
C H A P T E R 13

Discrimination and Classification

13.1 INTRODUCTION

Discrimination or classification methods attempt to use measured characteristics to divide people

or objects into prespecified groups. As in regression modeling for prediction in Chapter 11,

the criteria for assessing classification models are accuracy of prediction and possibly cost of

measuring the relevant characteristics. There need not be any relationship between the model

and the actual causal processes involved. The computer science literature refers to classification

as supervised learning, as distinguished from cluster analysis or unsupervised learning, in which

groups are not prespecified and must be discovered as part of the analysis. We discuss cluster

analysis briefly in Note 13.5.

In this chapter we discuss the general problem of classification. We present two simple tech-

niques, logistic and linear discrimination, and discuss how to choose and evaluate classification

models. Finally, we describe briefly a number of more modern classification methods and give

references for further study.

13.2 CLASSIFICATION PROBLEM

In the classification problem we have a group variable Y for each individual, taking values

1, 2, . . . , K , called classes, and a set of characteristics X1, X2, . . . , X

p

. Both X and Y are

observed for a training set of data, and the goal is to create a rule to predict Y from X for new

observations and to estimate the accuracy of these predictions.

The most common examples of classification problems in biostatistics have just two classes:

with and without a given disease. In screening and diagnostic testing, the classes are based on

whether the disease is currently present; in prognostic models, the classes are those who will

and will not develop the disease over some time frame.

For example, the Framingham risk score [Wilson et al., 1998] is used widely to determine

the probability of having a heart attack over the next 10 years based on blood pressure, age,

gender, cholesterol levels, and smoking. It is a prognostic model used in screening for heart

disease risk, to help choose interventions and motivate patients. Various diagnostic classification

rules also exist for coronary heart disease. A person presenting at a hospital with chest pain may

be having a heart attack, in which case prompt treatment is needed, or may have muscle strain

or indigestion-related pain, in which case the clot-dissolving treatments used for heart attacks

would be unnecessary and dangerous. The decision can be based on characteristics of the pain,
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blood enzyme levels, and electrocardiogram abnormalities. Finally, for research purposes it is

often necessary to find cases of heart attack from medical records. This retrospective diagnosis

can use the same information as the initial diagnosis and later follow-up information, including

the doctors’ conclusions at the time of discharge from a hospital.

It is useful to separate the classification problem into two steps:

1. Estimate the probability p

k

that Y = k.

2. Choose a predicted class based on these probabilities.

It might appear that the second step is simply a matter of choosing the most probable class,

but this need not be the case when the consequences of making incorrect decisions depend on

the decision. For example, in cancer screening a false positive, calling for more investigation

of what turns out not to be cancer, is less serious than a false negative, missing a real case

of cancer. About 10% of women are recalled for further testing after a mammogram [Health

Canada, 2001], but the great majority of these are false positives and only 6 to 7% of these

women are diagnosed with cancer.

The consequences of misclassification can be summarized by a loss function L(j, k), which

gives the relative seriousness of choosing class j when in fact class k is the correct one. The

loss function is defined to be zero for a correct decision and positive for incorrect decisions.

If L(j, k) has the same value for all incorrect decisions, the correct strategy is to choose the

most likely class. In some cases these losses might be actual monetary costs; in others the losses

might be probabilities of dying as a result of the decision, or something less concrete. What the

theory requires is that a loss of 2 is twice as bad as a loss of 1. In Note 13.3 we discuss some

of the practical and philosophical issues involved in assigning loss functions.

Finally, the expected proportion in each class may not be the same in actual use as in training

data. This imbalance may be deliberate: If some classes are very rare, it will be more efficient

if they are overrepresented in the training data. The imbalance may also be due to a variation

in frequency of classes between different times or places; for example, the relative frequency

of common cold and influenza will depend on the season. We will write π

k

for the expected

proportion in class k if it is specified separately from the training data. These are called prior

probabilities.

Given a large enough training set, the classification problem is straightforward (assume

initially that we do not have separately specified proportions π

k

). For any new observations

with characteristics x1, . . . , x

p

, we find all the observations in the training set that have exactly

the same characteristics and estimate p

k

, the probability of being in class k, as the proportion

of these observations that are in class k.

Now that we have probabilities for each class k, we can compute the expected loss for each

possible decision. Suppose that there are two classes and we decide on class 1. The probability

that we are correct is p1, in which case there is no loss. The probability that we are incorrect is

p2, in which case the loss is L(1, 2). So the expected loss is 0 ×p1 +L(1, 2)×p2. Conversely,

if we decide on class 2, the expected loss is L(2, 1)×p1 +0×p2. We should choose whichever

class has the lower expected loss. Even though we are assuming unlimited amounts of training

data, the expected loss will typically not be zero. Problems where the loss can be reduced to

zero are called noiseless. Medical prediction problems are typically very noisy.

Bayes’ theorem, discussed in Chapter 6, now tells us how to incorporate separately specified

expected proportions (prior probabilities) into this calculation: We simply multiply p1 by π1,

p2 by π2, and so on. The expected loss from choosing class 1 is 0×p1 ×π1 +L(1, 2)×p2 ×π2.

Classification is more difficult when we do not have enough training data to use this simple

approach to estimation, or when it is not feasible to keep the entire training set available for

making predictions. Unfortunately, at least one of these limitations is almost always present. In

this chapter we consider only the first problem, the most important in biostatistical applications.

It is addressed by building regression models to estimate the probabilities p

k

and then following

the same strategy as if p

k

were known. The accuracy of prediction, and thus the actual average



552 DISCRIMINATION AND CLASSIFICATION

loss, will be greater than in our ideal setting. The error rates in the ideal setting give a lower

bound on the error rates attainable by any model; if these are low, improving a model may have

a large payoff; if they are high, no model can predict well and improvements in the model may

provide little benefit in error rates.

13.3 SIMPLE CLASSIFICATION MODELS

Linear and logistic models for classification have a long history and often perform reasonably

well in clinical and epidemiologic classification problems. We describe them for the case of

two classes, although versions for more than two classes are available. Linear and logistic

discrimination have one important restriction in common: They separate the classes using a

linear combination of the characteristics.

13.3.1 Logistic Regression

Example 13.1. Pine et al. [1983] followed patients with intraabdominal sepsis (blood poison-

ing) severe enough to warrant surgery to determine the incidence of organ failure or death (from

sepsis). Those outcomes were correlated with age and preexisting conditions such as alcoholism

and malnutrition. Table 13.1 lists the patients with the values of the associated variables. There

are 21 deaths in the set of 106 patients. Survival status is indicated by the variable Y . Five

potential predictor variables: shock, malnutrition, alcoholism, age, and bowel infarction were

labeled X1, X2, X3, X4, and X5, respectively. The four variables X1, X2, X3, and X5 were

binary variables, coded 1 if the symptom was present and 0 if absent. The variable X4 = age in

years, was retained as a continuous variable. Consider for now just variables Y and X1; a 2 × 2

table could be formed as shown in Table 13.2.

With this single variable we can use the simple approach of matching new observations

exactly to the training set. For a patient with shock, we would estimate a probability of death

of 7/10 = 0.70; for a patient without shock, we would estimate a probability of 14/96 = 0.15.

Once we start to incorporate the other variables, this simple approach will break down.

Using all four binary variables would lead to a table with 25 cells, and each cell would have

too few observations for reliable estimates. The problem would be enormously worse when age

is added to the model—there might be no patient in our training set who was an exact match

on age.

We clearly need a way to simplify the model. One approach is to assume that to a reasonable

approximation, the effect of one variable does not depend on the values of other variables,

leading to a linear regression model:

P(death) = π = α + β1X1 + β2X2 + · · · + β5X5

This model is unlikely to be ideal: If having shock increases the risk of death by 0.55, and

the probability can be no larger than 1, the effects of other variables are severely limited. For

this reason it is usual to transform the probability to a scale that is not limited by 0 and 1.

The most common reexpression of π leads to the logistic model

log
e

π

1 − π

= α + β1X1 + β2X2 + · · · + β5X5 (1)

commonly written as

logit(π) = α + β1X1 + β2X2 + · · · + β5X5 (2)
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Table 13.1 Survival Status of 106 Patients Following Surgery and Associated Preoperative

Variablesa

ID Y X1 X2 X3 X4 X5 ID Y X1 X2 X3 X4 X5

1 0 0 0 0 56 0 301 1 0 1 0 50 1

2 0 0 0 0 80 0 302 0 0 0 0 20 0

3 0 0 0 0 61 0 303 0 0 0 0 74 1

4 0 0 0 0 26 0 304 0 0 0 0 54 0

5 0 0 0 0 53 0 305 1 0 1 0 68 0

6 1 0 1 0 87 0 306 0 0 0 0 25 0

7 0 0 0 0 21 0 307 0 0 0 0 27 0

8 1 0 0 1 69 0 308 0 0 0 0 77 0

9 0 0 0 0 57 0 309 0 0 1 0 54 0

10 0 0 1 0 76 0 401 0 0 0 0 43 0

11 1 0 0 1 66 1 402 0 0 1 0 27 0

12 0 0 0 0 48 0 501 1 0 1 1 66 1

13 0 0 0 0 18 0 502 0 0 1 1 47 0

14 0 0 0 0 46 0 503 0 0 0 1 37 0

15 0 0 1 0 22 0 504 0 0 1 0 36 1

16 0 0 1 0 33 0 505 1 1 1 0 76 0

17 0 0 0 0 38 0 506 0 0 0 0 33 0

19 0 0 0 0 27 0 507 0 0 0 0 40 0

20 1 1 1 0 60 1 508 0 0 1 0 90 0

22 0 0 0 0 31 0 510 0 0 0 1 45 0

102 0 0 0 0 59 1 511 0 0 0 0 75 0

103 0 0 0 0 29 0 512 1 0 0 1 70 1

104 0 1 0 0 60 0 513 0 0 0 0 36 0

105 1 1 0 0 63 1 514 0 0 0 1 57 0

106 0 0 0 0 80 0 515 0 0 1 0 22 0

107 0 0 0 0 23 0 516 0 0 0 0 33 0

108 0 0 0 0 71 0 518 0 0 1 0 75 0

110 0 0 0 0 87 0 519 0 0 0 0 22 0

111 1 1 1 0 70 0 520 0 0 1 0 80 0

112 0 0 0 0 22 0 521 1 0 1 0 85 0

113 0 0 0 0 17 0 523 0 0 1 0 90 0

114 1 0 0 1 49 0 524 1 0 0 1 71 0

115 0 1 0 0 50 0 525 0 0 0 1 51 0

116 0 0 0 0 51 0 526 1 0 1 1 67 0

117 0 0 1 1 37 0 527 0 0 1 0 77 0

118 0 0 0 0 76 0 529 0 0 0 0 20 0

119 0 0 0 1 60 0 531 0 0 0 0 52 1

120 1 1 0 0 78 1 532 1 1 0 1 60 0

122 0 0 1 1 60 0 534 0 0 0 0 29 0

123 1 1 1 0 57 0 535 0 0 0 0 30 1

202 0 0 0 0 28 1 536 0 0 0 0 20 0

203 0 0 0 0 94 0 537 0 0 0 0 36 0

204 0 0 0 0 43 0 538 0 0 1 1 54 0

205 0 0 0 0 70 0 539 0 0 0 0 65 0

206 0 0 0 0 70 0 540 1 0 0 0 47 0

207 0 0 0 0 26 0 541 0 0 0 0 22 0

208 0 0 0 0 19 0 542 1 0 0 1 69 0

209 0 0 0 0 80 0 543 1 0 1 1 68 0

210 0 0 1 0 66 0 544 0 0 1 1 49 0

211 0 0 1 0 55 0 545 0 0 0 0 25 0

214 0 0 0 0 36 0 546 0 1 1 0 44 0

215 0 0 0 0 28 0 549 0 0 0 1 56 0

217 0 0 0 0 59 1 550 0 0 1 1 42 0

Source: Data from Pine et al. [1983].
aSee the text for labels.
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Table 13.2 2 × 2 Table for Survival by

Shock Status

Y

Death Survive

X1 1 0

Shock 1 7 3 10

No Shock 0 14 82 96

21 85 106

Four comments are in order:

1. The logit of p has range (−∞,∞). The following values can easily be calculated:

logit(1) = +∞

logit(0) = −∞

logit(0.5) = 0

2. If we solve for π , the expression that results is

π =

e

α+β1X1+···+β5X5

1 + e

α+β1X1+···+β5X5
=

1

1 + e

−(α+β1X1+···+β5X5)
(3)

3. We will write a for the estimate of α, b1 for the estimate of β1, and so on. Our estimated

probability of death is obtained by inserting these values into equation (3) to get

̂

P(death) = a + b1X1 + b2X2 + · · · + b5X5

4. The estimates are obtained by maximum likelihood. That is, we choose the values of a,

b1, b2, . . . , b5 that maximize the probability of getting the death and survival values

that we observed. In the simple situation where we can estimate a probability for each

possible combination of characteristics, maximum likelihood gives the same answer as

our rule of using the observed proportions. Note 13.1 gives the mathematical details. Any

general-purpose statistical program will perform logistic regression.

We can check that with a single variable, logistic regression gives the same results as our

previous analysis. In the previous analysis we used only the variable X1, the presence of shock.

If we fit this model to the data, we get

logit(π̂) = −1.768 + 2.615X1

If X1 = 0 (i.e., there is no shock),

logit(π̂) = −1.768

or

π̂ =

1

1 + e

−(−1.768)

= 0.146
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If X1 = 1 (i.e., there is shock),

logit(π̂) = −1.768 + 2.615 = 0.847

π̂ =

1

1 + e

−0.847
= 0.700

This is precisely the probability of death given no preoperative shock. The coefficient of X1,

2.615, also has a special interpretation: It is the logarithm of the odds ratio and the quantity

e

b1 = e

2.615
= 13.7 is the odds ratio associated with shock (as compared to no shock). This can

be shown algebraically to be the case (see Problem 13.1).

Example 13.1. (continued ) We now continue the analysis of the data of Pine et al. listed

in Table 13.1. The output and calculations shown in Table 13.3 can be generated for all the

variables. We would interpret these results as showing that in the presence of the remaining

variables, malnutrition, is not an important predictor of survival status. All the other variables

are significant predictors of survival status. All but variable X4 are discrete binary variables.

If malnutrition is dropped from the analysis, the estimates and standard errors are as given in

Table 13.4.

If π̂ is the predicted probability of death, the equation is

logit(π̂) = −8.895 + 3.701X1 + 3.186X3 + 0.08983X4 + 2.386X5

For each of the values of X1, X3, X5 (a total of eight possible combinations), a regression

curve can be drawn for logit(π̂) vs. age. In Figure 13.1 the lines are drawn for each of the eight

combinations. For example, corresponding to X1 = 1 (shock present), X3 = 0 (no alcoholism),

and X5 = 0 (no infarction), the line

Table 13.3 Logistic Regression for Example 13.1

Regression Standard

Variable Coefficient Error Z-Value p-Value

Intercept −9.754 2.534 — —

X1 (shock) 3.674 1.162 3.16 0.0016

X2 (malnutrition) 1.217 0.7274 1.67 0.095

X3 (alcoholism) 3.355 0.9797 3.43 0.0006

X4 (age) 0.09215 0.03025 3.04 0.0023

X5 (infarction) 2.798 1.161 2.41 0.016

Table 13.4 Estimates and Standard

Errors for Example 13.1

Regression Standard

Variable Coefficient Error

Intercept −8.895 2.314

X1 (shock) 3.701 1.103

X3 (alcoholism) 3.186 0.9163

X4 (age) 0.08983 0.02918

X5 (infarction) 2.386 1.071
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Figure 13.1 Logit of estimated probability of death as a function of age in years and category of status

of (X1, X3, X5). (Data from Pine et al. [1983].)
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Figure 13.2 Estimated probability of death as a function of age in years and selected values of

(X1, X3, X5). (Data from Pine et al. [1983].)

logit(π̂) = −8.895 + 3.701 + 0.08983X4

= −5.194 + 0.08983X4

is drawn.

This line is indicated by “(100)” as a shorthand way of writing (X1 = 1, X3 = 0, X5 = 0).

The eight lines seem to group themselves into four groups: the top line representing all three

symptoms present; the next three lines, groups with two symptoms present; the next three lines,

groups with one symptom present; and finally, the group at lowest risk with no symptoms

present. In Figure 13.2 the probability of death is plotted on the original probability scale; only

four of the eight groups have been graphed. The group at highest risk is the one with all three

binary risk factors present. One of the advantages of the model is that we can draw a curve for
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the situation with all three risk factors present even though there are no patients in that category;

but the estimate depends on the model. The curve is drawn on the assumption that the risks are

additive in the logistic scale (that is what we mean by a linear model). This assumption can be

partially tested by including interaction terms involving these three covariates in the model and

testing their significance. When this was done, none of the interaction terms were significant,

suggesting that the additive model is a reasonable one. Of course, as there are no patients with

all three risk factors present, there is no way to perform a complete test of the model.

13.3.2 Linear Discrimination

The first statistical approach to classification, as with so many other problems, was invented by

R. A. Fisher. Fisher’s linear discriminant analysis is designed for continuous characteristics that

have a normal distribution (in fact, a multivariate normal distribution; any sums or differences

of multiples of the variables should be normally distributed).

Definition 13.1. A set of random variables X1, . . . , X

k

is multivariate normal if every

linear combination of X1, . . . , X

k

has a normal distribution.

In addition, we assume that the variances and covariances of the characteristics are the same

in the two groups. Under these assumptions, Fisher’s method finds a combination of variables

(a discriminant function) for distinguishing the classes:

� = α + β1X1 + β2X2 + · · · + β

p

X

p

Assuming equal losses for different errors, an observation is assigned to class 1 if � > 0 and

class 2 if � < 0. Estimation of the parameters β again uses maximum likelihood. It is also

possible to compute probabilities p

k

for membership of each class using the normal cumulative

distribution function: p1 = �(�), p2 = 1 − �(�), where � is the symbol for the cumulative

normal distribution.

Because linear discrimination makes more assumptions about the structure of the X’s than

logistic regression does, it gives more precise estimates of its parameters and more precise pre-

dictions [Efron, 1975]. However, in most medical examples the uncertainty in the parameters

is a relatively small component of the overall prediction error, compared to model uncertainty

and to the inherent unpredictability of human disease. In addition to requiring extra assumptions

to hold, linear discrimination is likely to give substantial improvements only when the char-

acteristics determine the classes very accurately so that the main limitation is the accuracy of

statistical estimation of the parameters (i.e., a nearly “noiseless” problem).

The robustness can be explained by considering another equivalent way to define �. Let D1

and D2 be the mean of � in groups 1 and 2, respectively, and V be the variance of � within

each group (assumed to be the same). � is the linear combination that maximizes

(D1 − D2)
2

V

the ratio of the between-group and within-group variances.

Truett et al. [1967] applied discriminant analysis to the data of the Framingham study. This

was a longitudinal study of the incidence of coronary heart disease in Framingham, Mas-

sachusetts. In their prediction model the authors used continuous variables such as age (years)

and serum cholesterol (mg/100 mL) as well as discrete or categorical variables such as cigarettes

per day (0 = never smoked, 1 = less than one pack a day, 2 = one pack a day, 3 = more

than a pack a day) and ECG (0 = normal, 1 = certain kinds of abnormality). It was found

that the linear discriminant model gave reasonable predictions. Halperin [1971] came to five
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conclusions, which have stood the test of time. If the logistic model holds but the normality

assumptions for the predictor variables are violated, they concluded that:

1. β

i

that are zero will tend to be estimated as zero for large samples by the method of

maximum likelihood but not necessarily by the discrimination function method.

2. If any β

i

are nonzero, they will tend to be estimated as nonzero by either method, but

the discriminant function approach will give asymptotically biased estimates for those β

i

and for α.

3. Empirically, the assessment of significance for a variable, as measured by the ratio of the

estimated coefficient to its estimated standard error, is apt to be about the same whichever

method is used.

4. Empirically, the maximum likelihood method usually gives slightly better fits to the model

as evaluated from observed and expected numbers of cases per decile of risk.

5. There is a theoretical basis for the possibility that the discriminant function will give a

very poor fit even if the logistic model holds.

Some of these empirical conclusions are supported theoretically by Li and Duan [1989] and

Hall and Li [1993], who considered situations similar to this one, where a linear combination

� = β1X1 + β2X2 + · · · + β

p

X

p

is to be estimated under either of two models. They showed that under some assumptions about

the distribution of variables X, using the wrong model would typically lead to estimating

� = cβ1X1 + cβ2X2 + · · · + cβ

p

X

p

for some constant c. When these conditions apply, using linear discrimination would tend to

lead to a similar discriminant function � but to poor estimation of the actual class probabilities.

See also Knoke [1982]. Problems 13.4, 13.6, and 13.7 address some of these issues.

In the absence of software specifically designed for this method, linear discrimination can

be performed with software for linear regression. The details, which are of largely historical

interest, are given in Note 13.4.

13.4 ESTIMATING AND SUMMARIZING ACCURACY

When choosing between classification models or describing the performance of a model, it is

necessary to have some convenient summaries of the error rates. It is usually important to

distinguish between different kinds of errors, although occasionally a simple estimate of the

expected loss will suffice.

Statistical methodology is most developed for the case of two classes. In biostatistics, these

are typically presence and absence of disease.

13.4.1 Sensitivity and Specificity

In assigning people to two classes (disease and no disease) we can make two different types of

error:

1. Detecting disease when none is present

2. Missing disease when it is there

As in Chapter 6, we define the sensitivity as the probability of detecting disease given that

disease is present (avoiding an error of the first kind) and specificity as the probability of not

detecting disease given that no disease is present (avoiding an error of the second kind).
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The sensitivity and specificity are useful because they can be estimated from separate samples

of persons with and without disease, and because they often generalize well between populations.

However, in actual use of a classification rule, we care about the probability that a person has

disease given that disease was detected (the positive predictive value) and the probability that a

person is free of disease given that no disease was detected (the negative predictive value).

It is a common and serious error to confuse the sensitivity and the positive predictive value.

In fact, for a reasonably good test and a rare disease, the positive predictive value depends

almost entirely on the disease prevalence and on the specificity. Consider the mammography

example mentioned in Section 13.2. Of 1000 women who have a mammogram, about 100 will

be recalled for further testing and 7 of those will have cancer. The positive predictive value is

7%, which is quite low, not because the sensitivity of the mammogram is poor but because 93

of those 1000 women are falsely testing positive. Because breast cancer is rare, false positives

greatly outnumber true positives, regardless of how sensitive the test is.

When a single binary characteristic is all that is available, the sensitivity and specificity

describe the properties of the classification rule completely. When classification is based on a

summary criterion such as the linear discriminant function, it is useful to consider the sensitivity

and specificity based on a range of possible thresholds.

Example 13.2. Tuberculosis testing is important in attempts to control the disease, which

can be quite contagious but in most countries is still readily treatable with a long course of

antibiotics. Tests for tuberculosis involve injecting a small amount of antigen under the skin

and looking for an inflamed red area that appears a few days later, representing an active T-cell

response to the antigen. The size of this indurated area varies from person to person both because

of variations in disease severity and because of other individual factors. Some people with HIV

infection have no reaction even with active tuberculosis (a state called anergy). At the other

extreme, migrants from countries where the BCG vaccine is used will have a large response

irrespective of their actual disease status (and since the vaccine is incompletely effective, they

may or may not have disease).

The diameter of the indurated area is used to classify people as disease-free or possibly

infected. It is important to detect most cases of TB (high sensitivity) without too many false

positives being subjected to further investigation and unnecessary treatment (high positive pre-

dictive value). The diameter used to make the classification varies depending on characteristics

of the patient. A 5-mm induration is regarded as positive for close contacts of people with active

TB infection or those with chest x-rays suggestive of infection because the prior probability of

risk is high. A 5-mm induration is also regarded as positive for people with compromised

immune systems due to HIV infection or organ transplant, partly because they are likely to

have weaker T-cell responses (so a lower threshold is needed to maintain sensitivity) and partly

because TB is much more serious in these people (so the loss for a false negative is higher).

For people at moderately high risk because they are occupationally at higher risk or because

they come from countries where TB is common, a 10-mm induration is regarded as positive

(their prior probability is moderately elevated). The 10-mm rule is also used for people with

poor access to health care or those with diseases that make TB more likely to become active

(again, the loss for a false negative is higher in these groups).

Finally, for everyone else, a 15-mm threshold is used. In fact, the recommendation is that

they typically not even be screened, implicitly classifying everyone as negative.

Given a continuous variable predicting disease (whether an observed characteristic or a

summary produced by logistic or linear discrimination), we would like to display the sensitivity

and specificity not just for one threshold but for all possible thresholds. The receiver operating

characteristic (ROC) curve is such a display. It is a graph with “sensitivity” on the y-axis and

“1 − specificity” on the x-axis, evaluated for each possible threshold.

If the variable is completely independent of disease, the probability of detecting disease

will be the same for people with and without disease, so “sensitivity” and “1 − specificity”
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Figure 13.3 Receiver operating characteristic curve for data of Pine et al. [1983]. The solid line is the

prediction from all five variables; the dashed line is the prediction from age alone.

will be the same. This is indicated by a diagonal line in Figure 13.3. If higher values of the

variable are associated with higher risks of disease, the curve will lie above the diagonal line.

By convention, if lower values of the variable are associated with higher risks of disease, the

variable is transformed to reverse this, so ROC curves should always lie above the diagonal line.

The area under the ROC curve is a measure of how well the variable discriminates a disease

state: If you are given one randomly chosen person with disease and one randomly chosen

person without disease, the area under the ROC curve is the probability that the person with

disease has the higher value of the variable. The area under the ROC curve is a good analog

for binary data of the r

2 value for linear models.

Drawing the ROC curve for two classification rules allows you to compare their accuracy

at a range of different thresholds. It might be, for example, that two rules have very different

sensitivity when their specificity is low but very similar sensitivity when their specificity is high.

In that case, the rules would be equivalently useful in screening low-risk populations, where

specificity must be high, but might be very different in clinical diagnostic use.

13.4.2 Internal and External Error Rates

The internal or apparent or training or in-sample error rates are those obtained on the same data

as those used to fit the model. These always underestimate the true error rate, sometimes very

severely. The underestimation becomes more severe when many characteristics are available for

modeling, when the model is very flexible in form, and when the data are relatively sparse.

An extreme case is given by a result from computer science called the perceptron capacity

bound [Cover, 1965]. Suppose that there are d continuous characteristics and n observations

from two classes in the training set, and suppose that the characteristics are purely random,

having no real association whatsoever with the classes. The probability of obtaining an in-

sample error rate of zero for some classification rule based on a single linear combination of

characteristics is then approximately

1 − �

(

n − 2d

√

n

)

If d is large and n/d < 2, this probability will be close to 1. Even without considering non-

linear models and interactions between characteristics, it is quite possible to obtain an apparent

error rate of zero for a model containing no information whatsoever. Note that n/d > 2 does not

guarantee a good in-sample estimate of the error rate; it merely rules out this worst possible case.
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Estimates of error rates are needed for model selection and in guiding the use of classification

models, so this is a serious problem. The only completely reliable solution is to compute the

error rate on a completely new sample of data, which is often not feasible.

When no separate set of data will be available, there are two options:

1. Use only part of the data for building the model, saving out some data for testing.

2. Use all the data for model building and attempt to estimate the true error rate statistically.

Experts differ on which of these is the best strategy, although the majority probably leans toward

the second strategy. The first strategy has the merit of simplicity and requires less programming

expertise. We discuss one way to estimate the true error rate, cross-validation, and one way to

choose between models without a direct error estimate, the Akaike information criterion.

13.4.3 Cross-Validation

Statistical methods to estimate true error rate are generally based on the idea of refitting a model

to part of the data and using the refitted model to estimate the error rate on the rest of the data.

Refitting the model is critical so that the data left out are genuinely independent of the model

fit. It is important to note that refitting ideally means redoing the entire model selection process,

although this is feasible only when the process was automated in some way.

In 10-fold cross-validation, the most commonly used variant, the data are randomly divided

into 10 equal pieces. The model is then refitted 10 times, each time with one of the 10 pieces left

out and the other nine used to fit the model. The classification errors (either the expected loss

or the false positive and false negative rates) are estimated for the left-out data from the refitted

model. The result is an estimate of the true error rate, since each observation has been classified

using a model fitted to data not including that observation. Clearly, 10-fold cross-validation

takes 10 times as much computer time as a single model selection, but with modern computers

this is usually negligible. Cross-validation gives an approximately unbiased estimate of the true

error rate, but a relatively noisy one.

13.4.4 Akaike’s Information Criterion

Akaike’s information criterion (AIC) [Akaike, 1973] is an asymptotic estimate of expected loss

for a particular loss function, one that is proportional to the logarithm of the likelihood. It is

extremely simple to compute but can only be used for models fitted by maximum likelihood and

requires great caution when used to compare models fitted by different modeling techniques. In

the case of linear regression, model selection with AIC is equivalent to model selection with

Mallow’s C

p

, discussed in Chapter 11, so it can be seen as a generalization of Mallow’s C

p

to

nonlinear models.

The primary difficulty in model selection is that increasing the number of variables always

decreases the apparent error rate even if the variables contain no useful information. The AIC

is based on the observation that for one particular loss function, the log likelihood, the decrease

depends only on the number of variables added to the model. If a variable is uninformative, it

will on average increase the log likelihood by 1 unit. When comparing model A to model B,

we can compute

log(likelihood of A) − log(likelihood of B)

−(no. parameters in A − no. parameters in B) (4)

If this is positive, we choose model A, if it is negative we choose model B. The AIC is most

often defined as

AIC = −2 log(likelihood of model) + 2(no. parameters in model) (5)
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so that choosing the model with the lower AIC is equivalent to our strategy based on equation (4).

Sometimes the AIC is defined without the factor of −2, in which case the largest value indicates

the best model: It is important to check which definition is being used.

Akaike showed that given two fixed models and increasing amounts of data, this criterion

would eventually pick the best model. When the number of candidate models is very large, like

the 2p models in logistic regression with p characteristics, AIC still tends to overfit to some

extent. That is, the model chosen by the AIC tends to have more variables than the best model.

In principle, the AIC can be used to compare models fitted by different techniques, but

caution is needed. The log likelihood is only defined up to adding or subtracting an arbitrary

constant, and different programs or different procedures within the same program may use

different constants for computational convenience. When comparing models fitted by the same

procedure, the choice of constant is unimportant, as it cancels out of the comparison. When

comparing models fitted by different procedures, the constant does matter, and it may be difficult

to find out what constant has been used.

13.4.5 Automated Stepwise Model Selection

Automated stepwise model selection has a deservedly poor reputation when the purpose of a

model is causal inference, as model choice should then be based on a consideration of the probable

cause-and-effect relationships between variables. When modeling for prediction, however, this is

unimportant: We do not need to know why a variable is predictive to know that it is predictive.

Most statistical packages provide tools that will automatically consider a set of variables

and attempt to find the model that gives the best prediction. Some of these use AIC, but more

commonly they use significance testing of predictors. Stepwise model selection based on AIC

can be approximated by significance-testing selection using a critical p-value of 0.15.

Example 13.3. We return to the data of Pine et al. [1983] and fit a logistic model by stepwise

search, optimizing the AIC. We begin with a model using none of the characteristics and giving

the same classification for everyone. Each of the five characteristics is considered for adding

to the model, and the one optimizing the AIC is chosen. At subsequent steps, every variable is

considered either for adding to the model or for removal from the model. The procedure stops

when no change improves the AIC.

This procedure is not guaranteed to find the best possible model but can be carried out much

more quickly than an exhaustive search of all possible models. It is at least as good as, and often

better than, forward or backward stepwise procedures that only add or only remove variables.

Starting with an empty model the possible changes were as follows:

d.f. Deviance AIC d.f. Deviance AIC

+ X4 1 90.341 94.341 + X5 1 97.877 101.877

+ X1 1 91.977 95.977 + X2 1 99.796 103.796

+ X3 1 95.533 99.533 <none> 105.528 107.528

The d.f. column counts the number of degrees of freedom for each variable (in this case,

one for each variable, but more than one if a variable had multiple categories). The deviance is

−2 log likelihood. The best (lowest AIC) choice was to add X4 (age). In the second step, X1

(shock) was added, and then X3 (alcoholism). The possible changes in the fourth step were:

d.f. Deviance AIC d.f. Deviance AIC

+ X5 1 56.073 66.073 − X4 1 76.970 82.970

<none> 61.907 69.907 − X3 1 79.088 85.088

+ X2 1 60.304 70.304 − X1 1 79.925 85.925
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Table 13.5 Step 1 Using Linear Discrimination

d.f. SS RSS AIC

+ X1 1 2.781 14.058 −210.144

+ X4 1 2.244 14.596 −206.165

+ X3 1 1.826 15.014 −203.172

+ X5 1 1.470 15.370 −200.691

+ X2 1 0.972 15.867 −197.312

<none> 16.840 −193.009

Table 13.6 Subsequent Steps Using Linear

Discrimination

d.f. SS RSS AIC

<none> 10.031 −239.922

+ X2 1 0.164 9.867 −239.673

− X5 1 0.733 10.764 −234.447

− X4 1 0.919 10.950 −232.627

− X3 1 1.733 11.764 −225.029

− X1 1 2.063 12.094 −222.095

and the lowest AIC came with adding X5 (infarction) to the model. Finally, adding X2 also

reduced the AIC, and no improvement could be obtained by deleting a variable, so the procedure

terminated. The model minimizing AIC uses all five characteristics.

We can perform the same classification using linear discrimination. The characteristics clearly

do not have a multivariate normal distribution, but it will be interesting to see how well the

robustness of the methods stands up in this example.

At the first step we have the data shown in Table 13.5.

For this linear model the residual sum of squares and the change in residual sum of squares

are given and used to compute the AIC. The first variable added is X1. In subsequent steps X3,

X4, and X5 are added, and then we have the data shown in Table 13.6.

The procedure ends with a model using the four variables X1, X3, X4, and X5. The fifth

variable (malnutrition) is not used. We can now compare the fitted values from the two models

shown in Figure 13.4. It is clear that both discriminant functions separate the surviving and

dying patients very well and that the two functions classify primarily the same people as being

at high risk. Looking at the ROC curves suggests that the logistic discriminant function is very

slightly better, but this conclusion could not be made reliably without independent data.

13.5 MODERN CLASSIFICATION TECHNIQUES

Most modern classification techniques are similar in spirit to automated stepwise logistic regres-

sion. A computer search is made through a very large number of possible models for p

k

, and

a criterion similar to AIC or an error estimate similar to cross-validation is used to choose a

model. All these techniques are capable of approximating any relationship between p

k

and X

arbitrarily well, and as a consequence will give very good prediction if n is large enough in

relation to p.

Modern classification techniques often produce “black-box” classifiers whose internal struc-

ture can be difficult to understand. This need not be a drawback: As the models are designed

for prediction rather than inference about associations, the opaqueness of the model reduces the
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Figure 13.4 Comparison of discriminant functions and ROC curves from logistic and linear models for

data of Pine et al. [1983]. Solid circles are deaths; open circles are survival. The solid line is the logistic

model; the dashed line is the linear model.

temptation to leap to unjustified causal conclusions. On the other hand, it can be difficult to

decide which variables are important in the classification and how strongly the predictions have

been affected by outliers. There is some current statistical research into ways of opening up the

black box, and techniques may become available over the next few years.

At the time of writing, general-purpose statistical packages often have little classification

functionality beyond logistic and linear discrimination. It is still useful for the nonspecialist to

understand the concepts behind some of these techniques; we describe two samples.

13.5.1 Recursive Partitioning

Recursive partitioning is based on the idea of classifying by making repeated binary decisions.

A classification tree such as the left side of Figure 13.5 is constructed step by step:

1. Search every value c of every variable X for the best possible prediction by X > c vs.

X ≤ c.

2. For each of the two resulting subsets of the data, repeat step 1.

In the tree displayed, each split is represented by a logical expression, with cases where the

expression is true going left and others going right, so in the first split in Figure 13.5 the cases

with white blood cell counts below 391.5 mL−1 go to the left.

An exhaustive search procedure such as this is sure to lead to overfitting, so the tree is then

pruned by snipping off branches. The pruning is done to minimize a criterion similar to AIC:

loss + CP × number of splits

The value of CP, called the cost-complexity penalty, is most often chosen by 10-fold cross-

validation (Section 13.4.3). Leaving out 10% of the data, a tree is grown and pruned with many

different values of CP. For each tree pruned, the error rate is computed on the 10% of data left

out. This is repeated for each of the ten 10% subsets of the data. The result is a cross-validation

estimate of the loss (error rate) for each value of CP, as in the right-hand side of Figure 13.5.
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Figure 13.5 Classification tree and cross-validated error rates for differential diagnosis of acute meningitis.

Because cross-validation is relatively noisy (see the standard error bars on the graph), we

choose the largest CP (smallest tree) that gives an error estimate within one standard error of

the minimum, represented by the horizontal dotted line on the graph.

Example 13.4. In examining these methods we use data from Spanos et al. [1989], made

available by Frank Harrell at a site linked from the Web appendix to the chapter. The classifica-

tion problem is to distinguish viral from bacterial meningitis, based on a series of 581 patients

treated at Duke University Medical Center. As immediate antibiotic treatment for acute bacterial

meningitis is often life-saving, it is important to have a rapid and accurate initial classification.

The definitive classification based on culturing bacteria from cerebrospinal fluid samples will

take a few days to arrive. In some cases bacteria can be seen in the cerebrospinal fluid, providing

an easy decision in favor of bacterial meningitis with good specificity but inadequate sensitivity.

The initial analysis used logistic regression together with transformations of the variables,

but we will explore other possibilities. We will use the following variables:

• AGE : in years

• SEX

• BLOODGL: glucose concentration in blood

• GL: glucose concentration in cerebrospinal fluid

• PR: protein concentration in cerebrospinal fluid

• WHITES : white blood cells per milliliter of cerebrospinal fluid

• POLYS : % of white blood cells that are polymorphonuclear leukocytes

• GRAM : result of Gram smear (bacteria seen under microscope): 0 negative, > 0 positive

• ABM : 1 for bacterial, 0 for viral meningitis

The original analysis left GRAM out of the model and used it only to override the predicted

classification if GRAM > 0. This is helpful because the variable is missing in many cases,

and because the decision to take a Gram smear appears to be related to suspicion of bacterial

meningitis.
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In the resulting tree, each leaf is labeled with the probability of bacterial meningitis for cases

ending up in that leaf. Note that they range from 1 down to 0.07, so that in some cases bacterial

meningitis is almost certain, but it is harder to be certain of viral meningitis.

It is interesting to note what happens when Gram smear status is added to the variable list

for growing a tree. It is by far the most important variable, and prediction error is distinctly

reduced. On the other hand, bacterial meningitis is predicted not only in those whose Gram smear

is positive, but also in those whose Gram smear is negative. Viral meningitis is predicted only

in a subset of those whose Gram smear is missing. If the goal of the model were to classify the

cases retrospectively from hospital records, this would not be a problem. However, the original

goal was to construct a diagnostic tool, where it is undesirable to have the prediction strongly

dependent on another physician choice. Presumably, the Gram smear was being ordered based

on other information available to the physician but not to the investigators.

Classification trees are particularly useful where there are strong interactions between char-

acteristics. Completely different variables can be used to split each subset of the data. In our

example tree, blood glucose is used only for those with high white cell counts and high glucose

in the cerebrospinal fluid. This ability is particularly useful when there are missing data.

On the other hand, classification trees do not perform particularly well when there are smooth

gradients in risk with a few characteristics. For example, the prediction of acute bacterial menin-

gitis can be improved by adding a new variable with the ratio of blood glucose to cerebrospinal

fluid glucose.

The best known version of recursive partitioning, and arguably the first to handle overfitting

carefully, is the CART algorithm of Breiman et al. [1984]. Our analysis used the free “rpart”

package [Therneau, 2002], which automates both fitting and the cross-validation analysis. It

follows the prescriptions of Breiman et al. [1984] quite closely.

A relatively nontechnical overview of recursive partitioning in biostatistics is given by Zhang

and Singer [1999]. More recently, techniques using multiple classification trees (bagging, boost-

ing, and random forests) have become popular and appear to work better with very large numbers

of characteristics than do other methods.

13.5.2 Neural Networks

The terminology neural network and the original motivation were based on a model for the

behavior of biological neurons in the brain. It is now clear that real neurons are much more

complicated, and that the fitting algorithms for neural networks bear no detailed relationship to

anything happening in the brain. Neural networks are still very useful black-box classification

tools, although they lack the miraculous powers sometimes attributed to them.

A computational neuron in a neural net is very similar to a logistic discrimination function.

It takes a list of inputs Z1, Z2, . . . , Z

m

and computes an output that is a function of a weighted

combination of the inputs, such as

logit(α + β1Z1 + · · · + β

m

Z

m

) (6)

There are many variations on the exact form of the output function, but this is one widely used

variation. It is clear from equation (6) that even a single neuron can reproduce any classification

from logistic regression.

The real power of neural network models comes from connecting multiple neurons together

in at least two layers, as shown in Figure 13.6. In the first layer the inputs are the characteristics

X1, . . . , X

p

. The outputs of these neurons form a “hidden layer” and are used as inputs to the

second layer, which actually produces the classification probability p

k

.

Example 13.5. A neural net fitted to the acute meningitis data has problems because of

missing observations. Some form of imputation or variable selection would be necessary for a
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Figure 13.6 Simple neural network with three hidden nodes.

serious analysis of these data. We used the neural network package that accompanies Venables

and Ripley [2002], choosing a logistic output function and two hidden nodes (Z1 and Z2). That

is, the model was

logit(p) = −0.52 + 2.46Z1 − 2.31Z2

logit(Z1) = 0.35 + 0.11POLYS + 0.58WHITES − 0.31SEX + 0.39AGE

− 0.47GL − 2.02BLOODGL − 2.31PR

logit(Z2) = 0.22 + 0.66POLYS + 0.25WHITES − 0.06SEX + 0.31AGE

+ 0.03GL + 0.33BLOODGL − 0.02PR

The sensitivity of the classification was approximately 50% and the specificity nearly 90%.

Two hidden nodes is the minimum interesting number (one hidden node just provides a

transformation of a logistic regression model), and we did not want to use more than this

because of the relatively small size of the data set.

NOTES

13.1 Maximum Likelihood for Logistic Regression

The regression coefficients in the logistic regression model are estimated using the maximum

likelihood criterion. A full discussion of this topic is beyond the scope of this book, but in this

note we outline the procedure for the situation involving one covariate. Suppose first that we

have a Bernoulli random variable, Y , with probability function

P [Y = 1] = p

P [Y = 0] = 1 − p

A mathematical trick allows us to combine these into one expression:

P [Y = y] = p

y

(1 − p)

(1−y)
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using the fact that any number to the zero power is 1. We observe n values of Y, y1, y2, . . . , y

n

(a sequence of zeros and ones). The probability of observing this sequence is proportional to

n

∏

j=1

p

y

j

(1 − p)

1−y

j

= p

�y

j

(1 − p)

n−�y

j (7)

This quantity is now considered as a function of p and defined to be the likelihood. To emphasize

the dependence on p, we write

L

(

p|

∑

y

j

, n

)

= p

�y

j

(1 − p)

n−�y

j (8)

Given the value of
∑

y

j

, what is the “best” choice for a value for p? The maximum likelihood

principle states that the value of p that maximizes L(p|

∑

y

j

, n) should be chosen. It can be

shown by elementary calculus that the value of p that maximizes L(p|

∑

y

j

, n) is equal to
∑

y

j

/n. You will recognize this as the proportion of the n values of Y that have the value 1.

This can also be shown graphically; Figure 13.7 is a graph of L(p|

∑

y

j

, n) as a function of p

for the situation
∑

y = 6 and n = 10. Note that the graph has one maximum and that it is not

quite symmetrical.

In the logistic regression model the probability p is assumed to be a function of an underlying

covariate, X; that is, we model

logit(p) = α + βX

Figure 13.7 Likelihood function, L(π |6, 10).
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where α and β are constants. Conversely,

p =

e

α+βX

1 + e

α+βX

=

1

1 + e

−(α+βX)

(9)

For fixed values of X the probability p is determined (since α and β are parameters to be

estimated from the data). A set of data now consists of pairs of observations: (y

j

, x

j

), j =

1, . . . , n, where y

j

is again a zero–one variable and x

j

is an observed value of X for set j . For

each outcome, indexed by set j , there is now a probability p(j) determined by the value of x

j

.

The likelihood function is written

L(p(1), . . . , p(n)|y1, . . . , y

n

, x1, . . . , x

n

, n) =

n

∏

j=1

p(j)

y

j [1 − p(j)]1−y

j (10)

but p(j) can be expressed as

p(j) =

e

α+βX

j

1 + e

α+βX

j

(11)

where x

j

is the value of the covariate for subject j . The likelihood function can then be written

and expressed as a function of α and β as follows:

L(α, β|y1, . . . , y

n

; x1, . . . , x

n

; n) =

n

∏

j=1

(

e

α+βx

j

1 + e

α+βx

j

)

y

j

(

1

1 + e

α+βx

j

)1−y

j

=

n

∏

j=1

(e

α+βx

j

)

y

j

1 + e

α+βx

j

=

e

�

n

j=1y

j

(α+βx

j

)

∏

n

j=1(1 + e

α+βx

j

)

(12)

The maximum likelihood criterion then requires values for α and β to be chosen so that the

likelihood function above is maximized. For more than one covariate, the likelihood function

can be deduced similarly.

13.2 Logistic Discrimination with More Than Two Groups

Anderson [1972] and Jones [1975], among others, have considered the case of logistic discrim-

ination with more than two groups. Following Anderson [1972], let for two groups

P(G1|X) =

exp(α0 + α1X1 + · · · + α

p

X

p

)

1 + exp(α0 + α1X1 + · · · + α

p

X

p

)

Then

P(G2|X) =

1

1 + exp(α0 + α1X1 + · · · + α

p

X

p

)

This must be so because P(G1|X) + P(G2|X) = 1; that is, the observation X belongs to either

the G1 or G2. For k groups, define

P(G

s

|X) =

exp(α

s0 + α

s1X1 + · · · + α

sp

X

p

)

1 +

∑

k−1
j=1 exp(α

j0 + α

j1X1 + · · · + α

jp

X

p

)
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for groups s = 1, . . . , k − 1, and for group G

k

, let

P(G

k

|X) =

1

1 +

∑

k−1
j=1 exp(α

j0 + α

j1X1 + · · · + α

jp

X

p

)

(13)

Most statistical packages provide this analysis, which is often called polytomous logistic regres-

sion (or occasionally and incorrectly, “polychotomous” logistic regression).

13.3 Defining Losses

In order to say that one prediction is better than another, we need some way to compare the rela-

tive importance of false positive and false negative errors. Even looking at total error rate implic-

itly assigns a relative importance. When the main adverse or beneficial effects are directly com-

parable, this is straightforward. We can compare the monetary costs of false negatives and false

positives, or the probability of death caused by a false positive or false negative. In most cases,

however, there will not be direct comparability. When evaluating a cancer screening program, the

cost of false negatives is an increase in the risk of death, due to untreated cancer. The cost of a

false positive includes the emotional effects and health risks of further testing needed to rule out

disease. Even without weighing monetary costs against health costs we can see that it is not clear

how many false negatives are worth one false positive. The problem is much more controversial,

although perhaps no more difficult when monetary costs are important, as they usually are.

It can be shown [Savage, 1954] that the ability to make consistent choices between courses

of action whose outcome is uncertain implies the ability to rate all the possible outcomes on the

same scale, so this problem cannot be avoided. Perhaps the most important general guidance

we can give is that it is important to recognize that different people will assign different losses

and so prefer different classification rules.

13.4 Linear Discrimination Using Linear Regression Software

Given two groups of size n1 and n2, it has been shown by Fisher [1936] that the discriminant

analysis is equivalent to a multiple regression on the dummy variable Y defined as follows:

Y =

n2

n1 + n2
members of group 1

=

−n1

n1 + n2
members of group 2 (14)

We can now treat this as a regression analysis problem. The multiple regression equation obtained

will define the regions in the sample space identical to these defined by the discriminant analysis

model.

13.5 Cluster Analysis

Cluster analysis is a set of techniques for dividing observations into classes based on a set of

characteristics, without the classes being specified in advance. Cluster analysis may be carried

out in an attempt to discover classes that are hypothesized to exist but whose structure is

unknown, but may also be used simply to create relatively homogeneous subsets of the data.

One application of cluster analysis to clinical epidemiology is in refining the definition of

a new syndrome. The controversial Gulf War syndrome has been analyzed this way by various

authors. Everitt et al. [2002] found five clusters: one healthy cluster and four with different

distributions of symptoms. On the other hand, Hallman et al. [2003] found only two clusters:

healthy and not. Cherry et al. [2001] found six clusters, three of which were relatively healthy
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and three representing distinct clusters of symptoms. This lack of agreement suggests that there

is little evidence for genuine, strongly differentiated clusters.

Cluster analysis has become more visible in biostatistics in recent years with the rise of

genomic data. A popular analysis for RNA expression data is to cluster genes based on their

patterns of expression across tissue samples or experimental conditions, following Eisen et al.

[1998]. The goal of these analyses is intermediate: The clusters are definitely not biologically

meaningful in themselves, but are likely to contain higher concentrations of related genes, thus

providing a useful starting point for further searches.

Another very visible example of cluster analysis is given by the Google News service

(http://news.google.com). Google News extracts news stories from a very large number of tradi-

tional newspapers and other sources on the Web and finds clusters that indicate popular topics.

The most prominent clusters are then displayed on the Web page.

Cluster analysis has a number of similarities to both factor analysis and principal components

analysis, discussed in Chapter 14.

13.6 Predicting Categories of a Continuous Variable

In some cases the categorical outcome being predicted is defined in terms of a continuous

variable. For example, low birthweight is defined as birthweight below 2500 g, diabetes may be

diagnosed by a fasting blood glucose concentration over 140 mg/dL on two separate occasions,

hypertension is defined as blood pressure greater than 140/90 mmHg. An obvious question

is whether it is better to predict the categorical variable directly or to predict the continuous

variable and then divide into categories.

In contrast to the question of whether a predictor should be dichotomized, to which we can

give a clear “no!,” categorizing an outcome variable may be helpful or harmful. Using the con-

tinuous variable has the advantage of making more information available, but the disadvantage

of requiring the model to fit well over the entire range of the response. For example, when

fitting a model to (continuous) birthweight, the parameter values are chosen by giving equal

weight to a 100-g error at a weight of 4000 g as at 2450 g. When fitting a model to (binary)

low birthweight, more weight is placed on errors near 2500 g, where they are more important.

See also Problem 13.5.

13.7 Further Reading

Harrell [2001] discusses regression modeling for prediction, including binary outcomes, in a

medical context. This is a good reference for semiautomatic modeling that uses the avail-

able features of statistical software and incorporates background knowledge about the scientific

problem. Lachenbruch [1977] covers discriminant analysis, and Hosmer and Lemeshow [2000]

discuss logistic regression for prediction (as well as for inference). Excellent but very technical

summaries of modern classification methods are given by Ripley [1996] and Hastie et al. [2001].

Venables and Ripley [2002] describe how to use many of these methods in widely available

software. As already mentioned, Zhang and Singer [1999] describe recursive partitioning and

its use in health sciences. Two excellent texts on screening are Pepe [2003] and Zhou et al.

[2002].

PROBLEMS

13.1 For the logistic regression model logit(π) = α + βX, where X is a dichotomous 0–1

variable, show that e

β is the odds ratio associated with the exposure to X.

13.2 For the data of Table 13.7, the logistic regression model using only the variable X1,

malnutrition, is

logit(π̂) = −0.646 + 1.210X1
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Table 13.8 2 × 2 Table for Vital Status vs.

Nutritional Status

Y

Death Survive

X1 1 0

Malnutrition 1 11 21 32

No malnutrition 0 10 64 74

21 85 106

The 2 × 2 table associated with these data is shown in Table 13.8.

(a) Verify that the coefficient of X1 is equal to the logarithm of the odds ratio for

malnutrition.

(b) Calculate the probability of death given malnutrition using the model above and

compare it with the probability observed.

(c) The standard error of the regression coefficient is 0.5035; test the significance of

the observed value, 1.210. Set up 95% confidence limits on the population value

and translate these limits into limits for the population odds ratio.

(d) Calculate the standard error of the logarithm of the odds ratio from the 2 × 2

table and compare it with the value in part (c).

13.3 The full model for the data of Table 13.2 is given in Section 13.2.

(a) Calculate the logit line for X2 = 0, X3 = 1, and X5 = 1. Plot logit(π̂) vs. age

in years.

(b) Plot π̂ vs. age in years for part (a).

(c) What is the probability of death for a 60-year-old patient with no evidence of

shock, but with symptoms of alcoholism and prior bowel infarction?

13.4 One of the problems in the treatment of acute appendicitis is that perforation of the

appendix cannot be predicted accurately. Since the consequences of perforation are

serious, surgeons tend to be conservative by removing the appendix. Koepsell et al.

[1981] attempted to relate the occurrence (or absence) of perforation to a variety of risk

factors to enable better assessment of the risk of perforation. A consecutive series of

281 surgery patients was selected initially; of these, 192 were appropriate for analysis,

41 of whom had demonstrable perforated appendices according to the pathology report.

The data are listed in Table 13.9. Of the 12 covariates studied, six are listed here, with

the group indicator Y .

Y = perforation status (1 = yes; 0 = no)

X1 = gender (1 = male; 0 = female)

X2 = age (in years)

X3 = duration of symptoms in hours prior to physician contact

X4 = time from physician contact to operation (in hours)

X5 = white blood count (in thousands)

X6 = gangrene (1 = yes; 0 = no)
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Table 13.9 Data for Problem 13.4

Y X1 X2 X3 X4 X5 X6 Y X1 X2 X3 X4 X5 X6

1 0 0 41 19 1 16 0 49 0 1 15 6 6 19 0

2 1 1 42 48 0 24 1 50 0 0 17 10 4 9 0

3 0 0 11 24 5 14 0 51 0 0 10 72 6 17 0

4 0 1 17 12 2 9 0 52 0 1 9 8 999 15 0

5 1 1 45 36 3 99 1 53 1 1 3 4 2 18 1

6 0 0 15 24 5 14 0 54 0 0 7 16 1 24 0

7 0 1 17 11 24 8 0 55 0 1 60 14 2 11 0

8 0 1 52 30 1 13 0 56 0 1 11 48 3 8 0

9 0 1 15 26 6 13 0 57 0 1 8 48 24 14 0

10 1 1 18 48 2 20 1 58 0 1 9 12 1 12 0

11 0 0 23 48 5 14 0 59 0 1 19 36 1 99 0

12 1 1 9 336 11 13 1 60 1 0 44 24 1 11 1

13 0 0 18 24 3 13 0 61 0 0 46 9 4 12 0

14 0 0 30 8 15 11 0 62 0 1 11 36 2 13 0

15 0 0 16 19 9 10 0 63 0 1 18 8 2 19 0

16 0 1 9 8 2 15 0 64 0 0 21 24 5 12 0

17 0 1 15 48 4 12 0 65 0 0 31 24 8 16 0

18 1 1 25 120 4 8 1 66 0 0 14 7 4 12 0

19 0 0 17 7 17 14 0 67 0 1 17 6 6 19 0

20 0 1 17 12 2 14 0 68 0 0 15 24 1 9 0

21 1 0 63 72 7 11 1 69 0 0 18 24 4 9 0

22 0 0 19 8 1 15 0 70 0 0 38 48 2 99 0

23 0 1 9 48 24 9 0 71 0 1 13 18 4 18 0

24 1 0 9 48 12 14 1 72 1 0 23 168 4 18 0

25 0 0 17 5 1 14 0 73 0 0 15 3 2 14 0

26 0 0 12 48 3 15 0 74 1 0 34 48 3 16 1

27 0 1 6 48 1 26 0 75 0 1 21 24 47 8 1

28 0 0 8 48 3 99 0 76 0 1 50 8 4 12 0

29 1 1 17 30 6 12 1 77 0 0 10 23 6 16 1

30 0 0 11 8 7 15 0 78 0 0 14 48 12 15 0

31 0 1 16 48 2 11 0 79 0 1 26 48 12 13 0

32 0 1 15 10 12 12 0 80 1 0 16 22 1 14 1

33 0 1 13 24 11 15 1 81 1 0 9 24 12 16 1

34 1 1 26 48 4 11 1 82 0 1 26 5 1 16 0

35 0 1 14 7 4 16 0 83 0 1 29 24 1 30 0

36 0 0 44 20 2 13 0 84 0 1 35 408 72 6 0

37 1 1 13 168 999 10 1 85 0 0 18 168 16 12 0

38 0 0 13 14 22 13 0 86 0 1 12 18 4 12 0

39 0 1 24 10 2 19 0 87 0 1 14 7 3 21 0

40 1 0 12 72 2 16 1 88 1 1 45 24 3 18 1

41 0 1 18 15 1 16 0 89 0 1 16 5 21 12 0

42 0 0 19 15 0 9 0 90 0 0 19 240 163 6 0

43 0 0 11 336 20 8 0 91 1 1 9 48 7 23 1

44 0 1 13 14 1 99 0 92 1 1 50 30 5 15 1

45 0 1 25 10 10 11 0 93 0 0 18 2 10 15 0

46 0 1 16 72 5 7 0 94 0 0 27 2 24 17 1

47 0 1 25 72 45 7 0 95 0 1 48 27 5 16 0

48 0 1 42 12 33 19 1 96 0 1 7 18 5 14 0

97 0 1 16 13 1 11 0 145 0 1 41 24 4 14 0

98 0 1 29 5 24 19 1 146 0 0 28 6 1 15 0

99 0 1 18 48 3 11 0 147 1 0 13 48 9 15 1
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Table 13.9 (continued)

Y X1 X2 X3 X4 X5 X6 Y X1 X2 X3 X4 X5 X6

100 0 1 18 9 2 14 0 148 0 1 10 15 1 99 0

101 1 1 14 14 1 15 1 149 0 1 16 18 4 14 0

102 0 1 32 240 24 7 0 150 0 1 17 18 10 17 0

103 0 1 23 18 2 17 1 151 0 1 38 9 7 11 0

104 0 1 26 16 2 13 0 152 0 1 12 18 2 13 0

105 0 0 30 24 4 20 0 153 0 0 12 72 3 15 0

106 0 1 44 39 15 11 0 154 0 0 27 16 0 14 1

107 1 1 17 24 4 16 1 155 0 1 31 7 8 14 0

108 0 1 30 36 3 15 1 156 0 0 45 20 4 27 0

109 0 1 18 24 2 11 1 157 1 1 52 48 3 15 1

110 0 1 34 96 1 10 0 158 1 1 26 48 13 16 1

111 0 1 15 12 2 10 0 159 0 0 38 15 1 16 0

112 0 1 10 24 4 99 0 160 0 0 19 24 5 99 0

113 0 1 12 14 13 5 0 161 0 1 14 20 2 15 0

114 0 1 10 12 17 17 0 162 0 0 27 22 8 18 0

115 0 1 28 24 2 15 0 163 0 1 20 21 1 99 0

116 0 1 10 96 8 8 0 164 1 1 11 24 8 10 1

117 0 0 22 12 2 12 0 165 0 1 17 72 20 10 0

118 0 0 30 15 5 12 0 166 0 0 27 24 3 9 0

119 0 1 16 36 3 12 0 167 1 0 52 16 4 13 1

120 0 0 16 30 4 15 0 168 1 1 38 48 2 13 1

121 0 1 9 12 12 15 0 169 0 1 16 19 3 12 0

122 1 1 16 144 4 15 1 170 0 1 19 9 4 17 0

123 0 1 17 36 13 6 0 171 0 0 24 24 2 11 0

124 1 1 12 120 2 11 1 172 0 1 12 17 20 6 1

125 0 1 28 17 26 10 0 173 1 1 51 72 2 16 1

126 1 0 13 48 3 21 1 174 1 1 50 72 6 11 1

127 0 0 23 72 3 13 0 175 0 0 28 12 3 13 0

128 1 0 62 72 2 12 1 176 0 0 19 48 8 14 1

129 0 1 17 24 4 14 0 177 0 1 9 24 999 99 0

130 0 0 12 24 12 15 0 178 0 0 40 48 7 14 0

131 0 1 10 12 10 11 0 179 0 0 17 504 7 99 0

132 0 1 47 48 8 9 0 180 0 1 51 24 1 9 1

133 0 1 43 11 8 13 0 181 0 1 31 24 2 10 0

134 1 1 18 36 2 15 1 182 0 0 25 8 9 8 0

135 0 0 6 24 1 9 0 183 0 0 14 24 8 10 0

136 0 0 24 2 22 10 0 184 0 1 7 24 4 15 0

137 0 0 22 11 24 7 0 185 0 1 27 7 2 14 0

138 1 1 39 36 3 15 1 186 0 1 35 72 3 19 1

139 1 1 43 48 2 11 1 187 0 0 11 12 9 11 0

140 0 1 12 7 1 14 0 188 0 1 20 8 6 12 0

141 0 1 14 48 6 16 0 189 0 1 50 48 27 19 0

142 0 1 21 24 1 17 0 190 0 1 16 6 7 7 0

143 1 1 34 48 12 9 1 191 0 1 45 24 4 20 0

144 1 0 60 24 3 14 1 192 1 1 47 336 4 9 1

For X4 the code 999 is for unknown; for X5 the code 99 is an unknown code.

(a) Compare the means of the continuous variables (X2, X3, X4, X5) in the two

outcome groups (Y = 0, 1) by some appropriate test. Make an appropriate com-

parison of the association of X5 and Y . State your conclusion at this point.
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(b) Carry out a stepwise discriminant analysis. Which variables are useful predic-

tors? How much improvement in prediction is there in using the discriminant

procedure? How appropriate is the procedure?

(c) Carry out a stepwise logistic regression and compare your results with those of

part (b).

(d) The authors introduced two additional variables in their analysis: X7 = log(X2)

and X8 = log(X3). Test whether these variables improve the prediction scheme.

Interpret your findings.

(e) Plot the probability of perforation as a function of the duration of symptoms;

using the logistic model, generate a separate curve for subjects aged 10, 20, 30,

40, and 50 years. Interpret your findings.

13.5 The Web appendix to this chapter has a data set with daily concentrations of partic-

ulate air pollution in Seattle, Washington. The air quality index for fine particulate

pollution below 2.5 µm in diameter (PM2.5) will be “unhealthy for sensitive groups”

at 40 µg/m3 and “moderate” at 20 µg/m3. The Puget Sound Clean Air Agency is

interested in predicting high air pollution days so that it can issue burn bans to reduce

fireplace use. Using information on weather and pollution from previous days and the

time of year, build logistic models to predict when PM2.5 will exceed 20 or 40 µg/m3.

Also build a linear regression model for predicting PM2.5 or log(PM2.5). Summarize

the predictive accuracy of these models. Do you get more accurate prediction using the

logistic model or categorizing the prediction from the linear model? Does the answer

depend on what losses you assign to false positive and false negative predictions?

13.6 A classic in the use of discriminant analysis is the paper by Truett et al. [1967], in

which the authors attempted to predict the risk of coronary heart disease using data from

the Framingham study, a longitudinal study of the incidence of coronary heart disease

in Framingham, Massachusetts. The two groups under consideration were those who

did and did not develop coronary heart disease (CHD) in a 12-year follow-up period.

There were 2669 women and 2187 men, aged 30 to 62, involved in the study and free

from CHD at their first examination. The variables considered were:

• Age (years)

• Serum cholesterol (mg/100 mL)

• Systolic blood pressure (mmHg)

• Relative weight (100 × actual weight ÷ median for sex–height group)

• Hemoglobin (g/100 mL)

• Cigarettes per day, coded as 0 = never smoked, 1 = less than a pack a day, 2 = one

pack a day, and 3 = more than a pack a day

• ECG, coded as 0 = for normal, and 1 = for definite or possible left ventricular

hypertrophy, definite nonspecific abnormality, and intraventricular block

Note that the variables “cigarettes” and “ECG” cannot be distributed normally, as

they are discrete variables. Nevertheless, the linear discriminant function model was

tried. It was found that the predictions (in terms of the risk or estimated probability

of being in the coronary heart disease groups) fitted the data well. The coefficients of

the linear discriminant functions for men and women, including the standard errors,

are shown in Table 13.10.
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Table 13.10 Coefficients and Standard Errors for Predicting Coronary Heart Disease.

Standard Errors of

Risk Factors Women Men Estimated Coefficients

Constant (̂α) −12.5933 −10.8986

Age (years) 0.0765 0.0708 0.0133 0.0083

Cholesterol (mg %) 0.0061 0.0105 0.0021 0.0016

Systolic blood pressure (mmHg) 0.0221 0.0166 0.0043 0.0036

Relative weight 0.0053 0.0138 0.0054 0.0051

Hemoglobin (g %) 0.0355 −0.0837 0.0844 0.0542

Cigarettes smoked (see code) 0.0766 0.3610 0.1158 0.0587

ECG abnormality (see code) 1.4338 1.0459 0.4342 0.2706

(a) Determine for both women and men in terms of the p-value the most significant

risk factor for CHD in terms of the p-value.

(b) Calculate the probability of CHD for a male with the following characteristics:

age = 35 years; cholesterol = 220 mg %; systolic blood pressure = 110 mmHg;

relative weight = 110; hemoglobin = 130 g%; cigarette code = 3; and ECG

code = 0.

(c) Calculate the probability of CHD for a female with the foregoing characteristics.

(d) How much is the probability in part (b) changed for a male with all the charac-

teristics above except that he does not smoke (i.e., cigarette code = 0)?

(e) Calculate and plot the probability of CHD for the woman in part (c) as a function

of age.

13.7 In a paper that appeared four years later, Halperin et al. [1971] reexamined the Fram-

ingham data analysis (see Problem 13.6) by Truett et al. [1967] using a logistic model.

Halperin et al. analyzed several subsets of the data; for this problem we abstract the

data for men aged 29 to 39 years, and three variables: cholesterol, systolic blood

pressure, and cigarette smoking (0 = never smoked; 1 = smoker); cholesterol and

systolic blood pressure are measured as in Problem 13.6. The following coefficients

for the logistic and discriminant models (with standard errors in parentheses) were

obtained:

Cholesterol Systolic

Intercept (mg/100 mL) Blood Pressure Cigarettes

Logistic −11.6246 0.0179(0.0036) 0.0277(0.0085) 1.7346(0.6236)

Discriminant −13.5300 0.0236(0.0039) 0.0302(0.0100) 1.1191(0.3549)

(a) Calculate the probability of CHD for a male with relevant characteristics defined

in Problem 13.6, part (b), for both the logistic and discriminant models.

(b) Interpret the regression coefficients of the logistic model.

(c) In comparing the two methods, the authors state: “Empirically, the assessment of

significance of a variable, as measured by the ratio of the estimated coefficient

to its estimated standard error, is apt to be about the same whichever method is

used.” Verify that this is so for this problem. (However, see also the discussion

in Section 13.3.2.)



578 DISCRIMINATION AND CLASSIFICATION

13.8 In a paper in American Statistician, Hauck [1983] derived confidence bands for the

logistic response curve. He illustrated the method with data from the Ontario Exercise

Heart Collaborative Study. The logistic model dealt with the risk of myocardial infarc-

tion (MI) during a study period of four years. A logistic model based on the two most

important variables, smoking (X1) and serum triglyceride level (X2), was calculated

to be

logit(P ) = −2.2791 + 0.7682X1 + 0.001952(X2 − 100)

where P is the probability of an MI during the four-year observation period. The

variable X1 had values X1 = 0 (nonsmoker) and X1 = 1 (smoker). As in ordinary

regression, the confidence band for the entire line is narrowest at the means of X1 and

(X2 −100) and spreads out the farther you go from the means. (See the paper for more

details.)

(a) The range of values of triglyceride levels is assumed to be from 0 to 550. Graph

the probability of MI for smokers and nonsmokers separately.

(b) The standard errors of regression coefficients for smoking and serum triglyceride

are 0.3137 and 0.001608, respectively. Test their significance.

13.9 One of the earliest applications of the logistic model to medical screening by Anderson

et al. [1972] involved the diagnosis of keratoconjunctivitis sicca (KCS), also known

as “dry eyes.” It is known that rheumatoid arthritic patients are at greater risk, but

the definitive diagnosis requires an ophthalmologist; hence it would be advantageous

to be able to predict the presence of KCS on the basis of symptoms such as a burn-

ing sensation in the eye. In this study, 40 rheumatoid patients with KCS and 37

patients without KCS were assessed with respect to the presence (scored as 1) or

absence (scored as 0) of each of the following symptoms: (1) foreign body sensa-

tion; (2) burning; (3) tiredness; (4) dry feeling; (5) redness; (6) difficulty in seeing;

(7) itchiness; (8) aches; (9) soreness or pain; and (10) photosensitivity and excess of

secretion. The data are reproduced in Table 13.11.

(a) Fit a stepwise logistic model to the data. Test the significance of the coeffi-

cients.

(b) On the basis of the proportions of positive symptoms displayed at the bottom of

the table, select that variable that should enter the regression model first.

(c) Estimate the probability of misclassification.

(d) It is known that approximately 12% of patients suffering from rheumatoid arthri-

tis have KCS. On the basis of this information, calculate the appropriate logistic

scoring function.

(e) Define X = number of symptoms reported (out of 10). Do a logistic regression

using this variable. Test the significance of the regression coefficient. Now do a

t-test on the X variable comparing the two groups. Discuss and compare your

results.

13.10 This problem deals with the data of Pine et al. [1983]. Calculate the posterior proba-

bilities of survival for a patient in the fourth decade arriving at the hospital in shock

and history of myocardial infarction and without other risk factors:

(a) Using the logistic model.

(b) Using the discriminant model.
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(c) Graph the two survival curves as a function of age. Use the values 5, 15, 25, . . .

for the ages in the discriminant model.

(d) Assume that the prior probabilities are π1 = P [survival] = 0.60 and π2 =

1 − 0.60 = 0.40. Recalculate the probabilities in parts (a) and (b).

(e) Define a new variable for the data of Table 13.2 as follows: X6 = X1 + X2 +

X3 + X5. Interpret this variable.

(f) Do a logistic regression and discriminant analysis using variables X4 and X6

(defined above). Interpret your results.

(g) Is any information “lost” using the approach of parts (e) and (f)? If so, what is

lost? When is this likely to be important?

13.11 This problem requires some programming. Create 100 observations of 20 independent

random characteristics (e.g., from a uniform distribution) and one random 0–1 variable.

Fit a logistic discrimination model using 1, 2, 5, 10, 15, or 20 of your characteristics,

and 20, 40, 60, 80, and 100 of the observations. Compute the in-sample error rate and

compare it to the true error rate (1/2).

13.12 This problem deals with the data of Problem 5.14, comparing the effect of the drug

nifedipine on vasospasm attacks in patients suffering from Raynaud’s phenomenon. We

want to make a multivariate comparison of the seven patients with a history of digital

ulcers (“yes” in column 4) with the eight patients without a history of digital ulcers

(“no” in column 4). Variables to be used are age, gender, duration of phenomenon,

total number of attacks on placebo, and total number of attacks on nifedipine.

(a) Carry out a stepwise logistic regression on these data.

(b) Which variable entered first?

(c) State your conclusion.

(d) Make a scatter plot of the logistic scores and indicate the dividing point.

*13.13 This problem deals with the data of Problem 10.10, comparing metabolic clearance

rates in three groups of subjects.

(a) Use a discriminant analysis on the three groups.

(b) Interpret your results.

(c) Graph the data using different symbols to denote the three groups.

(d) Suppose you “create” a third variable: concentration at 90 minutes minus con-

centration at 45 minutes. Will this improve the discrimination? Why or why not?

*13.14 Consider two groups, G1 and G2 (e.g., “death,” “survive”; “disease,” “no disease”),

and a binary covariate, X, with values 0 or 1 (e.g., “don’t smoke,” “smoke”; “symptom

absent,” “symptom present”). The data can be arranged in a 2 × 2 table:

Group

X G1 G2

1

0

π1 π2
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Here π1 is the prior probability of group G1 membership; P(X = i|G1) the likelihood

of X = i given G1 membership, i = 0, 1; and P(G1|X = i) the posterior probability

of G1 membership given that X = i, i = 0, 1.

(a) Show that

P(G1|X = i)

P (G2|X = i)

=

π1

π2

P(X = i|G1)

P (X = i|G2)

Hint: Use Bayes’ theorem.

(b) The expression in part (a) can be written as

P(G1|X = i)

1 − P(G1|X = i)

=

π1

1 − π1

P(X = i|G1)

P (X = i|G2)

In words:

posterior odds of group 1 membership = prior odds of group 1 membership ×

ratio of likelihoods of observed values of X.

Relate the ratio of likelihoods to the sensitivity and specificity of the proce-

dure.

(c) Take logarithms of both sides of the equation in part (b). Relate your result to

Note 6.7.

(d) The result in part (b) can be shown to hold for X continuous or multivariate.

What are the assumptions [go back to the simple set-up of part (a)].
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Principal Component Analysis
and Factor Analysis

14.1 INTRODUCTION

In Chapters 10 and 11 we considered the dependence of a specified response variable on other

variables. The response variable identified played a special role among the variables being

considered. This is appropriate in many situations because of the scientific question and/or

experimental design. What do you do, however, if you have a variety of variables and desire to

examine the relationships between them without identifying a specific response variable?

In this chapter we present two methods of examining the relationships among a set of

variables without identifying a specific response variable. For these methods, no single variable

has a more distinguished role or importance than any other variable. The first technique we

examine, principal component analysis, explains as much variability as possible in terms of

a few linear combinations of the variables. The second technique, factor analysis, explains

the relationships between variables by a few unobserved factors. Both methods depend on the

covariances, or correlations, between variables.

14.2 VARIABILITY IN A GIVEN DIRECTION

Consider the 20 observations on two variables X and Y listed in Table 14.1. These data are

such that the original observations had their means subtracted, so that the means of the points

are zero. Figure 14.1 plots these points, that is, plots the data points about their common mean.

Rather than thinking of the data points as X and Y values, think of the data points as a

point in a plane. Consider Figure 14.2(a); when an origin is identified, each point in the plane is

identified with a pair of numbers x and y. The x value is found by dropping a line perpendicular

to the horizontal axis; the y value is found by dropping a line perpendicular to the vertical axis.

These axes are shown in Figure 14.2(b). It is not necessary, however, to use the horizontal and

vertical directions to locate our points, although this is traditional. Lines at any angle θ from

the horizontal and vertical, as shown in Figure 14.2(c), might be used. In terms of these two

lines, the data point has values found by dropping perpendicular lines to these two directions;

Figure 14.2(d ) shows the two values. We will call the new values x

′ and y

′ and the old values

x and y. It can be shown that x

′ and y

′ are linear combinations of x and y. This idea of lines

in different directions with perpendiculars to describe the position of points is used in principal

component analysis.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Table 14.1 Twenty Biometric Observations

Observation X Y Observation X Y

1 −0.52 0.60 11 0.08 0.23

2 0.04 −0.51 12 −0.06 −0.59

3 1.29 −1.19 13 1.25 −1.25

4 −1.12 1.90 14 0.53 −0.45

5 −1.02 0.31 15 0.14 0.47

6 0.10 −1.15 16 0.48 −0.11

7 −0.32 −0.13 17 −0.61 1.04

8 0.08 −0.17 18 −0.47 0.34

9 0.49 0.18 19 0.41 0.29

10 −0.54 0.20 20 −0.22 0.00

Figure 14.1 Plot of the 20 data points of Table 14.1.

For our data set, the variability in x and y may be summarized by the standard deviation

of the x and y values, respectively, as well as the covariance, or equivalently, the correlation

between them. Consider now the data of Figure 14.1 and Table 14.1. Suppose that we draw

a line in a direction of 30◦ to the horizontal. The 20 observations give 20 x

′ values in the

X

′ direction when the perpendicular lines are dropped. Figure 14.3 shows the values in the x

′

direction. Consider now the points along the line in the x

′ direction corresponding to the feet

of the perpendicular lines. We may summarize the variability among these points by our usual

measure of variability, the standard deviation. This would be computed in our usual manner

from the 20 values x

′. The variability of the data may be summarized by plotting the standard

deviation, say s(θ), in each direction θ at a distance s from the origin. When we look at the

standard deviation in all directions, this results in an egg-shaped curve with dents in the side;

or a symmetric curve in the shape of a violin or cello body. For the data at hand, this curve

is shown in Figure 14.4; the curve is identified as the standard deviation curve. Note that the

standard deviation is not the same in all directions. For our data set, the data are spread out more
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(a) (b)

(c) (d)

Figure 14.2 Points in the plane, coordinates, and rotation of axes.

along a northwest–southeast direction than in the southwest–northeast direction. The standard

deviation curve has a minimum distance at about 38◦. The standard deviation increases steadily

to a maximum; the maximum is positioned along the line in Figure 14.4, running from the

upper left to the lower right. These two directions are labeled directions 1 and 2. If we want to

pick one direction that contains as much variability as possible, we would choose direction 1,

because the standard deviation is largest in that direction. If all the data points lie on a line, the

variability will be a maximum in the direction of the line that contains all the data.

There is some terminology used in finding the value of a data point in a particular direction.

The process of dropping a line perpendicular to a direction is called projecting the point onto

the direction. The value in the particular direction [x′ in Figure 14.2(d ) or Figure 14.3] is called

the projection of the point. If we know the values x and y, or if we know the values x

′ and y

′,

we know where the point is in the plane. Two such variables x and y, or equivalently, x

′ and

y

′, which allow us to find the values of the data, are called a basis for the variables.

These concepts may be generalized when there are more than two variables. If we observe

three variables x, y, and z, the points may be thought of as points in three dimensions. Suppose

that we subtract the means from all the data so that the data are centered about the origin of a

three-dimensional plot. As you sit reading this material, picture the points suspended about the
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Figure 14.3 Values in the X-direction. X

′ axis at 30◦ to the x-axis.

room. Pick an origin. You may draw a line through the origin in any direction. For any point that

you have picked in the room, you may drop a perpendicular to the line. Given a line, the point

on the line where the perpendicular meets the line is the projection of the point onto the line.

We may then calculate the standard deviation for this direction. If the standard deviations are

plotted in all directions, a dented egg-shaped surface results. There will be one direction with the

greatest variability. When more than three variables are observed, although we cannot picture

the situation mentally, mathematically the ideas may be extended; the concept of a direction

may be extended in a natural manner. In fact, mathematical statistics is one part of mathematics

that heavily uses the geometry of n-dimensional space when there are n variables observed.

Fortunately, to understand the statistical methods, we do not need to understand the mathematics!

Let us turn our attention again to Figure 14.4. Rather than plotting the standard deviation

curve, it is traditional to summarize the variability in the data by an ellipse. The two perpendicular

axes of the ellipse lie along the directions of the greatest variability and the least variability.

The ellipse, called the ellipsoid of concentration, meets the standard deviation curve along its

axes at the points of greatest and least variation. In other directions the standard deviation curve

will be larger, that is, farther removed from the origin. In three dimensions, rather than plotting

an ellipse we plot an egg-shaped surface, the ellipsoid. (One reason the ellipsoid is used: If you

have a bivariate normal distribution in the plane, take a very large sample, divide the plane up

into small squares as on graph paper, and place columns whose height is proportional to the

number of points; the columns of constant height would lie on an ellipsoid.)

Out of the technical discussion above, we want to remember the following ideas:

1. If we observe a set of variables, we may think of each data point as a point in a space.

In this space, when the points are centered about their mean, there is variability in each

direction.
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Figure 14.4 Standard deviation in each direction and the ellipse of concentration.

2. The variability is a maximum in one direction. In two dimensions (or more) the minimum

lies in a perpendicular direction.

3. The variability is symmetric about each of the particular directions identified.

It is possible to identify the various directions with linear combinations of the variables or

coordinates. Each direction for X1, . . . , X

p

is associated with a sum

Y = a1X1 + a2X2 + · · · + a

p

X

p

(1)

where

a

2
1 + a

2
2 + · · · + a

2
p

= 1

The constants a1, a2, . . . , a

p

are uniquely associated with the direction, except that we may

multiply each a by −1. The sum that is given in equation (1) is the value of the projection of

the points x1 to x

p

corresponding to the given direction.

14.3 PRINCIPAL COMPONENTS

The motivation behind principal component analysis is to find a direction, or a few directions,

that explain as much of the variability as possible. Since each direction is associated with a

linear sum of the variables, we may say that we want to find a few new variables, which are
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linear sums of the old variables, which explain as much of the variability as possible. Thus, the

first principal component is the linear sum corresponding to the direction of greatest variability:

Definition 14.1. The first principal component is the sum

Y = a1X1 + · · · + a

p

X

p

, a

2
1 + · · · + a

2
p

= 1 (2)

corresponding to the direction of greatest variability when variables X1, . . . , X

p

are under

consideration.

Usually, the first principal component will leave much of the variability unexplained. (In

the next section, we discuss a method of quantifying the amount of variability explained.) For

this reason we wish to search for a second principal component that explains much of the

remaining variability. You might think we would take the next linear combination of variables

that explains as much of the variability as possible. But when you examine Figure 14.4, you

see that the closer the direction gets to the first principal component (which would be direction

1 in Figure 14.4), the more variability one would have. Thus, essentially, we would be driven

to the same variable. Therefore, the search for the second principal component is restricted

to variables that are uncorrelated with the first principal component. Geometrically, it can be

shown that this is equivalent to considering directions that are perpendicular to the direction

of the first principal component. In two dimensions such as Figure 14.4, direction 2 would be

the direction of the second principal component. However, in three dimensions, when we have

the line corresponding to the direction of the first principal component, the set of all directions

perpendicular to it correspond to a plane, and there are a variety of possible directions in which

to search for the second principal component. This leads to the following definition:

Definition 14.2. Suppose that we have the first k − 1 principal components for variables

X1, . . . , X

p

. The k th principal component corresponds to the variable or direction that is uncor-

related with the first k − 1 principal components and has the largest possible variance.

As a summary of these difficult ideas, you should remember the following:

1. Each principal component is chosen to explain as much of the remaining variability as

possible after the preceding principal components have been chosen.

2. Each principal component is uncorrelated to the other principal components. In the case of

a multivariate normal distribution, the principal components are statistically independent.

3. Although it is not clear from the above, the following is true: For each k, the first k

principal components explain as much of the variability in a sample as may be explained

by any k directions, or equivalently, k variables.

14.4 AMOUNT OF VARIABILITY EXPLAINED BY THE PRINCIPAL

COMPONENTS

Suppose that we want to perform a principal component analysis upon variables X1, . . . , X

p

.

If we were dealing with only one variable, say variable X

j

, we summarize its variability by the

variance. Suppose that there are a total of n observations, so that for each of the p variables,

we have n values. Let X

ij

be the ith observation on the j th variable. Let X

j

be the mean of

the n observations on the j th variable. Then we estimate the variability, that is, the variance, of
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the variable X

j

by

v̂ar(X
j

) =

n

∑

i=1

(X

ij

− X

j

)

2

n − 1
(3)

A reasonable summary of the variability in the p variables is the sum of the individual variances.

This leads us to the next definition.

Definition 14.3. The total variance, denoted by V, for variables X1, . . . , X

p

is the sum of

the individual variances. That is,

total variance = V =

p

∑

j=1

var(X
j

) (4)

The sample total variance, which we will also denote by V since that is the only type of

total variance used in this section, is

sample total variance = V =

p

∑

j=1

n

∑

i=1

(X

ij

− X

j

)

2

n − 1

We now characterize the amount of variability explained by the principal components. Recall

that the principal components are themselves variables; they are linear combinations of the X

j

variables. Each principal component has a variance itself. It is natural, therefore, to compare

the variance of the principal components with the variance of the X

j

’s. This leads us to the

following definitions.

Definition 14.4. Let Y1, Y2, . . . be the first, second, and subsequent principal components

for the variables X1, . . . , X

p

. In a sample the variance of each Y

k

is estimated by

var(Y
k

) =

n

∑

i=1

(Y

ik

− Y

k

)

2

n − 1
= V

k

(5)

where Y

ik

is the value of the kth principal component for the ith observation. That is, we first

estimate the coefficients for the kth principal component. The value for the ith observation uses

those coefficients and the observed values of the X

j

’s to compute the value of Y

ik

. The variance

for the kth principal component in the sample is then given by the sample variance for Y

ik

,

i = 1, 2, . . . , n. We denote this variance as seen above by V

k

. Using this notation, we have the

following two definitions:

1. The percent of variability explained by the k th principal component is

100V

k

V

2. The percent of the variability explained by the first m principal components is

100

m

∑

k=1

V

k

V

(6)
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The following facts about the principal components can be stated:

1. There are exactly p principal components, where p is the number of X variables consid-

ered. This is because with p uncorrelated variables, there is a one-to-one correspondence

between the values of the principal components and the values of the original data; that

is, we can go back and forth so that all of the variability is accounted for; the percent of

variability explained by the p principal components is 100%.

2. Because we chose the principal components successively to explain more and more of

the variance, we have

V1 ≥ V2 ≥ · · · ≥ V

p

≥ 0

3. The first m principal components explain as much of the total variability as it is possible

to explain by m linear functions of the X

j

variables.

We now proceed to a geometric interpretation of the principal components. Consider the case

where p = 2. That is, we observe two variables X1 and X2. Plot, as previously in this chapter,

the ith data point in the coordinate system that is centered about the means for the X1 and X2

variables. Draw a line in the direction of the first principal component and project the data point

onto the line. This is done in Figure 14.5.

The square of the distance of the data point from the new origin, which is the sample mean,

is given by the following equation, using the Pythagorean theorem:

d

2
i

= (X

i1 − X1)
2
+ (X

i2 − X2)
2

=

2
∑

j=1

(X

ij

− X

j

)

2

The square of the distance f

i

of the projection turns out to be the difference between the value

of the first principal component for the ith observation and the mean of the first principal

component squared. That is,

f

2
i

= (Y

i1 − Y 1)
2

Figure 14.5 Projection of a data point onto the first principal component direction.
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It is geometrically clear that the distance d

i

is larger than f

i

. The ith data point will be

better represented by its position along the line if it lies closer to the line, that is, if f

i

is close

to d

i

. One way we might judge the adequacy of the variability explained by the first principal

component would be to take the ratio of the sum of the lengths of the f

i

’s squared to the sum

of the lengths of the d

i

’s squared. If we do this, we have

∑

n

i=1 f

2
i

∑

n

i=1 d

2
i

=

∑

n

i=1(Yi1 − Y 1)
2

∑

n

i=1

∑2
j=1(Xij

− X

j

)

2
=

V1

V

(7)

That is, we have the proportion of the variability explained. If we multiplied the equation

throughout by 100, we would have the percent of the variability explained by the first principal

component. This gives us an alternative way of characterizing the first principal component.

The direction of the first principal component is the line for which the following holds: When

the data are projected onto this line, the sum of the squares of the projections is as large as

possible; equivalently, the sum of squares is as close as possible to the sum of squares of the

lengths of the lines to the original data points from the origin (which is also the mean). From

this we see that the percent of variability explained by the first principal component will be 100

if and only if the lengths d

i

and f

i

are all the same; that is, the first principal component will

explain all the variability if and only if all of the data points lie on a single line. The closer all

the data points come to lie on a single line, the larger the percent of variability explained by

the first principal component.

We now proceed to examine the geometric interpretation in three dimensions. In this case

we consider a data point plotted not in terms of the original axes X1, X2, and X3 but rather, in

terms of the coordinate system given by the principal components Y1, Y2, and Y3. Figure 14.6

presents such a plot for a particular data point. The figure is a two-dimensional representation

of a three-dimensional situation; two of the axes are vertical and horizontal on the paper. The

third axis recedes into the plane formed by the page in this book. Consider the ith data point,

Figure 14.6 Geometric interpretation of principal components for three variables.
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which lies at a distance d

i

from the origin that is at the mean of the data points. This point also

turns out to be the mean of the principal component values. Suppose, now, that we drop a line

down into the plane that contains the axes corresponding to the first two principal components.

This is indicated by the vertical dotted line in the figure. This point in the plane we could now

project onto the value for the first and second principal components. These values, with lengths

f

i1 and f

i2, are the same as we would get by dropping perpendiculars directly from the point to

those two axes. Again, we might assess the adequacy of the characterization of the data point

by the first two principal components by comparing the length of its projection in the plane,

g

i

, with the length of the line from the origin to the original data point, d

i

. If we compare the

squares of these two lengths, each summed over all of the data points, and use the Pythagorean

theorem again, the following results hold:

∑

n

i=1 g

2
i

∑

n

i=1 d

2
i

=

∑

n

i=1 f

2
i1 +

∑

n

i=1 f

2
i2

∑

n

i=1 d

2
i

=

∑

n

i=1[(Y
i1 − Y 1)

2
/(n − 1)] +

∑

n

i=1[(Y
i1 − Y 2)

2
/(n − 1)]

∑

n

i=1 d

2
i

/(n − 1)

=

V1 + V2

V

Using this equation, we see that the percent of the variability explained by the first two

principal components is the ratio of the squared lengths of the projections onto the plane of the

first two principal components divided by the squared lengths of the original data points about

their mean. This also gives us a geometric interpretation of the total variance. It is the sum for

all the data points of the squares of the distance between the point corresponding to the mean

of the sample and the original data points. In other words, the first two principal components

may be characterized as giving a plane for which the projected points onto the plane contain

as high a proportion as possible of the squared lengths associated with the original data points.

From this we see that the percent of variability explained by the first two principal components

will be 100 if and only if all of the data points lie in some plane through the origin, which is

the mean of the data.

The coefficients associated with the principal components are usually calculated by computer;

in general, there is no easy formula to obtain them. Thus, the examples in this chapter will

begin with the coefficients for the principal components and their variance. (There is an explicit

solution when there are only two variables, and this is given in Problem 14.9.)

Example 14.1. We turn to the data of Table 14.1. Equations for the principal components

are

Y1 = −0.6245X + 0.7809Y

Y2 = 0.7809X + 0.6245Y

For the first data point, (X, Y ) = (−0.52, 0.60), the values are

Y1 = −0.6245 × (−0.52) + 0.7809 × 0.60 = 0.79

Y2 = 0.7809 × (−0.52) + 0.6245 × 0.60 = −0.03

If we compute all of the numbers, we find that the values for each of the 20 data points on

the principal components are as given in Table 14.2.
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Table 14.2 Data Point Values

Principal Principal

Component Component

Data Values Data Values

X Y Y1 Y2 X Y Y1 Y2

−0.52 0.60 0.79 −0.03 0.08 0.23 0.13 0.21

0.04 −0.51 −0.42 −0.28 −0.06 −0.59 −0.42 −0.42

1.29 −1.19 −1.74 0.26 1.25 −1.25 −1.76 0.19

−1.12 1.90 2.19 0.31 0.53 −0.45 −0.68 0.13

−1.02 0.31 0.88 −0.60 0.14 0.47 0.28 0.40

0.10 −1.15 −0.96 −0.64 0.48 −0.11 −0.39 0.31

−0.32 −0.13 0.10 −0.33 −0.61 1.04 1.20 0.17

0.08 −0.17 −0.18 −0.04 −0.47 0.34 0.56 −0.16

0.49 0.18 −0.16 0.50 0.41 0.29 −0.02 0.50

0.54 0.20 0.49 −0.29 −0.22 −0.00 0.13 −0.18

From these data we may compute the sample variance of Y1 and Y2 as well as the variance

of X and Y . We find the following values:

V1 = 0.861, V2 = 0.123, var(X) = 0.411, var(Y ) = 0.573

From these data we may compute the percent of variability explained by the two principal

components, individually and together.

1. Percent of variability explained by the first principal component = 100 × 0.861/(0.411 +

0.573) = 87.5%.

2. Percent of variability explained by the second principal component = 100 ×

0.123/(0.411 + 0.573) = 12.5%.

3. Percent of variability explained by the first two principal components = 100 × (0.861 +

0.123)/(0.411 + 0.573) = 100%.

We see that the first principal component of the data in Figure 14.4 contains a high proportion

of the variability. This may also be seen visually by examining the plot while orienting your

eyes so that the horizontal line is the direction of the first principal component. Certainly,

there is much more variability in that direction than in direction 2, the direction of the second

principal component.

14.5 USE OF THE COVARIANCE, OR CORRELATION, VALUES AND PRINCIPAL

COMPONENT ANALYSIS

The coefficients of the principal components and their variances can be computed by knowing

the covariances between the X

j

’s. One might think that as a general search for relationships

among X

j

’s, the principal component will be appropriate as an exploratory tool. Sometimes,

this is true. However, consider what happens when we have different scales of measurement.

Suppose, for example, that among our units, one unit is height in inches and another is systolic

blood pressure in mmHg. In principal component analysis we are adding the variability in the

two variables. Suppose now that we change our measurement of height from inches to feet.

Then the standard deviation of the height variable will be divided by 12 and the variance will

be divided by 144. In the total variance the contribution of height will have dropped greatly.
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Equivalently, the blood pressure contribution (and any other variables) will become much more

important. Recomputing the principal components will produce a different answer. In other

words, the measurement units are important in finding the principal component because the

variance of any individual variable is compared directly to the variance of another variable

without regard to whether or not the units are appropriate for the comparison. We reiterate: The

importance of a variable in principal component analysis changes with a change of scale of one

or more of the variables. For this reason, principal component analysis is most appropriate and

probably has its best applications when all the variables are measured in the same units; for

example, the X

j

variables may be measurements of length in inches, with the variables being

measurements of different parts of the body, and the covariances between variables such as arm

length, leg length, and body length.

In some situations with differing units, one still wants to try principal component analyses. In

this case, standardized variables are often used; that is, we divide each variable by its standard

deviation. Each rescaled variable then has a variance of 1 and the covariance matrix of the

new standardized variables is the correlation matrix of the original variables. The interpretation

of the principal components is now less clear. If many of the variables are highly correlated,

the first principal component will tend to pick up this fact; for example, with two variables,

a high correlation means the variables lie along a line. The ellipse of concentration has one

axis along the line; that direction gives us the direction of the first principal component. When

standardized variables are used, since each variable has a variance of 1, the sum of the variances

is p. In looking at the percent of variability explained, there is no need to compute the total

variance separately; it is p, the number of variables. We emphasize that when the correlations

are used, there should be some reason for doing this beside the fact that the variables do not

have measurements in comparable units.

14.6 STATISTICAL RESULTS FOR PRINCIPAL COMPONENT ANALYSIS

Suppose that we have a sample of size n from a multivariate normal distribution with unknown

covariances. Let V

i

(pop) be the true (unknown) population value for the variance of the ith

principal component when computed from the (unknown) true variances; let V

i

be the variance

of the principal components computed from the sample covariances. Then the following are true:

1.

V

i

− V

i

(pop)

V

i

(pop)

√

2/(n − 1)

, i = 1, . . . , p (8)

for large n is approximately a standard normal, N(0, 1), random variable. These variables

are approximately statistically independent.

2. 100(1 − α)% confidence intervals for V

i

(pop) for large n are given by

(

V

i

1 + z1−α/2

√

2/(n − 1)

,

V

i

1 − z1−α/2

√

2/(n − 1)

)

(9)

where z1−α/2 is the 1 − α/2 percentile value of the N(0, 1) distribution.

Further statistical results on principal component analysis are given in Morrison [1976] and

Timm [1975].

Principal component analysis is a least squares technique, as were analysis of variance and

multiple linear regression. Outliers in the data can have a large effect on the results (as in other

cases where least squares techniques are used).
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14.7 PRESENTING THE RESULTS OF A PRINCIPAL COMPONENT ANALYSIS

We have seen that principal component analysis is designed to explain the variability in data.

Thus, any presentation should include:

1. The variance of the principal components

2. The percent of the total variance explained by each individual principal component

3. The percent of the total variance explained cumulatively by the first m terms (for each m)

It is also useful to know how closely each variable X

j

is related to the values of the principal

components Y

i

; this is usually done by presenting the correlations between each variable and

each of the principal components. Let

Y

i

= a

i1X1 + · · · + a

ip

X

p

The correlation between one of the original variables X

j

and the kth principal component Y

i

is

given by

r

jk

= correlation of X

j

and Y

k

=

a

kj

√

V

k

s

j

(10)

In this equation, V

i

is the variance of the ith principal component, while s

j

is the standard

deviation of X

j

. These results are summarized in Table 14.3.

By examining the variables that are highly correlated with a principal component, we can

see which variables contribute most to the principal component. Alternatively, glancing across

the rows for each variable X

j

we may see which principal component has the highest corre-

lation with the variable. An X

i

that has the highest correlations with the first few principal

components is contributing more to the overall variability than variables with small correla-

tions with the first few principal components. In Section 14.9, several examples of principal

component analysis are given, including an example of the use of such a summary table

(Table 14.4).

Table 14.3 Summary of a Principal Component Analysis Using Covariances

Correlation of the Principal

Components and the X

j

’s
Standard

Variables 1 2 · · · p Deviations of the X

j

X1
a11

√

V1

s1

· · · · · ·

a

p1

√

V

p

s1

s1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

p

a1p

√

V1

s

p

· · · · · ·

a

pp

√

V

p

s

p

s

p

Variance of principal component V1 V2 · · · V

p

% of total variance
100V1

V

· · · · · ·

100V

p

V

Cumulative % of total variance
100V1

V

100(V1 + V2)

V

· · · 1
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Table 14.4 Data for Example 14.2

Principal Variance Percent of Total Cumulative Percent

Component Explained Variance of Total Variance

1 7.82 41.1 41.1

2 4.46 23.5 64.6

3 1.91 10.1 74.7

4 0.88 4.6 79.4

5 0.76 4.0 83.3

6 0.56 2.9 86.3

7 0.45 2.4 88.6

8 0.38 2.0 90.7

9 0.35 1.9 92.5

10 0.31 1.6 94.1

11 0.19 1.0 95.1

12 0.18 0.9 96.1

13 0.16 0.8 96.9

14 0.14 0.7 97.7

15 0.13 0.7 98.3

16 0.10 0.5 98.9

17 0.10 0.5 99.4

18 0.06 0.3 99.7

19 0.05 0.3 100.0

14.8 USES AND INTERPRETATION OF PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a technique for explaining variability. Following are some of

the uses of principal components:

1. Principal component analysis is a search for linear relationships for explaining variability

in a multivariate sample. The first few principal components are important because they may

summarize a large proportion of the variability. However, the understanding of which variables

contribute to the variability is important only if most of the variance comes about because

of important relationships among the variables. After all, we can increase the variance of a

variable, say X1, by increasing the error of measurement. If we have a phenomenally large error

of measurement, the variance of X1 will be much larger than the variances of the rest of the

variables. In this case, the first principal component will be approximately equal to X1, and the

amount of variability explained will be close to 1. However, such knowledge is not particularly

useful, since the variability in X1 does not make X1 the most important variable, but in this case,

reflects a very poorly measured quantity. Thus, to decide that the first few principal components

are important summary variables, you must feel that the relationships among them come from

linear relationships which may shed some light on the data being studied.

2. In some cases the first principal component is relatively uninteresting, with more infor-

mative relationships being found in the next few components. One simple case comes from

analyzing physical measurements of plants or animals to display species differences: the first

principal component may simply reflect differences in size, and the next few components give

the more interesting differences in shape.

3. We may take the first two principal components and plot the values for the first two

principal components of the data points. We know that among all possible plots in only two

dimensions, this one gives the best fit in one precise mathematical sense. However, it should be

noted that other techniques of multivariate analysis give two-dimensional plots that are the best

fit or most interesting in other precise mathematical senses (see Note 14.1).



598 PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS

4. In some situations we have many measurements of somewhat related variables. For

example, we might have a large number of size measurements on different portions of the

human body. It may be that we want to perform a statistical inference, but the large number

of variables for the relatively small number of cases involved makes such statistical analysis

inappropriate. We may summarize the data by using the values on the first few principal compo-

nents. If the variability is important (!), we have then reduced the number of variables without

getting involved in multiple comparison problems. We may proceed to statistical analysis. For

example, suppose that we are trying to perform a discriminant analysis and want to use size as

one of the discriminating variables. However, for each of a relatively small number of cases we

may have many anthropometric measurements. We might take the first principal component as

a variable to summarize all the size relationships. One of the examples of principal component

analysis below gives a principal component analysis of physical size data.

14.9 PRINCIPAL COMPONENT ANALYSIS EXAMPLES

Example 14.2. Stoudt et al. [1970] consider measurements taken on a sample of adult females

from the United States. The correlations among these measurements (as well as weight and age)

are given in Table 11.21. The variance explained for each principal component is presented in

Table 14.4.

These data are very highly structured. Only three (of 19) principal components explain

over 70% of the variance. Table 14.5 summarizes the first three principal components. The

Table 14.5 Example 14.2: First Three Principal Components

Correlation of the

Principal Components

and the Variables

Variables 1 2 3

SITHTER 0.252 0.772 0.485

SITHTNORM 0.235 0.748 0.470

KNEEHT 0.385 0.722 −0.392

POPHT 0.005 0.759 −0.444

ELBOWHT 0.276 0.243 0.783

THIGHHT 0.737 −0.007 0.204

BUTTKN 0.677 0.476 −0.348

BUTTPOP 0.559 0.411 −0.444

ELBOWBR 0.864 −0.325 −0.033

SEATBR 0.832 −0.050 0.096

BIACROM 0.504 0.350 −0.053

CHEST 0.890 −0.228 −0.018

WAIST 0.839 −0.343 −0.106

ARMGTH 0.893 −0.267 0.068

ARMSKIN 0.733 −0.231 0.124

INFRASCA 0.778 −0.371 0.056

HT 0.251 0.923 −0.051

WT 0.957 −0.057 0.001

AGE 0.222 −0.488 −0.289

Variance of principal components 7.82 4.46 1.91

Percent of total variance 41.1 23.5 10.1

Cumulative percent of total variance 41.1 64.6 74.7
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first component, in the direction of greatest variation, is associated heavily with the weight

variables. The highest correlation is with weight, 0.957. Other variables associated with size—

such as chest and waist measurements, arm girth, and skinfolds—also are highly correlated

with the first principal component. The second component is most closely associated with

physical length measurements. Height is the most highly correlated variable. Other variables

with correlations above 0.7 are the sitting heights (normal and erect), knee height, and popliteal

height.

Since we are working with a correlation matrix, the total variance is 19, the number of

variables. The average variance, in fact the exact variance, per variable is 1. Only these first

three principal components have variance greater than 1. The other 16 directions correspond to

a variance of less than 1.

Example 14.3. Reeck and Fisher [1973] performed a statistical analysis of the amino acid

composition of protein. The mole percent of the 18 amino acids in a sample of 207 proteins was

examined. The covariances and correlations are given in Table 14.6. The diagonal entries and

numbers above them give the variances and covariances; the lower numbers are the correlations.

The mnemonics are:

Asp Aspartic acid Met Methionine

Thr Threonine Ile Isoleucine

Ser Serine Leu Leucine

Glu Glutamic acid Tyr Tyrosine

Pro Proline Phe Phenylalanine

Gly Glycine Trp Tryptophan

Ala Alanine Lys Lysine

Cys/2 Half-cystine His Histidine

Val Valine Arg Arginine

The principal component analysis applied to the data produced Table 14.7, where k is the

dimension of the subspace used to represent the data and C is the proportion of the total variance

accounted for in the best k-dimensional representation.

In contrast to Example 14.2, eight principal components are needed to account for 70% of

the variance. In this example there are no simple linear relationships (or directions) that account

for most of the variability. In this case the principal component correlations are not presented,

as the results are not very useful.

14.10 FACTOR ANALYSIS

As in principal component analysis, factor analysis looks at the relationships among variables as

expressed by their correlations or covariances. While principal component analysis is designed

to model and explain as much of the variability as possible, factor analysis seeks to explain

the relationships among the variables. The assumption of the model is that the relationships

may be explained by a few unobserved variables, which will be called factors. It is hoped that

fewer factors than the original number of variables will be needed to explain the relationships

among the variables. Thus, conceptually, one may simplify the understanding of the correlations

between the variables.

It is difficult to present the technique without having the model and many of the related

issues discussed first. However, it is also difficult to understand the related issues without

examples. Thus, it is suggested that you read through the material about the mathematical

model, go through the examples, and then with this understanding, reread the material about the

mathematical model.
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Table 14.7 Principal Component

Analysis Data

k C k C k C

1 0.13 7 0.66 13 0.90

2 0.26 8 0.70 14 0.93

3 0.37 9 0.75 15 0.95

4 0.46 10 0.79 16 0.98

5 0.55 11 0.83 17 1.00

6 0.61 12 0.86 18 1.00

We now turn to the model. We observe jointly distributed random variable X1, . . . , X

p

. The

assumption is that each X is a linear sum of the factors plus some remaining residual variability.

That is, the model is the following:

X1 = E(X1) + λ11F1 + λ12F2 + · · · + λ1k

F

k

+ e1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

p

= E(X

p

) + λ

p1F1 + λ

p2F2 + · · · + λ

pk

F

k

+ e

p

(11)

In this model, each X

i

is equal to its expected value, plus a linear sum of k factors and a term for

residual variability. This looks like a series of multiple regression equations; each of the variables

X

i

is regressed on the variables F1, . . . , F

k

. There are, however, major differences between this

model and the multiple regression model of Chapter 11. Observations and assumptions about

this model are the following:

1. The factors F

j

are not observed; only the X1, . . . , X

p

are observed, although the X

i

variables are expressed in terms of these smaller number of factors F

j

.

2. The e

i

(which are also unobserved) represent variability in the X

i

not explained by the

factors. We do not assume that these residual variability terms have the same distribution.

3. Usually, the number of factors k is unknown and must be determined from the data. We

shall first consider the model and the analysis where the number of factors is known;

later, we consider how one might search for the appropriate number of factors.

Assumptions made in the model, in addition to the linear equations given above, are the

following:

1. The factors F

j

are standardized; that is, they have mean zero and variance 1.

2. The factors F

j

are uncorrelated with each other, and they are uncorrelated with the e

i

terms. See Section 14.12 for a relaxation of this requirement.

3. The e

i

’s have mean zero and are uncorrelated with each other as well as with the F

j

’s.

They may have different variances.

It is a fact that if p factors F are allowed, there is no need for the residual variability terms e

i

.

One can reproduce any pattern of covariances or correlations using p factors when p variables

X

i

are observed. This, however, is not very useful because we have summarized the p variables

which were observed with p unknown variables. Thus, in general, we will be interested in k

factors, where k is less than p.

Let ψ

i

be the variance of e

i

. With the assumptions of the model above, the variance of each

X

i

can be expressed in terms of the coefficients λ

ij

of the factors and the residual variance ψ

i

.
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The equation giving the relationship for k factors is

var(X
i

) = λ

2
i1 + · · · + λ

2
ik

+ ψ

i

(12)

In words, the variance of each X

i

is the sum of the squares of the coefficients of the factors, plus

the variance of e

i

. The variance of X

i

has two parts. The sum of the coefficients λ

ij

squared

depends on the factors; the factors contribute in common to all of the X

i

’s. The e

i

’s correlate

only with their own variable X

i

and not with other variables in the model. In particular, they are

uncorrelated with all of the X

i

’s except for the one corresponding to their index. Thus, we have

broken down the variance into a part related to the factors that each variable has in common,

and the unique part related to the residual variability term. This leads to the following definition.

Definition 14.5. c

i

=

∑

k

j=1 λ

2
ij

is called the common part of the variance of X

i

, c

i

is also

called the communality of X

i

, ψ

i

is called the unique or specific part of the variance of X

i

,

and ψ

i

is also called the uniqueness or specificity.

Although factor analysis is designed to explain the relationships between the variables and

not the variance of the individual variables, if the communalities are large compared to the

specificities of the variables, the model has also succeeded in explaining not only the relationships

among the variables but the variability in terms of the common factors.

Not only may the variance be expressed in terms of the coefficients of the factors, but the

covariance between any two variables may also be expressed by

cov(X

i

, X

j

) = λ

i1λj1 + · · · + λ

ik

λ

jk

for i �= j (13)

These equations explain the relationships among the variables. If both X

i

and X

j

have

variances equal to 1, this expression gives the correlation between the two variables. There is a

standard name for the coefficients of the common factors.

Definition 14.6. The coefficients λ

ij

are called the factor loadings or loadings. λ

ij

repre-

sents the loading of variable X

i

and factor F

j

.

In general, cov(X

i

, F

j

) = λ

ij

. That is, λ

ij

is the covariance between X

i

and F

j

. If X

i

has

variance 1, for example if it is standardized, then since F

j

has variance 1, the factor loading is

the correlation coefficient between the variable and the factor.

We illustrate the method by two examples.

Example 14.4. We continue with the measurement data of U.S. females of Example 14.2.

A factor analysis with three underlying factors was performed on these data. Since we are trying

to explain the correlations between the variables, it is useful to examine the fit of the model

by comparing the observed and modeled correlations. We do this by examining the residual

correlation.

Definition 14.7. The residual correlation is the observed correlation minus the fitted cor-

relation from the factor analysis model.

Table 14.8 gives the residual correlations below the diagonal; on the diagonal are the esti-

mated uniquenesses, the part of the (standardized) variance not explained by the three factors.

A rule of thumb is that the correlation has been explained reasonably when the residual is less

than 0.1 in absolute value. This is convenient because it is easy to scan the residual matrix for

a zero after a decimal point. Of course, depending on the purpose, more stringent requirements

may be considered.
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Table 14.8 Residual Correlations: Example 14.4

STHTER STHTNORM KNEEHT POPHT ELBOWHT

1 2 3 4 5

STHTER 1 0.034

STHTNORM 2 0.002 0.151

KNEEHT 3 −0.001 0.001 0.191

POPHT 4 0.001 0.002 0.048 0.276

ELBOWHT 5 −0.001 −0.011 0.011 −0.004 0.474

THIGHHT 6 −0.009 0.004 0.003 −0.076 0.035

BUTTKN 7 −0.002 0.000 −0.016 −0.056 −0.021

BUTTPOP 8 −0.002 0.011 −0.042 −0.064 −0.035

ELBOWBR 9 0.000 0.013 −0.004 0.014 −0.010

SEATBR 10 −0.002 0.013 0.016 −0.041 0.020

BIACROM 11 0.004 −0.005 −0.000 0.014 −0.089

CHEST 12 0.003 0.004 0.003 0.030 −0.015

WAIST 13 0.005 −0.004 0.002 0.032 0.006

ARMGTH 14 −0.001 −0.004 0.004 −0.009 0.003

ARMSKIN 15 −0.005 0.016 0.025 −0.012 −0.004

INFRASCA 16 −0.002 0.006 0.020 0.016 0.004

HT 17 0.000 −0.001 −0.000 0.003 0.008

WT 18 −0.000 −0.009 −0.004 −0.005 0.008

AGE 19 0.002 0.024 0.003 0.024 −0.042

THIGHHT BUTTKN BUTTPOP ELBOWBR SEATBR

6 7 8 9 10

THIGHHT 6 0.499

BUTTKN 7 0.062 0.251

BUTTPOP 8 0.040 0.136 0.425

ELBOWBR 9 −0.012 −0.017 −0.016 0.158

SEATBR 10 0.035 0.070 0.010 −0.016 0.338

BIACROM 11 0.049 −0.035 −0.039 0.012 −0.042

CHEST 12 −0.038 −0.044 −0.017 0.036 −0.056

WAIST 13 −0.067 −0.023 −0.021 0.037 −0.029

ARMGTH 14 0.005 0.005 0.007 −0.014 0.008

ARMSKIN 15 0.048 0.019 0.021 −0.030 0.047

INFRASCA 16 0.004 −0.025 −0.007 −0.003 −0.030

HT 17 −0.003 −0.001 0.001 0.004 −0.014

WT 18 0.017 0.009 −0.004 −0.011 0.019

AGE 19 −0.172 −0.056 −0.034 0.078 0.002

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 0.679

CHEST 12 0.072 0.148

WAIST 13 −0.008 0.032 0.172

ARMGTH 14 −0.014 −0.014 −0.031 0.134

ARMSKIN 15 −0.053 −0.041 −0.046 0.075 0.487

INFRASCA 16 −0.010 0.013 0.003 0.013 0.171

HT 17 0.002 −0.000 −0.002 −0.001 0.003

WT 18 −0.003 0.000 0.004 0.009 −0.030

AGE 19 −0.106 0.033 0.105 −0.017 −0.012

INFRASCA HT WT AGE

16 17 18 19

INFRASCA 16 0.317

HT 17 0.002 0.056

WT 18 −0.018 0.001 0.057

AGE 19 −0.017 0.016 −0.034 0.770
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Table 14.9 Factor Loadings for a Three-Factor Model:

Example 14.4

Factor Loadings (Pattern)a

Variable Number Factor 1 Factor 2 Factor 3

SITHTER 1 0.346 0.920

SITHTNORM 2 0.332 0.859

KNEEHT 3 0.884 0.146

POPHT 4 −0.271 0.801

ELBOWHT 5 0.222 −0.120 0.680

THIGHHT 6 0.672 0.125 0.181

BUTTKN 7 0.436 0.741

BUTTPOP 8 0.339 0.679

ELBOWBR 9 0.914

SEATBR 10 0.781 0.171 0.150

BIACROM 11 0.344 0.390 0.225

CHEST 12 0.916 0.114

WAIST 13 0.898 −0.126

ARMGTH 14 0.929

ARMSKIN 15 0.714

INFRASCA 16 0.823

HT 17 0.804 0.538

WT 18 0.929 0.265 0.103

AGE 19 0.328 −0.124 −0.328

VP 7.123 3.632 2.628

Proportion var. 0.375 0.191 0.138

Cumulative var. 0.375 0.566 0.704

aLoadings less than 0.1 have been omitted.

In this example there are four large absolute values of residuals (−0.172, 0.171, 0.136, and

−0.106). This suggests that more factors are needed. (In Problem 14.10 we consider analysis of

these data with more factors.) The factor loadings are presented in Table 14.9. Loadings below

0.1 in absolute value are omitted, making it easier to see which variables are related to which

factors. In this example the first factor has high loadings on weight and bulk measurements

(variables 14, 18, 12, 9, 13, 16, 10, 15, and 6) and might be called a weight factor. The second

factor has high loadings on length or height measurements (variables 3, 17, 4, 7, and 8) and

might be considered a height factor. The third factor seems to be a sitting height factor.

The variables have been reordered so that variables loading on the same factor appear

together. When this is done, clusters of correlated variables often appear, which may be appre-

ciated visually by replacing correlations by symbols or colors. Figure 14.7 is a graph of the

correlation data from Table 11.21 using circles whose radius is proportional to the correlation,

shaded light gray for positive correlations and dark gray for negative correlations.

The sum of the squares of loadings for a factor (VP) is the portion of the sum of the X

i

variances (the total variance) that is explained by the factor. The table also gives this as a

proportion of the total and as a cumulative proportion of the total. In all, these factors explain

70% of the variability in the measurements.

Example 14.5. As a second example, consider coronary artery disease patients with left

main coronary artery disease. This patient group was discussed in Chaitman et al. [1981]. In

this factor analysis, 12 variables were considered and four factors were used with 357 cases.

The factor analysis was based on the correlation matrix. The variables and their mnemonics

(names) are:
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Figure 14.7 Correlations for Example 14.4. The radius of the circle is proportional to the absolute value

of the correlation. Light gray circles indicate positive correlations; dark gray circles, negative. (Data from

Stoudt et al. [1970].)

• SEX : 0 = male, 1 = female.

• PREVMI : 0 = history of prior myocardial infarction, 1 = no such history.

• FEPCHEP : time in weeks since the first episode of anginal chest pain; this analysis was

restricted to patients with anginal chest pain.

• CHCLASS : severity of impairment due to angina (chest pain); ranging from I (mildly

impaired) to IV (any activity is limited; almost totally bedridden).

• LMCA: the percent diameter narrowing of the left main coronary artery; this analysis was

restricted to 50% or more narrowing.

• AGE : in years.

• SCORE : the amount of impairment of the pumping chamber (left ventricle) of the heart;

score ranges from 5 (normal) to 30 (not attained).

• PS70 : the number of proximal (near the beginning of the blood supply) segments of the

coronary arteries with 70% or more diameter narrowing.

• LEFT : this variable (and RIGHT) tells if the right artery of the heart carries as much

blood as normal. LEFT (dominant) implies that the right coronary artery carries little

blood; 8.8% of these cases fell into this category. Code: LEFT = 1 (left dominant);

LEFT = 0 otherwise.
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Table 14.10 Correlations (as the Bottom Entry in Each Cell) and the Residual Correlations (as the

Top Entry) in Each Cella

SEX PREMI FEPCHEP CHCLASS LMCA AGE

SEX 0.933

1.000

PREVMI 0.053 0.802

0.040 1.000

FEPCHEP −0.013 −0.043 0.714

−0.002 −0.161 1.000

CHCLASS 0.056 −0.000 −0.001 0.796

0.073 −0.117 0.217 1.000

LMCA 0.010 0.049 0.005 −0.037 0.989

0.012 0.036 0.041 0.004 1.000

AGE −0.026 0.019 0.012 −0.001 0.024 0.727

−0.013 −0.107 0.286 0.227 0.065 1.000

SCORE 0.000 −0.001 −0.000 0.000 0.000 0.000

0.030 −0.427 0.143 0.185 0.019 0.175

PS70 −0.028 −0.057 −0.027 0.062 −0.016 0.013

−0.054 −0.188 0.129 0.087 −0.034 0.044

LEFT 0.015 −0.011 −0.015 0.025 0.011 −0.005

−0.027 −0.022 0.014 0.099 0.063 0.064

RIGHT 0.009 −0.007 −0.009 0.015 0.006 −0.003

0.054 0.017 −0.033 −0.062 −0.049 −0.077

NOVESLS 0.000 0.000 0.000 −0.000 0.000 0.000

−0.033 −0.183 0.206 0.014 −0.034 0.130

LVEDP 0.014 0.023 0.001 0.024 0.019 −0.015

0.020 −0.072 0.119 0.135 0.041 0.109

SCORE PS70 LEFT RIGHT NOVESLS LVEDP

SCORE 0.021

1.000

PS70 0.001 0.514

0.198 1.000

LEFT −0.000 −0.004 0.281

0.007 0.004 1.000

RIGHT −0.000 −0.004 0.002 0.175

−0.041 −0.013 −0.767 1.000

NOVESLS 0.000 0.000 0.000 0.000 0.000

0.284 0.693 −0.071 0.073 1.000

LVEDP 0.000 −0.025 −0.007 −0.004 0.000 0.930

0.175 0.029 0.068 −0.086 0.063 1.000

aThe diagonal entry on top is the estimated uniqueness for each variable. Four factors were used.

• RIGHT : there are three types of dominance of the coronary arteries: LEFT above, unbal-

anced (implicitly coded when LEFT = 0 and RIGHT = 0), and RIGHT. Right dominance

is the usual case and occurs when the right coronary artery carries a usual amount of

blood. 85.8% of these cases are right dominant: RIGHT = 1; otherwise, RIGHT =

0.

• NOVESLS : the number of diseased vessels with ≥ 70% stenosis or narrowing of the three

major arterial branches above and beyond the left main disease.

• LVEDP : the left ventricular end diastolic pressure. This is the pressure in the heart when

it is relaxed between beats. A damaged or failing heart has a higher pressure.
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Table 14.11 Factor Loadings: Example 14.5

Factora

1 2 3 4

SEX

PREVMI −0.103 −0.396 −0.174

FEPCHEP 0.152 0.535

CHCLASS 0.125 0.428

LMCA

AGE 0.502

SCORE 0.108 0.981 0.158

PS70 0.683 0.117

LEFT −0.818 0.124

RIGHT 0.917 −0.121

NOVESLS 0.980 0.166

LVEDP 0.143 0.215

VPb 1.525 1.487 1.210 0.872

Proportion var. 0.127 0.124 0.101 0.073

Cumulative var. 0.127 0.251 0.352 0.425

aLoadings below 0.100 are omitted.
bVP is the portion of sum of squares explained by the factor.

Factor analysis is designed primarily for continuous variables. In this example we have

many discrete variables, and even dummy or indicator variables. The analysis is considered

more descriptive or explanatory in this case.

Examining the residual values in Table 14.10, we see a fairly satisfactory fit; the maximum

absolute value of a residual is 0.062, but most are much smaller. Examination of the uniqueness

diagonal column on top shows that the number of vessels diseased, NOVESLS, and SCORE are

explained essentially by the factors (uniqueness = 0.000). Some other variables retain almost all

of their variability: SEX (uniqueness = 0.993) and LMCA (uniqueness = 0.989). Since we have

explained most of the relationships among the variables without using the variability of these fac-

tors, SEX and LMCA must be weakly related to the other factors. This is readily verified by look-

ing at the correlation matrix; the maximum absolute correlation involving either of the variables

is r = 0.073, r

2
= 0.005. They explain 1

2
of 1% or less of the variability in the other variables.

Let us now look at the factor loading (or correlation) values in Table 14.11. The first factor

has heavy loadings on the two dominance variables. This factor could be labeled a dominance

factor. The second factor looks like a coronary artery disease (CAD) factor. The third is a heart

attack, a ventricular function factor. The fourth might be labeled a history variable.

The first factor exists largely by definition; if LEFT = 1, then RIGHT = 0, and vice versa.

The second factor is also expected; if proximal segments are diseased, the arteries are diseased.

The third factor makes biological sense. A damaged ventricle often occurs because of a heart

attack. The factor with moderate loadings on AGE, FEPCHEP, and CHCLASS is not as clear.

14.11 ESTIMATION

Many methods have been suggested for estimation of the factor loadings and the specificities,

that is, the coefficients λ

ij

and the variance of the residual term e

i

. Consider equation (11)

and suppose that we change the scale of X

i

. Effectively, this is the same as looking at a new

variable cX

i

; the new value is the old value multiplied by a constant. Multiplying through the

equations of equation (11) by the constant, and remembering that we have restricted the factors
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to have variance 1, we see that factor loading should be multiplied by the same factor as X

i

.

Only one method of estimation has this property, which also implies that we can use either the

covariance matrix or correlation matrix as input to the estimation. This method is the maximum

likelihood method; it is our method of choice. The method seems to give the best fit, where

fit is examined as described below. There are drawbacks to the method. There can be multiple

possible solutions, and software may not converge to the best solution, particularly if the best

solution involves a communality of 1.00 for some variable (the “Heywood case”). The examples

in this chapter are fairly well behaved, and essentially the same solution was obtained with the

programs BMDP and R. For a review of other methods, we recommend the book by Gorsuch

[1983]. This book, which is cited extensively below, contains a nice review of many of the

issues of factor analysis. Two shorter volumes are those of Kim and Mueller [1983, 1999].

14.12 INDETERMINACY OF THE FACTOR SPACE

There appears to be something magical about factor analysis; we are estimating coefficients of

variables that are not even observed. It is difficult to imagine that one can estimate this at all.

In point of fact, it is not possible to estimate the F

i

uniquely, but one can estimate the F

i

up to

a certain indeterminacy. It is necessary to describe this indeterminacy in mathematical terms.

Mathematically, the factors are unique except for possible linear combinations. Geometrically,

suppose that we think of the factors (e.g., a model with k = 2) as corresponding to values in a

plane. Let this plane exist in three-dimensional space. For example, the subspace corresponding

to the two factors (i.e., the plane) might be the plane of the paper of this book. Within this

three-dimensional space, factor analysis would determine which plane contains the two factors.

However, any two perpendicular directions in the factor plane would correspond to factors that

equally well fit the data in terms of explaining the covariances or correlations between the

variables. Thus, we have the factors identified up to a certain extent, but we are allowed to

rotate them within a subspace.

This indeterminacy allows one to “fiddle” with different combinations of factors (i.e., rota-

tions) so that the factors are considered “easy to interpret.” As discussed at some length below,

one of the strengths and weaknesses of factor analysis is the possibility of finding factors that

represent some abstract concept. This task is easiest when the factors are associated with some

subset of the variables. That is, one would like factors that have high loadings (in terms of

absolute value) on some subset of variables and very low (near zero in absolute value) loadings

on the rest of the variables. In this case, the factor is closely associated with the subset of

the variables that have large absolute loadings. If these variables have something in common

conceptually (e.g., they are all measures of blood pressure) or in a psychological study they all

seem to be related to aggressive behavior, one might then identify the specific factor as a blood

pressure factor or an aggression factor.

Another complication in the literature of factor analysis is related to the choice of a specific

basis in the factor subspace. Suppose for the moment that we are dealing with the correlations

among the X

i

’s. In this case, as we saw before, the loadings on the factors are correlations of

the factor with the variable. Thus each loading will be in absolute value less than or equal to

1. It will be easy to interpret our factors if the absolute value is near zero or near 1. Consider

Figure 14.8(a) and (b), plots of the loadings on factors 1 and 2, with a separate point for each

of the variables X

i

. In Figure 14.8(a) there is a very nice pattern. The variables corresponding

to points on the factor 1 axis of ±1 or on the factor 2 axis of ±1 are variables associated with

each of the factors. The variables plotted near zero on both factors have little relationship to

the two factors; in particular, factor 1 would be associated with the variables having points near

±1 along its axis, including variables 1 and 10 as labeled. This would be considered a very

nice loading pattern, and easy to interpret, having the simple structure as described above. In

Figure 14.8(b) we see that if we look at the original factors 1 and 2, it is difficult to interpret
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the data points, but should we rotate by θ as indicated in the figure, we would have factors easy

to interpretation (i.e., each factor associated with a subset of the X

i

variables). By looking at

such plots and then drawing lines and deciding on the angle θ visually, we have what is called

visual rotation. When the factor subspace contains a variety of factors (i.e., k > 2), the situation

is not as simple. If we rotate factors 1 and 2 to find a simple interpretation, we will have

altered the relationship between factors 1 and 2 and the other factors, and thus, in improving the

relationship between 1 and 2 to have a simple form, we may weaken the relationship between

1 and 5, for example. Visual rotation of factors is an art that can take days or even weeks. The

advantage of such rotation is that the mind can weigh the different trade-offs. One drawback

of visual rotation is that it may be rotated to give factors that conform to some pet hypothesis.

Again, the naming and interpretation of factors are discussed below. Thus, visual rotation can

take an enormous amount of time and is subject to the biases of the data analyst (as well as to

his or her creativity).

Because of the time constraints for analysis, the complexity of the rotation, and the potential

biases, considerable effort has been devoted to developing analytic methods of rotating the

factors to get the best rotation. By analytic we mean that there is an algorithm describing

whether or not a particular rotation for all of the factors is desirable. The computer software,

then, finds the best orientation.

Note 14.2 describes two popular criteria, the varimax method and the quartimax method. A

factor analysis is said to have a general factor if there is a factor that is associated with all or

almost all of the variables. The varimax method can be useful but does not allow general factors

and should not be used when such factors may occur. Otherwise, it is considered one of the most

Figure 14.8 Two-factor loading patterns. (Continued overleaf )
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Figure 14.8 continued

satisfactory methods. (In fact, factor analysis was developed in conjunction with the study of

intelligence. In particular, one of the issues was: Does intelligence consist of one general factor

or a variety of uncorrelated factors corresponding to different types of intelligence? Another

alternative model for intelligence is a general factor plus other factors associated with some

subset of measures of performance thought to be associated with intelligence.)

The second popular method is the quartimax method. This method, in contrast to the varimax

method, tends to have one factor with large loadings on all the variables and not many large

loadings among the rest of the factors. In the examples of this chapter we have used the varimax

method. We do not have the space to get into all the issues involved in the selection of a rotation

method.

Returning to visual rotation, suppose that we have the pattern shown in Figure 14.9. We

see that there are no perpendicular axes for which the loadings are 1 or −1, but if we took

two axes corresponding to the dashed lines, the interpretation might be simplified. Factors

corresponding to the two dashed lines are no longer uncorrelated with each other, and one may

wonder to what extent they are “separate” factors. Such factors are called oblique factors, the

word oblique coming from the geometric picture and the fact that in geometry, oblique lines are

lines that do not intersect at a right angle. There are a number of analytic methods for getting

oblique rotations, with snappy names such as oblimax, biquartimin, binormamin, and maxplane.

References to these may be found in Gorsuch [1983]. If oblique axes or bases are used, the

formulas for the variance and covariances of the X

i

’s as given above no longer hold. Again,

see Gorsuch for more in-depth consideration of such issues.
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Figure 14.9 Orthogonal and oblique axes for factor loadings.

To try a factor analysis it is not necessary to be expert with every method of estimation

and rotation. An exploratory data analysis may be performed to see the extent to which things

simplify. We suggest the use of the maximum likelihood estimation method for estimating the

coefficients λ

ij

, where the rotation is performed using the varimax method unless one large

general factor is suspected to occur.

Example 14.6. We return to Examples 14.4 and 14.5 and examine plots of the correlations

of the variables with the factors. Figure 14.10 shows the plots for Example 14.4, where the

numbers on the plot correspond to the variable numbers in Table 14.9.

The plot for factors 2 and 3 looks reasonable (absolute values near 0 or 1). The other two

plots have in-between points making interpretation of the factors difficult. This, along with the

large residuals mentioned above, suggests trying an analysis with a few more factors.

The plots for Example 14.5 are given in Figure 14.11. These plots suggest factors fairly

easy of interpretation, with few, if any, points with moderate loadings on several factors. The

interpretation of the factors, discussed in Example 14.5, was fairly straightforward.

14.13 CONSTRAINED FACTOR ANALYSIS

In some situations there are physical constraints on the factors that affect the fitting and interpre-

tation of the factor analysis model. One important application of this sort is in the study of air

pollution. Particulate air pollution consists of small particles of smoke, dust, or haze, typically

10 µm in size or smaller. These particles come from a relatively small number of sources, such
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Figure 14.10 Factor loadings for Example 14.4.

as car and truck exhaust, smoke from fireplaces, road dust, and chemical reactions between gases

in the air. Particles from different sources have differing distributions of chemical composition,

so the chemical composition of particles in the air will be approximately an average of those for

each source, weighted according to that source’s contribution to overall pollution. That is, we

have a factor analysis model in which the factor loadings λ represent the contribution of each

source to overall particulate air pollution, the factors F characterize the chemical composition

of each source, and the uniquenesses c

i

are due largely to measurement error.

In this context the factor analysis model is modified slightly by removing the intercept in each

of the regression models of equation (11). Rather than constraining each factor to have zero mean

and unit variance, we constrain all the coefficients F and λ to be nonnegative. That is, a source

cannot contain a negative amount of some chemical element and cannot contribute a negative

concentration of particles. These physical constraints reduce the rotational indeterminacy of the

model considerably. On the other hand, it is not reasonable to require that factors are orthogonal

to each other, so that oblique rotations must be considered, restoring some of the indeterminacy.

The computation is even more difficult than for ordinary factor analysis, and specialized

software is needed [Paatero, 1997, 1999; Henry, 1997]. The full data are needed rather than just

a correlation or covariance matrix.
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Figure 14.11 Factor loadings for Example 14.5.

Example 14.7. In February 2000, the U.S. Environmental Protection Agency held a work-

shop on source apportionment for particulate air pollution [U.S. EPA, 2000]. The main part of

the workshop was a discussion of two constrained factor analysis methods which were used

to investigate fine particulate air pollution from Phoenix, Arizona. Data were available for 981

days, from March 1995 through June 1998, on concentrations of 44 chemical elements and on

carbon content, divided into organic carbon and elemental carbon.
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The UNMIX method [Henry, 1997] gave a five-factor model:

Source Concentration (µg/m3
)

Vehicles 4.7

Secondary aerosol 2.6

Soil 1.8

Diesel 1.2

Vegetative burning 0.7

Unidentified 1.6

and the PMF method [Paatero, 1997] gave a six-factor model:

Source Concentration (µg/m3
)

Motor vehicles 3.5

Coal-fired power 2.1

Soil 1.9

Smelter 0.5

Biomass burning 4.4

Sea salt 0.1

Some of these factors were expected and their likely composition known a priori, such

as vehicle exhaust with large amounts of both organic and elemental carbon, and soil with

aluminium and silicon. Others were found and interpreted as a result of the analysis; the diesel

source had both the elemental carbon characteristic of diesel exhaust and the maganese attributed

to fuel additives. The secondary aerosol source in the UNMIX results probably corresponds to

the coal-fired power source of PMF and perhaps some of the other burning; it would consist of

sulfate and nitrate particles formed by chemical reactions in the atmosphere.

The attributions of fine particles to combustion, soil, and chemical reactions in the atmosphere

were reasonably consistent between these methods, but separating different types of combustion

proved much more difficult. This is probably a typical case and illustrates that the indeterminacy

in the basic factor analysis model can partly, but not entirely, be overcome by substantive

knowledge.

14.14 DETERMINING THE NUMBER OF FACTORS

In this section we consider what to do when the number of factors is unknown. Estimation

methods of factor analysis begin with knowledge of k, the number of factors. But this number is

usually not known or hypothesized. There is no universal agreement on how to select k; below

we examine a number of ways of doing this. The first step is always carried out.

1. Examine the values of the residual correlations. In this section we suppose that we are

trying to model the correlations between variables rather than their covariances. Recall that with

maximum likelihood estimation, fitting one is the same as fitting the other. In looking at the

residual correlations, as done in Examples 14.4 and 14.5, we may feel that we have done a

good job if all of the correlations have been fit to within a specified difference. If the residual

correlations reveal large discrepancies, the model does not fit.

2. There are statistical tests if we can assume that multivariate normality holds and we

use the maximum likelihood estimation method. In this case, there is an asymptotic chi-square

test for any hypothesized fixed number of factors. Computation of the test statistic is complex
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and given in Note 14.3. However, it is available in many statistical computer programs. One

approach is to look at successively more factors until the statistic is not statistically significant;

that is, there are enough factors so that one would not reject at a fixed significance level the

hypothesis that the number of factors is as given. This is analogous to a stepwise regression

procedure. If we do this, we are performing a stepwise procedure, and the true and nominal

significance levels differ (as usual in a stepwise analysis).

3. Looking at the roots of the correlation matrix:

a. If the correlations are arranged in a square pattern or matrix, as usually done, this

pattern is called a correlation matrix. Suppose that we perform a principal component

analysis and examine the variances of the principal components V1 ≥ V2 ≥ · · · ≥ V

p

.

These values are called the eigenvalues or roots of the correlation matrix. If we have the

correlation matrix for the entire population, Guttman [1954] showed that the number

of factors, k, must be greater than or equal to the number of roots greater than or

equal to 1. That is, the number of factors in the factor analytic model must be greater

than or equal to the number of principal components whose variance is greater than

or equal to 1. Of course, in practice we do not have the population correlation matrix

but an estimate. The number of such roots greater than or equal to 1 in a sample may

turn out to be smaller or larger. However, because of Guttman’s result, a reasonable

starting value for k is the number of roots greater than or equal to 1 for the sample

correlation matrix. For a thorough factor analysis, values of k above and below this

number should be tried and the residual patterns observed. The number of factors in

Examples 14.4 and 14.5 was chosen by this method.

b. Scree is the name for the rubble at the bottom of a cliff. The scree test plots the

variances of the principal components. If the plot looks somewhat like Figure 14.12,

one looks to separate the climb of the cliff from the scree at the bottom of the cliff.

We are directed to pick the cliff, components 1, 2, 3, and possibly 4, rather than the

rubble. A clear plastic ruler is laid across the bottom points, and the number of values

above the line is the number of important factors. This advice is reasonable when a

sharp demarcation can be seen, but often the pattern has no clear breakpoint.

c. Since we are interested in the correlation structure, we might plot as a function of k (the

number of factors) the maximum absolute value of all the residuals of the estimated

Figure 14.12 Plot for the scree test.
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Figure 14.13 Plot of the maximum absolute residual and the average root mean square residual.

correlations. Another useful plot is the square root of the sum of the squares of all of

the residual correlations divided by the number of such residual correlations, which is

p(p − 1)/2. If there is a break in the plots of the curves, we would then pick k so

that the maximum and average squared residual correlations are small. For example,

in Figure 14.13 we might choose three or four factors. Gorsuch suggests: “In the final

report, interpretation could be limited to those factors which are well stabilized over

the range which the number of factors may reasonably take.”

14.15 INTERPRETATION OF FACTORS

Much of the debate about factor analysis stems from the naming and interpretation of factors.

Often, after a factor analysis is performed, the factors are identified with concepts or objects.

Is a factor an underlying concept or merely a convenient way of summarizing interrelationships

among variables? A useful word in this context is reify, meaning to convert into or to regard

something as a concrete thing. Should factors be reified?

As Gorsuch states: “A prime use of factor analysis has been in the development of both

the theoretical constructs for an area and the operational representatives for the theoretical

constructs.” In other words, a prime use of factor analysis requires reifying the factors. Also,

“The first task of any research program is to establish empirical referents for the abstract concepts

embodied in a particular theory.”

In psychology, how would one deal with an abstract concept such as aggression? On a

questionnaire a variety of possible “aggression” questions might be used. If most or all of them

have high loadings on the same factor, and other questions thought to be unrelated to aggression

had low loadings, one might identify that factor with aggression. Further, the highest loadings

might identify operationally the questions to be used to examine this abstract concept.

Since our knowledge is of the original observations, without a unique set of variables loading

a factor, interpretation is difficult. Note well, however, that there is no law saying that one must

interpret and name any or all factors.

Gorsuch makes the following points:

1. “The factor can only be interpreted by an individual with extensive background in the

substantive area.”
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2. “The summary of the interpretation is presented as the factor’s name. The name may be

only descriptive or it may suggest a causal explanation for the occurrence of the factor.

Since the name of the factor is all most readers of the research report will remember, it

should be carefully chosen.” Perhaps it should not be chosen at all in many cases.

3. “The widely followed practice of regarding interpretation of a factor as confirmed solely

because the post-hoc analysis ‘makes sense’ is to be deplored. Factor interpretations can

only be considered hypotheses for another study.”

Interpretation of factors may be strengthened by using cases from other populations. Also,

collecting other variables thought to be associated with the factor and including them in the

analysis is useful. They should load on the same factor. Taking “marker” variables from other

studies is useful in seeing whether an abstract concept has been embodied in more or less the

same way in two different analyses.

For a perceptive and easy-to-understand discussion of factor analysis, see Chapter 6 in Gould

[1996], which deals with scientific racism. Gould discusses the reification of intelligence in the

Intelligence Quotient (IQ) through the use of factor analysis. Gould traces the history of factor

analysis starting with the work of Spearman. Gould’s book is a cautionary tale about scientific

presuppositions, predilections, and perceptions affecting the interpretation of statistical results

(it is not necessary to agree with all his conclusions to benefit from his explanations). A recent

book by McDonald [1999] has a more technical discussion of reification and factor analysis.

For a semihumorous discussion of reification, see Armstrong [1967].

NOTES

14.1 Graphing Two-Dimensional Projections

As noted in Section 14.8, the first two principal components can be used as plot axes to give a

two-dimensional representation of higher-dimensional data. This plot will be best in the sense

that it shows the maximum possible variability. Other multivariate graphical techniques give

plots that are “the best” in other senses.

Multidimensional scaling gives a two-dimensional plot that reproduces the distances between

points as accurately as possible. This view will be similar to the first two principal components

when the data form a football (ellipsoid) shape, but may be very different when the data have

a more complicated structure. Other projection pursuit techniques specifically search for views

of the data that reveal holes, clusters, lines, and other departures from an ellipsoidal shape. A

relatively nontechnical review of this concept is given by Jones and Sibson [1987].

Rather than relying on a single two-dimensional projection, it is also possible to display

animated sequences of projections on a computer screen. The projections can be generated by

random rotations of the data or by projection pursuit methods that attempt to show “interesting”

projections. The free computer program GGobi (http://www.ggobi.org) implements many of

these techniques.

Of course, more sophisticated searches performed by computer mean that more caution

in interpretation is needed from the analyst. Substantial experience with these techniques is

needed to develop a feeling for which graphs indicate real structure as opposed to overinter-

preted noise.

14.2 Varimax and Quartimax Methods of Choosing Factors in a Factor Analysis

Many analytic methods of choosing factors have been developed so that the loading matrix is

easy to interpret, that is, has a simple structure. These many different methods make the factor

analysis literature very complex. We mention two of the methods.
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1. Varimax method. The varimax method uses the idea of maximizing the sum of the vari-

ances of the squares of loadings of the factors. Note that the variances are high when

the λ

2
ij

are near 1 and 0, some of each in each column. In order that variables with large

communalities are not overly emphasized, weighted values are used. Suppose that we

have the loadings λ

ij

for one selection of factors. Let θ
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be the loadings for a different

set of factors (the linear combinations of the old factors). Define the weighted quantities
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Some problems have a factor where all variables load high (e.g., general IQ). Varimax

should not be used if a general factor may occur, as the low variance discourages general

factors. Otherwise, it is one of the most satisfactory methods.

2. Quartimax method. The quartimax method works with the variance of the square of all

p

k

loadings. We maximize over all possible loadings θ
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Quartimax is used less often, since it tends to include one factor with all major loadings

and no other major loadings in the rest of the matrix.

14.3 Statistical Test for the Number of Factors in a Factor Analysis When X1, . . . , Xp

Are Multivariate Normal and Maximum Likelihood Estimation Is Used

This note presupposes familiarity with matrix algebra. Let A be a matrix and A

′ denote the

transpose of A; if A is square, let |A| be the determinant of A and Tr(A) be the trace of A.

Consider a factor analysis with k factors and estimated loading matrix

� =
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The test statistic is
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where S is the sample covariance matrix, ψ a diagonal matrix where ψ

ii

= s

i

− (��
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)

ii

, and

s

i

the sample variance of X

i

. If the true number of factors is less than or equal to k, X

2 has a

chi-square distribution with [(p − k)

2
− (p + k)]/2 degrees of freedom. The null hypothesis of

only k factors is rejected if X

2 is too large.

One could try successively more factors until this is not significant. The true and nominal

significance levels differ as usual in a stepwise procedure. (For the test to be appropriate, the

degrees of freedom must be > 0.)
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PROBLEMS

The first four problems present principal component analyses using correlation matrices. Portions

of computer output (BMDP program 4M) are given. The coefficients for principal components

that have a variance of 1 or more are presented. Because of the connection of principal component

analysis and factor analysis mentioned in the text (when the correlations are used), the principal

components are also called factors in the output. With a correlation matrix the coefficient

values presented are for the standardized variables. You are asked to perform a subset of the

following tasks.

(a) Fill in the missing values in the “variance explained” and “cumulative proportion

of total variance” table.

(b) For the principal component(s) specified, give the percent of the total variance

accounted for by the principal component(s).

(c) How many principal components are needed to explain 70% of the total variance?

90%? Would a plot with two axes contain most (say,≥ 70%) of the variability in

the data?

(d) For the case(s) with the value(s) as given, compute the case(s) values on the first

two principal components.

14.1 This problem uses the psychosocial Framingham data in Table 11.20. The mnemonics go

in the same order as the correlations presented. The results are presented in Tables 14.12

and 14.19. Perform tasks (a) and (b) for principal components 2 and 4, and task (c).

14.2 Measurement data on U.S. females by Stoudt et al. [1970] were discussed in this chapter.

The same correlation data for adult males were also given (Table 14.14). The principal

Table 14.12 Problem 14.1: Variance Explained by

Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 4.279180 0.251716

2 1.633777 0.347821

3 1.360951 ?

4 1.227657 0.500092

5 1.166469 0.568708

6 ? 0.625013

7 0.877450 0.676627

8 0.869622 0.727782

9 0.724192 0.770381

10 0.700926 0.811612

11 0.608359 ?

12 0.568691 0.880850

13 0.490974 0.909731

14 ? 0.935451

15 0.386540 0.958189

16 0.363578 0.979576

17 ? ?

aThe variance explained by each factor is the eigenvalue for that
factor. Total variance is defined as the sum of the diagonal elements
of the correlation (covariance) matrix.
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Table 14.13 Problem 14.1: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor Factor Factor Factor

1 2 3 4 5

TYPEA 1 0.633 −0.203 0.436 −0.049 0.003

EMOTLBLE 2 0.758 −0.198 −0.146 0.153 −0.005

AMBITIOS 3 0.132 −0.469 0.468 −0.155 −0.460

NONEASY 4 0.353 0.407 −0.268 0.308 0.342

NOBOSSPT 5 0.173 0.047 0.260 −0.206 0.471

WKOVRLD 6 0.162 −0.111 0.385 −0.246 0.575

MTDISSAG 7 0.499 0.542 0.174 −0.305 −0.133

MGDISSAT 8 0.297 0.534 −0.172 −0.276 −0.265

AGEWORRY 9 0.596 0.202 0.060 −0.085 −0.145

PERSONWY 10 0.618 0.346 0.192 −0.174 −0.206

ANGERIN 11 0.061 −0.430 −0.470 −0.443 −0.186

ANGEROUT 12 0.306 0.178 0.199 0.607 −0.215

ANGRDISC 13 0.147 −0.181 0.231 0.443 −0.108

STRESS 14 0.665 −0.189 0.062 −0.053 0.149

TENSION 15 0.771 −0.226 −0.186 0.039 0.118

ANXSYMPT 16 0.594 −0.141 −0.352 0.022 0.067

ANGSYMPT 17 0.723 −0.242 −0.256 0.086 −0.015

VPa 4.279 1.634 1.361 1.228 1.166

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP
is the variance explained by the factor.

component analysis gave the results of Table 14.15. Perform tasks (a) and (b) for prin-

cipal components 2, 3, and 4, and task (c).

14.3 The Bruce et al. [1973] exercise data for 94 sedentary males are used in this problem (see

Table 9.16). These data were used in Problems 9.9 to 9.12. The exercise variables used

are DURAT (duration of the exercise test in seconds), VO2 MAX [the maximum oxy-

gen consumption (normalized for body weight)], HR [maximum heart rate (beats/min)],

AGE (in years), HT (height in centimeters), and WT (weight in kilograms). The cor-

relation values are given in Table 14.17. The principal component analysis is given

in Table 14.18. Perform tasks (a) and (b) for principal components 4, 5, and 6, and

task (c) (Table 14.19). Perform task (d) for a case with DURAT = 600, VO2 MAX =

38, HR = 185, AGE = 29, HT = 165, and WT = 71. (N.B.: Find the value of the

standardized variables.)

14.4 The variables are the same as in Problem 14.3. In this analysis 43 active females

(whose individual data are given in Table 9.14) are studied. The correlations are given in

Table 14.21. the principal component analysis in Tables 14.22 and 14.23. Perform tasks

(a) and (b) for principal components 1 and 2, and task (c). Do task (d) for the two cases

in Table 14.24 (use standard variables). See Table 14.21.

Problems 14.5, 14.7, 14.8, 14.10, 14.11, and 14.12 consider maximum likelihood

factor analysis with varimax rotation (from computer program BMDP4M). Except for

Problem 14.10, the number of factors is selected by Guttman’s root criterion (the number

of eigenvalues greater than 1). Perform the following tasks as requested.
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Table 14.14 Problem 14.2: Correlations

STHTER STHTHL KNEEHT POPHT ELBWHT

1 2 3 4 5

STHTER 1 1.000

STHTHL 2 0.873 1.000

KNEEHT 3 0.446 0.443 1.000

POPHT 4 0.410 0.382 0.798 1.000

ELBWHT 5 0.544 0.454 −0.029 −0.062 1.000

THIGHHT 6 0.238 0.284 0.228 −0.029 0.217

BUTTKNHT 7 0.418 0.429 0.743 0.619 0.005

BUTTPOP 8 0.227 0.274 0.626 0.524 −0.145

ELBWELBW 9 0.139 0.212 0.139 −0.114 0.231

SEATBRTH 10 0.365 0.422 0.311 0.050 0.286

BIACROM 11 0.365 0.335 0.352 0.275 0.127

CHESTGRH 12 0.238 0.298 0.229 0.000 0.258

WSTGRTH 13 0.106 0.184 0.138 −0.097 0.191

RTARMGRH 14 0.221 0.265 0.194 −0.059 0.269

RTARMSKN 15 0.133 0.191 0.081 −0.097 0.216

INFRASCP 16 0.096 0.152 0.038 −0.166 0.247

HT 17 0.770 0.717 0.802 0.767 0.212

WT 18 0.403 0.433 0.404 0.153 0.324

AGE 19 −0.272 −0.183 −0.215 −0.215 −0.192

THIGH-HT BUTT-KNHT BUTT-POP ELBW-ELBW SEAT-BRTH

6 7 8 9 10

THIGHHT 6 1.000

BUTTKNHT 7 0.348 1.000

BUTTPOP 8 0.237 0.736 1.000

ELBWELBW 9 0.603 0.299 0.193 1.000

SEATBRTH 10 0.579 0.449 0.265 0.707 1.000

BIACROM 11 0.303 0.365 0.252 0.311 0.343

CHESTGRH 12 0.605 0.386 0.252 0.833 0.732

WSTGRTH 13 0.537 0.323 0.216 0.820 0.717

RTARMGRH 14 0.663 0.342 0.224 0.755 0.675

RTARMSKN 15 0.480 0.240 0.128 0.524 0.546

INFRASCP 16 0.503 0.212 0.106 0.674 0.610

HT 17 0.210 0.751 0.600 0.069 0.309

WT 18 0.684 0.551 0.379 0.804 0.813

AGE 19 −0.190 −0.151 −0.108 0.156 0.043

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 1.000

CHESTGRH 12 0.418 1.000

WSTGRTH 13 0.249 0.837 1.000

RTARMGRH 14 0.379 0.784 0.712 1.000

RTARMSKN 15 0.183 0.558 0.552 0.570 1.000

INFRASCP 16 0.242 0.710 0.727 0.667 0.697

HT 17 0.381 0.189 0.054 0.139 0.060

WT 18 0.474 0.885 0.821 0.849 0.562

AGE 19 −0.261 0.062 0.299 −0.115 −0.039

INFRASCP HT WT AGE

16 17 18 19

INFRASCP 16 1.000

HT 17 −0.003 1.000

WT 18 0.709 0.394 1.000

AGE 19 0.045 −0.270 −0.058 1.000
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Table 14.15 Problem 14.2: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 7.839282 0.412594

2 4.020110 0.624179

3 1.820741 0.720007

4 1.115168 0.778700

5 0.764398 0.818932

6 ? 0.850389

7 0.475083 ?

8 0.424948 0.897759

9 0.336247 0.915456

10 ? 0.931210

11 0.252205 0.944484

12 ? 0.955404

13 0.202398 0.966057

14 0.169678 0.974987

15 0.140613 0.982388

16 0.119548 ?

17 0.117741 0.994872

18 0.055062 0.997770

19 0.042365 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.16 Exercise Data for Problem 14.3

Univariate Summary Statistics

Variable Mean Standard Deviation

1 DURAT 577.10638 123.83744

2 VO2 MAX 35.63298 7.51007

3 HR 175.39362 18.59195

4 AGE 49.78723 11.06955

5 HT 177.39851 6.58285

6 WT 79.00000 8.71286

Table 14.17 Problem 14.3: Correlation Matrix

DURAT VO2 MAX HR AGE HT WT

DURAT 1 1.000

VO2 MAX 2 0.905 1.000

HR 3 0.678 0.647 1.000

AGE 4 −0.687 −0.656 −0.630 1.000

HT 5 0.035 0.050 0.107 −0.161 1.000

WT 6 −0.134 −0.147 0.015 −0.069 0.536 1.000
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Table 14.18 Problem 14.3: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 3.124946 0.520824

2 1.570654 ?

3 0.483383 0.863164

4 ? 0.926062

5 ? 0.984563

6 0.092621 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.19 Problem 14.3: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor

1 2

DURAT 1 0.933 −0.117

VO2 MAX 2 0.917 −0.120

HR 3 0.832 0.057

AGE 4 −0.839 −0.134

HT 5 0.128 0.860

WT 6 −0.057 0.884

VPa 3.125 1.571

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP is
the variance explained by the factor.

Table 14.20 Exercise Data for Problem 14.4

Univariate Summary Statistics

Variable Mean Standard Deviation

1 DURAT 514.88372 77.34592

2 VO2 MAX 29.05349 4.94895

3 HR 180.55814 11.41699

4 AGE 45.13953 10.23435

5 HT 164.69767 6.30017

6 WT 61.32558 7.87921

Table 14.21 Problem 14.4: Correlation Matrix

DURAT VO2 MAX HR AGE HT WT

DURAT 1 1.000

VO2 MAX 2 0.786 1.000

HR 3 0.528 0.337 1.000

AGE 4 −0.689 −0.651 −0.411 1.000

HT 5 0.369 0.299 0.310 −0.455 1.000

WT 6 0.094 −0.126 0.232 −0.042 0.483 1.000
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Table 14.22 Problem 14.4: Variance Explained by

the Principal Componentsa

Cumulative Proportion

Factor Variance Explained of Total Variance

1 3.027518 ?

2 1.371342 0.733143

3 ? ?

4 0.416878 0.918943

5 ? 0.972750

6 ? 1.000000

aThe variance explained by each factor is the eigenvalue for
that factor. Total variance is defined as the sum of the diagonal
elements of the correlation (covariance) matrix.

Table 14.23 Problem 14.4: Principal Components

Unrotated Factor Loadings (Pattern)

for Principal Components

Factor Factor

1 2

DURAT 1 0.893 −0.201

VO2 MAX 2 0.803 −0.425

HR 3 0.658 0.162

AGE 4 −0.840 0.164

HT 5 0.626 0.550

WT 6 0.233 0.891

VPa 3.028 1.371

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor loading matrix corresponding to that factor. The VP is
the variance explained by the factor.

Table 14.24 Data for Two

Cases, Problem 14.3

Subject 1 Subject 2

DURAT 660 628

VO2 MAX 38.1 38.4

HR 184 183

AGE 23 21

HT 177 163

WT 83 52

a. Examine the residual correlation matrix. What is the maximum residual correlation?

Is it < 0.1? < 0.5?

b. For the pair(s) of variables, with mnemonics given, find the fitted residual correla-

tion.

c. Consider the plots of the rotated factors. Discuss the extent to which the interpre-

tation will be simple.
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d. Discuss the potential for naming and interpreting these factors. Would you be

willing to name any? If so, what names?

e. Give the uniqueness and communality for the variables whose numbers are given.

f. Is there any reason that you would like to see an analysis with fewer or more

factors? If so, why?

g. If you were willing to associate a factor with variables (or a variable), identify the

variables on the shaded form of the correlations. Do the variables cluster (form a

dark group), which has little correlation with the other variables?

14.5 A factor analysis is performed upon the Framingham data of Problem 14.1. The results

are given in Tables 14.25 to 14.27 and Figures 14.14 and 14.15. Communalities were

obtained from five factors after 17 iterations. The communality of a variable is its squared

multiple correlation with the factors; they are given in Table 14.26. Perform tasks (a), (b)

Table 14.25 Problem 14.5: Residual Correlations

TYPEA EMOTLBLE AMBITIOS NONEASY NOBOSSPT WKOVRLD

1 2 3 4 5 6

TYPEA 1 0.219

EMOTLBLE 2 0.001 0.410

AMBITIOS 3 0.001 0.041 0.683

NONEASY 4 0.003 0.028 −0.012 0.635

NOBOSSPT 5 −0.010 −0.008 0.001 −0.013 0.964

WKOVRLD 6 0.005 −0.041 −0.053 −0.008 0.064 0.917

MTDISSAG 7 0.007 −0.010 −0.062 −0.053 0.033 0.057

MGDISSAT 8 0.000 0.000 0.000 0.000 0.000 0.000

AGEWORRY 9 0.002 0.030 0.015 0.017 0.001 −0.017

PERSONWY 10 −0.002 −0.010 0.007 0.007 −0.007 −0.003

ANGERIN 11 0.007 −0.006 −0.028 0.005 −0.018 0.028

ANGEROUT 12 0.001 0.056 0.053 0.014 −0.070 −0.135

ANGRDISC 13 −0.011 0.008 0.044 −0.019 −0.039 0.006

STRESS 14 0.002 −0.032 −0.003 0.018 0.030 0.034

TENSION 15 −0.004 −0.006 −0.016 −0.017 0.013 0.024

ANXSYMPT 16 0.004 −0.026 −0.028 −0.019 0.009 −0.015

ANGSYMPT 17 −0.000 0.018 −0.008 −0.012 −0.006 0.009

MTDISSAG MTDISSAT AGEWORRY PERSONWY ANGERIN ANGEROUT

7 8 9 10 11 12

MTDISSAG 7 0.574

MGDISSAT 8 0.000 0.000

AGEWORRY 9 0.001 −0.000 0.572

PERSONWY 10 −0.002 0.000 0.001 0.293

ANGERIN 11 0.010 −0.000 0.015 −0.003 0.794

ANGEROUT 12 0.006 −0.000 −0.006 −0.001 −0.113 0.891

ANGRDISC 13 −0.029 −0.000 0.000 0.001 −0.086 0.080

STRESS 14 −0.017 −0.000 −0.015 0.013 0.022 −0.050

TENSION 15 0.004 −0.000 −0.020 0.007 −0.014 −0.045

ANXSYMPT 16 0.026 −0.000 0.037 −0.019 0.011 −0.026

ANGSYMPT 17 0.004 −0.000 −0.023 0.006 0.012 0.049

ANGRDISC STRESS TENSION ANXSYMPT ANGSYMPT

13 14 15 16 17

ANGRDISC 13 0.975

STRESS 14 −0.011 0.599

TENSION 15 −0.005 0.035 0.355

ANXSYMPT 16 −0.007 0.015 0.020 0.645

ANGSYMPT 17 0.027 −0.021 −0.004 −0.008 0.398
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Table 14.26 Problem 14.5: Communalities

1 TYPEA 0.7811

2 EMOTLBLE 0.5896

3 AMBITIOS 0.3168

4 NONEASY 0.3654

5 NOBOSSPT 0.0358

6 WKOVRLD 0.0828

7 MTDISSAG 0.4263

8 MGDISSAT 1.0000

9 AGEWORRY 0.4277

10 PERSONWY 0.7072

11 ANGERIN 0.2063

12 ANGEROUT 0.1087

13 ANGRDISC 0.0254

14 STRESS 0.4010

15 TENSION 0.6445

16 ANXSYMPT 0.3555

17 ANGSYMPT 0.6019

Table 14.27 Problem 14.5: Factors (Loadings Smaller Than 0.1 Omitted)

Factor Factor Factor Factor Factor

1 2 3 4 5

TYPEA 1 0.331 0.185 0.133 0.753 0.229

EMOTLBLE 2 0.707 0.194 0.215

AMBITIOS 3 0.212 0.515

NONEASY 4 0.215 0.105 0.163 0.123 −0.516

NOBOSSPT 5 0.101 0.142

WKOVRLD 6 0.281

MTDISSAG 7 0.474 0.391 0.178

MGDISSAT 8 0.146 0.971 −0.143

AGEWORRY 9 0.288 0.576

PERSONWY 10 0.184 0.799 0.138 0.127

ANGERIN 11 0.263 −0.238 0.272

ANGEROUT 12 0.128 0.179 0.196 −0.148

ANGRDISC 13 0.117 0.102

STRESS 14 0.493 0.189 0.337

TENSION 15 0.753 0.193 0.190

ANXSYMPT 16 0.571 0.138

ANGSYMPT 17 0.748 0.191

VPa 2.594 1.477 1.181 1.112 0.712

aThe VP for each factor is the sum of the squares of the elements of the column of the factor pattern matrix corresponding
to that factor. When the rotation is orthogonal, the VP is the variance explained by the factor.

(TYPEA, EMOTLBLE) and (ANGEROUT, ANGERIN), (c), (d), and (e) for variables 1,

5, and 8, and tasks (f) and (g). In this study, the TYPEA variable was of special interest.

Is it associated particularly with one of the factors?

14.6 This question requires you to do the fitting of the factor analysis model. Use the Florida

voting data of Problem 9.34 available on the Web appendix to examine the structure of
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Figure 14.14 Problem 14.5, plots of factor loadings.

voting in the two Florida elections. As the counties are very different sizes, you will

need to convert the counts to proportions voting for each candidate, and it may be useful

to use the logarithm of this proportion. Fit models with one, two, or three factors and

try to interpret them.
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Figure 14.15 Shaded correlation matrix for Problem 14.5.

14.7 Starkweather [1970] performed a study entitled “Hospital Size, Complexity, and Formal-

ization.” He states: “Data on 704 United States short-term general hospitals are sorted

into a set of dependent variables indicative of organizational formalism and a number of

independent variables separately measuring hospital size (number of beds) and various

types of complexity commonly associated with size.” Here we used his data for a factor

analysis of the following variables:

• SIZE: number of beds.

• CONTROL: a hospital was scored: 1 proprietary control; 2 nonprofit community con-

trol; 3 church operated; 4 public district hospital; 5 city or county control; 6 state

control.

• SCOPE (of patient services): “A count was made of the number of services reported

for each sample hospital. Services were weighted 1, 2, or 3 according to their relative

impact on hospital operations, as measured by estimated proportion of total operating

expenses.”

• TEACHVOL: “The number of students in each of several types of hospital training pro-

grams was weighted and the products summed. The number of paramedical students
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Table 14.28 Problem 14.7: Correlation Matrix

SIZE CONTROL SCOPE TEACHVOL TECHTYPE NONINPRG

1 2 3 4 5 6

SIZE 1 1.000

CONTROL 2 −0.028 1.000

SCOPE 3 0.743 −0.098 1.000

TEACHVOL 4 0.717 −0.040 0.643 1.000

TECHTYPE 5 0.784 −0.034 0.547 0.667 1.000

NONINPRG 6 0.523 −0.051 0.495 0.580 0.440 1.000

Table 14.29 Problem 14.7: Communalitiesa

1 SIZE 0.8269

2 CONTROL 0.0055

3 SCOPE 0.7271

4 TEACHVOL 0.6443

5 TECHTYPE 1.0000

6 NONINPRG 0.3788

aCommunalities obtained from two factors after eight
iterations. The communality of a variable is its squared
multiple correlation with the factors.

Table 14.30 Problem 14.7: Residual Correlations

SIZE CONTROL SCOPE TEACHVOL TECHTYPE NONINPRG

1 2 3 4 5 6

SIZE 1 0.173

CONTROL 2 0.029 0.995

SCOPE 3 0.013 −0.036 0.273

TEACHVOL 4 −0.012 0.012 −0.014 0.356

TECHTYPE 5 −0.000 0.000 −0.000 −0.000 0.000

NONINPRG 6 −0.020 −0.008 −0.027 0.094 −0.000 0.621

was weighted by 1.5, the number of RN students by 3, and the number of interns

and residents by 5.5. These weights represent the average number of years of training

typically involved, which in turn constitute a rough measure of the relative impact of

students on hospital operations.”

• TECHTYPE: types of teaching programs. The following scores were summed: 1 for

practical nurse training program; 2 for RN; 3 for medical students; 4 for interns; 5 for

residents.

• NONINPRG: noninpatient programs. Sum the following scores: 1 for emergency ser-

vice; 2 for outpatient care; 3 for home care.

The results are given in Tables 14.28 to 14.31, and Figures 14.16 and 14.17. The factor

analytic results follow. Perform tasks (a), (c), (d), and (e) for 1, 2, 3, 4, 5, and 6, and

tasks (f) and (g).
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Table 14.31 Problem 14.7: Factors

(Loadings 14.31 Smaller Than 0.1

Omitted)

Factor Factor

1 2

SIZE 1 0.636 0.650

CONTROL 2

SCOPE 3 0.357 0.774

TEACHVOL 4 0.527 0.605

TECHTYPE 5 0.965 0.261

NONINPRG 6 0.312 0.530

VPa 1.840 1.743

aThe VP for each factor is the sum of the
squares of the elements of the column of the
factor pattern matrix corresponding to that
factor. When the rotation is orthogonal, the
VP is the variance explained by the factor.
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Figure 14.16 Problem 14.7, plot of factor loadings.
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Figure 14.17 Shaded correlation matrix for Problem 14.7.

Table 14.32 Problem 14.8: Residual Correlations

DURAT VO2 MAX HR AGE HT WT

DURAT 1 0.067

VO2 MAX 2 0.002 0.126

HR 3 −0.005 −0.011 0.678

AGE 4 0.004 0.011 −0.092 0.441 6

HT 5 −0.006 0.018 −0.021 0.0106 0.574

WT 6 0.004 −0.004 −0.008 0.007 0.605 0.301

14.8 This factor analysis examines the data used in Problem 14.3, the maximal exercise test

data for sedentary males. The results are given in Tables 14.32 to 14.34 and Figures 14.18

and 14.19. Perform tasks (a), (b) (HR, AGE), (c), (d), and (e) for variables 1 and 5, and

tasks (f) and (g).

14.9 Consider two variables, X and Y , with covariances (or correlations) given in the following

notation. Prove parts (a) and (b) below.

Variable

Variable 1 2

X a c

Y c b
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Table 14.33 Problem 14.8: Communalitiesa

1 DURAT 0.9331

2 VO2 MAX 0.8740

3 HR 0.5217

4 AGE 0.5591

5 HT 0.4264

6 WT 0.6990

aCommunalities obtained from two factors after six iter-
ations. The communality of a variable is its squared mul-
tiple correlation with the factors.

Table 14.34 Problem 14.8: Factors

Factor Factor

1 2

DURAT 1 0.962 0.646

VO2 MAX 2 0.930 −0.092

HR 3 0.717

AGE 4 −0.732 −0.154

HT 5 0.833

WT 6 0.833

VPa 2.856 1.158

aThe VP for each factor is the sum of the squares
of the elements of the column of the factor pattern
matrix corresponding to that factor. When the rotation
is orthogonal, the VP is the variance explained by the
factor.
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Figure 14.18 Problem 14.8, plot of factor loadings.
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(a) We suppose that c �= 0. The variance explained by the first principal component

is

V1 =

(a + b) +

√

(a − b)

2
+ 4c

2

2

The first principal component is

√

c

2

c

2
+ (V1 − a)

2
X +

c

|c|

√

(V1 − a)

2

c

2
+ (V1 − a)

2
Y

(b) Suppose that c = 0. The first principal component is X if a ≥ b, and is Y if

a < b.

(c) The introduction to Problems 9.30–9.33 presented data on 20 patients who had their

mitral valve replaced. The systolic blood pressure before and after surgery had the

following variances and covariance:

SBP

Before After

Before 349.74 21.63

After 21.63 91.94

Find the variance explained by the first and second principal components.

14.10 The exercise data of the 43 active females of Problem 14.4 are used here. The find-

ings are given in Tables 14.35 to 14.37 and Figures 14.20 and 14.21. Perform tasks (a),

(c), (d), (f), and (g). Problem 14.8 examined similar exercise data for sedentary males.
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Table 14.35 Problem 14.10: Residual Correlations

DURAT VO2 MAX HR AGE HT WT

DURAT 1 0.151

VO2 MAX 2 0.008 0.241

HR 3 0.039 −0.072 0.687

AGE 4 0.015 0.001 −0.013 0.416

HT 5 −0.045 0.013 −0.007 −0.127 0.605

WT 6 0.000 0.000 0.000 −0.000 0.000 0.000

Table 14.36 Problem 14.10: Communalitiesa

1 DURAT 0.8492

2 VO2 MAX 0.7586

3 HR 0.3127

4 AGE 0.5844

5 HT 0.3952

6 WT 1.0000

aCommunalities obtained from two factors after 10 itera-
tions. The communality of a variable is its squared multi-
ple correlation with the factors.

Table 14.37 Problem 14.10: Factors

Factor Factor

1 2

DURAT 1 0.907 0.165

VO2 MAX 2 0.869

HR 3 0.489 0.271

AGE 4 −0.758 −0.102

HT 5 0.364 0.513

WT 6 0.997

VPa 2.529 1.371

aThe VP for each factor is the sum of the
squares of the elements of the column of the
factor pattern matrix corresponding to that
factor. When the rotation is orthogonal, the
VP is the variance explained by the factor.

Which factor analysis do you feel was more satisfactory in explaining the relationship

among variables? Why? Which analysis had the more interpretable factors? Explain your

reasoning.

14.11 The data on the correlation among male body measurements (of Problem 14.2) are

factor analyzed here. The computer output gave the results given in Tables 14.38 to

14.40 and Figure 14.22. Perform tasks (a), (b) (POPHT, KNEEHT), (STHTER, BUT-

TKNHT), (RTARMSKN, INFRASCP), and (e) for variables 1 and 11, and tasks (f) and

(g). Examine the diagonal of the residual values and the communalities. What values are

on the diagonal of the residual correlations? (The diagonals are the 1–1, 2–2, 3–3, etc.

entries.)
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Table 14.38 Problem 14.11: Residual Correlations

STHTER STHTNORM KNEEHT POPHT ELBWHT

1 2 3 4 5

STHTER 1 0.028
STHTNORM 2 0.001 0.205

KNEEHT 3 0.000 −0.001 0.201

POPHT 4 0.000 −0.006 0.063 0.254

ELBWHT 5 −0.001 −0.026 −0.012 0.011 0.519
THIGHHT 6 −0.003 0.026 0.009 −0.064 −0.029

BUTTKNHT 7 0.001 −0.004 −0.024 −0.034 −0.014

BUTTPOP 8 −0.001 0.019 −0.038 −0.060 −0.043

ELBWELBW 9 −0.001 0.008 0.007 −0.009 0.004
SEATBRTH 10 −0.002 0.023 0.015 −0.033 −0.013

BIACROM 11 0.006 −0.009 0.009 0.035 −0.077

CHESTGRH 12 −0.001 0.004 −0.004 0.015 −0.007

WSTGRTH 13 0.001 −0.004 −0.002 0.008 0.006
RTARMGRH 14 0.002 0.011 0.012 −0.006 −0.021

RTARMSKN 15 −0.002 0.025 −0.002 −0.012 0.009

INFRASCP 16 −0.002 0.003 −0.009 −0.002 0.020

HT 17 −0.000 0.001 −0.003 −0.003 0.007
WT 18 0.000 −0.007 0.001 0.004 0.007

AGE 19 −0.001 0.006 0.010 −0.014 −0.023

THIGHHT BUTTKNHT BUTTPOP ELBWELBW SEATBRTH

6 7 8 9 10

THIGHHT 6 0.462

BUTTKNHT 7 0.012 0.222

BUTTPOP 8 0.016 0.076 0.409

ELBWELBW 9 0.032 −0.002 0.006 0.215
SEATBRTH 10 0.023 0.020 −0.017 0.007 0.305

BIACROM 11 −0.052 −0.019 −0.027 0.012 −0.023

CHESTGRH 12 −0.020 −0.013 −0.011 0.025 −0.020

WSTGRTH 13 −0.002 0.006 0.009 −0.006 −0.009
RTARMGRH 14 0.009 0.000 0.013 0.011 −0.017

RTARMSKN 15 0.038 0.039 0.015 −0.019 0.053

INFRASCP 16 −0.025 0.008 −0.000 −0.022 0.001

HT 17 0.005 0.005 0.005 0.000 −0.001
WT 18 −0.004 −0.005 −0.007 −0.006 0.004

AGE 19 −0.012 −0.010 −0.014 0.011 0.007

BIACROM CHESTGRH WSTGRTH RTARMGRH RTARMSKN

11 12 13 14 15

BIACROM 11 0.684

CHESTGRH 12 0.051 0.150

WSTGRTH 13 −0.011 0.000 0.095

RTARMGRH 14 −0.016 −0.011 −0.010 0.186
RTARMSKN 15 −0.065 −0.011 0.009 0.007 0.601

INFRASCP 16 −0.024 −0.005 0.014 −0.022 0.199

HT 17 −0.008 0.000 −0.003 −0.005 0.004

WT 18 0.006 0.002 0.002 0.006 −0.023
AGE 19 −0.015 −0.006 −0.002 0.014 −0.024

INFRASCP HT WT AGE
16 17 18 19

INFRASCP 16 0.365
HT 17 0.003 0.034

WT 18 −0.003 0.001 0.033

AGE 19 −0.022 0.002 0.002 0.311
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Table 14.39 Problem 14.11: Communalitiesa

1 STHTER 0.9721

2 STHTNORM 0.7952

3 KNEEHT 0.7991

4 POPHT 0.7458

5 ELBWHT 0.4808

6 THIGHHT 0.5379

7 BUTTKNHT 0.7776

8 BUTTPOP 0.5907

9 ELBWELBW 0.7847

10 SEATBRTH 0.6949

11 BIACROM 0.3157

12 CHESTGRH 0.8498

13 WSTGRTH 0.9054

14 RTARMGRH 0.8144

15 RTARMSKN 0.3991

16 INFRASCP 0.6352

17 HT 0.9658

18 WT 0.9671

19 AGE 0.6891

aCommunalities obtained from four factors after six iter-
ations. The communality of a variable is its squared
multiple correlation with the factors.

Table 14.40 Problem 14.11: Factors (Loadings Smaller Than

0.1 Omitted)

Factor Factor Factor Factor

1 2 3 4

Unrotateda

STHTER 1 0.100 0.356 0.908 −0.104

STHTNORM 2 0.168 0.367 0.795

KNEEHT 3 0.113 0.875 0.128

POPHT 4 −0.156 0.836 0.133

ELBWHT 5 0.245 −0.151 0.617 −0.131

THIGHHT 6 0.675 0.131 0.114 −0.230

BUTTKNHT 7 0.308 0.819 0.100

BUTTPOP 8 0.188 0.742

ELBWELBW 9 0.873 0.131

SEATBRTH 10 0.765 0.209 0.247

BIACROM 11 0.351 0.298 0.213 −0.242

CHESTGRH 12 0.902 0.137 0.118

WSTGRTH 13 0.892 0.323

RTARMGRH 14 0.873 −0.198

RTARMSKN 15 0.625

INFRASCP 16 0.794

HT 17 0.836 0.507 −0.098

WT 18 0.907 0.308 0.218 −0.049

AGE 19 −0.135 −0.160 0.801

VPa 6.409 3.964 2.370 0.978

aThe VP for each factor is the sum of the squares of the elements of the
column of the factor pattern matrix corresponding to that factor. When the
rotation is orthogonal, the VP is the variance explained by the factor
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Figure 14.22 Shaded correlation matrix for Problem 14.11.
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