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8.1 INTRODUCTION

Linkage analysis of complex traits using family-based samples (see Chapter 11) typically
results in a number of broad, ill-defined linkage peaks that represent several megabases
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of DNA (see for example Grettarsdottir et al., 2002); beneath the expanse of each peak
there may lie a gene (or genes) associated with the disease in question. Under the prior
assumption that this preliminary linkage analysis has been completed, the goal of this
chapter is to take the investigator through the process of characterizing and narrowing
such a region using a population-based approach, with the ultimate aim of identifying
candidate genes and testing them directly for association with the disease or trait in ques-
tion. This is often achieved by testing markers in the linkage interval for differences in
allele frequency between case and control cohorts, where the cohorts comprise unrelated
individuals (although methods employing family structure, based on the difference in fre-
quency of allele transmission in a large number of small pedigrees are also used — see
below; this is covered in more detail in Chapter 11). In general, population-based methods
offer large increases in both power and resolution over linkage-based approaches (McGin-
nis, 2000; Risch 2000; discussed in Chapter 11) and are well suited to the follow-up of
preliminary (and often equivocal) linkage results. Examples of the successful application
of this two-step linkage-association approach include identification of the involvement of
ApoE in Alzheimer’s disease (Strittmatter et al., 1993) and the recent discovery of the role
of NOD2 in Crohn’s disease (Hugot et al., 2001; Ogura et al., 2001). The first part of this
chapter focuses on theoretical and practical considerations for good study design, whilst
the second part covers a systematic approach to identification of the disease-associated
gene, with emphasis on the application of methods, software tools and databases.

8.2 THEORETICAL AND PRACTICAL CONSIDERATIONS

8.2.1 Choice of Study Population

Wherever possible the study population selected for a follow-up analysis of linkage peaks
should be derived from the same geographic area as the families used for the original
linkage analysis. As the genetic components contributing to complex disease are likely
to be varied, there is no guarantee that the predisposing genetic factors in one population
will be the same in a second. If we use the term ‘study population’ in the broadest sense
as applied to genetic association studies, a variety of study population structures may be
considered. Three of the most common configurations are the case–control cohort, the dis-
cordant sib-pair cohort (i.e. one affected and one unaffected sib) and the parent–offspring
triad (affected offspring with both parents) cohort. Each of these structures has advantages
and disadvantages (for an evaluation of each, see Risch, 2000; Cardon and Bell, 2001).

Case–control cohorts simply consist of one group of individuals (cases) with the
disease state and a second group without the disease (controls). Case–control cohorts
have the advantage of being more straightforward to collect than the other two structures
described above and generally provide more statistical power than similarly sized discor-
dant sib or other nuclear family-based cohorts (McGinnis, 2000; Risch, 2000). However,
case–control cohorts are prone to ‘population stratification’ (or substructure) effects. Pop-
ulation stratification occurs when the cohort under study contains a mix of individuals that
can be separated on grounds other than the phenotype under study (most commonly on
the basis of geographic origin). This can lead to allele frequency differences in cases and
controls that are due to circumstances unrelated to the phenotypic difference under investi-
gation, resulting in erroneous conclusions regarding association between the marker under
test and the disease phenotype. Careful selection of individuals for inclusion in disease
and control cohorts is necessary to ensure as homogenous a background as possible and
therefore avoid stratification. If stratification is suspected it is possible to test for it using
randomly selected genetic markers (Devlin and Roeder, 1999; Pritchard and Rosenberg,
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1999). It is also important to match the cohorts for phenotypic or environmental variables
that may otherwise confound any genetic analysis; for example, hormone replacement
therapy (HRT) has a large impact on bone mineral density (BMD) and it would be nec-
essary to account for this in a search for genetic factors influencing BMD using a cohort
of post-menopausal women.

Although population homogeneity and well matched cases and controls are preferred,
it may be possible to use a cohort even if stratification is present; Pritchard et al. (2000)
have developed a method for testing for genetic association in the presence of pop-
ulation stratification, by using unlinked markers to make inferences about population
substructure and employing this information to test for associations within the identified
subpopulations. STRUCTURE and STRAT, software tools for the detection of stratifica-
tion and testing for genetic association in the presence of stratification can be downloaded
from http://pritch.bsd.uchicago.edu/software.html. An alternative approach to correction
for population stratification, termed genomic control, measures the degree of variability
and magnitude of the test statistics observed at random loci and uses this information to
adjust the critical value for significance tests at candidate loci by the appropriate degree
(Devlin and Roeder, 1999). However, it should be noted that correction for stratification
cannot completely remove the possibility of increased false positive results under all cir-
cumstances (Cardon and Bell, 2001; Devlin et al., 2001; Pritchard and Donelly, 2001)
and stratification should be avoided where possible.

The main advantage of using study populations that incorporate elements of fam-
ily structure (e.g. discordant sibs or trios) is that, unlike case–control cohorts, they are
immune to population stratification effects. However, as mentioned above, family-based
samples are typically more difficult to collect than case–control samples (particularly for
late onset diseases) and generally offer less statistical power than the equivalent sized
case–control cohort (McGinnis, 2000; Risch, 2000). The remainder of this chapter will
focus predominantly on case–control methodology where reference to population structure
is necessary; statistical methods for analysing family-based cohorts, such as the transmis-
sion disequilibrium (TDT) and sib transmission disequilibrium (S-TDT) tests, together
with tools for the analysis of quantitative traits are covered in Chapter 11.

Estimation of required cohort size for a genetic study depends on a number of factors,
including the size of the effect of the locus under test, the frequency of the disease-risk
conferring allele and genetic nature of this ‘risk allele’, i.e. recessive, dominant, additive
etc. If the causal variant is not being tested directly, the distance between the causal variant
and the surrogate marker under test (see Section 8.2.3 below) is also relevant. Most of
these factors are unknown prior to the start of the study and the minimum required
population size is usually based on assumptions concerning these factors (see McGinnis,
2000; Risch, 2000). In reality, pragmatism typically dictates the available sample size;
investigators use the largest obtainable cohort, with the caveat that the available sample
may not provide sufficient statistical power to detect effects below a certain magnitude.
To detect genetic factors of fairly small or moderate effect, cohorts of a several hundred
to a few thousand individuals may be required (McGinnis, 2000; Risch, 2000).

8.2.2 Sequence Characterization at the Locus under Investigation

Following a whole genome linkage scan the investigator is typically faced with sev-
eral genetic loci of potential involvement in the disease process, the limits of each
defined by two genetic markers (usually simple tandem repeats or STRs) spanning sev-
eral centiMorgans (cM). As 1 cM equates to 1 megabase (Mb) on average, and each Mb
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contains an estimated average of 15 genes (based on 45,000 genes in the entire 3000-Mb
genome; Das et al., 2001), this may represent several thousand kilobases (kb) of DNA
and over 100 genes per locus. The first task is to define the locus in the context of
the human genome, in order to gain a comprehensive knowledge of genes and further
genetic markers in the interval. Until very recently this involved the laborious laboratory
process of identifying and ordering genomic clones into contigs and using those con-
tigs as a framework for gene and marker identification. Thankfully locus characterization
has become far more straightforward in the wake of the Human Genome Sequencing
Project, which provides free access to assembled sequence covering 97% of the human
genome at the time of writing, with the goal of complete coverage by 2003. A num-
ber of web-based tools are available for exploiting the human genome. These tools are
described very briefly in Section 8.3.1 and their practical application is covered in detail
in Chapters 5 and 9.

8.2.3 SNPs, Linkage Disequilibrium, Haplotypes and STRs

8.2.3.1 Introduction

In this section we provide a simple introduction to the underlying principles of the
detection of genetic association using a population (i.e. non-family)-based approach. The
majority of studies of this nature are undertaken using single nucleotide polymorphism
(SNP) markers (see Chapter 3). Biallelic SNPs are currently the marker of choice due to
their abundance in the human genome and because they are amenable to high throughput
genotyping approaches. The other marker system commonly used for genetic studies is
the multiallelic STR (see Chapter 3). The paragraphs below on linkage disequilibrium
and haplotypes refer mainly to SNPs. The use of STRs for population-based association
studies is discussed at the end of this section.

8.2.3.2 Linkage Disequilibrium

A polymorphism associated with a disease state (in the true, rather than statistical, sense)
may either directly contribute to the disease process, or may be a surrogate marker which
is co-inherited with an adjacent functional variant that contributes to the disease state.
This co-inheritance of the surrogate marker with the disease allele can occur to varying
degrees and is termed ‘linkage disequilibrium’ (LD). By strict definition, LD is said to be
present if co-occurrence of the two polymorphisms happens with a frequency greater than
would be expected by chance. A number of measures of LD are used, two of the most
commonly employed being � and D. Both measures are based on the difference between
the observed and expected (assuming independence) number of haplotypes (see below)
bearing specified alleles of two markers (see Chapter 11 for a complete explanation of
D and Devlin and Risch (1995) for a discussion of D, � and other measures of LD).
Although by the strict definition given above LD can occur between unlinked variants,
for example in the presence of recent population admixture, in the following paragraphs
we refer specifically to LD between two linked markers.

Clearly, the greater the extent of LD between two polymorphisms, the larger the chance
of detecting the phenotypic influence of one by genotyping the other in a case–control
experiment. The degree of LD is dependent on the history of the two adjacent markers
and is influenced by the relative times of appearance of the two polymorphisms in the
population and the degree of recombination between them. An extreme example would
be two polymorphisms that appeared simultaneously on the same chromosome through
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spontaneous mutation and between which no recombination events have occurred over
2000 generations. During this period, these two linked polymorphisms have attained a
population frequency of 20% through chance (random genetic drift) and are in absolute
linkage disequilibrium. Imagine an alternative scenario, where a new polymorphism arises
adjacent to an ancient polymorphism which has already attained a frequency of 20% over
the previous 1000 generations; over the subsequent 1000 generations, there is a high
degree of recombination between the markers, eroding the LD (Figure 8.1). Clearly the
former case would be more favourable for using one of the markers as a surrogate for
detecting the phenotypic influence of the other.

SCENARIO A SCENARIO B

1000 GENERATIONS

1000 GENERATIONS 1000 GENERATIONS

1000 GENERATIONS

Figure 8.1 Alternative hypothetical scenarios depicting the evolution of a relationship
between two SNPs. Identical stretches of DNA within a population are represented by
black lines. In scenario A, two adjacent polymorphisms, represented by a white star and
a grey star, arise simultaneously and by random drift achieve a population frequency
of 0.1 after 1000 generations, increasing to 0.2 after 2000 generations, at which time
they are still co-segregating as a tightly linked unit. In scenario B, a lone polymorphism
(white star) reaches a frequency of 0.2 after 1000 generations, at which point a new poly-
morphism (grey star) arises spontaneously, some distance away. Note that although the
grey polymorphism only occurs on a background bearing the white polymorphism, the
association is less clear-cut than scenario A due to the chromosomes bearing the white
polymorphism in the absence of the grey polymorphism. During the subsequent 1000
generations, association between the two polymorphisms is further clouded by recombi-
nation between the two SNPs and divergence through random drift. Unfortunately for the
genetics investigator, scenario A is idealized and scenario B is more typical.
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8.2.3.3 Haplotypes

A haplotype is a string of co-inherited alleles of different markers which are arranged in
a successive fashion along a given stretch of DNA, hence each haplotype represents a
linear section of DNA rather than the single point corresponding to a single marker. The
extent of discernible haplotype length varies widely for different regions of the genome;
well-defined haplotypes (characterized by moderate or high LD) are punctuated by regions
of extremely low LD, suggesting that the recombination processes, selective pressures and
other factors that dictate the degree of LD vary widely in an abrupt fashion across the
genome (Goldstein, 2001). Although the length of preserved haplotypes shows dramatic
variation from haplotype to haplotype, recent data suggest that the typical length of a
discernible haplotypic block is 10–100 kb in the Caucasian population (Daly et al., 2001).

In certain circumstances, statistical analysis of haplotypes is more powerful than single
SNP analysis. This is because an SNP usually has only two allelic states, whereas a stretch
of DNA can typically be represented by several different haplotypes; the chance that one
of the many haplotypes shows strong association with a functional variant (i.e. a variant
that influences the phenotype) is higher than the odds of a strong, pure correlation with
one of only two possible alleles for a single SNP. In this sense, a series of haplotypes is
analogous to a multi-allelic STR marker (although regarded as more stable — see below).
Clearly if the functional variant itself is under test, or a polymorphism which shows
perfect co-segregation with the functional variant, haplotypic analysis offers no advantage.
It should also be noted that haplotype analysis is a double-edged sword and in addition to
increasing statistical power has the potential to reduce it by introducing multiple testing
and possibly by diluting an association signal due to undetected recombination within
the haplotypes.

Haplotypes are usually constructed by comparing the genotypes of closely related
individuals at two or more linked markers and identifying groups of alleles which are
co-inherited as a set from one generation to the next. However, where no family members
are available and the cohort under study consists of a population of unrelated indi-
viduals, it is necessary to infer haplotypes and haplotype frequencies using statistical
methods. The most common method for the estimation of haplotypes is the expectation-
maximization (EM) maximum likelihood estimate (MLE; Excoffier and Slatkin, 1995).
The ARLEQUIN software package developed in the Genetics and Biometry Laboratory
at the University of Geneva contains an EM algorithm for this purpose. ARLEQUIN
can be downloaded from http://lgb.unige.ch/arlequin/. Another popular program for hap-
lotype construction and analysis is EHPLUS (Zhao et al., 2000). EHPLUS can be down-
loaded from http://www.iop.kcl.ac.uk/IoP/Departments/PsychMed/GEpiBSt/software.stm.
Both packages are discussed in detail in Chapter 11. Note that haplotype construction
using family inheritance patterns, although more robust than population-based MLE, also
typically requires a degree of inference and resulting haplotypes may be probable rather
than actual (Hodge et al., 1999). For absolute definition of all haplotypes, it is necessary
to physically separate the two copies of each stretch of DNA under analysis, i.e. reduction
from a diploid to a haploid state, to allow unmixed analysis of a single haplotype. For very
short stretches of DNA (up to approximately 10 kb), this can be achieved by allele-specific
PCR (Michalatos-Beloin et al., 1996); for large-scale haplotype construction it is neces-
sary to separate entire chromosomes. This strategy has been successfully employed by the
California-based company Perlegen Sciences Inc., who have used a rodent–human somatic
cell hybrid technique to physically separate the two copies of human chromosome 21 for
haplotype elucidation (Patil et al., 2001; see below). However, most investigators employ
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the less laborious MLE or family-based inference methods for haplotype construction and
accept a certain degree of error or loss of power.

In addition to potentially providing greater power than single markers in subsequent
statistical analyses, a knowledge of the haplotypes representing the locus under study is
extremely valuable for maximizing efficiency in study design. For example, two markers
which always co-segregate (as in Figure 8.1, scenario A) will provide the same infor-
mation, regardless of which of the two is genotyped, therefore typing both markers
is inefficient as the genotype of one can be inferred from the other. Consequently, a
detailed knowledge of the haplotypes across the interval theoretically allows a minimum
marker set to be identified that will permit the extraction of all haplotypic information
(Figure 8.2; see Johnson et al., 2001; Patil et al., 2001). David Clayton of the Medical
Research Council Biostatistics Unit, UK has written software (htSNP) to aid the selection
of optimum marker sets based on haplotypic information which can be downloaded from
http://www-gene.cimr.cam.ac.uk/clayton/software/stata.

Before this optimized marker set can be selected, it is necessary to identify
all common SNPs within the area under study and construct haplotypes. The
publicly available SNPs catalogued in the SNP database hosted by NCBI (dbSNP:
http://www.ncbi.nlm.nih.gov/SNP/) are far too sparse for this purpose at the time of
writing (Johnson et al., 2001). Comprehensive identification of all common SNPs in a
given interval requires sequencing of a significant number of individuals from the relevant
population. For example, sequencing 24 individuals would give a 95% probability of
detecting all variants with a minor allele frequency of greater than 5% (Kruglyak and
Nickerson, 2001); 5% is a sensible lower cut-off point, as sample size requirements
for case–control studies increase dramatically when allele frequencies fall below 5%
(Johnson et al., 2001).
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Figure 8.2 Using haplotypic information to maximize efficiency in genotyping study
design. Twenty SNPs spanning four haplotypes are shown. Each SNP is represented by
a circle; the circle is black or white, depending on the allelic state of the SNP. The
SNPs can be grouped into nine blocks — each block contains a group of SNPs with an
identical allelic pattern in the four haplotypes. Genotyping all SNPs in any given block is
unnecessary, as the genotype of one SNP per block allows the genotypes of the other SNPs
in the block to be inferred; for example, genotyping SNP 1 allows the genotypes of SNPs
2 and 3 to be predicted. Moreover, in this simplified example, all four haplotypes can
be unambiguously identified by genotyping just two SNPs, 5 and 14 (boxed), yielding
a 90% reduction in genotyping compared to a ‘blind’ strategy (i.e. no knowledge of
haplotypic structure).
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Obviously it is impractical to sequence a region covering several Mb in 24 individuals.
A more realistic approach is the identification of all genes in the interval and sequencing of
the coding sequence plus flanking splice sites, together with 1–2 kb of putative promoter
(i.e. the region immediately upstream of the transcription start site) and any other known
regulatory elements. Although not comprehensive, as unidentified regulatory elements
can be intronic or several tens of kilobases away from the genes under their influence
(Blackwood and Kadonaga, 1998), this approach offers a good compromise between
exhaustive coverage of the locus and practicality. For SNP identification purposes, it may
be preferable to use individuals derived from the disease, rather than control, population.
This will give a greater chance of detecting rare functional variants (mutations) that are at
a higher frequency in the disease population. For example, NOD2 mutations predisposing
to Crohn’s disease were recently found to occur at a frequency of 6–12% among cases,
but at <5% among controls (Hugot et al., 2001; Ogura et al., 2001).

Having identified the majority of coding and regulatory sequence SNPs with a fre-
quency of greater than 5%, it is necessary to construct haplotypes to allow redundant
SNPs to be identified and eliminated from the association study. A subset of 96 indi-
viduals from the population under study should be sufficient to detect the majority of
haplotypes with a frequency of greater than 5% (B-Rao, 2001; note that studies to date
indicate that common haplotypes at any given locus in Caucasian populations are restricted
in number and account for the majority of all haplotypes observed; see Daly et al., 2001;
Johnson et al., 2001). These haplotypes can then be used as a basis for selecting a minimal
SNP set for the full association study. It should be noted, however, that SNPs which sug-
gest a strong possibility of functional consequence (e.g. those that alter residues which
are conserved between a number of species, or result in non-conservative amino acid
changes; see Chapters 12–14) should not be excluded from analysis and should always
be tested individually.

Clearly extensive haplotype information covering the entire human genome for a num-
ber of different populations would be an invaluable resource for all research groups under-
taking association studies. Perlegen Sciences Inc. has recently released a haplotype map
covering the whole of human chromosome 21. Although the number of chromosomes sam-
pled was limited to 48, drawn from a number of different ethnic groups (Patil et al., 2001)
this represents a good start in developing a genome-wide haplotype map. Perlegen’s haplo-
type data have been incorporated into the Golden Path Browser (http://genome.ucsc.edu/)
and can also be viewed at Perlegen’s own website (http://www.perlegen.com/haplotype/).

8.2.3.4 Simple Tandem Repeat Markers (STRs)

STRs (also known as microsatellites — see Chapter 3) were the mainstay of monogenic
trait linkage analysis during the 1990s, but are now frequently overlooked following the
explosion of interest in SNPs for population-based studies. STRs are out of favour for two
main reasons: (i) they are less amenable to cheap, high-throughput genotyping methodol-
ogy than SNPs and (ii) STRs typically have a much higher mutation rate than SNPs (up
to 10−3 per meiosis compared with an average of 10−9 for SNPs; Ellegren, 2000). It has
been suggested that this extreme mutation rate might confound genetic association studies,
as a single microsatellite allele may represent an excessive number of haplotypes, having
independently arisen on the different haplotypic backgrounds through mutation events (see
Moffatt et al., 2000). This may prevent the detection of association between the STR allele
and an adjacent polymorphism associated with disease. However, comparison of the entire
STR allele frequency distribution profiles for cases and controls may highlight differences
which reflect a difference in the frequency of an adjacent disease-associated SNP, due to
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divergence of the STR profiles associated with SNP allele 1 and SNP allele 2 as a result
of frequent STR mutation (Abecasis et al., 2001; Koch et al., 2000). There is also some
evidence to suggest that LD can be detected over greater distances with STRs than with
SNPs; possibly 10 times as far (Koch et al., 2000), perhaps because in some circumstances
STR mutation significantly outstrips recombination at flanking sites. Given the caveat that
limited empirical evidence is available at present and the extent of detectable LD is likely
to be highly locus and marker specific, inclusion of STRs spaced at intervals of 50–100 kb
in a preliminary case–control analysis may assist in identifying regions of potential asso-
ciation within the critical interval that can be prioritized for follow-up with SNPs.

8.2.4 Statistical Analysis

Methods and software for the statistical analysis of both single marker and haplotype
data in both a case–control and family-based cohort scenarios are described in detail
in Chapter 11. Briefly, a chi-square analysis may be used to test for departure between
observed and expected allele frequencies for a biallelic marker in a case–control cohort,
while multi-allelic systems (e.g. STRs) may be tested by permutation using software such
as CLUMP (Sham and Curtis, 1995a; see Section 8.3.2 below). Family-based samples
such as parent–offspring trios and discordant sibs can be analysed using the transmission
disequilibrium test (TDT) and associated methods (Spielman et al., 1993; discussed in
depth in Chapter 11); although the TDT was originally developed for biallelic markers, an
extension of the TDT has been developed for testing multi-allelic markers and haplotypes
(Sham and Curtis, 1995b). For case–control studies, haplotypes can be assessed using
software such as EHPLUS (see Section 8.2.3 above) which, in addition to haplotype
construction, can be used for testing for differences in haplotype frequency between cases
and controls (see Chapter 11).

8.3 A PRACTICAL APPROACH TO LOCUS REFINEMENT
AND CANDIDATE GENE IDENTIFICATION

Figure 8.3 gives an overview of the practical process of locus refinement, candidate gene
selection and testing for phenotype–genotype association using a case–control approach.
Each step is described in detail in the following sections.

8.3.1 Sequence Characterization

The most popular web tools for the purpose of human genome sequence characteriza-
tion are the human genome browser hosted by the National Center for Biotechnology
Information (NCBI) at http://www.ncbi.nlm.nih.gov/, the ‘Golden Path’ genome browser
hosted by the University of California, Santa Cruz at http://genome.ucsc.edu/ and the
Ensembl human genome browser maintained by the European Bioinformatics Institute
(EBI) and the Wellcome Trust Sanger Institute at http://www.ensembl.org/Homo sapiens/.
These browsers are described and reviewed in detail in Chapter 5 and we refer the reader
to Chapter 9 for a comprehensive description of methods for defining a locus between
two genetic markers at the sequence level using these three tools.

8.3.2 STR Analysis

We suggest that the first step following complete locus characterization should be an
attempt to identify regions of potential association within the critical interval using STRs.
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PROCESS OUTCOME

Family-based genome scan

Human genome database mining

STR discovery & genotyping in
case−control cohort 

  

Gene prioritization, SNP discovery
& preliminary genotyping

Full-scale genotyping &
statistical analysis

Replication of association &
functional verification

Linkage peak

Characterized DNA sequence

Refined locus

Haplotype definition

No association with phenotype

Association with phenotype

Failure to replicate and/or
lack of functional evidence

Validated phenotype−
genotype correlation

Figure 8.3 Flow diagram describing the logical steps in pinpointing and verifying
a gene–phenotype association using a case–control follow-up to a family-based
genome scan.

Any regions thus identified can then be prioritized for follow-up with SNPs. It should
be noted however, that there is limited empirical data on the use of STRs to detect
association in populations and lack of evidence for association with STRs should not
deter the investigator from proceeding with a SNP-based association study. STRs can be
identified using the tandem repeat finder software at http://c3.biomath.mssm.edu/trf.html
(Benson, 1999; see Chapter 9). STR genotyping is typically performed by gel or capillary
electrophoresis coupled with a fluorescence detection system (usually an adapted DNA
sequencing platform); instrument and software suppliers include Molecular Dynamics,
Applied Biosystems and LI-COR Biosciences.

Using a subset of 24 individuals from the control population, test the STRs for poly-
morphism; aim for a series of polymorphic STRs spaced at 50–100-kb intervals across the
critical interval. These markers may then be typed in the entire case and control cohorts
and the allele frequency distribution patterns checked for differences between cases and
controls in an attempt to pinpoint areas of potential disease association. One of the most
popular pieces of software for comparing STR allele frequency distributions is the CLUMP
program developed by David Curtis and Pak Sham of the Institute of Psychiatry, London
UK (Sham and Curtis, 1995a). CLUMP uses a Monte Carlo simulation to test for depar-
ture from expected values for a number of chi-square measures, including the intuitively
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appealing techniques of considering each allele in turn against the rest and grouping
(‘clumping’) alleles to maximize the chi-squared value. CLUMP is straightforward to use
and can be downloaded from http://www.mds.qmw.ac.uk/statgen/dcurtis/software.html.

8.3.3 Gene Selection, SNP Discovery and Haplotype Construction

Genes in the critical interval can be arranged in rank order for analysis, based on biological
plausibility with respect to association with the disease under study or other considerations
(e.g. pharmaceutical companies may wish to prioritize any tractable drug targets). We sug-
gest sequencing coding and known or putative regulatory regions from each gene in 24
individuals selected randomly from the disease population, as discussed in Section 8.2.3
above, followed by genotyping of all SNPs thus identified in 96 random individuals
derived from the control population. ARLEQUIN, EHPLUS (see Section 8.2.3 and Chap-
ter 11) or similar software may then be used to construct haplotypes from this sub-sample,
and htSNP (see Section 8.2.3 and Chapter 11) implemented to aid selection of the min-
imal marker set required for accurate representation of each haplotype. Note that several
SNP genotyping platforms are currently available; we will not review them here and
the investigator should select the most appropriate system based on cost, robustness and
required throughput.

8.3.4 Genotyping and Statistical Analysis

Having selected the optimal SNP set, the whole cohort may now be genotyped. Fol-
lowing genotyping, an EM algorithm can be used again for haplotype construction and
haplotype frequency determination (see Chapter 11). It may be beneficial to divide the
cohort randomly into two case–control groups for statistical analysis, to allow the pos-
sibility of replication of any positive association using the second subset. Haplotype
frequency distributions in cases and controls can be compared using CLUMP, as for STRs
(see Section 8.3.3) or more specific software tools such as EHPLUS (see Section 8.2.3;
discussed in detail in Chapter 11). Individual SNPs can be tested using a chi-square
test (see Chapter 11). A test for Hardy–Weinberg equilibrium (HWE) is a useful prior
check for ensuring that there is no (or little) population stratification and that each
marker is giving the expected genotype distribution for the observed allele frequencies.
Expected genotype frequencies are calculated from allele frequencies under the assump-
tion p2 + q2 + 2pq = 1, where p and q are the allele frequencies and p2, q2 and 2pq
correspond to the frequencies of the three possible genotypic states. The actual genotype
frequencies are then tested for departure from the expected frequencies using a chi-square
test. The calculation is simple and can be performed by hand or in a Microsoft Excel macro
for biallelic markers. Alternatively the ARLEQUIN software suite includes a program for
checking HWE for both biallelic and multi-allelic marker systems.

An acceptable p-value threshold for declaring association between a marker and disease
is the subject of considerable debate. Clearly a nominal cut-off of p = 0.05 is inappropriate
where multiple tests have been performed, as this value (or lower) may occur several times
by chance. However, standard methods of correction for multiple testing, for example by
Bonferroni correction, may be overly stringent (Cardon and Bell, 2001). The authors
suggest that the investigator avoids setting thresholds that are excessively rigorous and
instead follows up promising leads, adding to the weight of evidence for involvement (or
lack of involvement) in the disease process by additional means (see below).
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8.3.5 The Burden of Proof — is an Associated Gene Really Involved
in the Disease Process?

Unfortunately detection of association between a gene and disease phenotype does not
constitute definitive proof that the gene under test is involved in the disease process.
Rather, it provides a single piece of evidence to suggest possible involvement in the
disease process that requires further substantiation. Replication of the association in a
second cohort considerably strengthens the argument for involvement; for example the
association between the insulin gene and type 1 diabetes has been reproduced a number of
times (Bennett and Todd, 1996). However, even in the event of independent replication
of results, one should consider the possibility that the replication is due to chance or
that the apparent disease association is due to an adjacent gene in LD with the marker
under test. If the polymorphism is in protein coding sequence and causes an amino acid
change, it may be possible to assess the possible impact on protein function by the
nature of the change (conservative or non-conservative), the context in which it occurs
(potential disruption of secondary or tertiary protein structure) and the degree of cross-
species conservation and conservation within protein families. Conservation may also be
used to gauge the potential impact of polymorphisms in putative regulatory elements.
These areas are covered in detail in Chapters 12 and 13. However, it should also be
remembered that polymorphisms that appear to be innocuous on cursory examination can
have functional consequences, for example synonymous coding changes that occur in
exonic splicing enhancer (ESE) regions (Liu et al., 2001).

Ultimately it is likely that the investigator will wish to instigate additional laboratory-
based experiments to judge the functional effect of the variant in question. These may
include gene expression and cell-based reporter assays for putative promoter polymor-
phisms, functional enzyme or signal transduction assays for amino acid changes and in
vivo analysis in the mouse using gene knock-out or polymorphism knock-in technology
for studies in the context of the whole organism, to name but a small fraction of the
available techniques.

8.4 CONCLUSION

In this chapter we have given a basic overview of the process of moving from a large
genetic locus to the identification and screening of candidate genes for disease association.
More detailed information on all aspects of study design and data analysis can be gleaned
from the references cited in the text and further review of the literature and we strongly
advise readers to broaden their knowledge beyond the limits of this chapter. Although
we have highlighted a number of popular tools and techniques, several other equally
valid approaches exist and we encourage investigators to actively seek out and develop
further methods for comparison with those presented here. Continual development of new
approaches and improvement of existing methodology is a dominant feature of this rapidly
moving field; consequently there is a constant need for investigators to keep abreast of
new developments to maximize the chances of success.
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9.1 INTRODUCTION

Without risk of hyperbole, the process of definition of a locus or gene in the human genome
sequence is probably the single most valuable bioinformatics process that a geneticist can
carry out. This immediately places a gene or locus in a wider context. Now we can quickly
find out what known genes are in the locus, what evidence exists for novel genes and
what markers are available across the locus to study these genes. Digging a little deeper
into the data will soon tell us where the genes are expressed and what their biological
role is likely to be. We will even gain an insight into some of the common variation that
exists across the locus, and also what rare mutations exist in some of the genes. Finally
study of the sequence of the locus itself can tell us something about the physical nature
of the region. We may even be able to draw some conclusions about the likely genetic
nature of the region in terms of recombination and Linkage Disequilibrium (LD). All this
is possible before setting foot in the laboratory. But we also need to be aware that there
are limitations to this approach and sometimes stepping into the laboratory is the only
way to resolve these limitations.

The availability of the golden path is a great advance for genetics — it is too easy to
forget the pre-genome era, imprecise genetic localizations are now superseded by absolute
genome locations to the nearest base pair. But the golden path must be used carefully; with
proper quality checks the data can serve as an invaluable template for genetics, without
these checks it can create as many problems as it solves. These caveats should not be
ignored. Firstly the golden path is a draft dataset composed of hundreds of thousands of
fragments of various sizes with many gaps. The order and orientation of the fragments is
often not known from the sequencing process itself. In some cases the same part of the
genome will be duplicated in more than one fragment. To address the technical challenges
of whole genome assembly, the golden path is released as defined ‘builds’ on a quarterly
basis (Lander et al., 2001; reviewed in Chapter 5). This implicitly involves some lag in
availability of the most current sequence data. At the time of writing this chapter (March
2002), the December 2001 release of the golden path was in use. It is important to be
aware that golden path coordinates can only be compared if both tools are using the same
build version of the golden path. Finally, if complete sequence across a locus is critical
to a study, additional draft sequence may be available in addition to the material in the
golden path; this can be identified by searching the Human Genome BLAST database at
the NCBI.

In this chapter we will take a hands-on approach to the application of genomic sequence
data to genetics. We will look at the key bioinformatic steps needed to take a genetic study
from an initial LOD peak to laboratory genotyping. Figure 9.1 illustrates each step of this
process, with genomic sequence as a common thread through every stage.

9.2 DEFINING THE LOCUS

A geneticist may come to be interested in a gene or locus by many routes. The locus
could be identified as part of a published genome scan or as part of the scientist’s own
work; it could be syntenic with a mammalian disease model; it could contain a candidate
gene with biological rationale. The possibilities are limitless, but how ever the locus is
identified the next steps to define the region in the human genome are similar. Firstly
the locus needs to be defined as accurately as possible. In some cases, this may not be
easy due to insufficient or unclear data. Taking a complex disease linkage peak as an
example, the linkage across the locus may be defined by a broad flat peak, or multiple
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Figure 9.1 Using the Golden Path as a template for genetics. Key bioinformatic steps to
take a genetic study from an initial LOD peak to laboratory genotyping are illustrated. The
reader should note the role of genomic sequence as a common thread through every stage.

peaks with no well-defined apex. In such cases, it is difficult to define a critical region;
unlike monogenic diseases it is not possible to define a region by a clear recombination
event between affected and unaffected family members. Instead analysis of complex traits
generates an imprecise probabilistic signal based on the increased observance of an allele
in affected versus unaffected individuals. Faced with such uncertainties, the best approach
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is to define a core region within a maximal region, based on LOD score thresholds; this
gives some margin for error. Figure 9.2 shows an example of a theoretical complex disease
linkage peak. In this case we define an acceptable ‘core region’ as any region with a LOD
score of >3, with a ‘maximum region’ defined by markers with a LOD >2 or perhaps >1
(respectively a 10- and 100-fold drop in linkage probability). Definition of these regions is
necessarily approximate. Where markers do not exactly define a locus it may be necessary
to map markers on either side of the locus boundary. So for example in Figure 9.2 the
core region would be defined as the region between markers E–K, while the maximum
region would be encompassed between markers D and M. If linkage peaks are very flat,
approximation to the nearest marker below the threshold might mean including a very
large region, in such cases it may be worthwhile extrapolating between markers to identify
the most probable region with an estimated LOD above the threshold.

Once the markers delineating the boundaries of the locus have been identified, they
need to be mapped onto the human genome to view the full genomic context of the locus.
In Chapter 5 Colin Semple reviewed the three primary tools which offer the user an
opportunity to localize markers to the draft human genome assembly (the golden path).
These tools are Ensembl at the EBI, the UCSC Human Genome Browser (HGB), and
NCBI Map View. It is very easy to develop a preference for one or other of these tools,
but each tool has its own distinct merits, so for complete characterization of a locus
we recommend using all three. In practice this is easy as all three tools use the same
coordinates from the same draft version of the golden path allowing reciprocal linking
between each tool. Direct comparison between tools allows a second and third opinion
across an identical region, which is always a good thing.

In this chapter we will describe some specific case studies which lead the reader through
some of the common bioinformatics processes which can help the genetic characterization
of genomic loci. In each case we will describe the use of the UCSC HGB, Ensembl or
Map View to achieve a specific objective, but the reader should be aware that very similar
approaches will produce similar results with each of the other tools unless otherwise
mentioned. We will try to highlight the strong points of each tool, where possible with
case studies, for an overview of the pros and cons of all three tools see Table 9.1.
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Figure 9.2 Definition of a linkage region by LOD score. In this example of a theoretical
complex disease linkage peak, we define an acceptable ‘core region’ as any region with
a LOD score of >3, with a ‘maximum region’ defined by markers with a LOD >2 or
perhaps >1 (respectively a 10- and 100-fold drop in linkage probability).
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TABLE 9.1 Pros and Cons of the Three Major Genome Viewers for Genetics

Map View Ensembl UCSC HGB

www.ncbi.nlm.nih.gov/cgi-
bin/Entrez/map−search

www.Ensembl.org/ genome.ucsc.edu/

Pros
Good genetic/RH map

integration
Genetic/physical map

focused
Fully integrated with

NCBI tools
Comprehensive genetic

markers
Exclusive data:

• GB4, G3 and TNG
RH maps

• Genethon/Marshfield
maps

• Mitelman morbid
map

• YAC contigs

• FISH clones

Pros
Innovative sequence

annotation
Sequence data focused
Novel gene prediction

focused
Clean innovative

interface
Excellent data export
Distributed annotation

(DAS)
Good integration with

mouse and other
genomes

Free source code
available

Exclusive data:

• Ensembl gene
predictions

• Detailed gene report

• Eponine promoter
prediction

• Drosophila genome

• Zebrafish genome

• Mosquito genome

• Many DAS tracks

Pros
Innovative sequence

annotation
Sequence data focused
Good sequence export
Excellent for contig QC
Archives previous golden

path annotation/
converts coordinates

Fast BLAT search tool
Exclusive data:

• Chr. 21 haplotype
data

• Fish genome
comparison

• SAGE expression
data

• NCI expression

• GNF expression data

• Identifies bridged
gaps

• Genome duplications

• Novel tandem repeats

Cons
Poor data export
Limited sequence

annotation
Linked from Ensembl

and HGB but no link
back

Complex and sometimes
confounding interface

Cons
No genetic/RH map

integration
No golden path version

archive
Accession numbers can

be unstable between
versions

Not possible to view
detailed region >1 Mb

Cons
No genetic/RH map

integration
Data tracks appear and

disappear frequently
Newer golden path has

less data tracks

Finally, the reader should note, that these browsers are subject to frequent change as
datasets are updated and software tools improved. It is possible that the steps described
here and the data returned may be superseded within months of being written! Nonetheless,
the reader should not despair; we hope that the following examples may still be used as
a rough overall guide for accessing the required information. Indeed, there are typically
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many routes to the same data and once familiar with the browser, the user will generally
have no problem in retrieving the required datasets.

9.3 CASE STUDY 1: IDENTIFICATION AND EXTRACTION
OF A GENOMIC SEQUENCE BETWEEN TWO MARKERS
(RECOMMENDED TOOL: UCSC HUMAN GENOME BROWSER (HGB))

In Chapter 2 we reviewed methods for searching the literature for key elements of bio-
logical information. A literature search is an important preliminary stage for any study, to
define the current state of knowledge in a specific research area. For the purposes of the
following case studies imagine we are intending to follow up linkage results to investigate
the role of a specific region in bipolar depression. Several linkage studies report a locus
for bipolar depression in a region that we define between the genetic marker D21S1245
and the Radiation Hybrid marker D21S1852. To evaluate this region further — to get an
idea of its physical and genetic size and number of genes — our first objective should be
to locate the markers in the human genome assembly.

Marker localization to the human genome can be achieved either by searching by
marker name or by searching directly with the sequence of the marker. The former
approach can be problematic as no single tool contains a fully comprehensive index of
genetic markers and their aliases. Map View probably contains the most comprehensive
list of marker aliases but will not unambiguously localize a marker in genomic sequence.
The UCSC HGB is a much more user-friendly tool for this purpose. From the home page
select the most current ‘browser’ from the top left hand menu (for this exercise we used
the December 2001 freeze). Type the marker names in the ‘position’ window, separated by
a semicolon (e.g. D21S1245; D21S1852) and submit the request. This returns a 1.04-Mb
sequence interval covering the genetic marker D21S1245 and the RH marker D21S1852.
Note that in a marker name-based query HGB always returns a larger interval with 100 kb
flanking either side of the markers. So in this case the markers D21S1245–D21S1852
actually encompass a 0.84-Mb interval.

The alternative strategy to searching by marker name is to search by marker sequence.
This can be a useful technique to use when a marker alias is not found by the genome
viewer; in such cases it may be necessary to consult other marker databases, such as GDB
or dbSTS to retrieve a marker sequence (see Chapter 3). If all else fails and a marker
sequence cannot be found it may be necessary to consult genetic and physical maps to
find a neighbouring marker (see Chapter 8). Once a few hundred base pairs of sequence
spanning each marker has been found, the sequence between the two marker locations
can be identified by using the BLAT sequence search tool at HGB. Select ‘BLAT’ and
enter the DNA sequence spanning the marker. Submit the search and make a note of
the genomic position (take the ‘start’ position for the 5′ marker). Repeat for the second
marker (take the ‘end’ position for the 3′ marker). Return to the genome browser and
enter the range spanned by the two markers; this will return the exact genomic interval
between the two markers. So for example, a BLAT search with D21S1245 and D21S1852
will return a 0.84-Mb locus without the flanking sequence retrieved by the marker name
query. Now that this locus is defined it can be saved for future reference by simply adding
a bookmark for the browser page.

9.3.1 Extracting the Genomic Sequence Across the Locus

Either of these approaches will define a genetic locus in the draft human genome sequence;
once this has been achieved the sequence can be extracted to provide the ultimate physical
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map of the region (at 1-bp resolution!). To achieve this select the ‘DNA’ link in the top
tool bar of the HGB, this presents the user with a number of basic options to format the
DNA sequence across the selected region. If at this point you are only interested in the
DNA sequence, select ‘all lower case’ and press the submit button. Alternatively, you
can select ‘lower case repeats’ to highlight repeats in the sequence or you can mask them
for primer design and other applications. There is also an option to reverse complement
the sequence; this is particularly useful if you would like to retrieve a sequence across
a gene that is in the reverse orientation in the golden path. If you would like to receive
full annotation of the sequence in terms of all the features reported by the HGB then
select ‘extended case/colour options’ and press the submit button. This will take the user
to a highly sophisticated annotation interface which allows annotation of almost every
available feature on the sequence, with a combination of toggled case, underlining, bold,
italics and full colour lettering. This feature can be remarkably useful for preparing figures
for publication etc., but bear in mind that the time to retrieve the sequence increases
considerably with each added feature. In most cases toggled case annotation of repeats
and exons is sufficient, also note that most sequence analysis tools will only maintain
upper and lower case annotation, all other annotations (e.g. colour, underlining etc.) will
be lost, unless viewed in a rich-text viewer, such as Microsoft Word.

If the sequence across the region is completely finished with no gaps (check the status
of the clones in the assembly across the region) then this sequence can be used immediately
for further genetic and genomic characterization (see Case study 3), however further QC
is needed if the region is still in a draft form or contains gaps, as in the case of our locus
between D21S1245 and D21S1852.

9.4 CASE STUDY 2: CHECKING THE INTEGRITY OF A GENOMIC
SEQUENCE BETWEEN TWO MARKERS (RECOMMENDED TOOLS:
UCSC HGB, NCBI MAP VIEW, NCBI EPCR)

In Figure 9.3 we show the UCSC HGB view of the locus identified between D21S1245
and D21S1852. The HGB interface can be configured to show and hide different datasets,
for simplicity we only show tracks with an immediate application to the QC of the
genomic sequence.

Now that the genetic locus has been identified in genomic sequence, the next key
objective is to check the quality and orientation of the contig across the region. The view
of this region immediately identifies two gaps, dividing the region into three contigs. The
HGB differentiates between bridged and non-bridged gaps in contigs. Gaps not bridged
by any other known physical clone or mRNA are indicated by a black box. If the relative
order and orientation of the contigs on either side of the gap is known, then the gap is
‘bridged’ and indicated by a horizontal white line scored through the black box. This is
a valuable feature; contigs between two non-bridged gaps should be evaluated to try to
confirm the contig order and orientation. In Figure 9.3 neither gap is bridged, this makes
it possible that contig NT 030187 between the two gaps could be incorrectly orientated,
or even in the wrong location. This is important information to determine, as this contig
constitutes one-third of the entire locus and also contains a complete gene.

9.4.1 Detecting Duplications in Genomic Assemblies

Localized duplications are a common error during genome assembly. Detection of these
errors in human genome sequence is complicated by the high number of genuinely dupli-
cated regions, which are estimated at around 3% of the total genome (Bailey et al., 2001).
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Figure 9.3 Definition of the D21S1245 and D21S1852 interval in genomic sequence
using the UCSC human genome browser. The view immediately identifies five known
genes, two gaps and several duplications across the region (See Colour Plates).

The HGB interface presents a very useful ‘duplication’ track. This identifies regions of
>1000 bp which are duplicated in other golden path contigs. In this case five duplicated
regions are identified across the region; the duplications are coloured red indicating that
they have 99% or more similarity. Duplications of 98–99% and 90–98% similarity are
shown in yellow and grey respectively. The left hand column reports the location of the
duplicate regions. In this case the contigs are all from various ‘NA rand’ locations — these
are singleton contigs which cannot be placed in a chromosome contig. These are most
probably missed overlaps between contigs, so they may not be an overt cause for concern,
although this continues to suggest that this region may need careful curation.

The gaps and duplications across this region highlight a need for further QC to vali-
date the sequence assembly before using the sequence as a basis for the construction of a
laboratory study. One key in silico approach to validate the order and orientation of these
contigs is to compare and integrate them with the RH and genetic map frameworks across
the human genome. The HGB interface includes links to identical golden path regions in
Ensembl and Map View. By selecting the Map View link a view of the region appears in
a new window with a default view of the chromosome 21 contig map, unigene clusters
and genes. To view the integrated maps, select ‘Maps & Options’. Another window will
open. In this window select the following pull-down menus, the ‘NCBI RH’ map, the
‘Marshfield’ Genetic Map and ‘Transcript (RNA)’, finally select the ‘show connections’
tick box and click ‘Apply’. The main Map View window will now reload to show an inte-
grated view of the RH maps and genetic maps across the locus. Markers shared between
maps are linked by lines, which also show the location of the markers in the human
genome contig. The data can also be viewed in a tabular view (with extra information) by
selecting the ‘Data as Table View’ link. Figure 9.4 displays the Map View returned for
this region. Examination of the NCBI Integrated RH map supports the correct ordering
and orientation of the first contig (NT 011512). The genetic map is also broadly in agree-
ment with the RH map, although there are some conflicts, however comparison with other
RH maps supports the RH order for NT 011512 (not shown). Map View also supports
the order of the third contig (NT 030188), however no links are drawn to support the
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Figure 9.4 Using NCBI Map View to produce an integrated view of genetic and physical
map data. Examination of the RH maps and genetic maps support the correct ordering
and orientation of the first and third contigs (NT 011512 and NT 030187). No links are
drawn to support the order between any of the maps and the second contig (NT 030187)
spanned by the gaps, this requires further investigation.

order between the RH map and the second contig (NT 030187) spanned by the gaps. This
highlights one problem with Map View: it does not comprehensively localize markers
in the human genome draft sequence. In the data reviewed so far there is no firm evi-
dence to place NT 030187 in the region under study. The only solution to this problem
is to extract the genomic sequence across the region and screen it directly for matches to
STS marker sequences. The tool to achieve this is Electronic PCR (ePCR) at the NCBI
(http://www.ncbi.nlm.nih.gov/genome/sts/epcr.cgi). This tool maps known STSs from the
dbSTS and RHdb databases to a submitted sequence (Schuler, 1998).

Submission of the 0.84-Mb sequence to the NCBI ePCR server identifies 57 STS
markers across the sequence. The contig we need to check, NT 030187, maps from 0.56
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TABLE 9.2 RH Marker Order versus Sequence Order across Contig NT−030187

Location in Region
(Base Pair) Marker

TNG cR50000
(LOD)

GeneMap99 GB4
cR3000 (LOD)

489,493–489,804 SHGC-140546 16451 (12.3) —
558,505 GAP1 — —
645,681–645,988 SHGC-147821 16519(8.7) —
659,283–659,421 D21S1449 16508(14.4) —
689,527–689,653 stSG46899 — 222.98(3.00)

703,493–703,795 D21S356 — —
711,656–711,819 stSG52786 — 222.23(2.43)

767,022–767,332 SHGC-148000 16583(9.7) —
770,359–770,649 WI-20889 16567(14.6) 225.80(3.00)

771,401–771,520 stSG3262 16563(17.1) 225.21(3.00)

777,760 GAP2 — —
843,780–844,059 D21S1852 16617 (11.9) —

to 0.78 Mb, 10 STS markers span this region. In Table 9.2 we list these markers and note
their map order in the other available maps. Integration of maps presents a somewhat
confusing picture. Both the TNG and GeneMap99 GB4 maps show local discrepancies in
marker order. These results are somewhat inconclusive, RH map resolution is unreliable
below 60–100 kb so these localized discrepancies in marker order over 10–30-kb regions
may be due to the lack of resolution of the maps. Alternatively it is possible that the
finished BAC clone (AP001743) which constitutes most of the NT 030187 contig may
contain a sequence rearrangement; further laboratory analysis would be required to confirm
this. However, the overall order of the contigs in this region appears to be supported by
the integrated maps across the region.

9.5 CASE STUDY 3: DEFINITION OF KNOWN AND NOVEL GENES
ACROSS A GENOMIC REGION (RECOMMENDED TOOLS: ENSEMBL
AND HGB)

Now that we are (relatively) sure of the order and orientation of the contig across the
D21S1245–D21S1852 region, it is important to identify all the known and novel genes
in the region, so that they can be evaluated as candidates or to ensure that marker maps
across the region are sufficient to detect any genetic effect in genes or regulatory regions. In
Chapter 4 we presented a detailed examination of the art of delineating genes in genomic
sequence. The UCSC human genome browser and Ensembl are valuable assistants in this
process. Both tools run the human genome sequence through sophisticated gene predic-
tion pipelines (Hubbard et al., 2002). These analyses are coupled with a detailed view of
supporting evidence for genes, such as ESTs, mouse and fish genome homology, CPG
islands and promoter predictions. This wealth of data probably makes further de novo
gene prediction unnecessary in most cases; improvement on the quality of annotation
provided by Ensembl and HGB would require an in-depth understanding of the intrica-
cies of gene prediction, which we cannot hope to impart in this book (see Rogic et al.
(2001) for an excellent review of this field). Instead we suggest that the user focuses on
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the available data to build gene models based on existing annotation. Genetics has one
advantage over other fields of biology: detection of a genetic effect does not require a
completely accurate working model of a gene (although obviously this will help). All
that should be needed is an approximate gene model which can be screened by identify-
ing proximal polymorphisms. The only exception to this might be during the analysis of
functional polymorphisms where an accurate model of a gene and its regulatory regions
may be critical.

For the purposes of our study, we need to identify all known and novel genes across
the locus. In Figure 9.5 we show a magnified HGB view of the first contig in the region,
NT 011512. Again we have configured the browser to show tracks which are directly
applicable to the identification of genes in genomic sequence. Without going into an overt
level of detail there are five known genes identified across the region. A number of extra
tracks show pieces of evidence which support the known genes and suggest the possible
existence of a further four novel genes across the locus which we indicate at the bottom
of the figure. Confidence in the identification of novel genes in genomic sequence is in
part dependent on the range and nature of supporting evidence. The most convincing
single item of evidence is a correctly spliced mRNA transcript, either an EST or whole

Figure 9.5 Using the UCSC human genome browser to identify known and novel genes.
A range of evidence including mRNAs, ESTs and human–mouse homology supports the
existence of five known genes and up to four novel genes (See Colour Plates).



190 GENETIC STUDIES FROM GENOMIC SEQUENCE

transcript. In this figure several human mRNAs from GenBank are identified across the
region. These include splice variants and redundant entries of the same transcript. So
for example at least two splice variants are apparent for the BACE2 gene (AF188277
and AF188276). There are no novel mRNA transcripts in the GenBank track, however
there are a large number of human ESTs which do not appear to map to any known
gene. Human ESTs are divided into spliced and unspliced tracks. This is in recognition
of the very high number of artefacts that are generated in EST libraries. Spliced ESTs,
that is, ESTs which align across exons are much more reliable confirmatory evidence for
genes than unspliced ESTs. A final strong source of evidence for genes are the range of
tracks which show homology to non-human DNA, including non-human mRNA and com-
parison with mouse and fish genome sequences. Strong sequence conservation between
man and other vertebrates is generally thought to be restricted to coding or regulatory
regions. The four putative novel genes across this locus are supported by a range of
spliced ESTs, mouse homology and gene prediction. Taken individually each of these
pieces of evidence might not be sufficient to reliably support the existence of a novel
gene, but taken together they are quite convincing. All that remains is to characterize
these novel genes in terms of homology and putative function; we reviewed this process
in Chapter 4.

9.6 CASE STUDY 4: CANDIDATE GENE SELECTION — BUILDING
BIOLOGICAL RATIONALE AROUND GENES (RECOMMENDED TOOLS:
HGB, ENSEMBL)

So far in our study of the D21S1245–D21S1852 region, we have identified our locus in
genomic sequence and identified the known and putative novel genes in the region. Further
genetic analysis of the region could now take two routes, we could perform further linkage
or association studies by defining a suitable set of markers across the region (see Case
study 5) or alternatively we could select specific candidate genes for follow-up studies. As
we only have nine or 10 genes in our locus it would be quite viable to study each gene,
but in most cases a region will contain a much larger number of genes which would make
follow-up of each gene an impractical approach. An alternative in such cases would be
to prioritize candidate genes based on their biological rationale in the target phenotype or
trait. Criteria for biological prioritization of candidate genes are discussed throughout this
book. Genes can be prioritized based on a known or putative role in the disease pathway,
gene knock-out models, expression in the disease tissue, functional polymorphism and
many other criteria.

In our hypothetical study we are looking for a gene with a possible role in bipolar
depression, therefore to prioritize our candidate genes, we might first review the literature
to search for a link between the candidate genes in the region and this disease pathway.
The aetiology of bipolar disorder, like many complex diseases is poorly understood, this
makes it difficult to establish a clear biological rationale for any gene in this disorder.
Where biological rationale is found it could range from convincing support, such as
upregulation of the gene or a related gene or pathway component in a disease model or in
a similar phenotype to the most basic support, such as being expressed in a tissue affected
by the disease.

Drawing together the complex strands of evidence in the literature is a skill that
calls for a good background in biology and ideally a broad understanding of the dis-
ease under study. However reliance on literature-based evidence alone can run the risk



CANDIDATE GENE SELECTION — BUILDING BIOLOGICAL RATIONALE AROUND GENES 191

of over-interpreting tenuous links between genes. This could be a particular problem in
the case of poorly understood diseases, where unknown pathways would largely fail to
register as a form of rationale. This issue is an argument to support a truly investiga-
tive approach to candidate gene identification. The candidate should be in the right place
at the right time; beyond this further assumptions may be misleading. Data presented
by tools such as Ensembl and the UCSC HGB can provide solid evidence which can
help to identify genes which are at least expressed in the tissues affected by the dis-
ease. Obviously in the case of bipolar disorder, we are most interested in genes which
show evidence of expression in the brain. This will inevitably include a large number
of genes. In an analysis of the expression profiles of >33,000 genes, Su et al. (2002),
found that on average any individual tissue expresses approximately 30–40% of known
genes. For candidate gene studies, this implies that 30–40% of genes are likely to be
candidates on the basis of expression in the disease tissue (assuming the disease affects
only one tissue).

9.6.1 Analysis of Gene Expression

Four tracks in the UCSC HGB provide information about the tissue expression profiles
of genes (Figure 9.6). The simplest level of information is provided by ESTs, each is
implicitly a measure of gene expression, as each is derived from a specified tissue source.
The UniGene track clusters all ESTs which map to a gene. Viewing ESTs from a UniGene
record will confirm the expression of a gene in a particular tissue. The number of ESTs
represented in each tissue will also give a very rough idea of the expression levels of the

Figure 9.6 Using the UCSC human genome browser to evaluate gene expression across
a locus. Four tracks provide information on gene expression. ESTs implicitly measure
gene expression as each is derived from a specified tissue source. UniGene clusters link
to SAGE expression profiles drawn from the SageMap project. Finally data from two
genome-wide microarray projects are presented, the NCI60 cell line project and GNF
gene expression atlas ratios (See Colour Plates).
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gene, but it will not confirm the absence of a gene in a tissue. The most comprehensive
measure of gene expression is also linked from the UniGene track in the HGB interface.
Clicking on a UniGene cluster links to SAGE expression profiles drawn from the SageMap
project (Lash et al., 2000). Finally the HGB interface also provides two specialist tracks
containing data from two genome-wide microarray projects, the NCI60 Cell Line Project
(Ross et al., 2000) and GNF Gene Expression Atlas Ratios (Su et al., 2002; Table 9.3).

9.6.2 Serial Analysis of Gene Expression (SAGE)

The HGB UniGene track links to SAGE data for eight of the 10 genes in the
D21S1245–D21S1852 interval. SAGE is a quantitative measure of gene expression based
on tags in the 3′ UTR of genes (see Chapter 16 for a detailed explanation of this technique).
Clicking on a UniGene cluster returns a table of SAGE data for every Unigene cluster
contained in the browser window. Selecting the Unigene cluster name will display the
SageMap page for the cluster, leading to a so-called ‘Electronic Northern’, which might
more appropriately be called an ‘electronic dot-blot’, as there is no element of transcript
sizing. The summary data from the SageMap of the genes in the region is presented in
a tabular form, so if you would rather see a graph across the region, it is quite easy
to export this data to a spreadsheet to plot the expression profiles of each gene. SAGE
expression data is available in a selected range of brain and neuronal libraries for eight
of the genes across the locus. This data identifies expression of BACE2, PAPPA, Novel3,
C21orf11, MX2 and MX1 in some of the normal brain tissues in the SAGE libraries.
BACE2, Novel3 and MX1 show high expression in a wide range of normal brain tissues,
which suggests that these genes may warrant priority as candidates. The TMPRSS1 and
Novel2 genes show no evidence of brain expression and so it may be reasonable to reduce
the priority of these genes.

The integration of SAGE data across the genome within the HGB interface, makes
SAGE data one of the most comprehensive and convenient measures of gene expression
across a genetic locus, allowing the user to quickly identify most genes across the locus
which are expressed in a range of common tissues. The only real limit to this method is
in the number and type of tissues, although these are extensive and growing in numbers
(see http://www.ncbi.nlm.nih.gov/SAGE for a list of available tissues).

TABLE 9.3 Comparison of Public Domain Genome-Wide Expression Datasets

Dataset SAGE
NCI60 Cell
Line Project

GNF Gene
Expression Atlas

Technology Serial analysis of
gene expression

cDNA microarray
(Incyte)

Affymetrix U95a
GeneChip microarray

No. of genes >100 K tags∗ ∼8000 ∼33 K
Tissues 37 — 33
Cell lines 4 — —
Induced cell lines 3 — 2
Tumour material

(incl. cell lines)
52 60 13

Total tissues 96 60 48
Reference Lash et al. (2000) Ross et al. (2000) Su et al. (2002)
∗SAGE tags are redundant across genes.
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9.6.3 Microarray Data Tracks

9.6.3.1 The NCI60 Cell Line and GNF Gene Expression Atlas Ratios

The UCSC Human Genome Browser hosts two public domain microarray data tracks.
The NCI60 cell line track presents data from a cDNA microarray experiment to
assay the expression of more than 8000 genes among 60 tumour-derived cell lines
used in the National Cancer Institute’s (NCI) anti-cancer drug screens (Ross et al.,
2000; http://genome-www.stanford.edu/nci60/). The GNF track shows expression data
generated from 46 human tissues and cell lines by the Genomics Institute of the
Novartis Research Foundation (GNF) using a u95A Affymetrix GeneChip (Su et al.,
2002; http://expression.gnf.org/).

Both the NCI60 and GNF tracks are presented in a similar format, although the experi-
mental details differ. Clicking on a transcript in either track, will bring up a tabular view of
all genes in the current browser view, in which each column of coloured boxes represents
the variation in transcript levels for a given cDNA across all of the array experiments and
each row represents the measured transcript levels for all genes in a sample (Figure 9.7A).
The variation in transcript levels for each gene is represented by a colour scale, in which
red indicates an increase in transcript levels, and green indicates a decrease in transcript
levels. These relative transcript levels are measured in a slightly different way between
NCI60 and GNF tracks. In the NCI60 track expression levels are relative to a reference
sample of 12 pooled tumour cell lines. In the GNF track the expression levels are relative
to the signal of the probe in the particular tissue compared to the median signal of all
experiments for the same probe. The saturation of the colour corresponds to the magnitude
of transcript variation. A black colour indicates an undetectable change in expression and
a grey box indicates missing data (see Su et al. (2002) and Ross et al. (2000) for a more
detailed explanation of this method).

As the NCI60 data focuses on tumour-derived cell lines, it is not well suited for the
determination of expression in normal tissues, although obviously this data would be
very valuable for studies of cancer genetics. However, the GNF data track presents some
very valuable information for complex disease genetics, including a breakdown of gene
expression across different regions of the brain. This data is very valuable for candidate
prioritization, as certain regions of the brain may have a more significant role in bipolar
depression than others. For example, functional neuroimaging studies of bipolar patients
have identified the thalamus as a key component of the main neuroanatomic circuitries
which are altered in psychiatric illnesses, such as bipolar disorder (Soares and Mann,
1997). This information indicates that expression in the thalamus could help to prioritize
candidate genes for analysis.

Only one gene from our core region, MX2, is represented in the GNF dataset, this
shows low level expression throughout the different brain regions, with strongest expres-
sion in whole blood (data not shown). However if we expand the D21S1245–D21S1852
interval by 1 Mb on either side to include other flanking genes, much more data becomes
available. Figure 9.7A shows a view of a selection of the available tissues, including all
neuronal tissues for 15 genes across the wider locus. One gene, Purkinje cell protein 4
(PCP4–no. 37576), is immediately apparent with a high level of expression in a wide
range of neuronal tissues, including the thalamus. By clicking on the PCP4 gene number
in the expression view in HGB, a detailed expression profile of the gene in all available
tissues is launched into a new window (Figure 9.7B). This shows that the expression
of this gene is primarily limited to the brain, thyroid and prostate glands, with highest
levels of expression in the caudate nucleus and thalamus. Obviously this makes PCP4 an
interesting candidate gene.
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(A)

(B)

Figure 9.7 GNF gene expression atlas ratios displayed by the UCSC human genome
browser. (A) The browser shows a view of the expression profiles of 15 genes across the
wider locus. One gene, Purkinje cell protein 4 (PCP4, no. 37576), shows high expression
in a wide range of neuronal tissues, including the thalamus. (B) Detailed gene expression
profile for the PCP4 gene (See Colour Plates).

The relative cost of microarray technology was a cause of major concern for the aca-
demic research community, prompting fears that microarray data would be the preserve of
cash-rich industry and biotech. However public domain projects like the NCI60 and GNF
gene expression atlas should in part allay these fears. Although these microarray projects
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currently provide a somewhat limited coverage of human genes, they are complemented
by other technologies such as SAGE and both types of data are constantly expanding in
the public domain.

9.7 CASE STUDY 5: KNOWN AND NOVEL MARKER IDENTIFICATION
(RECOMMENDED TOOLS: ENSEMBL, HGB, MAP VIEW, SNPPER)

Now that we have identified the genes in our locus and established some biological
rationale to prioritize them for study, we need to ascertain which markers are available to
complete this study. The human genome is a very convenient framework for organization
of polymorphism data and so genome viewers are probably the best tools for identifying
these polymorphisms.

All the genome viewers maintain SNP annotation across the human genome. Exact
numbers of SNPs reported may differ between tools, for example, comparison of the
D21S1245–D21S1852 locus between Ensembl, UCSC HGB, Map View and SNPper (see
below), identifies 901, 903, 903 and 876 SNPs respectively. These minor discrepancies
are a likely result of the different SNP mapping and repeat masking parameters between
the tools. Missing a SNP or two across a locus may not be a problem for a large-scale
analysis but if candidate gene analysis is the objective, it may be important to identify
all variation to enable accurate construction of haplotypes or identification of potentially
functional variants.

9.7.1 Identification of Potentially Functional Polymorphisms

Aside from the ordered convenience that genome browsers bring to SNP data, they also
place a SNP into a full and diverse genomic context, giving information on nearby genes,
transcripts and promoters. Both Ensembl and HGB show genome conservation between
human and mouse, while HGB also includes tetradon and fugu (fish) genome conserva-
tion. Genome conservation between vertebrates is generally restricted to genes (including
undetected genes) and regulatory regions (Aparicio et al., 1995). Hence this is a simple
but powerful method for identifying SNPs in regions which are potentially functionally
conserved. Figures 9.8A shows a detailed HGB view of the BACE2 gene. After close
viewing of the locus it is possible to assess the functional context and genomic conser-
vation of the region surrounding each SNP. Where an overlap is unclear it is possible to
zoom in to a resolution of just a few hundred base pairs to determine exact locations and
overlaps between SNPs and gene features (Figure 9.8B). At the simplest level, identifica-
tion of potentially functional SNPs is a matter of identifying SNPs which overlap highly
conserved regions or putative gene or regulatory features. The UCSC browser presents
some detailed information on putative promoter regions, including golden triangle and
transfac analyses (see Chapter 12). Once identified, the impact of different alleles can be
evaluated by running the alleles through the tool originally used to predict the sequence
feature. These could include tools for promoter prediction, splice site prediction or gene
prediction. In Chapters 12–14 we describe these analysis approaches in detail. One final
point on the functional characterization of SNPs is that we currently know very little about
the functional regions of the genome; but we do know that our tools are very limited, and
so it is almost impossible to conclude that a SNP is not functional. All that we can do is
make our best guess from the available evidence.
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Figure 9.8 SNP visualization in the UCSC human genome browser. (A) A detailed
view of the BACE2 gene allows the user to view a range of information, including SNP
haplotype data. (B) Close viewing of the BACE2 locus allows the user to assess the
functional context and genomic conservation of the region surrounding each SNP. (C) A
detailed view of a Perlegen haplotype (See Colour Plates).

9.7.2 Identifying Novel Microsatellites in Sequence Data

The polymorphism data we have identified so far, may be sufficient for a SNP scan
across our locus, however in Chapter 8 we reviewed some data to suggest that LD may
be detected over greater distances with STRs (Koch et al., 2000). Inclusion of STRs
spaced at intervals of 50–100 kb in this locus may assist in narrowing a critical interval
to a distance of a few hundred kb in a case–control association study. Known genetic
marker maps identify three polymorphic STRs across the 0.84-Mb, D21S1245–D21S1852
interval. To generate a sufficiently dense map, we need 10 to 15 extra markers. Potentially
polymorphic STRs can easily be detected across a given region by using Tandem Repeat
Finder (Benson, 1999; http://c3.biomath.mssm.edu/trf.html). The UCSC HGB interface
already presents output from the Tandem Repeat Finder in the ‘simple repeats’ track.
Figure 9.8B shows an example of this output — a simple repeat in the promoter region
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of BACE2 is identified by this tool. Use of the Tandem Repeat Finder interface identifies
tandem repeats in a submitted sequence over a user-defined repeat unit size range (from
1 to 500 bp). Perfect or close to perfect tandem repeats of greater than 12 repeat units
tend to be polymorphic (see Fondon et al. (1998) for a review of these methods).

9.7.3 Exporting SNP and Microsatellite Data

If comprehensive SNP coverage is a priority then results from both Ensembl and HGB
can be compared and collated. The easiest way to do this is to compare both exported SNP
sets in a Microsoft Excel spreadsheet. Both Ensembl and HGB have facilities to export
SNP and microsatellite information across a defined locus. In Ensembl the user needs to
select the ‘export’ menu above the detailed analysis window and select ‘SNP list’. This
allows the user to retrieve information about SNP accessions, golden path location and
gene region directly into Microsoft Excel. The UCSC HGB is slightly more complicated,
the user needs to select ‘TABLES’ and then separately select ‘Random SNPs’ and then
repeat with ‘Overlap SNPs’ from the menu. This produces two similar tab-delimited
files. Both files can be loaded into Excel and sorted by golden path location to obtain a
non-redundant SNP map across the region.

9.7.4 Construction of Marker Maps

To complete an LD-based association scan across this region, we need to define a suffi-
ciently dense set of markers to detect LD across the region. In the absence of knowledge of
the haplotypic diversity of the interval in question, accurate selection of an optimal marker
set is not possible. However a framework of markers spaced at 10–30-kb intervals might
be appropriate; this is accepted as a reasonable assumption of LD in northern European
populations (Ardlie et al., 2002). Informative SNP markers for association studies need
to be carefully selected, ideally with an allele frequency of around 25%, and generally
no lower than 5%. Lower frequencies would require very large sample sizes to reach a
sufficient power to detect association (Johnson et al., 2001; see Chapter 8). Unfortunately
this creates a technical problem, most SNPs from dbSNP, are ‘candidate SNPs’ with no
available frequency information (see Chapter 3 for a discussion of this issue). Marth et al.
(2001) determined the frequency of a large number of candidate SNPs from dbSNP and
found that on average, 50% of SNPs assayed showed a frequency of >10%. Consider-
ing this success rate it may be necessary to identify SNP markers at 5–15-kb intervals
across our region for frequency determination (20 chromosomes should be sufficient to
identify the majority of SNPs with a minor allele frequency >10%), before defining a
final marker map.

Use of an evenly spaced marker map is a pragmatic approach which assumes evenly
spaced LD across the study region. Inevitably this does not always occur; instead LD
extends over variable distances. The optimal, but time-consuming approach to map con-
struction across a region is to first determine common haplotypes and use this data to
define a minimal set of SNPs (‘haplotype tags’) that define these common haplotypes. In
this study we have one major advantage, the UCSC Human Genome Browser presents
information on common SNP haplotypes across the whole of chromosome 21. This data
is derived from a study by the Biotech company, Perlegen, Inc. In their study, Patil et al.
(2001) identified 25,000 SNPs with a frequency >10%, by sequencing 20 haploid copies
of chromosome 21 derived from a cell line. They used these SNPs to directly determine
common haplotypes. This data is visible in the ‘haplotype blocks’ track in Figure 9.8A.
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Each haplotype block is represented by a blue horizontal line with taller vertical blue bars
at the first and last SNPs of each block. The shade of the blue indicates the minimum
number of SNPs required to discriminate between haplotype patterns which account for
at least 80% of genotyped chromosomes, darker colours indicate fewer SNPs are neces-
sary. Individual SNPs are denoted by smaller black vertical bars. This information is also
available at the Perlegen website (http://www.perlegen.com/haplotype). Several haplotype
blocks extend over the BACE2 gene region. Clicking on the haplotype bar opens a window
displaying the structure of the selected haplotype. In Figure 9.8C we show an example of
one of the haplotypes across the BACE2 gene. In this case two SNPs from a total of 10
SNPs (A–J) define four haplotypes (W,X,Y and Z). In this relatively simple haplotype, it
is fairly easy to identify the SNP pairs that would ‘tag’ or distinguish the four haplotypes.
However, the HGVbase website also has a tool, ‘Tag ’n Tell’, to automatically identify
haplotype tags (http://hgvbase.cgb.ki.se/). This is particularly useful for identifying tags in
larger, complex haplotypes. In the case of the haplotype in Figure 9.8C, we can evaluate
the four haplotypes defined by the 10 SNP markers. To format this haplotype for analysis
by ‘Tag ’n Tell’, we need to list the marker IDs (A B C D E F G H I J) on the first line
separated by spaces. Then, we introduce each haplotype, defined by a list of alleles (one
for each marker) followed by the haplotype name preceded by ‘:’. All four haplotypes
are input on separate lines. Thus the input to the tool is as follows:

INPUT HAPLOTYPES (from Figure 9.8C):

A B C D E F G H I J
1 1 2 1 2 1 1 2 1 1 : W
1 2 1 2 1 1 1 1 1 1 : X
2 2 1 1 1 2 2 1 2 2 : Y
2 1 2 1 1 1 1 1 1 1 : Z

The ‘Tag ’n Tell’ program identifies two alternative sets of two tags which will distinguish
all four haplotypes. These are SNPs A and B or SNPs A and C:

A B A C
1 1 : W 1 2 : W
1 2 : X OR 1 1 : X
2 2 : Y 2 1 : Y
2 1 : Z 2 2 : Z

This convincingly demonstrates the power and potential economies afforded by use of
haplotype data. Unfortunately similar data is not yet available for all chromosomes (LD
maps have also been published for chromosomes 19 and 22; see Chapter 7). A publicly
funded genome-wide haplotype determination project is in progress so this situation should
change fairly quickly.

9.7.5 Identifying ‘Candidate SNPs’

Just as the candidate gene approach can complement the locus analysis approach, a com-
plementary approach to regular marker map construction is to screen candidate SNPs
across the locus. A candidate SNP is any SNP with a potential for functional effect,
this could include non-synonymous SNPs, SNPs in regulatory regions or other functional
regions. In fact uncertainty over functional prediction could stretch the definition of a
candidate SNP to any SNP within 10 kb of gene. There are many ways to select such
SNPs (see Chapters 12 and 13 for details). At the most detailed level, it is possible to
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identify all available SNPs in genes and putative regulatory regions by eye using human
genome browsers to identify overlap between SNPs and features such as promoter regions
or comparative genome conservation. This can be a useful and manageable approach for
small loci, however, this is not always a practical approach for larger loci. Larger analyses
can be facilitated by using the feature ‘export facilities’ in the human genome browsers.
The coordinates of most features can be exported as tab-delimited data, these can be
compared in a spreadsheet.

9.7.6 Moving from SNPs to Assays

By using both Ensembl and the UCSC HGB we have been able to identify and export
a comprehensive list of SNPs across our locus in a convenient tab-delimited form. But
one hurdle stands between our data and a large-scale SNP genotyping experiment. The
problem is that the human genome browsers give us a list of SNP accession numbers, but
not a primer design-ready list of SNP sequences. Until very recently the only web based
approach to obtaining these sequences was to access each SNP individually! Fortunately
both dbSNP and SNPper, now incorporate features which allow the user to export a list
of SNPs with flanking sequence. SNPper (Riva and Kohane, 2001) maps RefSNPs and
genes to the golden path in a very similar way to the genome browsers (but without a
graphical interface), allowing SNP searching by gene or SNP name or by golden path
position. This makes SNPper completely compatible with the coordinates generated by
Ensembl and HGB (and so this tool can also be used at an earlier stage for SNP data
mining). SNPper also produces a very effective gene report. The ‘Annotated’ link in the
gene report displays a very informative SNP report which positions SNPs in the context
of introns, exons and other gene features, including a mark-up of non-synonymous SNPs
across a gene.

The great strength of SNPper lies in its data export and manipulation features. At the
SNP report level, SNPs can be sent directly to automatic primer design through Primer3
(which allows the entry of multiple SNP sequences). At a whole gene level or even at
a locus level, SNP sets can be defined and refined and e-mailed to the user in an Excel
spreadsheet with SNP names in the first column and flanking sequences in the second,
ready for primer design. This is a very useful function which is not currently offered by
any other tool.

9.8 CASE STUDY 6: GENETIC/PHYSICAL LOCUS
CHARACTERIZATION AND MARKER PANEL DESIGN
(RECOMMENDED TOOLS: ENSEMBL, HGB AND MAP VIEW)

The wealth of data presented so far in this chapter has enabled us to define our locus to a
level of detail that would allow us to complete a quite effective genetic study. However,
before finalizing the requirements for this study it may be useful to spend some time
characterizing the actual genetic and physical characteristics of the locus.

Ideally we would like to establish a detailed LD map across the D21S1245–D21S1852
interval. The Perlegen haplotype data presented in the HGB interface goes a long way
towards this objective. However the haplotype coverage across this region is not partic-
ularly complete. Extended haplotypes only cover 40–50% of the interval, leaving large
gaps across the region (Figure 9.9). These gaps may simply reflect insufficient coverage
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Figure 9.9 A putative isochore boundary in the BACE2 gene.

of the region by Perlegen SNPs. Alternatively LD across the gaps may actually be lim-
ited. A number of factors are known to influence LD (see Ardlie et al. (2002) for an
excellent review). One of the most influential is the recombination frequency across the
region. As we showed in Chapter 8, comparison of the physical and genetic distances
between markers can give a direct measure of recombination frequency. In a comparison
of Marshfield maps with the golden path, Yu et al. (2001) found that the genome-wide
genetic/physical distance ratio ranged between 0 to 9 cM per Mb. They used this ratio to
infer recombination rates and identified several chromosomal regions up to 6 Mb in length
with very low or high recombination rates. They termed these recombination ‘deserts’ and
‘jungles’, respectively. LD was much more extended in recombination ‘deserts’ than in
‘jungles’ as higher rates of recombination reduced the extent of LD. This is an interesting
approach, although its major drawback is the low resolution of genetic maps, this makes
it very difficult to draw accurate conclusions about recombination over ranges of less than
1 Mb. There are only two genetic markers in the D21S1245–D21S1852 interval, so it is
not possible to draw conclusions on recombination rate across this locus, analysis would
need to encompass a much wider region.

9.8.1 Analysis of GC Ratio and Identification of Isochore Boundaries

Beyond the analysis of genetic and physical ratios, even simpler measures can give
clues to the nature of recombination in a locus. GC content across a locus also has a
weak influence on recombination rates. Lower GC ratios generally correspond to lower
recombination rates (Yu et al., 2001). There is cytogenetic evidence for this phenomenon,
analyses have shown that meiotic crossovers are seen more frequently in GC-rich R and
T bands than in GC-poor G bands (Holmquist, 1992). This observation directly relates
recombination frequency with the gross Giemsa banding of chromosomes. These bands
were believed to be made up of tracts of DNA with homogeneous GC content, known as
isochores. Isochores are divided into two classes the GC-rich H2 and H3 isochores and
the GC-poor L1, L2 and H1 isochores (Bernardi, 2000). Interestingly our region between
D21S1245–D21S1852 spans the 21q22.2–q22.3 cytoband. The region also shows a clear
shift from high GC (average 50%) to low GC (average 40%) in the region of the cyto-
band boundary (high GC is indicated by dark grey in Figure 9.9, lower GC is indicated
by lighter shades of grey). This region is a putative isochore boundary, between an H2
and L1 isochore. It is difficult to determine if there is a significantly different extent of
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LD between the putative L1 and H2 isochore regions. The markers within the first eight
exons of the BACE2 gene do not generally show LD over a greater distance than 5 kb,
while markers in the L1 region near the MX2 gene show LD over longer distances up
to 10–15 kb (Figure 9.9). In a study of the NF1 gene, Eisenbarth et al. (2000), found a
marked reduction in LD, which coincided with an L1 to H2 isochore boundary in the
NF1 gene.

This analysis of the D21S1245–D21S1852 interval, may seem somewhat esoteric. We
are just starting to understand how the physical properties of chromosomes affect their
genetic properties. Undoubtedly, our understanding of these issues is still limited, but
a pragmatic approach to marker map design across this region might be to establish a
baseline marker density across the entire region (say at 1SNP/10 kb), once this has been
reached within the budget of the project, then supplemental markers could be placed in
regions with a higher predicted recombination rate.

9.9 CONCLUSIONS

In this chapter we have reviewed the key steps in the design and construction of genetic
studies using genomic sequence as a template. When sequencing of the human genome is
finally complete and as studies of the genome become more and more precise, much of
genetics as we know it today may become an increasingly in silico process. Ten years ago
who might have believed that the details of the genetic study process would have changed
so dramatically (although the principles remain the same). As the genome wave continues
to roll towards us, we may be looking at much more intelligently designed genetic studies,
with maps which account for local recombination, LD and a detailed knowledge of genes
and regulatory regions. And 10 years further on, perhaps we will look back again and
marvel again at how much things have changed?
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10.1 INTRODUCTION

Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA sequence
variation in the human genome. It is widely believed that a significant fraction of SNPs
contribute to our susceptibility to various diseases. In order to identify the SNPs associated
with diseases, however, many groups are pursuing a case–control mapping strategy that
requires a large number of SNP markers distributed throughout the human genome. Once
a set of genes is implicated in a disease (either by genetic mapping or by obtaining
biological evidence), the candidate genes are scanned for sequence variations that are
likely to alter the genes’ function. Therefore, identifying single base-pair changes, in a
global or targeted fashion, is extremely important in genome research.

The central public polymorphism database, dbSNP (Sherry et al., 2002), serves as
an archival repository of nucleotide sequence variations. An important subset of these
data, nearly 100,000 SNPs in transcribed regions, were found by analysing clusters of
expressed sequence tags (ESTs) (Buetow et al., 1999, 2001; Irizarry et al., 2000) or by
aligning ESTs to the human reference sequence (Marth et al., 1999). The vast majority of
genomic SNPs (single base pair variations found by analysing genomic sequence clones
without regard to whether they represent exonic DNA) were discovered in sequences
from restricted genome representation libraries (Altshuler et al., 2000), random shotgun
reads aligned to genome sequence (Sachidanandam et al., 2001), and in the overlapping
sections of the large-insert clones (mainly bacterial artificial chromosome, or BAC) that
make up the public human reference genome (Tallion-Miller et al., 1998). Because most
sequences of these comparisons involved a small number of chromosomes (typically two),
this collection of SNPs is enriched for common variants. Experimental characterization
of these polymorphisms demonstrates that many of them occur at a high frequency in
independently chosen samples, and often segregate in all or most human populations
(Marth et al., 2001). By the same argument, many rare polymorphisms, including those
that cause noticeable but rare phenotypic effects, are likely to be absent from this set.
The identification of rare phenotypic mutations will require significantly higher sample
sizes and may only be possible by the cross-comparison between large samples of affected
patients and those of controls (see Halushka et al. (1999) for an example of such a study).

Because the numbers are extremely large and the need for identifying SNPs in a
timely fashion is great, computer tools are indispensable in the SNP discovery process.
Fundamentally, one identifies a SNP by comparing two or more sequences from the
same region on the chromosome. This can be done quite easily if the DNA sequence
quality is high and the sequence data are derived from cloned DNA because each clone
comes from a single copy of one of the two chromosomes in the diploid human cell.
There are no unambiguous bases in regions where the data quality is high. In the case
of identifying SNPs in targeted regions in the genome, one amplifies genomic DNA by
PCR and sequences the PCR products derived from different individuals. In this situation,
SNP discovery is complicated by the fact that the same regions on both chromosomes
in the diploid cell are amplified by PCR and some bases will be heterozygous in one or
more individuals. A good computer tool will be able to identify a SNP even when only
heterozygotes and homozygotes of just one of the two alleles are present in the samples
sequenced. This is not a trivial problem because the commonly used dye terminator-based
DNA sequencing methods yield peaks of uneven heights at the polymorphic sites and the
base-calling algorithm will frequently miscall the base at these sites in the sequences of
heterozygous individuals.

In this chapter, we will survey the computer tools used in global and targeted SNP
discovery and PCR-based assay design. Instead of describing the mechanics of how to use
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these bioinformatic tools, we refer the reader to the primary literature and the excellent
documentations of these tools and concentrate on explaining the approaches these tools
take and the limitations (if any) they may have.

10.2 SNP IDENTIFICATION

Computational discovery of polymorphisms in sequence data usually follows a four-step
procedure. First, sequences of high similarity in multiple individuals are identified, usually
with a BLAST (Altschul et al., 1990) similarity search. To avoid spurious similarity due
to known human repeats, sequences are masked for high copy number repetitive elements
with REPEATMASKER (Arian Smit, unpublished data). Still, the possibility exists that
the sequences originate from regions of as yet uncharacterized chromosomal duplications
(Lander et al., 2001). Inclusion of a second, paralogue-filtering step into the procedure can
reduce false positive SNP predictions arising from comparing paralogous sequence copies.
Following this step, false predictions due to paralogy were as low as 0.2% of the data
collected through pooled SNP characterization in the Kwok laboratory (unpublished data).

The third step is the construction of a base-wise multiple alignment of the sequences. In
the general case, this is a computationally expensive task. Aligning expressed sequences
is even more complicated because of exon–intron punctuation and possible alternative
splice variants. In the case of human data one can organize fragmentary sequences on top
of the nearly complete reference sequence (Lander et al., 2001). This approach was shown
to work well for discovering SNPs in clusters of cDNA sequences (Marth et al., 1999).

In the fourth (and final) step, sequences in the precise, base-to-base multiple alignment
are scanned for nucleotide differences. Because of the possibility of sequencing errors,
not every mismatch is a polymorphic site. Discrimination between true polymorphism
and sequencing error uses statistical tools based on measures of sequence accuracy, or
base quality values (Ewing and Green, 1998; Ewing et al., 1998). Each SNP prediction is
accompanied by a measure of confidence. Accurate confidence values permit one to use
the highest number of candidates with an acceptable false positive rate.

Both commercial and academically developed programs are available for use in SNP
detection. Some methods use sequence quality data to eliminate false positives due to
poor sequencing quality. Others incorporate expected mutation rates to distinguish true
SNPs. The most prominent methods of detecting SNPs are PolyBayes, PolyPhred, and
Sequencher. Other methods incorporate neighbourhood quality standard (NQS) gener-
ated by Phred (Ewing et al., 1998) to determine the quality of the data surrounding the
SNP (Altshuler et al., 2000; Mullikin et al., 2000). PolyPhred and PolyBayes are freely
available to academic groups, while Sequencher is produced by Gene Codes Corporation
(URL: www.genecodes.com). Other companies have developed software based on the
same principles. Typically, these products either offer a built-in graphical interface, or use
an external, licensable interface program (such as CONSED). They can be used for both
comparison of short known regions, or long shotgun regions, and are extremely useful
when searching known regions of interest for novel SNPs.

10.2.1 PolyBayes

The POLYBAYES program was developed for de novo SNP discovery in non-ambiguous
(clonal) sequence data (Marth et al., 1999). The SNP detection algorithm employs a
Bayesian approach to combine prior knowledge (such as average polymorphism rate or
expected transition to transversion ratio) with the base calls and base quality values of
the sequences in the multiple sequence alignment. Each SNP prediction comes with a
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Figure 10.1 The POLYBAYES SNP discovery tool applied to EST-Mining. (1) The
genome sequence (BAC clone or assembled sequence contig) is masked for known,
large copy number human repeats. (2) Using the BLAST similarity search tool, expressed
sequences in the public database (dbEST) that match the genomic sequence are identified.
(3) Matching ESTs are aligned to the genomic sequence using an anchored alignment
approach. (4) Possible paralogous ESTs are identified and discarded. (5) The multiple
alignment is scanned for polymorphic sites. (6) Candidates are validated by sequencing
in independent, population-specific DNA pools.

predicted true positive rate, or ‘SNP score’, which have been shown to be accurate (Marth
et al., 2001). Figure 10.1 illustrates an example of using POLYBAYES for SNP discovery
in ESTs aligned to genome sequence. POLYBAYES has been used to discover SNPs in
overlapping regions of human BACs (Marth et al., 1999), in C. elegans (Wicks et al.,
2001) and Drosophila (Berger et al., 2001).

10.2.2 PolyPhred

PolyPhred was developed to be used with Phred, Phrap, and CONSED to identify
candidate SNPs in sequence trace data (Ewing and Green, 1998; Gordon et al., 1998;
Table 10.1). In Consed, coloured marks in the sequence alignment are used to indicate
candidate SNPs as well as confidence in the variations base call. The accuracy of the
calls by PolyPhred has been tested using previously screened mitochondrial DNA. The
results show that this software exhibits over 95% accuracy depending on the quality of
the sequence traces (Nickerson et al., 1998). The primary use of PolyPhred is to identify
SNPs in PCR-amplified data as it can detect heterozygous sequence peaks, and is thus
widely employed in sequence-based genotyping applications.

10.2.3 Sequencher

Sequencher is a tool developed by GeneCodes for sequence alignment, annotation, editing
and mutation identification. Although it is a commercial product, a free demo version is
available (www.genecodes.com/features/html). Sequencher can be used with automated
sequencers such as ABI, Pharmacia/ALF, LI-COR and VISTRA. GeneCodes continues to
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TABLE 10.1 Tools and Related Resources for Primer Design

SNP detection tools
Sequencher http://www.genecodes.com/features.htm
PolyPhred http://droog.mbt.washington.edu/PolyPhred.html
POLYBAYES http://www.genome.wustl.edu/gsc/polybayes/

Repeat masking tools
RepeatMasker www.genome.washington.edu/uwgc/analysistools/repeatmask.html
MaskerAid http://sapiens.wustl.edu/maskeraid/

Primer design tools
Primer3 http://www-genome.wi.mit.edu/cgi-bin/primer/primer3−www.cgi
TSC primer db ftp://snp.cshl.org/pub/SNP/.
Primer design tips http://www.alkami.com/primers/refdsgn.htm.

Tools for sequence extraction and manipulation
SNPper http://bio.chip.org:8080/bio/.
UCSC HGB http://genome.ucsc.edu/index.html

add new tools and functionality to the software. The most appealing part of the software
is the graphical interface, which is intuitive and easy to use on multiple platforms.

10.2.4 Non-sequencing Methods

Several groups have explored non-sequencing methods for SNP discovery. Among the
most promising of these techniques is the use of high density DNA chips (Dong et al.,
2001). Variations of this method have been used to scan for genome wide SNPs (Wang
et al., 1998), in mitochondrial DNA (Chee et al., 1996), and to scan all of chromosome
21 (Patil et al., 2001). Methods for SNP scanning using DNA chips vary considerably in
design (for a review see Draghici et al., 2001).

10.3 PCR PRIMER DESIGN

A large number of candidate SNPs exists in public databases. Key to taking advantage of
this resource is the ability to design PCR assays to amplify these loci uniquely and SNP
genotyping assays for genetic studies under standardized conditions. Genetic researchers
wanting to validate and assay SNPs are faced with the need for high throughput primer
design. Manual picking of primers is time consuming, and some automated tools only
allow for submission of one sequence at a time. There are many tools available over
the web as well as software. In addition, some commercial companies offer genotyp-
ing assay design by order for their customers and a few assays are available through
public databases.

10.3.1 Tools

Currently there is no standard method for calculating the annealing temperature (TM)
of primers. Although many tools have been developed to determine the annealing tem-
perature, their results vary. Furthermore, many of these programs use different entropy
and enthalpy tables in their TM calculations, leading to further discrepancies (Owczarzy
et al., 1997). Despite these variances most of these tools will work and one program that
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has become a standard is Primer3 (http://www-genome.wi.mit.edu/genome software/other/
primer3.html). A comprehensive review of primer picking and TM predicting tools can
be found at http://www.alkami.com/primers/refdsgn.htm.

Primer3 is a standard because it is freely available and easy to use. It is particularly
useful for high throughput design because it can determine primers for multiple sequences
at once. Some of its particular strengths are its many useful and well-documented options,
its easily parsed output and its simple command line interface. Primer3 can be used for the
design of both PCR primers and internal sequencing primers. Although Primer3 allows
for individual SNP position targets and target lengths to be set for each sequence, if the
data is highly varied in position and length it is possible to avoid setting parameters for
each SNP by pre-formatting the data. The SNP sequence retrieval option on SNPper (see
below) is a tool that can provide this uniformly formatted flanking sequence.

10.3.2 Custom Primer Design Services

Although primer design may be carried out in-house, many companies as well as public
databases are offering high throughput design as part of their product support. Sequenom
is one such example. Sequenom is in the process of making primers available through
a site called RealSNP (www.RealSNP.com). Applied Biosystems is another company
providing primer design through their ‘Assay by DesignTM’ Genomic Assay Service. The
researcher provides the sequence, while Applied Biosystems designs and test all assays.
These designs are optimized for TaqmanTM assays (http://www.appliedbiosystems.com/).
There is no charge if an assay cannot be designed. Perkin-Elmer will also be providing
SNP-specific assays through their website.

10.3.3 Public Databases

Primers generated by The SNP Consortium (TSC) Allele Frequency Project are available
via ftp (Table 10.1). These primers have been released, by some of the groups, to the public
with the assistance of TSC. It should be noted that these primers have been generated
by separate groups via different methods and for specific experimental conditions. The
NCBI’s dbSNP database also contains primer designs for some of the SNP entries, but
these have not been specifically designed for SNP validation (Sherry et al., 2002). In
addition to these public databases the Kwok laboratory has over 980,000 assays designed
for sequencing of PCR products, for the specific purpose of pooled allele frequency
determination. The Kwok laboratory also maintains over 1,400,000 SNP genotyping assays
designed for single base extension using fluorescence polarization detection (available at
http://snp.wustl.edu).

10.4 BROADER PCR ASSAY DESIGN ISSUES

SNP assay methods have three major components: (1) allelic discrimination methods,
(2) reaction formats and (3) detection methods. Each area presents different challenges
during SNP assay design. The most important consideration for assay design is the method
of allelic discrimination. These methods vary greatly. For example four main methods of
allelic discrimination are allele-specific hybridization, primer extension (includes single
base extension), ligation and invasive cleavage. The reaction formats are either homoge-
neous reactions or solid phase reactions and the detection methods currently use product
light emissions, product–mass measurements and electrical property changes in the prod-
uct (Kwok, 2001).
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In some cases the critical parameters that apply to one technique will not apply to
others. However, almost all SNP genotyping assay techniques use PCR to amplify DNA.
In order to design the correct primers one must first determine the method of assay.
However, there are some basic guidelines used when designing primers for genomic
sequence. All designs require obtaining sequence, repeat masking, setting experimental
and design parameters, picking primers and formatting the information.

10.4.1 Obtaining Sequence

The flanking sequences for each SNP can be obtained from a variety of sources. For known
SNPs two public databases, dbSNP and SNPper (Riva and Kohane, 2001; Table 10.1)
provide a method for obtaining sequence. SNPper is run by Harvard’s Children’s Hospital
Informatics Program (CHIP). Both dbSNP and SNPper offer batch query modes and return
sequence in FASTA format. In the case of single SNP analysis, SNPper provides a link to
the Primer3 website which will import the retrieved sequence into Primer3 and analyse it
using default values. For SNPs that can be uniquely mapped SNPper can provide up to
1000 bases on either side of the SNP. It should be noted that at this time SNPper does
not contain the most recent uniquely mapped SNPs in dbSNP.

10.4.2 Repeat Masking

A large amount of the genome consists of repeated regions or low complexity DNA. It
is important to avoid selecting primers from these regions in order to avoid amplification
of multiple products. Masking the repeats or making repeated sequence unavailable to
the automated primer-picking programs prevents most unwanted amplification. A com-
monly used program for masking is RepeatMasker (see Table 10.1). A new resource that
improves upon RepeatMasker is MaskerAid (Table 10.1), which increases the speed of
masking more than 30-fold (Bedell et al., 2000). Default parameters in RepeatMasker will
mask known repeat regions with Ns. RepeatMasker accepts FASTA files, and returns the
sequence in the same format. Ready masked sequence can also be obtained from some
of the public databases. dbSNP provides sequence in FASTA format with low-complexity
sequence in lower case, while the University of California Santa Cruz Human Genome
Browser (UCSC HGB) has options to save repeats as either Ns or lower case. However,
this format is problematic when trying to represent the start and stop exons and introns
on UCSC HGB, because lower case can also be used to represent introns. In some cases
two files may be required to represent the masked and unmasked forms of sequence.

Masking repeats can only be accomplished in known repeat regions with current
resources. However, there remain repeat regions of the genome that have not yet been
identified. By using pooled sequencing, it is possible to identify regions that have dupli-
cated and subsequently diverged. These can be identified by the presence of a large number
of apparent SNPs that are all 50% in frequency, as shown in Figure 10.2. When designing
SNP specific primers within PCR products, for example for a single base extension assay,
the RepeatMasking stage is not necessary.

10.4.3 Setting Experimental and Design Parameters

If a large number of SNP candidates are to be assayed it is more efficient to eliminate the
experiments that are less likely to be successful in vitro during the in silico design stage.
Stringent design parameters allow for a first level of screening when designing primers.
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Figure 10.2 Duplicated and diverged regions in genome characterized by multiple
‘SNPs’ at 50% frequency in each pool.

Primer design programs such as Primer3 allow for input of both experimental parameters
and primer structure parameters. The second level of screening can be done after candidate
primers are chosen by primer selection programs to determine if the primers are likely
to work.

Some suggestions for optimizing design parameters for the best experimental results
can be found in PCR Applications (Beasley et al., 1999). In general most primer design
methods work (see http://gsu.med.ohio-state.edu/primer design/sld001.htm for a detailed
guide). However, under stringent experimental conditions optimized design parameters
can decrease the level of experimental failures.

10.5 PRIMER SELECTION

In most design programs primer picking is preformed by the software. The primers are
picked according to the specified parameters. If more than one primer set is returned
some post processing will be required to select the most appropriate pair. Post processing
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can also be necessary for techniques such as pooled sequencing, where selection of a
sequencing primer from the PCR primers is required.

10.5.1 Design Specific to Pooled Sequencing

Pooled sequencing uses sequencing to observe the frequency of a SNP in a group of indi-
viduals in one reaction. The candidate SNP and its flanking sequence is amplified from
pools of DNA each containing individuals and a single reference individual. After sequenc-
ing of the PCR products is preformed using fluorescent dye-terminators, the sequence
traces are aligned, allowing the allele frequencies to be estimated (Kwok et al., 1994).
Pooling DNA in this way prior to PCR amplification and estimating allele frequencies by
subsequent quantitation of trace peak heights yields considerable time and cost savings.

There are several steps to designing pooled sequencing reactions. This method of
design is carried out on a UNIX-based system, using RepeatMasker and Primer3. Repeats
are masked before choosing PCR primers. Sequence that is not masked is retained for post
processing. The input for Primer3 is set according to the optimized parameters (Beasley
et al., 1999) with a few optimizations. The optimizations are most important in the place-
ment of the primers relative to the SNP. The primers are not allowed closer than 25 bases
to the SNP, but are close enough to use one of the PCR primers for sequencing. After
running Primer3 the results are processed to select for the best sequencing primer based
on criteria to optimize experimental performance. These criteria are (1) the sequencing
primer should be 100 bases from the target and (2) there should be no poly As or Ts
greater than eight bases and no poly GTs or CAs greater than 10 pairs between the primer
and the SNP. This design has been shown to work with less than 3% experimental failure
and allows for the primers to be far enough from the SNP that the sequence is of high
quality around the target as shown in Figure 10.3. During the design process as many as
half of the SNPs fail to meet the design criteria, but this failure is at far lower cost than
laboratory-based trial and error (Vieux et al., 2002).

10.5.2 Design Specific to Single Base Extension (SBE) Reactions

SBE requires a primer that abuts the SNP under test. The primer is then extended by a
single base, usually a labelled ddNTP (Hsu et al., 2001). By using two different labels
for the ddNTPs representing the two possible alleles, the allelic state of the SNP can
be determined. SNP-specific SBE primer design can be undertaken using many of the
same tools as pooled sequencing primer design. Both require repeats to be masked before
designing PCR primers. The SNP-specific primers are chosen using non-masked sequence.
The PCR product sizes can be smaller than for sequencing for all of the single base
extension reactions. The SBE primer should not hang over the end of the PCR product
and the PCR primers should not overlap with the SBE primer. In Primer3 the primers can
overlap the target so it is important to give a SNP a large enough target area to prevent
the overlap of primers. When choosing parameters and methods for SBE primers it is
important to remember that different methods can have different primer requirements.

We have found that picking the shortest primer from 16–40 bases which has a TM
between 60–65 degrees works well. In order to calculate TM for a small number of SBE
primers it is possible to use free tools on the web. For high throughput design the best
option is to solve TM equations after determining which set of entropy and enthalpy
tables work best for the relevant method (Owczarzy et al., 1997), and picking the shortest
primer in the defined range. Further optimization can be achieved by picking the SBE
primer with the least amount of secondary structure, and fewest runs of poly As and Ts.
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Figure 10.3 A clean pooled sequencing assay result shows a clear polymorphic site at
the position of the candidate SNP.

10.6 PROBLEMS RELATED TO SNP ASSAY VALIDATION

As with any experimental design, assays for validation of candidate SNPs require attention
to detail. Problems arise that are not always obvious or clearly stated in the documentation
associated with the tools being used. Some problems are easy to overcome, while others
cannot yet be solved.

With the completion of a final version of the human genome assembly a number of
problems will be resolved, while inherent challenges will remain. There are many errors
due to incorrect physical map order, gaps in physical map data and incorrect assembly
(DeWan et al., 2002). These errors lead to SNPs mapping to multiple locations, incorrect
haplotypes and difficulty in identifying paralogues. However, SNP locations are contin-
ually amended as assemblies are progressively corrected. Map locations will continue
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to change until the Human Genome Project is complete. This can cause difficulties in
the analysis of data and obtaining guide sequence. Another difficulty with the unfinished
map is unidentified paralogues. A SNP can appear to map to a unique position, when
it is actually an artefact generated from an unknown paralogue of the original reference
sequence. An example of such an artefact generated by pooled sequencing data is shown
in Figure 10.2.

Guide sequence is provided for known SNPs through dbSNP, TSC and SNPper. The
first two sites only provide a small amount of flanking sequence in their database for
any given SNP. This can lead to failure in the design of PCR primers due to lim-
ited sequence information. SNPper provides far more flanking sequence by mapping the
SNP location and retrieving guide sequence from the human genome assembly at the
UCSC (Table 10.1).

Other problems are inherent when working with DNA and the current technolo-
gies. Long runs of a single nucleotide can cause sequencing reactions to fail, while
insertion/deletion events can cause problems with sequencing and with SNP allelic dis-
crimination methods such as allele-specific hybridization, primer extension (including
SBE), ligation and invasive cleavage. These problems may only be solved with new
technologies for SNP characterization.

10.7 CONCLUSION

Given the large number of SNPs in the human genome and the potential for large-scale
experimentation, bioinformatics tools are essential for SNP discovery and genotyping
assay development. The tools for comparing cloned (and hence homozygous) sequences
are well developed and have proven useful. However, tools for comparing genomic
sequences amplified by PCR, which are often heterozygous, still have room for com-
putational and technical improvements. Following SNP discovery, there are many assay
methods for genotyping, but none can satisfy all requirements. The basic methods for
assay design are well defined, but specific optimizations are different for each method.
With technology improvements, some of the current problems in SNP assay design will
be solved, resulting in a reduction in the number of SNPs that are refractory to successful
assay design. But for now design optimization using currently available tools and careful
interpretation of subsequent results will provide assays and allele frequencies for a large
portion of the SNPs currently available.
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11.1 INTRODUCTION

The focus of this chapter is on methods that aid in the identification of genetic variants that
influence a trait of interest. The trait may be a biological measurement, possibly indicating
risk of disease or it may be the response to an environmental stimulus such as a drug. Tech-
niques such as linkage analysis and association analysis are central to the process. These
methods are described and corresponding software is reviewed, with worked examples
to show how they can be applied. The majority of tools covered may be downloaded,
together with full documentation, by following links at http://linkage.rockefeller.edu. Web
addresses for the few exceptions are provided in the text. Almost all are available free
of charge.

11.2 LINKAGE ANALYSIS

Linkage analysis is applied in the early stages of gene localization and is one means by
which an initial, often broad, chromosomal interval of interest is defined. It is a process
of tracking the inheritance pattern of genetic markers with the inheritance pattern of a
disease or trait. Disease linkage manifests as a marker allele being inherited in diseased
individuals more often than would be expected under independent assortment.

Linkage analysis may be parametric to test whether the inheritance pattern of the trait
fits a specific model of inheritance or it may be non-parametric (model-free). The former
is more powerful under a correctly specified model and is most informative for large,
multiply affected pedigrees. The latter is more powerful when the mode of inheritance is
unknown, as in complex trait analysis for which small pedigrees are often ascertained.

11.2.1 Parametric Linkage Analysis

By the parametric approach (and in certain non-parametric cases), evidence of linkage is
measured by the LOD score (Morton, 1955). It proceeds by an assessment of the recom-
bination fraction, often denoted by theta (θ ). Theta is the probability of a recombination
event between the two loci of interest and as such it is a function of distance. Two unlinked
loci are given by θ = 0.5 and the closer a pair of loci, the lower their recombination
fraction. The LOD may be expressed as follows, using L to denote likelihood.

LOD = log10

L(θ = θ̂ )

L(θ = 0.5)

The likelihood in the numerator is based upon the maximum likelihood estimate of the
recombination fraction, derived from the data. It is compared to that calculated under the
null hypothesis of no linkage (θ = 0.5). A high LOD score is thus consistent with the
presence of linkage. Due to the computational complexity of the likelihood calculation,
software for exact parametric linkage analysis is constrained either by pedigree size or by
the number of markers included in the calculation.

The software VITESSE (O’Connell and Weeks, 1995) allows rapid, exact parametric
linkage analysis of very extended pedigrees. At the expense of some speed, an alterna-
tive, FASTLINK (Cottingham et al., 1993), allows the analysis of large pedigrees that also



LINKAGE ANALYSIS 219

contain loops (marriages between related individuals). Both VITESSE and FASTLINK
are based on an earlier program, LINKAGE (Lathrop et al., 1984) and are available for
UNIX, VMS and PC(DOS) systems. Using these pieces of software, analysis is typi-
cally conducted by means of a sliding window of one, two or four markers along the
chromosome, although larger windows are also possible.

Parametric linkage analysis in more moderately-sized pedigrees is commonly carried
out using the software GENEHUNTER (Kruglyak et al., 1996). It is written in C, to
be run on UNIX and uses a command-line interface. A major feature of this program
is that it allows the rapid, simultaneous analysis of dozens of markers (often an entire
chromosome) in a multipoint fashion, thereby providing increased power over single-
marker analyses when map positions are known (Fulker and Cardon, 1994; Holmans and
Clayton, 1995; Olson, 1995). In order to accommodate uncertainty in marker ordering,
an option to perform single marker tests is also available. On most platforms, pedigrees
up to size 2n − f = 16 may be analysed by GENEHUNTER, where n is the number
of non-founders (those with parents included in the pedigree), and f is the number of
founders. This limit is important to consider, because larger pedigrees are automatically
trimmed until they fall within it, leading to possible information loss. Results are stored
graphically in postscript files for easy interpretation and presentation.

11.2.2 Non-parametric (Model-free) Linkage Analysis

Non-parametric linkage (NPL) analysis does not allow direct estimation of the recombi-
nation fraction, but one source of multiple testing — that derived from examining multiple
models — is removed. The general principle is that relatives who share similar trait values
will exhibit increased sharing of alleles at markers that are linked to a trait locus (see
Holmans (2001) for a review of the method).

Allele sharing may be defined as identical by state (IBS) or identical by descent (IBD).
Two alleles are IBS if they have the same DNA sequence. They are IBD if, in addition to
being IBS, they are descended from (and are copies of) the same ancestral allele (Sham,
1998). A statistical test is performed to compare the observed degree of sharing to that
expected under the assumption that the marker and the trait are not linked. While the test
statistic may take the form of a chi-squared, normal or F statistic, often it is transformed
to allow it to be expressed in LOD units.

NPL analysis often examines IBD or IBS allele sharing in sets of affected sib-pairs
(ASPs), in which both siblings exhibit the trait of interest. In the absence of linkage,
ASPs are expected to share zero, one or two alleles IBD, with probabilities 0.25, 0.5 and
0.25 respectively. The presence of linkage to a tested marker leads to a departure from
these proportions which may be detected by means of a χ2 test (Cudworth and Woodrow,
1975). Another model-free test, the mean test, tests the null hypothesis that the proportion
of IBD allele-sharing equals 0.5. The latter is implemented in the programs SAGE (1999)
and SIBPAIR (Terwilliger, 1996), allowing for larger sibships and cases where IBD status
cannot be determined unequivocally.

MAPMAKER/SIBS (Kruglyak and Lander, 1995) is a piece of software widely used to
test for linkage in sibling data. It was originally written as a stand-alone program, but its
functionality and commands have now also been fully incorporated into GENEHUNTER
(Kruglyak et al., 1996) whose algorithms are similar. It accommodates both qualitative
and quantitative data for either autosomal or sex-linked chromosomes and again, it allows
large numbers of markers to be examined jointly.

For dichotomous trait data, a likelihood ratio (LR) test, analogous to the LOD score
above is constructed in MAPMAKER/SIBS. The LR is a test for comparing two models in
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which the parameters of one model (the reduced model), form a subset of the parameters
of the other (the full model). It has many genetic applications and may be expressed as
follows, where L denotes likelihood.

LR = 2 loge

Lf ull

Lreduced

It is asymptotically distributed as a χ2, with degrees of freedom equal to the difference in
the number of parameters between the two models. In the current context, the numerator
is calculated under maximum likelihood estimates of allele sharing proportions and the
denominator is calculated assuming random segregation (Risch, 1990a, b). This LR test
is also implemented in other software including SPLINK (Holmans and Clayton, 1995),
and ASPEX (Hinds and Risch, 1996).

In the case of quantitative trait (QT) data, a test based on the Wilcoxon rank-sum
test is available in MAPMAKER/SIBS. It is broadly applicable, as it makes no assump-
tions concerning the distribution of phenotypic effects. Alternatively, if the sib-pair QT
differences are normally distributed, then the original Haseman–Elston method (1972),
also implemented, may be applied with greater power. In this test, the squared QT differ-
ences between pairs of siblings are regressed on the proportion of alleles that each pair
is estimated to share IBD. It is also implemented in SIBPAL2, part of SAGE (1999).

For pedigrees larger than sibships, there is an ‘NPL’ option in GENEHUNTER, but it
was shown to be conservative (Kong and Cox, 1997). Alternatives include the modified
version, GENEHUNTER-PLUS (Kong and Cox, 1997) and MERLIN (Abecasis et al.,
2002), which also incorporates this modification. The latter is a C++ program for UNIX,
again with a command-line interface. It offers further improvements in computational
speed and reduction in memory constraints, making it more suited to very dense genetic
maps. It has the attractive properties of incorporating error detection routines to improve
power, and simulation routines to estimate p-values. Graphical output is not however,
currently provided.

For normally distributed quantitative traits (or those capable of being transformed to
normality), variance component analysis represents a powerful approach to the study of
pedigrees of any size (Amos, 1994; Blangero and Almasy, 1996; Goldgar, 1990). The
variance component approach to linkage analysis assumes that the joint distribution of
the data for a family depends only on means, variances and covariances. The variance
of the phenotype is decomposed into (a) components due to linkage to individual marker
locations and (b) residual polygenic and environmental components. Familial covariances
are modelled in terms of a maximum of two parameters: an additive genetic-variance
component and a dominant genetic-variance component, each estimated from the data.
The method is implemented in SOLAR (Blangero and Almasy, 1996), in which the size
of each effect may be estimated and tested by an LR test. This is a powerful approach
and a major advantage is its scope for incorporating into models the effects of covariates,
epistasis and gene–environment interaction. For highly complex problems, Markov Chain
Monte Carlo Methods are also available, as implemented for example in LOKI (Heath,
1997) and BLOCK (Jensen et al., 1995). When the parameter set is large however, the
computational burden of these methods can be prohibitive.

11.2.3 Example: MAPMAKER/SIBS (Kruglyak and Lander, 1995)
11.2.3.1 Data Import
The current example follows a format originally designed for MAPMAKER/SIBS, but
now also accommodated by GENEHUNTER. The input files match rather closely what has
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become known as ‘LINKAGE format’ due to the software in which it was first introduced
(Lathrop et al., 1984; Terwilliger and Ott, 1994). Two files are required, namely a pedigree
file and a map file. In the current example, a genetic trait has been simulated for 200
sibships, and the files have been named regionA.ped and regionA.loc respectively. For
the analysis of a quantitative trait, a third file is also required, called for our purposes,
test.pheno.

The file regionA.ped takes the following form where, for simplicity, only a single
marker, genotyped in two families has been presented.

70 8699 0 0 2 0 0 0
70 8698 0 0 1 0 0 0
70 2230 8698 8699 2 2 1 2
70 2231 8698 8699 2 2 2 2
75 8787 0 0 2 0 0 0
75 8786 0 0 1 0 0 0
75 2238 8786 8787 2 2 2 2
75 2239 8786 8787 2 2 2 2

The columns are as follows: kindred ID, individual ID, father’s ID, mother’s ID, sex
(1 = male, 2 = female), affection status (1 = unaffected, 2 = affected), genotype. In prac-
tice, multiple (paired) columns of genotypes would be included, in map order, for each
individual. Missing values are denoted by a zero.

This file therefore provides pedigree structure information, genotypes and, in the case
of dichotomous traits, phenotype. For liability class data, an additional liability class
column may be included after the affection status column and this is described in more
detail in the manual.

For the current example, quantitative trait data is loaded separately using test.pheno
(not shown). This file contains, on the first line, a count of the number of traits in the
file. All subsequent lines take the space-separated form: kindred ID, individual ID and
phenotype(s). Only sibling phenotypes should be included.

Lastly, the file regionA.loc lists the marker details in map order. Here, the ‘internal’
format is described, but LINKAGE format is also supported. The first line provides a
count of the number of markers in the file, and is followed by a blank line. Subsequent
lines are in six line blocks as follows. The first line has the marker name and number of
alleles; the second has the allele labels; the third has the allele frequencies for each label;
the fourth is blank; the fifth is the distance to the next marker; the sixth is blank. If the
distances are all below 0.5, they are assumed to be recombination fractions, otherwise
they are assumed to be distances in cM. The following is an example of a map file, say
regionA.loc with just the first two markers shown for the sake of brevity.

29

MARKER1 6
1 2 3 4 5 6
.01 .95 .01 .01 .01 .01

5.1

MARKER2 10
1 2 3 4 5 6 7 8 9 10
.114988 .110626 .070579 .218874 .250991 .141158 .028549
.062649 .000793 .000793
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Note that the program tends to crash if inter-marker distances less than 0.1 cM are pro-
vided. This should therefore be used as the lower bound even in the case of apparently
recombinationally inseparable markers.

11.2.3.2 NPL Analysis for a Quantitative Trait

The following sequence of UNIX commands may be used.

load markers regionA.loc
prepare pedigrees regionA.ped
y
test.pheno
increment step 10
scan
p
nonparametric
1
np.out
np.ps
q

The process is as follows. The first step is to import the marker and pedigree data that
are stored, respectively in regionA.loc and regionA.ped. You are then asked whether you
wish to import additional phenotypic data. Upon typing y (yes), you are prompted for a
filename, in this case, test.pheno. Increment step 10 specifies that linkage is to be assessed
at 10 equally spaced points in each marker interval.

The scan command computes the full multi-point probability that two sibs share zero,
one or two alleles identical by descent (IBD) with the given map and allele frequencies.
You are asked whether to include affected (a) or phenotyped pairs (p). The latter (p)
allows NPL analysis to follow. Non-parametric linkage analysis is to be applied to trait
1, with numerical output to be piped to np.out and graphical output to be stored in np.ps
(Figure 11.1, below). Note that if only one trait exists in the phenotype file then the 1
above is not required.

As shown in Figure 11.1, a Z-score provides the measure of linkage and in this case
evidence peaks close to marker 22. Localization cannot however be assumed to be precise
and separation of at least 10 cM may be seen between studies (Hauser and Boehnke, 1997).
It is therefore usual to construct a support interval around a strong linkage signal (Con-
neally et al., 1985). For example, having converted to LOD units, a 1-unit support interval
is the interval that includes all (possibly disjoint) map positions with LOD score less than
1 LOD unit below the peak score. A conservative approach is to adopt a 1.5 to 2 LOD
support interval. All points within the support interval are considered to be of interest.

A determination of information content in MAPMAKER/SIBS allows a representation
of the amount of IBD information extracted by the genotype data, as plotted along the
chromosome. Dips in the graph allow regions to be highlighted in which the typing of
additional markers could be beneficial. The following commands are applied.

scan
a
infomap
info.out
info.ps
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Nonparametric Z-scores
Pedigree file: regionA.ped
Fri Jan 25 13:53:37 2002
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Figure 11.1 Postscript output from MAPMAKER/SIBS. This is np.ps from the
example run.

A scan of affected pairs (a) is conducted and infomap is requested. The filenames ensure
that numerical output is stored in info.out and a graphical representation is saved as
info.ps (Figure 11.2). In this example the large gaps between markers 4 and 5 and between
markers 8 and 9 manifest as troughs in the Information Content graph.

Another useful option (not shown) is that the IBD distribution can be output as a
text file using the command dump ibd. This is a very rapid means of generating IBD
probabilities for sibships and, after re-formatting, the output may be used to generate
input files for other software such as QTDT (Abecasis et al., 2000), to be discussed
later. Another piece of software, SimWalk2 (Sobel and Lange, 1996) will generate IBD
probabilities for a wider range of family structures, but in the case of sibships it is slower
than MAPMAKER/SIBS.

11.3 ASSOCIATION ANALYSIS

Association analysis may be regarded as a test for the presence of a difference in allele
frequency between cases and controls. A difference does not necessarily imply causality
in disease, as many factors, including population history and ethnic make-up may yield
this effect. In a well-designed study, however, evidence of association provides a flag
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Information content
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Fri Jan 25 13:53:54 2002
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Figure 11.2 Postscript output from MAPMAKER/SIBS. This is info.ps from the
example run.

for further study. In some instances it is due to the marker being physically close to the
causal variant.

Association testing for case–control or population data is often carried out using gen-
eral (non-genetic) statistical software packages, such as SAS or S-PLUS. A χ2 test is
applied to a contingency table, in which case/control status is tabulated by frequencies of
either genotypes or alleles. The test takes the usual form,

χ =
∑ (Obs − Exp)2

Exp

where Obs and Exp are the observed and expected frequencies respectively, and the sum
is taken over all cells in the table. The number of degrees of freedom is (r − 1) (c − 1),
where r is the number of rows, and c is the number of columns in the table. Equivalently,
logistic regression can be applied, using disease status as the dependent variable and alleles
or genotypes as the independent variables (see Clayton (2001) for a detailed review of the
method). The remaining sections of this chapter all involve applications and extensions
of the traditional association test.
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11.3.1 Transmission Disequilibrium Tests

In recent years, there has been an upsurge in interest in family-based testing owing
to the concern that ethnic mismatching of non-family cases and controls (population
stratification) can sometimes yield false positive evidence of association. In particular, the
transmission/disequilibrium test or TDT (Spielman et al., 1993) has gained prominence as
a test of linkage in the presence of association that does not give false evidence of linkage
due to population stratification. The TDT is applied by counting alleles transmitted from
heterozygous parents to one or more affected children in nuclear families. The alleles not
transmitted to affected children may be regarded as control alleles, perfectly ethnically
matched to the ‘case’ alleles seen in the affected children. The test takes the form of a
McNemar’s test, which, under the null hypothesis of no linkage, follows a χ2 distribution
with one degree of freedom. The TDT is also a valid test for association, but only
when applied to alleles transmitted from heterozygous parents to just one affected child
per family.

Assuming a diallelic locus, let b denote the counts of heterozygous parent-to-offspring
transmissions in which allele 1 goes to an affected child, while allele 2 is not trans-
mitted. Let c denote the counts of transmissions the other way around, in which allele
2 is inherited in an affected child, while allele 1 is not transmitted. The test takes the
following form:

χ2
1 = (b − c)2

(b + c)

A number of groups have focused on generalizing the TDT to quantitative traits or to
designs in which parental genotypes are not available. The sib-TDT or S-TDT (Spielman
and Ewens, 1998) does not use parental genotypes and, like the original TDT, it is not
prone to false positives due to population stratification. For association testing, the S-TDT
requires that the data in each family consist of at least one affected and one unaffected
sibling, each with different marker genotypes. This test and the original TDT are widely
implemented, for example in the Java-based program TDT/S-TDT (Spielman and Ewens,
1996, 1998).

Multi-allelic markers may be tested using ANALYZE (Terwilliger, 1995). This has the
advantage of taking LINKAGE format files as input and so provides a natural follow-
up to a genome scan. It does however require that LINKAGE (Lathrop et al., 1984) be
installed on your system. Other software able to handle multi-allelic markers includes
ETDT (Sham and Curtis, 1995) and GASSOC (Schaid, 1996).

For quantitative traits, a major development was the release of QTDT (Abacasis et al.,
2000), software which allows TDT testing under a variance components framework. It is
applicable to sibships with or without parental genotypes and incorporates a broad range
of quantitative trait tests — those proposed by Rabinowitz (1997), Allison (1997), Monks
et al. (1998), Fulker et al. (1999) and Abecasis et al. (2000). It is written in C++, to be
run on UNIX and has a command-line interface. Its input files are based on LINKAGE
format, but in addition, one input file of IBD probabilities must be prepared in advance.
QTDT assumes the IBD format generated by the programs SimWalk2 (Sobel and Lange,
1996) and MERLIN (Abecasis et al., 2002). Covariates may also be modelled, but should
be kept to a minimum in order to maintain performance.
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11.4 HAPLOTYPE RECONSTRUCTION

A haplotype is a string of consecutive alleles lying on the same chromosome. Each
individual therefore has a pair of haplotypes for any chromosomal interval — one inherited
from the paternal side and one inherited maternally. In statistical genetics, their importance
lies in the fact that tests of association may be applied to haplotypes instead of single
loci. This may yield increased power if the variant of interest is not being tested directly
or if adjacent loci are contributing to a single effect (see Clark et al., 1998; Nickerson
et al., 1998). Haplotypes can be inferred from the genotypes of parents or other family
members (Weeks et al., 1995) or by laboratory methods (Clark 1990; Nickerson et al.,
1998). Often, however, they are estimated by means of the Expectation–Maximization
(EM) algorithm (Dempster et al., 1977; Excoffier and Slatkin, 1995; Hawley and Kidd,
1995; Little and Rubin, 1987; Long et al., 1995).

The EM algorithm is a method that aims to provide maximum likelihood parameter
estimates in the presence of incomplete data. In the case of haplotype frequency estimation,
it proceeds as follows (Schneider et al., 2000).

1. An initial set of plausible haplotype frequencies is assigned — for example the
product of the relevant allele frequencies may be used.

2. The E-step: assuming Hardy–Weinberg equilibrium, the haplotype frequencies are
used to estimate the expected frequencies of ordered genotypes.

3. The M-step: the expected genotype frequencies are used as weights to produce
improved estimates of haplotype frequencies.

4. Steps 2 and 3 are repeated until the haplotype frequencies reach equilibrium.

Note that, as with other iterative techniques, it is wise to compare the results of multiple
starting points as the EM algorithm may converge to a local, rather than global, optimum.
It is not always reasonable to assume that the maximum likelihood haplotype configuration
has been reached.

Software written specifically for haplotype analysis includes EHPLUS (Zhao et al.,
2000), a reworked and extended version of the earlier program EH (Xie and Ott, 1993). It
is written in C and is available in both UNIX and PC versions. EHPLUS can be applied
to either case–control data or data assumed to come from a random-mating population.
It accommodates large numbers of haplotypes and incorporates a companion program,
PMPLUS, which will reformat genotype data ready for use. Estimated haplotypes and
their frequencies are output and may be subjected to association tests. Permutation features
allow the calculation of empirical p-values for these.

Further software for sophisticated haplotype analysis is available from ftp://ftp-gene.
cimr.cam.ac.uk/software/clayton/. Resources include SNPHAP, a program that uses the
EM algorithm to estimate haplotype frequencies for large numbers of diallelic markers
using genotype data. Another program, TDTHAP (Clayton and Jones, 1999) allows the
TDT to be applied to extended haplotypes. STATA routines to aid SNP selection by haplo-
type tagging (Johnson et al., 2001) are available in ftp://ftp-gene.cimr.cam.ac.uk/software/
clayton/stata/htSNP/.

Haplotype reconstruction from family data can be achieved by using SimWalk2 (Sobel
and Lange, 1996). The derived haplotypes may then be imported to a pedigree-drawing
package such as Cyrillic (Chapman, 1990) for viewing recombinants in positional cloning
for example. MERLIN (Abecasis et al., 2002) and GENEHUNTER (Kruglyak et al.,
1996) also output haplotypes estimated from family data. Another piece of software,
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TRANSMIT (Clayton, 1999) allows association testing of family-based haplotypes. All
of these programs allow for missing parental genotypes.

11.4.1 Example: EHPLUS and PMPLUS (Zhao et al., 2000)

11.4.1.1 Data Import

PMPLUS requires two input files, namely a parameter file and a data file. The data
file contains for each individual, subject ID, subject status (0 = control, 1 = case) and
genotypes listed as either pairs of numbered alleles or as numerical genotype codes. A
data file with three markers takes the following form:

[Subject ID] [Status] [1a] [1b] [2a] [2b] [3a] [3b]
or

[Subject ID] [Status] [1] [2] [3]

where [1a] and [1b] are the alleles of the first genotype or, alternatively, [1] alone
represents the first genotype. Currently, the compiled limits are 15 alleles, 30 markers
and 800 subjects. Note also that whereas subject IDs with a decimal point (e.g. ‘20.1’)
work well, more complex IDs containing several dashes and decimal points may lead to
erroneous output.

The parameter file consists of five lines of space-delimited integer values, and it defines
the tests to be carried out. The following parameter file (hapfrest.par) may be used to
estimate haplotype frequencies:

3 0 0 0
2 2 2
0 0
1 1 1
1 1 1

The four values on line 1 specify the number of markers in the data file, whether to perform
a marker–marker or case–control analysis (0 or 1, respectively), whether case–control
status is to be permuted (0 = no, 1 = yes) and the number of permutations to perform.
Line 2 gives the number of alleles for each marker in the data file. The first value on line 3
specifies whether genotypes in the data file are pairs of alleles or numbered genotypes (0
or 1, respectively), while the second value specifies whether screen output is suppressed
or shown (0 or 1). Line 4 has a 1 for each marker to be included in the analysis; zero
otherwise. Line 5 assigns each marker to one of two blocks (0 or 1), if required in a
marker–marker analysis.

11.4.2 Estimating Haplotype Frequencies

Firstly, PMPLUS is run by typing the following:

>pmplus hapfrest.par hapfrest.dat hapfrest.out

Here hapfrest.out is an output file named by the user and created by PMPLUS to record
chi-squared statistics and associated p-values for the specified analysis. A second output
file named ehplus.dat is also generated, in which the contents of hapfrest.dat have been
converted into EHPLUS format ready for estimation of haplotypes.
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Figure 11.3 EHPLUS interface, as used for estimating haplotype frequencies.

Figure 11.4 Haplotype frequency output from EHPLUS — named ehplus.out .

Haplotype estimation is carried out by typing >ehplus to invoke the program and
then pressing the <CarriageReturn> three times to accept the default options provided.
The process, as seen using the PC(DOS) version, is shown in Figure 11.3. The out-
put file, ehplus.out, shown in Figure 11.4, contains the estimated haplotype frequencies
(see column labelled w/Association) as well as log likelihoods for the null and alterna-
tive hypotheses of No Association between the markers and Allelic Associations Allowed
between the markers. Such inter-marker association is termed linkage disequilibrium and
shall be the topic of the next section of this chapter.

11.4.3 Haplotype-based Association Testing

In order to test 2-point haplotypes for association to a disease, the parameter file, hapfrest.
par was modified to produce the following parameter file (cscntcom.par):
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3 1 1 100
2 2 2
0 0
1 1 0
0 0 0
.01 0 1 1

The second, third and fourth entries on line 1 of this parameter file now specify that
a case–control analysis is to be performed and significance determined by permuting
case–control status 100 times. Furthermore, other entries specify that only the first two
markers are to be included (line 4), and that genotypes are not to be permuted (line 5).
This time a sixth line is included, applicable only to case–control analyses. This line
contains four possibly non-integer values that define a model of the mode of inheritance
of the trait. The first value specifies the assumed disease allele frequency; the following
three are penetrant estimates, resulting from zero, one or two copies of the disease allele
respectively. In the current example, the model assigns a 0.01 allele frequency and a fully
penetrant, pure dominant mode of inheritance. The new data file (cscntcom.dat) contains
the simulated genotypes of both cases and controls, formatted as described previously.
PMPLUS is executed as follows:

>pmplus cscntcom.par cscntcom.dat cscntcom.out.

When PMPLUS is instructed to perform permutations, EHPLUS is automatically invoked
at the end of each PMPLUS run (i.e. following each permutation of the dataset) and thus
program control passes back and forth between the two programs until the permutations
are complete. Since PMPLUS permutes the data via the ehplus.dat input file, the final
EHPLUS output file (ehplus.out) does not have meaningful haplotype frequency estimates.
These are based on permuted, rather than real data.

The output produced by PMPLUS (in this case cscntcom.out) contains the key analy-
sis results. These are the χ2 values and permutation-derived p-values obtained under five
sets of assumptions as follows: (1) under the user-specified disease model, (2) under a
Mendelian recessive model, (3) under a Mendelian dominant model, (4) by maximizing
the log likelihood ratio over multiple disease models and (5) by a non-parametric ‘homo-
geneity’ test, to compare log likelihoods calculated from pooling cases and controls and
considering them separately. The fifth test is completely non-parametric, while the oth-
ers are constrained by the population prevalence of disease implied by the user-specified
disease model. Figure 11.5 shows the results of evaluating the 2-point haplotype for asso-
ciation with the simulated disease. Note that p-values below 0.0001 are rounded down
to zero.

11.5 LINKAGE DISEQUILIBRIUM

Linkage disequilibrium (LD) is a lack of independence, in the statistical sense, between
the alleles at two loci. LD exists between two linked loci when particular alleles at these
loci occur on the same haplotype more often than would be expected by chance alone.
This phenomenon can provide valuable information in locating disease variants from
marker data, as a marker in LD with the causal variant provides a flag for its location. LD
information also provides a means by which the efficiency of high-density marker maps
can be increased. If markers are in strong LD with each other, there is an argument for
genotyping only a subset of them.
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Figure 11.5 Output of haplotype-based association testing in EHPLUS.

The extent of pair-wise LD may be measured by the value D, as follows (Lewontin,
1964). Assume two diallelic loci are linked and let pij be the proportion of chromosomes
that have allele i at the first locus and allele j at the second locus. For example, p12 is
the frequency of the haplotype with allele 1 at the first locus and allele 2 at the second
locus. The disequilibrium coefficient D is the difference between the observed haplotype
frequency p12 and the haplotype frequency expected under linkage equilibrium, the latter
being the product of the two allele frequencies, say p1+ and p+2. It may be written
as follows:

D = p12 − p1+p+2

Another commonly quoted measure of LD is D′ (Lewontin, 1964). This is a normalized
form, with numerator equal to D and denominator equal to the absolute maximum D

that could be achieved given the allele frequencies at the two loci. Many other valid
measures of pair-wise LD exist and have been reviewed elsewhere (Devlin and Risch,
1995; Hedrick, 1987).

As noted above, EHPLUS can perform tests of LD among a group of markers. The
complete set of pair-wise tests for the group, together with D and D′ values, can be
achieved in a single step using software such as Arlequin (Schneider et al., 2000). This
is a C++ program available for PC(Win), Linux and MacOS systems. The statistical
significance of observed LD is estimated for phase known (haplotype) data by means
of a Fisher’s Exact Test. For phase unknown data, a likelihood ratio test is applied. An
alternative tool is GDA (Lewis and Zaykin, 2001), the PC(Win) companion program to
the book, Genetic Data Analysis II (Weir, 1996). Both are well documented and perform
a broad range of population genetic tests.

The software, GOLD (Abecasis and Cookson, 2000), available for PC(Win), is another
program that will calculate D and D′, and it is noteworthy in that it can output them in
graphical form. For each marker pair, the pair-wise disequilibrium statistics are colour
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coded (bright red to dark blue) and plotted. The output is valuable for presentation pur-
poses and provides a useful summary of the properties of dense maps. The software takes
haplotype estimates as input and, in the case of family data, these must be reconstructed
using software such as SimWalk2 (Sobel and Lange, 1996) prior to use. Case–control
data is not well supported by GOLD, which relies for this purpose upon a limited interface
to the software, EH (Xie and Ott, 1993).

Other methods of estimating LD include the Moment Method, applicable to newly-
formed populations under certain assumptions concerning the evolutionary process
(Hastabacka et al., 1992; Kaplan et al., 1995; Lehesjoki et al., 1993). Maximum likelihood
methods have also been explored (Hill and Weir, 1994; Kaplan et al., 1995). Composite
likelihood methods were proposed to evaluate the information from multiple pairs of
loci simultaneously. Examples of software for the composite likelihood approach include
DMAP (Devlin et al., 1996) and ALLASS (Collins and Morton, 1998). The latter uses the
Malecot isolation by distance equation and has the advantage of accommodating multiple
founder mutations. Each method however relies upon population assumptions and may
suffer reduced power when these are not met.

11.5.1 Example: Arlequin (Schneider et al., 2000)

11.5.1.1 Data Import

Arlequin categorizes data into five groups, namely DNA sequences, RFLP data, microsatel-
lite data, allele frequency data and standard data. The latter assumes that different alleles
are mutationally equidistant from each other, as is the case with SNP data. Data can be
loaded in two ways, by importing a project file, or by using the Project Wizard, to guide
you through the creation of a project. Figure 11.6 shows the Arlequin interface in Win-
dows NT, having selected the import screen. As shown, a number of data formats may
be read in, and converted by selecting Arlequin as the Target format. LINKAGE format
is not however, supported.

With the objective of testing for LD between five markers, the current example may
be regarded as a Standard data project. The data and the parameters of the project are
shown below in an Arlequin format, for which the filename extension .arp is required. The
first [Profile] section describes the data before it is listed in the second, [Data] section.
Comments are included, preceded by ‘#’ and these are ignored by the program.

[Profile] # first describe the data for this project

Title = ‘Simulated data for five genetic markers’
NbSamples = 1 # Number of study populations in the project.

DataType = STANDARD
GenotypicData = 1 # 1= yes; 0 = no (i.e. haplotypic)

LocusSeparator = WHITESPACE
GameticPhase = 0 # 1 = yes; 0 = no (i.e. phase unknown)
RecessiveData = 0 # 1 = yes; 0 = no (i.e. codominant alleles)
RecessiveAllele = null # because RecessiveData = 0
MissingData = ‘.’ # the missing data code

[Data] # next list the data points

[[Samples]]

SampleName = ‘Simulation 1’
SampleSize = 200 #200 individuals are in the study set
SampleData = {
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CONFIG1 34 1 1 1 1 2 # The first genotype combination is labelled CONFIG1
2 1 2 1 2 # 34 individuals have this set of five genotypes

CONFIG2 14 2 1 1 1 2
2 1 1 1 2

CONFIG3 9 1 1 1 1 2 # 9 individuals have this set of five genotypes
1 2 2 1 2

Subsequent lines of data follow the same paired format and the final line consists of a
‘}’ symbol. This project file is specific to the problem in hand, namely phase-unknown
genotype data. Variations exist for other data types and are described in detail in the
user manual. It can be seen that genotypes are written with one allele directly below the
other allele. This allows a mechanism for inputting phase-known data, for which each
line represents a haplotype. In our case, the phase is unknown, so the relative orderings
of the alleles are ignored.

Upon successful import, a ‘Project’ is created by Arlequin. It is remembered by the
system and can be recalled at a later date. Its details can be viewed by selecting the menu

Figure 11.6 Arlequin Screen. Initiating an analysis run.
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items Project>View Project Info. The following analyses are then performed by making
selections in the launch pad dialogue box.

11.5.2 Linkage Disequilibrium Analysis of Genotypes with Unknown
Phase

An LR test statistic, denoted by S, is used to test for LD between a pair of loci when phase
is unknown (Slatkin and Excoffier, 1996). It compares the likelihood of a model assuming
linkage equilibrium to that of a model allowing linkage disequilibrium. Asymptotically,
this statistic follows a χ2 distribution, but to allow for small sample size or the study of
markers with large numbers of alleles, Arlequin also uses a permutation procedure to test
for significance.

The analysis screen is given in Figure 11.7. The procedure is as follows:

1. Click on the Calculation Settings tab

2. Click to the left of the folder Linkage disequilibrium

Figure 11.7 Arlequin Screen. Setting up LD analysis of phase-unknown genotype data.
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3. Select Pairwise linkage
4. Select the Linkage Disequilibrium box below the settings window. A plus sign

will appear
5. Input parameter values. Default values are given in Figure 11.7. However in the

manual, it is recommended that 16,000 permutations be conducted to establish
significance and the EM be applied to at least 100 initial conditions

6. Click on the Run button

Detailed output is written to an HTML result file, in a sub-directory of that containing
the input. First, parameter settings are stated, then for each locus pair, there is a listing
of the log-likelihoods under the null and alternative hypotheses, a p-value determined
by permutation, the χ2 test statistic and its corresponding (asymptotic) p-value. Lastly,
a table is provided, in which a ‘+’ sign denotes nominal evidence of a departure from
linkage equilibrium. This allows the results to be scanned rapidly by eye. Samples of the
output are shown below.

Pair(0, 1)
LnLHood LD: -302.71677 LnLHood LE: -319.36838
Exact P = 0.00000 +- 0.00000 (16002 permutations done)

Chi-square test value = 33.30322 (P = 0.00000, 1 d.f.)
Pair(0, 2)

LnLHood LD: -420.27411 LnLHood LE: -420.70319
Exact P = 0.36164 +- 0.00381 (16002 permutations done)

Chi-square test value = 0.85815 (P = 0.35426, 1 d.f.)

(and so on)

Table of significant linkage disequilibrium (significance
level = 0.0500):

Locus # | 0| 1| 2| 3| 4|
----------------------------------------------

0| * + − − −
1| + * + − −
2| − + * − −
3| − − − * −
4| − − − − *

11.5.3 Linkage Disequilibrium Analysis of Haplotypes

Arlequin uses a modified Fisher’s Exact test, as opposed to the LR test, to examine LD in
haplotype data. Such data is given by GameticPhase = 1. The program employs Markov
Chain Monte Carlo sampling to explore the space of different possible contingency tables
rather than enumerating all the possible contingency tables. In this case, the LD measures,
D and D′ may also be generated. The analysis screen reflects these additional options as
shown in Figure 11.8.

The process of initiating the analysis is very similar to that described above. This time,
the number of steps in the Markov chain must be specified, together with the number of
de-memorization steps. Again, the default values are lower than those suggested in the
manual, which mentions values of 100,000 and ‘a few thousand’ respectively. If the D

and D′ boxes are selected, all pair-wise values are tabulated and output in HTML format
as well as in a file called LD DIS.XL, ready for inputting to MS Excel.
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Figure 11.8 Arlequin Screen. Setting up LD analysis of haplotype data.

11.6 QUANTITATIVE TRAIT LOCUS (QTL) MAPPING
IN EXPERIMENTAL CROSSES

In contrast to human studies, in which variances of phenotypic differences are used to
establish the presence of linkage, QTL mapping in experimental crosses involves com-
paring means of progeny inheriting specific parental alleles. This is simpler and more
powerful (Kruglyak and Lander, 1995). It can be achieved by any of a number of standard
statistical methods, such as t-tests, analysis of variance (ANOVA), Wilcoxon rank-sum
and regression techniques. Again, missing data can be accommodated by an application
of the EM algorithm.

Of the very broad array of possible diploid crosses, the following are particularly
common. They are derived from a pair of divergent inbred lines in which the genotypes
at the majority of loci are homozygous and distinct, say aa and bb for a particular locus
in the two lines respectively. The filial F1 generation results from crossing these two lines
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to produce individuals with heterozygous genotype ab. In the backcross (BC) design, F1

is crossed with one of the parent strains. For example, in the case of a cross with the
aa parent, half the offspring produced are ab and half are aa. In the filial F2 design, the
F1 is selfed, or two F1 individuals are crossed so that offspring are aa, ab, and bb in
the ratio 1:2:1. Lastly, in the recombinant inbred line (RIL), each F2 enters individually
a single seed descent-inbreeding programme so that all progeny are homozygous for the
chosen allele.

The original statistical framework for QTL mapping in experimental crosses was based
upon a marker-by-marker analysis. Of particular relevance to sparse maps however, simple
interval mapping (IM or SIM) allows the evaluation of any position within a marker
interval. The maximum likelihood approach to IM proceeds by calculation of a LOD score
(Lander and Botstein, 1989). Similarly, and with lower computational burden, least squares
regression achieves the same goal (Haley and Knott, 1992; Martinez and Curnow, 1992).
IM may be carried out using a range of software, including MAPMAKER/QTL (Lander
et al., 1987). This may appeal to regular users of MAPMAKER/SIBS or GENEHUNTER,
as the syntax is similar. It relies upon data pre-processing in MAPMAKER/EXP (Lander
et al., 1987) and allows simple graphical output.

Two newer and related methods are Composite Interval Mapping (CIM) and Multiple
QTL Mapping (MQM). Both involve performing a genome scan by moving stepwise
along the chromosome and testing for the presence of the QTL using a pre-defined
set of markers as co-factors (Jansen 1992, 1993; Jansen and Stam, 1994; Kao et al.,
1999; Zeng, 1993, 1994; Zeng et al., 1999). In other words, in the sparse map case,
interval mapping is combined with multiple regression on markers. This approach allows
you to control, to some extent, for effects of other QTLs. Software such as QTL
Cartographer (Basten et al., 1994, 1997) and PLABQTL (Utz and Melchinger, 1996;
http://probe.nalusda.gove:8000/otherdocs/jqtl/) allow the selection of such co-factors by
stepwise regression. These programs offer options that will automatically include or
exclude background markers according to user-defined criteria.

Lastly, Bayesian methods allow the consideration of multiple QTLs, QTL positions
and QTL strengths (Jansen, 1996; Satagopan et al., 1996; Sillanpaa and Arjas, 1998;
Uimari et al., 1996). The software Multimapper (Sillanpaa, 1998), for example, allows
the automatic building of models of multiple QTLs within the same linkage group. It
is designed to work as a companion program to QTL Cartographer (Basten et al., 1994,
1997) and allows a more detailed follow-up of regions of interest. As with other Markov
Chain Monte Carlo methods, however, this approach is computer intensive and may
suffer from problems of convergence to a local, rather than global, optimum or of lack
of convergence if run for a short time.

Ten of the most prominent pieces of software for QTL mapping are reviewed in greater
detail by Manley and Olson (1999). The majority will perform IM and CIM for backcross,
filial F2 and recombinant inbred lines. Cordell (2002) provides worked examples of the
usage of three of them, MAPMAKER/QTL, QTL Cartographer and another piece of
software, MapQTL (van Ooijen and Maliepaard, 1996a, b).

A major limitation of QTL mapping using inbred lines is the broad, ill-defined nature
of the resulting linkage peaks, which typically span tens of centiMorgans even if large
numbers of progeny are analysed (for example see Farmer et al., 2001). This is a con-
sequence of the multifactorial nature of quantitative traits, which results in an inability
to identify unequivocal recombinants that precisely delineate a critical genetic interval,
in contrast with monogenic phenotypes. Subsequent attempts to narrow a locus by, for
example, successive rounds of backcrossing are often frustrated by the dilution or loss
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of unlinked genetic co-factors that are required for trait manifestation. In the future,
QTL mapping using genetically heterogeneous stocks may gain in prominence (Mott
et al., 2000). Talbot et al. (1999) were able to achieve a mapping resolution of less than
1 cM by the study of heterogeneous stocks from eight known inbred mouse progeni-
tor strains that had been intercrossed over 30–60 generations. The group has released
software called HAPPY (Mott et al., 2000) which requires knowledge of the ances-
tral alleles in the inbred founders, together with the genotypes and phenotypes in the
final generation. It will then apply variance component methods to test for linkage to
the QTL.

11.6.1 Example: Map Manager QTX (Manley et al., 2001)

Map Manager QTX is available for both MacOS and PC(Win). It has no licence fee and
was selected here due to the usefulness of its graphic user interface. It has both IM and
CIM capability and can reformat data for use in other important software such as QTL
Cartographer. Interval mapping is based on the Haley and Knott (1992) procedure, and
CIM is achieved by adding background loci. Significance can be assessed by permutation
(Churchill and Doerge, 1994).

The genotype data may derive from inbred or non-inbred stock and options are provided
for a variety of experimental designs. Extensive documentation can be downloaded in
either pdf or Hypertext formats. The Tutorial is especially helpful; but readers should be
aware that its files are somewhat inconspicuously tucked in with Sample Data files, rather
than being included in the Map Manager QTX Manual.

For the current example, genotype data was downloaded from the Mouse Genome
Database (2001). Specifically, it consists of mouse chromosome 1 genotypes from the
Copeland–Jenkins backcross, and a selected subset of 10 markers spanning the entire
∼ 100-cM length of the chromosome. Marker En1 is located near the middle of the
chromosome, between markers Col6a3 and D1Fcr15, and it was used to simulate the
quantitative trait (QT) for the 193 backcross mice. Homozygotes (denoted as b) at En1
received a QT value of 50 ± 20 (mean ± SD) while heterozygotes (s) at En1 received a
QT value of 100 ± 20. En1 was then removed from the dataset and Map Manager QTX
was used to analyse QT association with the remaining nine markers as shown below.

11.6.1.1 Data Import

Map Manager QTX is launched by a mouse click on the Map Manager icon (QTXb13.exe),
thus opening the main menu. The genotype data (alternatively termed ‘Phenotype data’
by Map Manager QTX) is imported by selecting File>Import>Text. The name of each
marker and the genotypes (phenotypes) of the cross progeny are imported as a sin-
gle line of text. The marker name is separated from the genotypes by a tab char-
acter but the genotypes, each represented as above by a single letter, can be given
as either an unbroken string of characters or space-separated. In our case, the first
two lines of input therefore took the following form (with missing genotypes given by
a hyphen):

Actn3<tab>sssbbbbbsbsbsbsssbbsbbsbbbbssbsbbsbsb-bbb-ssss
<CarriageReturn>

Laf4<tab>-sbbbb--sb-------bb--bsbb-bbsb--s-bbbbbsbssb-
bs<CarriageReturn>
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Figure 11.9 Screens in Map Manager QTX. The dataset window (upper left), the Phe-
notype window (upper right), the Map window (lower left) and the Statistics window
(lower right). Genotypes with permission from Mouse Genome Database (2001).

Figure 11.10 Output from single marker association testing in Map Manager QTX:
The ‘Links Report’. ‘Add’ denotes the additive regression coefficient for the association.
Genotypes with permission from Mouse Genome Database (2001).
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Quantitative trait data are then read in from a second text file via File>Import>Trait Text.
The format is almost identical, except that the name of the trait replaces marker name
and the trait value for each mouse must be separated from adjacent values by at least one
space. Again, the name of the quantitative trait and all of the values for cross progeny
must be in a single line of text.

Successful import of a text genotype file produces a small pop-up window (the dataset
window), as shown in Figure 11.9, top left. Within it is a menu allowing selection of Phen,
Map, Stat or Ref. Selecting one of these options and double-clicking on a chromosome
name in the dataset window, produces the chosen window as shown in Figure 11.9.
The Phenotype window (top right) displays the marker names on the left side of the
window, with one column for each member of the progeny. The body of the Phenotype
window shows the genotype at each locus and also indicates locations of recombination

Figure 11.11 Output from Map Manager QTX. Results of interval mapping across nine
markers. Genotypes with permission from Mouse Genome Database (2001).
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events with an X. Pairs of question marks denote the possible locations of crossovers
whose more precise location cannot be specified due to missing genotype data. The Map
window (bottom left), shows a genetic map with estimated cM distance between markers,
and the Statistics window (bottom right) summarizes useful numerical information, such
as the number of recombination events between adjacent markers and LOD evidence
for linkage.

11.6.1.2 Single marker association

Testing for association between an individual marker and a quantitative trait
is accomplished by first selecting a p-value cut-off in the Main menu under
Options>Search&Linkage criteria, and then choosing QT>Links Report in the Main
menu. This produces a window allowing the user to select both the name of the quantitative
trait to test and the background QTLs to be included in the analysis.

Figure 11.10 shows the table or Links Report that was produced by testing each of the
nine markers in our panel for association with the simulated trait. Note that only eight
markers appear in the table, as one marker did not meet the p < 0.05 criterion. Note also
that marker Col6a3 is highlighted as giving the strongest association and therefore as being
the best marker to include as a background QTL in analyses of other chromosomal loci.

11.6.1.3 Simple Interval Mapping

Simple interval mapping of a QT across a series of markers is accomplished by choosing
QT>Interval Mapping from the Main menu. This produces a window which again allows
the user to specify the trait to be analysed and whether any background QTLs are to
be included in the analysis. Once options in this window are specified, Map Manager
QTX produces a table and a figure displaying the Interval Mapping results. Figure 11.11
shows the result of interval mapping our simulated trait across the nine markers on mouse
chromosome 1. As indicated by the position of the cursor, the peak of the likelihood ratio
statistic falls very close to the true location of the simulated QT locus, between markers
Col6a3 and D1Fcr15.
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