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1.1 INTRODUCTION

In February 2000, scientists announced the draft completion of the human genome. If
media reports were accepted at face value, then it might be reasonable to predict that
most geneticists would be unemployed within a decade of this announcement and human
disease would become a distant memory. As we all know this is very far from the truth,
the human genome is many things but it is not in itself a panacea for all human ailments,
nor is it a revelation akin to the elucidation of the DNA double helix or the theory
of evolution. The human genome is simply a resource borne out of technical prowess,
perhaps with a little human inspiration. One thing that is certain is that we do not yet
understand the functional significance of the majority of our genome, but what we do
know is finally put into context. Over the past 200 years mankind has developed an
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4 INTRODUCTION: THE ROLE OF GENETIC BIOINFORMATICS

ever increasing understanding of genetics; Darwin and Mendel provided the 19th century
theories of evolution and inheritance, while Bateson, Morgan and others established a
framework for the mechanisms of genetics at the beginning of the 20th century. The
tentative identification of DNA as the genetic material by Avery and colleagues in the
1940s preceded the elucidation of the structure of the DNA molecule in 1953 by Watson
and Crick, which in turn provided a mechanism for DNA replication and ushered in
the era of modern molecular genetics. In 2003, precisely 50 years after this landmark
discovery it is anticipated that the entire human genome sequence will be completed in
a final, polished form; a fully indexed but currently only semi-intelligible ‘book of life’.
Here lies the most overlooked property of the genome — its value as a framework for
data integration, a central index for biology and genetics. Almost any form of biological
data can be mapped to a genomic region based on the genes or regulatory elements that
mediate it. So the sequencing of the human genome means new order for biology. This
order is perhaps comparable to the order the periodic table brought to chemistry in the
19th century. Where elements were placed in an ordered chemical landscape, biological
elements will be grouped and ordered on the new landscape of the human genome. This
presents excellent opportunities to draw together very diverse biological data; only then
will the ‘book of life’ begin to make sense.

The human genome and peripheral data associated with and generated as a result of it
require increasingly sophisticated data storage, retrieval and handling systems. With the
promises and challenges that lie ahead, bioinformatics can no longer be the exclusive realm
of the Unix guru or the Perl hacker and in recent years web browsers have made tools
accessible and user friendly to the average biologist or geneticist. Bioinformatics is now
both custodian and gatekeeper of the new genome data and with it most other biological
data. This makes bioinformatics expertise a prerequisite for the effective geneticist. This
expertise is no mystery; modern bioinformatics tools coupled with an inquiring mind
and a willingness to experiment (key requirements for any scientist, bioinformatician
or not) can yield confidence and competence in bioinformatic data handling in a very
short space of time. The objective of this book is not to act as an exhaustive guide
to bioinformatics, other texts are available to fulfil this role, but instead is intended as a
specialist guide to help the typical geneticist navigate the internet jungle to some of the best
tools and databases for the job, that is, associating genes, polymorphisms and mutations
with diseases and genetic traits. In this chapter we give a flavour of the many processes
in modern genetics where bioinformatics has a major impact and refer to subsequent
chapters for greater detail.

At the risk of over simplifying a very complex issue, the process of understanding
genetic disease typically proceeds through three stages. First, recognition of the disease
state or syndrome including an assessment of its hereditary character; second, discovery
and mapping of the related polymorphism(s) or mutation(s) and third, elucidation of the
biochemical/biophysical mechanism leading to the disease phenotype. Each of these stages
proceeds with a variable degree of laboratory investigation and bioinformatics. Both activ-
ities are complementary, bioinformatics without laboratory work is a sterile activity as
much as laboratory work without bioinformatics can be a futile and inefficient one. In fact
these two sciences are really one, genetics and genomics generate data and computational
systems allow efficient storage, access and analysis of the data — together, they constitute
bioinformatics. Almost every laboratory process has a complementary bioinformatics pro-
cess, Table 1.1 lists a few of these — building on these basic applications will maximize
the effect of bioinformatics on workflow efficiency.
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1.2 GENETICS IN THE POST-GENOME ERA — THE ROLE
OF BIOINFORMATICS

In the role of genome data custodian and gatekeeper, bioinformatics is an integral part
of almost every field of biology, including of course, genetics. In the broadest sense it
covers the following main aspects of biological research:

• Knowledge management and expansion
• Data management and mining
• Study design and support
• Data analysis
• Determination of function

These categories are quite generic and could apply to any field of biology, but are clearly
applicable to genetics. Both genetics and bioinformatics are essentially concerned with
asking the right questions, generating and testing hypotheses and organizing and inter-
preting large amounts of data to detect biological patterns.

1.3 KNOWLEDGE MANAGEMENT AND EXPANSION

Few areas of biological research call for a broader background in biology than the modern
approach to genetics. This background is tested to the extreme in the selection of candidate
genes to test for involvement with a disease process, where genes need to be chosen and
prioritized based on many criteria. Often biological links may be very subtle, for example
a candidate gene may regulate a gene which regulates a gene that in turn may act upon
the target disease pathway. Faced with the complexity of relationships between genes,
geneticists need to be able to expand pathways and identify complex cross talk between
pathways. As this process can extend almost interminably to a point where virtually
every gene is a candidate for every disease, knowledge management is important to help
to weigh up evidence to prioritize genes. The geneticist may not be an authority in the
disease area under study, and in today’s climate of reductionist biology an expert with a
global picture of the disease process at the molecular level may be hard to find. Therefore
effective tools are needed to quickly evaluate the role of each candidate and its related
pathways with respect to the target phenotype.

Literature is the most powerful resource to support this process, but it is also the most
complex and confounding data source to search. To expedite this process, some databases
have been constructed which attempt to encapsulate the available literature, e.g. On-line
Mendelian Inheritance in Man (OMIM). These centralized data resources can often be
very helpful for gaining a quick overview of an unfamiliar pathway or gene, but inevitably
one needs to re-enter the literature to build up a fuller picture and to answer the questions
that are most relevant to the target phenotype or gene. The internet is also an excellent
resource to help in this process. In Chapter 2, we offer some pointers to help the reader
with effective literature searching strategies and give suggestions as to some of the best
disease databases and related resources on the internet.

1.4 DATA MANAGEMENT AND MINING

Efficient application of knowledge relies on well organized data and genetics is highly
dependent upon good data, often in very large volumes. Accessing available data, par-
ticularly in large volumes is often the biggest informatic frustration for geneticists. Here
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we focus on aspects of accessing data from public databases; solutions for in-house data
collection, either in the form of ‘off the shelf’ or custom-built laboratory information
management systems (LIMS) belong to a specialist area that lies beyond the scope of
this book.

Genetic data have grown exponentially over the last few years, fuelled by the expressed
sequence tag (EST) cDNA sequence resources generated largely during the 1990s and
more recently the increasing genomic sequence data from the human genome and other
genome sequencing projects. Genetic database evolution has matched this growth in some
areas, with some resources leading the efforts towards whole genome integration of genetic
data, particularly the combined human genome sequence, genetic map, EST and SNP
databases exemplified by the Golden Path. Curiously, development in many of the older
more established genetic resources (for example, GDB and HGMD) has been somewhat
stagnant. This may be partly due to the difficulties involved in data integration with the
draft genome sequence, which is effectively a moving target as the data are updated on a
regular basis. Many of the traditional genetic databases have not seized the opportunity
to integrate genetic data with the human genome sequence. The future survival of these
databases will certainly depend on this taking place and there is no question that the role
of these databases will change. One might question the value of some of the older genetic
datasets, for example, why would we need radiation hybrid maps of the human genome,
when we have the ultimate physical map — the human genome sequence? These painstak-
ingly collected datasets have already played a critical role in the process of generating
the maps that allowed the sequencing of the human genome and they may still have some
value as an aid for QC of new data and perhaps more importantly as a point of reference
for all the studies that have previously taken place.

A key problem that frequently hinders effective genetic data mining is the localiza-
tion of data in many independent databases rather than a few centralized repositories.
A clear exception to this is SNP data which has now coalesced around a single central
database — dbSNP at NCBI (Sherry et al., 2001). By contrast human mutation data, which
has been collected over many years, is still stored in disparate sources, although moves
are afoot to move to a similar central database — Hobbies (Fredman et al., 2002). These
developments are timely; human mutation and polymorphism data both hold complemen-
tary keys to a better understanding of how genes function and malfunction in disease.
The availability of a complete human genome presents us with an ideal framework to
integrate both sets of data, as our understanding of the mechanisms of complex disease
increase, the full genomic context of variation will become increasingly significant.

With the exception of dbSNP most recent database development has not been implicitly
designed for geneticists, instead genomic databases and genome viewers have developed
to aid the annotation of the human genome. Of course this data is vital for genetics,
but this explains why the available tools often appear to lack important functionality.
One has to make use of what functionality is available, although sometimes this means
using tools in ways that were not originally intended (for example many geneticists use
BLAST to identify sequence primer homology in the human genome, but few realize that
the default parameters of this tool are entirely unsuited for this task). We will attempt
to address these issues throughout this book and offer practical solutions for obtaining
the most value from existing tools wherever possible. In Chapter 5 we examine the use
of human genome browsers for genetic research. Tools such as Ensembl and the UCSC
human genome browser annotate important genetic information on the human genome,
including SNPs, some microsatellites and of course, genes and regulatory regions. User-
defined queries place genes and genetic variants in their full genomic context, giving very
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detailed information on nearby genes, promoters or regions conserved between species,
including mouse and fish. It is difficult to overstate the value of this information for
genetics. For example, cross-species genome comparison is invaluable for the analysis of
function, as inter-species sequence conservation is generally thought to be restricted to a
functionally important gene or regulatory regions and so this is one of the most powerful
tools for identifying potential regulatory elements or undetected genes (Aparicio et al.,
1995). Several chapters in this book cover tools and databases to support these approaches
(see Chapters 12 and 13).

As technology developments have scaled up the throughput of genotyping to enable
studies of tens (and possibly hundreds) of thousands of polymorphisms and provided the
capability to generate equally impressive amounts of microarray transcript data to name
just two examples, the need for more effective data management has intensified. This
reveals the major drawback of the ultra user-friendly ‘point and click’ interfaces to most
genetics and genomics tools — they often do not allow retrieval of bulk datasets; instead
data often has to be retrieved on a point by point basis. For many applications this is highly
inefficient at best or simply non-viable at worst. One solution to this problem is to query
the database directly at a UNIX or SQL level, but this may not be a trivial process for the
occasional user with no or limited knowledge of command lines and in many cases it will
not be possible to access the data directly in this manner. If the raw data are available,
it may be possible to build custom databases, using database tools such as Microsoft
ACCESS. However, the authors accept that this is not a straightforward option nor the
method of choice of most users and instead this book will focus on web-based methods for
data access. Where there is no web-based method to achieve a data mining goal, geneticists
should consider contacting the developers of databases to request new functionality, such
requests are generally welcomed by database developers, many of whom would be very
pleased to know that their tools are being used! Several developers have already improved
their methods for bulk data retrieval (probably as a result of requests from users), but
interfaces are still lacking in some critical areas for genetics. For example, several tools
allow the user to generate a list of SNPs across a locus (e.g. dbSNP, Ensembl and UCSC),
but only one allows the user to retrieve the flanking sequence of each SNP in one batch
to allow primer design (SNPper — see Chapter 3). We will try to tackle these problems
as they arise throughout the book.

1.5 GENETIC STUDY DESIGNS

There are a number of approaches to disease gene hunting and many arguments to support
the merits of one approach over another. Whatever the method, comprehensive informatics
input at the study design stage can contribute greatly to the quality, efficiency and speed
of the study. It can help to define a locus clearly in terms of the genes and markers that it
contains and supports a logical and systematic approach to marker and gene selection and
subsequent genetic analysis, simultaneously reducing the cost of a project and improving
the chances of successfully discovering a phenotype–genotype correlation.

Despite the recent improvements in the throughput of genetic and genomic techniques
and the increased availability of gene and marker data, genes which contribute to the
most common human diseases are still very elusive. By contrast, the identification of
genes mutated in relatively rare single gene disorders (so-called Mendelian or monogenic
disorders) is now straightforward if suitable kindreds are available. The identification
of the genes responsible for a plethora of monogenic disorders is one of the genetics
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success stories of the late 1980s and the 1990s; genes identified include, to name but
a few — CFTR (cystic fibrosis; Riordan et al., 1989), Huntingtin (Huntington’s disease;
Huntington’s Disease Collaborative Research Group, 1993), Frataxin (Friedreich’s ataxia;
Campuzano et al., 1996) and BRCA1 in breast and ovarian cancer (Miki et al., 1994).

Unfortunately, success in the identification of genes with a role in complex (i.e. multi-
genic) disease has been far less successful. Notable examples are the involvement of
APOE in late-onset Alzheimer’s disease and cardiovascular disease and the role of NOD2
in Crohn’s disease (Hugot et al., 2001; Saunders et al., 1993). However, genes for most
of the common complex diseases remain elusive. Our ability to detect disease genes is
often dependent on the analysis method applied. Methods for the identification of disease
genes can be divided neatly into two broad categories, linkage and association. Although
many common principles apply to both of these study types, each approach has distinct
informatics demands.

1.5.1 The Linkage Approach

The vast majority of Mendelian disease genes have been identified by linkage analysis.
This involves identifying a correlation between the inheritance pattern of the phenotypic
trait (usually a disease state) with that of a genetic marker, or a series of adjacent markers.
Because of the relatively low number of recombination events observed in the 2–5 genera-
tion families typically used for linkage analyses (around one per Morgan, which is roughly
equivalent to 100 megabases, per meiosis), these marker/disease correlations extend over
many megabases (Mb), allowing adequate coverage of the entire human genome with a
linkage scan of only 300–600 simple tandem repeat (STR) markers giving an average
spacing of 10 or 5 cM respectively. STRs are the markers of choice for linkage analysis,
due to the fact that they show a high degree of heterozygosity. Markers with a heterozy-
gosity level of >70% are typically selected for linkage panels (i.e. from 100 individuals
selected at random, at least 70 would have two different alleles for a given marker; clearly
the higher the heterozygosity the greater the chance of following the inheritance pattern
from parent to offspring). Such marker panels are well characterized and can be accessed
from several public sources at various densities (see Chapter 7). Just over 16,000 STR
markers have been characterized in humans, which represents a small fraction of the
estimated total numbers of polymorphic STRs. Analysis of the December 2001 human
genome draft sequence suggests that there may be somewhere in the order of 200,000
potentially polymorphic STRs in the human genome (Viknaraja et al., unpublished data).
Software tools are now available to assist in the sequence-based identification of these
potentially polymorphic STR markers across a given locus, should additional markers be
required to narrow a linkage region (see Chapter 9 for details).

Clearly the limited degree of recombination that facilitates linkage analysis with
sparse marker panels is a double-edged sword; the investigator may be left with several
megabases of DNA containing a large number of potential candidate genes. However,
combining data from several different families often results in reduction of the genetic
interval under study, and the high-throughput sequencing capabilities available in many
modern genetics laboratories coupled with complete genome sequence render the system-
atic screening of a large number of candidate genes a far less daunting task than it was
10 years ago.

Unlike single gene Mendelian diseases, complex genetic diseases are caused by the
combined effect of multiple polymorphisms in a number of genes, often coupled with
environmental factors. The successes of linkage analysis in the rapid identification of
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Mendelian disease genes has spawned large-scale efforts to track down genes involved in
the more common complex disease phenotypes. This approach is not restricted to academic
research groups; many pharmaceutical and biotechnology companies have joined what
many would perceive to be a ‘genetic gold-rush’, in an attempt to identify new drug
targets for common diseases such as asthma, diabetes and schizophrenia, in a manner
reminiscent of the rush to mine drug targets from expressed sequence tags (ESTs) in
the late 1990s (Debouck and Metcalf, 2000). The application of a linkage approach to
complex disease typically involves combining data from a large number of affected sib-
pairs. Publicly available software for linkage analysis of sib-pairs is described in detail
in Chapter 11.

Unfortunately the identification of genes involved in common diseases using a linkage
strategy has been largely unsuccessful to date, mainly because each gene with phenotypic
relevance is thought to make a relatively small contribution to disease susceptibility.
These small effects are likely to be below the threshold of detection by linkage analysis
in the absence of unfeasibly large sample sizes (Risch, 2000). In an attempt to circumvent
this problem researchers using linkage approaches to identify genes involved in complex
disease typically relax the threshold of acceptable ‘log of the odds’ (LOD) score (see
Chapter 11) from 3, the traditionally accepted threshold of evidence for linkage in mono-
genic disease to 2, or sometimes even lower (Pericak-Vance et al., 1998). However we
would expect to see a number of hits due to chance alone with a comprehensive genome
scan at this threshold. The rationale for lowering the threshold for detection of linkage,
i.e. the effect of each contributing gene in a complex disease is smaller than would be
expected for a monogenic disease, can result in a situation where a true signal is indistin-
guishable from background noise. In order to distinguish true linkage from false positives,
many investigators are now using a combination of both linkage and association, rely-
ing on linkage analysis to reveal tentative, broad map positions which are subsequently
confirmed and narrowed with an association study (see Chapter 8).

1.5.2 The Association Approach

In its simplest form, the aim of a genetic association study is to compare an allele fre-
quency in a disease population with that in a matched control population. A significant
difference may be indicative that the locus under test is in some way related to the disease
phenotype. This association could be direct, i.e. the polymorphism being tested may have
functional consequences that have a direct bearing on the disease state. Alternatively, the
relationship between a genetic marker and phenotype may be indirect, reflecting proximity
of the marker under test to a polymorphism predisposing to disease. The phenomenon of
co-occurrence of alleles (in this case a disease-conferring allele and a surrogate marker
allele) more often than would be expected by chance is termed linkage disequilibrium
(LD). Suitable population structures for genetic association studies and statistical methods
and software tools for the analysis of data resulting from such studies are discussed in
detail in Chapters 8 and 11. Our aim here is to give the reader the briefest of introductions.

Association studies have three main advantages over linkage studies for the analysis
of complex disease: (i) case–control cohorts are generally easier to collect than extended
pedigrees; (ii) association studies have greater power to detect small genetic effects than
linkage studies; a clear example is the insulin gene, which shows extremely strong associa-
tion with type 2 diabetes, but very weak linkage (Speilman et al., 1993); (iii) LD typically
stretches over tens of kilobases rather than several megabases (Reich et al., 2001), allow-
ing focus on much smaller and more manageable loci. Among other reasons (discussed in
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Chapter 8), this is because an association-based approach exploits recombination in the
context of the entire population, rather than within the local confines of a family structure.

Of course, this last point is the other side of the double-edged sword of marker den-
sity and resolution mentioned in the context of linkage analysis above. The trade-off
is reduced range over which each marker can detect an effect, resulting in a need for
increased marker density. The required marker density for an association-based genome
scan is unknown at present as we do not have enough information regarding human
genome diversity in terms of polymorphic variability and genome-wide patterns of LD.
However, typical guesses are in the range of 30,000–300,000 markers (Collins et al.,
1999; Kruglyak, 1999); orders of magnitude higher than the numbers required for linkage
analysis. The high cost of generating the several million genotypes for such an experi-
ment has prevented any such undertaking at the time of writing, although several proof
of concept studies have demonstrated that high-density SNP maps can be efficiently gen-
erated using existing technologies and should be achievable in a reasonable time-frame
(Antonellis et al., 2002; Lai et al., 1998). In the meantime, it is likely that research groups
will continue to test individual genes for association with disease (the ‘candidate gene’
approach — see Section 1.7 below).

Once the genomic landscape, in terms of polymorphism and LD, is known with some
degree of accuracy, it is highly likely that the number of markers required for a whole
genome association study can be reduced by an intelligent study design with heavy reliance
on bioinformatics input. Testing all available markers in a given region for association
with a disease is expensive, laborious and frequently unnecessary; a simple example to
illustrate this would be two adjacent markers which always demonstrate co-segregation;
in other words, the genotypic status of one can always be predicted by genotyping the
other — there is no point in genotyping both. Although this example is simple in the
extreme, as adjacent markers typically show varying degrees of (rather than absolute) co-
segregation, there is a trade-off between minimizing the amount of required genotyping
whilst minimizing loss of information. Selection of optimal non-redundant marker sets,
coupled with an initial focus on gene-rich regions, is the key to providing lower overall
genotyping costs whilst retaining high power to detect association. This will require exten-
sive knowledge of the blocks of preserved marker patterns (haplotypes) in the population
under study; bioinformatics tools for constructing and analysing haplotypes and selecting
optimal marker sets based on haplotypic information are discussed in detail in Chapters 8
and 11.

1.5.3 Markers for Association Studies

STRs were (and still are) the vanguard of linkage analysis, mainly because of their high
levels of heterozygosity and hence increased informativeness when compared to an earlier
marker system, the restriction fragment length polymorphism (RFLP); the majority of
RFLPs are the result of a single nucleotide polymorphism (SNP) which creates or destroys
a restriction site. SNPs have made a comeback worthy of Lazarus in recent years and
are now the marker of choice for genetic association studies. The main reasons for the
return to favour of SNPs are their abundance (an estimated 7 million with a minor allele
frequency of greater than 5% in the human genome; Kruglyak and Nickerson, 2001) and
binary nature which renders them well suited to automated, high-throughput genotyping.
As mentioned above, tens or hundreds of thousands of SNPs will be required for whole
genome association scans (even with optimized marker sets). Until very recently, studies
on this scale were unfeasible, not only as a result of unacceptably high genotyping costs,
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but also due to the lack of available markers. Large-scale SNP discovery projects such as
the SNP consortium (TSC; Altshuler et al., 2000a) have increased the number of known
SNPs dramatically. We now have a great deal of SNP data (3.4 million non-redundant
SNPs deposited in dbSNP at the time of going to press), however it is becoming apparent
that even this number of markers will be insufficient for comprehensive association studies
(note that the figure of 3.4 million includes a considerable number of SNPs with a minor
allele frequency of less than 5%, which may be of limited use in association studies; this
is discussed in Chapter 8).

We have already touched on the importance and potential impact of defining haplotypes
as the basis for identifying optimal marker sets. This method has already been applied in
small-scale studies with striking results. For example, in a study of nine genes spanning a
total of 135 kb, Johnson et al. (2001) found that just 34 SNPs from a total of 122 could be
used to define all common haplotypes (those with a frequency of greater than 5%) across
the nine genes, an impressive validation of the approach of defining maximally informative
minimal marker sets based on haplotypic data. However this study also highlighted the
inadequacy of the current public SNP resource; only 10% of the SNPs identified by
Johnson et al. were found to be present in dbSNP. Using dbSNP data alone, it was
impossible to capture comprehensive haplotype data; in fact for four of the nine genes,
no SNPs whatsoever were registered in dbSNP. Unfortunately it appears that our current
public SNP resource represents the tip of the iceberg in terms of requisite information for
the proper implementation of modest candidate gene association studies, let alone whole
genome scans. However, given the burgeoning nature of dbSNP, we are optimistic that
this situation is transient.

As a footnote to this section, it should be noted that although STRs have been largely
swept aside by the wave of SNP euphoria, STRs may still be useful for association studies;
indeed, it is possible that LD can be detected over far greater distances with STRs than
SNPs under some circumstances, as discussed in Chapter 8.

1.6 PHYSICAL LOCUS ANALYSIS

In recent years, as the human genome sequence has neared completion, practical approa-
ches to physical characterization of a genetic locus have changed quite dramatically.
The laborious laboratory-based process of contig construction using yeast and bacterial
artificial chromosome (YAC and BAC) clones or cosmids, involving consecutive rounds
of library screening, clone characterization and identifying overlaps between clones, has
become largely redundant, as has clone screening for the identification of novel poly-
morphic markers and genes. Today this process, which took many months or even years,
can be completed in an afternoon using web-based human genome browsers. This shifts
the initial focus of a study from contig construction and characterization to very detailed
locus characterization using a range of bioinformatics tools; it is now possible to char-
acterize a locus in silico to a very high level of detail before any further laboratory
work commences. When the wet work does start, good prior use of bioinformatics will
have rendered many procedures superfluous and the study is far more efficient and
focused as a result. Figure 1.1 illustrates some of the key stages in the genetic analy-
sis of candidate genes and loci — the role of informatics at each stage of this process
is explored in detail in this book and the relevant chapters addressing each issue are
indicated.
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1.7 SELECTING CANDIDATE GENES FOR ANALYSIS

Candidate genes are typically selected for testing for association with a disease state on the
basis of either (i) biological rationale; the gene encodes a product which the investigator
has good reason to believe is involved in the disease process, (ii) the fact that the gene in
question is located under a linkage peak, or (iii) both. The biggest problem with candidate
gene analysis is that apparently excellent candidates are usually highly abundant and this
surfeit of ‘good’ candidates is often difficult to rationalize.

Bioinformatics can be one of the most effective ways to help shorten, or more correctly
prioritize, a candidate list without immediate and intensive laboratory follow-up. Firstly
candidate criteria need to be determined based upon the phenotype in question. Detailed
searches of the literature may help to flesh out knowledge of the disease and related
pathways. Once a set of criteria is defined (for example which tissues are likely to be
affected, which pathways are likely to be involved, and what types of genes are likely
to mediate the observed phenotype), further literature review will help to ‘round up the
usual suspects’, genes in known pathways with an established role in the phenotype under
study. This is probably the most time-consuming step, but some tools can help to expedite
this process, for example tools like OMIM can provide concise summaries of a disease
area or gene family. Other databases encapsulate knowledge of pathways and regulatory
networks, e.g. the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa et al.,
2002). An alternative or parallel approach at this stage is to use a broader net to identify
all genes which could be involved in the disease based on relaxed criteria such as tissue
expression. Many in silico gene expression resources are available, including data derived
from EST libraries, serial analysis of gene expression (SAGE; Velculescu et al., 1995)
data, microarray and RT-PCR data (see Chapter 15). For example, if the disease manifests
in the lung, it is possible to distinguish genes that show lung expression from those that
do not. This gives an opportunity to reduce emphasis on genes that show expression
patterns which conflict with the disease hypothesis. However, it should be noted that
electronic expression data is typically not comprehensive and care must be taken in using
it to exclude the expression of a gene in a specific tissue. Low-level expression may not
be detected by the method used; furthermore, gene expression may show temporal and
spatial regulation — a gene may only be expressed during a specific phase of development
or under particular conditions, e.g. cellular stress or differentiation.

1.8 PROGRESSING FROM CANDIDATE GENE
TO DISEASE-SUSCEPTIBILITY GENE

In recent years, countless associations between genes and disease have been published,
however many of these are likely to be spurious. Many reported associations show
marginal p-values and subsequent studies often fail to replicate initial findings. Clearly
p-values of around 0.05, generally accepted as the cut-off for a significant finding, will
occur by chance for every 20 tests performed; this largely explains the general failure to
reproduce promising primary results. However, real but very small effects giving marginal
p-values are also difficult to replicate, leaving the investigator unsure as to the meaning
of a failure to replicate. One approach for resolving the issue is to perform a rigorous
meta-analysis using all available data, including both positive and negative associations.
This type of analysis was recently used to demonstrate an association between the nuclear
hormone receptor PPARγ and diabetes, using data (previously regarded as equivocal)
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drawn from a range of publications (Altshuler et al., 2000b). Nonetheless, this approach
relies on a lack of publication bias, i.e. the improbable assumption of an equal chance of
publication for both positive and negative results.

Ultimately the biologist requires functional data to support an hypothetical genetic asso-
ciation; bioinformatics has a role to play here too. For example, DNA variants that alter
subsequent amino-acid sequences can be checked for potential functional consequences
using software tools (Chapters 12 and 14). Similarly, a thorough bioinformatic character-
ization of putative regulatory elements can give an indication of the possible impact of
polymorphisms on cis-acting transcriptional motifs and the consequence on expression lev-
els (Chapter 13). Bioinformatics can also assist in laboratory-based functional assessment
of genes and polymorphisms; simple sequence manipulation tools coupled with genome
sequence data can be used to design constructs for the in vitro and in vivo analysis of genes
and polymorphisms using expression assays, transgenic mice and a host of other systems.
However, perhaps the largest impact from bioinformatics on the field of functional char-
acterization of genes will come from the development of powerful pattern recognition
software for the identification of relationships between multitudes of transcripts analysed
using microarrays. This approach has already proved useful in tumour classification by
relating patterns of gene expression to response to chemotherapeutic agents (Butte et al.,
2000). An extension of this method should allow the elucidation of gene–gene interac-
tions and the identification of common or converging biochemical pathways. Coupled
with a knowledge of putative disease-related polymorphisms and comparable expression
profiles in disease tissue, microarrays (together with the nascent field of proteomics; see
Chapter 16) promise to be an extremely powerful future tool for the dissection of complex
disease processes. Figure 1.2 illustrates approaches for gene characterization which are
useful for both prioritizing candidate genes for analysis and establishing causality in a
disease process. The chapter detailing each aspect is indicated.

1.9 COMPARATIVE GENETICS AND GENOMICS

We have already touched on the role of bioinformatics in relation to the identification
of functionally important DNA motifs by cross-species comparison. This area is covered
more fully in Chapters 9 and 12. Recently the sequencing of a number of genomes has
been completed, including the yeasts Saccharomyces cerevisiae and Schizosaccharomyces
pombe, the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis
elegans; soon these will be joined by the puffer fish species Fugu rubripes and Tetraodon
nigroviridis, the zebra fish Danio rerio and of course the mouse and rat. This has provided
an unprecedented opportunity for large-scale genome comparisons, allowing researchers
to make inferences not only with regard to the identification of conserved regulatory
elements, but also about genome evolutionary dynamics. Whole genome availability also
provides a complete platform for the design of in vivo paradigms of human disease, for
example transgenic and gene knock-out animal models and more sophisticated spatially
and temporally regulated conditional mutants.

Large-scale approaches to biochemical pathway dissection using expression microar-
rays in relatively simple organisms, particularly yeast, are also proving extremely promis-
ing. Whole genome expression profiles can be generated and correlated transcription
profiles identified for related groups of genes. Coincident expression patterns are fre-
quently indicative of subsequent protein–protein interactions and co-localization in protein
complexes (Jansen et al., 2002). Similar tissue-specific experiments can be performed for
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Figure 1.2 Approaches for gene characterization, indicating chapters detailing
each aspect.

higher organisms, both for the purposes of identifying coincident transcription profiles
for unravelling biochemical pathways and for comparison of diseased and normal tissues
(see, for example Mody et al., 2001; Saban et al., 2001). Tissue derived from animal
models such as mice can have advantages over using diseased human tissue: the disease
model can be generated under a controlled environment, typically on an identical genetic
background to the control tissue, and procurement of a significant number of high-quality
tissue samples (essential for the extraction of good quality RNA) is more straightforward
(see Chapter 15).

Thus far we have given a few examples of the impact of combining model organ-
isms with high-throughput genomics technologies for improving our understanding of
gene function and interaction, biochemical pathways and human disease (comparative
genomics). Similar strides are being made in the field of comparative genetics (here
we define genetics as phenotype-driven gene identification using genetic mapping pro-
cedures), particularly in the areas of mouse and rat genetics. The ability to perform
controlled crosses such as inter-crosses and backcrosses (see Silver, 1995; Chapter 11)
coupled with the development of fairly high density genetic maps over the last few
years has rendered the mapping of monogenic traits in both mouse and rat a reasonably
straightforward exercise. The impact of the completion of the mouse and rat genome
sequences in the near future will be similar to the impact of the availability of the human
genome on human genetics; indeed, the partially completed mouse and rat genomes
are already giving significant improvements in speed of mapping and candidate gene
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identification. These developments together with recently implemented large-scale muta-
genesis programmes for the generation of monogenic mutants (see Chapter 6) promise
to provide a significant increase in the mutant mouse resource in terms of simple dis-
ease models.

Significant progress has also been made in mapping complex traits in both the mouse
and rat in recent years, including the development of software packages for the identifi-
cation of quantitative trait loci (QTL; see Chapter 11). However, although experimental
crosses can be designed to maximize the chances of success (unlike human studies), com-
plex trait analysis in model organisms is still plagued by the difficulties in identifying
and precisely localizing genes of relatively small effect. QTL linkage peaks are typically
broad due to lack of absolute correspondence between genotype and phenotype and a con-
sequent inability to identify unequivocal recombinant animals. In an attempt to overcome
this limitation, mapping methods using ‘heterogenous stocks’ have recently been devel-
oped (Mott et al., 2000). The heterogenous stock comprises a mouse line resulting from
inter-crossing several different inbred strains and maintaining the resulting mixed stock
through several generations (typically 30–60). Each chromosome from a mouse derived
from a heterogenous stock consists of a mosaic of DNA from the different founding
strains, allowing a fine mapping approach based on a knowledge of the ancestral alleles
in the original inbred lines. Mott et al. have developed publicly available software for the
analysis of heterogenous stocks (see Chapter 11).

Perhaps one of the most exciting developments in model organism genetics is the fusion
of classical genetics with high-throughput genomics techniques. Microarrays provide a
means of checking all genes within a QTL linkage peak for subtle differences in expression
levels, potentially pinpointing the culprit gene. This tactic was used successfully to reveal
the role of Cd36 in metabolic defects, following linkage analysis in the rat (Aitman
et al., 1999). As an extension of this method, a gene expression profile may be treated as a
quantitative trait and used as a phenotypic measure in linkage analysis for the identification
of genes influencing the expression level, as a route to biochemical pathway expansion.
Jansen and Nap (2001) recently coined the phrase ‘genetical genomics’ for this type
of approach.

1.10 CONCLUSIONS

We hope this book will help the geneticist to design and complete more effective genetic
analyses. Bioinformatics can have far-reaching effects on the way that a laboratory scien-
tist works but obviously it will never entirely replace the laboratory process and is simply
another set of tools to expedite the research of the practising biologist. Misconceptions
regarding the power of bioinformatics as a stand-alone science are perhaps among the
biggest mistakes that computer-based bioinformatics specialists can make and may even
explain a degree of prejudice against bioinformatics — perceived by some as an ‘in sil-
ico science’ with little basis in reality. Taken to an extreme and without a balanced
understanding of both the application of software tools and a good appreciation of basic
biological principles, this is exactly what bioinformatics can be, but where bioinformatics
proceeds as part of ‘wet’ and ‘dry’ cycles of investigation, both processes are stronger as
a result. In this introduction we have briefly examined some of the experimental genet-
ics processes which can be assisted by informatics; we now invite the reader to read
on for more detailed coverage of each of these processes in the remaining chapters of
this book.
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2.12 Conclusions
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2.1 INTRODUCTION

The World Wide Web (‘the web’) and our knowledge of human genetics and genomics
are both expanding rapidly. By allowing swift, universal and largely free access to data,
particularly the human genome sequence, the web has already played an important role
in the study of human genetics and genomics. Increased data accessibility is dramatically
changing the way the scientific community is communicating and carrying out research.
The internet biology community is expanding daily with an organic development of web-
sites, tools and databases, which could eventually replace the conventional scientific paper
as the predominant form of communication. Already we are starting to see successful web-
site/journal hybrids such as Genome Biology (http://genomebiology.com/) and biomednet
(biomednet.com) which offer high quality peer-reviewed scientific articles and reviews
alongside bioinformatics databases and tools. Many more established journals like Nature
and Science are rapidly following suit with user-friendly websites, which offer much more
than the full text of the journal.

The web is offering more than just information. Virtual research communities have
been organized around databases and specialist research groups. These communities are
even influencing the way bioinformatics tools are being developed, a good example being
Ensembl the human genome browser developed at the EBI and Sanger Institute in Hinxton,
Cambridgeshire (Hubbard et al., 2002). In the spirit of open source community projects
such as the free UNIX operating system Linux, the Ensembl development team has devel-
oped Ensembl on an ‘open source’ basis. This means all code is freely available to anyone
who wishes to download it. But further still, Ensembl is developed by a ‘virtual commu-
nity’ of developers from institutes, industry and academia around the world who are free
to modify and add to the central software code (subject to a peer review). So the tools
and interfaces, though primarily developed in Hinxton, may include contributions from
developers in Singapore, North Carolina and New York or elsewhere.

2.1.1 Hypothesis Construction and Data Mining — essentials
for Genetics

Genetics is a science which calls for analysis and interpretation across a wide range of
biological research. Many chapters in this book deal with focused tools. Beyond these
specialist applications however, geneticists need access to a wide range of databases
and literature, both to update particular research areas and formulate new hypotheses.
This requires expertise across the gamut of biological data on the internet. This ranges
from the review literature to highly specific databases. This can illuminate biology from
gene function to biological pathways. Effective data mining needs an understanding of
the general principles by which it is organized, particularly the sequence-based data
resources. This needs to be backed up by good scientific judgment concerning quality
and significance.

An exhaustive description of biological data and databases on the internet would be
beyond the scope of this book. Confucius might not have been thinking of internet search-
ing when he said ‘give a man a fish and he will live for a day, teach a man to fish and
he will live forever’, but the principle still applies. So, instead of reviewing the data
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resources themselves the most useful thing we can do here is to review search methods
to help identify both current and future resources.

2.2 SUB-DIVISION OF BIOLOGICAL DATA ON THE INTERNET

Biological information on the internet can be roughly subdivided into two broad cate-
gories, which we will term ‘the biological internet’ and ‘biological information on the
internet’. This distinction may not be immediately apparent — we define ‘the biologi-
cal internet’ as purpose-built biological tools and databases which index and contain
detailed biological information, such as the human genome sequence, nucleotide and pro-
tein sequences, genetic markers, polymorphisms and the full range of biological literature.
The majority of these tools and databases are maintained in a highly integrated form by
major biological organizations such as NCBI and EMBL. We define ‘biological infor-
mation on the internet’ as biological data which is less formally maintained on the web,
this could include information on research laboratory homepages, conference abstracts,
tools, boutique databases and any other data that scientists have seen fit to present on
the web.

These distinctions are more clearly defined by the tools that are available to search
the data. Firstly there are general purpose web search engines, such as Google, Lycos
and Excite (see Table 2.1 for a full list), these tools index and search the full range
of the internet and have the capability to identify webpages, tools and databases by
simple keyword searching. A second category of tools are the specialist biological search
tools, such as Entrez-PubMed and BLAST (see Chapter 4). The former uses keyword
searching or accession number queries, the latter uses similarity searching to find related
sequences.

The choice of search tool depends on the kind of information that needs to be retrieved.
The scope of biological and genetic information on the internet is so broad that no single
tool is available to index all data. The key point to understand is which tool is most suitable
to identify a specific form of data. For example literature is most comprehensively indexed
by PubMed or Scirus (see below), whereas nucleotide records can only be identified with
any specificity by Entrez or BLAST. This is in contrast to a laboratory homepage or a
boutique web resource. Unless a description is published in PubMed these resources may
only be identified by a web search tool. If it is not clear what information needs to be
retrieved then clearly both specific and general search tools should be used.

TABLE 2.1 Key Internet Search Engines with Reported Index Size (Equivalent to
the Number of Documents Indexed)

Search Engine URL Reported Index Size

Google http://www.google.com/ 560 M
AltaVista http://www.altavista.com/ 350 M
FAST http://www.alltheweb.com/ 340 M
Northern Light http://www.northernlight.com/ 265 M
Excite http://www.excite.com/ 250 M
HotBot http://www.hotbot.com/ 110 M
Lycos http://www.lycos.com/ 110 M
MetaCrawler http://www.metacrawler.com/ ND
Scirus http://www.scirus.com/ 69 M (science only)
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2.3 SEARCHING THE INTERNET FOR GENETIC INFORMATION

The World Wide Web began as an information-sharing and retrieval project at the Euro-
pean particle physics laboratory CERN (Berners-Lee et al., 1999). It has only recently
evolved into the mass media beast that we all know. But just as the internet began,
so it continues as an information-sharing resource for scientists in all fields. One can-
not deny that commercial proliferation has not been an unmitigated success for the
growth of the web but this has led many scientists to perceive the internet as a ris-
ing tide of irrelevant noise that has largely washed away any intrinsic value. This is
a misconception. We will demonstrate that some web resources for biological sciences
are both outstanding and indispensable. Internet biology suffers as much as any other
field of scholarship from: data of dubious provenance, broken links, outdated sites and
newsgroup spam. But it also contains valuable and novel data which can be crucial for
scientific discovery. The skill is to recognize chaff and know how to sift the wheat from
it. To do this we need tools that are capable of highlighting relevant information in an
organized manner.

In the process of linking genotypes to phenotypes it is important to know about the
function of a gene or gene family, for example to prioritize candidate disease-association
genes. In such cases biological search tools and internet search tools may provide com-
plementary results. To give an hypothetical example let us assume that a genetic locus
associated with a familial form of basal cell carcinoma includes a novel gene with
homology to WNT genes. With no knowledge of WNT genes it would be difficult
to include or exclude this gene as a candidate. A search of PubMed would reveal a
daunting range of over 1000 publications mentioning members of the WNT gene fam-
ily. Some might contain specific information to link WNT genes to carcinoma but it
would take a long time to read and digest all the available information. Using Google
to search for ‘WNT gene’ would identify a range of conference abstracts and laboratory
homepages. Towards the top of the hit-list this would include the ‘World Wide WNT
Window’ (www.stanford.edu/∼rnusse/wntwindow.html). This is an excellent summary of
the whole WNT signalling pathway maintained by prominent researchers in the WNT
signalling field. The page includes a detailed and regularly maintained summary of all
genes in this highly complex pathway, which is currently unpublished. Examination of
this pathway would identify the Patched receptor upstream, which has been shown to
cause 80% of sporadic basal cell carcinomas. This is just one of many examples of how
a thriving unpublished and unpublicized on-line research community can be identified by
opportunistic internet searching.

2.4 WHICH WEB SEARCH ENGINE?

In a nutshell the availability of full-text search engines allows the web to be used as
a searchable 15-billion-word encyclopedia. However, because the web is a distributed,
dynamic, and rapidly growing information resource, it presents many difficulties for tra-
ditional information retrieval technologies. This why the choice of the search methodology
used for searching can lead to very different results.

An important point to make is that all search engines are not the same. A common
misconception is that most internet search engines index the same documents for a large
proportion of the web. In fact the coverage of search engines may vary by an order of mag-
nitude. An estimated lower boundary on the size of the indexable web is 0.8 billion pages
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(http://www.neci.nec.com/∼lawrence/websize.html). Many engines index only a fraction
of the total number of documents on the web and so the coverage of any one engine may
be significantly limited. Combining the results of multiple engines has been shown to
significantly increase coverage. This is done automatically with metasearch engines such
as MetaCrawler (www.metacrawler.com), which search and combine the results of several
search engines. Table 2.1 presents a selection of web search engines with direct applica-
bility to biological searching. We also recommend the website, SearchEngineWatch.com,
for reviews and reports on new search engines.

2.4.1 Google

It is apparent from Table 2.1 that Google offers the widest indexing capacity. This is
an innovative search engine based on scientific literature citation indexes (Butler, 2000).
Conventional search engines use algorithms and simple rules to rank pages based on
the frequency of the keywords specified in a query. Google exploits the links between
webpages to rank hits. Thus the highly cited pages of the web world with many links
pointing to them are ranked highest in the results. This is an efficient searching mechanism
which effectively captures the internet community ‘word of mouth’ on the best and most
frequently used webpages.

2.4.2 Scirus

The greatest limitation for web search engines is unindexed databases. These include many
of the databases that make up the biological internet, such as sequence databases and
some subscription-based resources such as full-text journals, and commercial databases.
Although limited material from these sites, such as front pages, documentation and
abstracts are indexed by search engines, the underlying data is not available because
of database firewalls and/or blocks on external indexing.

In an attempt to solve this problem, the publisher Elsevier has developed Scirus
(http://www.scirus.com/). This is a joint venture with FAST, a Norwegian search engine
company who have produced an excellent specialist scientific search engine. Scirus
enhances its specificity and scope by only indexing resources with scientific content.
These include webpages, full-text journals and Medline abstracts. This makes Scirus an
effective tool for both web and literature searching tool. Both full text and PDF format
journal content is indexed by performing a MetaSearch of the other major providers of
full text — Elsevier’s ScienceDirect and Academic Press’s IDEAL collection. Scirus also
searches the web for the same key words, including Medline, patents from the databases
of the US Patent Office, science-related conferences and abstracts. The Medline database
is provided on the BioMedNet platform, which requires a free BioMedNet login and
password for access. Scirus offers the user several options to customize their searches to
search only free sites, only membership sites or only specific sites. The advanced interface
also allows boolean queries (see below). By March 2002 Scirus had indexed 69 million
science-related pages, including PDF files and peer-reviewed articles, thereby covering
the majority of the biologically relevant internet.

Although Scirus expands the scope of biological data searching beyond other search
engines it falls short in some areas. For example the full-text journals are restricted to
Elsevier and Academic Press. Coverage is also restricted by index pre-filtering that might
miss some websites. Another disadvantage is that search results tend to be redundant.
Although for literature searching there are alternative full text searching tools such as
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HighWire (see below) Scirus is tantalizingly close to what a universal biological search
engine should be.

2.5 SEARCH SYNTAX: THE MATHEMATICS OF SEARCH ENGINE USE

The best search engine in the world will not retrieve relevant results unless the query
is correctly defined. This is easy to master and a few basic commands can turn a poor
specificity keyword search into a highly targeted query. The key to successful sifting of
the web is to select for the minimum number of irrelevant hits (maximize specificity) but
avoiding the exclusion of relevant hits (minimize false negatives).

2.5.1 Using the ‘+ and −’ Symbols to Filter Results

Sometimes it is necessary to ensure that a search engine finds pages that have all the
words you enter, not just some of them. This can be achieved by using the ‘+’ symbol.
Similarly you may wish to exclude a specific word from your search by using the ‘−’
symbol. These commands work with nearly all the major web search engines and are
similar in function to the boolean operators ‘AND’ and ‘NOT’ respectively.

As an example let’s say you wish to find information about human promoter pre-
diction tools. You could search using [+ promoter + prediction + tool]. This will only
retrieve pages that contain all three words. If the search returns excessive information by
including tools for plant and bacterial promoter prediction, one could further refine the
search by using the following search query [+ promoter + prediction + tool − plant −
prokaryote]. This will subtract pages which mention plants and prokaryotes. Be aware
though that this might filter out valid hits to tools which analyse both prokaryote and
eukaryote sequences.

2.5.2 Using Quotation Marks to Find Specific Phrases

The most complex filtering syntax on our promoter prediction query still manages to
retrieve over 1000 results, so we need to consider other methods of reducing the number
of hits. One approach is to use a phrase search that will find only those pages where the
terms appear in exactly the order specified. This is achieved by putting quotation marks
around the phrase, so we might search with [‘promoter prediction tool’]. This retrieves
six relevant hits but clearly many sources have been filtered out, so it is important to
beware of over-specifying search terms.

2.5.3 Restricting the Searching Domain of a Query

A final measure that can be taken to fine tune your query is to restrict the internet domain.
For example you can restrict your search to only identify hits in the .edu (educational)
domain or to ignore hits from the .com (company) domain. This is achieved in Google and
most other sites by using the [+ site:.edu] to include a domain or [− site:.com] to exclude
a domain. This command can be extended further to search only a specific site, e.g. to
search the NCBI website for SNP information try [+ SNP + site:ncbi.nlm.nih.gov].

Table 2.2 includes the search results obtained from the different variations on the search
for promoter prediction tools, using both Google and Scirus. This shows the improvements
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TABLE 2.2 Different Results Obtained from Different Query Targeting Methods.
Results Compare the Number of Hits Returned by the General Search Engine Google
and Specialist Science Search Engine Scirus

Query
Google

Hits
Scirus
Hits∗

+ promoter + prediction + tool 4050 2379
‘promoter prediction tool’ 6 2
‘promoter prediction tools’ 14 8
+ promoter + prediction + tool − plant 2630 1312
+ promoter + prediction + tool − plant − bacterial 2080 936
+ promoter + prediction + tool − plant − bacterial − site:.com 1750 NA
∗Queries to Scirus were designed using the equivalent boolean syntax in the advanced search form.

from filtering on the query. The final word on fine tuning web search queries is to be as
flexible as possible. Try to use keywords which are likely to be specific to the kind of
website or tool you are looking for. Sometimes it is useful to go to a page or tool similar
to the one you are looking at to check for very specific words that might be shared by
similar sites. For example, in the case of promoter prediction tools, a commonly occurring
word was ‘server’; exchanging this for ‘tool’ significantly improves the relevance of
the hits.

2.6 BOOLEAN SEARCHING

Although the familiar boolean search commands (AND, OR, NOT) are widely used for
many forms of database searching, including PubMed, they are not universally supported
by all web search engines. Table 2.3 lists those supported by the most popular search
engines. The functionality offered by AND and NOT mirrors the functionality of [+
and −]. Other commands have a distinct function, for example [SNP OR Analysis] will
retrieve all webpages that contain the words SNP or analysis. The NEAR command is not

TABLE 2.3 Boolean Commands Supported by Popular Web Search Engines

Command How Supported by

Or OR AltaVista, Excite, Google, Lycos, Northern Light
None FAST, LookSmart,

And AND AltaVista, Excite, Lycos, Northern Light
None FAST, Google, LookSmart
NOT Excite, Lycos, Northern Light

Not AND NOT AltaVista
None FAST, Google, LookSmart,

Near NEAR AltaVista (10 words), Lycos (25 words)
None FAST, Google, LookSmart
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widely supported but can be useful to help to identify two keywords in close proximity
to each other.

2.7 SEARCHING SCIENTIFIC LITERATURE — GETTING TO ‘STATE
OF THE ART’

Effective mining of the literature is important at the stages of conception, design and
construction of genetic studies. At the most basic level it is important to be aware of the
‘state of the art’ in a research area before embarking on new efforts. At the very least this
avoids duplication of effort, but it can also provide previously unrecognized clues which
need to be followed up. Unfortunately this important informatic process is still lacking
truly innovative tools and databases. We are still struggling with tools that cover the
fundamentals of literature searching, such as making the full text of all journals available
for searching. Even with unlimited access to full text, the problems with effective literature
mining are profound. Some of these problems stem from the limitation of language as
a precise query tool — there is simply too much vocabulary to describe or specify the
same target information. Some databases attempt to minimize the impact of this problem
by the use of controlled vocabulary and gene nomenclature. But in the absence of such
measures, flexible composition of queries becomes quite critical to obtain comprehensive
coverage of a research area.

There are many commercial and publicly available tools and databases for mining
scientific literature which vary in their data content. Some offer access to proprietary
curated databases but they all employ essentially similar keyword-based interfaces with a
facility for boolean operators to combine and subtract keywords.

2.7.1 PubMed

PubMed is the most widely used free literature searching tool for biologists. It forms part
of the Entrez-integrated database retrieval system at the NCBI and is essentially a web
interface to the Medline database which indexes >11 million journal abstracts. It also
provides links to the full text of more than 1100 journals available on the web, although
search queries are restricted to the text in abstracts. The interface allows the user to specify
a search term (any alpha numeric string) and a search field (e.g. title, text word, journal
or author). Queries retrieve abstracts from most of the major journals, although not all
journals are indexed, particularly newer journals or journals with lower impact factors.
There is a surprisingly stringent threshold applied before a journal will be considered for
Medline indexing.

Many of the same guiding principles applied to searching the web also apply to
PubMed, but there are some differences between this tool and other more general web
search engines. Firstly the boolean operators are limited to the three main operators AND,
OR and NOT. One major improvement over most web search engines is the availabil-
ity of a wildcard function (∗) to designate any character or combination of characters.
The creative use of wildcards and boolean terms is important to widen the search without
retrieving excessive and irrelevant results. For example, to find publications which present
evidence of schizophrenia association on chromosome 8q21, an appropriate PubMed query
might be [schizo∗ AND 8q∗] searching the text word field. Using a wildcard search
with ‘schizo∗’ instead of ‘schizophrenia’ retrieves articles which mention schizoaffective,
schizophrenia or schizophrenic, all of which may be relevant. By using a wildcard with
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‘8q’ the search will retrieve nearby loci or larger loci which may encompass 8q21, e.g.
8q13–8q22. These are simple points but they are integral to a successful search strategy.
Those using these facilities extensively will find additional searching guidelines on the
NBCI website.

2.8 SEARCHING FULL-TEXT JOURNALS

Prospects for literature searching have improved recently with the greater availability of
full-text articles. We have already described the advances offered by Scirus in searching
full-text journals and the web simultaneously. Other highly recommended websites are
HighWire which is approaching comprehensive coverage of available full-text journals
and Medline (see below). However, searching scientific publications is still somewhat
decentralized and there is still no completely comprehensive central tool to search all full-
text journals, although it is possible to search the full text of most of the major genetics
journals by visiting the top three or four major publishers. Table 2.4 lists the major sites
which index the full text of a large range of science journals. As a benchmarking test
we queried each tool, with a standard full-text query for the keyword [WNT], where
searching Medline was also an option we identified the combined number of full text
and Medline hits in parentheses. The highest number of results was retrieved with Scirus,
however these results were very redundant. The HighWire tool seemed most effective in
the benchmarking test, identifying a high number of hits with no redundancy.

2.8.1 HighWire

HighWire was set up as a non-profit making organization in 1995 by Stanford University
to help universities and societies to publish on the web at low cost (Butler, 2000). Since
its launch HighWire has expanded to become the world’s second-largest scientific repos-
itory, after the US space agency NASA’s Astrophysics Data System (which contains no
biological information). Many journals available on the HighWire site make their content
free immediately, or 1 or 2 years after print publication often coupled with an early view
service for papers in press. In March 2002, HighWire had indexed 410,821 free full-text
articles, derived from a list of 324 full-text journals. These are listed on the website along
with Medline records from January 1948 through to April 2002. In our benchmark test

TABLE 2.4 Major Websites Providing Full-text Journal Access and Searching

Site/Publisher
Test Query Hits
(with Medline) URL

PubMed (1615) http://www.ncbi.nlm.nih.gov/entrez
Scirus 5061 (7015)∗ http://www.scirus.com/
HighWire 2651 (3738) http://highwire.stanford.edu/
Biomednet 1192 (2749) http://www.bmn.com
ScienceDirect (Elsevier) 1264 http://www.sciencedirect.com
IDEAL 565 http://www.idealibrary.com/
Nature Publishing Group 255 http://www.nature.com/nature/
Wiley InterScience 196 http://www.interscience.wiley.com/
∗Results from Scirus were redundant.
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against other full-text search tools a comparative search of PubMed and HighWire with
the keywords [Wnt16 OR Wnt-16] identified two papers with PubMed and eight papers
with HighWire.

2.8.2 Literature Digests and Locus-specific Databases

The literature searching process can be simplified by searching locus-specific databases.
The most widely used is On-line Mendelian Inheritance in Man (OMIM). As the name
suggests, this focuses on Mendelian monogenic disorders, although it also offers some
coverage of complex diseases. As a manually curated digest of the literature extracted from
the full text of publications it can contain more information than PubMed. Although this
has the disadvantage that not all entries are fully comprehensive or current, the database
usually captures the most salient information and is therefore a good place to start. In
addition OMIM is fully integrated with the NCBI database family. This facilitates rapid
and direct linking between disease, gene sequence and chromosomal locus.

Other databases are available which provide curated information about genes and
diseases which can also help to speed up the literature searching process. One of these is
GeneReviews (www.geneclinics.org). This complements the molecular genetics emphasis
of OMIM by offering a distinctly different focus. GeneReviews is a medical genetics
information resource aimed at physicians and other healthcare providers. The site provides
current, expert-authored, peer-reviewed, full-text articles describing the application of
genetic testing to the diagnosis, management and genetic counselling of patients with
specific inherited conditions. It also contains an international genetic testing Laboratory
Directory and an international genetic and prenatal diagnosis Clinic Directory.

2.9 SEARCHING THE HEART OF THE BIOLOGICAL
INTERNET — SEQUENCES AND GENOMIC DATA

So far we have reviewed a range of tools and approaches for searching the wider internet
and the specialist scientific literature for biological information which may be useful for
genetics. All of the tools reviewed so far may provide links, but will stop short of direct
retrieval of actual biological database records, such as DNA or protein sequence records.
This biological information is the heart of the biological internet. However, the flood
of sequence data from genome sequencing has rapidly pushed biological sequence data
beyond the reach of general internet searching tools. Instead sequence data can be searched
and retrieved by using specialist bioinformatics tools based on sequence homology, map
location, keyword, accession number and other features in the records. At a basic level
this can be done by keyword searching using search tools such as, Entrez at the NCBI
(Schuler et al., 1996) or SRS at the EBI (Zdobnov et al., 2002). Moving beyond simple
searching methods the biological databases are constantly being updated and re-engineered
to allow more powerful data query methods. These methods are covered in many other
chapters throughout this book.

2.10 NUCLEOTIDE AND PROTEIN SEQUENCE DATABASES

There are three major organizations that collaborate to collect publicly available nucleotide
and protein sequences. These organizations share data on a daily basis but they are distin-
guished by different international catchment areas for submissions, different formats and
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sometimes differences in the nature of their submitter annotations. Genbank is maintained
by the NCBI in the United States (http://www.ncbi.nlm.nih.gov/Genbank/index.html).
EMBL is maintained by the European Bioinformatics Institute in the United Kingdom
(http://www.ebi.ac.uk/). The third member is the DNA Database of Japan (DDBJ) in
Mishima, Japan (http://www.ddbj.nig.ac.jp/). All three organizations offer a wide range
of tools for sequence searching and analysis but two integrated database query tools have
become pre-eminent. These are Entrez from the NCBI and SRS from the EBI.

2.10.1 Entrez

Entrez (http://www.ncbi.nlm.nih.gov/Entrez/) is the backbone of the NCBI database infra-
structure. It is an integrated database retrieval system that allows the user to search
and browse all the NCBI databases through a single gateway. Entrez provides access
to DNA and protein sequences derived from many sources, including genome maps,
population sets and, as already described, the biomedical literature via PubMed and On-
line Mendelian Inheritance in Man (OMIM). New search features are being added to
Entrez on a regular basis. Most recently facilities have been added to allow searches for
DNA by ‘ProbeSet’ data from gene-expression experiments and for proteins by molecular
weight range, by protein domain or by structure in the Molecular Modelling Database of
3D structures (MMDB).

2.10.2 Sequence Retrieval Server (SRS)

The sequence retrieval server (SRS) serves a similar role to Entrez, for the major European
sequence databases. SRS is a flexible sequence query tool which allows the user to search
a defined set of sequence databases and knowledge-bases by accession number, keyword
or sequence similarity. SRS encompasses a very wide range of data, including all the
major EMBL sequence divisions (Table 2.5). SRS goes one step further than Entrez by
enabling the user to create analysis pipelines by selecting retrieved data for processing by
a range of analysis tools, including ClustalW, BLAST and InterProScan.

2.11 BIOLOGICAL SEQUENCE DATABASES — PRIMARY
AND SECONDARY

Anyone entering the heart of the biological internet encounters a bewildering number of
accession numbers, identifiers and gene names. To get to grips with this flood of terminol-
ogy it is important to understand the difference between primary and secondary databases
and their associated accession numbers. This is not proposed as a rigorous definition but
it does have a utility for understanding the information flow between sequence databases.

2.11.1 Primary Databases

Primary accession numbers have a number of key attributes; they refer to nucleic acid
sequences derived directly from a sequencing experiment, the results are submitted by
authors in a standardized format to GenBank, EMBL or DDBJ, the accession numbers
are both unique and stable (if they are updated or amended by the submitting authors the
accession number will signify a version change as .1, .2 etc.), the data records from every
accession number can be retrieved, a contactable submitter is included in every record,
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TABLE 2.5 Databases Indexed by the Sequence Retrieval Server at the EBI

Data Type Database

Scientific literature Medline, GO, GOA
Protein sequence libraries European, Japanese and US protein patents,

SWISS-PROT, SpTrEMBL
DNA sequence libraries EMBL, Ensembl HUMAN, global DNA patents
Protein motifs INTERPRO, PROSITE, PRINTS, PFAM, PRODOM,

NICEDOM
DNA sequence related UTR, UTRSITE, BLOCKS, TAXONOMY,

GENETICCODE, REBASE, EPD, CPGISLAND,
ENSEMBLCPG, UNIGENE

Transfac (Transcription
factor analysis)

TFSITE, TFFACTOR, TFCELL, TFCLASS,
TFMATRIX, TFGENE

Protein3DStruct PDB, DSSP, HSSP, FSSP, RESID
Mutations SWISSCHANGE, EMBLCHANGE, OMIM, HUMUT,

HUMAN−MITBASE, P53LINK, Locus Specific
Mutations (see Chapter 3)

SNPs HGBASE, HGBASE−SUBMITTER
RH mapping RHDB, RHEXP, RHMAP, RHPANEL
Metabolic pathways LENZYME, LCOMPOUND, PATHWAY, ENZYME,

EMP, MPW, UPATHWAY, UREACTION,
UENZYME, UCOMPOUND

SRS pipelineapplications FASTA, FASTX, FASTY, NFASTA, BLASTP,
BLASTN, CLUSTALW, NCLUSTALW, PPSEARCH,
RESTRICTIONMAP, HMMPfam, InterProScan,
FingerPRINTScan, PfScan, BlastPRODOM,
ScanRegExp

they are explicitly redundant in that all submissions are accepted regardless of partial or
complete overlap with existing entries and lastly the growth rate remains close to exponen-
tial and now exceeds 16 million sequence records. The concept of authors’ needs stretches
to encompass consortia that run high-throughput sequencing projects. One of the most
valuable and perhaps overlooked principals of these unique public repositories is that there
is always (with the exception of patent data, see below) an identified individual or labora-
tory representative listed with the sequence record who can be contacted for any queries
regarding experimental details, data quality and availability of source material. There is
a large amount of information associated with primary sequence records. These include
primary accession numbers, version numbers, protein ID numbers, gene identifier (GI)
numbers, header records and feature identifiers. These cannot be covered in detail here
but full descriptions are given in database guides (http://www.ebi.ac.uk/embl/index.html)
and release notes (ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt).

Geneticists should be encouraged to contact submitting authors in cases where anything
seems non-obvious about primary data records for an mRNA or a finished genomic clone.
They may have extra information that has a crucial bearing on the interpretation of genetic
experiments. Authors may be difficult to track down if they have moved institutions but
they are usually pleased to assist in the utilization of their data, because as with scien-
tific publishing, this is the principle behind public sequence databases. Technical errors,
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anomalies, miss-annotation in submissions or artefacts are entirely the responsibility of
submitting authors not the database administrators. Although we should be sanguine con-
cerning anomalies in the high-throughput data divisions (EST, GSS, STS, HTG, HTC and
SNP) if problems are pointed out authors can certainly amend or update their entries or
in some cases may withdraw them. The primary data is deposited in good faith so authors
should certainly not be harshly judged if an error has occurred in the rough and tumble
of cloning, sequencing and submitter annotation. The exception to author responsibility
for GenBank records is the patent division (gbPAT) where inventors are not equivalent
to academic authors. These sequence records are processed by the US, European and
Japanese patent offices and forwarded on to the databases. Although author contact may
not be practical database users should be aware that patent applications are public docu-
ments and for an increasing number of gbPAT records the documentation can be accessed
via the patent number on-line and free of charge (http://ec.espacenet.com/espacenet/ and
http://www.uspto.gov/patft/). It is also possible to get to these patent full-text links directly
from sequence entries via SRS.

2.11.2 Secondary Databases — Nucleic Acids and Proteins

By definition secondary databases are derived from the primary data. The word secondary
should not be taken to imply lower value; indeed they include sources of the highest utility
for genetic research. However they are defined, it is important to understand how they are
linked back to the experimental data. The good news for geneticists is that there is now
a comprehensive selection of high quality secondary databases that extract and collate
subsets of mRNA, genomic or protein sequences from primary GenBank entries. The
bad news is that the proliferation of features that make secondary databases so powerful
also presents a bewildering range of options to the user. Testimony to both the good
and bad news is given by the 2002 update of the Molecular Biology Database Collec-
tion (http://nar.oupjournals.org/cgi/content/full/30/1/1/DC1). This covers no less than 355
databases, up from 281 in 2001, of which the primary databases, GenBank, EMBL and
DDJB, constitute only three entries. Although this compendium includes many non-human
data sources almost all of these secondary databases contain information that could be
pertinent to mammalian genetics. These review issues appear every January in Nucleic
Acids Research and are definitely worth browsing. Are the genome portals secondary
databases? This is where the definitions become blurred. Because NCBI generate their
own genomic contig accessions (NT numbers) and Ensembl generate their own exon
and gene identifiers they could be considered secondary databases. In so far as the UCSC
genome portal marks up only external sequence record identifiers (primary and secondary)
they are not strictly a secondary database. However, because they usefully give every type
of gene prediction in the display a retrievable identity number, they could be considered
as a secondary database.

The value of secondary databases includes the following:

• Distilling down a massive number of overlapping and/or redundant primary GenBank
entries to a manageable range of genomic sections, unique transcripts and translated
protein sequences

• Maintaining a running total of gene products, they partition human gene products
and other vertebrates with extensive genomic data such as mouse, rat and zebra fish

• The inclusion of informative graphic displays for sequence features

• Providing access to a vast amount of pre-processed bioinformatic data
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• Extensive interconnectivity through web hot-links

• Many of them are backed up by extensive institutional resources and expertise

However, users of these secondary databases also need to be aware of their short-
comings:

• They all suffer from the snapshot problem i.e. the time to re-build or update mas-
sive data sets means they are always out of date with respect to the new data
cascading into the primary databases (given the complexity of the processes this is
entirely expected but they often do not display the dates when the primary records
were extracted)

• They all have different look-and-feel interfaces thereby necessitating regular practice
to get the best out of them

• The web-based interoperativity can leave a lot to be desired; e.g. broken links, link-
outs to databases that are not maintained to the same standards and overkill by
linking out to too many similar sources

• Their automated annotation schema can be confounded by sequence artefacts
(Southan et al., 2002)

• The overlap between utility and content between major databases is extensive but is
never enough for any of them to be the mythical ‘one-stop-shop’

• Non-redundant transcript and protein collections may seem conceptually similar but
because they diverge in schema details and update frequency they all give differ-
ent statistics

• Some secondary databases such as SwissProt keep sequence identifiers both unique
and stable but for technical reasons others, such as UniGene EST clusters or Ensembl
genes, may change identifiers between builds

• Many specialized ‘boutique’ databases are never updated when their originators move
on or run out of resources

• Last but not least some secondary databases that initially had free access can become
commercial and require a subscription fee

2.11.3 Nucleic Acid Secondary Databases

For the analysis of their results the geneticist must become acquainted with these feature-
rich sources of gene product information. A key example, based around nucleic acid
sequence but including protein of secondary databases is LocusLink/RefSeq (LLRS) for
mRNAs. The LLRS system is built round a reference sequence (RefSeq) which is usually
the longest available mRNA of those coding for the same protein. RefSeq includes splice
variants and if only genomic sequence is available, such as for many of the 7TM receptors,
the system defaults to the predicted coding sequence annotated as a ‘CDS’ in the database
entry. For example there is no experimentally determined human rhodopsin mRNA in
GenBank, only a model mRNA predicted from the genomic sequence U49742. This
presents an immediate problem for the geneticist, as the untranslated region (UTR) of the
rhodopsin locus, which defines the boundaries and functional regions of the gene may be
extensive. Chapter 4 takes a detailed look at approaches to help define the true extent of
gene loci.

The end-product of the RefSeq pipeline is a unique mRNA, coding sequence (CDS),
or set of splice variants for those gene products where data or predictions are available.
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The LocusLink side of things, as suggested by the title, is directed towards mapping the
RefSeq gene products onto the genomic sequence and checking the consistency between
the two. LocusLink has linked sections of key importance to the geneticist. These are:
variation which assigns SNP data, OMIM which includes verified monogenic disease
links, homologene which indicates close homologues in other species, UniGene which
specifies ESTs clusters associated with the gene product, and PubMed that links to all
publications that can be specifically linked to the primary GenBank accession numbers.
There are also links to all three genome portals, NCBI, UCSC and Ensembl. There has
been some confusion in the past where the portals could not synchronize their builds and
track displays with GP version updates but this problem has been addressed and they
should all be on version 28 (from December 2001) at the time of writing.

The RefSeq identifier is secondary in the sense that it is a supplementary identi-
fier assigned to one particular mRNA chosen as the reference sequence. These acces-
sion numbers have the prefix NM for mRNA entries and NP for protein entries. The
LocusLink/RefSeq system goes one step further in assigning a third identifier, XM for
nucleic acid and XP for proteins, which are the genomic counterparts of the NM and
NP numbers. A BLAST search against the NCBI protein database will show all three
entries, the primary accession number, the NM and the XM entries. There is the added
complication that the XP sequences have a variable evidence support level and include
ab-initio genomic predictions both with and without EST support. Secondary accession
numbers are also important for ESTs. ESTs can be considered as mRNA fragments that,
with sufficient sampling (now just exceeding 4 million human entries in dbEST) can be
clustered or assembled to form a contiguous extended transcription product and in some
cases, the splice variants from the tissue types sampled for EST preparation. The main
post-genomic utility of EST collections is as exon detectors. In addition to splice vari-
ants these can reveal possible gene transcription activity where no extended mRNA has
been experimentally verified. The primary data source for ESTs is the dbEST division
of GenBank.

The geneticist should be aware of two major secondary EST databases, UniGene
(Wheeler et al., 2002) and the TIGR human gene index (Liang et al., 2000). The princi-
ples by which these different databases are constructed, are explained in the appropriate
source references but in fact they both converge to a similar set of ‘virtual’ surrogate tran-
scripts. In the TIGR case, the virtual transcripts assembled from overlapping ESTs can be
retrieved; in the Unigene case, the individual EST reads can be batch downloaded. As with
most secondary databases, built from the same source data, the two databases have both
overlap and complementarity. The TIGR assemblies are particularly useful for extending
the 3′ UTR of known mRNAs but the assemblies are re-compiled at long time intervals.
UniGene is updated more frequently and is fully interlinked to the LocusLink/RefSeq
system but the clusters are built on mRNAs from the preceding version of GeneBank.

2.11.4 STSs and SNPs

These are two of the most important data sources for the geneticist involved in disease
mapping. The dbSTS database contains sequence and mapping data on short genomic land-
mark sequences. Although they have a primary sequence record and GB accession number
they also have a number of alternative marker names. These have been cross-referenced
into a secondary database called UniSTS that integrates all available marker and mapping
data (http://www.ncbi.nlm.nih.gov/genome/sts/). The dbSNP database is an interesting
exception in that it is not a division of GenBank so it is not strictly a primary database. The
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submissions (SS numbers) are equivalent to a primary record but overlapping sequences
with the same polymorphism are collapsed into the Reference SNP Cluster Report with
an RS number. This can be considered a secondary database where the RS numbers
are non-redundant and stable. These RS numbers, currently at 2,640,509 for human, are
integrated with other NCBI genomic data and primary GenBank records containing over-
lapping sequences deduced or stated to be from the same location. The HGVbase has
a smaller set of 984,093 highly curated records (http://hgvbase.cgb.ki.se/). They have
their own secondary accession/ID number and these can be queried and retrieved from
the Ensembl genome annotation. Chapter 3 presents detailed examination of the major
databases of genetic variation.

2.11.5 Protein Databases and Websites

A website of central importance in protein analysis is the Expert Protein Analysis System
(ExPAS; http://www.expasy.ch/). In addition to protein analysis tools, such as PROSITE
(http://www.expasy.ch/prosite/) and Swiss-3Image (http://www.expasy.ch/sw3d/) Swiss-
Prot protein database contains high-quality annotation and web-linked cross-references
to 60 other databases. It is accompanied by TrEMBL, a computer-annotated supple-
ment that contains the translations of all coding sequences present in primary nucleotide
sequence databases not yet in SwissProt. Sequence records are merged where possi-
ble to minimize the redundancy. Sequence conflicts and splice variants are indicated
in the feature table of the corresponding entry. The combined database is referred to
as SwissProt/TrEMBL (SPTR). Amongst the links in SPTR it is worth mentioning the
InterPro system which is of very high utility for finding protein family-specific domain
matches (Apweilwer et al., 2000). Acquiring this information is one of the main goals
of the bioinformatic analysis of proteins so it is useful to find that this piece of the
work is already done and updated with new releases of InterPro. Other major sites
provide PFAM, PROSITE, and other tools for protein sequence analysis. The Sanger Insti-
tute (http://www.sanger.ac.uk/) provides access and maintains PFAM and multiple other
useful links and genomic tools, including three-dimensional protein structure prediction
(http://genomic.sanger.ac.uk/123D/123D.shtml).

Any division between the universe of DNA and protein sequences is clearly artificial.
Protein information can be accessed from within the LLRS system, just as it is also
possible to link out to primary nucleic acid sequence record accession numbers from
SPTR. However, the complementarity between LocusLink/RefSeq and SPTR is clear.
The focus is on nucleic acid sequences in the former and protein sequences in the latter.
The message for the user is that both sources will be essential for interpreting the results
of genetic experiments.

2.12 CONCLUSIONS

In this chapter we have introduced the major data sources available on the internet that
geneticists increasingly need to access for their research. The choice was based on our
direct working experience of their utility. Rather than restrict ourselves to just cataloguing
these, we have also included some discussion of the principles behind the organization
of biological data, such as the concept of primary and secondary sequence databases.
We have also demonstrated the power of web search engines, both of the specialist and
common variety. Mastering these is essential for interrogating biological resources on the
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internet. They also allow the user to search for new developments, tools and databases.
This is something we strongly recommend to future-proof your own research, even if we
cannot future-proof this book!
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3.1 INTRODUCTION

Genetic variation is a key commodity for geneticists; not only as the much sought after
basis of heritable phenotype, but also as a marker to aid in this search. For the wider
biological research community, information on genetic variation can tell us many things
about the functional parameters and critical regions of a gene, protein, regulatory element
or genomic region. Study variation and a picture of the driving force of evolution begins
to emerge. This knowledge can not only help us elucidate the function of genes and
pathways by studying their function and dysfunction in normal and diseased states, it can
also help us to understand the origins and diversity of mankind and other organisms. The
availability of a complete human genome sequence finally puts this variation into context
with all other biological data. In this chapter we will present an overview of the many
forms of genetic variation, we will review current and past trends in the use of this data
and highlight the key databases from which this data can be accessed and manipulated.

3.1.1 Human Genetic Variation

Human genetic variation and our environment are the two key factors that make each and
every one of us different. Genetic variation takes many forms, although these variants arise
from just two types of genetic mutation events. The simplest type of variant results from
a single base mutation which substitutes one nucleotide for another. This mutation event
accounts for the commonest form of variation, single nucleotide polymorphisms (SNPs).
Many other types of variation result from the insertion or deletion of a section of DNA. At
the simplest level this can result in the insertion or deletion of one or more nucleotides, so-
called insertion/deletion (INDEL) polymorphisms. The most common insertion/deletion
events occur in repetitive sequence elements, where repeated nucleotide patterns, so-called
‘variable number tandem repeat polymorphisms’ (VNTRs), expand or contract as a result
of insertion or deletion events. VNTRs are further subdivided on the basis of the size of
the repeating unit; minisatellites are composed of repeat units ranging from 10 to several
hundred base pairs. Simple tandem repeats (STRs or microsatellites) are composed of
2–6-bp repeat units. The rarest insertion/deletion events involve deletions or duplications
of regions ranging from a few kilobases to several megabases. These forms of variation
were once thought to be restricted to rare genomic syndromes, however, sequencing of
the human genome has presented a great deal of evidence to suggest that these events
may be more common than previously expected.
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The quantity of genetic variation in the human genome is something that until recently
we have only been able to estimate by an educated guess. Empirical studies quite quickly
identified that on average, comparison of chromosomes between any two individuals will
generally reveal common SNPs (>20% minor allele frequency) at 0.3–1-kb average inter-
vals, which scales up to 5–10 million SNPs across the genome (Altshuler et al., 2000).
The availability of a complete human genome has helped us considerably to estimate
the number of potentially polymorphic STRs and minisatellites, as VNTRs over a certain
number of repeats can be reliably predicted to be polymorphic. Viknaraja et al. (unpub-
lished data) completed an in silico survey of potentially polymorphic VNTRs in the human
genome and identified over 100,000 potentially polymorphic microsatellites. Other forms
of variation such as small insertion/deletions are more difficult to quantify, although they
are likely to fall somewhere between SNPs and VNTRs in numbers. Large deletions or
duplications are the most unquantifiable form of variation in the genome. Quantification
of these forms of variation is only possible by intensive cytogenetic methods (Gratacos
et al., 2001). They cannot be reliably identified from the genome sequence; in fact they
are implicitly an obstacle to genome assembly, as large duplications are often incorrectly
collapsed into a single assembly.

This huge quantity of genetic variation in the human genome led many to question the
origin and maintenance of such a ‘genetic load’ in the human population. The traditional
belief that most mutation was deleterious and subject to selection was quickly challenged
by this data. In response to this observation Kimura (1983) and others formulated a ‘neutral
theory of evolution’. This theory proposed that most sequence variation does not directly
impact phenotypic variation and so is not directly subjected to the forces of selection. Thus,
the overwhelming majority of genetic variants are likely to be phenotypically neutral,
while many will define the diverse phenotypes that define individual humans. However
a certain undefined number of these alleles will have deleterious effects, either directly
causing or increasing susceptibility to disease. Some of this variation, so-called mutations,
will be rare in populations whilst others will be common, so-called polymorphisms that
increase susceptibility to common diseases. It will not usually be possible to identify these
deleterious alleles directly, instead genetics has developed around the concept of using
markers to detect nearby deleterious alleles. Fortunately for geneticists, the huge quantity
of common polymorphism across the human genome makes it very likely that one or
more of these polymorphisms will be in close enough vicinity to a rarer disease allele to
detect it by common co-inheritance (linkage disequilibrium) between the two alleles.

Thus, one of the primary objectives of genetics is to utilize polymorphisms across the
genome as markers which show co-inheritance with the phenotype under study. SNPs
are the most obvious choice for these studies as they are the commonest form of human
variation. However this choice has not always been so clear. Despite the abundance of
SNPs in the genome, without knowledge of the genome sequence, SNP identification is a
laborious process. This has made SNP availability very limited until very recently. Instead
geneticists have used microsatellites as markers. These highly polymorphic markers can be
isolated by relatively simple molecular methods and can detect disease-causing mutations
in family-based studies over a larger distance than SNPs, often over 20 MB. The extent of
this linkage enables whole genome linkage studies with as few as 200–500 microsatellite
markers. Such linkage studies have been very successful in mapping mutations causing
single gene disorders or Mendelian traits, but have been largely unsuccessful in detecting
the multiple genes responsible for the commoner complex diseases (Risch, 2000).

The primary approach proposed for mapping complex disease genes is to use markers
to detect population-based allelic association or linkage disequilibrium (LD) between
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markers and disease alleles (see Chapter 8 for a detailed exploration of this area). These
associations can be very strong even where the corresponding family linkage signal is
weak or absent. This approach can localize disease alleles to very small regions, based
on localized LD, which on average extends between 5–100 kilobases (kb) depending on
a range of factors (Reich et al., 2001). Detection of this association demands a massive
increase in marker density with 200,000–500,000 markers estimated to be needed to
cover the genome for an association scan compared to the 200–500 markers needed for
a family-based linkage scan.

These population-based association studies call for ultra high-throughput genotyping
methods. Technology developments to date suggest that SNPs are likely to be the most
viable option for these studies for a number of reasons, but primarily because SNPs are
more tractable to automated high-throughput analysis than microsatellite markers. Until
very recently demand for SNPs completely outstripped SNP availability and so whole
genome SNP association studies simply could not be attempted. This situation is now
changing — completion of the genome has enabled several large-scale SNP discovery
projects. Genetics is now entering a promising new era where marker resources and
locus information are no longer the main factors limiting the success of complex disease
gene hunting. The emphasis is now on good study design and carefully ascertained study
populations. Effective informatics is critical to effectively exploit this data. More than
ever, geneticists will need to be competent users of bioinformatics tools to construct
sophisticated marker maps that can detect the full complexity of human genetic variation.

To find disease associations and ultimately disease alleles, it is necessary to study
genetic variation at increasing levels of detail. At first, markers need to be identified at
a sufficient density to build marker frameworks to detect linkage or association across
the genome. Once this linkage or association is detected a denser framework of markers
is needed to refine the signal. In the case of linkage analysis, marker density may not
need to be increased beyond a few hundred kilobases as linkage is likely to remain
intact over considerable distances in families. However in the case of association, marker
density needs to be increased to a level at which all haplotype diversity in a population is
captured (see Chapter 8). This may call for the construction of very dense marker maps
down to a resolution of 5–10 kb. Ultimately, once LD is established between a marker
and a phenotype it is necessary to identify all genetic variation across the narrowed locus,
hopefully allowing the identification of the disease allele. This increasing resolution of
analysis may involve a progression of bioinformatics tools and increasing ingenuity in
the use of these tools as the requirements for detail increase. Variation can take many
forms, any of which may have a bearing on the genetic mechanisms of disease. The
very act of characterizing variation across a locus may help to cast light upon its genetic
nature and the possible nature of the phenotype. For example, some genomic regions
show hypermutability, while others show very low levels of mutation or polymorphism.
The reasons for these differences are poorly understood, they may be based upon the
physical properties of chromosomes, evolutionary selection or other unknown influences,
all of which may have a bearing on disease.

3.1.2 The Genome as a Framework for Integration of Genetic
Variation Data

Bioinformatics offers some powerful tools for detecting, organizing and analysing human
genetic variation data. The value of these tools is totally dependent on the underlying
quality and organization of the data. Ideally, variation data needs be available in an orga-
nized and centralized form that will allow complex queries and integration with other
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data sources. Without the benefit of a complete genome, such integration was little more
than a pipe dream, but now we are presented with an opportunity to integrate data on the
sequence framework. Generally it takes only two 20–30 base pairs of flanking sequence
to unambiguously locate a sequence feature such as an SNP in the genome. This bioin-
formatics process is called electronic PCR (ePCR) and it is completely analogous to
laboratory-based PCR. Two primers are used to map a sequence feature (e.g. a SNP).
To validate the position both primers must map in the same vicinity spanning a defined
distance, effectively producing an electronic PCR product. The possibilities for data inte-
gration are immense. For genetics, exact base pair localization of each variant allows
the construction of absolutely precise physical maps, which can be accurately integrated
with genetic maps. It is now possible to take a given region and place SNPs, mutations,
microsatellites and insertion/deletions in exact order. Without a sequence map this simply
would not have been possible as each marker may have been mapped by different labora-
tory methods — producing few directly comparable results (see Chapter 7 for a discussion
of map integration issues).

3.2 FORMS AND MECHANISMS OF GENETIC VARIATION

In silico (bioinformatic) analysis of human sequence presents an opportunity to iden-
tify genetic variants by comparison of differences between two sequences. Most obvi-
ously potential SNPs can be identified by comparison of two sequences; these could be
expressed sequence tags, cDNAs or genomic sequences. The same method can also be
used to identify potential INDEL polymorphisms. Potential is a key word to apply to this
in silico polymorphism discovery process which can be prone to false positives introduced
by sequencing error and other issues (see Chapter 10).

Human genome sequence also gives us an opportunity to assess some of the less
commonly studied forms of variation. Although under-represented in databases some
potential forms of variation can be identified from a single DNA sequence, by sequence
alone. Short tandem repeat sequences are the most obvious example of such variants,
however, sequence analysis can also be used to identify minisatellites and segmental
duplications which may also mediate large deletions or duplications. Our knowledge of
these forms of variation is limited; this reflects studies to date which have focused on
more technically tractable variants, such as SNPs, mutations and short tandem repeats.
Databases have also as a matter of practicality tended to focus on these classes of variation,
and in this chapter we will review these databases in detail. We will also attempt to draw
the less studied forms of variation into context, reviewing the best tools to access this
data. Where no database exists we will review the mechanisms which govern variation
and which can assist detection by bioinformatics methods.

3.2.1 Single Nucleotide Variation: SNPs and Mutations

Terminology for variation at a single nucleotide position is defined by allele frequency. In
the strictest sense, a single base change, occurring in a population at a frequency of >1%
is termed a single nucleotide polymorphism (SNP). When a single base change occurs
at <1% it is considered to be a mutation. However, this definition is often disregarded,
instead ‘mutations’ occurring at <1% in general populations might more appropriately be
termed low frequency variants. The term ‘mutation’ is often used to describe a variant
identified in diseased individuals or tissues, with a proven role in the disease phenotype.
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Mutation databases and polymorphism databases have generally been divided by this def-
inition. Polymorphisms are generally considered widespread in populations and mutations
are usually rare and are not generally thought to be spread widely in populations, but
instead occur sporadically or are inherited in families in a Mendelian manner. A grey
area exists, which argues against the rigidity of this division of data. Some autosomal
recessive Mendelian mutations have been linked to complex disease susceptibility in a
heterozygote form and indeed are relatively widely spread in populations. For example,
homozygote mutations in the cystathione beta synthase gene cause homocystinuria, a rare
disorder inducing multiple strokes at an early age. The heterozygotes do not share this
severe disorder, but do have an increased lifetime risk of stroke (Kluijtmans et al., 1996).
In Caucasians the population frequency of homozygote homocystinuria mutations is only
1/126,000, but in the same population, heterozygote frequency is relatively high at 1/177.
There are many other examples of ‘Mendelian mutations’ which actually exist at appre-
ciable heterozygote levels in general populations, particularly isolated populations, e.g.
mutations in the breast cancer susceptibility gene, BRCA1, have been found in 1–2%
of Jewish populations (Bahar et al., 2001) and mutations in the CFTR gene cause cystic
fibrosis, the most common autosomal recessive disease in the Caucasian population, with
a carrier frequency of around 2% (Roque et al., 2001).

3.2.1.1 The Natural History of SNPs and Mutations

The presence of heterozygous ‘Mendelian mutations’ in general populations illustrates the
point that it may not always be helpful to rigidly separate polymorphism and mutation data.
Another factor which argues against division of these data is that both SNPs and mutations
arise by the same mechanism, although selection may influence their spread in popula-
tions. Miller and Kwok (2001) presented a detailed review of the ‘life cycle’ of a single
nucleotide variation, they defined SNP and mutation evolution in four phases (Figure 3.1):

(1) Appearance of a new variant allele by mutation
(2) Survival of the allele through early generations against the odds
(3) Increase of the allele to a substantial population frequency
(4) Fixation of the allele in populations

Each of these stages goes to the heart of the differences and similarities between SNPs and
mutations. Both arise by the same mechanism; nucleotide substitution is DNA sequence
context dependent — substitution rates are influenced by 5′ and 3′ nucleotides. This effect
is most dramatic for CT and GA transitions; these CpG dinucleotides are methylated
and tend to deaminate to either a TpG or CpA dinucleotide (Cooper and Youssoufian,
1988). This makes these dinucleotides the most likely locations for point mutation in
the human genome, with G > A or C > T transitions accounting for 25% of all SNPs
and mutations in the human genome (Miller and Kwok, 2001). In itself this molecular
mechanism accounts for the deficiency of CG dinucleotides in the human genome. The
creation of new CG dinucleotides is not an adequate counter balance against this effect,
due to the lower frequency of tranversions back to CpG. While SNPs and mutations both
arise in the same way, their survival in populations is likely to be quite different. Most
newly arisen SNPs and mutations are likely to be lost in early generations by random
sampling of the gene pool alone. For example if a heterozygous individual for a selectively
neutral mutation has two offspring, there is a 0.75 probability that the mutation will be
found in at least one child. If each generation has two children, the probability of loss of
the new mutation is 1–(0.75)g , where g = generations. To give a worked example, this
relates to a 94% probability of loss of a mutation or SNP in 10 generations (approximately
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Figure 3.1 The life cycle of SNPs and mutations. SNP and mutation evolution occurs in
four main phases: (1) appearance of a new variant allele by mutation; (2) survival of the
allele through early generations against the odds; (3) increase of the allele to a substantial
population frequency; (4) fixation of the allele in populations.

200 years). Where a heterozygous mutation has an early onset deleterious effect, natural
selection is likely to further increase the rate of loss of the allele from populations. The
same pressures do not apply to late onset diseases, perhaps explaining the proliferation
of such diseases in humans.

If an SNP or mutation survives early generations and increases in frequency sufficiently
to become homozygous in some individuals the risk of loss of the allele is reduced. At this
stage the frequency of the allele in a population is likely to vary, with higher frequency



46 HUMAN GENETIC VARIATION: DATABASES AND CONCEPTS

alleles being consistently favoured, especially when populations are subject to severe
bottlenecks in size. Reich et al. (2001) presented convincing evidence for such a bottleneck
in recent Northern European population history. In the face of these fluctuations of allele
frequency, an SNP or mutation will cease to exist in populations, either by disappearing
or by reaching a 100% allele frequency, in which case the variant becomes an allele
that helps to define a species. Interestingly there is no evidence of shared SNPs between
species, a study of variation between the human and orang-utan X chromosome found
that 2.9% of nucleotide sites differ, but no SNPs were shared (Miller et al., 2001). This
suggests that the lifetime of an SNP is considerably shorter than the divergence of these
two species. Based on this data, Miller et al. (2001) estimated that the average period
from original mutation to species fixation of an allele was 284,000 years.

3.2.1.2 SNP and Mutation Databases United?

The high level of interest in SNP data has led to the development of an excellent cen-
tral SNP database — dbSNP at the NCBI (Sherry et al., 2001). Mutation databases are
still lagging behind SNPs in terms of data integration and visualization on the human
genome. However the many commonalities between these two forms of data may have
inspired the SNP database HGBase to re-align and rename itself HGVBASE — a central
database of human genetic variation including SNP and mutation data (Fredman et al.,
2002). This is a valuable step which will make mutation data much more accessible to
geneticists in a well-integrated form. Other highly specialized mutation databases exist,
including HGMD, GDB and a large range of locus-specific databases. It is not yet clear to
what extent mutation and SNP data will be integrated, but the availability of a complete
human genome presents an unbeatable opportunity to bring these two sources of data
together in a genomic context, without compromising the necessary integrity of either
form of data.

3.2.2 Tandem Repeat Polymorphisms

Tandem repeats or variable number repeat polymorphisms (VNTRs) are a very common
class of polymorphism, consisting of variable length sequence motifs that are repeated in
tandem in a variable copy number (Figure 3.2). VNTRs are only surpassed in quantity by
SNPs in the human genome. They have been found in all organisms studied, although they

Repeat type Example

Mononucleotide AAAAAAAAAAAAAAAAAA
Dinucleotide CACACACACACACACACA
Triplet/trinucleotide CAGCAGCAGCAGCAGCAGCAGCAGCAG
Tetranucleotide TAAGTAAGTAAGTAAGTAAGTAAGTAAG
Pentanucleotide etc. GAATTGAATTGAATTGAATTGAATTGAATT

Repeat terminology Example

Perfect STR CACACACACACACACACACACACACACA
Imperfect STR CACATACACACACACACACGCACACACA
Interrupted STR CACACACACACGGGCACACACACACACA
Compound STR CACACACACACACATGTGTGTGTGTGTG

Figure 3.2 Tandem repeat types and terminology.
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tend to occur at higher frequencies in organisms with large genomes. Viknaraja et al.
(unpublished data) analysed the draft human genome sequence (December 2001 freeze)
and identified several hundred thousand potentially polymorphic VNTRs. However there
is little or no information on the heterozygosity and polymorphic nature of the vast major-
ity of these polymorphisms. VNTRs have traditionally been subdivided into subgroups
based on the size of the tandem repeat unit. Repeated sequences of one to six bases
are termed microsatellites or short tandem repeats (STR), larger tandem repeats in units
of 14–100 bp are termed minisatellites. Microsatellites and minisatellites are generally
thought to show different mutational mechanisms which are influenced by sequence prop-
erties and lengths. In microsatellites the predominant mutational mechanism is thought to
be DNA slippage during replication. In minisatellites the predominant mechanism appears
to be gene conversion and unequal crossing over (Goldstein and Schlotterer, 1999). The
distinction between microsatellites and minisatellites is somewhat arbitrary for repeat
units between 7 and 13 bp and it has been suggested that highly repeated sequences or
sequences which are more likely to form loops in these size categories should be called
minisatellites. This somewhat vague definition may be academic, in effect microsatellites
and minisatellites have quite different properties, dictated by their repeat size, copy num-
ber and the perfection of the repeat. For the specific needs of a genetic study it may be
necessary to pick the tandem repeat which conforms most closely to the heterozygos-
ity requirements for the marker (see Chapter 8). The polymorphic nature of a VNTR is
thought to depend upon a range of factors: the number of repeats, their sequence content,
their chromosomal location, the mismatch repair capability of the cell, the developmental
stage of the cell (mitotic or meiotic) and/or the sex of the transmitting parent. (Debrauwere
et al., 1997).

Aside from their utility as highly polymorphic genetic markers, much evidence exists
to demonstrate that tandem repeats exert a functional effect when located in or near gene
coding or regulatory regions. Thus VNTRs in themselves can be candidates for disease-
causing genetic variants. The best characterized of these are the triplet repeat expansion
diseases. Triplet repeat expansion is an insertion process that occurs during meiosis.
Insertion of new repeats is strongly favoured over loss of repeats — pathological triplet
repeat expansions manifest through successive generations with worsening symptoms
known as ‘anticipation’, as the repeat expands with increasingly pathological results.
Most triplet repeat expansions have been identified in monogenic diseases and may occur
in almost any genic region. Over five triplet repeat classes have been described so far,
causing a range of diseases including, Fragile X, myotonic dystrophy, Friedreich’s ataxia,
several spinocerebellar ataxias and Huntington’s disease (Usdin and Grabczyk, 2000).
Spinocerebellar ataxia 10 (SCA10) is notably caused by the largest tandem repeat seen in
the human genome (Matsuura et al., 2000). In general populations the SCA10 locus is a
10–22mer ATTCT repeat in intron 9 of the SCA10 gene; in SCA10 patients, the repeat
expands to >4500 repeat units, which makes the disease allele up to 22.5 kb larger than
the normal allele.

Tandem repeats have also been associated with complex diseases, for example different
alleles of a 14mer VNTR in the insulin gene promoter region, have been associated with
different levels of insulin secretion. Different alleles of this VNTR have been robustly
linked with type I diabetes (Lucassen et al., 1993) and in obese individuals they have also
been associated with the development of type II diabetes (Le Stunff et al., 2000). Kubota
(2001) took the concept of triplet repeat anticipation to an extreme by suggesting that
every human chromosome suffers from a burden of accumulating trinucleotide repeats.
Thus, he predicted the ‘mortality’ of human chromosomes with the passage of generations,
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eventually leading to a deficiency of replication and to the mortality of Homo sapiens as
a species! This is certainly a controversial theory, but the basic concept is interesting and
illustrates that the burden of VNTR-mediated genetic disease is only likely to increase.

The value of tandem repeats as markers and functional elements is clear, although for
practical reasons the focus of genetics is shifting to SNPs. However, VNTR markers will
probably continue to be a fundamental tool and to overlook them could be unwise, as often
a highly polymorphic VNTR may be more informative than several SNPs. In comparison
to the relatively low heterozygosity of SNPs, much less dense VNTR maps are needed
to match the equivalent detection power of a high density SNP map (see Chapter 7). A
single polymorphic VNTR may even be as informative as a complex SNP haplotype. The
drawback of tandem repeats are mainly technological — detection methods cannot cur-
rently match the highly automated microtitre plate-based or DNA chip-based assays that
have characterized modern SNP assay development, although technology developments
may eventually alter this situation (Krebs et al., 2001).

In comparison to the hundreds of thousands of VNTR polymorphisms in the genome,
only 18,000 VNTRs have been genetically characterized. Several highly characterized
subsets of these markers have been arranged into well-defined linkage marker panels by the
Marshfield Institute and Genethon (see Chapter 7 for details). These panels vary in marker
spacing to allow different density genome scans. Almost all genetically characterized
VNTRs are stored centrally in several sources, including GDB, CEPH and dbSTS (see
below). Potentially polymorphic novel VNTRs can be identified from genomic sequence
using the tandem repeat finder tool (Benson, 1999; http://c3.biomath.mssm.edu/trf.html). A
complete analysis of the human genome sequence using tandem repeat finder is presented
in the UCSC human genome browser in the ‘simple repeats’ track (see Chapter 9).

3.2.3 Insertion/Deletion Polymorphisms and Chromosomal
Abnormalities

While tandem repeat polymorphisms are in themselves a major form of variation in
genomes, they may also mediate other forms of variation by predisposing DNA to
localized rearrangements between homologous repeats. Such rearrangements give rise
to Insertion/Deletion (INDEL) polymorphisms. Indels appear to be quite common in most
genomes studied so far, this probably reflects their association with common VNTRs.
Indels have been associated with an increasing range of genetic diseases, for example,
Cambien et al. (1992) found association between coronary heart disease and a 287-bp
Indel polymorphism situated in intron 16 of the angiotensin converting enzyme (ACE).
This Indel, known as the ACE/ID polymorphism, accounts for 50% of the inter-individual
variability of plasma ACE concentration. The molecular mechanism of insertion/deletion
polymorphism is still poorly understood, many different molecular mechanisms may
account for an Indel event, although most are likely to be DNA sequence dependent. As
discussed earlier, localized sequence repetitiveness in the form of direct tandem repeats or
inverted repeats or ‘symmetric elements’, have been shown to predispose DNA to inser-
tion/deletion events (Schmucker and Krawczak, 1997). Darvasi and Kerem (1995) found
evidence to suggest that slipped-strand mispairing (SSM) was a common mechanism for
insertion/deletion events. Analysis of sequences surrounding 134 disease-causing Indel
mutations in the coding regions of three genes, the cystic fibrosis transmembrane conduc-
tance regulator, beta globin and factor IX, found that 47% of Indel mutations occurred
within a unit repeated tandemly two- to seven-fold. The proportion of SSM mutations
was significantly higher than expected by chance. The estimated net proportion of dele-
tion and insertion mutations attributed to SSM was 27%. Further mechanisms have been
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proposed; Deininger and Batzer (1999) suggested that many INDELs may be caused by
the insertion of Alu elements, which number in excess of 500,000 copies in the human
genome providing abundant opportunities for unequal homologous recombination events.

Although Indel polymorphisms are likely to be very widely distributed throughout the
genome, relatively few have been characterized and there is no central database collating
this form of polymorphism. The Marshfield website maintains the most comprehensive
single source of short insertion/deletion polymorphisms (SIDPs), over 2000 are maintained
in a form which can be searched by chromosome location. Other databases such as dbSNP
and HGVBASE also capture SIDPs to some extent. Larger Indels are generally overlooked
in databases unless associated with a specific gene or study, in which case they appear in
GDB, OMIM and other similar sources.

3.2.4 Gross Chromosomal Aberrations

While minor Indel polymorphisms are thought to be relatively common in human popu-
lations, gross chromosomal abnormalities such as deletions, inversions or translocations
were thought to be rare. Nevertheless as our knowledge of the genome develops an increas-
ing number of clinically characterized genomic syndromes are being identified. Some of
these affect multiple genes and cause pronounced phenotypes including velocardiofacial
syndrome (VCFS) a deletion syndrome on 22q11.2 (Gong et al., 1996) and Charcot-
Marie-Tooth disease type 1A (CMT1A) a duplication syndrome on 17p11.2 (Thomas,
1999). Other much more subtle genomic syndromes are emerging which suggest that
these syndromes may in fact be more common than previously believed. DUP25 is an
interstitial duplication of 17 Mb at 15q24–26, which is associated with joint laxity and
panic disorder (Gratacos et al., 2001). Changes in dosage of one or more of the 59+ genes
in the DUP25 region are likely to contribute to the subtle clinical phenotype. Detection
of DUP25 was not easy as it shows non-Mendelian transmission precluding straightfor-
ward linkage analysis. Instead researchers used laborious cytogenetic methods to detect
the duplication. This analysis identified DUP25 in 90% of patients with one or more anx-
iety disorders, and in 80% of subjects with joint laxity and remarkably in 7% of French
population-based controls.

These genomic disorders are generally thought to be caused by aberrant recombina-
tion at region- or chromosome-specific low-copy repeats, known as segmental duplications
(Emanuel and Shaikh, 2001). This new class of repetitive DNA element has only been
identified very recently, largely as a result of human genome sequencing. Segmental
duplications result from the duplication of large segments of genomic DNA that range in
size from 1 to 400 kb. These duplications can mediate interchromosomal or intrachromo-
somal recombination events. Knowledge that relatively common diseases can be caused
by recurrent chromosomal duplications and deletions has demonstrated that potential for
genomic instability could be directly related to the structure of the regions involved. The
sequence of the human genome offers to add insight and understanding to the molecular
basis of such recombination ‘hot spots’. This insight is already being gained, in the case
of VCFS on 22q11.2 complete genomic sequence across the region has revealed four
segmental duplications flanking the VCFS deletion region (Shaikh et al., 2001).

Availability of information on known deleted or duplicated regions varies greatly; some
have been narrowed to fairly well-defined critical regions, others are very poorly defined.
Details of some of the more extensively characterized deletion/rearrangement syndromes
are captured in GDB and OMIM, although in most cases information is spread throughout
the literature and basically needs to be hunted down on a case by case basis. The UCSC
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human genome browser is a particularly useful ally in this hunt (see Chapter 5), as it
annotates large duplicated regions in the human genome. The objective of this annotation
is primarily to identify duplication errors in human genome contig assembly, but this also
effectively identifies segmental duplications, such as the duplications flanking the VCFS
region on 22q11.2.

3.2.5 Somatic Mutations

A completely distinct category of human mutations arises somatically during the process
of tumourgenesis. These mutations may take many forms, the most commonly charac-
terized are somatic point mutations identified during the screening of candidate genes in
tumour tissues. Cytogenetic studies of human neoplasias have also identified a number
of chromosomal aberrations involving large deletions and duplications (Shapira, 1998).
As somatic mutations are not inherited it is obviously important to avoid mixing somatic
point mutation data with human polymorphism and mutation data.

3.2.5.1 Somatic Point Mutations

Screening of candidate genes for point mutations in tumour material has identified a
number of key genes with a role in cancer. There is no central database containing point
mutation data identified during these screens, although some locus-specific databases do
exist, it is not possible to list all these specialist resources. In some cases is may be
possible to identify locus-specific databases by a gene-specific websearch (e.g. using
SCIRUS, see Chapter 2). In most cases mutation data needs to be identified directly from
the literature.

3.2.5.2 Genomic Aberrations in Cancer

Almost 100,000 neoplasia-associated chromosomal abnormalities have been characterized
at the molecular level, revealing previously unknown genes that are closely associated
with tumourigenesis. It is not clear if somatic chromosomal aberrations and genomic
syndromes share any common mechanisms, such as mediation by segmental duplications,
although this is a possibility. Prospects for informatic and laboratory study of chromosomal
aberrations in cancer are assisted by the availability of a centralized database to capture
this data, the Mitelman map of chromosome aberrations in cancer. This resource has
been integrated into the NCBI MapViewer tool and the Cancer Genome Anatomy Project
(CGAP) (see Table 3.1).

3.3 DATABASES OF HUMAN GENETIC VARIATION

The vast range of human genetic variation is still largely uncharted and what information
exists cannot be derived from a single database. At best the data needs to be gathered from
several databases or worse still the data may not be readily available in a database at all, in
which case detailed literature and internet searching or bioinformatic analysis approaches
may be necessary. Having described the main forms of human variation, we will now
introduce the key databases for mining this information. We will also examine how these
genetic databases integrate with other databases and the human genome sequence to add
a full genomic context to variation, to help in the characterization of a potential genetic
lesion. Table 3.1 presents a selection of the best tools and databases for this purpose.
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TABLE 3.1 Genetic Variation-Focused Databases and Tools on the Web

Mutation databases
OMIM http://www.ncbi.nlm.nih.gov/Omim/
HGMD http://www.hgmd.org
GDB Mutation Waystation http://www.centralmutations.org/.
HUGO mutation database initiative http://www.genomic.unimelb.edu.au/mdi/

Central databases (SNPs and mutations)
HGVbase http://hgvbase.cgb.ki.se/
Sequence variation database (SRS) http://srs.ebi.ac.uk/
dbSNP http://www.ncbi.nlm.nih.gov/SNP/
The SNP consortium (TSC) http://snp.cshl.org/

Genetic marker maps (microsatellites, STSs other markers)
Marshfield maps http://research.marshfieldclinic.org/

genetics/
Genome Database (GDB) http://www.gdb.org
dbSTS http://www.ncbi.nlm.nih.gov/STS/
UniSTS http://www.ncbi.nlm.nih.gov/genome/sts/

Somatic and non-nuclear mutation databases
MitoMap http://www.gen.emory.edu/mitomap.html
Mitelman Map http://cgap.nci.nih.gov/Chromosomes/

Mitelman

Gene-orientated SNP and mutation visualization
LocusLink http://www.ncbi.nlm.nih.gov/LocusLink/
PicSNP http://picsnp.org
Protein Mutation Database http://www.genome.ad.jp/htbin/

www−bfind?pmd
Go!Poly http://61.139.84.5/gopoly/
GeneLynx http://www.genelynx.org
SNPper http://bio.chip.org:8080/bio/snpper-enter
GeneSNPs http://www.genome.utah.edu/genesnps/
CGAP SNP database htpp://lpgws.nci.nih.gov/

Genome-orientated for SNP and mutation visualization
Ensembl http://www.ensembl.org
Human Genome Browser (UCSC-HGB) http://genome.ucsc.edu/index.html
Map Viewer http://www.ncbi.nlm.nih.gov/cgi-bin

/Entrez/hum−srch

3.4 SNP DATABASES

The deluge of SNP data generated over the past 2 years can primarily be traced to two
major overlapping sources: The SNP Consortium (TSC) (Altshuler et al., 2000) and mem-
bers of the Human Genome Sequencing Consortium, particularly the Sanger Institute and
Washington University. The predominance of SNP data from this small number of closely
related sources has facilitated the development of a central SNP database — dbSNP at the
NCBI (Sherry et al., 2001). Other valuable databases have developed using dbSNP data
as a reference, these tools and databases bring focus to specific subsets of SNP data, e.g.
gene-orientated SNPs, while enabling further data integration around dbSNP.
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3.4.1 The dbSNP Database

The National Center for Biotechnology Information (NCBI) established the dbSNP data-
base in September 1998 as a central repository for both SNPs and short INDEL poly-
morphisms. In May 2002 (Build 104) dbSNP contained 4.2 million SNPs. These SNPs
collapse into a non-redundant set of 2.7 million SNPs, known as Reference SNPs (Ref-
SNPs). Approximately 10% of these RefSNPs do not currently map to the draft human
genome, which leaves 2.43 million SNPs with potential utility for genetic mapping. These
quantities of SNPs give a high level of coverage across the genome. One study estimated
that 85% of all known exons are within 5 kb of an SNP in the dbSNP database (Interna-
tional SNP Map Working Group, 2001). These figures will have undoubtedly improved
considerably by the time this book comes to press.

3.4.1.1 The Reference SNP Dataset (RefSNPs)

The non-redundant RefSNP dataset is produced by clustering SNPs at identical genomic
positions and creating a single representative SNP (designated by an ‘rs’ ID). The sequence
used in the RefSNP record is derived from the SNP cluster member with the longest
flanking sequence; this sequence is derived from one individual and is not a composite
sequence assembled from the cluster. The RefSNP record collates all information from
each member of the cluster, e.g. frequency information. The availability of the RefSNP
dataset considerably streamlines the process of integrating SNPs with other data sources.
External resources generally use the RefSNP dataset which makes the RefSNP ID the
universal SNP ID in the SNP research community. RefSNPs have also become an integral
part of the NCBI data infrastructure, so that the user can effortlessly browse to dbSNP
from diverse NCBI resources, including LocusLink, Map View and Genbank.

3.4.1.2 Searching dbSNP

There are a bewildering range of approaches for searching dbSNP. The database can
be searched directly by SNP accession number, submitter, detection method, population
studied, publication or a sequence-based BLAST search. The database also has a complex
search form which allows more flexible freeform queries (http://www.ncbi.nlm.nih.gov/
SNP/easyform.html). This allows the user to select SNPs which meet several criteria,
for example it is possible to search for all validated non-synonymous SNPs in gene
coding regions on chromosome 1 (Figures 3.3 and 3.4). The advanced form also includes
a separate interface for retrieving all SNPs between two STS markers or two golden
path locations.

There are many other tools which use the dbSNP dataset, e.g. LocusLink, SNPper
and the human genome browsers (Table 3.1). These tools can offer powerful alternative
interfaces for searching dbSNP, but be aware that third party tools and software may use
filtering or repeat masking protocols, which can lead to the exclusion of SNPs with poor
quality or short flanking sequence, or SNPs in repeat regions. If it is important to identify
all SNPs in a given gene or locus then it is worth consulting several different tools and
comparing the results. Some of the best SNP visualization tools are discussed later in
this chapter.

3.4.1.3 Submitting Data to dbSNP

The dbSNP database accepts direct data submissions from researchers by e-mail or FTP.
The submission process is generally intended for large batch submissions involving hun-
dreds or thousands of SNPs, using a text flatfile submission format. Each SNP submission
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Figure 3.3 The dbSNP freeform search interface.

contains many elements to describe the SNP, but primarily it should contain a report
describing how to assay the SNP, the SNP sequence information and if available the SNP
allele frequency. While the submission format is suitable for bulk submissions it may
present the occasional submitter some problems. Preparation of any more than a handful
of SNPs in this format really requires some grasp of a text manipulation language such as
perl (Stein, 2001). In this case it may be a good idea to find a friendly perl programmer or
contact dbSNP directly for guidance and assistance in the preparation of the submission.
A web interface for form-based submission is currently in development, which should
alleviate this problem.
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Figure 3.4 Search results from a dbSNP freeform search.

3.4.1.4 Key SNP Data Issues

The sequencing of the human genome has provided a massive boost to human polymor-
phism discovery efforts. Table 3.2 presents a breakdown of dbSNP submission sources.
From this table it is clear that 94% of SNPs in dbSNP originate from three main sources:
the TSC, the Sanger Institute and the Kwok Laboratory (informatic analysis of data from
the Whitehead Institute and Washington University). SNPs sourced from the TSC were
identified by the major genome sequencing centres by detection of high-confidence base
differences in aligned sequences primarily from reduced representation shotgun (RRS)
sequencing (Altshuler et al., 2000) and also by alignment of genomic clones (Mullikin
et al., 2000). RRS sequencing involves sequencing of random clones from the genomes
of many individuals. This method has several advantages over other SNP identification
methods, in that it does not require previous knowledge of genomic sequence or PCR,
and it provides haploid genotypes, the alleles of which are easier to call (see Chapter 10
for on overview of these methods). The later two sources, SANGER and KWOK account
for 64% of dbSNP SNPs. These represent SNPs generated by the major human genome
sequencing centres. These SNPs were identified by overlapping genomic sequence reads.
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TABLE 3.2 Main SNP Submission Sources in the dbSNP Database (BUILD 104)

Source Total submissions RefSNP clusters Primary SNP ID method

TSC 1,279,099 1,275,272 Shotgun and Genomic
Kwok (WASHU) 1,182,884 493,536 Genomic overlap
Sanger 1,529,560 1,348,534 Genomic overlap
Lee 99,505 46,942 EST trace mining
Yusuke 73,720 73,720 SNP disc (Japanese)
Perlegen 25,326 25,315 Microarray (Chr21 only)
HGBASE 13,100 13,081 Various
CGAP 12,881 12,733 EST trace mining
Other 13,367 ND Various
Total 4,229,442 2,673,925

In the wake of the TSC and the genomic overlap SNP discovery projects, further
SNP submissions to dbSNP will continue from the genome centres in the final stages
of genome finishing, but further growth of dbSNP will depend on the next steps after
completion of the human genome. The human genome is likely to be repeatedly re-
sequenced in the next few years, either entirely or across defined regions. This will in
turn generate further SNPs by comparison of genomic overlaps. The Sanger Institute has
already announced a 5-year plan to re-sequence all known human exons in 96 individuals.
This should detect 95% of SNPs with a frequency of >1%. Inevitably novel SNPs will
become increasingly rare, based on a law of diminishing returns. Based on the observed
SNP density in the genome, estimates suggest that the dbSNP dataset may currently
represent 20–30% of common SNPs in the human genome. Different SNP discovery
projects have sampled variation at very different levels. The TSC SNPs were discovered
using a publicly available panel of 24 ethnically diverse individuals (Collins et al., 1998).
This panel would have a 95% chance of detecting SNPs down to a frequency of 5%. SNPs
identified by genomic sequence overlap (which comprise 64% of dbSNP data), offer the
shallowest sampling of human variation. Genomic overlap SNPs are candidate SNPs
identified by comparison of two individuals, this approach has some major drawbacks,
the SNP discovery method is more error prone (heterozygotic SNPs are often missed) and
many SNPs discovered by this method are likely to be ‘private’ SNPs which are restricted
to the individual and not generally represented in populations (see below for more details
on candidate SNP issues).

Aside from the major SNP data submissions from the genome centres, dbSNP also
accepts direct SNP submissions from researchers and most journals now require SNP
submission to dbSNP before publication (a practice which needs to be encouraged). These
have been estimated to add to dbSNP at a rate of about 100 primarily gene-orientated
SNPs per month.

3.4.1.5 Candidate SNPs — SNP to Assay

As we have already demonstrated, the dbSNP dataset has one overwhelming caveat — most
of the SNPs are ‘candidate’ SNPs of unknown frequency and are unconfirmed in a labo-
ratory assay. This translates to the simple fact that many SNPs do not exist at a detectable
frequency in any population. Over 60% of the SNPs in dbSNP were detected by statistical
methods for identification of ‘candidate’ SNPs by comparison of DNA sequence traces
from overlapping clones. Marth et al. (2001) investigated the reliability of these candidate
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SNPs in some depth completing two pilot studies to determine how well candidate SNPs
would progress to working assays in three common populations. In both studies, they
found that between 52–54% of the characterized SNPs turn out to be common SNPs
(above >10%) for each population. Significantly, between 30 and 34% of the character-
ized SNPs were not detected in each population. These results suggest that if a candidate
SNP is selected for study in a common population, there is a 66–70% chance that the
SNPs will have detectable minor allele frequency (1–5%) and a 50% chance that the SNPs
are common in that population (>10%). Put another way, ∼17% of candidate SNPs will
have no detectable variation in common populations, these ‘monomorphic’ SNP candi-
dates, are likely to represent ‘private SNPs’, which exist in the individual screened but
not appreciably in populations. This probably reflects the massive increase in population
size and admixture over the past 500 years (Miller and Kwok, 2001). Beyond validation
of the SNP, the last hurdle is assay design — many SNPs are located in repetitive or AT
rich regions, which makes assay design difficult, this can account for a further 10–30%
fallout, depending on the assay technology.

Any genetic study needs to take these levels of attrition between SNP and working
assay into account (Table 3.3). There is only one solution to this problem — to determine
the frequency of the 2 million or so public SNPs in common ethnic groups. This is now
widely recognized in the SNP research community and several public groups includ-
ing the TSC are already undertaking or seeking to undertake large-scale SNP frequency
determination projects.

3.4.2 Human Genome Variation Database (HGVbase)

The Human Genome Variation database, HGVbase, previously known as HGbase (Brookes
et al. 2000; http://hgvbase.cgb.ki.se/), was initially created in 1998 with a remit to capture
all intra-genic (promoter to end of transcription) sequence polymorphism. One year later,
the remit of the database expanded to a whole genome polymorphism (and nominally
mutation) database, this ambitious expansion in remit was supported by the establish-
ment of a European consortium comprising teams at the Karolinska Institute, Sweden, the
European Bioinformatics Institute, UK and at the European Molecular Biology Labora-
tory, Germany. At this point, HGbase encompassed the same classes of variants as dbSNP.
Both HGVbase and dbSNP make regular data exchanges to allow data synchronization. In
November 2001, the HGbase project adopted the new name HGVbase (Human Genome
Variation database; Fredman et al., 2002). This change reflected another change in the
scope of the database as it took on a HUGO endorsed role as a central repository for
mutation collection efforts undertaken in collaboration with the Human Genome Variation
Society (HGVS).

TABLE 3.3 Pitfalls from Candidate SNP to Assay (From Marth et al., 2001)

SNP to assay convertion steps
Remaining RefSNPs

(% attrition)

Reference SNP identified 2.4 M
Not mapped to human genome 2.16 M (10%)
Assay design not possible or assay fails 1.84 M (15%)
Not polymorphic in study population 1.52 M (17%)
Frequency <20% in chosen population 1.26 M (50%)
SNPs (>20% frequency) with assay available 0.63 M
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There is no doubt that dbSNP has assumed the de facto position of the primary central
SNP database. To accommodate this, HGVbase has assumed a complementary position,
with a broader remit covering all single nucleotide variation — both SNPs and mutations.
HGVBASE is also taking a distinct approach to dbSNP by seeking to summarize all
known SNPs as a semi-validated, non-redundant set of records. HGVbase is seeking
to address some of the problems associated with candidate SNPs and so in contrast to
the automated approach of dbSNP, HGVbase is highly curated. The curators are aiming
to provide a more-extensively validated SNP data set, by filtering out SNPs in repeat
and low complexity regions and by identifying SNPs for which a genotyping assay can
successfully be designed. The HGVbase curators have also identified SNPs and mutation
data from the literature, particularly older publications before database submission was
the norm. HGVbase currently contains 1.45 M non-redundant human polymorphisms and
mutations (release 13–March 2002).

HGVbase is a highly applied database, which also provides some useful tools for
experimental design, including a tool for defining haplotype tags — ‘Tag ’n Tell’. This tool
will find a minimum set of markers that uniquely characterize (or ‘tag’) chosen haplotypes.
According to user preferences, not all entered haplotypes have to be considered in the
tag-selection process, this is useful for determining optimal haplotype tag sets to capture
common haplotypes (see Chapter 9 for an example of haplotype tagging using this tool).

The HGVbase search interface is relatively simple, tools are available to facilitate
BLAST searching and keyword queries of the database. As these options are relatively
limited, other tools which access HGVbase data, are a better option — most are from the
EMBL and EBI organizations, including Ensembl and SRS (Table 3.3; described below).
The in silico quality control approach adopted by HGVbase is valuable, particularly for
the broader biological community of SNP data consumers. For the geneticist, HGVbase
serves to identify SNPs with a higher chance of converting from ‘candidate SNPs’ to
informative SNP assays. If you take the cost of failed assays into account, this is a
valuable objective, although if all available SNPs need to be identified it may still be
important to search dbSNP and other resources.

3.5 MUTATION DATABASES

The polymorphism data stored in dbSNP is valuable biological information that helps
to define the natural range of variation in genes and the genome, however most of the
polymorphisms can be assumed to be functionally neutral. By contrast human mutation
data is functionally defined and has obvious implications for the nature and prevalence of
disease and the pathways underlying disease. This makes the study of naturally-occurring
mutations important for the understanding of human disease pathology, particularly the
relationships between genotype and phenotype and between DNA and protein structure
and function. A large number of Mendelian disease mutations have been identified over
the past 20 years. These have helped to define many key biological mechanisms, including
gene regulatory motifs and protein–protein interactions (see Chapter 13). Many highly
specialized locus-specific databases (LSDBs) have been established to collate this data.
This chapter could not hope to cover all these databases, but there are now several central-
ized resources which index and provide links to some of the larger resources. Other ‘bou-
tique’ databases can sometimes be identified by general web searching (see Chapter 2).

3.5.1 The Human Gene Mutation Database (HGMD)
The HGMD was established in April 1996 to collate published germline mutations respon-
sible for human inherited disease. In October 2001, HGMD contained 26,637 mutations
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in 1153 genes. The scope of HGMD is limited to mutations leading to a defined inherited
phenotype, including a broad range of mechanisms, such as point mutations, inser-
tion/deletions, duplications and repeat expansions within the coding regions of genes.
Somatic mutations and mutations in the mitochondrial genome are not included. HGMD
invites submissions from researchers but most records are curated directly from mutation
reports in more than 250 journals and directly from the LSDBs which are comprehensively
linked. To be included, there must be a convincing association between the mutation and
the phenotype. All mutations in HGMD are represented in a non-redundant form which
unfortunately does not conserve all the redundant mutations constituting the cluster, so it
is not possible to determine if mutations are identical by descent, also data is lost on the
frequency of mutations. The HGMD search interface is primarily text based and targeted
searching tends to rely on knowledge of the correct HUGO nomenclature for a gene.

3.5.2 Sequence Variation Database (SRS)

The sequence variation database forms part of the Sequence Retrieval Server (SRS) at
the EBI, Hinxton UK. SRS is a flexible sequence query tool which allows the user to
search a defined set of sequence databases by accession number, keyword or sequence
similarity. Several categories of sequence variation are encompassed by SRS, including
HGVbase and a large number of locus specific databases which are listed in Table 3.4.

3.5.3 The Protein Mutation Database (PMD)

The Protein Mutation Database (PMD) is unique among genetic variation databases as it
contains both natural and artificial mutation data derived from human proteins (Kawabata
et al., 1999). The artificial mutation data is derived from the literature and mainly consists
of site-directed and random mutagenesis data. It is important to clearly delineate artificial
data and so each record is clearly defined as either natural or artificial. The database gives
detailed description of the functional or structural effects of the mutations if known and
provides links to the original publications. Relative differences in activity and/or stability,
in comparison with the wild-type protein, are also indicated. PMD contains 119,190 natural
and artificial mutations (January 2002) and these can be searched by keyword or sequence
similarity (BLAST), a complete report on the mutated protein sequence is displayed which
allows the user to see the position of altered amino acids. Where 3D structures have been
experimentally determined, PMD displays mutated residues in a different colour on the
3D structure.

The Protein Mutation Database is very valuable for the functional analysis of proteins.
The detailed functional characterization of mutations gives the user an opportunity to
compare known mutations with variations in orthologous residues in related proteins. The
data is also useful to aid in the delineation of the functional domains of proteins in the
database and other homologous proteins (see Chapter 14 for further examination of such
approaches for mutation analysis).

3.5.4 On-line Mendelian Inheritance in Man (OMIM)

OMIM is an on-line catalogue of human genes and their associated mutations, based
on the long running catalogue Mendelian Inheritance in Man (MIM), started in 1967 by
Victor McKusick at Johns Hopkins (Hamosh et al., 2000). OMIM is an excellent resource
for providing a brief background-biology on genes and diseases, it includes information
on the most common and clinically significant mutations and polymorphisms in genes.
Despite the name, OMIM also covers complex diseases in varying degrees of detail.
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TABLE 3.4 Locus-Specific Databases Indexed by the Sequence Variation Database

Name Description Entries

General mutation databases 74,117
EMBLCHANGE Sequence change features from

EMBL
32,863

SWISSCHANGE Sequence change features from
SWISS-PROT

17,294

OMIMALLELE Alleles from OMIM 9344
HUMUT Protein Mutation Databank 14,616

Mitochondrial genome 9401
HUMAN−MITBASE Human mitochondrial DNA

variants
9401

Locus-specific mutation databases 240,73
P53LINK p53 mutations database 14,834
APC APC mutation database 825
BTKBASE Bruton’s tyrosine kinase

mutations
454

VWF von Willebrand factor gene
variations

144

CFTR Cystic fibrosis mutation
database

809

PAH Phenylalanine hydroxylase
mutations

289

HAEMA Haemophilia A, Factor VIII
mutations

604

HAEMB Haemophilia B 1722
LDLR Low-density lipoprotein

receptor
283

PAX6 PAX6 mutation database 118
EMD Emery–Dreifuss muscular

dystrophy
87

L1CAM Neuronal cell adhesion
molecule gene mutations

91

CD40LBASE CD40 ligand defects 60
G6PD Glucose-6-phosphate

dehydrogenase variants
122

ANDROGENR Androgen receptor mutations 514
RDS Retinal degeneration slow gene

mutations
33

RHODOPSIN Rhodopsin gene mutations 133
FANCONI Fanconi anaemia mutation

database
32

HEXA Hexosaminidase A mutations 89
XCGDBASE X-linked chronic

granulomatous disease
303

DMD Duchenne/Becker muscular
dystrophy

184

(continued overleaf )
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TABLE 3.4 (continued )

Name Description Entries

FVII Factor VII mutation database 176
ATM Ataxia–telangiectasia mutation

database
200

P16 CDKN2A/P16NK4A mutation
database

146

GAA Acid alpha-glucosidase
mutation database

83

OTC Ornithine transcarbamylase
(OTCase) mutations

105

IL2RGBASE Interleukin-2 receptor gamma
mutations

161

BIOMDB Database of tetrahydrobiopterin
deficiency mutations

78

Central databases 984,093
HGVbase Human Genome Variation

database (SNPs and
mutations)

984,093

In January 2002, the database contained over 13,285 entries (including entries on 9837
gene loci and 982 phenotypes). OMIM is curated by a dedicated but small group of
curators, but the limits of a manual curation process mean that entries may not be current
or comprehensive. With this caveat aside OMIM is a very valuable database, which
usually presents a very accurate digest of the literature (it would be difficult to do this
automatically). A major added bonus of OMIM is that it is very well integrated with the
NCBI database family, this makes movement from a disease to a gene to a locus and vice
versa fairly effortless.

3.6 GENETIC MARKER AND MICROSATELLITE DATABASES

3.6.1 dbSTS and UniSTS

dbSTS is an NCBI database containing sequence and mapping data for Sequence Tagged
Sites (STSs) (Olson et al., 1989). These STSs can include polymorphic sequences such as
short tandem repeats (STRs), or non-polymorphic sequences. In fact any unique genomic
landmark which can be amplified by PCR can be used as an STS marker. Both poly-
morphic and non-polymorphic STS markers have been used to construct extensive high
resolution radiation hybrid maps of the human gene, while polymorphic markers have
been used to construct genetic maps (see Chapter 7). The dbSTS database maintains
complete records for over 133,202 STS markers, including ∼18,000 STR markers and
gives key information for each record such as primer sequences, map location and marker
aliases. Searching dbSTS can be achieved in many ways. The UniSTS interface allows
direct searches by keyword, the NCBI Map View application allows searching by genomic
location or locus, while dbSTS is also available for BLAST searching by NCBI BLAST.
This array of search options makes the dbSTS database a very reliable source for retrieval
of both genetic and physical STS map markers.
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3.6.2 The Genome Database (GDB)

The genome database (GDB) was established ahead of most other genetics databases in
1990 as a central repository for mapping information from the human genome project.
Throughout the early 1990s GDB was the dominant genome database and served as the
primary repository for genetic map-related information. In January 1998, after several
years of uncertain US government funding, GDB funding was officially terminated. By
December 1998 funding from another source was found, but at a significantly lower level.
By this time other databases had inevitably overtaken GDB as ‘central genome databases’
(Cuticchia, 2000). Today GDB is still one of the most comprehensive sources for some
forms of genetic data, including tandem repeat polymorphisms (it contains over 18,000), it
also contains an eclectic range of information on fragile sites, deletions, disease genes and
mutations, collected by a mixture of curation and direct submission. GDB development is
ongoing and the historical focus of the database on genetic maps is broadening to a more
integrated view of the genome ultimately down to the sequence level (which unfortunately
is currently lacking). Plans to finally integrate a sequence map might well make GDB
a prominent genetic resource again, although political issues still threaten to halt these
aspirations (Bonetta, 2001).

The GDB graphical search interface was a truly pioneering tool of the field and was
the first to introduce the kind of graphical map viewing applications that Ensembl and
UCSC now excel at. Unfortunately the originals are not always the best and the graphical
GDB interface is now starting to look very tired indeed. However, GDB also has a more
productive text/table based search interface. This allows complex queries, for example
it is possible to retrieve all known polymorphic or non-polymorphic markers between
two markers. Advanced filters can also be used, for example markers above a defined
level of heterozygosity can be retrieved. Results are retrieved and ordered based on the
genetic distances of the markers, along with a very roughly estimated Mb location. As
the markers are ordered by genetic distance, many markers cannot be resolved beyond
a certain level, therefore markers with identical genetic distances are presented in an
arbitrary order. However, high level order is quite reliable and supported by LOD scores.
Clarification of genetic marker order and distance is a complex process, which involves
integrating multiple maps ultimately down to the level of the human genome to build
up a consensus order and distance. These issues of map and marker integration will be
examined in detail in Chapter 7.

3.7 NON-NUCLEAR AND SOMATIC MUTATION DATABASES

3.7.1 MITOMAP

The sequencing of the human mitochondrial genome (mtDNA) was a landmark in geno-
mics, being the first component of the human genome to be completely sequenced
(Anderson et al., 1981). The mitochondrial genome consists of a 16,569-bp closed circular
molecule in the mitochondrion — each of the several thousand mtDNAs per cell encodes
a control region encompassing a replication origin and the promoters, a large (16 S) and
small (12 S) rRNA, 22 tRNAs, and 13 polypeptides. All of the mtDNA polypeptides
are components of the mitochondrial energy generating pathway, oxidative phosphoryla-
tion, which is functionally essential and evolutionarily constrained (Wallace et al., 1995).
Despite this selection pressure, maternally inherited mtDNA has a very high mutation
rate — mtDNA mutates 10–20 times faster than nuclear DNA as a result of inadequate
proofreading by mitochondrial DNA polymerases and limited mtDNA repair capability. As
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a result mtDNA mutations might be expected to be relatively common — this is supported
by the relative abundance of mitochondrial disorders described to so far — although it
is also important to note that such mutations, being comparatively easy to identify by
sequencing, are likely to have been among the first to be characterized.

More than 100 mitochondrial diseases have now been described, including a broad
spectrum of degenerative diseases involving the central nervous system, heart, mus-
cle, endocrine system, kidney and liver. Information on the phenotypes and causative
mutations of these diseases are covered briefly in OMIM and in detail in the mitochon-
drial mutation database, MITOMAP (Kogelnik et al., 1998). The MITOMAP database
(Table 3.1) integrates information on all known mtDNA mutations and polymorphisms
with the broad spectrum of available molecular, genetic, functional and clinical data, into
an integrated resource which can be queried from a variety of different perspectives.

MITOMAP places the clinical mutation dataset of over 150 disease-associated muta-
tions into their genomic context. It also encompasses information on over 100 mtDNA
rearrangements, including nucleotide positions of breakpoint junctions and sequences of
associated repeat elements. Clinical characteristics are associated with the mutations and
are accessible both through associated datasets in MITOMAP as well as through linkage
to OMIM. MITOMAP also provides information on nuclear genes which impinge on
mtDNA structure and function. Finally, a population variation dataset provides access to
known mtDNA haplotypes and their continental distributions and population frequencies.

3.7.1.1 Searching MITOMAP

MITOMAP is searchable by gene, disease and enzyme — users can refine their search by
function, polymorphism, or references (author, title, journal, year or keyword). MITO-
MAP data has been collated from published literature on the mitochondrial genome and
regular searches are made to capture new publications. The database also accepts direct
submissions, including over 199 unpublished polymorphisms and mutations.

3.7.2 The Mitelman Chromosome Abberations Map

Cytogenetic studies over the past few decades have revealed clonal chromosomal aber-
rations in over 100,000 human neoplasms. Many of these have been characterized at the
molecular level, revealing previously unknown genes that may be closely associated with
tumourigenesis. Information on chromosome changes in neoplasia has grown rapidly,
making it difficult to identify all recurrent chromosomal aberrations. The Mitelman Map
of Chromosome Aberrations in Cancer (Mitelman et al., 1997) was first published over
15 years ago to compile this information; the database now contains over 7100 references
encompassing some 100,000 aberrations in 97 different histological types of cancers. The
catalogue has evolved from a book to a CD-ROM published by John Wiley and now it is
also available as a web-based database (http://cgap.nci.nih.gov/Chromosomes/ Mitelman;
Mitelman et al., 2002).

The Mitelman database actually consists of three databases. A generalized search form,
allows one to search by abnormality, breakpoint, number of clones, number of chromo-
somes, sex, age, race, country, series, hereditary disorder, topography, immuno-phenotype,
morphology, tissue, previous tumour, treatment, reference and/or cytogenetic character-
istics to determine frequencies of balanced and unbalanced translocations. The results of
a search provide a variety of information. For example, if you select a breakpoint and
a gene, the search retrieves relevant PubMed references, diagnoses, the specific chromo-
some aberration and all genes involved. The Mitelman map is an extremely complex
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and detailed database so it is well worth consulting the ‘Help’ section for specific
instructions before commencing a search. A more immediately accessible breakdown
of the recurrent neoplasia-associated aberrations described by Mitelman are presented
by the NCBI MapView tool. This data is an updated version of the survey appearing
in the April 1997 Special Issue of Nature Genetics (Mitelman et al., 1997). To view
the Mitelman abberations across chromosome 22, for example, try the following URL:
http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/maps.cgi?ORG=hum&MAPS=ideogr,mit
&CHR=22

For cancer geneticists, the Mitelman database benefits greatly from inclusion in the
Cancer Genome Anatomy Project (CGAP). CGAP and NCBI are also collaborating closely
which has allowed information on chromosomal aberrations to be closely linked with
the other CGAP and NCBI resources including mapped SNPs, FISH mapped BACs,
and GeneMAP99. The CGAP catalogue is of particular value, serving as a comprehen-
sive index to breakpoints, clones (BACs, cDNA), genes (expression, sequence, tissue),
libraries and SNPs (primer pairs, linkage and physical maps). The Mitelman database is
undoubtedly the most comprehensive listing of clinical cytogenetic studies in existence,
integration of this data with MapViewer and soon hopefully with other viewers such as
Ensembl, creates a great opportunity to study the genetics and the biological process of
chromosomal aberration right down to the sequence level; this should in turn help to
provide insight into the molecular mechanisms of tumourigenesis.

3.8 TOOLS FOR SNP AND MUTATION VISUALIZATION — THE
GENOMIC CONTEXT

The human genome is the ultimate framework for organization of SNP and mutation data
and so genome viewers are also one of the best tools for searching and visualizing poly-
morphisms. The three main human genome viewers, Ensembl, the UCSC Human Genome
Browser (UCSC-HGB) and the NCBI Map Viewer (Table 3.1), all maintain variable levels
of SNP annotation on the human genome, although none maintain annotation of mutation
data. Most of the information in these viewers overlap, but each contains some different
information and interpretation and so it usually pays to consult at least two viewers, if
only for a second opinion. Consultation between viewers is easy as all three now use the
same whole genome contig, known as ‘the golden path’ and so they link directly between
viewers to the same golden path coordinates.

User defined queries with these tools can be based on many variables, STS, mark-
ers, DNA accessions, gene symbol, cytoband or golden path coordinate. This places
SNPs and mutations into their full genomic context, giving very detailed information on
nearby genes, transcripts and promoters. Ensembl and UCSC-HGB both show conserva-
tion between human and mouse genomes, UCSC-HGB also includes tetradon and fugu
(fish) genome conservation. This may be particularly useful for identification of SNPs
in potential functional regions, as genome conservation is generally restricted to genes
(including undetected genes) and regulatory regions (Aparicio et al., 1995). We examine
the use of these tools in detail in Chapters 5, 9 and 12.

3.9 TOOLS FOR SNP AND MUTATION VISUALIZATION — THE GENE
CONTEXT

For the biologist or candidate gene hunting geneticist, SNP information may be of most
interest when located in genes or gene regions, where implicitly each SNP can be evaluated
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for potential impact on gene function or regulation. Many tools are available to identify
and analyse such SNPs and almost all are based on the dbSNP dataset, but most have
somewhat different approaches to the presentation of data (see Table 3.1 for a list of
these tools). Choice of tool may be a matter of personal preference so it is probably
worth taking a look at a few. The drawback of using some of these tools is that some
are maintained by very small groups so sometimes tools may not be comprehensive or
current. New tools are constantly appearing in this area so it is often worth running a
web search to look for new and novel contributions to this research area — for example
‘SNP AND gene AND database’ is all you need to enter as a search term in a general
web search engine.

3.9.1 LocusLink

The NCBI LocusLink database is a reliable tool for gene-orientated searching of dbSNP.
It can be queried by gene name or symbol, query results will show a purple ‘V’ link if
SNP records have been mapped to a gene. Clicking on this link will take you to a report
detailing all RefSNP records mapped across the gene. Almost all NCBI tools integrate
directly with dbSNP; LocusLink is the central NCBI ‘gene view’ which links out to a wide
range of resources, it also includes a RefSNP gene summary (a purple V or VAR link).
This summary details all SNPs across the entire gene locus including upstream regions,
exons, introns and downstream regions. Non-synonymous SNPs are identified and the
amino acid change is recorded, analysis even accommodates splice variants. LocusLink
has the advantage of the NCBI support so it is probably one of the most comprehensive
and reliable data sources for gene-orientated SNP information.

Although LocusLink benefits from the reliability bestowed by the infrastructure and
resources available at the NCBI, several other tools present gene-focused data with a
subtly different approach. Some of these are worth trying, again the tool for you may
be a matter of personal preference so try a few. There are many tools which fit into this
category, some of these are listed in Table 3.1, but for the purposes of this chapter we
will only review two of the more outstanding tools: SNPper and CGAP-GAI.

3.9.2 SNPper

SNPper is a web-based tool developed by the Children’s Hospital Informatics Program
(CHIP), Boston (Riva and Kohane, 2001). The SNPper tool maps dbSNP RefSNPs to
known genes, allowing SNP searching by name (e.g. using the dbSNP ‘rs’ name), or
by the golden path position on the chromosome. Alternatively, you can first find one
or more genes you are interested in and find all the SNPs that map across the gene
locus, including flanking regions, exons and introns. SNPper produces a very effective
gene report (Figure 3.5) which displays SNP positions, alleles and the genomic sequence
surrounding the SNP. It also presents very useful text reports which mark up SNPs across
the entire genomic sequence of the gene and another report which marks up all the amino
acid-altering SNPs on the protein.

The great strength of SNPper lies in its data export and manipulation features. At the
SNP report level, SNPs can be sent directly to automatic primer design through a Primer3
interface. At a whole gene level or even at a locus level, SNP sets can be defined and
refined and e-mailed to the user in an excel spreadsheet with SNP names in the first
column and flanking sequences in the second, ready for primer design.

SNPper currently contains information on around 1,900,000 SNPs and 12,479 genes
(January 2002). These correspond to all the unambiguously mapped known SNPs and
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Figure 3.5 The SNPper gene report. The report displays SNP positions, alleles and
the genomic sequence surrounding the SNP. It also presents text reports which mark up
SNPs across the entire genomic sequence of the gene and amino acid-altering SNPs on
the protein.

genes in the human genome. By restricting the database to known genes, they have
considerably simplified their task as all the gene annotation is well defined. SNPper uses
this advantage to maximum effect by presenting the data very clearly and informatively.
SNPper is a highly recommended tool for the laboratory-based geneticist.

3.9.3 CGAP-GAI (htpp://lpgws.nci.nih.gov/)

The Cancer Genome Annotation Project (CGAP)/Genetic Annotation Initiative (GAI)
database is a valuable resource which identifies SNPs by in silico prediction from align-
ments of expressed sequence tags (ESTs) (Riggins and Strausberg, 2001). The database
was established specifically to mine SNPs from ESTs generated by CGAP’s Tumour Gene
Index project (Strausberg et al., 2000), which is generating more than 10,000 ESTs per
week from over 200 tumour cDNA libraries. The analysis also encompasses other public
EST sources.
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Figure 3.6 The CGAP-GAI web interface for identification of candidate SNPs in ESTs.
The JAVA view of trace data helps to support the base call of a potential SNP in an EST,
although laboratory investigation is the only reliable SNP confirmation.

Candidate SNPs in ESTs can easily be viewed with the CGAP-GAI web interface in a
graphical JAVA assembly (Figure 3.6). SNPs in ESTs are identified by an automated SNP-
calling algorithm, mining EST data with greater than 10 reads from the same transcribed
region yielded predicted SNPs with an 82% confirmation rate (Riggins and Strausberg,
2001). All SNPs which meet the stringent calling criteria are submitted to dbSNP. It is also
worthwhile searching CGAP directly if you are interested in a specific gene. The threshold
for automated SNP detection is set very high, so many potential SNPs evade automatic
detection, but these candidate SNPs can be identified quite easily by eye, simply by looking
for single base conflicts where sequence is otherwise high quality. The JAVA view of trace
data helps to support the base call of a potential SNP in an EST (Figure 3.6), although
laboratory investigation is the only completely reliable SNP confirmation. Intriguingly
this resource could potentially contain some somatic mutations from tumour ESTs which
would probably be discarded by the automatic detection algorithm which requires some
degree of redundancy to call the SNP.
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3.10 CONCLUSIONS

The last few years have revolutionized our knowledge of polymorphism and mutation
in the human genome. SNP discovery efforts and processing of genome sequencing data
have yielded several million base positions and several hundred thousand VNTRs that
might be polymorphic in the genome. This information is complemented by a more select
collection of mutation data painstakingly accumulated over many years of disease-gene
hunting and mutation analysis. The sheer scale of this data offers tremendous opportunities
for genetics and biology. We are now entering a new phase in genetics where we can begin
to design experiments to capture the full genetic diversity of populations. This may herald
a revolution in genetics allowing rapid association of genes with diseases, alternatively it
may simply identify further downstream bottlenecks in the progression to validated disease
genes. The literature is already replete with reports of genetic associations and still more
failures to replicate associations, but progressions from associated marker to validated
disease gene are rare indeed. This may be the real challenge for genetics — to cast new
insight into the structure and function of genes, proteins and regulatory regions. To achieve
this we will need to integrate diverse sources of data to build up complete pictures of
biological systems and their interactions with disease. Again an understanding of mutation
and polymorphism may be an important aid in this process — with mutations representing
the extreme boundaries beyond which genes begin to dysfunction and polymorphisms
perhaps representing the functional range within which genes can operate. Our knowledge
of the breadth and variety of human genetic variation can only increase our understanding
of the mechanisms of disease and more importantly it may help us to define targets for
intervention.
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4.1 INTRODUCTION

This chapter will describe ways to interrogate human genome (HG) data with the results
of genetic experiments in order to locate known genes on the current Golden Path (GP)
chromosomal assemblies. It will also describe the assessment of evidence for genes that
do not yet have experimental support and some analytical choices that may reveal more
about them. In addition to some general aspects of gene detection some specific examples
will be worked through in some detail. This illustrates technical subtleties that are not easy
to capture at the overview level. As an introduction to the HG, GP and gene annotation
the following chapter by Semple is recommended. Chapter 2 also provides some useful
background on the organization of sequence databases. A caveat needs to be added here
that many roads lead to Rome. Some particular ways of hacking through the genome jungle
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are implicitly recommended by being used as the examples in this chapter. They will also
be restricted to public databases and web tools. These are the personal choices of the
author based on an assessment of their availability and utility. Other experts may propose
alternative routes to the same information, either using different public resources, locally
downloaded datasets, Unix-based tools, commercial software or subscription databases.

Genetic investigations are concerned with discerning the complex relationships between
genotype and phenotype. The statement that phenotype is determined by the biochemical
consequences of gene expression is equally obvious. However, the reason for making
this explicit is to recommend that those performing and interpreting genetic experiments
may find it more useful to conceptualize the gene as a cascade of evidence that connects
DNA to a protein product rather than abstract ideas about what might constitute a gene
locus. The idea of focusing on gene products also makes it easier to design experiments
to verify predicted transcripts and proteins. It must also be remembered that many gene
products are non-message RNA molecules but they will not be covered in this chapter.
Before describing the evidence used to classify gene products it is necessary to define
some of the terminology encountered in the literature and database descriptions. These are
variously classified as known, unknown, hypothetical, model, predicted, virtual or novel.
There are no widely accepted definitions of these terms but their usage in this chapter will
be as follows. A known gene product is experimentally supported and would be expected
to give close to a 100% identity match to a unique GP location. The term ‘unknown’
is typically applied to gene products that are supported experimentally but that lack any
detectable homology or experimentally determined function. The term ‘predicted’, also
referred to as ‘model’ or ‘hypothetical’ by the NCBI, will be reserved for an mRNA
or protein ORF predicted from genomic DNA. Virtual mRNAs will refer to constructs
assembled from overlapping ESTs that exceed the length of any single component. The
term ‘novel’ has diminishing utility and will simply refer to a protein with no extended
identity hits in the major protein databases.

4.2 THE EVIDENCE CASCADE FOR GENE PRODUCTS

So what kinds of evidence need to be considered before we assess the likelihood of
a stretch of genomic DNA giving rise to a gene product and what kind of numbers
can be assigned to these evidence levels? The most solid evidence of a gene is the
experimental verification of the protein product by mass spectrometry and/or Edman
sequencing. Although these techniques are commonly used to analyse proteins produced
by heterologous expression in-vitro surprisingly few genes from in-vivo or cell line sources
have been verified at this level. From the entire SP/TR collection of human proteins
only 311 are cross-referenced as having at least a fragment of their primary structure
identified directly from a 2D-PAGE experiment (http://ca.expasy.org/ch2d/) (Hoogland
et al., 2000). Numerous mass spectrometry-based identifications and peptide sequences
from human proteins are reported in the literature but little of this data has been formally
submitted to the public databases and therefore has not been captured by SwissProt or other
secondary databases. However, even this most direct of gene product verifications is rarely
sufficient to confirm the entire open reading frame (ORF). For example secreted proteins
are characterized by the removal of signal peptides and frequent C-terminal processing.
This precludes defining the N and C translation termini by protein chemical means.

The next level down in the evidence cascade is of course an extended mRNA. There are
currently 48,681 human mRNAs in GenBank. However transcript coverage is by no means
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complete as they collapse down by shared identity to a set of 13,429 human transcripts
(excluding splice variants) in the NCBI RefSeq collection (http://www.ncbi.nlm.nih.gov/
LocusLink/RSstatistics.html) (Pruitt and Maglott, 2001). Although this collection attempts
to provide a non-redundant snapshot of gene transcription it must be remembered that they
are not all full-length transcripts. If the databases do not contain an extended mRNA the
assembly of overlapping and/or clone-end clustered ESTs can be considered as a virtual
mRNA (Schuler, 1997). The ESTs have the additional utility that many of them can be
ordered as clones. Alternatively, the virtual consensus sequence, backed up by compari-
sons to the genomic DNA, can be used for PCR cloning. The fact that 94% of known
mRNAs are covered by at least one EST makes them strong supporting evidence for a
transcript, especially if they include a plausible splice junction and are derived from mul-
tiple clones from different tissue cDNA libraries (http://www.ncbi.nlm.nih.gov/UniGene/).
The TIGR gene indexes are a useful source of pre-assembled virtual sequences that
they term tentative human consensus sequences or THCs (Quackenbush et al., 2001).
These can also be selected in the UCSC genome display. The use of unspliced ESTs as
evidence for a transcribed gene is unreliable as they can arise from genomic contamination.
However human EST-to-genome matches for exon detection can be further supported
where orthologous ESTs from other vertebrates, such as mouse or rat, match uniquely in
the same section of GP. If an assembly of mouse ESTs is consistent with a human gene
model then the existence of an orthologous human transcript is strongly implicated.

The protein databases occupy the centre of the evidence cascade for gene products.
Those mRNAs that translate to an open reading frame (ORF) are experimentally supported
even if they are not full-length and/or there can be ambiguity about the choice of potential
initiating methionines. However, the fact that the protein databases have now expanded
to include human ORFs derived solely from genomic predictions (described in the next
section) means that the evidence supporting them as gene products becomes circular. The
highest curation level is provided by SwissProt sequences from the Human Proteomics
Initiative set (HPI) (http://ca.expasy.org/sprot/hpi/hpi stat.html). The March 2002 number
comprised 7895 unique gene products and 2039 splice variants (O’Donovan et al., 2001).
The SwissProt/TrEMBL (SP/TR) total for human proteins in February 2002 was 24,147,
including splice variants (http://www.ebi.ac.uk/proteome/HUMAN/interpro/stat.html). The
current Ensembl release, 4.28.1, contains 21,619 proteins classified as ‘knowns’ by an
identity above 95% to a human SP/TR entry (Hubbard et al., 2002). The International Pro-
tein Index (IPI) maintains a database of cross references between the data sources Swiss-
Prot, TrEMBL, RefSeq and Ensembl. This provides a minimally redundant yet maximally
complete set of human proteins with one sequence per transcript (http://www.ebi.ac.uk/
IPI/IPIhelp.html). The March 2002 release contains 65,082 protein sequences but this
includes 28,350 XP RefSeq ORFs predicted by the NCBI which are not supported
by mRNAs.

The next level of evidence can be classified as genomic prediction i.e. where a
cDNA, a translated ORF and a plausible gene splice pattern can be predicted from
a stretch of genomic DNA (Burge and Karlin, 1997). This proceeds more effectively
on finished sequence or at least where unfinished sequence contains the exons in the
correct order. This is done after filtration of repeats which can be considered as another
link in the evidence chain. A very high local repeat density certainly suggests where
exons are unlikely but the converse is not true i.e. the absence of repeats does not
prove the presence of genes. The shortcomings of ab initio gene prediction have been
pointed out but the geneticist should at least be aware of possible false positives
and false negatives (Guigo et al., 2000). The Ensembl statistics of the ratio of genes
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predicted by Genscan over genes with a high evidence-supported threshold is currently
7.5 : 1 (http://www.ensembl.org/Homo sapiens/stats/). Although this clearly represents
over-prediction some may be ‘genes-in-waiting’ which more accumulated evidence may
verify, for example by the cloning of an extended mRNA. Looking for a consensus or at
least common exons from a number of gene prediction programs with different underlying
gene model assumptions can strengthen this type of evidence but this can become a circular
argument where the programs are both trained and benchmarked with known genes. For
unfinished genomic sequence the presence of gaps and local miss-ordering of contigs
within the clone degrades the performance of ab initio methods. The most effective way
of filtering down genomic predictions without experimental evidence is homology support
i.e. the predicted protein shows extended similarity with other proteins. This is described
in detail in the Ensembl documentation but in essence all possible protein similarity
sections from translated DNA are identified and used to build homology-supported gene
predictions using GeneWise (Birney and Durbin, 2000). The advantage of gene detection
by homology is that the entirety of protein sequence space can be used. The caveat is
that predicted gene products with low similarity to extant proteins would be discarded in
this filter, although the entire set of Genscan predictions are preserved for searching in
Ensembl and can also be displayed at UCSC.

The next link in the evidence chain is a special case of the similarity principle but in
this case utilizing comparisons between the genomes of other vertebrates such as mouse
and fish for which extended data are now available (Wiehe et al., 2001). Mouse genome
assemblies have recently appeared on the Ensembl and UCSC sites. Although the ini-
tial assembly is only ∼20% the total depth in the trace archives and HTGS divisions is
approaching complete coverage. Cross-species data can be assessed at three levels. The
first is a simple DNA similarity on pieces of mouse DNA known to be syntenic from the
location of known mouse genes and/or the extended similarity score which, with appropri-
ate masking, locates it uniquely to a human locus. This approach is termed phylogenetic
footprinting (Susens and Borgmeyer, 2001). The problem for gene product detection is
that this is too sensitive i.e. mouse/human syntenic regions have many conserved simi-
larity ‘patches’ outside the boundaries of known exons. They are likely to be important
for functions not yet understood but are difficult to discriminate from potential coding
regions. The second level is mouse BLAT as used on the UCSC site. This goes a step
back by doing a translation similarity comparison rather than direct DNA-to-DNA. This
makes it more likely to pick up reading frame similarities across exons. The third level is
the so-called exofish. By the detection of translation similarities at the amino acid level
this is capable of detecting those exons that are conserved between human and fish. This
will be more useful when exofish updates to a complete fish genome rather than a partially
assembled one.

The last link in the evidence chain, the in silico recognition of transcriptional control
regions, is circumstantial but is likely to increase in utility (Kel-Margoulis et al., 2002).
These could include potential start sites in proximity to CpG islands, promoter elements,
transcription factor binding sites, and potential polyadenylation acceptor sites in 3′ UTR.
When considered in isolation these signals have poor specificity but taken in combina-
tion with a consensus gene prediction and conservation of these putative control regions
between human and mouse, they can become a useful part of the evidence chain.

In summary there is currently direct experimental evidence for ∼15,000 genes and
strong evidence to support a lower gene limit of around 25,000. The confirmation rates
for the types of evidence listed above has not been calibrated experimentally so we
cannot come up with any kind of scoring function to rank gene likelihood. Going to the
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extremities of the evidence cascade, for example with the 65,082 ORFs from the IPI or
the 62,271 UniGene clusters containing at least two ESTs, would result in a higher upper
limit. This uncertainty becomes a key issue for genetic experiments. Let us suppose, for
example, that a linkage study has defined a trait within the genomic region bounded by
two microsatellite markers. If the lower limit gene number is true then the investigator
merely needs to check the annotations from any of the three gene portals to produce a
list of gene products between the positioned markers from which to choose candidates
for further work. If the upper limit is true this approach has a major limitation because
many of the genes between the markers will not be annotated. However, the different
levels of gene evidence described above can be visualized in the display tracks of the
genome viewers. Consideration of the evidence will enable the geneticist to decide what
experiments need to be designed to confirm potential novel gene products. An example
of working through this evidence is given in the examples below.

4.3 SHORTCOMINGS OF THE STANDARD GENE MODEL

One of the conclusions that could be drawn from the draft human genome sequence
was that the standard gene model of a defined gene locus → a single mRNA species →
a single protein, is no longer adequate to describe the increasingly complex relationship
between the genome and its products. Attempts to fit transcript data into the standard gene
model highlight a number of ‘grey’ areas. The first of these is delineating the extreme 5′
and 3′ ends of the mRNA transcripts (Pesole et al., 2002; Suzuki et al., 2002). The fact
that many mRNAs are labelled as partial is testimony to the difficulty of finding library
inserts that are complete at the 5′ end. In many cases the mRNAs are considered finished
when a plausible ORF has been delineated. However, very few cDNAs are full-length in
that they have been ‘walked out’ to determine the true 5′-most initiation of transcription in
the 5′ UTR. The same problem applies to the UTR at the 3′ end. There may be substantial
stretches of 3′ UTR extending downstream of the first polyadenylation position at which
further cloning attempts have ceased. The problem is compounded by the poor perfor-
mance of gene prediction programs for 5′ and 3′ ends. The first step towards resolving
uncertainties about transcript extremities, is to survey the coverage of all available cDNA
sequences, whether nominally full-length or partial, ESTs and patent sequences. These
can often extend the UTR sections. The second grey area concerns pseudogenes. In some
cases genomic sequence is so severely degraded that transcription is unlikely. However,
from the current pseudogene listing in RefSeq of 1598 loci, at least 30 are recorded
as having detectable transcripts (http://www.ncbi.nlm.nih.gov/LocusLink/statistics.html).
The third grey area is gene product heterogeneity. In some cases there may be alternative
upstream initiation methionines or alternatively spliced exons in the 5′ UTR. The causes
for 3′ heterogeneity include variations in the pattern of intron splicing from a pre-mRNA,
as well as alternative poladenylation positions inside the 3 UTR. The fourth grey area
concerns overlapping genes. As genomic annotation proceeds we can find more examples
of this both from gene products reading from opposite strands and same-strand genes in
close proximity.

Considering these grey areas as a whole, they can all be seen as deviations from the
simple gene model. Many individual examples of such complexities had been documented
before the genome draft of May 2001. However, it is only since then that assessments of
their overall incidence could be made, most recently for completed chromosomes such
as 20 (Deloukas et al., 2001). It is therefore essential for the geneticist to keep an open
mind about the extremities and plurality of gene products.
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4.4 LOCATING KNOWN GENES ON THE GOLDEN PATH

Genes can be located by one of the following: a section of raw sequence data, a primary
accession number, a secondary accession number, a similarity search, a gene product name,
or a set of Golden Path (GP) coordinates. Each of these has advantages and disadvantages
and, although the three gene portals are generally consistent, they may not give the same
answers in every case. Bearing in mind that only the first two of these are stable and
(almost) free of potential ambiguity it is better to use at least two ways to define and
store the results, for example a section of raw sequence and a gene name, or a primary
accession number and a set of GP coordinates. The BACE gene will be used as an
example of a known gene to locate. The potential complexity of this task is illustrated by
the example of the Ensembl gene report for BACE that includes no less than 46 separate
terms (Figure 4.1).

4.4.1 Raw Sequence Data

The availability of GP means that most features can now be unambiguously located in
the genome with as little as 100 bp. This means that storing a sequence string, prefer-
ably with a longer sequence context of 200–1000 bp, is a useful method of locking-on
to a genomic location. It is also immune to the vagaries of shifting secondary accession
numbers, naming ambiguities or GP sequence finishing that can change the genomic coor-
dinates. Performing nucleotide searches against GP using tools such as BLAT (UCSC)
or SAHA (Ensembl) or BLAST (NCBI), means that sequence matches can be quickly
located. The disadvantage for raw sequence is that it has to be stored in its entirety,
it may contain errors, it needs the operation of a similarity search to be located and
similarity matches across repeat containing sections or duplicated regions of the genome
need close inspection to sort out. This can be a particular problem for STSs and SNPs

Figure 4.1 The Ensembl gene report page for BACE (release 4.28.1).
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if the GP match is in the region of 98 to 95% identity. Within this range it is difficult
to discriminate technical sequencing errors from multiple genomic locations or assembly
duplication errors. It can also be useful to search the primary genomic data, especially if
GP is not complete in that section. For example although BACE is linked by Ensembl
to AP001822 as the finished GP sequence, a database search reveals another four match-
ing primary genomic accession numbers from chromosome 11, AP000892 (finished at
version 4) with AC020997, AP000685 and AP000761 still unfinished. One less obvious
advantage of these five overlapping genomic contigs is that if they proceed to finishing
more SNP positions may be revealed. As described below the genome portals capture
mRNA entries for most gene products unless they are very recent. However, because of
the thin annotation they do not capture sequences from the patent divisions. A BLAST
search of gbPAT with any BACE mRNA gives 18 high-identity DNA matches. These
are clearly mRNAs that could be usefully compared with all other mRNA sequences for
polymorphisms, splice variants or UTR differences. However users should be aware that
not only are some of these 18 entries identical versions of the same sequence derived
from multiple claims in the patent documents but they may also be identical to a public
accession number if the authors and inventors are from the same institution. Another
reason for using raw sequence data for gene product checking is because all secondary
databases suffer from the snapshot effect where updates lag behind the content of the
primary databases. For example the SNP or EST assignments made for BACE in the sec-
ondary databases (see below) could be checked by BLAST searches against the updates
of dbSNP or dbEST (remember the latest EST data needs to be searched in ‘month’ as
well as dbEST).

4.4.2 Primary Accession Numbers

Because these uniquely define stretches of sequence they are stable except where genomic
and occasionally mRNAs, undergo version changes. They can be used in any of the
major genome query portals to go directly to a genomic location. The disadvantage is
redundancy for mRNAs, short sequence context for some STSs, both redundancy and
large multi-gene sequence tracts for genomic mRNA, and very recent accessions may
not be indexed in genome builds. If the query fails to connect to a genome feature
the sequences can be searched as raw sequence. Taking the BACE example there are
eight mRNA accession numbers listed in Figure 4.1 that can be used as a genome portal
query. Interrogating UCSC with BACE retrieves nine mRNA entries, LocusLink con-
nects directly to only three but the UniGene cluster Hs.49349 connects to 12. Users
need to be aware that although an mRNA accession number can provide a specific
route into GP the variable number of links to the genome portals is related to their
update frequency.

4.4.3 Secondary Accession Numbers

From Figure 4.1 we can read eight secondary accession numbers that designate protein
translations for each of the BACE mRNAs. It also has three RefSeq numbers NM 012104
for the mRNA, NP 036236 for the protein and NT 009151 for the genomic contig. There
is one SwissProt accession BACE HUMAN (P56817) and one TREMBL splice variant
Q9BYB9. The LocusID, 23621, in turn links out to many other accession numbers which
point to the BACE genome sequence. These include the Hs.49349 UniGene cluster that
includes 336 ESTs with primary accession numbers. Via the LocusLink Variation link
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the RefSNP numbers can be located. In this case they consist of 43 intronic SNPs, three
within the mRNA, including one (rs539765) which causes an Arg > Cys exchange, and
seven SNPs in the 3′ UTR. It is possible to use a RefSNP (rs) number to go directly
to the SNP location in Ensembl or UCSC. However because of multiple GP matches in
Ensembl it is necessary to know the genomic location beforehand.

4.4.4 Gene Names

Including abbreviations Figure 4.1 there are nine synonyms or aliases for this enzyme.
This illustrates the problem where gene products are given different names by different
authors. The best way to cross-check names, spelling variations and frequency of use,
is to search PubMed. Checking title lines only is more specific but does not capture all
occurrences. In this case a title search found a new name extension, BACE1, with five
citations compared with 22 for BACE. This seems logical since the discovery of the
BACE2 paralogue on chromosome 21. However, the Human Gene Nomenclature Com-
mittee have not been consistent because they have only listed BACE and BACE2 as
official symbols even though they have listed ACE1 as an alias for ACE since the recent
discovery of ACE2 (http://www.gene.ucl.ac.uk/nomenclature/). The most frequent specific
term was ‘beta-secretase precursor’ at 30 citations. The alternative ‘membrane-associated
aspartic protease 2′ gave eight citations and ‘beta-site app cleaving enzyme’ was the least
frequent with only two. Paradoxically this has been chosen for the LocusLink name. The
least specific name was aspartylprotease 2 with two false positives and ASP 2 with 143
title matches, also mostly false positives. The imprecision of name searching was rein-
forced by checking ASP-2 with three matches and ASP2 with five. Only one was a true
positive and two of the citations referred to ASP2 as an odorant-binding protein from
the honeybee. The complexity of the aliases for just one gene product makes it clear that
any gene name lists, for example as candidate genes to be screened for mutations, must
be backed-up by accession numbers and/or raw sequence. It also illustrates the need to
cross-check aliases and their spellings when attempting a comprehensive literature search
on a particular gene product. The formal sequence-literature links that can be followed
in Entrez, LocusLink or SwissProt are not comprehensive because they are dependent
on the journal–author–database system that usually only makes these links explicit for
a new accession number. Much important literature remains outside this system. Review
articles, for example, do not typically include primary accession numbers when describ-
ing genes so the specificity of literature searches remains dependent on the name links.
Information trawling with gene names can also be done with the standard internet search
portal. Putting the term ‘beta-site app cleaving enzyme’ into the Google search engine
gave 249 hits (http://www.google.com/). The listing included duplicates but very few
false positives.

4.4.5 Genome Coordinates

Since the adoption of a unified GP assembly this method of genomic location has
become more reliable but users are advised to check the synchronization of new GP
versions between the three portals. Users should refer to the individual portals for
the details of using these coordinates but for the BACE example the NCBI showed a
region described as 120,533K–120,594K, the Ensembl viewer specified the coordinates
as 120549397–120575715 bp (with a zoom setting 120.5 Mb) on chromosome 11 and the
UCSC viewer designated the position in the form chr11 : 120545299–120599798.
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4.5 GENE PORTAL INSPECTION

From the descriptions above it should be possible to locate any known gene or genetic
marker such as an STS or a SNP. Descriptions of the genome viewer features for Ensembl,
UCSC and NCBI are included in the chapter by Semple. However two examples are
included below (Figures 4.2 and 4.3) because they illustrate technical differences and high-
light the deviations from the standard gene model. The UCSC display (Figure 4.2) includes
12 mRNA sequences for BACE where Ensembl (Figure 4.1) has included accession
number links for only eight. The display in Figure 4.2 also shows there are significant dif-
ferences in the lengths of the 5′ and 3′ ends. Clearly AF201468 (5878 bp) and AB032975
(5814 bp) are the longest reads but in fact AB032975 is labelled as a partial CDS because
of what may be a sequencing error at the 5′ end. The matches to the spliced ESTs together
with the rat and mouse mRNAs suggest the 5′ UTR may be full-length for these entries
i.e. they extend to the start of transcription. This is in contrast to the shorter 5′ ends for
the majority of mRNAs. A detailed analysis of the 3′ ends by EST distribution profiles
indicates that the different UTR lengths in this case arise not from incomplete cloning but
from three alternative polyadenylation positions (Southan, 2001). Further heterogeneity
is illustrated by three splice variants affecting exons 3 and 4. The representative mRNAs
are AB050436, AB050437 and AB050438. There is also an alternative protein reading
frame from AF161367, a partial mRNA cloned from CD34+ stem cells. Opening up the
spliced EST tracks in the viewer shows individual ESTs corresponding to these splice
forms. Approximately midway between exons 1 and 2 (from the 5′ end) is a spliced EST,
AL544727, derived from spleen. This suggests the possibility of another splice form but
this would need analysis for canonical splice sites and experimental verification. Similarly
an EST from spinal cord AL589586 suggests an alternative exon just on the 5′ side of
exon 3. Although the rat and mouse mRNAs displayed in Figure 4.2 show the same exon
positions as most human sequences there are suggestions of splice variants in non-human
ESTs but these tracks were not expandable in the version tested.

The NCBI display for BACE mRNAs and ESTs (Figure 4.3) shows concordance and
discrepancies with the UCSC display (Figure 4.2). The exon positions are identical. They
include the same RefSeq mRNA and genomic secondary accession numbers. The EST
matches are in broad agreement towards the 3′ end but two additional potential exon
matches are indicated at the 5′ end. Although these may be unspliced matches that would
need further investigation, one of these coincides with the XM 084660 reference sequence

Figure 4.2 The UCSC display for BACE mRNAs and ESTs.
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Figure 4.3 The NCBI display for BACE mRNAs and ESTs.

predicted by NCBI from the contig NT 009151. There is no mRNA verification for this
prediction so it will be of interest to see if additional EST data will appear and, if not, how
long this prediction will be maintained as genome annotation. The mismatches and INDEL
tracks are a useful feature unique to NCBI. The mismatches within the set of 12 mRNA
sequences could represent SNPs or technical sequence errors. The INDELs also show
major length discrepancies. In Figure 4.2 these highlight the three splice positions in agree-
ment with UCSC but the INDEL in exon 8 could not be interpreted from the link provided.

4.6 LOCATING GENES WHICH ARE NOT PRESENT IN THE GOLDEN
PATH

Estimates suggest the GP is still missing ∼2.5% of the genome, there are still small gaps
in the unfinished sections and the latest Ensembl release locates only 92% of known
proteins (http://www.ensembl.org/Dev/Lists/announce/msg00070.html). This means that
some genetic markers in close proximity to genes are either not covered by GP or are
not fully annotated in unfinished sequence. Two human proteins that have no matches
on the current GP version 28 from December 2001 illustrate this problem. The first of
these, spP83110 serine protease HTRA3, has an mRNA entry AY040094. The second
protein spP83105 serine protease HTRA4 has an mRNA accession but the entire ORF is
covered by two long EST reads AL545759 and AL576444. Because it has a full length
mRNA HTRA3 has a LocusLink ID of 94031 but no mapping links. Searching HTRA3
by BLASTN against the NCBI nr nucleotide database, containing 1,184,532 sequences,
hits only the probable mouse orthologous mRNA, AY037300, at 86% identity within
the reading frame. However checking monthly updates at 811,100 sequences reveals a
99% identity to a new genomic entry AC113611 of 190,038 bp from chromosome 4.
This sequence was also in the unfinished High Throughput Genomic Sequences (HTGS)
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division, with 47,855 sequences, along with the probable rat orthologous genomic section,
AC110369, at 87% identity. There were no mouse genome matches from this search. A
check on the nucleotide patent databases, with 582,838 sequences, showed a new mRNA
match, AX338509 from patent WO0183775. The HTRA3 mRNA has EST matches to
UniGene cluster Hs.60440 with four STSs from chromosome 4. Presumably these STSs
will be located on GP when the AC113611 genomic sequence is assembled into chromo-
some 4. Checking the chromosome 4 SNPs at 105,568 sequences by BLAST search,
recorded no hits within the 2552 bp mRNA of AY040094 but found over 100 matches
within the repeat-masked sections of AC113611. Using the same sequence to BLAST
against the 115,608 sequences in the STS division gives eight hits above 95% iden-
tity, although only three looked like unique matches. Interestingly the HTRA3 mRNA
AY040094 has no STS matches although four chromosome 4 STSs were picked up in the
UniGene entry. A possible explanation is that the cluster included clone links to ESTs
that extend past the 3′ end of the mRNA.

Performing the same database checks for the HTRA4 ESTs, AL545759 and AL576444,
produces a different pattern of findings. There were no hits in nr or gbPAT. However, the
HTGS search located extended identity hits to no less than four genomic entries. These
comprised of three recently sequenced sections of chromosome 8 AC108863, AC105089,
AC105088, and a short match to an entry without a chromosomal assignment, AC107926.
Checking for HTRA4 in LocusLink could find no IDs because of the absence of a full-
length mRNA. It was picked up as the UniGene cluster Hs.322452 with nine ESTs but
no mapping information was included even though our search update had located it to
chromosome 8. No reading frame SNPs could be detected from the 92,110 chromosome 8
entries. By using the genomic contig, AC108863, (198,743 bp) as a BLAST query only
three SNP identity matches were detected, rs1467190, rs2010445 and rs2056170, but three
STS markers G60989, G23343, and G04735, were located.

In summary; although these two gene products cannot be located on the latest GP a
series of manual database checks have established a mixture of patent mRNAs, unfinished
genomic matches, ESTs, STSs and SNPs. It will be interesting to track how soon these
features find their way into the GP annotation pipelines. If genetic studies should need
this location data in the interim, the searches have established that HTRA3 probably has
enough SNPs in the genomic vicinity for association studies, but that there is a very low
SNP density in proximity to HTRA4. If the overlapping genomic coverage for HTRA4
could detect all the exons it might be possible to assemble a ‘mini golden path’ across
this particular section. However if it became necessary to re-order and re-assemble the
contigs within the unfinished entries this would be a challenging task to perform with
web-based tools.

4.7 ANALYSING A NOVEL GENE

Sooner or later experimental results will locate a piece of GP where there are no fully
annotated known genes. Figures 4.4, 4.5 and 4.6 show selected tracks from the Ensembl,
UCSC and NCBI displays between the 3′ side of the BACE gene and the 5′ end of the
next known gene PCSK7. The known genes are marked in brown in Ensembl and blue
in UCSC. The latter are mRNA mappings and therefore include the UTR sections. Let us
assume a genetic linkage study had found significant associations in this area, either from
the two STS markers or the 50 or so SNPs that lie in this interval but are outside the
boundaries of the two neighbouring genes. The question immediately arises as to what
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Figure 4.4 The Ensembl display for the unknown gene between BACE (left) and
PCSK7 (right).

Figure 4.5 The UCSC display for the unknown gene between BACE (left) and
PCSK7 (right).

other gene product(s) might be located between the two knowns. The first step is to check
the continuity of this section of GP. This can be done in any of the viewers and in this
case there is complete clone overlap across this section.

Inspection of all three displays indicates a possible novel gene product with a variety
of supporting evidence. They include gene predictions which include both common and
different exon positions. The UCSC Genscan prediction number 464 overlaps with the 3′
UTR of BACE making this a less plausible (but still possible) exon. Reading vertically
down the Ensembl tracks first we see evidence for three protein homologies (yellow) as
judged by the matches in register with the Genscan exon predictions. These are Q96RS9,
a novel DZIP3, Q02455 a myosin-like peptide from yeast and P53804 a tetratricopeptide
repeat protein. There is the same pattern of exon matches to three UniGene cluster entries
(red) Mm.3679 Mus musculus for the tetratricopeptide repeat domain protein, Hs.165662
for Homo sapiens KIAA0675 unknown protein and Hs.118174 for Homo sapiens TTC3
tetratricopeptide repeat domain 3. There is a denser pattern of matches to mouse DNA
(pink) that includes many sections outside the Genscan predicted exons.

Moving down the UCSC tracks in Figure 4.5 we see the spliced ESTs (black) in
register with Genscan exons. However these identity EST matches are not equivalent to the
homology-based UniGene matches in Ensembl. Interestingly the internal exon predicted
only by Fgenes has no spliced EST support. Exploring the EST coverage further we see
that the (brown) THC tracks include an assembly that matches the predicted exons at the
BACE end of the Fgenesh++ prediction. The NCBI tracks go into more detail by not
only mapping UniGene cluster components directly back to putative genomic exons by
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Figure 4.6 The NCBI display for the unknown gene between BACE (top) and PCSK7
(bottom). The leftmost track shows the EST distribution. The next track to the right marks
the UniGene clusters. The central track is the gene prediction for LOC160162 and the
gene structure for the N-terminal section of PCSK7 (bottom).

identity matches but also, on the left hand edge, showing an identity block proportional
to the number of EST matches. Surprisingly there are five EST clusters which raises the
possibility of more than one gene. The mouse BLAT track (brown) is equivalent to the
Ensembl (pink) mouse track but the translation mode filters down to fewer features. The
exofish track in UCSC (blue) supports just one single exon at the 5′ end of the putative
novel gene compared with many conserved exons in both gene neighbours. In isolation
this would be considered as weak evidence for the gene product. However it could simply
mean that this predicted protein is not conserved between fish and human or the puffer
fish ORFs are not complete across this section.

Up to this point our analysis of the genomic region between the 3′ end of BACE
and the 5′ end of PKSC7 points strongly to the presence of a gene product on the basis
of gene prediction and EST coverage. So where do we go from here? One option is to
do some searches with the available mRNA and protein sequence from the Fgenesh++
prediction (numbered C11002075 in Figure 4.5) that can be downloaded from the UCSC
site. The result brings us a long way forward in the evidence cascade because we record
an 81% protein identity to what is likely to be the recently deposited mouse orthologue
mRNA, BC023073. Interestingly this level of similarity should result in this gene passing
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the Genwise threshold for marking a novel gene position (black) in the next release of
Ensembl. At these similarity levels we can back-check this mouse sequence against human
GP by the very fast BLAT search (http://genome.ucsc.edu/cgi-bin/hgBlat?command=
start). The result (Figure 4.7) clearly supports both the orientation (3′-to-3′ relative to
BACE) and seven of the exons from C11002075. However the mouse sequence is clearly
missing the 5′ end.

The next step involved searching the entire genomic DNA section of 54 kb from which
C11002075 was predicted against human ESTs. This was performed using MEGABLAST
with a 90% match stringency and masking of the repeat sections in the genomic query
section. The result (Figure 4.8) is equivalent in principal to the UniGene clusters in the
NCBI viewer but it is easier to pick out the ESTs that bridge several exons. Another reason
for doing this analysis is that over 1 million human ESTs have been added to dbEST since
the UniGene clusters were built. We can identify three ESTs that cover 35 kb of genomic
sequence across three exons and performing the analogous search against mouse ESTs,
with an 80% identity cut-off, finds a long EST spanning the four central exons. This
gives us more confidence of a single rather than multiple gene products. The next step
was to search ESTs against the TIGR THCS to establish if any virtual mRNAs could be
found. In fact two of these, THC856832 and THC796698, represented the 5′ and 3′ ends
respectively and to join these assemblies a bridging EST was found, BM055167. By using
a web version of the CAP3 assembler (http://bio.ifom-firc.it/ASSEMBLY/assemble.html)
it was possible to construct an extended virtual mRNA of 2720 bp. This was translated into
a protein of 474 amino acids using the translation tool (http://ca.expasy.org/tools/dna.html)
(Figure 4.9).

So far so good, but what else can we do to verify this putative novel protein in silico?
The first step is a cross-check for reading frame consistency and species orthologues
by performing TBLASTN against all ESTs (Figure 4.10). The results show the complete
coverage of the entire ORF by human ESTs but also suggests potential splice variants

Figure 4.7 The alignment of the mouse protein from BC023073 after a BLAT search
against the UCSC GP. The BACE gene is on the left hand side.

Figure 4.8 Result of a MEGABLAST search of the genomic sequence between BACE
and PCSK7 against human ESTs. The solid lines indicate gaps in the same ESTs. The
solid sections are putative exon matches.
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gcgggtcctgtccctcccccactttcctcccgggggcgcggcgcgggagagcataatggc
agcgtctgaggttgctggtgttgtggccaatgcccccagtcctccggaatcttctagttt
atgtgcttccaaatcagacgaaggtctcccagatggtctaagcaccaaagactctgcaca
gaagcagaagaactcgcctctgttgagtgtaagtagccaaacaataaccaaggagaataa
cagaaatgtccatttggagcactcagagcagaatcctggttcatcagcaggtgacacctc
agcagcgcaccaggtggttttaggagaaaacttgatagccacagcccttgtctttctggc
agtgggtctcagtctgatttgaaggatgtggccagcacagcaggagaggagggggacaca
agccttcgggagagcctccatccagtcactcggtctcttaaggcagggtgccatactaag
cagcttgcctccaggaattgctctgaagagaaatccccacaaacctccatcctaaaggaa
ggtaacagggacacaagcttggatttccgacctgtagtgtctccagcaaatggggttgaa
ggagtccgagtggatcaggatgatgatcaagatagctcttccctgaagctttctcagaac
attgctgtacagactgactttaagacagctgattcagaggtaaacacagatcaagatatt
gaaaagaatttggataaaataatgacagagagaaccctgttgaaagagcgttaccaggag
                     M  T  E  R  T  L  L  K  E  R  Y  Q  E
gtcctggacaaacagaggcaagtggagaatcagctccaagtgcaattaaagcagcttcag
V  L  D  K  Q  R  Q  V  E  N  Q  L  Q  V  Q  L  K  Q  L  Q
caaaggagagaagaggaaatgaagaatcaccaggagatattaaaggctattcaggatgtg
Q  R  R  E  E  E  M  K  N  H  Q  E  I  L  K  A  I  Q  D  V
acaataaagcgggaagaaacaaagaagaagatagagaaagagaagaaggagtttttgcag
T  I  K  R  E  E  T  K  K  K  I  E  K  E  K  K  E  F  L  Q
aaggagcaggatctgaaagctgaaattgagaagctttgtgagaagggcagaagagaggtg
K  E  Q  D  L  K  A  E  I  E  K  L  C  E  K  G  R  R  E  V
tgggaaatggaactggatagactcaagaatcaggatggcgaaataaataggaacattatg
W  E  M  E  L  D  R  L  K  N  Q  D  G  E  I  N  R  N  I  M
gaagagactgaacgggcctggaaggcagagatcttatcactagagagccggaaagagtta
E  E  T  E  R  A  W  K  A  E  I  L  S  L  E  S  R  K  E  L
ctggtactgaaactagaagaagcagaaaaagaggcagaattgcaccttacttacctcaag
L  V  L  K  L  E  E  A  E  K  E  A  E  L  H  L  T  Y  L  K
tcaactcccccaacactggagacagttcgttccaaacaggagtgggagacgagactgaat
S  T  P  P  T  L  E  T  V  R  S  K  Q  E  W  E  T  R  L  N
ggagttcggataatgaaaaagaatgttcgtgaccaatttaatagtcatatccagttagtg
G  V  R  I  M  K  K  N  V  R  D  Q  F  N  S  H  I  Q  L  V
aggaacggagccaagctgagcagccttcctcaaatccctactcccactttacctccaccc
R  N  G  A  K  L  S  S  L  P  Q  I  P  T  P  T  L  P  P  P
ccatcagagacagacttcatgcttcaggtgtttcaacccagtccctctctggctcctcgg
P  S  E  T  D  F  M  L  Q  V  F  Q  P  S  P  S  L  A  P  R
atgcccttctccattgggcaggtcacaatgcccatggttatgcccagtgcagatccccgc
M  P  F  S  I  G  Q  V  T  M  P  M  V  M  P  S  A  D  P  R
tccttgtctttcccaatcctgaaccctgccctttcccagcccagccagccttcctcaccc
S  L  S  F  P  I  L  N  P  A  L  S  Q  P  S  Q  P  S  S  P
cttcctggctcccatggcagaaatagccctggcttgggttcccttgtcagcccccacggt
L  P  G  S  H  G  R  N  S  P  G  L  G  S  L  V  S  P  H  G
ccacacatgccccctgccgcctccatcccacctcccccaggcttgggcggtgttaaggct
P  H  M  P  P  A  A  S  I  P  P  P  P  G  L  G  G  V  K  A
tctgctgaaactccccggccccaaccagtagacaaactggagaagatcctggagaagctg
S  A  E  T  P  R  P  Q  P  V  D  K  L  E  K  I  L  E  K  L
ctgacccggttcccacagtgcaataaggcccagatgaccaacattcttcagcagatcaag
L  T  R  F  P  Q  C  N  K  A  Q  M  T  N  I  L  Q  Q  I  K
acagcacgtaccaccatggcaggcctgaccatggaggaacttatccagttggttgctgca
T  A  R  T  T  M  A  G  L  T  M  E  E  L  I  Q  L  V  A  A
cgactggcagaacatgagcgggtggcagcaagtactcagccacttggtcgcatccgggcc
R  L  A  E  H  E  R  V  A  A  S  T  Q  P  L  G  R  I  R  A
ttgttccctgctccactggcccaaatcagtaccccaatgttcttgccttctgcccaagtt
L  F  P  A  P  L  A  Q  I  S  T  P  M  F  L  P  S  A  Q  V
tcatatcctggaaggtcttcacatgctccagccacctgtaagctatgtctaatgtgccag
S  Y  P  G  R  S  S  H  A  P  A  T  C  K  L  C  L  M  C  Q
aaactcgtccagcccagtgagctgcatccaatggcgtgtacccatgtattgcacaaggag
K  L  V  Q  P  S  E  L  H  P  M  A  C  T  H  V  L  H  K  E
tgtatcaaattctgggcccagaccaacacaaatgacacttgtcccttttgtccaactctt
C  I  K  F  W  A  Q  T  N  T  N  D  T  C  P  F  C  P  T  L
aaatgacggacctgactggggaggaagaagaagagaaactgatgtgaacaggaagcgcgg
K
gttcaagatttctaaaactctatatttatacagtgacatatactcatgccatgtacattt
ttattatataggtaatgtgtgtatagaaagtctgtattccaatgttcgtaaatgaaacta
tgtatattatgcagaaacagtctgttccccctcatcttgcaattcctttgggggatgcag
attgtagggaagatgatgtttagtttggccttgaaattatgatatccctgcccagggctg
ttttcaaatacaatataaaaaccacctaggaacctgctgttgctctaaggccattctgct
ttggtttggctcagcctctagtccatttccttaaggctcatgtatgcagatttaaagcct
ggtgctcacccactgtccaaccagatgccttgcttaccgaaagcctccagaagcctcagt
attgttttagccactctactccaaatggataaaatgagactctgattgaggaaaaaaaag
taaccctagtagtttgaaa

Figure 4.9 Predicted ORF for a novel protein. This was produced by assembling the
appropriate assemblies and ESTs into a virtual mRNA. This was then translated to give
the putative full-length protein sequence.
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Figure 4.10 Checking for continuity of reading frame by translation searching
(TBLASN) of the unknown ORF against all ESTs. The hatched lines represent deletions
in ESTs that could represent splice variants.

in these matches, for example AI351632, represented as hatched lines in Figure 4.10.
In addition to a bovine sequence BE75593 we also see a likely orthologous match to
AL640079 from a toad. The support for the ORF now seems unassailable. The next step
using BLAT again, is to map it back to GP (Figure 4.11). This reveals the matching
of 15 exons from putative 5′ UTR to 3′ UTR. This is consistent with the Fgenes++
prediction at the 5′ end but this included two extra exons at the 3′ end. The fact that the
virtual mRNA butts up very close to both neighbouring genes suggests that this could be
a full-length transcript.

Clearly the analysis of what, for example, might be a candidate disease-associated gene,
has to move on from the identification of an ORF to the assignment of function that is both
mechanistically plausible and experimentally testable. The subject of assigning functions
to new proteins is outside the scope of this chapter. However the two basic steps are a
protein database search and motif analysis. The protein search (Figure 4.12) only shows
significant similarity scores over the C-terminal section of the protein but the hits include
the same proteins assigned as UniGene homologies by Ensembl. A comprehensive domain
analysis using InterPro recognizes two domains (Kriventseva et al., 2001; Southan, 2000).
One of the domains identified, IPR000694, is a proline-rich domain that may be involved
in protein–protein interactions (Figure 4.13). However, the motif recognition specificity
is low and therefore this could be a spurious match arising from a general high proline
composition. An SRS query shows 1152 of these domains have been recorded in Ensembl
(Zdobnov et al., 2002). The second domain, IPR001841, is more specific because it only
occurs 187 times in the Ensembl gene set. The RING-finger is a specialized type of Zn-
finger of 40 to 60 residues that binds two atoms of zinc, and is probably also involved

Figure 4.11 Matching the virtual mRNA back against GP using the BLAT search at
UCSC. This delineates 15 exons with the gene reading in the opposite orientation to its
neighbouring genes, i.e. 3′ end to the left, on the same strand.
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Figure 4.12 The sequence similarity scores of the novel ORF against the NCBI
non-redundant protein database.

Figure 4.13 The InterPro domain/protein family analysis result for the novel ORF. The
praline-rich domain is defined from a Prosite profile. The zinc finger is defined by both a
Prosite profile and a SMART domain.

in mediating protein–protein interactions. They can also bind DNA however, since they
contain many Lys, Ser and Thr residues. In fact combining the two domain searches finds
intersecting hits (i.e. containing both domains) for only 17 Ensembl proteins. Inspecting
the graphical displays shows one of these gene products, ESP0000020915, to be similar
in domain orientation and spacing to the novel protein. Unfortunately the trail went cold
here because this identifier has been changed in the latest Ensembl release and the SRS
link to the protein sequence was dead.

So how did the three major gene portals do? Quite well considering they all included
the potential novel gene product as a gene prediction although they disagreed on exon
number. They also displayed key supporting evidence in different forms of track annota-
tion. Only a small subset of the display options has been presented here. Was the use of
all three portals essential? Strictly speaking we could have accessed sufficient support-
ing evidence from each one. However to collect all the available data it was necessary
to use all three. The other aspect is that each portal has particular facilities that even
if not unique at the technical level is easier to use at one portal compared to the other
three. Consequently this kind of detailed analysis becomes a de facto three-stop-shop. For
example the UniGene homology assignments, available from Ensembl, were all correct as
judged by the agreement with the protein similarities (red tracks in Figure 4.4). Having
said that, one of the direct protein homology assignments (yellow tracks in Figure 4.4),
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the myosin-like peptide from yeast, was probably erroneous because of the low com-
plexity of the query protein amino acid composition. In terms of markers, SNPs and
genes Ensembl does particularly well for combined export options. The UniGene iden-
tity matches on the NCBI display together with the graphical stacks proportional to the
number of EST matches are useful but in this case what is likely to be a single tran-
script was split into four clusters. One of these was illegible on the graphic and two
others are dubious because of being unspliced. The UCSC displays were useful to see the
two alternative gene models as well as being the only source of the TIGR EST assem-
blies. Another useful facility on this site is the ability of BLAT to display the hits of
any externally constructed model or new database sequence. This can then be compared
directly with the other display options (e.g. in Figures 4.6 and 4.11). The NCBI have
recently introduced a gene model builder that can reproduce some of the steps above
(http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/ModelMakerHelp.html).

4.8 COMPREHENSIVE DATABASE SEARCHING

The protein matches and the InterPro analysis have already given functional clues about
our novel protein. However if this particular gene product was located in close proximity
to an SNP with a disease association we would need to find out as much as possible,
not only to provide more supporting evidence for the gene product but also testable
predictions about function that can be followed up. Performing a comprehensive search
is not a trivial exercise since it involves 17 divisions of GenBank and sources of trace
data that have not yet been submitted to GenBank. So where do we start? The two large
repositories labelled nr protein or nucleotide on the NCBI BLAST server are a useful first
choice (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). We have already checked nr protein
at 891,607 sequences but we need to compliment this with month, which in this case
yields another 61,254 protein sequences but no additional high-scoring hits. The search
against nr nucleotide with 1,192,858 sequences records three extended matches. This
includes the mouse sequence already described, BC023073, and the primary accession
number of the finished genomic section AP000892. The third match, XM 100696, is
a secondary accession number for a reference mRNA sequence predicted by the NCBI
Annotation Project from a genomic contig NT 009151. This is the same prediction labelled
LOC160162 in Figure 4.5. There is an accompanying 56-residue predicted ORF that is
in the NCBI protein database but has no supporting evidence. Inspection of the genomic
location suggests it may be a spurious prediction.

Checking public patented proteins at 88,019 sequences gave no hits. However the
patent nucleotide division, gbPAT, at 581,001 sequences, gives three solid hits, AX321627,
AX192589 and AX072029. The first of these is a 2114-bp DNA from patent WO0172295.
The document indicates this protein was isolated from a lung cancer sample (http://ep.
espacenet.com/). These hits constitute a partial mRNA level of confirmation for the novel
protein but a reciprocal check (i.e. a BLASTN of AX321627 against the nr nucleotide
database) indicates this clone may be a chimera from two separate gene products. A search
against a commercial patent database, containing 673,453 protein sequences, reveals iden-
tity matches for the N-terminal section from patent WO200060077 and a C-terminal
identity match from WO200055350, both of which are reported as cancer-associated
transcripts (http://www.derwent.com/geneseq/index.html). Checking the GSS division by
TBLASTN gives four genomic hits; AZ847251 from mouse, AG114530 from chim-
panzee, BH306228 from rat and BH406519 from chicken. Using BLAST against the
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TABLE 4.1 Useful Resources for Gene Finding and Analysis

Site description URL

Ensembl at EBI/Sanger
Centre

http://www.ensembl.org/

Human Genome Browser
at UCSC

http://genome.ucsc.edu/

Map Viewer at NCBI http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/map− search
Protein Atlas of the

genome
http://www.confirmant.com/

SWISS-2DPAGE
database

http://ca.expasy.org/ch2d/

Ensembl 4.28.1
announcement

http://www.ensembl.org/Dev/Lists/announce/msg00070.html

NCBI gene model
builder

http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/
ModelMakerHelp.html

UniGene EST clusters http://www.ncbi.nlm.nih.gov/UniGene/
InterPro at EBI http://www.ebi.ac.uk/interpro/
Proteome analysis at EBI http://www.ebi.ac.uk/proteome/
Google general search

portal
http://www.google.com/

RefSeq at NCBI http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html
International Protein

Index
http://www.ebi.ac.uk/IPI/IPIhelp.html

Derwent sequence patent
databases

http://www.derwent.com/geneseq/index.html

BLAST at NCBI http://www.ncbi.nlm.nih.gov/BLAST/
BLAT at UCSC http://genome.ucsc.edu/cgi-bin/hgBlat?command = start)
DAS — distributed

annotation
http://biodas.org/

Exofish at Genoscope http://www.genoscope.cns.fr/externe/tetraodon/
Fgenesh at Sanger

Institute
http://genomic.sanger.ac.uk/gf/Help/fgenesh.html

Expasy translation tool http://ca.expasy.org/tools/dna.html
CAP3 nucleotide

assembly tool
http://bio.ifom-firc.it/ASSEMBLY/assemble.html

GeneWise at Sanger
Institute

http://www.sanger.ac.uk/Software/Wise2/

Genscan at MIT http://genes.mit.edu/GENSCAN.html
SSAHA at Sanger

Institute
http://www.sanger.ac.uk/Software/analysis/SSAHA/

Ensembl mouse peptides detected a C-terminal similarity that is a zinc finger domain
match. However both the human and mouse mRNA have unique and solid hits against
mouse chromosome 9.40 Mb. This suggests the gene product is derived from this locus
although it has not been annotated yet by Ensembl. Interestingly the gene lies between
two odour receptors, unlike the human positioning between BACE and PCSK7, showing
the position is non-syntenic.
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Drawing detailed conclusions from these results is outside the scope of this chapter
but the example makes clear how much extra information a comprehensive database
search can yield. Was the protein unknown and/or novel? The difficulty of answering this
question illustrates the diminishing utility of these terms. The protein has at least one
function-related motif that can be recognized at high specificity so it can no longer be
classified as an unknown. It remains novel only in the strict sense of not being represented
in the current protein databases. It is not novel in the wider sense because both the mRNA
and ORF were substantially covered as predicted by sequence data entries in the public
and patent databases respectively.

4.9 CONCLUSIONS AND PROSPECTS

The geneticist is in the fortunate position of having access to secondary databases and GP
genomic viewers of increasing quality, content and utility. This is making the process of
finding and analysing gene products easier. However the examples used in this chapter
also show that there are many subtle details in genomic annotation and the implications
of these will take some time to unravel. This requires comprehensive inspection and may
ultimately need experimental verification. The expansion of web-linked interoperativity
and interrogation tools means that new options will already be available by the time this
is in print. One consequence of these advances could be the perception of a diminished
necessity to perform bioinformatic analysis. Although this is true in the sense that sec-
ondary databases include an increasing amount of ‘pre cooked’ bioinformatic data, there
is a paradox in that the more sophisticated the public annotation becomes the more impor-
tant it is to understand the underlying principles. For example, it is important to be able to
discriminate between gene products defined by in-vitro data or only by in-silico prediction.

So what of the future? There are four developments worth highlighting. The first is
that the combination of increasing transcript coverage, finished golden path and extensive
mouse synteny data will diminish the uncertainty limits of gene numbers. The ability
to pick out SNP haplotype blocks in relationship to gene products, already available
as tracks on the UCSC display options for chromosome 21 will be a big step forward
for association studies (Patil et al., 2001). The proliferation of DAS servers will enable
more groups to share their own specialized annotation tracks with the wider community
(http://biodas.org/). Last but not least defining gene products at the protein level is likely
to have a major impact on annotation quality, and efforts are already underway to do this
on a genome-wide scale (http://www.confirmant.com/).
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