ must be mapped onto each other by translational symmetry (rather
than rotational symmetry) because they have positive superscripts in the adja-
cency symbol but do not follow consecutively. Illustration of the process of con-
struction from this information is given in Fig. 5.34.

Adding the group diagram of pgg to the Laves tiling [33.42] establishes which
edge is positioned on a centre of two-fold rotation. (Note that the symmetries of
group diagram pgg form a subgroup of the symmetries of the Laves tiling [33.42]
(symmetry group cmm), so centres of two-fold rotation positioned at the intersec-
tion of glide–reflection axes and reflection axes occurring in a cmm structure are
not applicable in a pgg group diagram.) This edge may be exchanged for an alter-
native two-fold rotationally symmetric line and then mapped to all equivalent
positions in the tiling. One of them is labelled ‘a’ and orientated. Similarly, after
these mappings, the positioning of edges ‘c’ and ‘d’ becomes evident since, apart
from the information displayed by the group diagram, these glide–reflectional
symmetries occur on the second and third edges away from edge ‘a’. This 
leaves the two remaining edges ‘b’ and ‘e’ which are translated onto each other
(see Fig. 5.34).

To confirm that the tiling has been constructed correctly, the remaining edge

Figure 5.33
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labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.5 Topological type [32.4.3.4]

There are three isohedral tiling types with topological type [32.4.3.4]: Dt(T)27 
to Dt(T)29. The last of these gives the classification of the corresponding 
Laves tiling, although some of its edges may be exchanged. The discussion below
gives an explanation of the construction of Dt(T)27 which has the following
properties:

• Symmetry group: pgg b+ Æ d-

• Induced group: c1 c+ Æ e-

• Incidence symbol: [a+ b+ c+ d+ e+; a+ d- e- b- c-] is written a+ Æ a+

vertically as: d+ Æ b-

e+ Æ c-

The three distinct mappings in the incidence symbol (a Æ a, b Æ d and c Æ e)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that one edge is mapped onto 
itself by two-fold rotational symmetry (edge ‘a’), two sets of alternate edges 
are mapped onto themselves by glide–reflectional symmetry (edges ‘b’ and ‘d’
are mapped onto each other and edges ‘c’ and ‘e’ are mapped onto each other).
Illustration of the process of construction from this information is given in 
Fig. 5.35.

Adding the group diagram of pgg to the Laves tiling [32.4.3.4] establishes
which edge is positioned on a centre of two-fold rotation. This edge may be
exchanged for an alternative two-fold rotationally symmetric line and then
mapped to all equivalent positions in the tiling. One of them is labelled ‘a’ and
orientated. Similarly, after these mappings, the positioning of edges ‘b’ and ‘d’

Figure 5.34
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becomes evident because, apart from the information displayed by the group
diagram, these glide–reflectional symmetries occur on the first and third edges
away from edge ‘a’. This leaves two remaining edges which must be glide reflected
onto each other and labelled ‘c’ and ‘e’ in cyclic order (see Fig. 5.35).

To confirm that the tiling has been constructed correctly, the remaining edge
labels may be allocated to the labelled tile and its adjacents to verify the validity
of the incidence symbol.

5.12.6 Topological type [3.4.6.4]

There are three isohedral tiling types with topological type [3.4.6.4]: Dt(T)30 to
Dt(T)32. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)30 which has the following properties:

• Symmetry group: p31m b+ Æ b-

• Induced group: c1 c+ Æ d+

• Incidence symbol: [a+ b+ c+ d+; a- b- d+ c+] is written vertically as: a+ Æ a-

d+ Æ c+

The three distinct mappings in the incidence symbol (a Æ a, b Æ b and c Æ d)
indicate that there may be up to three different shaped edges in the tiling. From
letter associations and Table 5.5, it is deduced that there are two adjacent edges
which are mapped onto themselves by reflectional symmetry (edges ‘a’ and ‘b’).
The other two adjacent edges are mapped onto each other by rotational symme-
try (edges ‘c’ and ‘d’). Illustration of the process of construction from this infor-
mation is given in Fig. 5.36.

Figure 5.35
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5.12.7 Topological type [3.6.3.6]

There are five isohedral tiling types with topological type [3.6.3.6]: Dt(T)33 to
Dt(T)37. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)33 which has the following properties:

• Symmetry group: p3 b+ Æ c+

• Induced group: c1 c+ Æ b+

• Incidence symbol: [a+ b+ c+ d+; d+ c+ b+ a+] is written vertically as: a+ Æ d+

d+ Æ a+

The two distinct mappings in the incidence symbol (a Æ d and b Æ c) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there are two adjacent edges, ‘a’ and ‘d’,
which are mapped onto each other by rotational symmetry followed by adjacent
edges, ‘b’ and ‘c’, which are also mapped onto each other by rotational symmetry.
The illustration of the process of construction, from this information, is given in
Fig. 5.37.

5.12.8 Topological type [3.122]

There are three isohedral tiling types with topological type [3.122]: Dt(T)38 to
Dt(T)40. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)38 which has the following properties:

Figure 5.36
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• Symmetry group: p31m b+ Æ c+

• Induced group: c1 c+ Æ b+

• Incidence symbol: [a+ b+ c+; a- c+ b+] is written vertically as: a+ Æ a-

The two distinct mappings in the incidence symbol (a Æ a and b Æ c) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘a’, which is mapped
onto itself by reflectional symmetry followed by adjacent edges, ‘b’ and ‘c’, which
are mapped onto each other by rotational symmetry. The illustration of the
process of construction, from this information, is given in Fig. 5.38.

5.12.9 Topological type [44]

There are 36 isohedral tiling types with topological type [44]: Dt(T)41 to Dt(T)76.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The discussion below gives an
explanation of the construction of Dt(T)71 which has the following properties:

• Symmetry group: p4g b+ Æ a+

• Induced group: d1 b-

• Incidence symbol: [a+ b+ b- a-; b+ a+] is written vertically as: a+ Æ b+

a-

From the one distinct mapping in the incidence symbol (a Æ b) it is deduced that
each edge has the same shape. Since each edge ‘a’ is mapped onto edge ‘b’ with a
positive superscript (and vice versa), this implies that one is mapped onto the
other by rotational symmetry about a centre of rotation at a mutual end point of
these edges. By superimposing a group diagram of p4g onto the Laves tiling 44, it
is obvious where centres of four-fold rotational symmetry coincide with points, at
the ends of edges, on the square lattice (see Fig. 5.39). One edge may be replaced

Figure 5.37
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Figure 5.38
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by an alternative edge which is then mapped onto all equivalent positions in the
tiling by applying the symmetries of the group diagram. One edge of a tile has
this edge orientated and labelled ‘a’. To confirm that the tiling has been con-
structed correctly, the remaining edge labels may be allocated to the labelled tile
and its adjacents to verify the validity of the incidence symbol.

5.12.10 Topological type [4.6.12]

Dt(T)77 is the only isohedral tiling type with topological type [4.6.12]. This
implies that the Laves tiling with this topological type is already, in fact, Dt(T)77.
Its edges may not be exchanged for alternative ones because each one in a tile is
mapped onto itself by reflectional symmetry only. The properties and illustration
of this tiling are given in Table 5.4 and Fig. 5.40, respectively.

5.12.11 Topological type [4.82]

There are five isohedral tiling types with topological type [4.82]: Dt(T)78 to
Dt(T)82. The last of these gives the classification of the corresponding Laves
tiling. Its edges may not be exchanged because each one in a tile is mapped onto
itself by reflectional symmetry only. The discussion below gives an explanation of
the construction of Dt(T)81 which has the following properties:

• Symmetry group: p4g b+ Æ c+

• Induced group: c1 c+ Æ b+

• Incidence symbol: [a+ b+ c+; a- c+ b+], written vertically as: a+ Æ a-

The two distinct mappings in the incidence symbol (a Æ a and b Æ c) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘a’, which is mapped
onto itself by reflectional symmetry followed by adjacent edges, ‘b’ and ‘c’, which
are mapped onto each other by rotational symmetry. Illustration of the process of
construction from this information is given in Fig. 5.41.

5.12.12 Topological type [63]

There are 11 isohedral tiling types with topological type [63]: Dt(T)83 to Dt(T)93.
The last of these gives the classification of the corresponding Laves tiling. Its
edges may not be exchanged because each one in a tile is mapped onto itself by
reflectional symmetry only. The discussion below gives an explanation of the
construction of Dt(T)88 which has the following properties:

• Symmetry group: p6 b+ Æ a+

• Induced group: c1 c+ Æ c+

• Incidence symbol: [a+ b+ c+; b+ a+ c+] is written vertically as: a+ Æ b+
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The two distinct mappings in the incidence symbol (a Æ b and c Æ c) indicate
that there may be up to two different shaped edges in the tiling. From letter asso-
ciations and Table 5.5, it is deduced that there is one edge, ‘c’, which is mapped
onto itself by two-fold rotational symmetry followed by adjacent edges, ‘a’ and
‘b’, which are mapped onto each other by rotational symmetry. Illustration of the
process of construction from this information is given in Fig. 5.42.

5.12.13 Marked isohedral tiling types

The techniques used to construct marked ditranslational isohedral tiling designs
are similar to those for the unmarked tilings but less involved. Each of these types
of tiling consists of a discrete pattern enclosed within a tiling. The construction
of the tiling is straightforward because each one is an unmodified Laves tiling.
The marking involves incorporating the appropriate discrete pattern into the
tiling (listed in Table 5.4) such that each tile contains one motif. The positioning
of the motifs within the tiling should be fairly obvious. However, if not, it may be
derived by the following technique: one motif is placed within a tile such that the
tile induced group is satisfied (see Table 5.4 to evaluate the tiling’s induced group).
All the edges of the tiles, enclosing the discrete pattern, fall on reflection axes.
Provided that the initial motif is positioned correctly, it may be mapped to all its
equivalent positions by applying these reflectional symmetries which coincide
with the tile boundaries. For example, consider isohedral tiling type Dt(T)70
which has the following properties:

• Topological type: [44]
• Symmetry group: p4m b+ Æ b-

• Induced group: d1(1) b-

• Incidence symbol: [a+ b+ b- a-; a- b-] is written vertically as: a+ Æ a-

a-

Figure 5.41
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The unmarked isohedral tiling associated with Dt(T)70 is Dt(T)76, the square
tiling (or Laves tiling with topological type [44]). A motif may be added to one tile
such that it reduces the tile induced group from d4 to d1. In this instance, the
reflection axes of the motif must coincide with the ‘longest’ reflection axes inside
a square tile (as opposed to the ‘short’ ones parallel to the sides). This motif may
then be mapped onto the remaining tiles in the tiling by applying the reflectional
symmetries occurring on the boundaries of the tiles (see Fig. 5.43).

Summary

Throughout this chapter a classification system has been developed which incor-
porates finite and monotranslational tiling designs. Notation has been devised 
to represent these different categories of tiling, and construction techniques 
have been described and illustrated. The characteristics and classification of
ditranslational isohedral tilings have also been defined, explained and extensively
illustrated.

The methods described for the construction of ditranslational isohedral
tilings give a simple comprehensive procedure in which to create each of the 93
tiling types. However, they do not provide a generalised technique for the con-
struction of all forms of isohedral tiling because the method has been based upon
the operation of edge replacement where the vertices of the derived isohedral
tiling remain in the same positions as those of the corresponding Laves tiling.

In the majority of cases, the positioning of the vertices is dictated by the sym-
metries of the design structure, topological type and incidence symbol. However,
in some instances certain features of the associated Laves tiling may be altered to
accommodate a wider variety of isohedral tilings within one isohedral tiling type.
For example, Fig. 5.44(a(iii)) illustrates a ditranslational tiling, topological type
[36], constructed by methods described previously. Figure 5.44(b(iii)) also illus-
trates a ditranslational tiling of exactly the same isohedral tiling type but the

Figure 5.42

230 Geometric symmetry in patterns and tilings

Construction of a ditranslational isohedral tiling, topological type [63].

5.13

GSP5  11/27/2000 3:10 PM  Page 230



Figure 5.43 Construction of a ditranslational isohedral tiling, topological type [44].

Figure 5.44 Examples of ditranslational tilings with the same isohedral tiling type but different
vertex positions.
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underlying simplified representation of its topological structure (derived by
replacing each edge with a straight line whilst retaining the same positions for the
vertices) does not correspond to a Laves tiling. Thus, the range of tilings which
may be constructed within one isohedral tiling type extends beyond the methods
discussed in this chapter. This extension would require further analysis and
explanation of the properties of tilings. As a consequence, because there is
already a vast range of tilings which may be constructed within each tiling type
(owing to the variety of choice of lines used to replace the edges of the Laves
tilings) further construction techniques will not be discussed in this book.
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