
C H A P T E R 11

Association and Prediction: Multiple
Regression Analysis and Linear Models
with Multiple Predictor Variables

11.1 INTRODUCTION

We looked at the linear relationship between two variables, say X and Y , in Chapter 9. We

learned to estimate the regression line of Y on X and to test the significance of the relationship.

Summarized by the correlation coefficient, the square of the correlation coefficient is the percent

of the variability explained.

Often, we want to predict or explain the behavior of one variable in terms of more than one

variable, say k variables X1, . . . , X

k

. In this chapter we look at situations where Y may be

explained by a linear relationship with the explanatory or predictor variables X1, . . . , X

k

. This

chapter is a generalization of Chapter 9, where only one explanatory variable was considered.

Some additional considerations will arise. With more than one potential predictor variable, it will

often be desirable to find a simple model that explains the relationship. Thus we consider how to

select a subset of predictor variables from a large number of potential predictor variables to find

a reasonable predictive equation. Multiple regression analyses, as the methods of this chapter are

called, are one of the most widely used tools in statistics. If the appropriate limitations are kept

in mind, they can be useful in understanding complex relationships. Because of the difficulty

of calculating the estimates involved, most computations of multiple regression analyses are

performed by computer. For this reason, this chapter includes examples of output from multiple

regression computer runs.

11.2 MULTIPLE REGRESSION MODEL

In this section we present the multiple regression mathematical model. We discuss the methods

of estimation and the assumptions that are needed for statistical inference. The procedures are

illustrated with two examples.

11.2.1 Linear Model

Definition 11.1. A linear equation for the variable Y in terms of X1, . . . , X

k

, is an equation

of the form
Y = a + b1X1 + · · · + b

k

X

k

(1)

The values of a, b1, . . . , b

k

, are fixed constant values. These values are called coefficients.
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Suppose that we observe Y and want to model its behavior in terms of independent, predictor,

explanatory, or covariate variables, X1, . . . , X

k

. For a particular set of values of the covariates,

the Y value will not be known with certainty. As before, we model the expected value of Y for

given or known values of the X

j

. Throughout this chapter, we consider the behavior of Y for

fixed, known, or observed values for the X

j

. We have a multiple linear regression model if the

expected value of Y for the known X1, . . . , X

k

is linear. Stated more precisely:

Definition 11.2. Y has a linear regression on X1, . . . , X

k

if the expected value of Y for

the known X

j

values is linear in the X

j

values. That is,

E(Y |X1, . . . , X

k

) = α + β1X1 + · · · + β

k

X

k

(2)

Another way of stating this is the following. Y is equal to a linear function of the X

j

, plus

an error term whose expectation is zero:

Y = α + β1X1 + · · · + β

k

X

k

+ ε (3)

where

E(ε) = 0

We use the Greek letters α and β

j

for the population parameter values and Latin letters a and

b

j

for the estimates to be described below. Analogous to definitions in Chapter 9, the number

α is called the intercept of the equation and is equal to the expected value of Y when all the

X

j

values are zero. The β

j

coefficients are the regression coefficients.

11.2.2 Least Squares Fit

In Chapter 9 we fitted the regression line by choosing the estimates a and b to minimize the sum

of squares of the differences between the Y values observed and those predicted or modeled.

These differences were called residuals ; another way of explaining the estimates is to say that

the coefficients were chosen to minimize the sum of squares of the residual values. We use

this same approach, for the same reasons, to estimate the regression coefficients in the multiple

regression problem. Because we have more than one predictor or covariate variable and multiple

observations, the notation becomes slightly more complex. Suppose that there are n observations;

we denote the observed values of Y for the ith observation by Y

i

and the observed value of the

j th variable X

j

by X

ij

. For example, for two predictor variables we can lay out the data in the

array shown in Table 11.1.

Table 11.1 Data Layout for Two

Predictor Variables

Case Y X1 X2

1 Y1 X11 X12

2 Y2 X21 X22
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The following definition extends the definition of least squares estimation to the multiple

regression situation.

Definition 11.3. Given data (Y

i

, X

i1, . . . , X

ik

), i = 1, . . . , n, the least squares fit of the

regression equation chooses a, b1, . . . , b

k

to minimize

n

∑

i=1

(Y

i

− ̂

Y

i

)

2

where ̂

Y

i

= a + b1Xi1 + · · · + b

k

X

ik

. The b

j

are the (sample) regression coefficients, a is the

sample intercept. The difference Y

i

− ̂

Y

i

is the ith residual.

The actual fitting is usually done by computer, since the solution by hand can be quite

tedious. Some details of the solution are presented in Note 11.1.

Example 11.1. We consider a paper by Cullen and van Belle [1975] dealing with the effect

of the amount of anesthetic agent administered during an operation. The work also examines the

degree of trauma on the immune system, as measured by the decreasing ability of lymphocytes

to transform in the presence of mitogen (a substance that enhances cell division). The variables

measured (among others) were X1, the duration of anesthesia (in hours); X2, the trauma factor

(see Table 11.2 for classification); and Y , the percentage depression of lymphocyte transfor-

mation following anesthesia. It is assumed that the amount of anesthetic agent administered

is directly proportional to the duration of anesthesia. The question of the influence of each of

the two predictor variables is the crucial one, which will not be answered in this section. Here

we consider the combined effect. The set of 35 patients considered for this example consisted

of those receiving general anesthesia. The basic data are reproduced in Table 11.3. The pre-

dicted values and deviations are calculated from the least squares regression equation, which

was Y = −2.55 + 1.10X1 + 10.38X2.

11.2.3 Assumptions for Statistical Inference

Recall that in the simple linear regression models of Chapter 9, we needed assumptions about

the distribution of the error terms before we proceeded to statistical inference, that is, before we

tested hypotheses about the regression coefficient using the F -test from the analysis of variance

table. More specifically, we assumed:

Simple Linear Regression Model Observe (X

i

, Y

i

), i = 1, . . . , n. The model is

Y

i

= α + βX

i

+ ε

i

(4)

Table 11.2 Classification of Surgical Trauma

0 Diagnostic or therapeutic regional anesthesia; examination

under general anesthesia

1 Joint manipulation; minor orthopedic procedures; cys-

toscopy; dilatation and curettage

2 Extremity, genitourinary, rectal, and eye procedures; hernia

repair; laparoscopy

3 Laparotomy; craniotomy; laminectomy; peripheral vascular

surgery

4 Pelvic extenteration; jejunal interposition; total cystectomy
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Table 11.3 Effect of Duration of Anesthesia (X1) and Degree of Trauma (X2) on Percentage

Depression of Lymphocyte Transformation following Anesthesia (Y )

X1: X2: Y : Predicted Value Y − ̂

Y

Patient Duration Trauma Percent Depression of Y Residual

1 4.0 3 36.7 33.0 3.7

2 6.0 3 51.3 35.2 16.1

3 1.5 2 40.8 19.9 20.9

4 4.0 2 58.3 22.6 35.7

5 2.5 2 42.2 21.0 21.2

6 3.0 2 34.6 21.5 13.1

7 3.0 2 77.8 21.5 56.3

8 2.5 2 17.2 21.0 −3.8

9 3.0 3 −38.4 31.9 −70.3

10 3.0 3 1.0 31.9 −30.9

11 2.0 3 53.7 20.8 22.9

12 8.0 3 14.3 37.4 −23.1

13 5.0 4 65.0 44.5 20.5

14 2.0 2 5.6 20.4 −14.8

15 2.5 2 4.4 21.0 −16.6

16 2.0 2 1.6 20.4 −18.8

17 1.5 2 6.2 19.9 −13.7

18 1.0 1 12.2 8.9 3.3

19 3.0 3 29.9 31.9 −2.0

20 4.0 3 76.1 33.0 43.1

21 3.0 3 11.5 32.0 −20.5

22 3.0 3 19.8 31.9 −12.1

23 7.0 4 64.9 46.7 18.2

24 6.0 4 47.8 45.6 2.2

25 2.0 2 35.0 20.4 14.6

26 4.0 2 1.7 22.6 −20.9

27 2.0 2 51.5 20.4 31.1

28 1.0 1 20.2 8.9 11.3

29 1.0 1 −9.3 8.9 −18.2

30 2.0 1 13.9 10.0 3.9

31 1.0 1 −19.0 8.9 −27.9

32 3.0 1 −2.3 11.1 −13.4

33 4.0 3 41.6 33.0 8.6

34 8.0 4 18.4 47.8 −29.4

35 2.0 2 9.9 20.4 −10.5

Total 112.5 83 896.1 896.3 −0.2a

Mean 3.21 2.37 25.60 25.60 −0.006

aZero except for round-off error.

or

Y

i

= E(Y

i

|X
i

) + ε

i

where the “error” terms ε

i

are statistically independent of each other and all have the same

normal distribution with mean zero and variance σ

2; that is, ε

i

∼ N(0, σ

2
).

Using this model, it is possible to set up the analysis of variance table associated with the

regression line. The anova table has the following form:



432 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

Source of Degrees of

Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F -Ratio

Regression 1 SSREG =

∑

i

(

̂

Y

i

− Y )

2 MSREG = SSREG

MSREG

MSRESID

Residual n − 2 SSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2 MSRESID =

SSRESID

n − 2

Total n − 1
∑

i

(Y

i

− Y

i

)

2

The mean square for residual is an estimate of the variance σ

2 about the regression line. (In

this chapter we change notation slightly from that used in Chapter 9. The quantity σ

2 used here

is the variance about the regression line. This was σ

2
1 in Chapter 9.)

The F -ratio is an F -statistic having numerator and denominator degrees of freedom of 1

and n − 2, respectively. We may test the hypothesis that the variable X has linear predictive

power for Y , that is, β �= 0, by using tables of critical values for the F -statistic with 1 and

n − 2 degrees of freedom. Further, using the estimate of the variance about the regression line

MSRESID, it was possible to set up confidence intervals for the regression coefficient β.

For multiple regression equations of the current chapter, the same assumptions needed in

the simple linear regression analyses carry over in a very direct fashion. More specifically, our

assumptions for the multiple regression model are the following.

Multiple Regression Model Observe (Y

i

, X

i1, . . . , X

ik

), i = 1, 2, . . . , n (n observations).

The distribution of Y

i

for fixed or known values of X

i1, . . . , X

ik

is

Y

i

= E(Y

i

|X
i1, . . . , X

ik

) + ε

i

(5)

where E(Y

i

|X
i1, . . . , X

ik

) = α + β1Xi1 + · · · + β

k

X

ik

or Y

i

= α + β1Xi1 + · · · + β

k

X

ik

+ ε

i

.

The ε

i

are statistically independent and all have the same normal distribution with mean zero

and variance σ

2; that is, ε

i

∼ N(0, σ

2
).

With these assumptions, we use a computer program to find the least squares estimate of

the regression coefficients. From these estimates we have the predicted value for Y

i

given the

values of X

i1, . . . , X

ik

. That is,

̂

Y

i

= a + b1Xi1 + · · · + b

k

X

ik

(6)

Using these values, the anova table for the one-dimensional case generalizes. The anova table

in the multidimensional case is now the following:

Source of Degrees of

Variation Freedom (df) Sum of Squares (SS) Mean Square (MS) F -Ratio

Regression k SSREG =

∑

i

(

̂

Y

i

− Y )

2 MSREG =

SSREG

k

MSREG

MSRESID

Residual n − k − 1 SSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2 MSRESID =

SSRESID

n − k − 1

Total n − 1
∑

i

(Y

i

− Y

i

)

2

For the anova table and multiple regression model, note the following:

1. If k = 1, there is one X variable; the equations and anova table reduce to that of the

simple linear regression case.
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2. The F -statistic tests the hypothesis that the regression line has no predictive power. That

is, it tests the hypothesis
H0:β1 = β2 = · · · = β

k

= 0 (7)

This hypothesis says that all of the beta coefficients are zero; that is, the X variables do not

help to predict Y . The alternative hypothesis is that one or more of the regression coefficients

β1, . . . , β

k

are nonzero. Under the null hypothesis, H0, the F -statistic, has an F -distribution with

k and n−k−1 degrees of freedom. Under the alternative hypotheses that one or more of the β

j

are nonzero, the F -statistic tends to be too large. Thus the hypothesis that the regression line has

predictive power is tested by using tables of the F -distribution and rejection when F is too large.

3. The residual sum of squares is an estimate of the variability about the regression line;

that is, it is an estimate of σ

2. Introducing notation similar to that of Chapter 9, we write

σ̂

2
= S

2
Y ·X1,... ,Xk

= MSRESID =

∑

i

(Y

i

− ̂

Y

i

)

2

n − k − 1
(8)

4. Using the estimated value of σ

2, it is possible to find estimated standard errors for the b

j

,

the estimates of the regression coefficients β

j

. The estimated standard error is associated with

the t distribution with n − k − 1 degrees of freedom. The test of β

j

= 0 and an appropriate

100(1 − α)% confidence interval are given by the following equations. To test H

j

: β

j

= 0 at

significance level α, use two-sided critical values for the t-distribution with n − k − 1 degrees

of freedom and the test statistic

t =

b

j

SE(b

j

)

(9)

where b

j

and SE(b

j

) are taken from computer output. Reject H

j

if

|t | ≥ t

n−k−1,1−α/2

A 100(1 − α)% confidence interval for β

j

is given by

b

j

± SE(b

j

)t

n−k−1,1−α/2 (10)

These two facts follow from the pivotal variable

t =

b

j

− β

j

SE(b

j

)

which has a t-distribution with n − k − 1 degrees of freedom.

5. Interpretations of the estimated coefficients in a multiple regression equation must be done

cautiously. Recall (from the simple linear regression chapter) that we used the example of height

and weight; we noted that if we managed to get the subjects to eat and/or diet to change their

weight, this would not have any substantial effect on a person’s height despite a relationship

between height and weight in the population. Similarly, when we look at the estimated multiple

regression equation, we can say that for the observed X values, the regression coefficients β

j

have the following interpretation. If all of the X variables except for one, say X

j

, are kept fixed,

and if X

j

changes by one unit, the expected value of Y changes by β

j

. Let us consider this

statement again for emphasis. If all the X variables except for one X variable, X

j

, are held

constant, and the observation has X

j

changed by an amount 1, the expected value of Y

i

changes

by the amount β

j

. This is seen by looking at the difference in the expected values:

α + β1X1 + · · · + β

j

(X

j

+ 1) + · · · + β

k

X

k

− (α + · · · + β

j

X

j

+ · · · + β

k

X

k

) = β

j
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This does not mean that when the regression equation is estimated, by changing X by a certain

amount we can therefore change the expected value of Y . Consider a medical example where

X

j

might be systolic blood pressure and other X variables are other measures of physiological

performance. Any maneuvers taken to change X

j

might also result in changing some or all of

the other X’s in the population. The change in Y of β

j

holds for the distribution of X’s in the

population sampled. By changing the values of X

j

we might change the overall relationship

between the Y

i

’s and the X

j

’s, so that the estimated regression equation no longer holds.

(Recall again the height and weight example for simple linear regression.) For these reasons,

interpretations of multiple regression equations must be made tentatively, especially when the

data result from observational studies rather than controlled experiments.

6. If two variables, say X1 and X2, are closely related, it is difficult to estimate their regres-

sion coefficients because they tend to get confused. Take the extreme case where the variables

X1 and X2 are actually the same value. Then if we look at β1X1+β2X2 we can factor out the X1

variable that is equal to X2. That is, if X1 = X2, then β1X1 +β2X2 = (β1 +β2)X1. We see that

β1 and β2 are not determined uniquely in this case, but any values for β1 and β2 whose sum is

the same will give the “same” regression equation. More generally, if X1 and X2 are very closely

associated in a linear fashion (i.e., if their correlation is large), it is very difficult to estimate the

betas. This difficulty is referred to as collinearity. We return to this fact in more depth below.

7. In Chapter 9 we saw that the assumptions of the simple linear regression model held if

the two variables X and Y have a bivariate normal distribution. This fact may be extended

to the considerations of this chapter. If the variables Y,X1, . . . , X

k

have a multivariate nor-

mal distribution, then conditionally upon knowing the values of X1, . . . , X

k

, the assumptions

of the multiple regression model hold. Note 11.2 has more detail on the multivariate normal

distribution. We shall not go into this in detail but merely mention that if the variables have a

multivariate normal distribution, any one of the variables has a normal distribution, any two of

the variables have a bivariate normal distribution, and any linear combination of the variables

also has a normal distribution.

These generalizations of the findings for simple linear regression are illustrated in the next

section, which presents several examples of multiple regression.

11.2.4 Examples of Multiple Regression

Example 11.1. (continued ) We modeled the percent depression of lymphocyte transformation

following anesthesia by using the duration of the anesthesia in hours and trauma factor. The least

squares estimates of the regression coefficients, the estimated standard errors and the anova

table are given below.

Constant or Variable j b
j

SE(b
j
)

Duration of anesthesia 1.105 3.620

Trauma factor 10.376 7.460

Constant −2.555 12.395

Source d.f. SS MS F -Ratio

Regression 2 4,192.94 2,096.47 3.18

Residual 32 21,070.09 658.44

Total 34 25,263.03

From tables of the F -distribution, we see that at the 5% significance level the critical value

for 2 and 30 degrees of freedom is 3.32, while for 2 and 40 degrees of freedom it is 3.23. Thus,
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F2,32,0.95 is between 3.23 and 3.32. Since the observed F -ratio is 3.18, which is smaller at the

5% significance level, we would not reject a null hypothesis that the regression equation has

no contribution to the prediction. (Why is the double negative appropriate here?) This being

the case, it would not pay to proceed further to examine the significance of the individual

regression coefficients. (You will note that a standard error for the constant term in the regres-

sion is also given. This is also a feature of the computer output for most multiple regression

packages.)

Example 11.2. This is a continuation of Example 9.1 regarding malignant melanoma of the

skin in white males. We saw that mortality was related to latitude by a simple linear regression

equation and also to contiguity to an ocean. We now consider the modeling of the mortality

result using a multiple regression equation with both the “latitude” variable and the “contiguity

to an ocean” variable. When this is done, the following estimates result:

Constant or Variable b
j

SE(b
j
)

Latitude in degrees −5.449 0.551

Contiguity to ocean 18.681 5.079

(1 = contiguous to ocean,

0 = does not border ocean)

Constant 360.28 22.572

Source d.f. SS MS F -Ratio

Regression 2 40,366.82 20,183.41 69.96

Residual 46 13,270.45 288.49

Total 48 53,637.27

The F critical values at the 0.05 level with 2 and 40 and 2 and 60 degrees of freedom are

3.23 and 3.15, respectively. Thus the F -statistic for the regression is very highly statistically

significant. This being the case, we might then wonder whether or not the significance came

from one variable or whether both of the variables contributed to the statistical significance. We

first test the significance of the latitude variable at the 5% significance level and also construct

a 95% confidence interval. t = −5.449/0.551 = −9.89, |t | > t48,0.975
.

= 2.01; reject β1 = 0 at

the 5% significance level. The 95% confidence interval is given by −5.449 ± 2.01 × 0.551 or

(−6.56, −4.34).

Consider a test of the significance of β2 at the 1% significance level and a 99% confidence

interval for β2. t = 18.681/5.079 = 3.68, |t | > t48,0.995
.

= 2.68; reject β2 = 0 at the 1%

significance level. The 99% confidence interval is given by 18.681±2.68×5.079 or (5.07, 32.29).

In this example, from the t statistic we conclude that both latitude in degrees and contiguity

to the ocean contribute to the statistically significant relationship between the melanoma of the

skin mortality rates and the multiple regression equation.

Example 11.3. The data for this problem come from Problems 9.5 to 9.8. These data con-

sider maximal exercise treadmill tests for 43 active women. We consider two possible multiple

regression equations from these data. Suppose that we want to predict or explain the variability

in VO2 MAX by using three variables: X1, the duration of the treadmill test; X2, the maximum

heart rate attained during the test; and X3, the height of the subject in centimeters. Data resulting

from the least squares fit are:



436 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

Covariate or Constant b
j

SE(b
j
) t (t39,0.975

.

= 2.02)

Duration (seconds) 0.0534 0.00762 7.01

Maximum heart rate (beats/min) −0.0482 0.05046 −0.95

Height (cm) 0.0199 0.08359 0.24

Constant 6.954 13.810

F -Ratio

Source d.f. SS MS (F3,39,0.95
.

= 2.85)

Regression 3 644.61 214.87 21.82

Residual 39 384.06 9.85

Total 42 1028.67

Note that the overall F -test is highly significant, 21.82, compared to a 5% critical value for

the F -distribution with 3 and 39 degrees of freedom of approximately 2.85. When we look at

the t statistic for the three individual terms, we see that the t value for duration, 7.01, is much

larger than the corresponding 0.05 critical value of 2.02. The other two variables have values for

the t statistic with absolute value much less than 2.02. This raises the possibility that duration

is the only variable of the three that contributes to the predictive equation. Perhaps we should

consider a model where we predict the maximum oxygen consumption in terms of duration

rather than using all three variables. In sections to follow, we consider the question of selecting

a “best” predictive equation using a subset of a given set of potential explanatory or predictor

variables.

Example 11.3. (continued ) We use the same data but consider the dependent variable to be

age. We shall try to model this from three explanatory, or independent, or predictor variables.

Let X1 be the duration of the treadmill test in seconds; let X2 be VO2 MAX, the maximal oxygen

consumption; and let X3 be the maximum heart rate during the treadmill test. Analysis of these

data lead to the following:

t-Statistic

Covariate or Constant b
j

SE(b
j
) (t39,0.975

.
= 2.02)

Duration −0.0524 0.0268 −1.96

VO2 MAX −0.633 0.378 −1.67

Maximum heart rate −0.0884 0.119 −0.74

Constant 106.51 18.63

F -Ratio

Source d.f. SS MS (F3,39,0.95
.
= 2.85)

Regression 3 2256.97 752.32 13.70

Residual 39 2142.19 54.93

Total 42 4399.16

The overall F value of 13.7 is very highly statistically significant, indicating that if one has

the results of the treadmill test, including duration, VO2 MAX, and maximum heart rate, one can

gain a considerable amount of knowledge about the subject’s age. Note, however, that when

we look at the p-values for the individual variables, not one of them is statistically significant!
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How can it be that the overall regression equation is very highly statistically significant but none

of the variables individually can be shown to have contributed at the 5% significance level?

This paradox results because the predictive variables are highly correlated among themselves;

they are collinear, as mentioned above. For example, we already know from Chapter 9 that the

duration and VO2 MAX are highly correlated variables; there is much overlap in their predictive

information. We have trouble showing that the prediction comes from one or the other of the

two variables.

11.3 LINEAR ASSOCIATION: MULTIPLE AND PARTIAL CORRELATION

The simple linear regression equation was very closely associated with the correlation coefficient

between the two variables; the square of the correlation coefficient was the proportion of the

variability in one variable that could be explained by the other variable using a linear predictive

equation. In this section we consider a generalization of the correlation coefficient.

11.3.1 Multiple Correlation Coefficient

In considering simple linear regression, we saw that r

2 was the proportion of the variability of

the Y

i

about the mean that could be explained from the regression equation. We generalize this

to the case of multiple regression.

Definition 11.4. The squared multiple correlation coefficient, denoted by R

2, is the propor-

tion of the variability in the dependent variable Y that may be accounted for by the multiple

regression equation. Algebraically,

R

2
=

regression sum of squares

total sum of squares

Since
∑

i

(Y

i

− Y )

2
=

∑

i

(Y

i

− ̂

Y

i

)

2
+

∑

i

(

̂

Y

i

− Y

i

)

2

R

2
=

SSREG

SSTOTAL
=

∑

i

(

̂

Y

i

− Y )

2

∑

i

(Y

i

− Y )

2
(11)

Definition 11.5. The positive square root of R

2 is denoted by R, the multiple correlation

coefficient.

The multiple correlation coefficient may also be computed as the correlation between the

Y

i

and the estimated best linear predictor, ̂

Y

i

. If the data come from a multivariate sample

rather than having the X’s fixed by experimental design, the quantity R is an estimate of the

correlation between Y and the best linear predictor for Y in terms of X1, . . . , X

k

, that is, the

correlation between Y and a + b1X1 + · · · + b
k

X

k

. The population correlation will be zero if

and only if all the regression coefficients β1, . . . , β

k

are equal to zero. Again, the value of R

2

is an estimate (for a multivariate sample) of the square of the correlation between Y and the

best linear predictor for Y in the overall population. Since the population value for R

2 will be

zero if and only if the multiple regression coefficients are equal to zero, a test of the statistical

significance of R

2 is the F -test for the regression equation. R

2 and F are related (as given by

the definition of R

2 and the F test in the analysis of variance table). It is easy to show that

R

2
=

kF

kF + n − k − 1
, F =

(n − k − 1)R

2

k(1 − R

2
)

(12)



438 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

The multiple correlation coefficient thus has associated with it the same degrees of freedom

as the F distribution: k and n − k − 1. Statistical significance testing for R

2 is based on the

statistical significance test of the F -statistic of regression.

At significance level α, reject the null hypothesis of the no linear association between Y and

X1, . . . , X

k

if

R

2
≥

kF

k,n−k−1,1−α

kF

k,n−k−1,1−α

+ n − k − 1

where F

k,n−k−1,1−α

is the 1 − α percentile for the F -distribution with k and n − k − 1 degrees

of freedom.

For any of the examples considered above, it is easy to compute R

2. Consider the last

part of Example 11.3, the active female exercise test data, where duration, VO2 MAX, and the

maximal heart rate were used to “explain” the subject’s age. The value for R

2 is given by

2256.97/4399.16 = 0.51; that is, 51% of the variability in Y (age) is explained by the three

explanatory or predictor variables. The multiple regression coefficient, or positive square root,

is 0.72.

The multiple regression coefficient has the same limitations as the simple correlation coeffi-

cient. In particular, if the explanatory variables take values picked by an experimenter and the

variability about the regression line is constant, the value of R

2 may be increased by taking

a large spread among the explanatory variables X1, . . . , X

k

. The value for R

2, or R, may be

presented when the data do not come from a multivariate sample; in this case it is an indicator

of the amount of the variability in the dependent variable explained by the covariates. It is

then necessary to remember that the values do not reflect something inherent in the relationship

between the dependent and independent variables, but rather, reflect a quantity that is subject to

change according to the value selection for the independent or explanatory variables.

Example 11.4. Gardner [1973] considered using environmental factors to explain and pre-

dict mortality. He studied the relationship between a number of socioenvironmental factors and

mortality in county boroughs of England and Wales. Rates for all sizable causes of death in the

age bracket 45 to 74 were considered separately. Four social and environmental factors were

used as independent variables in a multiple regression analysis of each death rate. The variables

included social factor score, “domestic” air pollution, latitude, and the level of water calcium.

He then examined the residuals from this regression model and considered relating the residual

variability to other environmental factors. The only factors showing sizable and consistent corre-

lation were the long-period average rainfall and latitude, with rainfall being the more significant

variable for all causes of death. When rainfall was included as a fifth regressor variable, no new

factors were seen to be important. Tables 11.4 and 11.5 give the regression coefficients, not for

the raw variables but for standardized variables.

These data were developed for 61 English county boroughs and then used to predict the values

for 12 other boroughs. In addition to taking the square of the multiple correlation coefficient for

the data used for the prediction, the correlation between observed and predicted values for the

other 12 boroughs were calculated. Table 11.5 gives the results of these data.

This example has several striking features. Note that Gardner tried to fit a variety of models.

This is often done in multiple regression analysis, and we discuss it in more detail in Section 11.8.

Also note the dramatic drop (!) in the amount of variability in the death rate that can be explained

between the data used to fit the model and the data used to predict values for other boroughs.

This may be due to several sources. First, the value of R

2 is always nonnegative and can only

be zero if variability in Y can be perfectly predicted. In general, R

2 tends to be too large. There

is a value called adjusted R

2, which we denote by R

2
a

, which takes this effect into account.
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Table 11.4 Multiple Regressiona of Local Death Rates on Five Socioenvironmental Indices in the

County Boroughsb

Long Period

Gender/Age Social Factor “Domestic” Water Average

Group Period Score Air Pollution Latitude Calcium Rainfall

Males/45–64 1948–1954 0.16 0.48∗∗∗ 0.10 −0.23 0.27∗∗∗

1958–1964 0.19∗ 0.36∗∗∗ 0.21∗∗
−0.24∗∗ 0.30∗∗∗

Males/65–74 1950–1954 0.24∗ 0.28∗ 0.02 −0.43∗∗∗ 0.17

1958–1964 0.39∗∗ 0.17 0.13 −0.30∗∗ 0.21

Females/45–64 1948–1954 0.16 0.20 0.32∗∗
−0.15 0.40∗∗∗

1958–1964 0.29∗ 0.12 0.19 −0.22∗ 0.39∗∗∗

Females/65–74 1950–1954 0.39∗∗∗ 0.02 0.36∗∗∗
−0.12 0.40∗∗∗

1958–1964 0.40∗∗∗
−0.05 0.29∗∗∗

−0.27∗∗ 0.29∗∗

aA standardized partial regression coefficients given; that is, the variables are reduced to the same mean (0) and variance
(1) to allow values for the five socioenvironmental indices in each cause of death to be compared. The higher of two
coefficients is not necessarily the more significant statistically.
b∗

p < 0.05; ∗∗
p < 0.01; ∗∗∗

p < 0.001.

Table 11.5 Results of Using Estimated

Multiple Regression Equations from 61

County Boroughs to Predict Death Rates in

12 Other County Boroughs

Gender/Age

Group Period ̂

R

2
r

a

2

Males/45–64 1948–1954 0.80 0.12

1958–1964 0.84 0.26

Males/65–74 1950–1954 0.73 0.09

1958–1964 0.76 0.25

Females/45–64 1948–1954 0.73 0.46

1958–1964 0.72 0.48

Females/65–74 1950–1954 0.80 0.53

1958–1964 0.73 0.41

a

r is the correlation coefficient in the second sample
between the value predicted for the dependent variable
and its observed value.

This estimate of the population, R

2, is given by

R

2
a

= 1 − (1 − R

2
)

n − 1

n − k

(13)

For the Gardner data on males from 45 to 64 during the time period 1948–1954, the adjusted

R

2 value is given by

R

2
a

= 1 − (1 − 0.80)

(

61 − 1

61 − 5

)

= 0.786

We see that this does not account for much of the drop. Another possible effect may be related

to the fact that Gardner tried a variety of models; in considering multiple models, one may get a

very good fit just by chance because of the many possibilities tried. The most likely explanation,

however, is that a model fitted in one environment and then used in another setting may lose much
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predictive power because variables important to one setting may not be as important in another

setting. As another possibility, there could be an important variable that is not even known by the

person analyzing the data. If this variable varies between the original data set and the new data

set, where one desires to predict, extreme drops in predictive power may occur. As a general rule

of thumb, the more complex the model, the less transportable the model is in time and/or space.

This example illustrates that whenever possible, when fitting a multivariate model including mul-

tiple linear regression models, if the model is to be used for prediction it is useful to try the model

on an independent sample. Great degradation in predictive power is not an unusual occurrence.

In one example above, we had the peculiar situation that the relationship between the depen-

dent variable age and the independent variables duration, VO2 MAX, and maximal heart rate

was such that there was a very highly statistically significant relationship between the regres-

sion equation and the dependent variable, but at the 5% significance level we were not able to

demonstrate the statistical significance of the regression coefficients of any of the three inde-

pendent variables. That is, we could not demonstrate that any of the three predictor variables

actually added statistically significant information to the prediction. We mentioned that this may

occur because of high correlations between variables. This implies that they contain much of

the same predictive information. In this case, estimation of their individual contribution is very

difficult. This idea may be expressed quantitatively by examining the variance of the estimate

for a regression coefficient, say β

j

. This variance can be shown to be

var(b
j

) =

σ

2

[x2
j

](1 − R

2
j

)

(14)

In this formula σ

2 is the variance about the regression line and [x2
j

] is the sum of the squares

of the difference between the values observed for the j th predictor variable and its mean (this

bracket notation was used in Chapter 9). R

2
j

is the square of the multiple correlation coefficient

between X

j

as dependent variable and the other predictor variables as independent variables.

Note that if there is only one predictor, R

2
j

is zero; in this case the formula reduces to the formula

of Chapter 9 for simple linear regression. On the other hand, if X

j

is very highly correlated with

other predictor variables, we see that the variance of the estimate of b

j

increases dramatically.

This again illustrates the phenomenon of collinearity. A good discussion of the problem may

be found in Mason [1975] as well as in Hocking [1976].

In certain circumstances, more than one multiple regression coefficient may be considered at

one time. It is then necessary to have notation that explicitly gives the variables used.

Definition 11.6. The multiple correlation coefficient of Y with the set of variables X1, . . . ,

X

k

is denoted by

R

Y(X1,... ,Xk

)

when it is necessary to explicitly show the variables used in the computation of the multiple

correlation coefficient.

11.3.2 Partial Correlation Coefficient

When two variables are related linearly, we have used the correlation coefficient as a measure

of the amount of association between the two variables. However, we might suspect that a

relationship between two variables occurred because they are both related to another variable.

For example, there may be a positive correlation between the density of hospital beds in a

geographical area and an index of air pollution. We probably would not conjecture that the

number of hospital beds increased the air pollution, although the opposite could conceivably be

true. More likely, both are more immediately related to population density in the area; thus we

might like to examine the relationship between the density of hospital beds and air pollution
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after controlling or adjusting for the population density. We have previously seen examples

where we controlled or adjusted for a variable. As one example this was done in the combining

of 2 × 2 tables, using the various strata as an adjustment. A partial correlation coefficient is

designed to measure the amount of linear relationship between two variables after adjusting for

or controlling for the effect of some set of variables. The method is appropriate when there are

linear relationships between the variables and certain model assumptions such as normality hold.

Definition 11.7. The partial correlation coefficient of X and Y adjusting for the variables

X1, . . . , X

k

is denoted by ρ

X,Y.X1,... ,Xk

. The sample partial correlation coefficient of X and Y

adjusting for X1, . . . , X

k

is denoted by r

X,Y.X1,... ,Xk

. The partial correlation coefficient is the

correlation of Y minus its best linear predictor in terms of the X

j

variables with X minus its

best linear predictor in terms of the X

j

variables. That is, letting ̂

Y be a predicted value of Y

from multiple linear regression of Y on X1, . . . , X

k

and letting ̂

X be the predicted value of X

from the multiple linear regression of X on X1, . . . , X

k

, the partial correlation coefficient is the

correlation of X − ̂

X and Y − ̂

Y .

If all of the variables concerned have a multivariate normal distribution, the partial correlation

coefficient of X and Y adjusting for X1, . . . , X

k

is the correlation of X and Y conditionally upon

knowing the values of X1, . . . , X

k

. The conditional correlation of X and Y in this multivariate

normal case is the same for each fixed set of the values for X1, . . . , X

k

and is equal to the

partial correlation coefficient.

The statistical significance of the partial correlation coefficient is equivalent to testing the

statistical significance of the regression coefficient for X if a multiple regression is performed

with Y as a dependent variable with X, X1, . . . , X

k

as the independent or explanatory variables.

In the next section on nested hypotheses, we consider such significance testing in more detail.

Partial regression coefficients are usually estimated by computer, but there is a simple formula

for the case of three variables. Let us consider the partial correlation coefficient of X and Y

adjusting for a variable Z. In terms of the correlation coefficients for the pairs of variables, the

partial correlation coefficient in the population and its estimate from the sample are given by

ρ

X,Y ·Z =

ρ

X,Y

− ρ

X,Z

ρ

Y,Z

√

(1 − ρ

2
X,Z

)(1 − ρ

2
Y,Z

)

r

X,Y.Z

=

r

X,Y

− r

X,Z

r

Y,Z

√

(1 − r

2
X,Z

)(1 − r

2
Y,Z

)

(15)

We illustrate the effect of the partial correlation coefficient by the exercise data for active

females discussed above. We know that age and duration are correlated. For the data above, the

correlation coefficient is −0.68913. Let us consider how much of the linear relationship between

age and duration is left if we adjust out the effect of the oxygen consumption, VO2 MAX, for

the same data set. The correlation coefficients for the sample are as follows:

rAGE, DURATION = −0.68913

rAGE, VO2 MAX
= −0.65099

rDURATION, VO2 MAX
= 0.78601

The partial correlation coefficient of age and duration adjusting VO2 MAX using the equation

above is estimated by

rAGE,DURATION·VO2 MAX
=

−0.68913 − [(−0.65099)(−0.78601)]
√

[1 − (−0.65099)

2][1 − (0.78601)

2]
= −0.37812
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If we consider the corresponding multiple regression problem with a dependent variable of age

and independent variables duration and VO2 MAX, the t-statistic for duration is −2.58. The

two-sided 0.05 critical value is 2.02, while the critical value at significance level 0.01 is 2.70.

Thus, we see that the p-value for statistical significance of this partial correlation coefficient is

between 0.05 and 0.01.

11.3.3 Partial Multiple Correlation Coefficient

Occasionally, one wants to examine the linear relationship, that is, the correlation between one

variable, say Y , and a second group of variables, say X1, . . . , X

k

, while adjusting or controlling

for a third set of variables, Z1, . . . , Z

p

. If it were not for the Z

j

variables, we would simply use

the multiple correlation coefficient to summarize the relationship between Y and the X variables.

The approach taken is the same as for the partial correlation coefficient. First subtract out for

each variable its best linear predictor in terms of the Z

j

’s. From the remaining residual values

compute the multiple correlation between the Y residuals and the X residuals. More formally,

we have the following definition.

Definition 11.8. For each variable let ̂

Y or ̂

X

j

denote the least squares linear predictor

for the variable in terms of the quantities Z1, . . . , Z

p

. The best linear predictor for a sample

results from the multiple regression of the variable on the independent variables Z1, . . . , Z

p

.

The partial multiple correlation coefficient between the variable Y and the variables X1, . . . , X

k

adjusting for Z1, . . . , Z

p

is the multiple correlation between the variable Y −̂

Y and the variables

X1−
̂

X1, . . . , X

k

−̂

X

k

. The partial multiple correlation coefficient of Y and X1, . . . , X

k

adjusting

for Z1, . . . , Z

p

is denoted by

R

Y(X1,... ,Xk

).Z1,... ,Zp

A significance test for the partial multiple correlation coefficient is discussed in Section 11.4.

The coefficient is also called the multiple partial correlation coefficient.

11.4 NESTED HYPOTHESES

In the second part of Example 11.3, we saw a multiple regression equation where we could not

show the statistical significance of individual regression coefficients. This raised the possibility

of reducing the complexity of the regression equation by eliminating one or more variables from

the predictive equation. When we consider such possibilities, we are considering what is called

a nested hypothesis. In this section we discuss nested hypotheses in the multiple regression

setting. First we define nested hypotheses; we then introduce notation for nested hypotheses in

multiple regression. In addition to notation for the hypotheses, we need notation for the various

sums of squares involved. This leads to appropriate F -statistics for testing nested hypotheses.

After we understand nested hypotheses, we shall see how to construct F -tests for the partial

correlation coefficient and the partial multiple correlation coefficient. Furthermore, the ideas of

nested hypotheses are used below in stepwise regression.

Definition 11.9. One hypothesis, say hypothesis H1, is nested within a second hypothesis,

say hypothesis H2, if whenever hypothesis H1 is true, hypothesis H2 is also true. That is to say,

hypothesis H1 is a special case of hypothesis H2.

In our multiple regression situation most nested hypotheses will consist of specifying that

some subset of the regression coefficients β

j

have the value zero. For example, the larger first



NESTED HYPOTHESES 443

hypothesis might be H2, as follows:

H2: Y = α + β1X1 + · · · + β

k

X

k

+ ǫ

ǫ ∼ N(0, σ

2
)

The smaller (nested) hypothesis H1 might specify that some subset of the β’s, for example, the

last k−j betas corresponding to variables X

j+1, . . . , X

k

, are all zero. We denote this hypothesis

by H1.

H1: Y = α + β1X1 + · · · + β

j

X

j

+ ǫ

ǫ ∼ N(0, σ

2
)

In other words, H2 holds and

β

j+1 = β

j+2 = · · · = β

k

= 0

A more abbreviated method of stating the hypothesis is the following:

H1: β

j+1 = β

j+2 = · · · = β

k

= 0|β1, . . . , β

j

To test such nested hypotheses, it will be useful to have a notation for the regression sum

of squares for any subset of independent variables in the regression equation. If variables

X1, . . . , X

j

are used as explanatory or independent variables in a multiple regression equation

for Y , we denote the regression sum of squares by

SSREG(X1, . . . , X

j

)

We denote the residual sum of squares (i.e., the total sum of squares of the dependent variable

Y about its mean minus the regression sum of squares) by

SSRESID(X1, . . . , X

j

)

If we use more variables in a multiple regression equation, the sum of squares explained by the

regression can only increase, since one potential predictive equation would set all the regression

coefficients for the new variables equal to zero. This will almost never occur in practice if

for no other reason than the random variability of the error term allows the fitting of extra

regression coefficients to explain a little more of the variability. The increase in the regression

sum of squares, however, may be due to chance. The F -test used to test nested hypotheses looks

at the increase in the regression sum of squares and examines whether it is plausible that the

increase could occur by chance. Thus we need a notation for the increase in the regression sum

of squares. This notation follows:

SSREG(X

j+1, . . . , X

k

|X1, . . . , X

j

) = SSREG(X1, . . . , X

k

) − SSREG(X1, . . . , X

j

)

This is the sum of squares attributable to X

j+1, . . . , X

k

after fitting the variables X1, . . . , X

j

.

With this notation we may proceed to the F -test of the hypothesis that adding the last k − j

variables does not increase the sum of squares a statistically significant amount beyond the

regression sum of squares attributable to X1, . . . , X

k

.

Assume a regression model with k predictor variables, X1, . . . , X

k

. The F -statistic for testing

the hypothesis

H1: β

j+1 = · · · = β

k

= 0|β1, . . . , β

j
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is

F =

SSREG(X

j+1, . . . , X

k

|X1, . . . , X

j

)/(k − j)

SSRESID(X1, . . . , X

k

)/(n − k − 1)

Under H1, F has an F -distribution with k − j and n − k − 1 degrees of freedom. Reject H1 if

F > F

k−j,n−k−1,1−α

, the 1 − α percentile of the F -distribution.

The partial correlation coefficient is related to the sums of squares as follows. Let X be a

predictor variable in addition to X1, . . . , X

k

.

r

2
X,Y ·X1,... ,X

k

=

SSREG(X|X1, . . . , X

k

)

SSRESID(X1, . . . , X

k

)

(16)

The sign of r

X,Y ·X1,... ,Xk

is the same as the sign of the X regression coefficient when Y is

regressed on X, Y · X1, . . . , X

k

. The F -test for statistical significance of r

X,Y ·X1,... ,Xk

uses

F =

SSREG(X|X1, . . . , X

k

)

SSRESID(X, X1, . . . , X

k

)/(n − k − 2)

(17)

Under the null hypothesis that the partial correlation is zero (or equivalently, that β

X

=

0|β1, . . . , β

k

), F has an F -distribution with 1 and n−k−2 degrees of freedom. F is sometimes

called the partial F -statistic. The t-statistic for the statistical significance of β

X

is related to F by

t

2
=

β

2
X

SE(β

X

)

2
= F

Similar results hold for the partial multiple correlation coefficient. The correlation is always

positive and its square is related to the sums of squares by

R

2
Y(X1,... ,Xk

)·Z1,... ,Zp

=

SSREG(X1, . . . , X

k

|Z1, . . . , Z

p

)

SSRESID(Z1, . . . , Z

p

)

(18)

The F -test for statistical significance uses the test statistic

F =

SSREG(X1, . . . , X

k

|Z1, . . . , Z

p

)/k

SSRESID(X1, . . . , X

k

, Z1, . . . , Z

p

)/(n − k − p − 1)

(19)

Under the null hypothesis that the population partial multiple correlation coefficient is zero, F

has an F -distribution with k and n − k − p − 1 degrees of freedom. This test is equivalent to

testing the nested multiple regression hypothesis:

H : β

X1
= · · · = β

X

k

= 0|β
Z1

, . . . , β

Z

p

Note that in each case above, the contribution to R

2 after adjusting for additional variables is

the increase in the regression sum of squares divided by the residual sum of squares after taking

the regression on the adjusting variables. The corresponding F -statistic has a numerator degrees

of freedom equal to the number of predictive variables added, or equivalently, the number of

additional parameters being estimated. The denominator degrees of freedom are equal to the

number of observations minus the total number of parameters estimated. The reason for the −1

in the denominator degrees of freedom in equation (19) is the estimate of the constant in the

regression equation.
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Example 11.3. (continued ) We illustrate some of these ideas by returning to the 43 active

females who were exercise-tested. Let us compute the following quantities:

rVO2 MAX,DURATION · AGE

R

2
AGE(VO2 MAX, HEART RATE) · DURATION

To examine the relationship between VO2 MAX and duration adjusting for age, let duration

be the dependent or response variable. Suppose that we then run two multiple regressions: one

predicting duration using only age as the predictive variable and a second regression using

both age and VO2 MAX as the predictive variable. These runs give the following data: for

Y = duration and X1 = age:

t-statistic

Covariate or Constant b
j

SE(b
j
) (t41,0.975

.
= 2.02)

Age −5.208 0.855 −6.09

Constant 749.975 39.564

F -Ratio

Source d.f. SS MS (F1,41,0.95
.

= 4.08)

Regression of duration on age 1 119,324.47 119,324.47 37.08

Residual 41 131,935.95 3,217.95

Total 42 251,260.42

and for Y = duration, X1 = age, and X2 = VO2 MAX:

t-statistic

Covariate or Constant b
j

SE(b
j
) (t40,0.975

.
= 2.09)

Age −2.327 0.901 −2.583

VO2 MAX 9.151 1.863 4.912

Constant 354.072 86.589

F -Ratio

Source d.f. SS MS (F2,40,0.95
.

= 3.23)

Regression of duration on age

and VO2 MAX

2 168,961.48 84,480.74 41.06

Residual 40 82,298.94 2,057.47

Total 42 251,260.42

Using equation (16), we find the square of the partial correlation coefficient:

r

2
VO2 MAX, DURATION·AGE =

168,961.48 − 119,324.47

131,935.95

=

49,637.01

131,935.95

= 0.376
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Since the regression coefficient for VO2 MAX is positive (when regressed with age) having

a value of 9.151, the positive square root gives r:

rVO2 MAX, DURATION · AGE = +

√

0.376 = 0.613

To test the statistical significance of the partial correlation coefficient, equation (17) gives

F =

168,961.48 − 119,324.467

82,298.94/(43 − 1 − 1 − 1)

= 24.125

Note that t

2
vo2MAX = 24.127 = F within round-off error. As F1,40,0.999 = 12.61, this is highly

significant (p < 0.001). In other words, the duration of the treadmill test and the maximum

oxygen consumption are significantly related even after adjustment for the subject’s age.

Now we turn to the computation and testing of the partial multiple correlation coefficient.

To use equations (18) and (19), we need to regress age on duration, and also regress age on

duration, VO2 MAX, and the maximum heart rate. The anova tables follow. For age regressed

upon duration:

F -Ratio

Source d.f. SS MS (F1,41,0.95
.

= 4.08)

Regression 1 2089.18 2089.18 37.08

Residual 41 2309.98 56.34

Total 42 4399.16

and for age regressed upon duration, VO2 MAX, and maximum heart rate:

F -Ratio

Source d.f. SS MS (F3,39,0.95
.
= 2.85)

Regression 3 2256.97 752.32 13.70

Residual 39 2142.19 54.93

Total 42 4399.16

From equation (18),

R

2
AGE(VO2 MAX, HEART RATE) · DURATION =

2256.97 − 2089.18

2309.98

= 0.0726

and R =

√

R

2
= 0.270.

The F -test, by equation (19), is

F =

(2256.97 − 2089.18)/2

2142.19/(43 − 2 − 1 − 1)

= 1.53

As F2,39,0.90
.

= 2.44, we have not shown statistical significance even at the 10% significance

level. In words: VO2 MAX and maximum heart rate have no more additional linear relationship

with age, after controlling for the duration, than would be expected by chance variability.
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11.5 REGRESSION ADJUSTMENT

A common use of regression is to make inference regarding a specific predictor of inference

from observational data. The primary explanatory variable can be a treatment, an environmental

exposure, or any other type of measured covariate. In this section we focus on the common

biomedical situation where the predictor of interest is a treatment or exposure, but the ideas

naturally generalize to any other type of explanatory factor.

In observational studies there can be many uncontrolled and unmeasured factors that are asso-

ciated with seeking or receiving treatment. A naive analysis that compares the mean response

among treated individuals to the mean response among nontreated subjects may be distorted

by an unequal distribution of additional key variables across the groups being compared. For

example, subjects that are treated surgically may have poorer function or worse pain prior

to their being identified as candidates for surgery. To evaluate the long-term effectiveness of

surgery, each patient’s functional disability one year after treatment can be measured. Simply

comparing the mean function among surgical patients to the mean function among patients

treated nonsurgically does not account for the fact that the surgical patients probably started

at a more severe level of disability than the nonsurgical subjects. When important character-

istics systematically differ between treated and untreated groups, crude comparisons tend to

distort the isolated effect of treatment. For example, the average functional disability may be

higher among surgically treated subjects compared to nonsurgically treated subjects, even though

surgery has a beneficial effect for each person treated since only the most severe cases may

be selected for surgery. Therefore, without adjusting for important predictors of the outcome

that are also associated with being given the treatment, unfair or invalid treatment comparisons

may result.

11.5.1 Causal Inference Concepts

Regression models are often used to obtain comparisons that “adjust” for the effects of other

variables. In some cases the adjustment variables are used purely to improve the precision of

estimates. This is the case when the adjustment covariates are not associated with the exposure of

interest but are good predictors of the outcome. Perhaps more commonly, regression adjustment

is used to alleviate bias due to confounding. In this section we review causal inference concepts

that allow characterization of a well-defined estimate of treatment effect, and then discuss how

regression can provide an adjusted estimate that more closely approximates the desired causal

effect.

To discuss causal inference concepts, many authors have used the potential outcomes frame-

work [Neyman, 1923; Rubin, 1974; Robins, 1986]. With any medical decision we can imagine

the outcome that would result if each possible future path were taken. However, in any single

study we can observe only one realization of an outcome per person at any given time. That is,

we can only measure a person’s response to a single observed and chosen history of treatments

and exposures. We can still envision the hypothetical, or “potential” outcome that would have

been observed had a different set of conditions occurred. An outcome that we believe could

have happened but was not actually observed is called a counterfactual outcome. For simplicity

we assume two possible exposure or treatment conditions. We define the potential outcomes as:

Y

i

(0): reponse for subject i at a specific measurement time

after treatment X = 0 is experienced

Y

i

(1): reponse for subject i at a specific measurement time

after treatment X = 1 is experienced

Given these potential outcomes, we can define the causal effect for subject i as

causal effect for subject i : �

i

= Y

i

(1) − Y

i

(0)
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The causal effect �

i

measures the difference in the outcome for subject i if they were given

treatment X = 1 vs. the outcome if they were given treatment X = 0. For a given population

of N subjects, we can define the average causal effect as

� =

1

N

N

∑

i=1

�

i

The average causal effect is a useful overall summary of the treatment under study. Individual

causal effects would be useful for selecting the best intervention for a given person. In general,

we can only reliably estimate average causal effects for specific populations of subjects. Using

covariates, we may try to narrow the population such that it closely approximates the particular

persons identified for possible treatment.

There are a number of important implications associated with the potential outcomes

framework:

1. In any given study we can only observe either Y

i

(0) or Y

i

(1) and not both. We are

assuming that Y

i

(0) and Y

i

(1) represent outcomes under different treatment schemes, and

in nature we can only realize one treatment and one subsequent outcome per subject.

2. Each subject is assumed to have an individual causal effect of treatment, �

i

. Thus, there

is no assumption of a single effect of treatment that is shared for all subjects.

3. Since we cannot observe Y

i

(0) and Y

i

(1), we cannot measure the individual treatment

effect �

i

.

Example 11.4. Table 11.6 gives a hypothetical example of potential outcomes. This

example is constructed to approximate the evaluation of surgical and nonsurgical interventions

for treatment of a herniated lumbar disk (see Keller et al. [1996] for an example). The outcome

represents a measure of functional disability on a scale of 1 to 10, where the intervention has

a beneficial effect by reducing functional disability. Here Y

i

(0) represents the postintervention

outcome if subject i is given a conservative nonsurgical treatment and Y

i

(1) represents the

postintervention outcome if subject i is treated surgically. Since only one course of treatment

Table 11.6 Hypothetical Example of Potential Outcomes and

Individual Causal Effects

Potential Potential

Outcome Causal Outcome Causal

Subject Effect Subject Effect
i Y

i

(0) Y

i

(1) �

i

i Y

i

(0) Y

i

(1) �

i

1 4.5 2.7 −1.8 11 7.5 5.1 −2.3

2 3.1 1.0 −2.1 12 6.7 5.2 −1.5

3 3.9 2.0 −1.9 13 6.0 4.4 −1.6

4 4.3 2.2 −2.1 14 5.6 3.2 −2.4

5 3.3 1.5 −1.9 15 6.5 4.0 −2.4

6 3.3 0.8 −2.5 16 7.7 6.0 −1.8

7 4.0 1.5 −2.5 17 7.1 5.1 −2.1

8 4.9 3.2 −1.7 18 8.3 6.0 −2.3

9 3.8 2.0 −1.9 19 7.0 4.6 −2.4

10 3.6 2.0 −1.6 20 6.9 5.3 −1.5

Mean 5.40 3.39 −2.01
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is actually administered, these outcomes are conceptual and only one can actually be measured.

The data are constructed such that the effect of surgical treatment is a reduction in the outcome.

For example, the individual causal effects range from a −1.5- to a −2.5-point difference between

the outcome if treated and the outcome if untreated. The average causal effect for this group

is −2.01. To be interpreted properly, the population over which we are averaging needs to be

detailed. For example, if these subjects represent veterans over 50 years of age, then −2.01

represents the average causal effect for this specific subpopulation. The value −2.01 may not

generalize to represent the average causal effect for other populations (i.e., nonveterans, younger

subjects).

Although we cannot measure individual causal effects, we can estimate average causal effects

if the mechanism that assigns treatment status is essentially an unbiased random mechanism.

For example, if P [X
i

= 1 | Y

i

(0), Y

i

(1)] = P(X

i

= 1), the mean of a subset of observations,

Y

i

(1), observed for those subjects with X

i

= 1 will be an unbiased estimate of the mean for

the entire population if all subjects are treated. Formally, the means observed for the treatment,

X = 1, and control, X = 0, groups can be written as

Y 1 =

1

n1

N

∑

j=1

Y

j

(1) · 1(X

j

= 1)

Y 0 =

1

n0

N

∑

j=1

Y

j

(0) · 1(X

j

= 0)

where n1 =

∑

j

1(X

j

= 1), n0 =

∑

j

1(X

j

= 0), and 1(X

j

= 0), 1(X

j

= 1) are indicator

functions denoting assignment to control and treatment, respectively. For example, if we assume

that P(X

i

= 1) = 1/2 and that n1 = n0 = N/2, then with random allocation to treatment,

E(Y 1) =

1

N/2

N

∑

j=1

Y

j

(1) · E[1(X

j

= 1)]

=

1

N/2

N

∑

j=1

Y

j

(1) · 1/2

=

1

N

∑

j

Y

j

(1)

= µ1

where we define µ1 as the mean for the population if all subjects receive treatment. A similar

argument shows that E(Y 0) = µ0, the mean for the population if all subjects were not treated.

Essentially, we are assuming the existence of parallel and identical populations, one of which

is treated and one of which is untreated, and sample means from each population under simple

random sampling are obtained.

Under random allocation of treatment and control status, the observed means Y 1 and Y 0 are

unbiased estimates of population means. This implies that the sample means can be used to

estimate the average causal effect of treatment:

E(Y 1 − Y 0) = E(Y 1) − E(Y 1)

= µ1 − µ0
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=

1

N

∑

i

Y

i

(1) −

1

N

∑

i

Y

i

(0)

=

1

N

∑

i

[Y
i

(1) − Y

i

(0)]

=

1

N

∑

i

�

i

= �

Example 11.5. An example of the data observed from a hypothetical randomized study

that compares surgical (X = 1) to nonsurgical (X = 0) interventions is presented in Table 11.7.

Notice that for each subject, only one of Y

i

(0) or Y

i

(1) is observed, and therefore a treatment vs.

control comparison can only be calculated using the group averages rather than using individual

potential outcomes. Since the study was randomized, the difference in the averages observed is a

valid (unbiased) estimate of the average causal effect of surgery. The mean difference observed

in this experimental realization is −1.94, which approximates the unobservable target value

of � = −2.01 shown in Table 11.6. In this example the key random variable is the treatment

assignment, and because the study was randomized, the distribution for the treatment assignment

indicator, X

i

= 0/1, is completely known and independent of the potential outcomes.

Often, inference regarding the benefit of treatment is based on observational data where the

assignment to X = 0 or X = 1 is not controlled by the investigator. Consequently, the factors

Table 11.7 Example of Data that would Be

Observed in a Randomized Treatment Trial

Outcome

Observed
Subject

i Assignment Y

i

(0) Y

i

(1) Difference

1 0 4.5

2 1 1.0

3 1 2.0

4 1 2.2

5 0 3.3

6 1 0.8

7 1 1.5

8 0 4.9

9 0 3.8

10 0 3.6

11 1 5.1

12 0 6.7

13 0 6.0

14 0 5.6

15 0 6.5

16 1 6.0

17 1 5.1

18 0 8.3

19 1 4.6

20 1 5.3

Mean 5.48 3.42 −1.94
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that drive treatment assignment need to be considered if causal inference is to be attempted.

If sufficient covariate information is collected, regression methods can be used to control for

confounding.

Definition 11.10. Confounding refers to the presence of an additional factor, Z, which

when not accounted for leads to an association between treatment, X, and outcome, Y , that

does not reflect a causal effect. Confounding is ultimately a “confusion” of the effects of X and

Z. For a variable Z to be a confounder, it must be associated with X in the population, be a

predictor of Y in the control (X = 0) group, and not be a consequence of either X or Y .

This definition indicates that confounding is a form of selection bias leading to biased esti-

mates of the effect of treatment or exposure (see Rothman and Greenland [1998, Chap. 8] for

a thorough discussion of confounding and for specific criteria for the identification of a con-

founding factor). Using the potential outcomes framework allows identification of the research

goal: estimating the average causal effect, �. When confounding is present, the expected differ-

ence between Y 1 and Y 0 is no longer equal to the desired average causal effect, and additional

analytical approaches are required to obtain approximate causal effects.

Example 11.6. Table 11.8 gives an example of observational data where subjects in stratum

2 are more likely to be treated surgically than subjects in stratum 1. The strata represent a

baseline assessment of the severity of functional disability. In many settings those subjects

with more severe disease or symptoms are treated with more aggressive interventions, such as

surgery. Notice that both potential outcomes, Y

i

(0) and Y

i

(1), tend to be lower for subjects in

stratum 1 than for subjects in stratum 2. Despite the fact that subjects in stratum 1 are much

less likely to actually receive surgical intervention, treatment with surgery remains a beneficial

intervention for both strata 1 and 2 subjects. The benefit of treatment for all subjects is apparent

in the negative individual causal effects shown in Table 11.6. The imbalanced allocation of more

severe cases to surgical treatment leads to crude summaries of Y 1 = 4.46 and Y 0 = 4.32. Thus

the subjects who receive surgery have a slightly higher posttreatment mean functional score

than those subjects who do not receive surgery. Does this comparison indicate the absence of

a causal effect of surgery? The overall comparison is based on a treated group that has 80%

of subjects drawn from stratum 2, the more severe group, while the control group has only

20% of subjects from stratum 2. The crude comparison of Y 1 to Y 0 is roughly a comparison

of the posttreatment functional scores among severe subjects (80% of the X = 1 group) to

the posttreatment functional scores among less severe subjects (80% of the X = 0 group). It

is “unfair” to attribute the crude difference between treatment groups solely to the effect of

surgery since the groups are clearly not comparable. A mixing of the effect of surgery with the

effect of baseline severity is an illustration of bias due to confounding. The observed difference

Y 1 − Y 0 = 0.14 is a distorted estimate of the average causal effect, � = −2.01.

11.5.2 Adjustment for Measured Confounders

There are several statistical methods that can be used to adjust for measured confounders. The

goal of adjustment is to obtain an estimate of the treatment effect that more closely approximates

the average causal effect. Commonly used methods include:

1. Stratified methods. In stratified methods the sample is broken into strata, k = 1, 2, . . . ,K ,

based on the value of a covariate, Z. Within each stratum, k, a treatment comparison can be

calculated. Let δ

(k)

= Y

(k)

1 −Y

(k)

0 , where Y

(k)

1 is the mean among treated subjects in strata k, and

Y

(k)

0 is the mean among control subjects in strata k. An overall summary of the stratum-specific

treatment contrasts can be computed using a simple or weighted average of the stratum-specific

comparisons, δ =

∑

K

k=1 w

k

·δ
(w

k

), where w

k

is a weight. In the example presented in Table 11.8
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Table 11.8 Example of an Observational Study Where Factors

That Are Associated with the Potential Outcomes Are Predictive of

the Treatment Assignment

Outcome

Observed
Subject

i Assignment Y

i

(0) Y

i

(1) Stratum Difference

1 1 2.7 1

2 0 3.1 1

3 0 3.9 1

4 1 2.2 1

5 0 3.3 1

6 0 3.3 1

7 0 4.0 1

8 0 4.9 1

9 0 3.8 1

10 0 3.6 1

Mean 3.74 2.45 −1.29

11 1 5.1 2

12 1 5.2 2

13 1 4.4 2

14 0 5.6 2

15 1 4.0 2

16 0 7.7 2

17 1 5.1 2

18 1 6.0 2

19 1 4.6 2

20 1 5.3 2

Mean 6.65 4.96 −1.69

Overall mean 4.32 4.46 0.14

the subjects are separated into two strata, and mean differences of δ

(1)

= −1.29 and δ

(2)

= −1.69

are obtained comparing treatment and controls within strata 1 and strata 2, respectively. These

estimates are much closer to the true average causal effect of � = −2.01 in Table 11.6 than the

comparison of crude means, Y 1 − Y 0 = 0.14.

2. Regression analysis. Regression methods extend the concept of stratification to allow

use with continuously measured adjustment variables and with multiple predictor variables. A

regression model

E(Y | X,Z) = α + β1X + β2Z

can be used to obtain an estimate of treatment, X, that adjusts for the covariate Z. Using the

regression model, we have

β1 = E(Y | X = 1, Z = z) − E(Y | X = 0, Z = z)

indicating that the parameter β1 represents the average or common treatment comparison formed

within groups determined by the value of the covariate, Z = z.

3. Propensity score methods. Propensity score methods are discussed by Rosenbaum and

Rubin [1983]. In this approach the propensity score, P(X = 1 | Z), is estimated using logistic

regression or discriminant analysis, and then used either as a stratifying factor, a covariate in
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regression, or a matching factor (see Little and Rubin [2000] and the references therein for

further detail on use of the propensity score for adjustment).

The key assumption that is required for causal inference is the “no unmeasured confounding”

assumption. This states that for fixed values of a covariate, Z

i

(this may be multiple covariates),

the assignment to treatment, X

i

= 1, or control, X

i

= 0, is unrelated to the potential outcomes.

This assumption can be stated as

P [X
i

= 1 | Y

i

(0), Y

i

(1), Z

i

] = P [X
i

= 1 | Z

i

]

One difficult aspect of this concept is the fact that we view potential outcomes as being measured

after the treatment is given, so how can the potential outcomes predict treatment assignment? An

association can be induced by another variable, such as Z

i

. For example, in the surgical example

presented in Table 11.8, an association between potential outcomes and treatment assignment is

induced by the baseline severity. The probability that a subject is assigned X

i

= 1 is predicted

by baseline disease severity, and the potential outcomes are associated with the baseline status.

Thus, if we ignore baseline severity, treatment assignment X

i

is associated with both Y

i

(0) and

Y

i

(1). The goal of collecting covariates Z

i

is to measure sufficient predictors of treatment such

that within the strata defined by Z

i

, the treatment assignment is approximately randomized.

A causal interpretation for effects formed using observational data requires the assumption

that there is no unmeasured confounding within any strata. This assumption cannot be verified

empirically.

Example 11.1. (continued ) We return to the data from Cullen and van Belle [1975]. We

use the response variable DMPA, the disintegrations per minute of lymphocytes measured after

surgery. We focus on the effect of anesthesia used for the surgery: X = 0 for general anesthesia

and X = 1 for local anesthesia. The following crude analysis uses a regression of DMPA on

anesthesia (X ), which is equivalent to the two-sample t-test:

Coefficient SE t p-Value

Intercept 109.03 11.44 9.53 <0.001

Anesthesia 38.00 15.48 2.45 0.016

The analysis suggests that local anesthesia leads to a mean DMPA that is 38.00 units greater

than the mean DMPA when general anesthesia is used. This difference is statistically significant

with p-value 0.016.

Recall that these data are comprised of patients undergoing a variety of surgical procedures

that are broadly classified using the variable trauma, whose values 0 to 4 were introduced in

Table 11.2. The type of anesthesia that is used varies by procedure type and therefore trauma, as

shown in Table 11.9. From this table we see that use of local anesthesia occurs more frequently

for trauma 0, 1, or 2, and that general anesthesia is used more frequently for trauma 3 or

4. In addition, in earlier analyses we have found trauma to be associated with the outcome.

Thus, the crude analysis of anesthesia that estimates a 38.00 unit (S.E. = 15.48) effect of local

anesthesia is confounded by trauma and does not reflect an average causal effect. To adjust for

trauma, we use regression with the indicator variables, trauma(j) = 1 if trauma = j and

0 otherwise, for j = 1, 2, 3, 4. We use a model that includes an intercept and therefore do not

also include an indicator for trauma 0. The regression results are shown in Table 11.10.

After controlling for trauma, the estimated comparison of local to general anesthesia within

trauma groups is 23.47 (S.E. = 18.24), and this difference is no longer statistically significant.

This example shows that for causal analysis of observational data, any factors that are associated

with treatment and associated with the outcome need to be considered in the analysis. In order

to use 23.47 as the average causal effect of anesthesia, we would need to justify the required



454 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

Table 11.9 Anesthesia Use by Type

of trauma

Anesthesia

trauma 0 = General 1 = Local Total

0 0 11 11

1 6 12 18

2 14 16 30

3 11 3 14

4 4 0 4

Total 35 42 77

Table 11.10 Regression Results with Anesthesia and

Trauma Predictors

Coefficient SE t p-Value

Intercept 129.53 27.40 4.73 <0.001

Anesthesia 23.47 18.24 1.29 0.202

trauma 1 3.66 26.66 0.14 0.891

trauma 2 −13.68 25.38 −0.54 0.592

trauma 3 −25.34 30.86 −0.82 0.414

trauma 4 −67.28 43.60 −1.54 0.127

assumption of no additional measured or unmeasured confounding factors. The assumption of

no unmeasured confounding can only be supported by substantive considerations specific to the

study design and the scientific process under investigation. Finally, since there are no empirical

contrasts comparing local to general anesthesia within the trauma 0 and trauma 4 strata, we

would need to either consider the average causal effect as only pertaining to the trauma 1, 2,

and 3 groups, or be willing to extrapolate to the trauma 0 and 4 groups.

11.5.3 Model Selection Issues

One of the most difficult and controversial issues regarding the use of regression models is

the procedure for specifying which variables are to be used to control for confounding. The

epidemiological and biostatistical literature has introduced and evaluated several schemes for

choosing adjustment variables. In the next section we discuss methods that can be used to identify

a parsimonious explanatory or predictive model. However, the motivation for selecting covariates

to control for confounding is different from the goal of identifying a good predictive model.

To control for confounding, we identify adjustment variables in order to remove bias in the

regression estimate for a predictor of primary interest, typically a treatment or exposure variable.

Pocock et al. [2002] discuss covariate choice issues in the analysis of data from clinical trials.

The authors note that post hoc choice of covariates may not be done objectively and thus leads

to estimates that reflect the investigators bias (e.g., choose to control for a variable if it makes

the effect estimate larger!). In addition, simulation studies have shown that popular automatic

variable-selection schemes can lead to biased estimates and distorted significance levels [Mickey

and Greenland, 1989; Maldonado and Greenland, 1993; Sun et al., 1996; Hurvich and Tsai, 1990].

Kleinbaum [1994] discusses the a priori specification of the covariates to be used for

regression analysis. The main message is that substantive considerations should drive the

specification of the regression model when confirmatory estimation and inference are desired.

This position is also supported by Raab et al. [2000].
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11.5.4 Further Reading

Little and Rubin [2000] provide a comprehensive review of causal inference concepts. These

authors also discuss the importance of the stable unit treatment assumption that is required for

causal inference.

An overview of causal inference and discussion of the use of graphs for representing causal

relationships are given in the text by Pearl [2000].

11.6 SELECTING A “BEST” SUBSET OF EXPLANATORY VARIABLES

11.6.1 The Problem

Given a large number of potential explanatory variables, one can sometimes select a smaller

subset that explains the variability in the dependent variable. We have seen examples above

where it appears that one or more of the variables in a multiple regression do not contribute,

beyond an amount consistent with chance, to the explanation of the variability in the dependent

variable. Thus, consider a response variable Y with a large number of potential predictor variables

X

j

. How should we choose a “best” subset of variables to explain the Y variability? This topic

is addressed in this section. If we knew the number of predictor variables we wanted, we could

use some criterion for the best subset. One natural criterion from the concepts already presented

would be to choose the subset that gives the largest value for R

2. Even then, selection of the

subset can be a formidable task. For example, suppose that there are 30 predictor variables and

a subset of 10 variables is wanted; there are

(

30

10

)

= 30,045,015

possible regression equations that have 10 predictor variables. This is not a routinely manageable

number even with modern high-speed computers. Furthermore, in many instances we will not

know how many possible variables we should place into our prediction equation. If we consider

all possible subsets of 30 variables, there are over 1 billion possible combinations for the

prediction. Thus once again, one cannot examine all subsets. There has been much theoretical

work on selecting the best subset according to some criteria; the algorithms allow one to find

the best subset without looking explicitly at all of the possible subsets. Still, for large numbers

of variables, we need another procedure to select the predictive subset.

A further complication arises when we have a very large number of observations; then we

may be able to show statistically that all of the potential predictor variables contribute additional

information to explain the variability in the dependent variable Y . However, the large majority of

the predictor variables may add so little to the explanation that we would prefer a much smaller

subset that explains almost as much of the variability and gives a much simpler model. In general,

simple models are desirable because they may be used more readily, and often when applied in

a different setting, turn out to be more accurate than a model with a large number of variables.

In summary, the task before us in this section is to consider a means of choosing a subset

of predictor variables from a pool of potential predictor variables.

11.6.2 Approaches to the Problem That Consider All Possible Subsets of Explanatory

Variables

We discuss two approaches and then apply both approaches to an example. The first approach

is based on the following idea: If we have the appropriate predictive variables in a multiple

regression equation, plus possibly some other variables that have no predictive power, then the

residual mean square for the model will estimate σ

2 the variability about the true regression line.
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On the other hand, if we do not contain enough predictive variables, the residual mean square

will contain additional variability due to the poor multiple regression fit and will tend to be too

large. We want to use this fact to allow us to get some idea of the number of variables needed in

the model. We do this in the following way. Suppose that we consider all possible predictions

for some fixed number, say p, of the total possible number of predictor variables. Suppose that

the correct predictive equation has a much smaller number of variables than p. Then when we

look at all of the different subsets of p predictor variables, most of them will contain the correct

variables for the predictive equation plus other variables that are not needed. In this case, the

mean square residual will be an estimate of σ

2. If we average all of the mean square residuals for

the equations with p variables, since most of them will contain the correct predictive variables,

we should get an estimate fairly close to σ

2. We examine the mean square residuals by plotting

the average mean square residuals for all the regression equations using p variables vs. p. As

p becomes large, this average value should tend to level off at the true residual variability. By

drawing a horizontal line at approximately the value where things average out, we can get some

idea of the residual variability. We would then search for a simple model that has approximately

this asymptotic estimate of σ

2. That is, we expect a picture such as Figure 11.1.

The second approach, due to C. L. Mallows, is called Mallow’s C

p

statistic. In this case,

let p equal the number of predictive variables in the model, plus one. This is a change from

the preceding paragraph, where p was the number of predictive variables. The switch to this

notation is made because in the literature for Mallow’s C

p

, this is the value used. The statistic

is as follows:

C

p

(model with p − 1 explanatory variables)

=

SSRESID(model)

MSRESID(using all possible predictors)
− (N − 2p)

where MSRESID (using all possible predictors) is the residual mean square when the dependent

variable Y is regressed on all possible independent predictors; SSRESID (model) is the residual

sum of squares for the possible model being considered (this model uses p − 1 explanatory

variables), N is the total number of observations, and p is the number of explanatory variables

in the model plus one.

To use Mallow’s C

p

, we compute the value of C

p

for each possible subset of explanatory

variables. The points (C
p

, p) are then plotted for each possible model. The following facts about

the C

p

statistics are true:

1. If the model fits, the expected value for each C

p

is approximately p.

2. If C

p

is larger than p, the difference, C

p

− p, gives approximately the amount of bias

in the sum of squares involved in the estimation. The bias occurs because the estimating
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Figure 11.1 Average residual mean square as a function of the number of predictive variables.
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predictive equation is not the true equation and thus estimates something other than the

correct Y value.

3. The value of C

p

itself gives an overall estimate of the sum of the squares of the average

difference between correct Y values and the Y values predicted from the model. This

difference is composed of two parts, one part due to bias because the estimating equation

is not correct (and cannot be correct if the wrong variables are included), and a second

part because of variability in the estimate. If the expected value of Y may be modeled by

a few variables, there is a cost to adding more variables to the estimation procedure. In

this case, statistical noise enters into the estimation of the additional variables, so that by

using the more complex estimated predictive equation, future predictions would be off by

more.

4. Thus what we would like to look for in our plot is a value C

p

that is close to the 45◦ line,

C

p

= p. Such a value would have a low bias. Further, we would like the value of C

p

itself to be small, so that the total error sum of squares is not large. The nicest possible

case occurs when we can more or less satisfy both demands at the same time.

5. If we have to choose between a C

p

value, which is close to p, or one that is smaller

but above p, we are choosing between an equation that has a small bias (when C

p

= p)

but in further prediction is likely to have a larger predictive error, and a second equation

(the smaller value for C

p

) which in the future prediction is more likely to be close to the

true value but where we think that the estimated predictive equation is probably biased.

Depending on the use of the model, the trade-off between these two ills may or may not

be clearcut.

Example 11.1. (continued ) In this example we return to the data of Cullen and van Belle

[1975]. We shall consider the response variable, DPMA, which is the disintegrations per minute

of lymphocytes after the surgery. The viability of the lymphocytes was measured in terms of

the uptake of nutrients that were labeled radioactively. A large number of disintegrations per

minute suggests a high cell division rate, and thus active lymphocytes. The potential predictive

variables for explaining the variability in DPMA are trauma factor (as discussed previously),

duration (as discussed previously), the disintegrations per minute before the surgery, labeled

DPMB, and the lymphocyte count in thousands per cubic millimeter before the surgery, lymphb,

as well as the lymphocyte count in thousands per cubic millimeter after the surgery, lympha.

Let these variables have the following labels: Y = DPMA; X1 = duration; X2 = trauma;

X3 = DPMB; X4 = lymphb; X5 = lympha.

Table 11.11 presents the results for the 32 possible regression runs using subsets of the five

predictor variables. For each run the value of p, C

p

, the residual mean square, the average

residual mean square for runs with the same number of variables, the multiple R

2, and the

adjusted R

2, R

2
a

, are presented. For a given number of variables, the entries are ordered in terms

of increasing values of C

p

. Note several things in Table 11.11. For a fixed number, p − 1, of

predictor variables, if we look at the values for C

p

, the residual mean square, R

2, and R

2
a

, we see

that as C

p

increases, the residual mean square increases while R

2 and R

2
a

decrease. This relation-

ship is a mathematical fact. Thus, if we know how many predictor variables, p, we want in our

equation, any of the following six criteria for the best subset of predictor variables are equivalent:

1. Pick the predictive equation with a minimum value of C

p

.

2. Pick the predictive equation with the minimum value of the residual mean square.

3. Pick the predictive equation with the maximum value of the multiple correlation coeffi-

cient, R

2.

4. Pick the predictive equation with the maximum value of the adjusted multiple correlation

coefficient, R

2
a

.

5. Pick the predictive equation with a maximum sum of squares due to regression.

6. Pick the predictive equation with the minimum sum of squares for the residual variability.
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Table 11.11 Results from the 32 Regression Runs on the Anesthesia Data of Cullen and van Belle

[1975]

Numbers of

Explanatory Variables Residual Residual Average

in Predictive Equation p C

p

Mean Square Mean Square R

2
R

2
a

None 1 60.75 4047 4047 0 0

3 2 5.98 1645 0.606 0.594

1 49.45 3578 0.142 0.116

2 57.12 3919 3476 0.060 0.032

4 60.48 4069 0.024 −0.005

5 62.70 4168 0.000+ −0.030

2,3 3 2.48 1444 0.664 0.643

1,3 2.82 1459 0.661 0.639

3,5 6.26 1617 0.624 0.600

3,4 6.91 1647 0.617 0.593

1,4 48.37 3549 2922 0.175 0.123

1,2 51.06 3672 0.146 0.093

1,5 51.43 3689 0.142 0.088

2,4 56.32 3914 0.090 0.033

2,5 59.10 4041 0.060 0.001

4,5 62.39 4192 0.024 −0.036

2,3,4 4 3.03 1422 0.680 0.648

1,3,4 3.32 1435 0.677 0.645

1,3,5 3.36 1438 0.676 0.645

2,3,5 3.52 1445 0.674 0.643

1,2,3 3.96 1466 2396 0.670 0.639

3,4,5 7.88 1651 0.628 0.592

1,2,4 50.03 3647 0.178 0.099

1,4,5 50.15 3653 0.177 0.097

1,2,5 52.98 3787 0.146 0.064

2,4,5 57.75 4013 0.096 0.008

1,2,3,4 5 4.44 1440 0.686 0.644

1,3,4,5 4.64 1450 0.684 0.642

2,3,4,5 4.69 1453 1913 0.683 0.641

1,2,3,5 4.83 1460 0.682 0.640

1,2,4,5 51.91 3763 0.180 0.070

1,2,3,4,5 6 6 1468 1468 0.691 0.637

The C

p

data are more easily assimilated if we plot them. Figure 11.2 is a C

p

plot for these

data. The line C

p

= p is drawn for reference. Recall that points near this line have little bias in

terms of the fit of the model; for points above this line we have biased estimates of the regression

equation. We see that there are a number of models that have little bias. All things being equal,

we prefer as small a C

p

value as possible, since this is an estimate of the amount of variability

between the true values and predicted values, which takes into account two components, the bias

in the estimate of the regression line as well as the residual variability due to estimation. For

this plot we are in the fortunate position of the lowest C

p

value showing no bias. In addition, a

minimal number of variables are involved. This point is circled, and going back to Table 11.11,

corresponds to a model with p = 3, that is, two predictor variables. They are variables 2 and

3, the trauma variable, and DPMB, the lymphocyte count in thousands per cubic millimeters

before the surgery. This is the model we would select using Mallow’s C

p

approach.

We now turn to the average residual mean square plot to see if that would help us to decide

how many variables to use. Figure 11.3 gives this plot. We can see that this plot does not level
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Figure 11.2 Mallow’s C

p

plot for the data of Cullen and van Belle [1975]. Only points with C

p

< 8 are

plotted.
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Figure 11.3 Average mean square plot for the Cullen and van Belle data [1975].
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out but decreases until we have five variables. Thus this plot does not help us to decide on

the number of variables we might consider in the final equation. If we look at Table 11.11,

we can see why this happens. Since the final model has two predictive variables, even with

three variables, many of the subsets, namely four, do not include the most predictive variable,

variable 3, and thus have very large mean squares. We have not considered enough variables in

the model above and beyond the final model for the curve to level out. With a relatively small

number of potential predictor variables, five in this model, the average residual mean square

plot is usually not useful.

Suppose that we have too many predictor variables to consider all combinations; or suppose

that we are worried about the problem of looking at the huge number of possible combinations

because we feel that the multiple comparisons may allow random variability to have too much

effect. In this case, how might we proceed? In the next section we discuss one approach to this

problem.

11.6.3 Stepwise Procedures

In this section we consider building a multiple regression model variable by variable.

Step 1

Suppose that we have a dependent variable Y and a set of potential predictor variables, X

i

,

and that we try to explain the variability in Y by choosing only one of the predictor variables.

Which would we want? It is natural to choose the variable that has the largest squared correlation

with the dependent variable Y . Because of the relationships among the sums of squares, this is

equivalent to the following step.

Step 2

1. Choose i to maximize r

2
Y,X

i

.

2. Choose i to maximize SSREG(X

i

).

3. Choose i to minimize SSRESID(X

i

).

By renumbering our variables if necessary, we can assume that the variable we picked was

X1. Now suppose that we want to add one more variable, say X

i

, to X1, to give us as much

predictive power as possible. Which variable shall we add? Again we would like to maximize

the correlation between Y and the predicted value of Y , ̂

Y ; equivalently, we would like to

maximize the multiple correlation coefficient squared. Because of the relationships among the

sums of squares, this is equivalent to any of the following at this next step.

Step 3

X1 is in the model; we now find X

i

(i �= 1).

1. Choose i to maximize R

2
Y(X1,Xi

)

.

2. Choose i to maximize r

2
Y,X

i

.X1
.

3. Choose i to maximize SSREG(X1, Xi

).

4. Choose i to maximize SSREG(X

i

|X1).

5. Choose i to minimize SSRESID(X1, X

i

).

Our stepwise regression proceeds in this manner. Suppose that j variables have entered.

By renumbering our variables if necessary, we can assume without loss of generality that the

variables that have entered the predictive equation are X1, . . . , X

j

. If we are to add one more
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variable to the predictive equation, which variable might we add? As before, we would like to

add the variable that makes the correlation between Y and the predictor variables as large as

possible. Again, because of the relationships between the sums of squares, this is equivalent to

any of the following:

Step j + 1

X1, . . . , X

j

are in the model; we want X

i

(i �= 1, . . . , j).

1. Choose i to maximize R

2
Y(X1,... ,Xj

,X

i

)

.

2. Choose i to maximize r

2
Y,X

i

·X1,... ,Xj

.

3. Choose i to maximize SSREG(X1, . . . , X

j

, X

i

).

4. Choose i to maximize SSREG(X

i

|X1, . . . , X

j

).

5. Choose i to minimize SSRESID(X1, . . . , X

j

, X

i

).

If we continue in this manner, eventually we will use all of the potential predictor variables.

Recall that our motivation was to select a simple model. Thus we would like a small model;

this means that we would like to stop at some step before we have included all of our potential

predictor variables. How long shall we go on including predictor variables in this model? There

are several mechanisms for stopping. We present the most widely used stopping rule. We would

not like to add a new variable if we cannot show statistically that it adds to the predictive power.

That is, if in the presence of the other variables already in the model, there is no statistically

significant relationship between the response variable and the next variable to be added, we

will stop adding new predictor variables. Thus, the most common method of stopping is to

test the significance of the partial correlation of the next variable and the response variable

Y after adjusting for the variables entered previously. We use the partial F -test as discussed

above. Commonly, the procedure is stopped when the p-value for the F level is greater than

some fixed level; often, the fixed level is taken to be 0.05. This is equivalent to testing the

statistical significance of the partial correlation coefficient. The partial F -statistic in the context

of regression analysis is also often called the F to enter, since the value of F , or equivalently

its p-value, is used as a criteria for entering the equation.

Since the F -statistic always has numerator degrees of freedom 1 and denominator degrees

of freedom n − j − 2, and n is usually much larger than j , the appropriate critical value is

effectively the F critical value with 1 and ∞ degrees of freedom. For this reason, rather than

using a p-value, often the entry criterion is to enter variables as long as the F -statistic itself is

greater than some fixed amount.

Summarizing, we stop when:

1. The p-value for r

2
Y,X

i

.X1,... ,Xj

is greater than a fixed level.

2. The partial F -statistic
SSREG(X

i

|X1, . . . , X

j

)

SSRESID(X1, . . . , X

j

, X

i

)/(n − j − 2)

is less than some specified value, or its p-value is greater than some fixed level.

All of this is summarized in Table 11.12; we illustrate by an example.

Example 11.3. (continued ) Consider the active female exercise data used above. We shall

perform a stepwise regression with VO2 MAX as the dependent variable and duration, maximum

heart rate, age, height, and weight as potential independent variables. Table 11.13 contains

a portion of the BMDP computer output for this run.
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Table 11.13 Stepwise Multiple Linear Regression for the Data of Example 11.3

STEP NO. 0

---------------

STD. ERROR OF EST. 4.9489

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE

RESIDUAL 1028.6670 42 24.49208

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 29.05349)

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

DUR 1 0.78601 1.00000 66.28 1

HR 3 0.33729 1.00000 5.26 1

AGE 4 −0.65099 1.00000 30.15 1

HT 5 −0.29942 1.00000 4.04 1

WT 6 −0.12618 1.00000 0.66 1

STEP NO. 1

--------------

VARIABLE ENTERED 1 DUR

MULTIPLE R 0.7860

MULTIPLE R-SQUARE 0.6178

ADJUSTED R-SQUARE 0.6085

STD. ERROR OF EST. 3.0966

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 635.51730 1 635.5173 66.28

RESIDUAL 393.15010 41 9.589027

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 3.15880)

DUR 1 0.05029 0.0062 0.786 1.00000 66.28 1

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

HR 3 −0.14731 0.72170 0.89 1

AGE 4 −0.24403 0.52510 2.53 1

HT 5 0.01597 0.86364 0.01 1

WT 6 −0.32457 0.99123 4.71 1

(continued overleaf )
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Table 11.13 (continued)

STEP NO. 2

--------------

VARIABLE ENTERED 6 WT

MULTIPLE R 0.8112

MULTIPLE R-SQUARE 0.6581

ADJUSTED R-SQUARE 0.6410

STD. ERROR OF EST. 2.9654

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F RATIO

REGRESSION 676.93490 2 338.4675 38.49

RESIDUAL 351.73250 40 8.793311

VARIABLES IN EQUATION FOR VO2MAX

STD. ERROR STD REG F

VARIABLE COEFFICIENT OF COEFF COEFF TOLERANCE TO REMOVE LEVEL

(Y-INTERCEPT 10.30026)

DUR 1 0.05150 0.0059 0.805 0.99123 75.12 1

WT 6 −0.12659 0.0583 −0.202 0.99123 4.71 1

VARIABLES NOT IN EQUATION

PARTIAL F

VARIABLE CORR. TOLERANCE TO ENTER LEVEL

HR 3 −0.08377 0.68819 0.28 1

AGE 4 −0.24750 0.52459 2.54 1

HT 5 0.20922 0.66111 1.79 1

The 0.05 F critical value with degrees of freedom 1 and 42 is approximately 4.07. Thus

at step 0, duration, maximum heart rate, and age are all statistically significantly related to the

dependent variable VO2 MAX.

We see this by examining the F -to-enter column in the output from step 0. This is the

F -statistic for the square of the correlation between the individual variable and the dependent

variable. In step 0 up on the left, we see the analysis of variance table with only the constant

coefficient. Under partial correlation we have the correlation between each variable and the

dependent variable. At the first step, the computer program scans the possible predictor variables

to see which has the highest absolute value of the correlation with the dependent variable. This

is equivalent to choosing the largest F -to-enter. We see that this variable is duration. In step 1,

duration has entered the predictive equation. Up on the left, we see the multiple R, which

in this case is simply the correlation between the VO2 MAX and duration variables, the value

for R

2, and the standard error of the estimate; this is the estimated standard deviation about

the regression line. This value squared is the mean square for the residual, or the estimate

for σ

2 if this is the correct model. Below this is the analysis of variance table, and below

this, the value of the regression coefficient, 0.050, for the duration variable. The standard

error of the regression coefficient is then given. The standardized regression coefficient is the

value of the regression coefficient if we had replaced duration by its standardized value.

The value F -to-remove in a stepwise regression is the statistical significance of the partial

correlation between the variable in the model and the dependent variable when adjusting for other

variables in the model. The left-hand side lists the variables not already in the equation. Again
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we have the partial correlations between the potential predictor variables and the dependent

variable after adjusting for the variables in the model, in this case one variable, duration.

Let us focus on the variable age at step 0 and at step 1. In step 0 there was a very highly

statistically significant relationship between VO2 MAX and age, the F -value being 30.15. After

duration enters the predictive equation, in step 1 we see that the statistical significance has

disappeared, with the F -to-enter decreasing to 2.53. This occurs because age is very closely

related to duration and is also highly related to VO2 MAX. The explanatory power of age may,

equivalently, be explained by the explanatory power of duration. We see that when a variable

does not enter a predictive model, this does not mean that the variable is not related to the

dependent variable but possibly that other variables in the model can account for its predictive

power. An equivalent way of viewing this is that the partial correlation has dropped from −0.65

to −0.24. There is another column labeled “tolerance”. The tolerance is 1 minus the square of

the multiple correlation between the particular variable being considered and all of the variables

already in the stepwise equation. Recall that if this correlation is large, it is very difficult to

estimate the regression coefficient [see equation (14)]. The tolerance is the term (1 − R

2
j

) in

equation (14). If the tolerance becomes too small, the numerical accuracy of the model is in

doubt.

In step 1, scanning the F -to-enter column, we see the variable weight, which is statistically

significantly related to VO2 MAX at the 5% level. This variable enters at step 2. After this

variable has entered, there are no statistically significant relationships left between the variables

not in the equation and the dependent variable after adjusting for the variables in the model.

The stepwise regression would stop at this point unless directed to do otherwise.

It is possible to modify the stepwise procedure so that rather than starting with 0 variables and

building up, we start with all potential predictive variables in the equation and work down. In

this case, at the first step we discard from the model the variable whose regression coefficient has

the largest p-value, or equivalently, the variable whose correlation with the dependent variable

after adjusting for the other variables in the model is as small as possible. At each step, this

process continues removing a variable as long as there are variables to remove from the model

that are not statistically significantly related to the response variable at some particular level.

The procedure of adding in variables that we have discussed in this chapter is called a step-up

stepwise procedure, while the opposite procedure of removing variables is called a step-down

stepwise procedure. Further, as the model keeps building, it may be that a variable entered earlier

in the stepwise procedure no longer is statistically significantly related to the dependent variable

in the presence of the other variables. For this reason, when performing a step-up regression,

most regression programs have the ability at each step to remove variables that are no longer

statistically significant. All of this aims at a simple model (in terms of the number of variables)

which explains as much of the variability as possible. The step-up and step-down procedures

do not look at as many alternatives as the C

p

plot procedure, and thus may not be as prone to

overfitting the data because of the many models considered. If we perform a step-up or step-

down fit for the anesthesia data discussed above, the resulting model is the same as the model

picked by the C

p

plot.

11.7 POLYNOMIAL REGRESSION

We motivate this section by an example. Consider the data of Bruce et al. [1973] for 44 active

males with a maximal exercise treadmill test. The oxygen consumption VO2 MAX was regressed

on, or explained by, the age of the participants. Figure 11.4 shows the residual plot.

Examination of the residual plot shows that the majority of the points on the left are positive

with a downward trend. The points on the right have generally higher values with an upward

trend. This suggests that possibly the simple linear regression model does not fit the data well.
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Figure 11.4 Residual plot of the regression of VO2 MAX on age, active males.

The fact that the residuals come down and then go up suggests that possibly rather than being

linear, the regression curve should be a second-order curve, such as

Y = a + b1X + b2X
2
+ e

Note that this equation looks like a multiple linear regression equation. We could write this

equation as a multiple regression equation,

Y = a + b1X1 + b2X2 + e

with X1 = X and X2 = X

2. This simple observation allows us to fit polynomial equations to data

by using multiple linear regression techniques. Observe what we are doing with multiple linear

regression: The equation must be linear in the unknown parameters, but we may insert known

functions of an explanatory variable. If we create the new variables X1 = X and X2 = X

2 and

run a multiple regression program, we find the following results:

t-statistic

Variable or Constant b
j

SE(b
j
) (t41,0.975

.
= 2.02)

Age −1.573 0.452 −3.484

Age2 0.011 0.005 2.344

Constant 89.797 11.023

We note that both terms age and age2 are statistically significant. Recall that the t-test for the

age2 term is equivalent to the partial correlation of the age squared, with VO2 MAX adjusting

for the effect of age. This is equivalent to considering the hypothesis of linear regression nested

within the hypothesis of quadratic regression. Thus, we reject the hypothesis of linear regression
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and could use this quadratic regression formula. A plot of the residuals using the quadratic

regression shows no particular trend and is not presented here. One might wonder, now that we

have a second-order term, whether perhaps a third-order term might help the situation. If we

run a multiple regression with three variables (X3 = X

3
), the following results obtain:

t-statistic

Variable or Constant b
j

SE(b
j
) (t40,0.975

.

= 2.02)

Age −0.0629 2.3971 −0.0264

Age2
−0.0203 0.0486 −0.4175

Age3 0.0002 0.0003 0.6417

Constant 1384.49 783.15

Since the age3 term, which tests the nested hypothesis of the quadratic equation within the

cubic equation, is nonsignificant, we may accept the quadratic equation as appropriate.

Figure 11.5 is a scatter diagram of the data as well as the linear and quadratic curves. Note

that the quadratic curve is higher at the younger ages and levels off more around 50 to 60.

Within the high range of the data, the quadratic or second-order curve increases. This may be

an artifact of the curve fitting because all physiological knowledge tells us that the capacity for

conditioning does not increase with age, although some subjects may improve their exercise

performance with extra training. Thus, the second-order curve would seem to indicate that in

a population of healthy active males, the decrease in VO2 MAX consumption is not as rapid at

the higher ages as at the lower ages. This is contrary to the impression that one would get from

a linear fit. One would not, however, want to use the quadratic curve to extrapolate beyond or

even to the far end of the data in this particular example.

We see that the real restrictions of multiple regression is not that the equation be linear in

the variables observed, but rather that it be linear in the unknown coefficients. The coefficients
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Figure 11.5 Active males with treadmill test: linear (solid line) and quadratic (dashed line) fits. (From

Bruce et al. [1973].)
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may be multiplied by known functions of the observed variables; this makes a variety of models

possible. For example, with two variables we could also consider as an alternative to a linear

fit (as given below) a second-order equation or polynomial in two variables:

Y = a + b1X1 + b2X2 + e

(linear in X1 and X2), and

Y = a + b1X1 + b2X2 + b3X
2
1 + b4X1X2 + b5X

2
2 + e

(a second-order polynomial in X1 and X2).

Other functions of variables may be used. For example, if we observe a response that we

believe is a periodic function of the variable X with a period of length L, we might try an

equation of the form

Y = a + b1 sin
πX

L

+ b2 cos
πX

L

+ b3 sin
2πX

L

+ b4 cos
2πX

L

+ e

The important point to remember is that not only can polynomials in variables be fit, but any

model may be fit where the response is a linear function of known functions of the variables

involved.

11.8 GOODNESS-OF-FIT CONSIDERATIONS

As in the one-dimensional case, we need to check the fit of the regression model. We need to

see that the form of the model roughly fits the data observed; if we are engaged in statistical

inference, we need to see that the error distribution looks approximately normal. As in simple

linear regression, one or two outliers can greatly skew the results; also, an inappropriate func-

tional form can give misleading conclusions. In doing multiple regression it is harder than in

simple linear regression to check the assumptions because there are more variables involved.

We do not have nice two-dimensional plots that display our data completely. In this section we

discuss some of the ways in which multiple regression models may be examined.

11.8.1 Residual Plots and Normal Probability Plots

In the multiple regression situation, a variety of plots may be useful. We discussed in Chapter 9

the residual plots of the predicted value for Y vs. the residual. Also useful is a normal probability

plot of the residuals. This is useful for detecting outliers and for examining the normality

assumption. Plots of the residual as a function of the independent or explanatory variables may

point out a need for quadratic terms or for some other functional form. It is useful to have such

plots even for potential predictor variables not entered into the predictive equation; they might

be omitted because they are related to the response variable in a nonlinear fashion. This might

be revealed by such residual plots.

Example 11.3. (continued ) We return to the healthy normal active females. Recall that the

VO2 MAX in a stepwise regression was predicted by duration and weight. Other variables

considered were maximum heart rate, age, and height. We now examine some of the residual

plots as well as normal probability plots. The left panel of Figure 11.6 is a plot of residuals vs.

fitted values. The residuals look fairly good except for the point circled on the right-hand margin,

which lies farther from the value of zero than the rest of the points. The right-hand panel gives

the square of the residuals. These values will have approximately a chi-square distribution with
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Figure 11.6 Residual plots.

one degree of freedom if normality holds. If the model is correct, there will not be a change

in the variance with increasing predicted values. There is no systematic change here. However,

once again the one value has a large deviation.

Figure 11.7 gives the normal probability plot for the residuals. In this output, the values

predicted are on the horizontal axis rather than on the vertical axis, as plotted previously. Again,

the residuals look quite nice except for the point on the far left; this point corresponds to the

circled value in Figure 11.6. This raises the possibility of rerunning the analysis omitting the

one outlier to see what effect it had on the analysis. We discuss this below after reviewing more

graphical data.

Figures 11.8 to 11.12 deal with the residual values as a function of the five potential predictor

variables. In each figure the left-hand panel presents the observed and predicted values for the

data points and the right-hand panel for the observed values of those data present the residual

values. In Figure 11.7, for duration, note that the values predicted are almost linear. This is

because most of the predictive power comes from the duration variable, so that the value

predicted is not far removed from a linear function of duration. The residual plot looks nice,

with the possible exception of the outlier. In Figure 11.8, with respect to weight, we have the

same sort of behavior as we do in the last three figures for age, maximal heart rate, and

height. In no case does there appear to be systematic unexplained variability than might be

explained by adding a quadratic term or other terms to the equation.

If we rerun these data removing the potential outlier, the results change as given below.

All Data Removing the Outlier Point

Variable or Constant b
j

t b
j

t

duration 0.0515 8.67 0.0544 10.17

weight −0.127 −2.17 −0.105 −2.02

Constant 10.300 7.704
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Figure 11.8 Duration vs. residual plots.
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Figure 11.9 Weight vs. residual plots.
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Figure 11.10 Age vs. residual plots.

We see a moderate change in the coefficient for weight; the change increases the importance

of duration. The t statistic for weight is now right on the precise edge of statistical significance

of the 0.05 level. Thus, although the original model did not mislead us, part of the contribution

from weight came from the data point that was removed. This brings up the issue of how

such data might be presented in a scientific paper or talk. One possibility would be to present

both results and discuss the issue. The removal of outlying values may allow one to get a
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Figure 11.11 Maximum heart rate vs. residual plots.
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Figure 11.12 Height vs. residual plots.

closer fit to the data, and in this case the residual variability decreased from an estimated σ

2

of 2.97 to 2.64. Still, if the outlier is not considered to be due to bad data, but rather is due

to an exceptional individual, in applying such relationships, other exceptional individuals may

be expected to appear. In such cases, interpretation necessarily becomes complex. This shows,

again, that although there is a nice precision to significance levels, in practice, interpretation of

the statistical analysis is an art as well as a science.
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11.8.2 Nesting in More Global Hypothesis

Since it is difficult to inspect multidimensional data visually, one possibility for testing the

model fit is to embed the model in a more global hypothesis; that is, nest the model used within

a more general model. One example of this would be adding quadratic terms and cross-product

terms as discussed in Section 11.7. The number of such possible terms goes up greatly as the

number of variables increases; this luxury is available only when there is a considerable amount

of data.

11.8.3 Splitting the Samples; Jackknife Procedures

An estimated equation will fit data better than the true population equation because the estimate

is designed to fit the data at hand. One way to get an estimate of the precision in a multi-

ple regression model is to split the sample size into halves at random. One can estimate the

parameters from one-half of the data and then predict the values for the remaining unused half

of the data. The evaluation of the fit can be performed using the other half of the data. This

gives an unbiased estimate of the appropriateness of the fit and the precision. There is, however,

the problem that one-half of the data is “wasted” by not being used for the estimation of the

parameters. This may be overcome by estimating the precision in this split-sampling manner

but then presenting final estimates based on the entire data set.

Another approach, which allows more precision in the estimate, is to delete subsets of the

data and to estimate the model on the remaining data; one then tests the fit on the smaller

subsets removed. If this is done systematically, for example by removing one data point at a

time, estimating the model using the remaining data and then examining the fit to the data point

omitted, the procedure is called a jackknife procedure (see Efron [1982]). Resampling from the

observed data, the bootstrap method may also be used [Efron and Tibshirani, 1986]. We will

not go further into such issues here.

11.9 ANALYSIS OF COVARIANCE

11.9.1 Need for the Analysis of Covariance

In Chapter 10 we considered the analysis of variance. Associated with categorical classification

variables, we had a continuous response. Let us consider the simplest case, where we have

a one-way analysis of variance consisting of two groups. Suppose that there is a continuous

variable X in the background: a covariate. For example, the distribution of the variable X may

differ between the groups, or the response may be very closely related to the value for the

variable X. Suppose further that the variable X may be considered a more fundamental cause of

the response pattern than the grouping variable. We illustrate some of the potential complications

by two figures.

On the left-hand side of Figure 11.13, suppose that we have data as shown. The solid circles

show the response values for group 1 and the crosses the response values for group 2. There

is clearly a difference in response between the two groups. Suppose that we think that it is not

the grouping variable that is responsible but the covariate X. On the right-hand side we see

a possible pattern that could lead to the response pattern given. In this case we see that the

observations from both groups 1 and 2 have the same response pattern when the value of X

is taken into account; that is, they both fall around one fixed regression line. In this case, the

difference observed between the groups may alternatively be explained because they differ in

the covariate value X. Thus in certain situations, in the analysis of variance one would like to

adjust for potential differing values of a covariate. Another way of stating the same thing is: In

certain analysis of variance situations there is a need to remove potential bias, due to the fact

that categories differ in their values of a covariate X. (See also Section 11.5.)
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Figure 11.13 One-way analysis of variance with two categories: group difference because of bias due to

different distribution on the covariate X.

δ

Figure 11.14 Two groups with close distribution on the covariate X. By using the relationship of the

response to X separately in each group, a group difference obscured by the variation in X is revealed.

Figure 11.14 shows a pattern of observations on the left for groups 1 and 2. There is no

difference between the response in the groups given the variability of the observations. Consider

the same points, however, where we consider the relationship to a covariate X as plotted on the

right. The right-hand figure shows that the two groups have parallel regression lines that differ by

an amount delta. Thus for a fixed value of the covariate X, on the average, the observations from

the two groups differ. In this plot, there is clearly a statistically significant difference between
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the two groups because their regression lines will clearly have different intercepts. Although the

two groups have approximately the same distribution of the covariate values, if we consider the

covariate we are able to improve the precision of the comparison between the two groups. On

the left, most of the variability is not due to intrinsic variability within the groups, but rather

is due to the variability in the covariate X. On the right, when the covariate X is taken into

account, we can see that there is a difference. Thus a second reason for considering covariates

in the analysis of variance is: Consideration of a covariate may improve the precision of the

comparison of the categories in the analysis of variance.

In this section we consider methods that allow one or more covariates to be taken into

account when performing an analysis of variance. Because we take into account those variables

that vary with the variables of interest, the models and the technique are called the analysis of

covariance.

11.9.2 Analysis of Covariance Model

In this section we consider the one-way analysis of covariance. This is a sufficient introduction

to the subject so that more general analysis of variance models with covariates can then be

approached.

In the one-way analysis of covariance, we observe a continuous response for each of a fixed

number of categories. Suppose that the analysis of variance model is

Y

ij

= µ + α

i

+ ε

ij

where i = 1, . . . , I indexes the I categories; α

i

, the category effect, satisfies
∑

i

α

i

= 0; and

j = 1, . . . , n

i

indexes the observations in the ith category. The ε

ij

are independent N(0, σ

2
)

random variables.

Suppose now that we wish to take into account the effect of the continuous covariate X. As

in Figures 11.13 and 11.14, we suppose that the response is linearly related to X, where the

slope of the regression line, γ , is the same for each of the categories (see Figure 11.15). That

is, our analysis of covariance model is

Y

ij

= µ + α

i

+ γX

ij

+ ε

ij

(20)

with the assumptions as before.

Although we do not pursue the matter, the analogous analysis of covariance model for the

two-way analysis of variance without interaction may be given by

Y

ijk

= µ + α

i

+ β

j

+ γX

ijk

+ ε

ijk

Analysis of covariance models easily generalize to include more than one covariate. For example,

if there are p covariates to adjust for, the appropriate equation is

Y

ij

= µ + α

i

+ γ1Xij

(1) + γ2Xij

(2) + · · · + γ

p

X

ij

(p) + ε

ij

where X

ij

(k) is the value for the kth covariate when the observation comes from the ith category

and the j th observation in that category. Further, if the response is not linear, one may model a

different form of the response. For example, the following equation models a quadratic response

to the covariate X

ij

:

Y

ij

= µ + α

i

+ γ1Xij

+ γ2X
2
ij

+ ǫ

ij

In each case in the analysis of covariance, the assumption is that the response to the covariates

is the same within each of the strata or cells for the analysis of covariance.
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Figure 11.15 Parallel regression curves are assumed in the analysis of covariance.

It is possible to perform both the analysis of variance and the analysis of covariance by using

the methods of multiple linear regression analysis, as given earlier in this chapter. The trick to

thinking of an analysis of variance problem as a multiple regression problem is to use dummy

or indicator variables, which allow us to consider the unknown parameters in the analysis of

variance to be parameters in a multiple regression model.

Definition 11.11. A dummy, or indicator variable for a category or condition is a variable

taking the value 1 if the observation comes from the category or satisfies the condition; otherwise,

taking the value zero.

We illustrate this definition with two examples. A dummy variable for the male gender is

X =

{

1, if the subject is male

0, otherwise

A series of dummy variables for blood types (A, B, AB, O) are

X1 =

{

1, if the blood type is A

0, otherwise

X2 =

{

1, if the blood type is B

0, otherwise

X3 =

{

1, if the blood type is AB

0, otherwise

X4 =

{

1, if the blood type is O

0, otherwise

By using dummy variables, analysis of variance models may be turned into multiple regression

models. We illustrate this by an example.
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Consider a one-way analysis of variance with three groups. Suppose that we have two

observations in each of the first two groups and three observations in the third group. Our

model is
Y

ij

= µ + α

i

+ ε

ij

(21)

where i denotes the group and j the observation within the group. Our data are Y11, Y12, Y21,

Y22, Y31, Y32, and Y33. Let X1, X2, and X3 be indicator variables for the three categories.

X1 =

{

1, if the observation is in group 1

0, otherwise

X2 =

{

1, if the observation is in group 2

0, otherwise

X3 =

{

1, if the observation is in group 3

0, otherwise

Then equation (21) becomes (omitting subscript on Y and e)

Y = µ + α1X1 + α2X2 + α3X3 + ε (22)

Note that X1, X2, and X3 are related. If X1 = 0 and X2 = 0, then X3 must be 1. Hence there

are only two independent dummy variables. In general, for k groups there are k −1 independent

dummy variables. This is another illustration of the fact that the k treatment effects in the one-

way analysis of variance have k−1 degrees of freedom. Our data, renumbering the Y

ij

to be Y

k

,

k = 1, . . . , 7, are given in Table 11.14. For technical reasons, we do not estimate equation (22).

Since
∑

i

X

i

= 1, R

2
X1(X2,X3)

= 1

Recall that we cannot estimate regression coefficients well if the multiple correlation is near 1.

Instead, an equivalent model

Y = δ + γ1X1 + γ2X2 + ǫ

is used. Here δ = µ + α3, γ1 = α1 − α3, and γ2 = α2 − α3. That is, all effects are compared

relative to group 3. We may now use a multiple regression program to perform the one-way

analysis of variance.

To move to an analysis of covariance, we use Y = δ+γ1X1 +γ2X2 +βX+ǫ, where X is the

covariate. If there is no group effect, we have the same expected value (for fixed X) regardless

of the group; that is, γ1 = γ2 = 0.

Table 11.14 Data Using

Dummy Variables

Y

k

Y

ij

X1 X2 X3

Y1 Y11 1 0 0

Y2 Y12 1 0 0

Y3 Y21 0 1 0

Y4 Y22 0 1 0

Y5 Y31 0 0 1

Y6 Y32 0 0 1

Y7 Y33 0 0 1
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More generally, for I groups the model is

Y = δ + γ1X1 + · · · + γ

I−1XI−1 + βX + ǫ

The null hypothesis is H0:γ1 = γ2 = · · · = γ

I−1 = 0. This is tested using nested hypotheses.

Let SSREG(X) be the regression sum of squares for the model Y = δ + βX + e. Let

SSREG(γ |X) = SSREG(X1, . . . , X

I−1, X) − SSREG(X)

and

SSRESID(γ, X) = SSTOTAL − SSREG(X1, . . . , X

I−1, X)

The analysis of covariance table is:

Source d.f. SS MS F -Ratio

Regression on X 1 SSREG(X) MSREG(X)

MSREG(X)

MSRESID

Groups adjusted for X I − 1 SSREG(γ |X) MSREG(γ |X)

MSREG(γ |X)

MSRESID

Residual n − I − 1 SSRESID(γ |X) MSRESID

Total n − 1 SSTOTAL

The F -test for the equality of group means has I − 1 and n − I − 1 degrees of freedom. If

there is a statistically significant group effect, there is an interest in the separation of the parallel

regression lines. The regression lines are:

Group Line

1 ̂

δ + γ̂1 + ̂

βX

2 ̂

δ + γ̂2 + ̂

βX

.

.

.

.

.

.

I − 1 ̂

δ + γ̂

I−1 + ̂

βX

I

̂

δ + ̂

βX

where the “hat” denotes the usual least squares multiple regression estimate. Customarily, these

values are calculated for X equal to the average X value over all the observations. These

values are called adjusted means for the group. This is in contrast to the mean observed for the

observations in each group. Note again that group I is the reference group. It may sometimes

be useful to rearrange the groups to have a specific group be the reference group. For example,

suppose that there are three treatment groups and one reference group. Then the effects γ1, γ2,

and γ3 are, naturally, the treatment effects relative to the reference group.

We illustrate these ideas with two examples. In each example there are two groups (I = 2)

and one covariate for adjustment.

Example 11.1. (continued ) The data of Cullen and van Belle [1975] are considered again.

In this case a larger set of data is used. One group received general anesthesia (n1 = 35)

and another group regional anesthesia (n2 = 42). The dependent variable, Y , is the percent
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Figure 11.16 Relationship of postoperative depression of lymphocyte transformation to the level of

trauma. Each point represents the response of one patient.

depression of lymphocyte transformation following surgery. The covariate, X, is the degree of

trauma of the surgical procedure.

Figure 11.16 shows the data with the estimated analysis of covariance regression lines. The

top line is the regression line for the general anesthesia group (which had a higher average

trauma, 2.4 vs. 1.4). The analysis of covariance table is:

Source d.f. SS MS F -Ratio

Regression on trauma 1 4,621.52 4,621.52 7.65

General vs. regional anesthesia

adjusted for trauma

1 1,249.78 1,249.78 2.06

Residual 74 44,788.09 605.24

Total 76 56,201.52

Note that trauma is significantly related to the percent depression of lymphocyte transforma-

tion, F = 7.65 > F1,74,0.95. In testing the adjusted group difference,

F = 2.06 < 3.97 = F1,74,0.95

so there is not a statistically significant difference between regional and general anesthesia after

adjusting for trauma.
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The two regression lines are

Y1 = 25.6000 + 8.4784(X − 2.3714)

Y2 = 6.7381 + 8.4784(X − 1.2619)

At the average value of X = 1.7552, the predicted or adjusted means are

̂

Y1 = 25.6000 + (−5.1311) = 20.47

̂

Y2 = 6.7381 + (4.2757) = 11.01

The original difference is Y 1· −Y 2· = 25.6000 − 6.7381 = 18.86. The adjusted (nonsignificant)

difference is ̂

Y1 − ̂

Y2 = 20.47 − 11.01 = 9.46, a considerable drop. In fact the unadjusted one-

way analysis of variance, or equivalently unpaired t-test, is significant: p < 0.01. The observed

difference may be due to bias in the differing amount of surgical trauma in the two groups.

Example 11.8. Do men and women use the same level of oxygen when their maximal

exercise limit is the same? The Bruce et al. [1973] maximal exercise data are used. The limit

of exercise is expressed by the duration on the treadmill. Thus we wish to know if there is a

VO2 MAX difference between genders when adjusting for the duration of exercise. The analysis

of covariance table is:

Source d.f. SS MS F -Ratio

Duration 1 6049.51 6049.51 504.97

Gender, adjusting for duration 1 229.83 229.83 19.18

Residual 84 1006.05 11.98

Total 86 7285.39

The gender difference is highly statistically significant after adjusting for the treadmill dura-

tion. The estimated regression lines are:

Females: VO2 MAX = −1.59 + 0.0595 × duration

Males: VO2 XMAX = 2.27 + 0.0595 × duration

The overall duration mean is 581.89. The means are:

VO2 MAX Means

Observed Adjusted

Female 29.05 33.03

Male 40.80 36.89

The fact that at maximum exercise normal males use more oxygen per unit of body weight

is not accounted for entirely by their average longer duration on the treadmill (647 s vs. 515 s).

Even when adjusting for duration, more oxygen per kilogram per minute is used.

Model assumptions may be tested by residual plots and normal probability plots as above.

One assumption was that the regression lines were parallel. This may be tested by using the

model (in the one-way anova)

Y = δ + γ1X1 + · · · + γ

I−1XI−1 + βX + β1X · X1 + · · · + β

I

X · X

I

+ ǫ
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If an observation is in group i(i = 1, . . . , I − 1), this reduces to

Y = δ + γ

i

+ β

i

X + ǫ

Nested within this model is the special case β1 = β2 = · · · = β

I

.

Source d.f. SS MS F -Ratio

Model with

γ1, . . . , γ

I−1, β

I SSREG

(γ1, . . . , γ

I−1)

MSREG(γ

′s)

Model with

γ1, . . . , γ

I−1,

β, β1, . . . , β

I

;

extra ss

I − 1 SSREG

(β1, . . . , β

I

|γ1,

. . . , γ

I−1, β)

MSREG(β

′

i

s|γ ′

i

s, β)

MSREG(β

′

i

s|γ ′

i

s, β)

MSRESID(γ

′

i

s, β ′

i

s)

Residual n − 2I SSRESID(γ1, . . . ,

γ

I−1, β1, . . . , β

I

)

MSRESID(γ

′

i

s, β ′

i

s)

Total n − 1 SSTOTAL

For the exercise test example, we have:

Source d.f. SS MS F -Ratio

Model with group, equal slopes, and

duration

2 6279.34 3139.67

Model with unequal slopes (minus SS

for nested equal-slope model)

1 29.40 29.40 2.50

Residual 83 976.65 11.77

Total 86 7285.39

As F = 2.50 < F1,83,0.95, the hypothesis of equal slopes (parallelism) is reasonable and the

analysis of covariance was appropriate. This use of a nested hypothesis is an example of the

method of Section 11.8.2 for testing the goodness of fit of a model.

11.10 ADDITIONAL REFERENCES AND DIRECTIONS FOR FURTHER STUDY

11.10.1 There Are Now Many References on Multiple Regression Methods

Draper and Smith [1981] present extensive coverage of the topics of this chapter, plus much

more material and a large number of examples with solutions. The text is on a more advanced

mathematical level, making use of matrix algebra. Kleinbaum and Kupper [1998] present mate-

rial on a level close to that of this chapter; taking more pages for the topics of this chapter,

they have a more leisurely presentation. The text is an excellent supplementary reference to the

material of this chapter. Another useful text is Daniel and Wood [1999].

11.10.2 Time-Series Data

It would appear that the multiple regression methods of this chapter would apply when one of

the explanatory variables is time. This may be true in certain limited cases, but it is not usually

true. Analyzing data with time as an independent variable is called time-series analysis. Often,

in time, the errors are dependent at different time points. Box, Jenkins, and Reinsel [1994] are

one source for time-series methods.



482 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

11.10.3 Causal Models: Structural Models and Path Analysis

In many studies, especially observational studies of human populations, one might conjecture

that certain variables contribute in a causal fashion to the value of another variable. For example,

age and gender might be hypothesized to contribute to hospital bed use, but not vice versa. In

a statistical analysis, bed use would be modeled as a linear function of age and gender plus

other unexplained variability. If only these three variables were considered, we would have a

multiple regression situation. Bed use with other variables might be considered an explanatory

variable for number of nursing days used. Structural models consist of a series of multiple

regression equations; the equations are selected to model conjectured causal pathways. The

models do not prove causality but can examine whether the data are consistent with certain

causal pathways.

Three books addressing structural models (from most elementary to more complex) are Li

[1975], Kaplan [2000], and Goldberger and Duncan [1973]. Issues of causality are addressed in

Blalock [1985], Cook et al. [2001], and Pearl [2000].

11.10.4 Multivariate Multiple Regression Models

In this chapter we have analyzed the response of one dependent variable as explained by a

linear relationship with multiple independent or predictor variables. In many circumstances

there are multiple (more than one) dependent variables whose behavior we want to explain in

terms of the independent variables. When the models are linear, the topic is called multivariate

multiple regression. The mathematical complexity increases, but in essence each dependent

variable is modeled by a separate linear equation. Morrison [1976] and Timm [1975] present

such models.

11.10.5 Nonlinear Regression Models

In certain fields it is not possible to express the response of the dependent variable as a linear

function of the independent variables. For example, in pharmacokinetics and compartmental

analysis, equations such as

Y = β1e
β2x

+ β3e
β4x

+ e

and

Y =

β1

x − β2
+ e

may arise where the β

i

’s are unknown coefficients and the e is an error (unexplained variability)

term. See van Belle et al. [1989] for an example of the latter equation. Further examples of

nonlinear regression equations are given in Chapters 13 and 16.

There are computer programs for estimating the unknown parameters.

1. The estimation proceeds by trying to get better and better approximations to the “best”

(maximum likelihood) estimates. Sometimes the programs do not come up with an esti-

mate; that is, they do not converge.

2. Estimation is much more expensive (in computer time) than it is in the linear models

program.

3. The interpretation of the models may be more difficult.

4. It is more difficult to check the fit of many of the models visually.
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NOTES

11.1 Least Squares Fit of the Multiple Regression Model

We use the sum of squares notation of Chapter 9. The regression coefficients b

j

are solutions

to the k equations

[x2
1 ]b1 + [x1x2]b2 + · · · + [x1xk

]b
k

= [x1y]

[x1x2]b1 + [x2
2 ]b2 + · · · + [x2xk

]b
k

= [x2y]

.

.

.

[x1xk

]b1 + [x2xk

]b2 + · · · + [x2
k

]b
k

= [x
k

y]

For readers familiar with matrix notation, we give a Y vector and covariate matrix.

Y =







Y1

.

.

.

Y

n






, X =











X11 · · · X1k

X21 · · · X2k

.

.

.

.

.

.

.

.

.

X

n1 · · · X

nk











The b

j

are given by






b1

.

.

.

b

k






= (X′X)

−1X′Y

where the prime denotes the matrix transpose and −1 denotes the matrix inverse. Once the b

j

’s

are known, a is given by

a = Y − (b1X1 + · · · + b

k

X

k

)

11.2 Multivariate Normal Distribution

The density function for multivariate normal distribution is given for those who know matrix

algebra. Consider jointly distributed variables

Z =







Z1

.

.

.

Z

p







written as a vector. Let the mean vector and covariance matrix be given by

µ =







E(Z1)

.

.

.

E(Z

p

)






, � =







var(Z1) cov(Z1, Z2) · · · cov(Z1, Zp

)

.

.

.

.

.

.

cov(Z

p

, Z1) · · · · · · var(Z
p

)







The density is

f (z1, . . . , z

p

) = (2π)

−p/2
|�|

−1/2 exp[−(Z − µ)

′

−1
∑

(Z − µ)/2]

where |�| is the determinant of � and −1 denotes the matrix inverse. See Graybill [2000] for

much more information about the multivariate normal distribution.
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Table 11.15 anova Table Incorporating Pure Error

Source d.f. SS MS F -Ratio

Regression p SSREG MSREG
MSREG

MSRESID

Residual n − p − 1 SSRESID MSRESID

∗Model ∗d.f.MODEL SSMODEL MSMODEL
MSMODEL

MSPURE ERROR
∗Pure error ∗d.f.PURE ERROR SSPURE ERROR MSPURE ERROR

Total n − 1 SSTOTAL

11.3 Pure Error

We have seen that it is difficult to test goodness of fit without knowing at least one large model

that fits the data. This allows estimation of the residual variability. There is a situation where one

can get an accurate estimate of the residual variability without any knowledge of an appropriate

model. Suppose that for some fixed value of the X

i

’s, there are repeated measurements of Y .

These Y variables will be multiple independent observations with the same mean and variance.

By subtracting the sample mean for the point in question, we can estimate the variance. More

generally, if more than one X

i

combination has multiple observations, we can pool the sum of

squares (as in one-way anova) to estimate the residual variability.

We now show how to partition the sum of squares. Suppose that there are K combinations of

the covariates X

i

for which we observe two or more Y values. Let Y

ik

denote the ith observation

(i = 1, 2, . . . , n

k

) at the kth covariate values. Let Y

k

be the mean of the Y

ik

:

Y

k

=

n

k

∑

i=1

Y

ik

n

k

We define the pure error sum of squares and model of squares as follows:

SSPURE ERROR =

K

∑

k=1

n

k

∑

i=1

(Y

ik

− Y

k

)

2

SSMODEL FIT = SSRESID − SSPURE ERROR

Also,

MSPURE ERROR =

SSPURE ERROR

d.f.PURE ERROR

MSMODEL FIT =

SSMODEL

d.f.MODEL

where

d.f.PURE ERROR =

K

∑

k=1

n

k

− K

d.f.MODEL = n + K −

K

∑

k=1

n

k

− p − 1

n is the total number of observations, and p is the number of covariates in the multiple regression

model. The analysis of variance table becomes that shown in Table 11.15. The terms with an
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asterisk further partition the residual sum of squares. The F -statistic MSMODEL/MSPURE ERROR

with d.f.MODEL and d.f.PURE ERROR degrees of freedom tests the model fit. If the model is not

rejected as unsuitable, the usual F -statistic tests whether or not the model has predictive power

(i.e., whether all the β

i

= 0).

PROBLEMS

Problems 11.1 to 11.7 deal with the fitting of one multiple regression equation. Perform each

of the following tasks as indicated. Note that various parts are from different sections of the

chapter. For example, tasks (e) and (f) are discussed in Section 11.8.

(a) Find the t-value for testing the statistical significance of each of the regres-

sion coefficients. Do we reject β

j

= 0 at the 5% significance level? At the 1%

significance level?

(b) i. Construct a 95% confidence interval for each β

j

.

ii. Construct a 99% confidence interval for each β

j

.

(c) Fill in the missing values in the analysis of variance table. Is the regression

significant at the 5% significance level? At the 1% significance level?

(d) Fill in the missing values in the partial table of observed, predicted, and residual

values.

(e) Plot the residual plot of Y vs. Y − ̂

Y . Interpret your plot.

(f) Plot the normal probability plot of the residual values. Do the residuals seem

reasonably normal?

11.1 The 94 sedentary males with treadmill tests of Problems 9.9 to 9.12 are considered

here. The dependent and independent variables were Y = VO2 MAX, X1 = duration,

X2 = maximum heart rate, X3 = height, X4 = weight.

Constant or Covariate b
j

SE(b
j
)

X1 0.0510 0.00416

X2 0.0191 0.0258

X3 −0.0320 0.0444

X4 0.0089 0.0520

Constant 2.89 11.17

Source d.f. SS MS F -Ratio

Regression ? 4314.69 ? ?

Residual ? ? ?

Total ? 5245.31

Do tasks (a), (b-i), and (c). What is R

2?

11.2 The data of Mehta et al. [1981] used in Problems 9.13 to 9.22 are used here. The aorta

platelet aggregation percent under dipyridamole, using epinephrine, was regressed on

the control values in the aorta and coronary sinus. The results were:
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Constant or Covariate b
j

SE(b
j
)

Aorta control −0.0306 0.301

Coronary sinus control 0.768 0.195

Constant 15.90

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? 231.21 ?

Total ? 1787.88

Y ̂Y Residual Y ̂Y Residual

89 81.58 7.42 69 ? ?

45 ? ? 83 88.15 −5.15

96 86.68 ? 84 88.03 −4.03

70 ? 2.34 85 88.92 −3.92

Do tasks (a), (b-ii), (c), (d), (e), and (f) [with small numbers of points, the interpretation

in (e) and (f) is problematic].

11.3 This problem uses the 20 aortic valve surgery cases of Chapter 9; see the introduction

to Problems 9.30 to 9.33. The response variable is the end diastolic volume adjusted

for body size, EDVI. The two predictive variables are the EDVI before surgery and the

systolic volume index, SVI, before surgery; Y = EDVI postoperatively, X1 = EDVI

preoperatively, and X2 = SVI preoperatively. See the following tables and Table 11.16.

Do tasks (a), (b-i), (c), (d), (f). Find R

2.

Constant or Covariate b
j

SE(b
j
)

X1 0.889 0.155

X2 −1.266 0.337

Constant 65.087

Source d.f. SS MS F -Ratio

Regression ? 21,631.66 ? ?

Residual ? ? ?

Total ? 32,513.75

Problems 11.4 to 11.7 refer to data of Hossack et al. [1980, 1981]. Ten normal men and

11 normal women were studied during a maximal exercise treadmill test. While being

exercised they had a catheter (tube) inserted into the pulmonary (lung) artery and a short

tube into the left radial or brachial artery. This allowed sampling and observation of
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Table 11.16 Data for Problem 11.3

Y ̂Y Residual Y ̂Y Residual

111 112.8 0.92 70 84.75 −14.75

56 ? ? 149 165.13 −16.13

93 ? −39.99 55 ? ?

160 148.78 11.22 91 88.89 2.11

111 ? 5.76 118 103.56 −11.56

83 86.00 ? 63 ? ?

59 ? 4.64 100 86.14 13.86

68 93.87 ? 198 154.74 43.26

119 62.27 56.73 176 166.39 9.61

71 86.72 ?

arterial pressures and the oxygen content of the blood. From this, several parameters as

described below were measured or calculated. The data for the 11 women are given in

Table 11.17; the data for the 10 normal men are displayed in Table 11.18. Descriptions

of the variables follow.

• Activity: a subject who routinely exercises three or more times per week until per-

spiring was active (Act); otherwise, the subject was sedentary (Sed).

• Wt : weight in kilograms.

• Ht : height in centimeters.

• VO2MAX: oxygen (in millimeters per kilogram of body weight) used in 1 min at

maximum exercise.

• FAI : functional aerobic impairment. For a patient’s age and activity level (active

or sedentary) the expected treadmill duration (ED) is estimated from a regression

equation. The excess of observed duration (OD) to expected duration (ED) as a

percentage of ED is the FAI. FAI = 100 × (OD − ED)/ED.

•
Q̇

MAX

: output of the heart in liters of blood per minute at maximum.

•
HR

MAX

: heart rate in beats per minute at maximum exercise.

•
SV

MAX

: volume of blood pumped out of the heart in milliliters during each stroke

(at maximum cardial output).

•
CaO2 : oxygen content of the arterial system in milliliters of oxygen per liter of

blood.

•
CvO2 : oxygen content of the venous (vein) system in milliliters of oxygen per liter

of blood.

•
avO2 D

MAX

: difference in the oxygen content (in milliliters of oxygen per liter of

blood) between the arterial system and the venous system (at maximum exercise);

thus, avO2DMAX = CaO2 − CvO2.

•
P SA, MAX: average pressure in the arterial system at the end of exercise in milliliters

of mercury (mmHg).

•
P PA, MAX: average pressure in the pulmonary artery at the end of exercise in mmHg.
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Table 11.18 Physical and Hemodynamic Variables in 10 Normal Men

Age

Case (yr) Wt Ht VO2 MAX FAI Q̇MAX HRMAX SVMAX PSA,MAX PPA,MAX

1 64 73.6 170 30.3 −4 13.4 156 85 114 24

2 61 90.9 191 27.1 12 17.8 156 115 104 30

3 38 76.8 180 44.4 5 19.4 190 102 100 24

4 62 92.7 185 24.6 18 15.8 173 91 78 33

5 59 92.0 183 41.2 −18 21.1 167 127 133 36

6 47 83.2 185 48.9 −20 22.4 173 132 160 22

7 24 69.8 178 62.1 −2 24.9 188 133 127 25

8 26 78.6 191 50.9 5 20.1 169 119 115 15

9 54 95.9 183 33.2 9 19.2 154 125 108 31

10 20 83.0 176 32.5 34 15.0 196 77 120 18

Mean 46 83.7 182 39.2 4 18.9 169 114 117 26

SD 17 8.9 7 12.0 16 3.5 21 25 22 7

11.4 For the 10 men, let Y = VO2 MAX, X1 = weight, X2 = HRMAX, and X3 = SVMAX.

(In practice, one would not use three regression variables with only 10 data points.

This is done here so that the small data set may be presented in its entirety.)

Constant or Covariate b
j

SE(b
j
)

Weight −0.699 0.128

HRMAX 0.289 0.078

SVMAX 0.448 0.0511

Constant −1.454

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? 55.97 ?

Total ? 1305.08

Y ̂Y Residual Y ̂Y Residual

30.3 30.38 −0.08 48.9 ? −0.75

27.1 ? −4.64 62.1 63.80 −1.70

44.4 45.60 −1.20 50.9 45.88 ?

24.6 24.65 ? 33.2 32.15 1.05

41.2 39.53 1.67 32.5 ? ?

Do tasks (a), (c), (d), (e), and (f).

11.5 After examining the normal probability plot of residuals, the regression of Problem 11.4

was rerun omitting cases 2 and 8. In this case we find:
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Constant or Covariate b
j

SE(b
j
)

Weight −0.615 0.039

HRMAX 0.274 0.024

SVMAX 0.436 0.015

Constant −4.486

Source d.f. SS MS F -Ratio

Regression ? 1017.98 ? ?

Residual ? ? ?

Total ? 1021.18

Y ̂Y Residual Y ̂Y Residual

30.3 ? ? 48.9 49.35 ?

44.4 ? −0.45 62.1 ? ?

24.6 25.62 ? 33.2 33.28 −0.08

41.2 ? 1.09 32.5 31.77 0.73

Do tasks (a), (b-i), (c), (d), and (f). Comment : The very small residual (high R

2)

indicates that the data are very likely highly “over fit.” Compute R

2.

11.6 Selection of the regression variables of Problems 11.4 and 11.5 was based on Mallow’s

C

p

plot. With so few cases, the multiple comparison problem looms large. As an

independent verification, we try the result on the data of the 11 normal women. We find:

Constant or Covariate b
j

SE(b
j
)

Weight −0.417 0.201

HRMAX 0.441 0.098

SVMAX 0.363 0.160

Constant −51.96

Source d.f. SS MS F -Ratio

Regression ? 419.96 ? ?

Residual ? 117.13 ?

Total ? ?

Y ̂Y Residual Y ̂Y Residual

28.81 ? −1.75 23.72 23.89 −0.15

24.04 ? −1.72 28.72 31.14 −2.42

26.66 27.99 ? 20.77 16.30 4.46

24.34 29.63 ? 24.77 23.60 1.17

21.42 ? ? 47.72 40.77 6.95

26.72 ? ?

Do tasks (a), (b-i), (c), (d), (e), and (f). Do (e) or (f) look suspicious? Why?
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11.7 Do another run with the data of Problem 11.6 omitting the last point.

Constant or Covariate b
j

SE(b
j
)

Weight −0.149 0.074

HRMAX 0.233 0.042

SVMAX 0.193 0.056

Constant −20.52

Source d.f. SS MS F -Ratio

Regression ? ? ? ?

Residual ? ? ?

Total ? ?

Note the large change in the b

j

’s when omitting the outlier.

Y ̂Y Residual Y ̂Y Residual

28.81 27.54 1.27 26.72 ? −0.11

24.04 24.59 −0.55 23.72 ? 0.57

26.66 ? ? 28.72 28.08 ?

24.34 26.70 −2.36 20.77 20.23 ?

21.42 ? ? 24.77 23.96 0.81

Do tasks (a), (c), and (d). Find R

2. Do you think the female findings roughly support

the results for the males?

11.8 Consider the regression of Y on X1, X2, . . . , X6. Which of the following five hypothe-

ses are nested within other hypotheses?

H1: β1 = β2 = β3 = β4 = β5 = β6 = 0

H2: β1 = β5 = 0

H3: β1 = β5

H4: β2 = β5 = β6 = 0

H5: β5 = 0

11.9 Consider a hypothesis H1 nested within H2. Let R

2
1 be the multiple correlation coeffi-

cient for H1 and R

2
2 the multiple correlation coefficient for H2. Suppose that there are

n observations and H2 regresses on Y and X1, . . . , X

k

, while H1 regresses Y only on

the first j X

i

’s (j < k). Show that the F statistic for testing β

j+1 = · · · = β

k

= 0 may

be written as

F =

(R

2
2 − R

2
1)/(k − j)

(1 − R

2
2)/(n − k − 1)
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Table 11.19 Simple Correlation Coefficients between Nine Variables for Black Men, United States,

1960–1962a

Variable 1 2 3 4 5 6 7 8 9

1. Height —

2. Weight 0.34 —

3. Right triceps skinfold −0.04 0.61 —

4. Infrascapular skinfold −0.05 0.72 0.72 —

5. Arm girth 0.10 0.89 0.60 0.70 —

6. Glucose −0.20 −0.05 0.09 0.10 −0.03 —

7. Cholesterol −0.08 0.15 0.17 0.20 0.17 0.12 —

8. Age −0.23 −0.09 −0.05 0.02 −0.10 0.37 0.34 —

9. Systolic blood pressure −0.18 0.11 0.07 0.12 0.12 0.29 0.20 0.47 —

10. Diastolic blood pressure −0.09 0.17 0.08 0.16 0.18 0.20 0.17 0.33 0.79

aNumber of observations for samples: N = 358 and N = 349. Figures underlined were derived from persons in the sample
for whom glucose and cholesterol measurements were available.

Florey and Acheson [1969] studied blood pressure as it relates to physique, blood

glucose, and serum cholesterol separately for males and females, blacks and whites.

Table 11.19 presents sample correlation coefficients for black males on the following

variables:

• Height: in inches

• Weight: in pounds

• Right triceps skinfold: in thickness in centimeters of skin folds on the back of the

right arm, measured with standard calipers

• Infrascapular skinfold: skinfold thickness on the back below the tip of the right

scapula

• Arm girth: circumference of the loose biceps

• Glucose: taken 1 hour after a challenge of 50 g of glucose in 250 cm3 of water

• Total serum cholesterol concentration

• Age: in years

• Systolic blood pressure (mmHg)

• Diastolic blood pressure (mmHg)

An additional variable considered was the ponderal index, defined to be the height

divided by the cube root of the weight. Note that the samples sizes varied because of

a few uncollected blood specimens. For Problem 11.10, use N = 349.

11.10 Using the Florey and Acheson [1969] data above, the correlation squared of systolic

blood pressure, variable 9, with the age and physical variables (variables 1, 2, 3, 4,

5, and 8) is 0.266. If we add variables 6 and 7, the blood glucose and cholesterol

variables, R

2 increases to 0.281. Using the result of Problem 11.9, is this a statistically

significant difference?

11.11 Suppose that the following description of a series of multiple regression runs was pre-

sented. Find any incorrect or inconsistent statements (if they occur). Forty-five people
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were given a battery of psychological tests. The dependent variable of self-image was

analyzed by multiple regression analysis with five predictor variables: 1, tension index;

2, perception of success in life; 3, IQ; 4, aggression index; and 5, a hypochondriacal

index. The multiple correlation with variables 1, 4, and 5 was −0.329, p < 0.001.

When variables 2 and 3 were added to the predictive equation, R

2
= 0.18, p > 0.05.

The relationship of self-image to the variables was complex; the correlation with vari-

ables 2 and 3 was low (0.03 and −0.09, respectively), but the multiple correlation of

self-image with variables 2 and 3 was higher than expected, R

2
= 0.22, p < 0.01.

11.12 Using the definition of R

2 (Definition 11.4) and the multiple regression F test in Section

11.2.3, show that

R

2
=

kF

kF + n − k − 1

and

F =

(n − k − 1)R

2

k(1 − R

2
)

Haynes et al. [1978] consider the relationship of psychological factors and coronary

heart disease. As part of a long ongoing study of coronary heart disease, the Framingham

study, from 1965 to 1967, questionnaires were given to 1822 individuals. Of particular

interest was type A behavior. Roughly speaking, type A individuals feel considerable

time pressure, are very driving and aggressive, and feel a need for perfection. Such

behavior has been linked with coronary artery disease. The questions used in this study

follow. The scales (indicated by the superscript numbers) are explained following the

questions.

Psychosocial Scale and Items Used in the Framingham Study

Note: The superscript numbers in this list refer to the response sets that follow item 17.

1. Framingham type A behavior pattern:

Traits and qualities which describe you:1

Being hard-driving and competitive

Usually pressed for time

Being bossy and dominating

Having a strong need to excel in most things

Eating too quickly

Feeling at the end of an average day of work:

Often felt very pressed for time

Work stayed with you so you were thinking about it after hours

Work often stretched you to the very limits of your energy and capacity

Often felt uncertain, uncomfortable, or dissatisfied with how you were doing

Do you get upset when you have to wait for anything?

2. Emotional lability:

Traits and qualities which describe you:1

Having feelings easily hurt

Getting angry very easily
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Getting easily excited

Getting easily sad or depressed

Worrying about things more than necessary

Do you cry easily?

Are you easily embarrassed?

Are your feeling easily hurt?

Are you generally a high-strung person?

Are you usually self-conscious?

Are you easily upset?

Do you feel sometimes that you are about to go to pieces?

Are you generally calm and not easily upset?

3. Ambitiousness:

Traits and qualities which describe you:1

Being very socially ambitious

Being financially ambitious

Having a strong need to excel in most things

4. Noneasygoing:

Traits and qualities which describe you:1

Having a sense of humor

Being easygoing

Having ability to enjoy life

5. Nonsupport from boss:

Boss (the person directly above you):2

Is a person you can trust completely

Is cooperative

Is a person you can rely upon to carry his or her load

Is a person who appreciates you

Is a person who interferes with you or makes it difficult for you to get your

work done

Is a person who generally lets you know how you stand

Is a person who takes a personal interest in you

6. Marital dissatisfaction:

Everything considered, how happy would you say that your marriage has been?3

Everything considered, how happy would you say that your spouse has found

your marriage to be?3

About marriage, are you more satisfied, as satisfied, or less satisfied than most

of your close friends are with their marriages?4

7. Marital disagreement:

How often do you and your spouse disagree about:5

Handling family finances or money matters

How to spend leisure time

Religious matters

Amount of time that should be spent together
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Gambling

Sexual relations

Dealings with in-laws

On bringing up children

Where to live

Way of making a living

Household chores

Drinking

8. Work overload:

Regular line of work fairly often involves:2

Working overtime

Meeting deadlines or rigid time schedules

9. Aging worries:

Worry about:6

Growing old

Retirement

Sickness

Death

Loneliness

10. Personal worries:

Worry about:6

Sexual problems

Change of life

Money matters

Family problems

Not being a success

11. Tensions:

Often troubled by feelings of tenseness, tightness, restlessness, or inability to

relax?5

Often bothered by nervousness or shaking?

Often have trouble sleeping or falling asleep?

Feel under a great deal of tension?

Have trouble relaxing?

Often have periods of restlessness so that you cannot sit for long?

Often felt difficulties were piling up too much for you to handle?

12. Reader’s daily stress:

At the end of the day I am completely exhausted mentally and physically1

There is a great amount of nervous strain connected with my daily activities

My daily activities are extremely trying and stressful

In general I am usually tense and nervous

13. Anxiety symptoms:

Often become tired easily or feel continuously fatigued?2

Often have giddiness or dizziness or a feeling of unsteadiness?
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Often have palpitations, or a pounding or racing heart?

Often bothered by breathlessness, sighing respiration or difficulty in getting a

deep breath?

Often have poor concentration or vagueness in thinking?

14. Anger symptoms:

When really angry or annoyed:7

Get tense or worried

Get a headache

Feel weak

Feel depressed

Get nervous or shaky

15. Anger-in:

When really angry or annoyed:7

Try to act as though nothing much happened

Keep it to yourself

Apologize even though you are right

16. Anger-out:

When really angry or annoyed:7

Take it out on others

Blame someone else

17. Anger-discuss:

When really angry or annoyed:7

Get it off your chest

Talk to a friend or relative

Response Sets

1. Very well, fairly well, somewhat, not at all

2. Yes, no

3. Very happy, happy, average, unhappy, very unhappy

4. More satisfied, as satisfied, less satisfied

5. Often, once in a while, never

6. A great deal, somewhat, a little, not at all

7. Very likely, somewhat likely, not too likely

The correlations between the indices are reported in Table 11.20.

11.13 We use the Haynes et al. [1978] data of Table 11.20. The multiple correlation squared

of the Framingham type A variable with all 16 of the other variables is 0.424. Note

the high correlations for variables 2, 3, 14, 15, and 17.

R

2
1(2,3,14,15,17)

= 0.352
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(a) Is there a statistically significant (p < 0.05) gain in R

2 by adding the remainder

of the variables?

(b) Find the partial correlation of variables 1 and 2 after adjusting for variable 15.

That is, what is the correlation of the Framingham type A index and emotional

lability if adjustment is made for the amount of tension?

Stoudt et al. [1970] report on the relationship between certain body size mea-

surements and anthropometric indices. As one would expect, there is considerable

correlation among such measurements. The details of the measurements are reported in

the reference above. The correlation for women are given in Table 11.21.

11.14 This problem deals with partial correlations.

(a) For the Stoudt et al. [1970] data, the multiple correlation of seat breadth with

height and weight is 0.64826. Find

rseat breadth, height.weight and rseat breadth, weight.height

(b) The Florey and Acheson [1969] data show that the partial multiple correlation

between systolic blood pressure and the two predictor variables glucose and

cholesterol adjusting for the weight and measurement variables is

R

2
9(6,7).1,2,3,4,5,8 = 0.207, R = 0.144

What are the numerator and denominator degrees of freedom for testing statistical

significance? What is (approximately) the 0.05 (0.01) critical value? Find F in

terms of R

2. Do we reject the null hypothesis of no correlation at the 5% (1%)

level?

11.15 Suppose that you want to regress Y on X1, X2, . . . , X8. There are 73 observations.

Suppose that you are given the following sums of squares:

SSTOTAL, SSREG(X1), SSREG(X4), SSREG(X1, X5),

SSREG(X3, X6), SSREG(X7, X8), SSREG(X1, X5, X6),

SSREG(X1, X3, X6), SSREG(X4, X7, X8), SSREG(X3, X5, X6, X8),

SSREG(X3, X4, X7, X8), SSREG(X3, X5, X6, X7, X8)

For each of the following: (1) state that the quantity cannot be estimated, or (2) show

(a) how to compute the quantity in terms of the sums of squares, and (b) give the

F -statistic in terms of the sums of squares, and give the degrees of freedom.

(a) r

2
Y,X3

(b) R

2
Y(X1,X5,X6)

(c) R

2
Y(X1,X5,X6).X3

(d) R

2
Y(X3,X4,X7,X8)

(e) r

2
Y,X6.X1,X5

(f) R

2
Y(X5,X6).X3,X4

(g) R

2
Y(X3,X4).X7,X8

(h) R

2
Y(X3,X5,X6).X7,X8
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11.16 Suppose that in the Framingham study [Haynes et al., 1978] we want to examine the

relationship between type A behavior and anger (as given by the four anger variables).

We would like to be sure that the relationship does not occur because of joint relation-

ships with the other variables; that is, we want to adjust for all the variables other than

type A (variable 1) and the anger variables 11, 12, 13, and 17.

(a) What quantity would you use to look at this?

(b) If the value (squared) is 0.019, what is the value of the F -statistic to test for

significance? The degrees of freedom?

11.17 Suppose that using the Framingham data, we decide to examine emotional lability. We

want to see how it is related to four areas characterized by variables as follows:

Work : variables 5 and 6

Worry and anxiety : variables 9, 10, and 16

Anger : variables 11, 12, 13, and 17

Stress and tension : variables 14 and 15

(a) To get a rough idea of how much relationship one might expect, we calculate

R

2
2(5,6,9,10,16,11,12,13,17,14,15)

= 0.49

(b) To see which group or groups of variables may be contributing the most to this

relationship, we find

R

2
2(5,6)

= 0.01 work

R

2
2(9,10,16)

= 0.26 worry/anxiety

R

2
2(11,12,13,17)

= 0.38 anger

R

2
2(14,15)

= 0.39 stress/tension

(c) As the two most promising set of variables were the anger and the stress/tension,

we compute

R

2
2(11,12,13,14,15,17)

= 0.48

(i) Might we find a better relationship (larger R

2) by working with indices such

as the average score on variables 11, 12, 13, and 17 for the anger index? Why

or why not?

(ii) After using the anger and stress/tension variables, is there statistical signif-

icance left in the relationship of lability and work and work/anxiety? What

quantity would estimate this relationship? (In Chapter 14 we show some other

ways to analyze these data.)

11.18 The Jensen et al. [1980] data of 19 subjects were used in Problems 9.23 to 9.29. Here

we consider the data before training. The exercise VO2, MAX is to be regressed upon

three variables.

Y = VO2, MAX

X1 = maximal ejection fraction

X2 = maximal heart rate

X3 = maximal systolic blood pressure
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The residual mean square with all three variables in the model is 73.40. The residual

sums of squares are:

SSRESID(X1, X2) = 1101.58

SSRESID(X1, X3) = 1839.80

SSRESID(X2, X3) = 1124.78

SSRESID(X1) = 1966.32

SSRESID(X2) = 1125.98

SSRESID(X3) = 1885.98

(a) For each model, compute C

p

.

(b) Plot C

p

vs. p and select the best model.

(c) Compute and plot the average mean square residual vs. p.

11.19 The 20 aortic valve cases of Problem 11.3 give the data about the values of C

p

and

the residual mean square as shown in Table 11.22.

Table 11.22 Mallow’s Cp for Subset of Data from Example 11.3

Numbers of the Numbers of the

Explanatory Residual Mean Explanatory Residual Mean

Variables p C

p

Square Variables p C

p

Square

None 1 14.28 886.99 2,4,5 4 2.29 468.36

1,4,5 2.41 472.20

4 2 3.87 578.92 3,4,5 2.69 481.50

5 11.60 804.16 1,3,4 6.91 619.81

3 13.63 863.16 1,2,4 6.91 619.90

2 14.14 877.97 2,3,4 7.80 648.81

1 16.00 932.21 2,3,5 14.14 856.68

1,3,5 14.40 866.45

4,5 3 0.72 454.10 1,2,5 14.45 866.75

1,4 4.94 584.23 1,2,3 15.21 891.72

2,4 5.82 611.35

3,4 5.87 612.75 1,2,4,5 5 4.05 491.14

1,5 12.76 825.45 2,3,4,5 4.16 494.92

3,5 12.96 831.53 1,3,4,5 4.41 503.66

2,5 13.17 838.17 1,2,3,4 8.90 660.65

2,3 13.23 839.87 1,2,3,5 15.83 903.14

1,3 15.60 912.88

1,2 15.96 924.03 1,2,3,4,5 6 6 524.37

(a) Plot Mallow’s C

p

plot and select the “best” model.

(b) Plot the average residual mean square vs. p. Is it useful in this context? Why or

why not?

11.20 The blood pressure, physique, glucose, and serum cholesterol work of Florey and Ache-

son [1969] was mentioned above. The authors first tried using a variety of regression

analyses. It was known that the relationship between age and blood pressure is often

curvilinear, so an age2 term was used as a potential predictor variable. After exploratory
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analyses, stepwise regression of blood pressure (systolic or diastolic) upon five vari-

ables (age, age2, ponderal index, glucose, and cholesterol) was run. The four regressions

(black and white, female and male) for systolic blood pressure are given in Tables 11.23

to 11.26. The “standard error of the estimate” is the estimate of σ

2 at each stage.

(a) For the black men, give the values of the partial F -statistics and the degrees of

freedom as each variable entered the equation.

(b) Are the F values in part (a) significant at the 5% significance level?

(c) For a fixed ponderal index of 32 and a glucose level of 125 mg%, plot the

regression curve for systolic blood pressure for white women aged 20 to 70.

(d) Can you determine the partial correlation of systolic blood pressure and glucose

adjusting for age in black women from these data? If so, give the value.

*(e) Consider all the multiple regression R

2 values of systolic blood pressure with

subsets of the five variables used. For white males and these data, give all possible

Table 11.23 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of White Men, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.439 0.193 0.193 0.0104 17.9551

2 Ponderal index 0.488 0.238 0.045 −6.1775 17.4471

3 Glucose 0.499 0.249 0.011 0.0500 17.3221

4 Cholesterol 0.503 0.253 0.004 0.0351 17.2859

5 Age 0.507 0.257 0.004 −0.5136 17.2386

aDependent variable, systolic blood pressure. Constant term = 194.997; N = 2599.

Table 11.24 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of Black Men, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.474 0.225 0.225 0.6685 21.9399

2 Ponderal index 0.509 0.259 0.034 −6.4515 21.4769

3 Glucose 0.523 0.273 0.014 0.0734 21.3048

aDependent variable = systolic blood pressure. Constant term = 180.252; N = 349.

Table 11.25 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of White Women, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.623 0.388 0.388 0.00821 18.9317

2 Ponderal index 0.667 0.445 0.057 −7.3925 18.0352

3 Glucose 0.676 0.457 0.012 0.0650 17.8445

aDependent variable = systolic blood pressure. Constant term = 193.260; N = 2931.
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Table 11.26 Selected Regression Statistics for Systolic Blood Pressure and Selected Independent

Variables of Black Women, United States, 1960–1962a

Multiple

Variables Increase Regression Standard Error

Step Entered R R

2 in R

2 Coefficient of Estimate

1 Age squared 0.590 0.348 0.348 0.9318 24.9930

2 Ponderal index 0.634 0.401 0.053 0.1388 23.9851

3 Glucose 0.656 0.430 0.029 −6.0723 23.4223

aDependent variable = systolic blood pressure. Constant term = 153.149; N = 443.

inequalities that are not of the obvious form

R

2
Y(X

i1
,... ,X

i

m

)

≤ R

2
Y(X

j1
,... ,X

j

n

)

where X

i1
, . . . , X

i

m

is a subset of X

j1
, . . . , X

j

n

.

11.21 From a correlation matrix it is possible to compute the order in which variables enter

a stepwise multiple regression. The partial correlations, F statistics, and regression

coefficients for the standardized variables (except for the constant) may be computed.

The first 18 women’s body dimension variables (as given in Stoudt et al. [1970] and

mentioned above) were used. The dependent variable was weight, which we are trying

to predict in terms of the 17 measured dimension variables. Because of the large sample

size, it is “easy” to find statistical significance. In such cases the procedure is sometimes

terminated while statistically significant predictor variables remain. In this case, the

addition of predictor variables was stopped when R

2 would increase by less than 0.01

for the next variable. The variable numbers, the partial correlation with the dependent

variable (conditioning upon variables in the predictive equation) for the variables not

in the model, and the corresponding F -value for step 0 are given in Table 11.27, those

for step 1 in Table 11.28, those for step 5 in Table 11.29, and those for the final step

in Table 11.30.

(a) Fill in the question marks in Tables 11.27 and 11.28.

(b) Fill in the question marks in Table 11.29.

(c) Fill in the question marks in Table 11.30.

(d) Which variables entered the predictive equation?

*(e) What can you say about the proportion of the variability in weight explained by

the measurements?

Table 11.27 Values for Step 0a

var PCORR F -Ratioa var PCORR F -Ratioa

1 0.1970 144.506 10 0.8050 6589.336

2 ? 100.165 11 0.4430 873.872

3 0.3230 ? 12 0.8820 12537.104

4 −0.0350 4.390 13 0.8440 8862.599

5 0.2530 244.755 14 0.8880 13346.507

6 0.6930 3306.990 15 0.6410 2496.173

7 0.6200 ? 16 0.7290 4059.312

8 0.4900 1130.830 17 0.1890 132.581

9 ? 8862.599

aThe F -statistics have 1 and 3579 d.f.
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Table 11.28 Values for Step 1a

var PCORR F -Ratioa var PCORR F -Ratioa

1 0.3284 432.622 9 0.4052 ?

2 0.2933 ? 10 0.4655 989.824

3 0.4568 943.565 11 0.3435 478.797

4 0.3554 517.351 12 0.5394 1467.962

5 0.1246 56.419 13 0.4778 1058.297

6 ? 501.893 15 −0.0521 9.746

7 0.5367 1447.655 16 ? 74.882

8 0.4065 708.359 17 0.4614 967.603

aThe F -statistics have 1 and 3578 d.f.

Table 11.29 Values for Step 5a

var PCORR F -Ratioa var PCORR F -Ratioa

1 ? 323.056 8 0.0051 0.093

2 0.2285 196.834 9 0.0083 0.252

3 0.1623 96.676 11 0.1253 ?

4 0.1157 48.503 15 −0.1298 61.260

5 ? 183.520 16 −0.0149 ?

6 0.2382 214.989 17 0.3131 388.536

aThe F -statistics have 1 and ? d.f.

Table 11.30 Values for the Final Stepa

var PCORR F -Ratioa var PCORR F -Ratioa

1 ? 5.600 8 −0.0178 1.143

2 −0.0289 2.994 9 0.0217 1.685

3 −0.0085 0.263 11 0.0043 0.067

4 −0.0172 1.062 15 −0.1607 94.635

5 0.0559 ? 16 −0.0034 0.042

aThe F -statistics have 1 and 3572 d.f.

(f) What can you say about the p-value of the next variable that would have entered

the stepwise equation? (Note that this small p has less than 0.01 gain in R

2 if

entered into the predictive equation.)

11.22 Data from Hossack et al. [1980, 1981] for men and women (Problems 11.4 to 11.7)

were combined. The maximal cardiac output, QDOT, was regressed on the maximal

oxygen uptake, VO2 MAX. From other work, the possibility of a curvilinear relationship

was entertained. Polynomials of the zeroth, first, second, and third degree (or highest

power of X ) were considered. Portions of the BMDP output are presented below, with

appropriate questions (see Figures 11.17 to 11.19).

(a) Goodness-of-fit test : For the polynomial of each degree, a test is made for addi-

tional information in the orthogonal polynomials of higher degree, with data as

shown in Table 11.31. The numerator sum of squares for each of these tests is

the sum of squares attributed to all orthogonal polynomials of higher degree,
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Figure 11.17 Polynomial regression of QDOT on VO2 MAX. Figure for Problem 11.22.
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Figure 11.18 Figure for Problem 11.22.

and the denominator sum of squares is the residual sum of squares from the fit to

the highest-degree polynomial (fit to all orthogonal polynomials). A significant F -

statistic thus indicates that a higher-degree polynomial should be considered. What

degree polynomial appears most appropriate? Why do the degrees of freedom in

Table 11.31 add up to more than the total number of observations (21)?
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Figure 11.19 Figure for Problem 11.22.

Table 11.31 Goodness of Fit for Figure 11.22

Tail

Degree SS d.f. MS F -Ratio Probability

0 278.50622 4 69.62656 12.04 0.00

1 12.23208 3 4.07736 0.70 0.56

2 10.58430 2 5.29215 0.91 0.42

3 5.22112 1 5.22112 0.90 0.36

Residual 92.55383 16 5.78461

(b) For a linear equation, the coefficients, observed and predicted values, residual

plot, and normal residual are:

Regression Standard

Degree Coefficient Error t-Value

0 4.88737 1.58881 3.08

1 0.31670 0.04558 6.95

What would you conclude from the normal probability plot? Is the most outlying

point a male or female? Which subject number in its table?

(c) For those with access to a polynomial regression program: Rerun the problem,

removing the outlying point.

11.23 As in Problem 11.22, this problem deals with a potential polynomial regression equation.

Weight and height were collected from a sample of the U.S. population in surveys done in
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Table 11.34 Coefficients and t-values for

Problem 11.23

Regression Standard

Degree Coefficient Error t-Value

0 61.04225 0.60868 100.29

1 0.04408 0.00355 12.40

0 50.89825 3.85106 13.22

1 0.16548 0.04565 3.62

2 −0.00036 0.00013 −2.67

0 34.30283 25.84667 1.33

1 0.46766 0.46760 1.00

2 −0.00216 0.00278 −0.78

3 0.00000 0.00001 0.65

1960–1962 [Roberts, 1966] and in 1971–1974 [Abraham et al., 1979]. The data for

males 25 to 34 years of age are given in Tables 11.32 and 11.33. In this problem we

use only the 1960–1962 data. Both data sets are used in Problem 11.36. The weight cat-

egories were coded as values 124.5, 134.5, . . . , 204.5, 214.5 and the height categories

as 62, 63, . . . , 72, 73. The contingency table was replaced by 675 “observations.” As

before, we present some of the results from a BMDP computer output. The height was

regressed upon weight.

(a) Goodness-of-Fit Test: For the polynomial of each degree, a test is made for addi-

tional information in the orthogonal polynomials of higher degree. The numerator

sum of squares attributed to all orthogonal polynomials of higher degree and the

denominator sum of squares is the residual sum of squares from the fit to the

highest-degree polynomial (fit to all polynomials). A significant F -statistic thus

indicates that a higher-degree polynomial should be considered.

Tail

Degree SS d.f. MS F -Ratio Probability

0 900.86747 3 300.28916 54.23 0.00

1 41.69944 2 20.84972 3.77 0.02

2 2.33486 1 2.33486 0.42 0.52

Residual 3715.83771 671 5.53776

Which degree polynomial appears most satisfactory?

(b) Coefficients with corresponding t-statistics are given in Table 11.34 for the first-,

second-, and third-degree polynomials. Does this confirm the results of part (a)?

How can the second-order term be significant for the second-degree polynomial,

but neither the second or third power has a statistically significant coefficient

when a third-order polynomial is used?

(c) The normal probability plot of residuals for the second-degree polynomials is

shown in Figure 11.20. What does the tail behavior indicate (as compared to

normal tails)? Think about how we obtained those data and how they were gener-

ated. Can you explain this phenomenon? This may account for the findings. The

original data would be needed to evaluate the extent of this problem.



510 ASSOCIATION AND PREDICTION: MULTIPLE REGRESSION ANALYSIS

···

··

··········

·····

····

···

····

·

··

··

··

····

··

·····

····

··········

····

····

·

··

··

·

·····

·······

············

············

·······

·········

·····

··

· ·

····

····

·····

·······

··········

······

················

········

········

····

····

·

·

····

··

··············

·········

········

········

············

······

········

······

·

···

······

·········

·····

··········

·········

···········

······

········

·····

·

·

··

·····

··········

·······

··········

·····

·······

············

·····

·····

···········

······

······

···

········

····

·

··

··

·····

·····

······

······

···

····

·······

·

·

···

···

····

··

···········

······

········

·········

·

····

···

···

···

···

····

···

··

··

···

···

·····

·····

········

······

···

·····

·····

·

··

·

·····

········

·······

·········

····

··········

········

············

········

·

· ·

···

··

···········

··········

·············

········

··················

·············

··············

··········

··

·

···

··········

·············

··········

···········

··········

··········

·········

········

·

·

···

·········

··········

··········

··············

········

······

········

···············

·

·

·····

·········

··········

······

············

······

·········

·············

·

·

··

······

·····

······

·······

········

·········

·····

·········

·

··

··

····

··

···

·······

·

·····

··········

·

·

·

····

·····

···········

········

······

···············

································

Quantiles of Standard Normal

R
es

id
ua

l

�2 0 2

�6

�4

�2

0

2

4

6

Figure 11.20 Normal probability plot of residuals of degree 2. Figure for Problem 11.23.

Table 11.35 Data for Problems 11.24 to 11.29

Indices of Variables Indices of Variables

in the Multiple Regression Sum in the Multiple Regression Sum

Regression Equation of Squares SSREG Regression Equation of Squares SSREG

(SSTOTAL) (SSTOTAL = 32513.75) (SSTOTAL) (SSTOTAL = 32513.75)

1 671.04 1,5 2,397.10

2 926.11 2,3 2,547.67

3 1,366.28 2,4 12,619.61

4 12,619.27 2,5 1,145.53

5 658.21 3,4 13,090.47

1,2 1,607.06 3,5 2,066.16

1,3 1,620.17 4,5 21,631.66

1,4 14,973.55

Most multiple regression analyses (other than examining fit and model assumptions)

use sums of squares rather than the original data. Problems 11.24 to 11.29 illustrate this

point. The problems and the data in Table 11.35 are based on the 20 aortic valve surgery

cases of Chapter 9 (see the introduction to Problems 9.30 to 9.33); Problem 11.3 uses

these data. We consider the regression sums of squares for all possible subsets of

five predictor variables. Here Y = EDVI postoperative, X1 = age in years, X2 =

heart rate, X3 = systolic blood pressure, X4 = EDVI preoperative, X5 = SVI

preoperative.

11.24 From the regression sums of squares, compute and plot C

p

-values for the smallest

C

p

-value for each p (i.e., for the largest SSREG). Plot these values. Which model

appears best?

11.25 From the regression sums of squares, perform a step-up stepwise regression. Use the

0.05 significance level to stop adding variables. Which variables are in the final model?
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*11.26 From the regression sums of squares, perform a stepdown stepwise regression. Use the

0.10 significance level to stop removing variables. What is your final model?

11.27 Compute the following multiple correlation coefficients:

R

Y(X4,X5)
, R

Y(X1,X2,X3,X4,X5)
, R

Y(X1,X2,X3)

Which are statistically significant at the 0.05 significance level?

11.28 Compute the following squared partial correlation coefficients and test their statistical

significance at the 1% level.

r

2
Y,X4·X1,X2,X3,X5

, r

2
Y,X5·X1,X2,X3,X4

11.29 Compute the following partial multiple correlation coefficients and test their statistical

significance at the 5% significance level.

R

Y(X4,X5)·X1,X2,X3
, R

Y(X1,X2,X3,X4)·X5

Data on the 94 sedentary males of Problems 9.9 to 9.12 are used here. The dependent

variable was age. The idea is to find an equation that predicted age; this equation

might give an approximation to an “exercise age.” Subjects might be encouraged, or

convinced, to exercise if they heard a statement such as “Mr. Jones, although you are

28, your exercise performance is that of a 43-year-old sedentary man.” The potential

predictor variables with the regression sum of squares is given below for all combina-

tions.

Y = age in years, X1 = duration in seconds

X2 = VO2 MAX, X3 = heart rate in beats/minute

X4 = height in centimeters, X5 = weight in kilograms

SSTOTAL = 11, 395.74

Problems 11.30 to 11.35 are based on the data listed in Table 11.36.

11.30 Compute and plot for each p, the smallest C

p

-value. Which predictive model would

you choose?

11.31 At the 10% significance level, perform stepwise regression (do not compute the regres-

sion coefficients) selecting variables. Which variables are in the final model? How does

this compare to the answer to Problem 11.30?

*11.32 At the 0.01 significance level, select variables using a step-down regression equation

(no coefficients computed).

11.33 What are the values of the following correlation and multiple coefficients? Are they

significantly nonzero at the 5% significance level?

R

Y(X1,X2)
, R

Y(X3,X4,X5)
,

R

YX1
, R

YX2
, R

Y(X4,X5)
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Table 11.36 Data for Problems 11.30 to 11.35

Indexes of Variables Indexes of Variables

in Multiple Regression Sum in Multiple Regression Sum

Regression Equation of Squares SSREG Regression Equation of Squares SSREG

1 5382.81 1,2,4 5658.66

2 4900.82 1,2,5 5777.12

3 4527.51 1,3,4 6097.58

4 295.26 1,3,5 6151.91

5 54.80 1,4,5 5723.50

1,2 5454.48 2,3,4 5851.44

1,3 5953.18 2,3,5 5923.41

1,4 5597.08 2,4,5 5243.27

1,5 5685.88 3,4,5 4630.28

2,3 5731.40 1,2,3,4 6128.27

2,4 5089.15 1,2,3,5 6201.39

2,5 5221.73 1,2,4,5 5805.06

3,4 4628.83 1,3,4,5 6179.52

3,5 4568.73 2,3,4,5 5940.03

4,5 299.81 1,2,3,4,5 6223.12

1,2,3 5988.09

11.34 Compute the following squares of partial correlation coefficients. Are they statistically

significant at the 0.10 level?

r

2
Y,X1·X2

, r

2
Y,X2·X1

, r

2
Y,X3X1·X2

Describe these quantities in words.

11.35 Compute the following partial multiple correlation coefficients. Are they significant at

the 5% level?

R

Y(X1,X2,X3)X4·X5
, R

Y(X1,X3)·X2
,

R

Y(X2,X3)·X1
, R

Y(X1,X2)·X3

Problems 11.36 and 11.38 are analysis of covariance problems. They use BMDP com-

puter output, which is addressed in more detail in the first problem. This problem should

be done before Problem 11.38.

11.36 This problem uses the height and weight data of 25 to 34-year-old men as measured in

1960–1962 and 1971–1974 samples of the U.S. populations. These data are described

and presented in Problem 11.23.

(a) The groups are defined by a year variable taking on the value 1 for the 1960

survey and the value 2 for the 1971 survey. Means for the data are:

Estimates of Means

1960 1971 Total

Height 1 68.5081 68.9353 68.7403

Weight 2 169.3890 171.4030 170.4838
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Which survey had the heaviest men? The tallest men? There are at least two

possible explanations for weight gain: (1) the weight is increasing due to more

overweight and/or building of body muscle; (2) the taller population naturally

weighs more.

(b) To distinguish between two hypotheses, an analysis of covariance adjusting for

height is performed. The analysis produced the following output, where the depen-

dent variable is weight.

Covariate Regression Coefficient Standard Error t-Value

Height 4.22646 0.22742 18.58450

Group Adjusted Standard

Group N Mean Group Mean Error

1960 675 169.38904 170.37045 0.89258

1971 804 171.40295 170.57901 0.91761

The anova table is as follows:

Tail Area

Source d.f. SS MS F -Ratio Probability

Equality of adjusted

cell means

1 15.7500 15.7500 0.0294 0.8639

Zero slope 1 185,086.0000 185,086.0000 345.3833 0.0000

Error 1475 790,967.3750 535.8857

Equality of slopes 1 0.1250 0.1250 0.0002 0.9878

Error 1475 790,967.2500 536.2490

Data for the slope within each group:

1960 1971

Height 1 4.2223 4.2298

The t-test matrix for adjusted group means on 1476 degrees of freedom looks

as follows:

1960 1971

1960 1 0.0000

1971 2 0.1720 0.0000

The probabilities for the t-values above are:

19601 19712

19601 1.0000

19712 0.8634 1.0000

(i) Note the “equality of slopes” line of output. This gives the F -test for the

equality of the slopes with the corresponding p-value. Is the hypothesis of

the equality of the slopes feasible? If estimated separately, what are the two

slopes?
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(ii) The test for equal (rather than just parallel) regression lines in the groups

corresponds to the line labeled “equality of adjusted cell means.” Is there a

statistically significant difference between the groups? What are the adjusted

cell means? By how many pounds do the adjusted cell means differ? Does

hypothesis (1) or (2) seem more plausible with these data?

(iii) A t-test for comparing each pair of groups is presented. The p-value 0.8643

is the same (to round off) as the F -statistic. This occurs because only two

groups are compared.

11.37 The cases of Bruce et al. [1973] are used. We are interested in comparing VO2,MAX,

after adjusting for duration and age, in three groups: active males, sedentary males, and

active females. The analysis gives the following results:

Number of Cases per Group

ACTMALE 44

SEDMALE 94

ACTFEM 43

Total 181

The estimates of means is as follows:

ACTMALE SEDMALE ACTFEM Total

VO2, MAX 1 40.8046 35.6330 29.0535 35.3271

Duration 2 647.3864 577.1067 514.8837 579.4091

Age 3 47.2046 49.7872 45.1395 48.0553

Data are as follows when the dependent variable is VO2, MAX:

Regression Standard

Covariate Coefficient Error t-Value

Duration 0.05242 0.00292 17.94199

Age −0.06872 0.03160 −2.17507

Group Adjusted Standard

Group N Mean Group Mean Error

ACTMALE 44 40.80456 37.18298 0.52933

SEDMALE 94 35.63297 35.87268 0.34391

ACTFEM 43 29.05349 32.23531 0.56614
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The anova table is:

Tail Area

Source DF SS MS F -Ratio Probability

Equality of adjusted cell

means

2 422.8359 211.4180 19.4336 0.0000

Zero slope 2 7612.9980 3806.4990 349.6947 0.0000

Error 176 1914.7012 10.8790

Equality of slopes 4 72.7058 18.1765 1.6973 0.1528

Error 172 1841.9954 10.7093

Values of the slopes within each group are:

ACTMALE SEDMALE ACTFEM

Duration 2 0.0552 0.0522 0.0411

Age 3 −0.1439 −0.0434 −0.1007

The t-test matrix for adjusted group means on 176 degrees of freedom looks as

follows:

ACTMALE SEDMALE ACTFEM

ACTMALE 1 0.0000

SEDMALE 2 −2.1005 0.0000

ACTFEM 3 −5.9627 −5.3662 0.0000

The probabilities for the t-values above are:

ACTMALE SEDMALE ACTFEM

ACTMALE 1 1.0000

SEDMALE 2 0.0371 1.0000

ACTFEM 3 0.0000 0.0000 1.0000

(a) Are the slopes of the adjusting variables (covariates) statistically significant?

(b) Is the hypothesis of parallel regression equations (equal β’s in the groups) tenable?

(c) Does the adjustment bring the group means closer together?

(d) After adjustment, is there a statistically significant difference between the groups?

(e) If the answer to part (d) is yes, which groups differ at the 10%, 5%, and 1%

significance level?

11.38 This problem deals with the data of Example 10.7 presented in Tables 10.20, 10.21,

and 10.22.
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(a) Using the quadratic term of Table 10.21 correlate this term with height, weight,

and age for the group of females and for the group of males. Are the correlations

comparable?

(b) Do part (a) by setting up an appropriate regression analysis with dummy variables.

(c) Test whether gender makes a significant contribution to the regression model of

part (b).

(d) Repeat the analyses for the linear and constant terms of Table 10.21.

(e) Do your conclusions differ from those of Example 10.7?

11.39 This problem examines the heart rate response in normal males and females as reported

in Hossack et al. [1980, 1981]. As heart rate is related to age and the males were older,

this was used as an adjustment covariate. The data are:

Number of Cases per Group

Male 11

Female 10

Total 21

The estimates of means are:

Male Female Total

Heart rate 1 180.9091 172.2000 176.7619

Age 2 50.4546 45.5000 48.0952

The dependent variable is heart rate:

Regression Standard

Covariate Coefficient Error t-Value

Age −0.75515 0.17335 −4.35610

Group Adjusted Standard

Group N Mean Group Mean Error

Male 11 180.90909 182.69070 3.12758

Female 10 172.19998 170.24017 3.28303

The anova table:

Tail Area

Source d.f. SS MS F -Ratio Probability

Equality of adjusted

cell means

1 783.3650 783.3650 7.4071 0.0140

Zero slope 1 2006.8464 2006.8464 18.9756 0.0004

Error 18 1903.6638 105.7591

Equality of slopes 1 81.5415 81.5415 0.7608 0.3952

Error 17 1822.1223 107.1837
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The slopes within each group are:

Age Male Female

2 −1.0231 −0.6687

(a) Is it reasonable to assume equal age response in the two groups?

(b) Are the adjusted cell means closer or farther apart than the unadjusted cell means?

Why?

(c) After adjustment what is the p-value for a difference between the two groups? Do

men or women have a higher heart rate on maximal exercise (after age adjustment)

in these data?
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C H A P T E R 12

Multiple Comparisons

12.1 INTRODUCTION

Most of us are aware of the large number of coincidences that appear in our lives. “Imagine

meeting you here!” “The ticket number is the same as our street address.” One explanation of

such phenomena is statistical. There are so many different things going on in our lives that a

few events of small probability (the coincidences) are likely to happen at the same time. See

Diaconis and Mosteller [1989] for methods for studying coincidences.

In a more formal setting, the same phenomenon can occur. If many tests or comparisons

are carried out at the 0.05 significance level (with the null hypothesis holding in all cases), the

probability of deciding that the null hypothesis may be rejected in one or more of the tests is

considerably larger. If many 95% confidence intervals are set up, there is not 95% confidence

that all parameters are “in” their confidence intervals. If many treatments are compared, each

comparison at a given significance level, the overall probability of a mistake is much larger. If

significance tests are done continually while data accumulate, stopping when statistical signif-

icance is reached, the significance level is much larger than the nominal “fixed sample size”

significance level. The category of problems being discussed is called the multiple comparison

problem: Many (or multiple) statistical procedures are being applied to the same data. We note

that one of the most important practical cases of multiple comparisons, the interim monitoring

of randomized trials, is discussed in Chapter 19.

This chapter provides a quantitative feeling for the problem. Statistical methods to handle the

situation are also described. We first describe the multiple testing or multiple comparison problem

in Section 12.2. In Section 12.3 we present three very common methods for obtaining simulta-

neous confidence intervals for the regression coefficients of a linear model. In Section 12.4 we

discuss how to choose between them. The chapter concludes with notes and problems.

12.2 MULTIPLE COMPARISON PROBLEM

Suppose that n statistically independent tests are being considered in an experiment. Each test

is evaluated at significance level α. Suppose that the null hypothesis holds in each case. What is

the probability, α

∗, of incorrectly rejecting the null hypothesis in one or more of the tests? For

n = 1, the probability is α, by definition. Table 12.1 gives the probabilities for several values

of α and n. Note that if each test is carried out at a 0.05 level, then for 20 tests, the probability

is 0.64 of incorrectly rejecting at least one of the null hypotheses.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.

520



MULTIPLE COMPARISON PROBLEM 521

Table 12.1 Probability, α
∗, of Rejecting One

or More Null Hypotheses When n independent

Tests Are Carried Out at Significance Level α

and Each Null Hypothesis Is True

Number
α

of Tests, n 0.01 0.05 0.10

1 0.01 0.05 0.10

2 0.02 0.10 0.19

3 0.03 0.14 0.27

4 0.04 0.19 0.34

5 0.05 0.23 0.41

6 0.06 0.26 0.47

7 0.07 0.30 0.52

8 0.08 0.34 0.57

9 0.09 0.37 0.61

10 0.10 0.40 0.65

20 0.18 0.64 0.88

50 0.39 0.92 0.99

100 0.63 0.99 1.00

1000 1.00 1.00 1.00

The table may also be related to confidence intervals. Suppose that each of n100(1 − α)%

confidence intervals comes from an independent data set. The table gives the probability that

one or more of the estimated parameters is not straddled by its confidence interval. For example,

among five 90% confidence intervals, the probability is 0.41 that at least one of the confidence

intervals does not straddle the parameter being estimated.

Now that we see the magnitude of the problem, what shall we do about it? One solution is

to use a smaller α level for each test or confidence interval so that the probability of one or

more mistakes over all n tests is the desired (nominal) significance level. Table 12.2 shows the

α level needed for each test in order that the combined significance level, α

∗, be as given at the

column heading.

The values of α and α

∗ are related to each other by the equation

α

∗
= 1 − (1 − α)

n or α = 1 − (1 − α

∗
)

1/n (1)

where (1 − α)

1/n is the nth root of 1 − α.

If p-values are being used without a formal significance level, the p-value from an individual

test is adjusted by the opposite of equation (1). That is, p

∗, the overall p-value, taking into

account the fact that there are n tests, is given by

p

∗
= 1 − (1 − p)

n (2)

For example, if there are two tests and the p-value of each test is 0.05, the overall p-value

is p

∗
= 1 − (1 − 0.05)

2
= 0.0975. For small values of α (or p) and n by the binominal

expansion α

∗
= 1/nα (and p

∗
= np), a relationship that will also be derived in the context of

the Bonferroni inequality.

Before giving an example, we introduce some terminology and make a few comments. We

consider an “experiment” in which n tests or comparisons are made.

Definition 12.1. The significance level at which each test or comparison is carried out in

an experiment is called the per comparison error rate.
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Table 12.2 Significance Level, α, Needed for Each Test

or Confidence Interval So That the Overall Significance

Level (Probability of One or More Mistakes) Is α
∗

When Each Null Hypothesis Is True

Number
α

∗

of Tests, n 0.01 0.05 0.10

1 0.010 0.05 0.10

2 0.005 0.0253 0.0513

3 0.00334 0.0170 0.0345

4 0.00251 0.0127 0.0260

5 0.00201 0.0102 0.0209

6 0.00167 0.00851 0.0174

7 0.00143 0.00730 0.0150

8 0.00126 0.00639 0.0131

9 0.00112 0.00568 0.0116

10 0.00100 0.00512 0.0105

20 0.00050 0.00256 0.00525

50 0.00020 0.00103 0.00210

100 0.00010 0.00051 0.00105

1000 0.00001 0.00005 0.00011

Definition 12.2. The probability of incorrectly rejecting at least one of the true null hypothe-

ses in an experiment involving one or more tests or comparisons is called the per experiment

error rate.

The terminology is less transparent than it seems. In particular, what defines an “experiment”?

You could think of your life as an experiment involving many comparisons. If you wanted to

restrict your “per experiment” error level to, say, α

∗
= 0.05, you would need to carry out each

of the comparisons at ridiculously low values of α. This has led some to question the entire

idea of multiple comparison adjustment [Rothman, 1990; O’Brien, 1983; Proschan and Follman,

1995]. Frequently, groups of tests or comparisons form a natural unit and a suitable adjustment

can be made. In some cases it is reasonable to control the total error rate only over tests that in

some sense ask the same question.

Example 12.1. The liver carries out many complex biochemical tasks in the body. In par-

ticular, it modifies substances in the blood to make them easier to excrete. Because of this,

it is very susceptible to damage by foreign substances that become more toxic as they are

metabolized. As liver damage often causes no noticeable symptoms until far too late, bio-

chemical tests for liver damage are very important in investigating new drugs or monitoring

patients with liver disease. These include measuring substances produced by the healthy liver

(e.g., albumin), substances removed by the healthy liver (e.g., bilirubin), and substances that

are confined inside liver cells and so not found in the blood when the liver is healthy (e.g.,

transaminases).

It is easy to end up with half a dozen or more indicators of liver function, creating a multiple

comparison problem if they are to be tested. Appropriate solutions to the problem vary with the

intentions of the analyst. They might include:

1. Controlling the Type I error rate. If a deterioration in any of the indicators leads to the

same qualitative conclusion — liver damage — they form a single hypothesis that deserves

a single α.
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2. Controlling the Type II error rate. When a new drug is first being tested, it is important

not to miss even fairly rare liver damage. The safety monitoring program must have a

low Type II error rate.

3. Controlling Type I error over smaller groups. Different indicators are sensitive to various

types of liver damage. For a researcher interested in the mechanism of the toxicity,

separating the indicators into these groups would be more appropriate.

4. Combining the indicators. In some cases the multiple comparison problem can be avoided

by creating a composite outcome such as some sort of weighted sum of the indicators. This

will typically increase power for alternatives where more than one indicator is expected

to be affected.

The fact that different strategies are appropriate for different people suggests that it is useful

to report p-values and confidence intervals without adjustment, perhaps in addition to adjusted

versions.

Two of the key assumptions in the derivation of equations (1) and (2) are (1) statistical

independence and (2) the null hypothesis being true for each comparison. In the next two sections

we discuss their relevance and ways of dealing with these assumptions when controlling Type

I error rates.

Example 12.2. To illustrate the methods, consider responses to maximal exercise testing

within eight groups by Bruce et al. [1974]. The subjects were all males. An indication of exercise

performance is functional aerobic impairment (FAI). This index is age- and gender-adjusted to

compare the duration of the maximal treadmill test to that expected for a healthy person of the

subject’s age and gender. A larger score indicates more exercise impairment. Working at a 5%

significance level, it is desired to compare the average levels in the eight groups. The data are

shown in Table 12.3.

Because it was expected that the healthy group would have a smaller variance, a one-way

anova was not performed (in the next section you will see how to handle such problems).

Instead, we construct eight simultaneous 95% confidence intervals. Hence, α = 1 − (1 −

0.05)

1/8 .

= 0.0064 is to be the α-level for each interval. The intervals are given by

Y ±

SD
√

n

t

n−1,1−(0.0064/2)

The t-values are estimated by interpolation from the table of t-critical values and the normal

table (n > 120). The eight confidence intervals work out to be as shown in Table 12.4. Displaying

these intervals graphically and indicating which group each interval belongs to gives Figure 12.1.

Table 12.3 Functional Aerobic Impairment Data for

Example 12.2

Standard

Group N Mean Deviation

1 Healthy individuals 1275 0.6 11

2 Hypertensive subjects (HT) 193 8.5 19

3 Postmyocardial infarction (PMI) 97 24.5 21

4 Angina pectoris, chest pain (AP) 306 30.3 24

5 PMI + AP 228 36.9 26

6 HT + AP 138 36.6 23

7 HT + PMI 20 27.6 18

8 PMI + AP + HT 75 44.9 22
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Table 12.4 FAI Confidence Intervals by

Group for Example 12.2

Limits

Group Critical t-Value Lower Upper

1 2.73 −0.2 1.4

2 2.73 4.8 12.2

3 2.79 18.5 30.5

4 2.73 26.6 34.0

5 2.73 32.2 41.6

6 2.77 31.2 42.0

7 3.06 15.3 39.9

8 2.81 37.7 52.1

Figure 12.1 Functional aerobic impairment level.

Since all eight groups have a simultaneous 95% confidence interval, it is sufficient (but

not necessary) to decide that any two means whose confidence intervals do not overlap are

significantly different. Let µ1, µ2, . . . , µ8, be the population means associated with groups

1, 2, . . . , 8, respectively. The following conclusions are in order:

1. µ1 has the smallest mean (µ1 < µ

i

, i = 2, . . . , 8).

2. µ2 is the second smallest mean (µ1 < µ2 < µ

i

, i = 3, . . . , 8).

3. µ3 < µ5, µ3 < µ6, µ3 < µ8.

4. µ4 < µ8.

There are seeming paradoxes. We know that µ3 < µ5, but we cannot decide whether µ7 is

larger or smaller than those two means.

Restating the conclusions in words: The healthy group had the best exercise performance,

followed by the hypertensive subjects, who were better than the rest. The postmyocardial infarc-

tion group performed better than the PMI + AP, PMI + AP + HT, and HT + AR groups. The

angina pectoris group had better performance than angina pectoris plus an MI and hypertension.

The other orderings were not clear from this data set.

12.3 SIMULTANEOUS CONFIDENCE INTERVALS AND TESTS FOR LINEAR

MODELS

12.3.1 Linear Combinations and Contrasts

In the linear models, the estimates of the parameters are usually not independent. Even when the

estimates of the parameters are independent, the same error mean square, MS
e

, is used for each
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test or confidence interval. Thus, the method of Section 12.2 does not apply. In this section,

several techniques dealing with the linear model are considered.

Before introducing the Scheffé method, we need additional concepts of linear combinations

and contrasts.

Definition 12.3. A linear combination of the parameters β1, β2, . . . , β

p

is a sum θ =

c1β1 + c2β2 + · · · + c

p

β

p

, where c1, c2, . . . , c

p

are known constants.

Associated with any parameter set β1, β2, . . . , β

p

is a number that is equal to the number

of linearly estimated independent parameters. In anova tables, this is the number of degrees of

freedom associated with a particular sum of squares.

A linear combination is a parameter. An estimate of such a parameter is a statistic, a random

variable. Let b1, b2, . . . , b

p

be unbiased estimates of β1, β2, . . . , β

p

; then ̂

θ = c1b1 + c2b2 +

· · ·+c

p

b

p

is an unbiased estimate of θ . If b1, b2, . . . , b

p

are jointly normally distributed, ̂θ will

be normally distributed with mean θ and variance σ
̂

θ

2 . The standard error of ̂

θ is usually quite

complex and depends on possible relationships among the β’s as well as correlations among the

estimates of the β’s. It will be of the form

constant
√

MS
e

where MS
e

is the residual mean square from either the regression analysis or the analysis of

variance. A simple set of linear combinations can be obtained by having only one of the c

i

take

on the value 1 and all others the value 0.

A particular class of linear combinations that will be very useful is given by:

Definition 12.4. A linear combination θ = c1β1 + c2β2 + · · · + c

p

β

p

is a contrast if

c1 + c2 + · · · + c

p

= 0. The contrast is simple if exactly two constants are nonzero and equal

to 1 and −1.

The following are examples of linear combinations that are contrasts: β1 − β2 (a simple

contrast); β1 −
1
2
(β2 + β3) = β1 −

1
2
β2 −

1
2
β3, and (β1 + β8) − (β2 + β4) = β1 + β8 − β2 − β4.

The following are linear combinations that are not contrasts: β1, β1 + β6, and β1 +
1
2
β2 +

1
2
β3. The linear combinations and contrasts have been defined and illustrated using regression

notation. They are also applicable to analysis of variance models (which are special regression

models), so that the examples can be rewritten as µ1 − µ2, µ1 −
1
2
(µ2 + µ3), and so on.

The interpretation is now a bit more transparent: µ1 − µ2 is a comparison of treatment 1 and

treatment 2; µ1 −
1
2
(µ2 + µ3) is a comparison of treatment 1 with the average of treatment 2

and treatment 3.

Since hypothesis testing and estimation are equivalent, we state most results in terms of

simultaneous confidence intervals.

12.3.2 Scheffé Method (S-Method)

A very general method for protecting against a large per experiment error rate is provided by

the Scheffé method. It allows unlimited “fishing,” at a price.

Result 12.1. Given a set of parameters β1, β2, . . . , β

p

, the probability is 1 − α that simul-

taneously all linear combinations of β1, β2, . . . , β

p

, say, θ = c1β1 + c2β2 + · · · + c

p

β

p

, are in

the confidence intervals
̂

θ ±

√

dF

d,m,1−α

σ̂
̂

θ
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where the estimate of θ is ̂

θ = c1b1 + c2b2 + · · · + c

p

b

p

with estimated standard error σ̂
̂

θ

, F

is the usual F -statistic with (d,m) degrees of freedom, d is the number of linearly independent

parameters, and m is the number of degrees of freedom associated with MS
e

.

Note that these confidence intervals are of the usual form, “statistic ± constant × standard

error of statistic,” the only difference being the constant, which now depends on the number

of parameters involved as well as the degrees of freedom for the error sum of squares. When

d = 1, for any α,

√

dF

d,m,1−α

=

√

F1,m,1−α

= t

m,1−α

That is, the constant reduces to the usual t-statistic with m degrees of freedom. After discussing

some examples, we assess the price paid for the unlimited number of comparisons that can be

made.

The easiest way to understand the S-method is to work through some examples.

Example 12.3. In Table 12.5 we present part of the computer output from Cullen and

van Belle [1975] discussed in Chapters 9 and 11. We construct simultaneous 95% confidence

intervals for the slopes β

i

. In this case, the first linear combination is

θ1 = 1 × β1 + 0 × β2 + 0 × β3 + 0 × β4 + 0 × β5

the second linear combination is

θ2 = 0 × β1 + 1 × β2 + 0 × β3 + 0 × β4 + 0 × β5

and so on.

The standard errors of these linear combinations are simply the standard errors of the

slopes. There are five slopes β1, β2, . . . , β5, which are linearly independent, but their esti-

mates b1, b2, . . . , b5 are correlated. The MS
e

upon which the standard errors of the slopes are

based has 29 degrees of freedom. The F -statistic has value F5,29,0.95 = 2.55.

The 95% simultaneous confidence intervals will be of the form

b

i

±

√

(5)(2.55)s

b

i

Table 12.5 Analysis of Variance, Regression Coefficients, and Confidence Intervals

Analysis of Variance

Source d.f. SS MS F -Ratio Significance

Regression 5.0 95,827 18,965 12.9 0.000

Residual 29.0 42,772 1,474

95% Limits

Variable b Standard-Error b t Lower Upper

DPMB 0.575 0.0834 6.89 0.404 0.746

Trauma −9.21 11.6 −0.792 −33.0 14.6

Lymph B −8.56 10.2 −0.843 −29.3 12.2

Time −4.66 5.68 −0.821 −16.3 6.96

Lymph A −4.55 6.72 −0.677 −18.3 9.19

Constant −96.3 36.4 2.65 22.0 171
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or

b

i

± 3.57s

b

i

, i = 1, 2, . . . , 5

For the regression coefficient of DPMB the interval is

0.575 ± (3.57)(0.0834)

resulting in 95% confidence limits of (0.277, 0.873).

Computing these values, the confidence intervals are as follows:

Limits Limits

Variable Lower Upper Variable Lower Upper

DPMB 0.277 0.873 Time −24.9 15.6

Trauma −50.8 32.3 Lymph A −28.5 19.4

Lymph B −44.8 27.7

These limits are much wider than those based on a per comparison t-statistic. This is due

solely to the replacement of t29,0.975 = 2.05 by
√

5F5,29,0.95 = 3.57. Hence, the confidence

interval width is increased by a factor of 3.57/2.05 = 1.74 or 74%.

Example 12.4. In a one-way anova situation, using the notation of Section 10.2.2, if we

wish simultaneous confidence intervals for all I means, then d = I , m = n·−I , and the standard

error of the estimate of µ

i

is

√

MS
e

n

i

, i = 1, . . . , I

Thus, the confidence intervals are of the form

Y

i· ±

√

IF

I,n·−I,1−α

√

MS
e

n

i

, i = 1, . . . , I

Suppose that we want simultaneous 99% confidence intervals for the morphine binding data of

Problem 10.1. The confidence interval for the chronic group is

31.9 ±

√

(4) (4.22)

︸ ︷︷ ︸

F4,24,0.99

√

9.825

18
= 31.9 ± 3.0

or

31.9 ± 3.0

The four simultaneous 99% confidence intervals are:

Limits Limits

Group Lower Upper Group Lower Upper

µ1 = Chronic 28.9 34.9 µ3 = Dialysis 22.0 36.8

µ2 = Acute 21.0 39.2 µ4 = Anephric 19.2 30.8
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As all four intervals overlap, we cannot conclude immediately from this approach that the

means differ (at the 0.01 level). To compare two means we can also consider confidence intervals

for µ

i

− µ

′

i

. As the Scheffé method allows us to look at all linear combinations, we may also

consider the confidence interval for µ

i

− µ

′

i

.

The formula for the simultaneous confidence intervals is

Y

i· − Y

i

′· ±

√

IF

I,n·−I,1−α

√

MS
e

(

1

n

i

+

1

n

i

′

)

, i, i

′
= 1, . . . , I, i �= i

′

In this case, the confidence intervals are:

Limits Limits

Contrast Lower Upper Contrast Lower Upper

µ1 − µ2 −7.8 11.4 µ2 − µ3 −11.1 12.5

µ1 − µ3 −5.5 10.5 µ2 − µ4 −5.7 15.9

µ1 − µ4 0.4 13.4 µ3 − µ4 −5.0 13.8

As the interval for µ1 −µ4 does not contain zero, we conclude that µ1 −µ4 > 0 or µ1 > µ4.

This example is typical in that comparison of the linear combination of interest is best done

through a confidence interval for that combination.

The comparisons are in the form of contrasts but were not considered so explicitly. Suppose

that we restrict ourselves to contrasts. This is equivalent to deciding which mean values differ,

so that we are no longer considering confidence intervals for a particular mean. This approach

gives smaller confidence intervals.

Contrast comparisons among the means µ

i

, i = 1, . . . , I are equivalent to comparisons of

α

i

, i = 1, . . . , I in the one-way anova model Y

ij

= µ+α

i

+ ǫ

ij

, i = 1, . . . , I , j = 1, . . . , n

i

;

for example, µ1 −µ2 = α1 −α2. There are only (I − 1) linearly independent values of α

i

since

we have the constraint
∑

i

α

i

= 0. This is, therefore, the first example in which the parameters

are not linearly independent. (In fact, the main effects are contrasts.) Here, we set up confidence

intervals for the simple contrasts µ

i

−µ

′

i

. Here d = 3 and the simultaneous confidence intervals

are given by

Y

i· − Y

i

′· ±

√

(I − 1)F

I−1,n·−I,1−α

√

MS
e

(

1

n

i

+

1

n

i

′

)

, i, i

′
= 1, . . . , I, i �= i

′

In the case at hand, the intervals are:

Limits Limits

Contrast Lower Upper Contrast Lower Upper

µ1 − µ2 −7.0 10.6 µ2 − µ3 −10.1 11.5

µ1 − µ3 −4.9 9.9 µ2 − µ4 −4.8 15.0

µ1 − µ4 0.9 12.9 µ3 − µ4 −1.9 10.7

As the µ1 − µ4 interval does not contain zero, we conclude that µ1 > µ4. Note that these

intervals are shorter then in the first illustration. If you are interested in comparing each pair

of means, this method will occasionally detect differences not found if we require confidence

intervals for the mean as well.
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Example 12.5.

1. Main effects. In two-way anova situations there are many possible sets or linear combi-

nations that may be studied; here we consider a few. To study all cell means, consider the

IJ cells to be part of a one-way anova and use the approach of Example 12.2 or 12.4.

Now consider Example 10.5 in Section 10.3.1. Suppose that we want to compare the

differences between the means for the different days at a 10% significance level. In this

case we are working with the β

j

main effects. The intervals for µ·j − µ·j ′ = β

j

− β

j

′

are given by

Y ·j· − Y ·j ′· ±

√

(J − 1)F

J−1,n··−IJ,1−α

√

MS
e

(

1

n·j

+

1

n·j ′

)

The means are 120.4, 158.1, and 118.4, respectively. The following contrasts are of

interest:

90% Limits

Contrast Estimate Lower Upper

β1 − β2 −37.7 −70.7 −4.7

β2 − β3 39.7 5.5 73.9

β1 − β3 2.0 −31.0 35.0

At the 10% significance level, we conclude that µ·1 − µ·2 < 0 or µ·1 < µ·2, and that

µ·3 < µ·2. Thus, the means (combining cases and controls) of days 10 and 14 are less

than the means of day 12.

2. Main effects assuming no interaction. We illustrate the procedure using Problem 10.12 as

an example. This example discussed the effect of histamine shock on the medullary blood

vessel surface of the guinea pig thymus.

The sex of the animal was used as a covariate. The anova table is shown in Table 12.6.

There is little evidence of interaction. Suppose that we want to fit the model

Y

ijk

= µ + α

i

+ β

j

+ ǫ

ijk

,

i = 1, . . . , I

j = 1, . . . , J

k = 1, . . . , n

ij

That is, we ignore the interaction term. It can be shown that the appropriate estimates

in the balanced model for the cell means µ + α

i

+ β

j

are

Y ··· + a

i

+ b

j

,

i = 1, . . . , I

j = 1, . . . , J

Table 12.6 anova Table for Control vs. Histamine

Shock

Source d.f. Mean Square F -Ratio p-Value

Treatment 1 11.56 5.20 <0.05

Sex 1 1.26 0.57 >0.05

Treatment by sex 1 5.40 2.43 >0.05

Error 36 2.225

Total 39
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or

Y ··· + (Y

i·· − Y ···) + (Y ·j· − Y ···) = Y

i·· + Y ·j· − Y ···

The estimates are Y ··· = 6.53, Y 1·· = 6.71, Y 2·· = 6.35, Y ·1· = 5.99, Y ·2· = 7.07. The

estimated cell means fitted to the model E(Y

ijk

) = µ + α

i

+ β

j

by Y ··· + a

i

+ b

j

are:

Treatment

Sex Control Shock

Male 6.17 7.25

Female 5.81 6.89

For multiple comparisons the appropriate formula for simultaneous confidence intervals

for each cell mean assuming that the interaction term is zero is given by the formula

Y

i·· + Y ·j· − Y ··· ±

√

(I + J − 1)F

I+J−1,n··−IJ+1,1−α

√

MS
e

(

1

n

i·

+

1

n·j

−

1

n··

)

The degrees of freedom for the F -statistic are (I +J −1) and (n··−IJ +1) because there

are I + J − 1 linearly independent cell means and the residual MS
e

has (n·· − IJ + 1)

degrees of freedom. This MS
e

can be obtained by pooling the SSinteraction and SSresidual

in the anova table. For our example,

MS
e

=

1 × 5.40 + 36 × 2.225

37
= 2.311

We will construct the 95% confidence intervals for the four cell means. The confidence

interval for the first cell is given by

6.17 ±

√

(2 + 2 − 1) F3,37,0.95
︸ ︷︷ ︸

2.86

√

2.311

(

1

20
+

1

20
−

1

40

)

yielding 6.17 ± 1.22 for limits (4.95, 7.39). The four simultaneous 95% confidence lim-

its are:

Treatment

Sex Control Shock

Male (4.95, 7.39) (6.03, 8.47)

Female (4.59, 7.03) (5.67, 8.11)

Requiring this degree of confidence gives intervals that overlap. However, using the

Scheffé method, all linear combinations can be examined. With the same 95% con-

fidence, let us examine the sex and treatment differences. The intervals for sex are

defined by

Y 1·· − Y 2·· ±

√

3F3,37,0.95

√

MS
e

(

1

n1·
+

1

n2·

)
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or 0.36 ± 1.41 for limits (−1.05, 1.77). Thus, in these data there is no reason to reject

the null hypothesis of no difference in sex. The simultaneous 95% confidence interval

for treatment is −1.08 ± 1.41 or (−2.49, 0.33). This confidence interval also straddles

zero, and at the 95% simultaneous confidence level we conclude that there is no differ-

ence in the treatment. This result nicely illustrates a dilemma. The two-way analysis of

variance did indicate a significant treatment effect. Is this a contradiction? Not really, we

are “protecting” ourselves against an increased Type I error. Since the results are “bor-

derline” even with the analysis of variance, it may be best to conclude that the results are

suggestive but not clearly significant. A more substantial point may be made by asking

why we should test the effect of sex anyway? It is merely a covariate or blocking factor.

This argument raises the question of the appropriate set of comparisons. What do you

think?

3. Randomized block designs. Usually, we are interested in the treatment means only and

not the block means. The confidence interval for the contrast τ

j

− τ

′

j

has the form

Y ·j − Y ·j ′ ±

√

(J − 1)F

J−1,IJ−I−J+1,1−α

√

MS
e

2

I

The treatment effect τ

j

has confidence interval

Y ·j − Y ·· ±

√

(J − 1)F

J−1,IJ−I−J+1,1−α

√

MS
e

(

1 −

1

J

)

1

I

Problem 12.16 uses these formulas in a randomized block analysis.

12.3.3 Tukey Method (T-Method)

Another method that holds in nicely balanced anova situations is the Tukey method, which is

based on an extension of the Student t-test. Recall that in the two-sample t-test, we use

t =

√

n1n2

n1 + n2

Y 1· − Y 2·

s

where Y 1· is the mean of the first sample, Y 2· is the mean of the second sample, and s =

√

MS
e

is the pooled standard deviation. The process of dividing by s is called studentizing the range.

For more than two means, we are interested in the sampling distribution of the (largest–

smallest) mean.

Definition 12.5. Let Y1, Y2, . . . , Y

k

be independent and identically distributed (iid)

N(µ, σ

2
). Let s

2 be an estimate of σ

2 with m degrees of freedom, which is independent

of the Y

i

’s. Then the quantity

Q

k,m

=

max(Y1, Y2, . . . , Y

k

) − min(Y1, Y2, . . . , Y

k

)

s

is called the studentized range.

Tukey derived the distribution of Q

k,m

and showed that it does not depend on µ or σ ; a

description is given in Miller [1981]. The distribution of the studentized range is given by some
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statistical packages and is tabulated in the Web appendix. Let q

k,m,1−α

denote the upper critical

value; that is,

P [Q
k,m

≥ q

k,m,1−α

] = 1 − α

You can verify from the table that for k = 2, two groups,

q2,m,1−α

=

√

2t2,m,1−α/2

We now state the main result for using the T-method of multiple comparisons, which will then

be specialized and illustrated with some examples.

The result is stated in the analysis of variance context since it is the most common application.

Result 12.2. Given a set of p population means µ1, µ2, . . . , µ

p

estimated by p inde-

pendent sample means Y 1, Y 2, . . . , Y

p

each based on n observations and residual error s

2

based on m degrees of freedom, the probability is 1 − α that simultaneously all contrasts of

µ1, µ2, . . . , µ

p

, say, θ = c1µ1 + c2µ2 + · · · + c

p

µ

p

, are in the confidence intervals

̂

θ ± q

p,m,1−α

σ̂
̂

θ

where

̂

θ = c1Y 1 + c2Y 2 + · · · + c

p

Y

p

and σ̂
̂

θ

=

s

√

n

p

∑

i=1

|c
i

|

2

The Tukey method is used primarily with pairwise comparisons. In this case, σ̂
̂

θ

reduces to s/

√

n,

the standard error of a mean. A requirement is that there be equal numbers of observations in

each mean; this implies a balanced design. However, reasonably good approximations can be

obtained for some unbalanced situations, as illustrated next.

One-Way Analysis of Variance

Suppose that there are I groups with n observations per group and means µ1, µ2, . . . , µ

I

. We

are interested in all pairwise comparisons of these means. The estimate of µ

i

−µ

′

i

is Y

i· −Y

i

′·,

the variance of each sample mean estimated by MS
e

(1/n) with m = I (n − 1) degrees of

freedom. The 100(1 − α)% simultaneous confidence intervals are given by

Y

i· − Y

i

′· ± q

I,I (n−1),1−α

1
√

n

√

MS
e

, i, i

′
= 1, . . . , I, i �= i

′

This result cannot be applied to the example of Section 12.3.2 since the sample sizes are not

equal. However, Dunnett [1980] has shown that the 100(1 − α)% simultaneous confidence

intervals can be reasonably approximated by replacing

√

MS
e

n

by

√

MS
e

(

1

2

)(

1

n

i

+

1

n

i

′

)

where n

i

and n

i

′ are the sample sizes in groups i and i

′, respectively, and the degrees of freedom

associated with MS
e

are the usual ones from the analysis of variance.

We now apply this approximation to the morphine binding data in Section 12.3.2. For this

example, 1 −α = 0.99, I = 4, and the MS
e

= 9.825 has 24 d.f., resulting in q4,24,0.99 = 4.907.

Simultaneous 99% confidence intervals are listed in Table 12.7.
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Table 12.7 Morphine Binding Data

Estimated 99% Limits
Standard

Contrast n

i

n

′

i

Y

i· − Y

i

′· Error Lower Upper

µ1 − µ2 18 2 1.7833 1.6520 −6.32 9.98

µ1 − µ3 18 3 2.4500 1.3822 −4.33 9.23

µ1 − µ4 18 5 6.8833 1.1205 1.39 12.4

µ2 − µ3 2 3 0.6167 2.0233 −9.31 10.5

µ2 − µ4 2 5 5.0500 1.8544 −4.05 14.1

µ3 − µ4 3 5 4.4333 1.6186 −3.51 12.4

We conclude, at a somewhat stringent 99% confidence level, that simultaneously, only one

of the pairwise contrasts is significantly different: group 1 (normal) differing significantly from

group 4 (anephric).

Two-Way anova with Equal Numbers of Observations per Cell

Suppose that in the two-way anova of Section 10.3.1, there are n observations for each cell.

The T-method may then be used to find intervals for either set of main effects (but not both

simultaneously). For example, to find intervals for the α

i

’s, the intervals are:

Contrast Interval

α

i

Y

i·· − Y ··· ±

1
√

Jn

q

I,IJ (n−1),1−α

√

MS
e

(

1 −

1

I

)

α

i

− α

i

′ Y

i·· − Y

i

′·· ±

1
√

Jn

q

I,IJ (n−1),1−α

√

MS
e

We again consider the last example of Section 12.3.2 and want to set up 95% confidence

intervals for α1, α2, and α1 − α2. In this example I = 2, J = 2, and n = 10. Using q2,36,0.95 =

2.87 (by interpolation), the intervals are:

95% Limits

Contrast Estimate Standard Error Lower Upper

α1 −0.54 0.2358 −1.22 0.68

α2 0.54 0.2358 −0.68 1.22

α1 − α2 −1.08 0.3335 −2.04 −0.12

We have used the MS
e

with 36 degrees of freedom; that is, we have fitted a model with

interaction. The interpretation of the results is that treatment effects do differ significantly at

the 0.05 level; even though there is not enough evidence to reject the null hypothesis that the

treatment effects differ from zero.

Randomized Block Designs

Using the notation of Section 12.3.2, suppose that we want to compare contrasts among the

treatment means (the µ + τ

j

). The τ

j

themselves are contrasts among the means. In this case,

m = (I − 1)(J − 1). The intervals are:
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Table 12.8 Confidence Intervals for

the Six Comparisons

95% Limits

Contrast Estimate Upper Lower

µ1 − µ2 21.6 4.4 38.8

µ1 − µ3 20.7 3.5 37.9

µ1 − µ4 7.0 −10.2 24.2

µ2 − µ3 −0.9 −18.1 16.3

µ2 − µ4 −14.6 −31.8 2.6

µ3 − µ4 −13.7 −30.9 3.5

Contrast Interval

τ

j

Y ·j − Y ·· ±

1
√

I

q

J,(I−1)(J−1),1−α

√

MS
e

(

1 −

1

J

)

τ

j

− τ

j

′ Y ·j − Y ·j ′ ±
1

√

2I

q

J,(I−1)(J−1),1−α

√

MS
e

Consider Example 10.6. We want to compare the effectiveness of pancreatic supplements on

fat absorption. The treatment means are

Y ·1 = 38.1, Y ·2 = 16.5, Y ·3 = 17.4, Y ·4 = 31.1

The estimate of σ

2 is MS
e

= 107.03 with 15 degrees of freedom. To construct simultaneous

95% T-confidence intervals, we need q4,15,0.95 = 4.076. The simultaneous 95% confidence

interval for τ1 − τ2 is

(38.1 − 16.5) ±

1
√

6
(4.076)

√

107.03

or

21.6 ± 17.2

yielding (4.4, 38.8).

Proceeding similarly, we obtain simultaneous 95% confidence intervals for the six pairwise

comparisons (Table 12.8). From this analysis we conclude that treatment 1 differs from treat-

ments 2 and 3 but has not been shown to differ from treatment 4. All other contrasts are not

significant.

12.3.4 Bonferroni Method (B-Method)

In this section a method is presented that may be used in all situations. The method is conser-

vative and is based on Bonferroni’s inequality. Called the Bonferroni method, it states that the

probability of occurrence of one or more of a set of events occurring is less that or equal to the

sum of the probabilities. That is, the Bonferroni inequality states that

P(A1U · · ·UA

n

) ≤

n

∑

i=1

P(A

i

)
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We know that for disjoint events, the probability of one or more of A1, . . . , A

n

is equal to the

sum of probabilities. If the events are not disjoint, part of the probability is counted twice or

more and there is strict inequality.

Suppose now that n simultaneous tests are to be performed. It is desired to have an overall

significance level α. That is, if the null hypothesis is true in all n situations, the probability

of incorrectly rejecting one or more of the null hypothesis is less than or equal to α. Perform

each test at significance level α/n; then the overall significance level is less that or equal to

α. Let A

i

be the event of incorrectly rejecting in the ith test. Bonferroni’s inequality shows

that the probability of rejecting one or more of the null hypotheses is less than or equal to

(α/n + · · · + α/n) (n terms), which is equal to α.

We now state a result that makes use of this inequality:

Result 12.3. Given a set of parameters β1, β2, . . . , β

p

and N linear combinations of these

parameters, the probability is greater than or equal to 1 − α that simultaneously these linear

combinations are in the intervals
̂

θ ± t

m,1−α/2N

σ̂
̂

θ

The quantity ̂

θ is c1b1 + c2b2 + · · · + c

p

b

p

, t

m,1−α/2N

is the 100(1 − α/2N)th percentile of a

t-statistic with m degrees of freedom, and σ̂
̂

θ

is the estimated standard error of the estimate of

the linear combination based on m degrees of freedom.

The value of N will vary with the application. In the one-way anova with all the pairwise

comparisons among the I treatment means N =

(

I

2

)

. Simultaneous confidence intervals, in

this case, are of the form

Y

i· − Y

i

′· ± t

m,1−α/2

(

I

2

)

√

MS
e

(

1

n

i

+

1

n

′

i

)

, i, i

′
= 1, . . . , I, i �= i

′

The value of α need not be partitioned into equal multiples. The simplest is α = α/N+α/N+

· · ·+α/N , but any partitions of α = α1 +α2 +· · ·+α

N

is permissible, yielding a per experiment

error rate of at most α. However, any such decision must be made a priori—obviously, one cannot

decide after seeing one p-value of 0.04 and 14 larger ones to allow all the Type I error to the

0.04 and declare it significant. Partly for this reason, unequal allocation is very unusual outside

group sequential clinical trials (where it is routine but does not use the Bonferroni inequality).

When presenting p-values, when N simultaneous tests are being done, multiplication of the

p-value for each test by N gives p-values allowing simultaneous consideration of all N tests.

An example of the use of Bonferroni’s inequality is given in a paper by Gey et al. [1974].

This paper considers heartbeats that have an irregular rhythm (or arrythmia). The study examined

the administration of the drug procainamide and evaluated variables associated with the maximal

exercise test with and without the drug. Fifteen variables were examined using paired t-tests.

All the tests came from data on the same 23 patients, so the test statistics were not independent.

To correct for the multiple comparison values, the p-values were multiplied by 15. Table 12.9

presents 14 of the 15 comparisons. The table shows that even taking the multiple comparisons

into account, many of the variables differed when the subject was on the procainamide medica-

tion. In particular, the frequency of arrythmic beats was decreased by administration of the drug.

Improved Bonferroni Methods

The Bonferroni adjustment is often regarded as too drastic, causing too great a loss of power.

In fact, the adjustment is fairly close to optimal in any situation where only one of the null

hypotheses is false. When many of the null hypotheses are false, however, there are better

corrections. A number of these are described by Wright [1992]; we discuss two here.
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Table 12.10 Application of the Three Methods

Original p × = Hochberg Holm Bonferroni

0.001 6 0.006 0.006 0.006 0.006

0.01 5 0.05 0.04 0.05 0.06

0.02 4 0.08 0.04 0.08 0.12

0.025 3 0.075 0.04 0.08 0.15

0.03 2 0.06 0.04 0.08 0.18

0.04 1 0.04 0.04 0.08 0.24

Consider a situation where you perform six tests and obtain p-values of 0.001, 0.01, 0.02,

0.025, 0.03, and 0.04, and you wish to use α = 0.05. All the p-values are below 0.05, something

that is very unlikely to occur by chance, but the Bonferroni adjustment declares only one of

them significant.

Given n p-values, the Bonferroni adjustment multiplies each by n. The Hochberg and Holm

adjustments multiply the smallest by n, the next smallest by n − 1, and so on (Table 12.10).

This may change the relative ordering of p-values, so they are then restored to the original

order. For the Hochberg method this is done by decreasing them where necessary; for the Holm

method it is done by increasing them. The Holm adjustment guarantees control of Type I error;

the Hochberg adjustment controls Type I error in most but not all circumstances.

Although there is little reason other than tradition to prefer the Bonferroni adjustment over

the Holm adjustment, there is often not much difference.

12.4 COMPARISON OF THE THREE PROCEDURES

Of the three methods presented, which should be used? In many situations there is not suffi-

cient balance in the data (e.g., equal numbers in each group in a one-way analysis of variance)

to use the T-method; the Scheffé method procedure or the Bonferroni inequality should be

used. For paired comparisons, the T-method is preferable. For more complex contrasts, the

S-method is preferable. A comparison between the B-method and the S-method is more com-

plicated, depending heavily on the type of application. The Bonferroni method is easier to

carry out, and in many situations the critical value will be less than that for the Scheffé

method.

In Table 12.11 we compare the critical values for the three methods for the case of one-way

anova with k treatments and 20 degrees of freedom for error MS. With two treatments (k = 2

and therefore ν = 1) the three methods give identical multipliers (the q statistic has to be divided

by
√

2 to have the same scale as the other two statistics).

Table 12.11 Comparison of the Critical Values for One-Way anova with k Treatmentsa

Number of Treatments, Degrees of Freedom,

k ν = k − 1
√

νF

ν,20,0.95
1

√

2
q

ν,20,0.95 t

20,1−α/2
(

k

2)

2 1 2.09 2.09 2.09

3 2 2.64 2.53 2.61

4 3 3.05 2.80 2.93

5 4 3.39 2.99 3.15

11 10 4.85 3.61 3.89

21 20 6.52 4.07 4.46

aAssume
(

k

2

)

comparisons for the Tukey and Bonferroni procedures. Based on 20 degrees of freedom for error mean
square.
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Hence, if pairwise comparisons are carried out, the Tukey procedure will produce the shortest

simultaneous confidence intervals. For the type of situation illustrated in the table, the B-method

is always preferable to the S-method. It assumes, of course, that the total, N , of comparisons

to be made is known. If this is not the case, as in “fishing expeditions,” the Scheffé method

provides more adequate protection.

For an informative discussion of the issues in multiple comparisons, see comments by O’Brien

[1983] in Biometrics.

12.5 FALSE DISCOVERY RATE

With the rise of high-throughput genomics in recent years there has been renewed concern about

the problem of very large numbers of multiple comparisons. An RNA expression array (gene

chip) can measure the activity of several thousand genes simultaneously, and scientists often

want to ask which genes differ in their expression between two samples. In such a situation it

may be infeasible, but also unnecessary, to design a procedure that prevents a single Type I

error out of thousands of comparisons. If we reject a few hundred null hypotheses, we might

still be content if a dozen of them were actually Type I errors. This motivates a definition:

Definition 12.6. The positive false discovery rate (pFDR) is the expected proportion of

rejected hypotheses that are actually true given that at least some null hypotheses are rejected.

The false discovery rate (FDR) is the positive false discovery rate times the probability that no

null hypotheses are rejected.

Example 12.6. Consider an experiment comparing the expression levels of 12,625 RNA

sequences on an Affymetrix HG-u95A chip, to see which genes had different expression in

benign and malignant colon polyps. Controlling the Type I error rate at 5% means that if we

declare 100 sequences to be significantly different, we are not prepared to take more than a 5%

chance of even 1 of these 100 being a false positive.

Controlling the positive false discovery rate at 5% means that if we declare 100 sequences

to be significantly different, we are not prepared to have, on average, more than 5 of these 100

being false positives.

The pFDR and FDR apparently require knowledge of which hypotheses are true, but we will

see that, in fact, it is possible to control the pFDR and FDR without this knowledge and that

such control is more effective when we are testing a very large number of hypotheses.

Although like many others, we discuss the FDR and pFDR under the general heading of

multiple comparisons, they are very different quantities from the Type I error rates in the rest

of this chapter. The Type I error rate is the probability of making a certain decision (rejecting

the null hypothesis) conditional on the state of nature (the null hypothesis is actually true). The

simplest interpretation of the pFDR is the probability of a state of nature (the null hypothesis is

true) given a decision (we reject it). This should cause some concern, as we have not said what

we might mean by the probability that a hypothesis is true.

Although it is possible to define probabilities for states of nature, leading to the interesting

and productive field of Bayesian statistics, this is not necessary in understanding the false

discovery rates. Given a large number N of tests, we know that in the worst case, when all

the null hypotheses are true, there will be approximately αN hypotheses (falsely) rejected. In

general, fewer that N of the null hypotheses will be true, and there will be fewer than N false

discoveries. If we reject R of the null hypotheses and R > αN , we would conclude that at

least roughly R − αN of the discoveries were correct, and so would estimate the positive false
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discovery rate as

pFDR ≈

R − αN

R

This is similar to a graphical diagnostic proposed by Schweder and Spjøtvoll [1982], which

involves plotting R/N against the p-value, with a line showing the expected relationship. As it

stands, this estimator is not a very good one. The argument can be improved to produce fairly

simple estimators of FDR and pFDR that are only slightly conservative [Storey, 002].

As the FDR and pFDR are primarily useful when N is very large (at least hundreds of tests),

hand computation is not feasible. We defer the computational details to the Web appendix of

this chapter, where the reader will find links to programs for computing the FDR and pFDR.

12.6 POST HOC ANALYSIS

12.6.1 The Setting

A particular form of the multiple comparison problem is post hoc analysis. Such an analysis is not

explicitly planned at the start of the study but suggested by the data. Other terms associated with

such analyses are data driven and subgroup analysis. Aside from the assignment of appropriate

p-values, there is the more important question of the scientific status of such an analysis. Is the

study to be considered exploratory, confirmatory, or both? That is, can the post hoc analysis

only suggest possible connections and associations that have to be confirmed in future studies,

or can it be considered as confirming them as well? Unfortunately, no rigid lines can be drawn

here. Every experimenter does, and should do, post hoc analyses to ensure that all aspects of the

observations are utilized. There is no room for rigid adherence to artificial schema of hypothesis

which are laid out row upon boring row. But what is the status of these analyses? Cox [1977]

remarks:

Some philosophies of science distinguish between exploratory experiments and confirmatory experi-

ments and regard an effect as well established only when it has been demonstrated in a confirmatory

experiment. There are undoubtedly good reasons, not specifically concerned with statistical tech-

nique, for proceeding this way; but there are many fields of study, especially outside the physical

sciences, where mounting confirmatory investigations may take a long time and therefore where it is

desirable to aim at drawing reasonably firm conclusions from the same data as used in exploratory

analysis.

What statistical approaches and principles can be used? In the following discussion we follow

closely suggestions of Cox and Snell [1981] and Pocock [1982, 1984].

12.6.2 Statistical Approaches and Principles

Analyses Must Be Planned

At the start of the study, specific analyses must be planned and agreed to. These may be broadly

outlined but must be detailed enough to, at least theoretically, answer the questions being asked.

Every practicing statistician has met the researcher who has a filing cabinet full of crucial data

“just waiting to be analyzed” (by the statistician, who may also feel free to suggest appropriate

questions that can be answered by the data).

Planned Analyses Must Be Carried Out and Reported

This appears obvious but is not always followed. At worst it becomes a question of scientific

integrity and honesty. At best it is potentially misleading to omit reporting such analyses. If
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the planned analysis is amplified by other analyses which begin to take on more importance,

a justification must be provided, together with suggested adjustments to the significance level

of the tests. The researcher may be compared to the novelist whose minor character develops a

life of his own as the novel is written. The development must be rational and believable.

Adjustment for Selection

A post hoc analysis is part of a multiple-comparison procedure, and appropriate adjustments

can be made if the family of comparisons is known. Use of the Bonferroni adjustment or other

methods can have a dramatic effect. It may be sufficient, and is clearly necessary, to report

analyses in enough detail that readers know how much testing was done.

Split-Sample Approach

In the split-sample approach, the data are randomly divided into two parts. The first part is

used to generate the exploratory analyses, which are then “confirmed” by the second part. Cox

[1977] says that there are “strong objections on general grounds to procedures where different

people analyzing the same data by the same method get different answers.” An additional

aspect of such analyses is that it does not provide a solution to the problem of subgroup

analysis.

Interaction Analysis

The number of comparisons is frequently not defined, and most of the foregoing approaches

will not work very well. Interaction analysis of subgroups provides valid protection in such

post hoc analyses. Suppose that a treatment effect has been shown for a particular subgroup.

To assess the validity of this effect, analyze all subgroups jointly and test for an interaction of

subgroup and treatment. This procedure embeds the subgroup in a meaningful larger family. If

the global test for interaction is significant, it is warranted to focus on the subgroup suggested

by the data. Pocock [1984] illustrates this approach with data from the Multiple Risks Factor

Intervention Trial Research Group [1982] “MR. FIT”. This randomized trial of “12,866 men

at high risk of coronary heart disease compared to special intervention (SI) aimed at affecting

major risk factors (e.g., hypertension, smoking, diet) and usual care (UC). The overall rates

of coronary mortality after an average seven year follow-up (1.79% on SI and 1.93% on UC)

are not significantly different.” The paper presented four subgroups. The extreme right-hand

column in Table 12.12 lists the odds ratio comparing mortality in the special intervention and

usual care groups. The first three subgroups appear homogeneous, suggesting a beneficial effect

of special intervention. The fourth subgroup (with hypertension and ECG abnormality) appears

different. The average odds ratio for the first three subgroups differs significantly from the odds

ratio for the fourth group (p < 0.05). However, this is a post hoc analysis, and a test for the

homogeneity of the odds ratios over all four subgroups shows no significant differences, and

furthermore, the average of the odds ratio does not differ significantly from 1. Thus, on the

basis of the global interaction test there are no significant differences in mortality among the

eight groups. (A chi-square analysis of the 2 × 8 contingency table formed by the two treatment

groups and the eight subgroups shows a value of χ

2
= 8.65 with 7 d.f.) Pocock concludes:

“Taking into account the fact that this was not the only subgroup analysis performed, one should

feel confident that there are inadequate grounds for supposing that the special intervention did

harm to those with hypertension and ECG abnormalities.”

If the overall test of interaction had been significant, or if the comparison had been suggested

before the study was started, the “significant” p-value would have had clinical implications.

12.6.3 Simultaneous Tests in Contingency Tables

In r × c contingency tables, there is frequently interest in comparing subsets of the tables.

Goodman [1964a,b] derived the large sample form for 100(1 − α)% simultaneous contrasts for
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Table 12.12 Interaction Analysis: Data for Four MR. FIT Subgroups

No. of Coronary Death/No. of Men

Hypertension ECG Abnormality Special Intervention (%) Usual Care (%) Odds Ratio

No No 24/1817 (1.3) 30/1882 (1.6) 0.83

No Yes 11/592 (1.9) 15/583 (2.6) 0.72

Yes No 44/2785 (1.6) 58/2808 (2.1) 0.76

Yes Yes 36/1233 (2.9) 21/1185 (1.8) 1.67

all 2 × 2 comparisons. This is equivalent to examining all

(

r

2

)(

c

2

)

possible odds ratios.

The intervals are constructed in terms of the logarithms of the ratio. Let

ω̂ = log n

ij

+ log n

i

′
j

′ − log n

i

′
j

− log n

ij

be the log odds associated with the frequencies indicated. In Chapter 7 we showed that the

approximate variance of this statistic is

σ̂

2
ω̂

.

=

1

n

ij

+

1

n

i

′
j

′

+

1

n
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′
j

+

1
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ij

′

Simultaneous 100(1 − α)% confidence intervals are of the form

ω̂ ±

√

χ

2
(r−1)(c−1),(1−α)

σ̂

ω̂

This again is of the same form as the Scheffé approach, but now based on the chi-square

distribution rather that the F -distribution. The price, again, is fairly steep. At the 0.05 level and

a 6 × 6 contingency table, the critical value of the chi-square statistic is

√

χ

2
25,0.95 =

√

37.65 = 6.14

Of course, there are

(

6

2

)(

6

2

)

= 225 such tables. It may be more efficient to use the

Bonferroni inequality. In the example above, the corresponding Z-value using the Bonferroni

inequality is

Z1−0.025/225 = Z0.999889
.

= 3.69

So if only 2 × 2 tables are to be examined, the Bonferroni approach will be more economical.

However, the Goodman approach works and is valid for all linear contrasts. See Goodman

[1964a,b] for additional details.

12.6.4 Regulatory Statistics and Game Theory

In reviewing newly developed pharmaceuticals, the Food and Drug Administration, takes a very

strong view on multiple comparisons and on control of Type I error, much stronger than we

have taken in this chapter. Regulatory decision making, however, is a special case because it is

in part adversarial. Statistical decision theory deals with decision making under uncertainty and

is appropriate for scientific research, but is insufficient as a basis for regulation.

The study of decision making when dealing with multiple rational actors who do not have

identical interests is called game theory. Unfortunately, it is much more complex than statistical

decision theory. It is clear that FDA policies affect the supply of new treatments not only through
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their approval of specific products but also through the resulting economic incentives for various

sorts of research and development, but it is not clear how to go from this to an assessment of

the appropriate p-values.

12.6.5 Summary

Post hoc comparisons should usually be considered exploratory rather than confirmatory, but

this rule should not be followed slavishly. It is clear that some adjustment to the significance

level must be made to maintain the validity of the statistical procedure. In each instance the

p-value will be adjusted upward. The question is whether this should be done by a formal

adjustment, and if so, what groups of hypotheses should the fixed Type I error be divided over.

One important difficulty in specifying how to divide up the Type I error is that different readers

may group hypotheses differently. It is also important to remember that controlling the total

Type I error unavoidably increases the Type II error. If your conclusions are that an exposure

makes no difference, these conclusions are weakened, rather than strengthened, by controlling

Type I error.

When reading research reports that include post hoc analyses, it is prudent to keep in mind

that in all likelihood, many such analyses were tried by the authors but not reported. Thus,

scientific caution must be the rule. To be confirmatory, results from such analyses must not only

make excellent biological sense but must also satisfy the principle of Occam’s razor. That is,

there must not be a simpler explanation that is also consistent with the data.

NOTES

12.1 Orthogonal Contrasts

Orthogonal contrasts form a special group of contrasts. Consider two contrasts:

θ1 = c11β1 + · · · + c1p

β

p

and

θ2 = c21β1 + · · · + c2p

β

p

The two contrasts are said to be orthogonal if

p

∑

j=1

c1j

c2j

= 0

Clearly, if θ1, θ2 are orthogonal, then ̂

θ1, ̂

θ2 will be orthogonal since orthogonality is a property

of the coefficients. Two orthogonal contrasts are orthonormal if, in addition,

∑

c

2
1j

=

∑

c

2
2j

= 1

The advantage to considering orthogonal (and orthonormal) contrasts is that they are uncor-

related, and hence, if the observations are normally distributed, the contrasts are statistically

independent. Hence, the Bonferroni inequality becomes an equality. But there are other advan-

tages. To see those we extend the orthogonality to more than two contrasts. A set of contrasts

is orthogonal (orthonormal) if all pairs of contrasts are orthogonal (orthonormal).

Now consider the one-way analysis of variance with I treatments. There are I − 1 degrees

of freedom associated with the treatment effect. It can be shown that there are precisely I − 1

orthogonal contrasts to compare the treatment means. The set is not unique; let θ1, θ2, . . . , θ

I−1
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form a set of such contrasts. Assume that they are orthonormal, and let ̂

θ1,
̂

θ2, . . . ,

̂

θ

I−1 be the

estimate of the orthonormal contrasts. Then it can be shown that

SSTREATMENTS = ̂

θ

2
1 + ̂

θ

2
2 + · · · + ̂

θ

2
I−1

We have thus partitioned the SSTREATMENTS into I − 1 components (each with one degree of

freedom, it turns out) and uncorrelated as well. This is a very nice summary of the data. To

illustrate this approach, assume an experiment with four treatments. Let the means be µ1, µ2,

µ3, µ4. A possible set of contrasts is given by the following pattern:

Contrast µ1 µ2 µ3 µ4

θ1 1/

√

2 −1/

√

2 0 0

θ2 1/

√

6 1/

√

6 −2/

√

6 0

θ3 1/

√

12 1/

√

12 1/

√

12 −3/

√

12

You can verify that:

• These contrasts are orthonormal.

• There are no additional orthogonal contrasts.

•
θ

2
1 + θ

2
2 + θ

2
3 =

∑

(µ

i

− µ)

2.

The pattern can clearly be extended to any number of means (it is known as the Gram-Schmidt

orthogonalization process).

The nonuniqueness of this decomposition becomes obvious from starting the first contrast,

say, with

θ

∗

1 =

1
√

2
µ1 −

1
√

2
µ4

Sometimes a meaningful set of orthogonal contrasts can be used to summarize an experiment.

This approach, using the statistical independence to determine the significance level, will mini-

mize the cost of multiple testing. Of course, if these contrasts were carefully specified beforehand,

you might argue that each one should be tested at level α!

12.2 Tukey Test

The assumptions underlying the Tukey test include that the variances of the means are equal; this

translates into equal sample sizes in the analysis of variance situation. Although the procedure is

commonly associated with pairwise comparisons among independent means, it can be applied to

arbitrary linear combinations and even allows for a common correlation among the means. For

further discussion, see Miller [1981, pp. 37–48]. There are extensions of the Tukey test similar

in principle to the Holm extension of the Bonferroni adjustment. These are built on the idea of

sequential testing. Suppose that we have tested the most extreme pair of means and rejected the

hypothesis that they are the same. There are two possibilities:

1. The null hypothesis is actually false, in which case we have not used any Type I error.

2. The null hypothesis is actually true, which happens with probability less than α.

In either case, if we now perform the next-most extreme test we can ignore the fact that we have

already done one test without affecting the per experiment Type I error. The resulting procedure

is called the Newman–Keuls or Student–Newman–Keuls test and is available in many statistical

packages.
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12.3 Likelihood Principle

The likelihood principle is a philosophical principle in statistics which says that all the evidence

for or against a hypothesis is contained in the likelihood ratio. It can be derived in various ways

from intuitively plausible assumptions. The likelihood principle implies that the evidence about

one hypothesis does not depend on what other hypotheses were investigated. One view of this

is that it shows that multiple comparison adjustment is undesirable; another is that it shows

the that likelihood principle is undesirable. A fairly balanced discussion of these issues can be

found in Stuart et al. [1999].

There is no entirely satisfactory resolution to this conflict, which is closely related to the

question of what counts as an experiment for the per experiment error rate. One possible res-

olution is to conclude that the main danger in the multiple comparison problem comes from

incomplete publication. That is, the danger is more that other people will be misled than that you

yourself will be misled (see also Problem 12.13). In this case the argument from the likelihood

principle does not hold in any simple form. The relevant likelihood would now be the likelihood

of seeing the results given the selective reporting process as well as the randomness in the data,

and this likelihood does depend on what one does with multiple comparisons. This intermediate

position suggests that multiple comparison adjustments are critical primarily when only selected

results of an exploratory analysis are reported.

PROBLEMS

For the problems in this chapter, the following tasks are defined. Additional tasks are indicated

in each problem. Unless otherwise indicated, assume that α

∗
= 0.05.

(a) Calculate simultaneous confidence intervals as discussed in Section 12.2. Graph

the intervals and state your conclusions.

(b) Apply the Scheffé method. State your conclusions.

(c) Apply the Tukey method. State your conclusions.

(d) Apply the Bonferroni method. State your conclusions.

(e) Compare the methods indicated. Which result is the most reasonable?

12.1 This problem deals with Problem 10.1. Use a 99% confidence level.

(a) Carry out task (a).

(b) Compare your results with those obtained in Section 12.3.2.

(c) A more powerful test can be obtained by considering the groups to be ranked

in order of increasingly severe disorder. A test for trend can be carried out by

coding the groups 1, 2, 3, and 4 and regressing the percentage morphine bound

on the regressor variable and testing for significance of the slope. Carry out this

test and describe its pros and cons.

(d) Carry out task (c) using the approximation recommended in Section 12.3.3.

(e) Carry out task (e).

12.2 This problem deals with Problem 10.2.

(a) Do tasks (a) through (e) for pairwise comparisons of all treatment effects.

12.3 This problem deals with Problem 10.3.

(a) Do tasks (a) through (d) for all pairwise comparisons.

(b) Do task (c) defined in Problem 12.1.

(c) Do task (e).
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12.4 This problem deals with Problem 10.4.

(a) Do tasks (a) through (e) setting up simultaneous confidence intervals on both

main effects and all pairwise comparisons.

(b) A further comparison of interest is control vs. shock. Using the Scheffé approach,

test this effect.

(c) Summarize the results from this experiment in a short paragraph.

12.5 Sometimes we are interested in comparing several treatments against a standard treat-

ment. Dunnett [1954] has considered this problem. If there are I groups, and group 1

is the standard group, I − 1 comparisons can be made at level 1 − α/2(I − 1) to

maintain a per experiment error rate of α. Apply this approach to the data of Bruce

et al. [1974] in Section 12.2 by comparing groups 2, . . . , 8 with group 1, the healthy

individuals. How do your conclusions compare with those of Section 12.2?

12.6 This problem deals with Problem 10.6.

(a) Carry out tasks (a) through (e).

(b) Suppose that we treat these data as a regression problem (as suggested in

Chapter 10). Does it still make sense to test the significance of the differ-

ence of adjacent means? Why or why not? What if the trend was nonlin-

ear?

12.7 This problem deals with Problem 10.7.

(a) Carry out tasks (a) through (e).

12.8 This problem deals with Problem 10.8.

(a) Carry out tasks (b), (c), and (d).

(b) Of particular interest are the comparisons of each of the test preparations A

through D with the standard insulin. The “medium” treatment is not relevant for

this analysis. How does this alter task (d)?

(c) Why would it not be very wise to ignore the “medium” treatment totally? What

aspect of the data for this treatment can be usefully incorporated into the analysis

in part (b)?

12.9 This problem deals with Problem 10.9.

(a) Compare each of the means of the schizophrenic group with the control group

using S, T, and B methods.

(b) Which method is preferred?

12.10 This problem deals with Problem 10.10.

(a) Carry out tasks (b) through (e) on the plasma concentration of 45 minutes, com-

paring the two treatments with controls.

(b) Carry out tasks (b) through (d) on the difference in the plasma concentration at

90 minutes and 45 minutes (subtract the 45-minute reading from the 90-minute

reading). Again, compare the two treatments with controls.

(c) Synthesize the conclusions of parts (a) and (b).

(d) Can you think of a “nice” graphical way of presenting part (c)?
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(e) Consider parts (a) and (b) combined. From a multiple-comparison point of view,

what criticism could you level at this combination? How would you resolve it?

12.11 Data for this problem are from a paper by Winick et al. [1975]. The paper examines the

development of adopted Korean children differing greatly in early nutritional status.

The study was a retrospective study of children admitted to the Holt Adoption Service

and ultimately placed in homes in the United States. The children were divided into

three groups on the basis of how their height, at the time of admission to Holt, related

to a reference standard of normal Korean children of the same age:

• Group 1. designated “malnourished”—below the third percentile for both height and

weight.

• Group 2. “moderately nourished”—from the third to the twenty-fourth percentile for

both height and weight.

• Group 3.“well-nourished or control”—at or above the twenty-fifth percentile for both

height and weight.

Table 12.13 has data from this paper.

Table 12.13 Current Height (Percentiles, Korean Reference Standard) Comparison of Three

Nutrition Groupsa

t-Test
Group N Mean Percentile SD F Probability Contrast Group t P

1 41 71.32 24.98 0.068 1 vs. 2 −1.25 0.264

2 50 76.86 21.25 1 vs. 3 −2.22 0.029b

3 47 82.81 23.26 2 vs. 3 −1.31 0.194

Total 138 77.24 23.41

aF probability is the probability that the F calculated from the one-way anova ratio would occur by chance
bStatistically significant.

(a) Carry out tasks (a) through (e) for all pairwise comparisons and state your con-

clusions.

(b) Read the paper, then compare your results with that of the authors.

(c) A philosophical point may be raised about the procedure of the paper. Since the

overall F -test is not significant at the 0.05 level (see Table 12.13), it would seem

inappropriate to “fish” further into the data. Discuss the pros and cons of this

argument.

(d) Can you suggest alternative, more powerful analyses? (What is meant by “more

powerful”?)

12.12 Derive equation (1). Indicate clearly how the independence assumption and the null

hypotheses are crucial to this result.

12.13 A somewhat amusing—but also serious—example of the multiple comparison prob-

lem is the following. Suppose that a journal tends to accept only papers that show

“significant” results. Now imagine multiple groups of independent researchers (say, 20

universities in the United States and Canada) all working on roughly the same topic



PROBLEMS 547

and hence testing the same null hypothesis. If the null hypothesis is true, we would

expect only one of the researchers to come up with a “significant” result. Knowing

the editorial policy of the journal, the 19 researchers with nonsignificant results do not

bother to write up their research, but the remaining researcher does. The paper is well

written, challenging, and provocative. The editor accepts the paper and it is published.

(a) What is the per experiment error rate? Assume 20 independent researchers.

(b) Define an appropriate editorial policy in view of an unknown number of com-

parisons.

12.14 This problem deals with the data of Problem 10.13. The primary interest in these data

involves comparisons of three treatments; that is, the experiments represent blocks.

Carry out tasks (a) through (e) focusing on comparison of the means for tasks (b)

through (d).

12.15 This problem deals with the data of Problem 10.14.

(a) Carry out the Tukey test for pairwise comparisons on the total analgesia score

presented in part (b) of that question. Translate your answers to obtain confidence

intervals applicable to single readings.

*(b) The sum of squares for analgesia can be partitioned into three orthogonal contrasts

as follows:

µ1 µ2 µ3 µ4 Divisor

θ1 −1 −1 −1 3
√

12

θ2 1 −1 −1 1
√

4

θ3 −1 3 −3 1
√

20

(c) Verify that these contrasts are orthogonal. If the coefficients are divided by the

divisors at the right, verify that the contrasts are orthonormal.

*(d) Interpret the contrasts θ1, θ2, θ3 defined in part (b).

*(e) Let ̂

θ1, ̂

θ2, ̂

θ3 be the estimates of the orthonormal contrasts. Verify that

SSTREATMENTS = ̂

θ

2
1 + ̂

θ

2
2 + ̂

θ

2
3

Test the significance of each of these contrasts and state your conclusion.

12.16 This problem deals with Problem 10.15.

(a) Carry out tasks (b) through (e) on all pairwise comparisons of treatment means.

*(b) How would the results in part (a) be altered if the Tukey test for additivity is

used? Is it worth reanalyzing the data?

12.17 This problem deals with Problem 10.16.

(a) Carry out tasks (b) through (e) on the treatment effects and on all pairwise

comparisons of treatment means.

*(b) Partition the sums of squares of treatments into two pieces, a part attributable

to linear regression and the remainder. Test the significance of the regression,

adjusting for the multiple comparison problem.
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*12.18 This problem deals with the data of Problem 10.18.

(a) We are going to “mold” these data into a regression problem as follows; define

six dummy variables I1 to I6.

I

i

=

{

1, data from subject i, i = 1, . . . , 6

0, otherwise

In addition, define three further dummy variables:

I7 =

{

1, recumbent position

0, otherwise

I8 =

{

1, placebo

0, otherwise

I9 = I7 × I8

(b) Carry out the regression analyses of part (a) forcing in the dummy variables

I1 to I6 first. Group those into one SS with six degrees of freedom. Test the

significance of the regression coefficients of I7, I8, I9 using the Scheffé proce-

dure.

(c) Compare the results of part (c) of Problem 10.18 with the analysis of part (b).

How can the two analyses be reconciled?

12.19 This problem deals with the data of Example 10.5 and Problem 10.19.

(a) Carry out tasks (c) and (d) on pairwise comparisons.

(b) In the context of the Friedman test, suggest a multiple-comparison approach.

12.20 This problem deals with Problem 10.4.

(a) Set up simultaneous 95% confidence intervals on the three regression coefficients

using the Scheffé method.

(b) Use the Bonferroni method to construct comparable 95% confidence intervals.

(c) Which method is preferred?

(d) In regression models, the usual tests involve null hypotheses of the form H0: β

i

=

0, i = 1, . . . , p. In general, how do you expect the Scheffé method to behave

as compared with the Bonferroni method?

(e) Suppose that we have another kind of null hypothesis, for example, H0: β1 =

β2 = β3 = 0. Does this create a multiple-comparison problem? How would you

test this null hypothesis?

(f) Suppose that we wanted to test, simultaneously, two null hypotheses, H0: β1 =

β2 = 0 and H0: β3 = 0. Carry out this test using the Scheffé procedure. State

your conclusion. Also use nested hypotheses; how do the two tests compare?

*12.21 (a) Verify that the contrasts defined in Problem 10.18, parts (c), (d), and (e) are

orthogonal.

(b) Define another set of orthogonal contrasts that is also meaningful. Verify that

SSTREATMENTS can be partitioned into three sums of squares associated with this

set. How do you interpret these contrasts?
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