
C H A P T E R 15

Rates and Proportions

15.1 INTRODUCTION

In this chapter and the next we want to study in more detail some of the topics dealing with

counting data introduced in Chapter 6. In this chapter we want to take an epidemiological

approach, studying populations by means of describing incidence and prevalence of disease.

In a sense this is where statistics began: with a numerical description of the characteristics

of a state, frequently involving mortality, fecundity, and morbidity. We call the occurrence of

one of those outcomes an event. In the next chapter we deal with more recent developments,

which have focused on a more detailed modeling of survival (hence also death, morbidity, and

fecundity) and dealt with such data obtained in experiments rather than observational studies. An

implication of the latter point is that sample sizes have been much smaller than used traditionally

in the epidemiological context. For example, the evaluation of the success of heart transplants

has, by necessity, been based on a relatively small set of data.

We begin the chapter with definitions of incidence and prevalence rates and discuss some

problems with these “crude” rates. Two methods of standardization, direct and indirect, are

then discussed and compared. In Section 15.4, a third standardization procedure is presented to

adjust for varying exposure times among individuals. In Section 15.5, a brief tie-in is made to

the multiple logistic procedures of Chapter 13. We close the chapter with notes, problems, and

references.

15.2 RATES, INCIDENCE, AND PREVALENCE

The term rate refers to the amount of change occurring in a quantity with respect to time. In

practice, rate refers to the amount of change in a variable over a specified time interval divided

by the length of the time interval.

The data used in this chapter to illustrate the concepts come from the Third National Cancer

Survey [National Cancer Institute, 1975]. For this reason we discuss the concepts in terms of

incidence rates. The incidence of a disease in a fixed time interval is the number of new cases

diagnosed during the time interval. The prevalence of a disease is the number of people with

the disease at a fixed time point. For a chronic disease, incidence and prevalence may present

markedly different ideas of the importance of a disease.

Consider the Third National Cancer Survey [National Cancer Institute, 1975]. This survey

examined the incidence of cancer (by site) in nine areas during the time period 1969–1971.
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The areas were the Detroit SMSA (Standard Metropolitan Statistical Area); Pittsburgh SMSA,

Atlanta SMSA, Birmingham SMSA, Dallas–Fort Worth SMSA, state of Iowa, Minneapolis–St.

Paul SMSA, state of Colorado, and the San Francisco–Oakland SMSA. The information used

in this chapter refers to the combined data from the Atlanta SMSA and San Francisco–Oakland

SMSA. The data are abstracted from tables in the survey. Suppose that we wanted the rate for

all sites (of cancer) combined. The rate per year in the 1969–1971 time interval would be simply

the number of cases divided by 3, as the data were collected over a three-year interval. The

rates are as follows:

Combined area :
181,027

3
= 60,342.3

Atlanta :
9,341

3
= 3,113.7

San Francisco–Oakland :
30,931

3
= 10,310.3

Can we conclude that cancer incidence is worse in the San Francisco–Oakland area than in the

Atlanta area? The answer is “yes and no.” Yes, in that there are more cases to take care of

in the San Francisco–Oakland area. If we are concerned about the chance of a person getting

cancer, the numbers would not be meaningful. As the San Francisco–Oakland area may have

a larger population, the number of cases per number of the population might be less. To make

comparisons taking the population size into account, we use

incidence per time interval =

number of new cases

total population × time interval
(1)

The result of equation (1) would be quite small, so that the number of cases per 100,000

population is used to give a more convenient number. The rate per 100,000 population per year

is then

incidence per 100,000 per time interval =

number of new cases

total population × time interval
× 100,000

For these data sets, the values are:

Combined area :
181,027 × 100,000

21,003,451 × 3
= 287.3 new cases per 100,000 per year

Atlanta :
9,341 × 100,000

1,390,164 × 3
= 224.0 new cases per 100,000 per year

San Francisco-Oakland :
30,931 × 100,000

3,109,519 × 3
= 331.6 new cases per 100,000 per year

Even after adjusting for population size, the San Francisco–Oakland area has a higher over-

all rate.

Note several facts about the estimated rates. The estimates are binomial proportions times a

constant (here 100,000/3). Thus, the rate has a standard error easily estimated. Let N be the total

population and n the number of new cases; the rate is n/N×C (C = 100,000/3 in this example)

and the standard error is estimated by

√

C

2
1

N

n

N

(

1 −

n

N

)

or

standard error of rate per time interval = C

√

1

N

n

N

(

1 −

n

N

)
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For example, the combined area estimate has a standard error of

100,000

3

√

1

21,003,451

181,027

21,003,451

(

1 −

181,027

21,003,451

)

= 0.67

As the rates are assumed to be binomial proportions, the methods of Chapter 6 may be used to

get adjusted estimates or standardized estimates of proportions.

Rates computed by the foregoing methods,

number of new cases in the interval

population size × time interval

are called crude or total rates. This term is used in distinction to standardized or adjusted rates,

as discussed below.

Similarly, a prevalence rate can be defined as

prevalence =

number of cases at a point in time

population size

Sometimes a distinction is made between point prevalence and prevalence to facilitate discussion

of chronic disease such as epilepsy and a disease of shorter duration, for example, a common

cold or even accidents. It is debatable whether the word prevalence should be used for accidents

or illnesses of short duration.

15.3 DIRECT AND INDIRECT STANDARDIZATION

15.3.1 Problems with the Use of Crude Rates

Crude rates are useful for certain purposes. For example, the crude rates indicate the load of

new cases per capita in a given area of the country. Suppose that we wished to use the cancer

rates as epidemiologic indicators. The inference would be that it was likely that environmental or

genetic differences were responsible for a difference, if any. There may be simpler explanations,

however. Breast cancer rates would probably differ in areas that had differing gender proportions.

A retirement community with an older population will tend to have a higher rate. To make fair

comparisons, we often want to adjust for the differences between populations in one or more

factors (covariates). One approach is to find an index that is adjusted in some fashion. We

discuss two methods of adjustment in the next two sections.

15.3.2 Direct Standardization

In direct standardization we are interested in adjusting by one or more variables that are divided

(or naturally fall) into discrete categories. For example, in Table 15.1 we adjust for gender and

for age divided into a total of 18 categories. The idea is to find an answer to the following

question: Suppose that the distribution with regard to the adjusting factors was not as observed,

but rather, had been the same as this other (reference) population; what would the rate have been?

In other words, we apply the risks observed in our study population to a reference population.

In symbols, the adjusting variable is broken down into I cells. In each cell we know the

number of events (the numerator) n

i

and the total number of individuals (the denominator) N

i

:

Level of adjusting factor, i: 1 2 · · · i · · · I

Proportion observed in study population:
n1

N1

n2

N2
· · ·

n

i

N

i

· · ·

n1

N1
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Table 15.1 Rate for Cancer of All Sites for Blacks in the San

Francisco–Oakland SMSA and Reference Population

Study Population n

i

/N

i

Reference Population M

i

Age Females Males Females Males

<5 8/16,046 6/16,493 872,451 908,739

5–9 6/18,852 7/19,265 1,012,554 1,053,350

10–14 6/19,034 3/19,070 1,061,579 1,098,507

15–19 7/16,507 6/16,506 971,894 964,845

20–24 16/15,885 9/14,015 919,434 796,774

25–29 27/12,886 19/12,091 755,140 731,598

30–34 28/10,705 18/10,445 620,499 603,548

35–39 46/9,580 25/8,764 595,108 570,117

40–44 83/9,862 47/8,858 650,232 618,891

45–49 109/10,341 108/9,297 661,500 623,879

50–54 125/8,691 131/8,052 595,876 558,124

55–59 120/6,850 189/6,428 520,069 481,137

60–64 102/5,017 158/4,690 442,191 391,746

65–69 119/3,806 159/3,345 367,046 292,621

70–74 75/2,264 154/1,847 300,747 216,929

75–79 44/1,403 72/931 224,513 149,867

80–84 28/765 51/471 139,552 84,360

>85 25/629 26/416 96,419 51,615

Subtotal 974/169,123 1,188/160,984 10,806,804 10,196,647

Total 2,162/330,107 21,003,451

Source: National Cancer Institute [1975].

Both numerator and denominator are presented in the table. The crude rate is estimated by

C

∑

I

i=1 n

i

∑

I

i=1 N

i

Consider now a standard or reference population, which instead of having N

i

persons in the ith

cell has M

i

.

Reference Population

Level of adjusting factor 1 2 · · · i · · · I

Number in reference population M1 M2 · · · M

i

· · · M

I

The question now is: If the study population has M

i

instead of N

i

persons in the ith cell,

what would the crude rate have been? We cannot determine what the crude rate was, but we can

estimate what it might have been. In the ith cell the proportion of observed deaths was n

i

/N

i

.

If the same proportion of deaths occurred with M

i

persons, we would expect

n

∗

i

=

n

i

N

i

M

i

deaths

Thus, if the adjusting variables had been distributed with M

i

persons in the ith cell, we estimate

that the data would have been:
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Level of adjusting factor: 1 2 · · · i · · · I

Expected proportion of cases:
n1M1/N1

M1

n2M2/N2

M2
· · ·

n

∗

i

M

i

· · ·

n

I

M

I

/N

I

M

I

The adjusted rate, r , is the crude rate for this estimated standard population:

r =

C

∑

I

i=1 n

i

M

i

/N

i

∑

I

i=1 M

i

=

C

∑

I

i=1 n

∗

i

∑

I

i=1 M

i

As an example, consider the rate for cancer for all sites for blacks in the San Francisco–

Oakland SMSA, adjusted for gender and age to the total combined sample of the Third Cancer

Survey, as given by the 1970 census. There are two gender categories and 18 age categories,

for a total of 36 cells. The cells are laid out in two columns rather than in one row of 36 cells.

The data are given in Table 15.1.

The crude rate for the San Francisco–Oakland black population is

100,000

3

974 + 1188

169,123 + 160,984
= 218.3

Table 15.2 gives the values of n

i

M

i

/N

i

.

The gender- and age-adjusted rate is thus

100,000

3

193,499.42

21,003,451
= 307.09

Note the dramatic change in the estimated rate. This occurs because the San Francisco–Oakland

SMSA black population differs in its age distribution from the overall sample.

The variance is estimated by considering the denominators in the cell as fixed and using the

binomial variance of the n

i

’s. Since the cells constitute independent samples,

var(r) = var

(

C

I

∑

i=1

n

i

M

i

N

i

/

I

∑

i=1

M

i

)

=

C

2

M

2
·

I

∑

i=1

(

M

i

N

i

)2

var(n
i

)

Table 15.2 Estimated Number of Cases per Cell (niMi/Ni) if the San Francisco–Oakland Area

Had the Reference Population Age and Gender Distribution

Age Females Males Age Females Males

<5 434.97 330.59 55–59 9,110.70 14,146.69

5–9 322.26 382.74 60–64 8,990.13 13,197.41

10–14 334.64 172.81 65–69 11,476.21 13,909.34

15–19 412.14 350.73 70–74 9,962.91 18,087.20

20–24 926.09 511.66 75–79 7,041.03 11,590.14

25–29 1,582.24 1,149.65 80–84 5,107.79 9,134.52

30–34 1,622.98 1,040.10 >85 3,832.23 3,225.94

35–39 2,857.51 1,629.30

40–44 5,472.45 3,283.80
Subtotal 85,029.16 108,470.26

45–49 6,972.58 7,247.38
Total 193,499.42

50–54 8,570.30 9,080.26
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=

C

2

M

2
·

I

∑

i=1

(

M

i

N

i

)2

N

i

n

i

N

i

(

1 −

n

i

N

i

)

=

C

2

M

2
·

I

∑

i=1

M

i

N

i

n

i

M

i

N

i

(

1 −

n

i

N

i

)

where M· =

∑

I

i=1 M

i

.

If n

i

/N

i

is small, then 1 − n

i

/N

i

.

= 1 and

var(r)
.

=

C

2

M

2
·

I

∑

i=1

M

i

N

i

(

n

i

M

i

N

i

)

(2)

We use this to compute a 95% confidence interval for the adjusted rate computed above. Using

equation (2), the standard error is

SE(r) =

C

M·

√

√

√

√

I

∑

i=1

M

i

N

i

(

n

i

M

i

N

i

)

=

100,000

3

1

21,003,451

(

872,451

16,046
434.97 + · · ·

)1/2

= 7.02

The quantity r is approximately normally distributed, so that the interval is

307.09 ± 1.96 × 7.02 or (293.3, 320.8)

If adjusted rates are estimated for two different populations, say r1 and r2, with standard errors

SE(r1) and SE(r2), respectively, equality of the adjusted rates may be tested by using

z =

r1 − r2
√

SE(r1)
2
+ SE(r2)

2

The N(0,1) critical values are used, as z is approximately N(0,1) under the null hypothesis of

equal rates.

15.3.3 Indirect Standardization

In indirect standardization, the procedure of direct standardization is used in the opposite direc-

tion. That is, we ask the question: What would the mortality rate have been for the study

population if it had the same rates as the population reference? That is, we apply the observed

risks in the reference population to the study population.

Let m

i

be the number of deaths in the reference population in the ith cell. The data are:

Level of adjusting factor: 1 2 · · · i · · · I

Observed proportion in reference population:
m1

M1

m2

M2
· · ·

m

i

M

i

· · ·

m

I

M

I

where both numerator and denominators are presented in the table. Also,



646 RATES AND PROPORTIONS

Level of adjusting factor: 1 2 · · · i · · · I

Denominators in study population: N1 N2 · · · N

i

· · · N

I

The estimate of the rate the study population would have experienced is (analogous to the

argument in Section 15.3.2)

rREF =

C

∑

I

i=1 N

i

(m

i

/M

i

)

∑

I

i=1 N

i

The crude rate for the study population is

rSTUDY =

C

∑

I

i=1 n

i

∑

I

i=1 N

i

where n

i

is the observed number of cases in the study population at level i. Usually, there is

not much interest in comparing the values rREF and rSTUDY as such, because the distribution of

the study population with regard to the adjusting factors is not a distribution of much interest.

For this reason, attention is usually focused on the standardized mortality ratio (SMR), when

death rates are considered, or the standardized incidence ratio (SIR), defined to be

standardized ratio = s =

rSTUDY

rREF
=

∑

I

i=1 n

i

∑

I

i=1 N

i

m

i

/M

i

(3)

The main advantage of the indirect standardization is that the SMR involves only the total

number of events, so you do not need to know in which cells the deaths occur for the study

population. An alternative way of thinking of the SMR is that it is the observed number of

deaths in the study population divided by the expected number if the cell-specific rates of the

reference population held.

As an example, let us compute the SIR of cancer in black males in the Third Cancer Survey,

using white males of the same study as the reference population and adjusting for age. The data

are presented in Table 15.3. The standardized incidence ratio is

s =

8793

7474.16
= 1.17645 = 1.18

One reasonable question to ask is whether this ratio is significantly different from 1. An

approximate variance can be derived as follows:

s =

O

E

where O =

I

∑

i=1

n

i

= n· and E =

I

∑

i=1

N

i

(

m

i

M

i

)

The variance of s is estimated by

var(s) =

var(O) + s

2 var(E)

E

2
(4)

The basic “trick” is to (1) assume that the number of cases in a particular cell follows a Poisson

distribution and (2) to note that the sum of independent Poisson random variables is Poisson.

Using these two facts yields

var(O)

.

=

I

∑

i=1

n

i

= n (5)
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Table 15.3 Cancer of All Areas Combined, Number of Cases, Black and White Males by Age and

Number Eligible by Age

Black Males White Males

Age n1 N1 m1 M1
N

i

m

i

M

i

(

N

i

M

i

)2

m

i

<5 45 120,122 450 773,459 69.89 10.85

5–9 34 130,379 329 907,543 47.26 6.79

10–14 39 134,313 300 949,669 42.43 6.00

15–19 45 112,969 434 837,614 58.53 7.89

20–24 49 86,689 657 694,670 81.99 10.23

25–29 63 71,348 688 647,304 75.83 8.36

30–34 84 57,844 724 533,856 78.45 8.50

35–39 129 54,752 1,097 505,434 118.83 12.87

40–44 318 57,070 2,027 552,780 209.27 21.61

45–49 582 56,153 3,947 559,241 396.31 39.79

50–54 818 48,753 6,040 503,163 585.23 56.71

55–59 1,170 42,580 8,711 432,982 856.65 84.24

60–64 1,291 33,892 10,966 352,315 1,054.91 101.48

65–69 1,367 27,239 11,913 261,067 1,242.97 129.69

70–74 1,266 17,891 11,735 196,291 1,069.59 97.49

75–79 788 9,827 10,546 138,532 748.10 53.07

80–84 461 4,995 6,643 78,044 425.17 27.21

>85 244 3,850 3,799 46,766 312.75 25.75

Total 8,793 1,070,700 81,006 8,970,730 7,474.16 708.53

and

var(E)

.

= var

(

I

∑

i=1

N

i

M

i

m

i

)

=

I

∑

i=1

(

N

i

M

i

)2

m

i

(6)

The variance of s is estimated by using equations (4), (5), and (6):

var(s) =

n· + s

2
∑

(N

i

/M

i

)

2
m

i

E

2

A test of the hypothesis that the population value of s is 1 is obtained from

z =

s − 1
√

var(s)

and N(0, 1) critical values.

For the example,

I

∑

i=1

n

i

= n· = 8793

E =

I

∑

i=1

N

i

M

i

m

i

= 7474.16
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var(E)

.

=

I

∑

i=1

(

N

i

M

i

)2

m

i

= 708.53

var(s)
.

=

8793 + (1.17645)

2
× 708.53

(7474.16)

2
= 0.000174957

From this and a standard error of s

.

= 0.013, the ratio is significantly different from one using

z =

s − 1

SE(s)

=

0.17645

0.013227
= 13.2

and N(0, 1) critical values.

If the reference population is much larger than the study population, var(E) will be much

less than var(O) and you may approximate var(s) by var(O)/E2.

15.3.4 Drawbacks to Using Standardized Rates

Any time a complex situation is summarized in one or a few numbers, considerable information

is lost. There is always a danger that the lost information is crucial for understanding the situation

under study. For example, two populations may have almost the same standardized rates but

may differ greatly within the different cells; one population has much larger values in one subset

of the cells and the reverse situation in another subset of cells. Even when the standardized rates

differ, it is not clear if the difference is somewhat uniform across cells or results mostly from

one or a few cells with much larger differences.

The moral of the story is that whenever possible, the rates in the cells used in standardization

should be examined individually in addition to working with the standardized rates.

15.4 HAZARD RATES: WHEN SUBJECTS DIFFER IN EXPOSURE TIME

In the rates computed above, each person was exposed (eligible for cancer incidence) over

the same length of time (three years, 1969–1971). (This is not quite true, as there is some

population mobility, births, and deaths. The assumption that each person was exposed for three

years is valid to a high degree of approximation.) There are other circumstances where people

are observed for varying lengths of time. This happens, for example, when patients are recruited

sequentially as they appear at a medical care facility. One approach would be to restrict the

analysis to those who had been observed for at least some fixed amount of time (e.g., for one

year). If large numbers of persons are not observed, this approach is wasteful by throwing away

valuable and needed information. This section presents an approach that allows the rates to use

all the available information if certain assumptions are satisfied.

Suppose that we observe subjects over time and look for an event that occurs only once. For

definiteness, we speak about observing people where the event is death. Assume that over the

time interval observed, if a subject has survived to some time t0, the probability of death in a

short interval from t0 to t1 is almost λ(t1 − t0). The quantity λ is called the hazard rate, force
of mortality, or instantaneous death rate. The units of λ are deaths per time unit.

How would we estimate λ from data in a real-life situation? Suppose that we have n indi-

viduals and begin observing the ith person at time B

i

. If the person dies, let the time of death

be D

i

. Let the time of last contact be C

i

for those people who are still alive. Thus, the time we

are observing each person at risk of death is

O

i

=

{

C

i

− B

i

if the subject is alive

D

i

− B

i

if the subject is dead
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An unbiased estimate of λ is

estimated hazard rate =̂

λ

=

number of observed deaths
∑

n

i=1 O

i

=

L

∑

n

i=1 O

i

(7)

As in the earlier sections of this chapter, ̂

λ is often normalized to have different units. For

example, suppose that ̂λ is in deaths per day of observation. That is, suppose that O

i

is measured

in days. To convert to deaths per 100 observation years, we use

̂

λ × 365
days

year
× 100

As an example, consider the paper by Clark et al. [1971]. This paper discusses the prog-

nosis of patients who have undergone cardiac (heart) transplantation. They present data on 20

transplanted patients. These data are presented in Table 15.4. To estimate the deaths per year of

exposure, we have
12 deaths

3599 exposure days

365 days

year
= 1.22

deaths

exposure year

To compute the variance and standard error of the observed hazard rate, we again assume that

L in equation (7) has a Poisson distribution. So conditional on the total observation period, the

variability of the estimated hazard rate is proportional to the variance of L, which is estimated

by L itself. Let

̂

λ =

CL

∑

n

i=1 O

i

where C is a constant that standardizes the hazard rate appropriately.

Table 15.4 Stanford Heart Transplant Data

Date of Date of Time at Risk

i Transplantation Death in Days (∗if alive)a

1 1/6/68 1/21/68 15

2 5/2/68 5/5/68 3

3 8/22/68 10/7/68 46

4 8/31/68 — 608∗

5 9/9/68 1/14/68 127

6 10/5/68 12/5/68 61

7 10/26/68 — 552∗

8 11/20/68 12/14/68 24

9 11/22/68 8/30/69 281

10 2/8/69 — 447∗

11 2/15/69 2/25/69 10

12 3/29/69 5/7/69 39

13 4/13/69 — 383∗

14 5/22/69 — 344∗

15 7/16/69 11/29/69 136

16 8/16/69 8/17/69 1

17 9/3/69 — 240∗

18 9/14/69 11/13/69 60

19 1/3/70 — 118∗

20 1/16/70 — 104∗

aTotal exposure days = 3599, L = 12.
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Then the standard error of ̂

λ, SE(

̂

λ), is approximately

SE(

̂

λ)

.

=

C

∑

n

i=1 O

i

√

L

A confidence interval for λ can be constructed by using confidence limits (L1, L2) for E(L)

as described in Note 6.8:

confidence interval for λ =

(

CL1
∑

n

i=1 O

i

,

CL2
∑

n

i=1 O

i

)

For the example, a 95% confidence interval for the number of deaths is (6.2–21.0). A 95%

confidence interval for the hazard rate is then

(

6.2

3599
× 365,

21.0

3599
× 365

)

= (0.63, 2.13)

Note that this assumes a constant hazard rate from day of transplant; this assumption is suspect.

In Chapter 16 some other approaches to analyzing such data are given.

As a second more complicated illustration, consider the work of Bruce et al. [1976]. This

study analyzed the experience of the Cardiopulmonary Research Institute (CAPRI) in Seattle,

Washington. The program provided medically supervised exercise programs for diseased sub-

jects. Over 50% of the participants dropped out of the program. As the subjects who continued

participation and those who dropped out had similar characteristics, it was decided to compare

the mortality rates for men to see if the training prevented mortality. It was recognized that

subjects might drop out because of factors relating to disease, and the inference would be weak

in the event of an observed difference.

The interest of this example is in the appropriate method of calculating the rates. All subjects,

including the dropouts, enter into the computation of the mortality for active participants! The

reason for this is that had they died during training, they would have been counted as active

participant deaths. Thus, training must be credited with the exposure time or observed time

when the dropouts were in training. For those who did not die and dropped out, the date of last

contact as an active participant was the date at which the subjects left the training program.

(Topics related to this are dealt with in Chapter 16).

In summary, to compute the mortality rates for active participants, all subjects have an

observation time. The times are:

1. O

i

= (time of death − time of enrollment) for those who died as active participants

2. O

i

= (time of last contact − time of enrollment) for those in the program at last contact

3. O

i

= (time of dropping the program−time of enrollment) for those who dropped whether

or not a subsequent death was observed

The rate ̂

λ

A

for active participants is then computed as

̂

λ

A

=

number of deaths observed during training
∑

all individuals O

i

=

L

A

∑

O

i

To estimate the rate for dropouts, only those who drop out have time at risk of dying as a

dropout. For those who have died, the time observed is

O

′

i

= (time of death − time the subject dropped out)
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For those alive at the last contact,

O

′

i

= (time of last contact − time the subject dropped out)

The hazard rate for the dropouts, ̂λ
D

, is

̂

λ

D

=

number of deaths observed during dropout period
∑

dropouts O

′

i

=

L

D

∑

O

′

i

The paper reports rates of 2.7 deaths per 100 person-years for the active participants based

on 16 deaths. The mortality rate for dropouts was 4.7 based on 34 deaths.

Are the rates statistically different at a 5% significance level? For a Poisson variable, L, the

variance equals the expected number of observations and is thus estimated by the value of the

variable itself. The rates ̂

λ are of the form

̂

λ = CL (L the number of events)

Thus, var(̂λ) = C

2 var(L)

.

= C

2
L =̂

λ

2
/L.

To compare the two rates,

var(̂λ
A

−̂

λ

D

) = var(̂λ
A

) + var(̂λ
D

) =

̂

λ

2
A

L

A

+

̂

λ

2
D

L

D

The approximation is good for large L.

An approximate normal test for the equality of the rates is

z =

̂

λ

A

−̂

λ

D

√

̂

λ

2
A

/L

A

+̂

λ

2
D

/L

D

For the example, L

A

= 16,

̂

λ

A

= 2.7, and L

D

= 34,

̂

λ

D

= 4.7, so that

z =

2.7 − 4.7
√

(2.7)

2
/16 + (4.7)

2
/34

= −1.90

Thus, the difference between the two groups was not statistically significant at the 5% level.

15.5 MULTIPLE LOGISTIC MODEL FOR ESTIMATED RISK

AND ADJUSTED RATES

In Chapter 13 the linear discriminant model or multiple logistic model was used to estimate the

probability of an event as a function of covariates, X1, . . . , X

n

. Suppose that we want a direct

adjusted rate, where X1(i), . . . , X

n

(i) was the covariate value at the midpoints of the ith cell.

For the study population, let p

i

be the adjusted probability of an event at X1(i), . . . , X

n

(i). An

adjusted estimate of the probability of an event is

p̂ =

∑

I

i=1 M

i

p

i

∑

I

i=1 M

i
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where M

i

is the number of reference population subjects in the ith cell. This equation can be

written as

p̂ =

I

∑

i=1

(

M

i

M·

p

i

)

where M· =

∑

I

i=1 M

i

.

If the study population is small, it is better to estimate the p

i

using the approach of Chapter 13

rather than the direct standardization approach of Section 15.3. This will usually be the case

when there are several covariates with many possible values.

NOTES

15.1 More Than One Event per Subject

In some studies, each person may experience more than one event: for example, seizures in

epileptic patients. In this case, each person could contribute more than once to the numerator

in the calculation of a rate. In addition, exposure time or observed time would continue beyond

an event, as the person is still at risk for another event. You need to check in this case that

there are not people with “too many” events; that is, events “cluster” in a small subset of the

population. A preliminary test for clustering may then be called for. This is a complicated

topic. See Kalbfleisch and Prentice [2002] for references. One possible way of circumventing

the problem is to record the time to the second or kth event. This builds a certain robustness

into the data, but of course, makes it not possible to investigate the clustering, which may be

of primary interest.

15.2 Standardization with Varying Observation Time

It is possible to compute standardized rates when the study population has the rate in each cell

determined by the method of Section 15.4; that is, people are observed for varying lengths of

time. In this note we discuss only the method for direct standardization.

Suppose that in each of the i cells, the rates in the study population is computed as CL

i

/O

i

,

where C is a constant, L

i

the number of events, and O

i

the sum of the times observed for

subjects in that cell. The adjusted rate is

∑

I

i=1 (M

i

/L

i

)O

i

∑

I

i=1 M

i

=

C

∑

I

i=1 M

i

̂

λ

i

M·

where ̂

λ

i

=

L

i

O

i

The standard error is estimated to be

C

M·

√

√

√

√

I

∑

i=1

(

M

i

O

i

)

L

i

15.3 Incidence, Prevalence, and Time

The incidence of a disease is the rate at which new cases appear; the prevalence is the proportion

of the population that has the disease. When a disease is in a steady state, these are related via

the average duration of disease:

prevalence = incidence × duration

That is, if you catch a cold twice per year and each cold lasts a week, you will spend two

weeks per year with a cold, so 2/52 of the population should have a cold at any given time.
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This equation breaks down if the disease lasts for all or most of your life and does not describe

transient epidemics.

15.4 Sources of Demographic and Natural Data

There are many government sources of data in all of the Western countries. Governments of

European countries, Canada, and the United States regularly publish vital statistics data as well

as results of population surveys such as the Third National Cancer Survey [National Cancer

Institute, 1975]. In the United States, the National Center for Health Statistics (http://www.cdc.
gov/nhcs) publishes more than 20 series of monographs dealing with a variety of topics. For

example, Series 20 provides natural data on mortality; Series 21, on natality, marriage, and

divorce. These reports are obtainable from the U.S. government.

15.5 Binomial Assumptions

There is some question whether the binomial assumptions (see Chapter 6) always hold. There

may be “extrabinomial” variation. In this case, standard errors will tend to be underestimated

and sample size estimates will be too low, particularly in the case of dependent Bernoulli trials.

Such data are not easy to analyze; sometimes a logarithmic transformation is used to stabilize

the variance.

PROBLEMS

15.1 This problem will give practice by asking you to carry out analyses similar to the ones

in each of the sections. The numbers from the National Cancer Institute [1975] for

lung cancer cases for white males in the Pittsburgh and Detroit SMSAs are given in

Table 15.5.

Table 15.5 Lung Cancer Cases by Age for White Males in

the Detroit and Pittsburgh SMSAs

Detroit Pittsburgh

Age Cases Population Size Cases Population Size

<5 0 149,814 0 82,242

5–9 0 175,924 0 99,975

10–14 2 189,589 1 113,146

15–19 0 156,910 0 100,139

20–24 5 113,003 0 68,062

25–29 1 113,919 0 61,254

30–34 10 92,212 7 53,289

35–39 24 90,395 21 55,604

40–44 101 108,709 56 70,832

45–49 198 110,436 148 74,781

50–54 343 98,756 249 72,247

55–59 461 82,758 368 64,114

60–64 532 63,642 470 50,592

65–69 572 47,713 414 36,087

70–74 473 35,248 330 26,840

75–79 365 25,094 259 19,492

80–84 133 12,577 105 10,987

>85 51 6,425 52 6,353

Total 3271 1,673,124 2480 1,066,036
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(a) Carry out the analyses of Section 15.2 for these SMSAs.

(b) Calculate the direct and indirect standardized rates for lung cancer for white

males adjusted for age. Let the Detroit SMSA be the study population and the

Pittsburgh SMSA be the reference population.

(c) Compare the rates obtained in part (b) with those obtained in part (a).

15.2 (a) Calculate crude rates and standardized cancer rates for the white males of

Table 15.5 using black males of Table 15.3 as the reference population.

(b) Calculate the standard error of the indirect standardized mortality rate and test

whether it is different from 1.

(c) Compare the standardized mortality rates for blacks and whites.

15.3 The data in Table 15.6 represent the mortality experience for farmers in England and

Wales 1949–1953 as compared with national mortality statistics.

Table 15.6 Mortality Experience Data for Problem 15.3

National Population

Mortality (1949–1953) of Farmers Deaths

Age Rate per 100,000/Year (1951 Census) in 1949–1953

20–24 129.8 8,481 87

25–34 152.5 39,729 289

35–44 280.4 65,700 733

45–54 816.2 73,376 1,998

55–64 2,312.4 58,226 4,571

(a) Calculate the crude mortality rates.

(b) Calculate the standardized mortality rates.

(c) Test the significance of the standardized mortality rates.

(d) Construct a 95% confidence interval for the standardized mortality rates.

(e) What are the units for the ratios calculated in parts (a) and (b)?

15.4 Problems for discussion and thought:

(a) Direct and indirect standardization permit comparison of rates in two populations.

Describe in what way this can also be accomplished by multiway contingency

tables.

(b) For calculating standard errors of rates, we assumed that events were binomially

(or Poisson) distributed. State the assumption of the binomial distribution in terms

of, say, the event “death from cancer” for a specified population. Which of the

assumptions is likely to be valid? Which is not likely to be invalid?

(c) Continuing from part (b), we calculate standard errors of rates that are population

based; hence the rates are not samples. Why calculate standard errors anyway,

and do significance testing?

15.5 This problem deals with a study reported in Bunker et al. [1969]. Halothane, an anes-

thetic agent, was introduced in 1956. Its early safety record was good, but reports

of massive hepatic damage and death began to appear. In 1963, a Subcommittee

on the National Halothane Study was appointed. Two prominent statisticians, Fred-

erick Mosteller and Lincoln Moses, were members of the committee. The committee

designed a large cooperative retrospective study, ultimately involving 34 institutions
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Table 15.7 Mortality Data for Problem 15.5

Number of Operations Number of Deaths

Physical Status Total Halothane Cyclopropane Total Halothane Cyclopropane

Unknown 69,239 23,684 10,147 1,378 419 297

1 185,919 65,936 27,444 445 125 91

2 104,286 36,842 14,097 1,856 560 361

3 29,491 8,918 3,814 2,135 617 403

4 3,419 1,170 681 590 182 127

5 21,797 6,579 7,423 314 74 101

6 11,112 2,632 3,814 1,392 287 476

7 2,137 439 749 673 111 253

Total 427,400 146,200 68,169 8,783 2,375 2,109

that completed the study. “The primary objective of the study was to compare halothane

with other general anesthetics as to incidence of fatal massive hepatic necrosis within

six weeks of anesthesia.” A four-year period, 1959–1962, was chosen for the study.

One categorization of the patients was by physical status at the time of the operation.

Physical status varies from good (category 1) to moribund (category 7). Another cat-

egorization was by mortality level of the surgical procedure, having values of low,

middle, high. The data in Table 15.7 deal with middle-level mortality surgery and

two of the five anesthetic agents studied, the total number of administrations, and the

number of patients dying within six weeks of the operation.

(a) Calculate the crude death rates per 100,000 per year for total, halothane, and

cyclopropane. Are the crude rates for halothane and cyclopropane significantly

different?

(b) By direct standardization (relative to the total), calculate standardized death

rates for halothane and cyclopropane. Are the standardized rates significantly

different?

(c) Calculate the standardized mortality rates for halothane and cyclopropane and

test the significance of the difference.

(d) The calculations of the standard errors of the standardized rates depend on certain

assumptions. Which assumptions are likely not to be valid in this example?

15.6 In 1980, 45 SIDS (sudden infant death syndrome) deaths were observed in King

County. There were 15,000 births.

(a) Calculate the SIDS rate per 100,000 births.

(b) Construct a 95% confidence interval on the SIDS rate per 100,000 using the

Poisson approximation to the binomial.

(c) Using the normal approximation to the Poisson, set up the 95% limits.

(d) Use the square root transformation for a Poisson random variable to generate a

third set of 95% confidence intervals. Are the intervals comparable?

(e) The SIDS rate in 1970 in King County is stated to be 250 per 100,000. Some-

one wants to compare this 1970 rate with the 1980 rate and carries out a test

of two proportions, p1 = 300 per 100,000 and p2 = 250 per 100,000, using

the binomial distributions with N1 = N2 = 100,000. The large-sample nor-

mal approximation is used. What part of the Z-statistic: (p1 − p2)/standard

error(p1 − p2) will be right? What part will be wrong? Why?
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Table 15.8 Heart Disease Data for Problem 15.7

Epileptics: New and Incidence in

Person-Years Nonfatal General Population

Gender Age at Risk IHD Cases per 100,000/year

Male 30–39 354 2 76

40–49 303 2 430

50–59 209 3 1291

60–69 143 4 2166

70+ 136 4 1857

Female 30–39 534 0 9

40–49 363 1 77

50–59 218 3 319

60–69 192 4 930

70+ 210 2 1087

15.7 Annegers et al. [1976] investigated ischemic heart disease (IHD) in patients with

epilepsy. The hypothesis of interest was whether patients with epilepsy, particularly

those on long-term anticonvulsant medication, were at less than expected risk of

ischemic heart disease. The study dealt with 516 cases of epilepsy; exposure time was

measured from time of diagnosis of epilepsy to time of death or time last seen alive.

(a) For males aged 60 to 69, the number of years at risk was 161 person-years. In

this time interval, four IHD deaths were observed. Calculate the hazard rate for

this age group in units of 100,000 persons/year.

(b) Construct a 95% confidence interval.

(c) The expected hazard rate in the general population is 1464 per 100,000 per-

sons/year. How many deaths would you have expected in the age group 60 to 69

on the basis of the 161 person-years experience?

(d) Do the number of observed and expected deaths differ significantly?

(e) The raw data for the incidence of ischemic heart disease are given in Table 15.8.

Calculate the expected number of deaths for males and the expected number of

deaths for females by summing the expected numbers in the age categories (for

each gender separately). Treat the total observed as a Poisson random variable

and set up 95% confidence intervals. Do these include the expected number of

deaths? State your conclusion.

(f) Derive a formula for an indirect standardization of these data (see Note 15.2)

and apply it to these data.

15.8 A random sample of 100 subjects from a population is divided into two age groups,

and for each age group the number of cases of a certain disease is determined. A

reference population of 2000 persons has the following age distribution:

Sample
Reference Population

Age Total Number Number of Cases Total Number

1 80 8 1000

2 20 8 1000

(a) What is the crude case rate per 1000 population for the sample?

(b) What is the standard error of the crude case rate?
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(c) What is the age-adjusted case rate per 1000 population using direct standardiza-

tion and the reference population above?

(d) How would you test the hypothesis that the case rate at age 1 is not significantly

different from the case rate at age 2?

15.9 The data in Table 15.9 come from a paper by Friis et al. [1981]. The mortality among

male Hispanics and non-Hispanics was as shown.

Table 15.9 Mortality Data for Problem 15.9

Hispanic Males Non-Hispanic Males

Number Number

Age Number of Deaths Number of Deaths

0–4 11,089 0 51,250 0

5–14 18,634 0 120,301 0

15–24 10,409 0 144,363 2

25–34 16,269 2 136,808 9

35–44 11,050 0 106,492 46

45–54 6,368 7 91,513 214

55–64 3,228 8 70,950 357

65–74 1,302 12 34,834 478

75+ 1,104 27 16,223 814

Total 79,453 56 772,734 1,920

(a) Calculate the crude death rate among Hispanic males.

(b) Calculate the crude death rate among non-Hispanic males.

(c) Compare parts (a) and (b) using an appropriate test.

(d) Calculate the SMR using non-Hispanic males as the reference population.

(e) Test the significance of the SMR as compared with a ratio of 1. Interpret your

results.

15.10 The data in Table 15.10, abstracted from National Center for Health Statistics [1976],

deal with the mortality experience in poverty and nonpoverty areas of New York and

Seattle.

(a) Using New York City as the “standard population,” calculate the standardized

mortality rates for Seattle taking into account race and poverty area.

(b) Estimate the variance of this quantity and calculate 99% confidence limits.

(c) Calculate the standardized death rate per 100,000 population.

Table 15.10 Mortality Data for Problem 15.10

New York City Seattle

Death Rate Death Rate

Area Race Population per 1000 Population per 1000

Poverty White 974,462 9.9 29,016 22.9

All others 1,057,125 8.5 14,972 12.5

Nonpoverty White 5,074,379 11.6 434,854 11.7

All other 788,897 6.4 51,989 6.5
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(d) Interpret your results.

(e) Why would you caution a reviewer of your analysis about the interpretation?

15.11 In a paper by Foy et al. [1983] the risk of getting Mycoplasma pneumonia in a two-

year interval was determined on the basis of an extended survey of schoolchildren. Of

interest was whether children previously exposed to Mycoplasma pneumoniae had a

smaller risk of recurrence. In the five- to nine-year age group, the following data were

obtained:

Exposed Not Exposed

Previously Previously

Person-years at risk 680 134

Number with Mycoplasma pneumonia 7 8

(a) Calculate 95% confidence intervals for the infection rate per 100 person-years

for each of the two groups.

(b) Test the significance of the difference between the infection rates.

*(c) A statistician is asked to calculate the study size needed for a new prospective

study between the two groups. He assumes that α = 0.05, β = 0.20, and a

two-tailed, two-sample test. He derives the formula

λ2 =

√

λ1 −

2.8
√

n

where λ

i

is the two-year infection rate for group i and n is the number of

persons per group. He used the fact that the square root transformation of a

Poisson random variable stabilizes the variance (see Section 10.6). Derive the

formula and calculate the infection rate in group 2, λ2 for λ1 = 10 or 6, and

sample sizes of 20, 40, 60, 80, and 100.

15.12 In a classic paper dealing with mortality among women first employed before 1930 in

the U.S. radium dial–painting industry, Polednak et al. [1978] investigated 21 malig-

nant neoplasms among a cohort of 634 women employed between 1915 and 1929.

The five highest mortality rates (observed divided by expected deaths) are listed in

Table 15.11.

(a) Test which ratios are significantly different from 1.

(b) Assuming that the causes of death were selected without a particular reason, adjust

the observed p-values using an appropriate multiple-comparison procedure.

(c) The painters had contact with the radium through the licking of the radium-coated

paintbrush to make a fine point with which to paint the dial. On the basis of this

Table 15.11 Mortality Data for Problem 15.12

Ranked Cause Observed Expected

of Death Number Number Ratio

Bone cancer 22 0.27 81.79

Larynx 1 0.09 11.13

Other sites 18 2.51 7.16

Brain and CNS 3 0.97 3.09

Buccal cavity, pharynx 1 0.47 2.15



REFERENCES 659

information, would you have “preselected” certain malignant neoplasms? If so,

how would you “adjust” the observed p-value?

15.13 Consider the data in Table 15.12 (from Janerich et al. [1974]) listing the frequency of

infants with Simian creases by gender and maternal smoking status.

Table 15.12 Influence of Smoking on Development of Simian Creases

Birthweight Interval (lb)
Maternal

Gender of Infant Smoking <6 6–6.99 7–7.99 ≥8

Female No 2/45 5/156 9/242 11/216

Yes 4/48 8/107 6/110 3/44

Male No 5/40 5/109 23/265 18/278

Yes 10/55 6/84 10/106 6/74

(a) These data can be analyzed by the multidimensional contingency table approach

of Chapter 7. However, we can also treat it as a problem in standardization.

Describe how indirect standardization can be carried out using the total sample

as the reference population, to compare “risk” of Simian creases in smokers and

nonsmokers adjusted for birthweight and gender of the infants.

(b) Carry out the indirect standardization procedure and compare the standardized

rates for smokers and nonsmokers. State your conclusions.

(c) Carry out the logistic model analysis of Chapter 7.

*15.14 Show that the variance of the standardized mortality ratio, equation (3), is approxi-

mately equal to equation (4).
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C H A P T E R 16

Analysis of the Time to an Event:
Survival Analysis

16.1 INTRODUCTION

Many biomedical analyses study the time to an event. A cancer study of combination therapy

using surgery, radiation, and chemotherapy may examine the time from the onset of therapy until

death. A study of coronary artery bypass surgery may analyze the time from surgery until death.

In each of these two cases, the event being used is death. Other events are also analyzed. In some

cancer studies, the time from successful therapy (i.e., a patient goes into remission) until remission

ends is studied. In cardiovascular studies, one may analyze the time to a heart attack or death,

whichever event occurs first. A health services project may consider the time from enrollment in

a health plan until the first use of the facilities. An analysis of children and their need for dental

care may use the time from birth until the first cavity is filled. An assessment of an ointment for

contact skin allergies may consider the time from treatment until the rash has cleared up.

In each of the foregoing situations, the data consisted of the time from a fixed or designated

initial point until an event occurs. In this chapter we show how to analyze such event data.

When the event of interest is death, the subject is called survival analysis. In medicine and

public health this name is often used generically, even when the endpoint or event being studied

is not death but something else. In industrial settings the study of the lifetime of a component

(until failure) is called reliability theory, and social scientists use the term event history analysis.

For concreteness, we often speak of the event as death and the time as survival time. However,

it should always be kept in mind that there are other uses.

In this chapter we consider the presentation of time to event data, estimation of the time to an

event, and its statistical variability. We also consider potential predictor or explanatory variables. A

third topic is to compare the time to event in several different groups. For example, a study of two

alternative modes of cancer therapy may examine which group has the best survival experience.

When the event is not death, there may be multiple occurrences for a given person or multiple

types of event. It is usually possible to restrict the analysis to the first event as we did in the

situations described above. This restriction trades a considerable gain statistical simplicity for

an often modest loss in power. We discuss the analysis of multiple events only briefly.

16.2 SURVIVORSHIP FUNCTION OR SURVIVAL CURVE

In previous chapters we examined means of characterizing the distribution of a variable using,

for example, the cumulative distribution function and histograms. One might take survival data

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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Figure 16.1 Cumulative probability of death, United States, 1974. (From U.S. Department of Health,

Education, and Welfare [1976].)

and present the cumulative distribution function. Figure 16.1 shows an estimate for the U.S.

population in 1974 of the probability of dying before a fixed age. This is an estimate of the

cumulative distribution of survival in the United States in 1974. Note that there is an increase

in deaths during the first year; after this the rate levels off but then climbs progressively in the

later years. This cumulative probability of death is then an estimate of the probability that a

person dies at or before the given time. That is,

F(t) = P [person dies at a time ≤ t]

If we had observed the entire survival experience of the 1974 population, we would estimate

this quantity as we estimated the cumulative distribution function previously. We would esti-

mate it as

F(t) =

number of people who die at or before time t

total number observed
(1)

Note, however, that we cannot estimate the survival experience of the 1974 population this

way because we have not observed all of its members until death. This is a most fortunate

circumstance since the population includes all of the authors of this book as well as many of

its readers. In the next section, we discuss some methods of estimating survival when one does

not observe the true survival of the entire population.

It is depressing to speak of death; it is more pleasant to speak of life. In analyzing survival

data, the custom has grown not of using the cumulative probability of death but of using an

equivalent function called the survivorship function or survival curve. This function is merely

the percent of people who live to a fixed time or beyond.
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Definition 16.1. The survival curve, or survivorship function, is the proportion or percent

of people living to a fixed time t or beyond. The curve is then a function of t :

S(t) =



















percent of people surviving to time t or beyond if

expressed as a percent

proportion of people surviving to time t or beyond

if expressed as a proportion

(2)

If we have a sample from a population, there is a distinction between the population survival

curve and the sample or estimated population survival curve. In practice, there is no distinct

notation unless it is necessary to emphasize the difference. The context will usually show which

of the two is meant.

The cumulative distribution function of the survival and the survival curve are closely related.

If the two curves are continuous, they are related by

S(t) = 100[1 − F(t)] or S(t) = 1 − F(t)

(When we look at the sample curves, the curves are equal at all points except for the points

where the curves jump. At these points there is a slight technical problem because we have used

≤ in one instance and ≥ in the other instance. But for all practical purposes, the two curves are

related by the equation above.)

Figure 16.2 shows the survival curve for the U.S. population as given in Figure 16.1. As you

can see, the survival curve results by “flipping over” the cumulative probability of death and

using percentages. As mentioned above, the estimate of the curve in Figure 16.2 is complicated

by the fact that many people in the 1974 U.S. population are happily alive. Thus, their true

Figure 16.2 Survival curve of the U.S. population, 1974. Same data as used in Figure 16.1.
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survival is not yet observed. The survival in the overall population is not yet observed. The

survival in the overall population is estimated by the method discussed in the next section.

Sometimes the proportion surviving to time t or beyond is used. We will use them inter-

changeably. The two are simply related; to find the percent, merely multiply the proportion

by 100.

If we observe the survival of all persons, it is easy to estimate the survival curve. In analogy

with the estimate of the cumulative distribution function, the estimate of the survival curve at

a fixed t is merely the percent of people whose survival was equal to the value t or greater.

That is,

S(t) = 100

(

number of people who survive to or beyond t

total number observed

)

(3)

In many instances, we are not able to observe everyone until they reach the event of interest.

This makes the estimation problem more challenging. We discuss the estimates in the next

section.

16.3 ESTIMATION OF THE SURVIVAL CURVE: ACTUARIAL OR LIFE

TABLE METHOD

Consider a clinical study of a procedure with a high initial mortality rate: for example, very

delicate high-risk surgery during its development period. Suppose that we design a study to

follow a group of such people for two years. Because most of the mortality is expected during

the first year, it is decided to concentrate the effort on the first year. Two thousand people are

to be entered in the study; half of them will be followed for two years, while one-half will be

followed only for the critical first year. The people are randomized into two groups, group 1 to

be followed for one year and group 2 to be followed for both years. Suppose that the data are

as follows:

Group 1 Group 2

Number Number Number Number

Year Observed Who Died Observed Who Died

1 1000 240 1000 200

2 — — 800 16

We wish to estimate one- and two-year survival. We consider three methods of estimation.

The first two methods will not be appropriate but are used to motivate the correct life table

method to follow.

One way of estimating survival might be to estimate separately the one- and two-year survival.

Since it is wasteful to “throw away” data and the reason that 2000 people were observed for one

year was because that year was considered crucial, it is natural to estimate the percent surviving

for one year by the total population. This percentage is as follows:

percent of one-year survival = 100

(

2000 − 240 − 200

2000

)

= 78.0%

To estimate two-year survival, we did not observe what happened to the subjects in group 1

during the second year. Thus, we might estimate the survival using only those in group 2. This
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estimate is

percent of two-year survival = 100

(

1000 − 200 − 16

1000

)

= 78.4%

There are two problems with this estimation method. The first is that we need to know the

potential follow-up time (one year or two years) for everyone. In a clinical trial this is reasonable,

but in a cohort study we may not know whether someone who in fact died after six months

would have been followed up for one year or two years if he or she had not died. Nor is

it reasonable that our estimate of the survival should depend on this unobservable potential

follow-up.

More importantly, we have a problem in that the estimated percent surviving one year is

less than the percent surviving two years! Clearly, as time increases, the percent surviving must

decrease, but the sampling variability in the estimate has led to the second-year estimate being

larger than the first-year estimate. Although this method is approximately unbiased and uses all

the available data, it is not a desirable way to estimate our survival curve.

One way to get around this problem is to use only the subjects from group 2 who are observed

for two years. Then we have a straightforward estimate of survival at each time period. The

percent surviving one year or more is 80%, while the percent surviving two or more years

is, as before, 78.4%. This gives a consistent pattern of survival but seems quite wasteful; we

deliberately designed the study to allow us to observe more subjects in the first year, when

the mortality was expected to be high. It does not seem appropriate to throw away the 1000

subjects who were only observed for one year. If we need to do this, we had an extremely poor

experimental design.

The solution to our problem is to note that we can efficiently estimate the probability of

one-year survival using both groups of people. Further, using the second group, we can estimate

the probability of surviving the second year conditionally upon having survived the first year.

The two estimates as percentages are

percent of one-year survival = 78.0%

percent surviving year 2 = 100

(

800 − 16

800

)

= 98.0%

We can then combine these to get an estimate of the probability of surviving in the first year and

the second year by using the concept of conditional probability. We see that the probability of

two-year survival is the probability of one-year survival times the probability of two-year survival

given one-year survival, and so cannot be larger than the probability of one-year survival. The

probability of two-year survival is as follows:

P [A and B] = P [A]P [B|A]

Let A be the survival of one year and B the survival of two years. Then

P [one-year survival] = P [one-year survival]

×P [two-year survival|one-year survival]

= 0.78 × 0.98 = 0.7644

For these probability calculations, note that it is more convenient to have probabilities than

percents because the probabilities multiply. If we had percents, the formula would have an

extra factor of 100. For this reason the calculations on the survival curves are usually done as

probabilities and then switched to percentages for graphical presentation. We will adhere to this.
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Figure 16.3 Three methods of estimating survival.

Figure 16.3 presents the three estimates; for these data they are all close. The third estimate

gives a self-consistent estimate of the curve (i.e., the curve will never increase) and the estimate

is efficient (because it uses all the data); it is the correct method for estimating survival. This

idea can easily be generalized to more than two intervals.

When the data are grouped into time intervals, we can estimate the survival in each interval.

Let x denote the lower endpoint of each interval. [x rather than t is used here to conform to

standard notation in the actuarial field. When it is necessary to index the intervals, we will use

i(x) to denote the inverse relationship.] Let
∏

i

denote the probability of surviving to x(i), where

x(i) is the lower endpoint of the ith interval; that is,

∏

i

= S(x(i))

where S is the survival curve (expressed here as the proportion surviving). Further, let π

i

be the

probability of living through the interval, with lower endpoint x(i), conditionally upon the event
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of being alive at the beginning of the interval. Using the definition of a conditional probability,

π

i

=

∏

i+1
∏

i

=

P [survive to the end of the ith interval]

P [survive to the end of the (i − 1)st interval]
(4)

From this,
∏

i+1

= π

i

∏

i

and
∏

i+1

= π1π2 · · ·π
i

where
∏

1

= 1 (5)

In presenting group data graphically, one plots points corresponding to the time of the lower

endpoint of the interval and the corresponding
∏

i

value. The plotted points are then joined by

straight-line segments, as in Figure 16.4.

There is one further complication before we present the life table estimates. If we are follow-

ing people periodically (e.g., every six months or every year), it will occasionally happen that

people cannot be located. Such subjects are called lost to follow-up in the study. Further, subjects

may be withdrawn from the study for a variety of reasons. In clinical studies in the United States,

all subjects have the right to withdraw from participation at any time. Or we might be trying to

examine a medical survival in patients who could potentially be treated with surgery. Some of

them may subsequently receive surgery; we could withdraw such patients from the analysis at

the time they received surgery. The rationale for this would be that after they received surgery,

their survival experience is potentially altered. Whatever the reason for a person being lost to

follow-up or withdrawn, this fact must be considered in the life table analysis.

To estimate the survival curve from data, the method is to estimate the π

i

and
∏

i

by the

product of the estimates of the π

i

according to equation (5). The data are usually presented in

the form of Table 16.1. How might one estimate the probability of dying in the interval whose

Figure 16.4 Form of the presentation of the survival curve for grouped survival data.

Table 16.1 Presentation of Life Table Data

Number of Subjects

Observed Alive Lost to

at Beginning Died during Follow-up during Withdrawn Alive

Interval of Interval Interval Interval during Interval

x to x + �x l

x

d

x

u

x

w

x

x(1) − x(2) l

x(1)

d

x(1)

u

x(1)

w

x(1)

x(2) − x(3) l

x(2)

d

x(2)

u

x(2)

w

x(2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x(I ) − x(I + 1) l

x(I)

d

x(I)

u

x(I)

w

x(I)
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lower endpoint is x conditionally upon being alive at the beginning of the interval? At first

glance one might reason that there were l

x

subjects, of whom (a binomial) d

x

died, so that the

estimate should be d

x

/l

x

. The problem is that those who were lost to follow-up or withdrew

during the interval might have died during the interval after withdrawing, and this would not

be counted. If such persons were equally likely to withdraw at any time during the interval, on

the average they would be observed only one-half of the time. Thus, they really represent only

one-half a person at risk. Thus the effective number of persons at risk, l

′

x

, is

l

′

x

=

l

x

− (u

x

+ w

x

)

︸ ︷︷ ︸

+
1
2

(u

x

+ w

x

)

︸ ︷︷ ︸

number observed number observed

over entire interval over 1
2

interval

(6)

= l

x

−
1
2
(u

x

+ w

x

)

where the u

x

is the number lost to follow-up and w

x

is the number withdrawing. The estimate

of the proportion dying, q

x

, is thus

q

x

=

d

x

l

′

x

The estimate of π

i

, the probability of surviving the interval x(i) to x(i + 1), is

p

x(i)

= 1 − q

x(i)

Finally, the estimate of
∏

i

= π1π2 · · ·π
i−1,

∏

1 = 1 is

P

x(i)

= p

x(1)

p

x(2)

· · · p
x(i−1)

, P

x(0)

= 1 (7)

Note that those who are lost to follow-up and those who are withdrawn alive are treated together;

that is, in the estimates, only the sum of the two is used. In many presentations such people are

lumped together as withdrawn or censored.

Before presenting the estimates, it is also clear that an estimate of the survival curve will be

more useful if some idea of its variability is given.

An estimate of the standard error of the P

x

is given by Greenwood’s formula [Greenwood,

1926]:

SE(P

x(i)

) = P

x(i)

√

√

√

√

√

i−1
∑

j=1

q

x(j)

l

′

x(j)

− d

x(j)

= P

x(i)

√

√

√

√

√

i−1
∑

j=1

q

x(j)

l

′

x(j)

p

x(j)

(8)

Confidence intervals constructed using ±1.96 times this standard error are valid only in relatively

large samples. For example, it is easy to see that these confidence intervals could extend outside

the interval [0, 1], where the probability must lie. Better confidence intervals in small samples

can be obtained by transforming P(t); they are discussed in the Notes to this chapter.

Example 16.1. The method is illustrated by data of Parker et al. [1946], as discussed in

Gehan [1969]. Those data are from 2418 males with a diagnosis of angina pectoris (chest pain

thought to be of cardiac origin) at the Mayo Clinic between January 1, 1927 and December 31,

1936. The life table of survival time from diagnosis (in yearly intervals) is shown in Table 16.2.
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Table 16.2 Life Table Analysis of 2418 Males with Angina Pectoris

x to

x + �x

(yr) l

x

d

x

u

x

w

x

l

′

x

q

x

p

x

P

x

SE(P

x

)

0–1 2418 456 0 0 2418 0.1886 0.8114 1.0000 —

1–2 1962 226 39 0 1942.5 0.1163 0.8837 0.8114 0.0080

2–3 1697 152 22 0 1686.0 0.0902 0.9098 0.7170 0.0092

3–4 1523 171 23 0 1511.5 0.1131 0.8869 0.6524 0.0097

4–5 1329 135 24 0 1317.0 0.1025 0.8975 0.5786 0.0101

5–6 1170 125 107 0 1116.5 0.1120 0.8880 0.5139 0.0103

6–7 938 83 133 0 871.5 0.0952 0.9048 0.4611 0.0104

7–8 722 74 102 0 671.0 0.1103 0.8897 0.4172 0.0105

8–9 546 51 68 0 512.0 0.0996 0.9004 0.3712 0.0106

9–10 427 42 64 0 395.0 0.1063 0.8937 0.3342 0.0107

10–11 321 43 45 0 298.5 0.1441 0.8559 0.2987 0.0109

11–12 233 34 53 0 206.5 0.1646 0.8354 0.2557 0.0111

12–13 146 18 33 0 129.5 0.1390 0.8610 0.2136 0.0114

13–14 95 9 27 0 81.5 0.1104 0.8896 0.1839 0.0118

14–15 59 6 23 0 47.5 0.1263 0.8737 0.1636 0.0123

Source: Data from Gehan [1969].

Figure 16.5 Survivorship function. (Data from Gehan [1969]; see Table 16.2.)

The survival data are given graphically in Figure 16.5. Note that in this case the proportion

rather than the percent is presented.

As a second example, we consider patients with the same diagnosis, angina pectoris; these

data are more recent.

Example 16.2. Passamani et al. [1982] studied patients with chest pain who were studied

for possible coronary artery disease. Chest pain upon exertion is often associated with coronary

artery disease. The chest pain was evaluated by a physician as definitely angina, probably angina,

probably not angina, and definitely not angina. The definitions of these four classes were:

• Definitely angina: a substantial discomfort that is precipitated by exertion, relieved by

rest and/or nitroglycerin in less than 10 minutes, and has a typical radiation to either

shoulder, jaw, or the inner aspect of the arm. At times, definite angina may be isolated to

the shoulder, jaw, arm, or upper abdomen.
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• Probably angina: has most of the features of definite angina but may not be entirely typical

in some aspects.

• Probably not angina: an atypical overall pattern of chest pain symptoms which does not

fit the description of definite angina.

• Definitely not angina: a pattern of chest pain symptoms that are unrelated to activity,

unrelieved by nitroglycerin and/or rest, and appear clearly noncardiac in origin.

The data are plotted in Figure 16.6. Note how much improved the survival of the angina

patients (definite and probable) is compared with the Mayo data of Figure 16.5. Those data had

a 52% five-year survival. These data have 91% and 85% five-year survival! This indicates the

great difficulty of using historical control data. A statistic and p-value for testing differences

among the four groups is discussed in Section 16.6.

Table 16.3 gives the calculation using 91-day intervals and four intervals to approximate a

year for one of the four groups, the definite angina patients. As a sample calculation, consider

the interval from 637 to 728 days. We see that

l

x

= 2704, u

x

+ d

x

= 281

l

′

x

= 2704 −

281

2
= 2563.5

q

x

=

12

2563.5
= 0.0047

p

x

= 1 − 0.0047 = 0.9953

P

x

= 0.9350 × 0.9953 = 0.9306

Note that the definite angina cases have the worst survival, followed by the probable angina

cases (91%). The other two categories are almost indistinguishable.

As we have seen, in the life table method we have some data for which the event in question

is not observed, often because at the time of the end of data collection and analysis, patients

are still alive. One term used for such data is censoring, a term that brings to mind a powerful,

possibly sinister figure throwing away data to mislead one in the data analysis. In this context
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Figure 16.6 Survival by classification of chest pain. (Data from Passamani et al. [1982].)
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Table 16.3 Life Table for Definite Angina Patients. Time in Days

Cumulative

Withdrawn Proportion Survival of the Effective

t (i) Enter At Risk Dead Alive Dead End of Interval SE Sample Size

0.0–90.9 2894 2894.0 44 0 0.0152 0.9848 0.002 2893.99

91.0–181.9 2850 2850.0 28 0 0.0098 0.9751 0.003 2893.99

182.0–272.9 2822 2822.0 22 0 0.0078 0.9675 0.003 2894.00

273.0–363.9 2800 2799.0 25 2 0.0089 0.9589 0.004 2893.77

364.0–454.9 2773 2773.0 23 0 0.0083 0.9509 0.004 2893.46

455.0–545.9 2750 2750.0 23 0 0.0084 0.9430 0.004 2893.23

546.0–636.9 2727 2727.0 23 0 0.0084 0.9350 0.005 2893.06

637.0–727.9 2704 2563.5 12 281 0.0047 0.9306 0.005 2882.32

728.0–818.9 2411 2394.0 17 34 0.0071 0.9240 0.005 2850.22

819.0–909.9 2360 2359.0 19 2 0.0081 0.9166 0.005 2818.52

910.0–1000.9 2339 2336.5 19 5 0.0081 0.9091 0.005 2792.12

1001.0–1091.9 2315 2035.5 11 559 0.0054 0.9042 0.006 2753.73

1092.0–1182.9 1745 1722.5 15 45 0.0087 0.8963 0.006 2654.36

1183.0–1273.9 1685 1685.0 19 0 0.0059 0.8910 0.006 2596.11

1274.0–1364.9 1675 1670.5 6 9 0.0036 0.8878 0.006 2564.52

1365.0–1455.9 1660 1274.5 9 771 0.0071 0.8816 0.007 2449.65

it refers to the fact that although one is interested in survival times, the actual survival times

are not observed for all the subjects. We have seen several sources of censored data. Subjects

may be alive at the time of analysis; (subjects) may be lost to follow-up; (subjects) may refuse

to participate further in research; or (subjects) may undergo a different therapy which removes

them from estimates of the survival in a particular therapeutic group.

The life table or actuarial method that we have used above has the strength of allowing

censored data and also uses the data with maximum efficiency. There is an important underlying

assumption if we are to get unbiased estimates of the survival in a population from which

such subjects may be considered to come. It is necessary that the withdrawal or censoring not

be associated with the endpoint. Obviously, if everyone is withdrawn because their situation

deteriorates, one would expect a bias in the estimation of death. Let us emphasize this again.

The life table estimate gives biased estimates if subjects who are censored at a given time have

higher or lower chance of failure than those not censored at that time. The assumption we need

is technically called noninformative censoring ; the term independent censoring is also used.

We return later in the chapter to the related but distinct problem of competing causes of

death, for example, examining the differences in death from cardiovascular causes in an elderly

population where many people die of cancer or infectious disease during the study.

16.4 HAZARD FUNCTION OR FORCE OF MORTALITY

In the analysis of survival data, one is often interested in examining which periods have the

highest or lowest risk of death. By risk of death, one has in mind the risk or probability among

those alive at that time. For example, in very old age there is a high risk of dying each year

among those reaching that age. The probability of any person dying, say, in the 100th year is

small because so few people live to be 100 years old.

This concept is made rigorous by the idea of the hazard function or hazard rate. (A very

precise definition of the hazard function requires ideas beyond the scope of this book and is

discussed briefly in the Notes at the end of this chapter.) The hazard function is also called the

force of mortality, age-specific death rate, conditional failure rate, and instantaneous death rate.
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Figure 16.7 Hazard function for Example 16.1. (Data from Parker et al. [1946].)

Definition 16.2. In a life table situation, the (interval or actuarial ) hazard rate is the

expected number dying in the interval, divided by the product of the average number exposed

in the interval and the interval width.

In other words, the hazard rate, λ, is the probability of dying per unit time given survival to

the time point in question. The estimate h of the hazard function is given by

h

x

=

d

x

l

′

x

− d

x

/2

1

�x

(9)

where �x(1) = x(i + 1) − x(i), the interval width. This is an estimate of the form

number dying

total exposure time

l

′

x

is an estimate of the number at risk of death. Note that this estimate is analogous to the

definition in Section 15.4. Those who die will on average have been exposed for approximately

one-half of the time interval, so the number of intervals of observed time is approximately

(l

′

x

− d

x

/2)�x. Thus, the hazard rate is a death rate; its units are proportion per unit time (e.g.,

percent per year). If the hazard rate has a constant value λ over time, the survival is exponential,

that is, S(t) = 100e

−λt , a point returned to later. The estimated hazard rate for Parker’s data of

Example 16.1 is given in Figure 16.7.

A large-sample approximation from Gehan [1969] for the SE of h is

SE(h

x

) =

{

h

3
x

l

x

q

x

[

1 −

(

h

x

�x

2

)2
]}1/2

(10)

For the data of Example 16.1, we compute the hazard function for the second interval. We find

that

h1 =

(

226

1942.5 − 226/2

)(

1

1

)

= 0.124

16.5 PRODUCT LIMIT OR KAPLAN–MEIER ESTIMATE

OF THE SURVIVAL CURVE

If survival data are recorded in great detail, accuracy is preserved by placing the data into

smaller rather than larger intervals. Obviously, if data are grouped, for example, into five-year
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intervals while the time of death is recorded to the nearest day, considerable detail is lost. The

product limit or Kaplan–Meier estimate is based on the idea of taking more and more intervals.

In the limit, the intervals become arbitrarily small.

Suppose in the following that the time at which data are censored (lost to follow-up or

withdrawn from the study) and the time of death (when observed) are measured to a high

degree of accuracy. The product limit or Kaplan–Meier (see Kaplan and Meier [1958]) estimate

(KM estimate) results from the actuarial or life table method of Section 16.4 as the number of

intervals increases in such a way that the maximum interval width approaches zero. In this case

it can be seen that the estimated survival curve is constant except for jumps at the observed

times of death. The values of the survival probability before a time of death(s) is multiplied

by the estimated probability of surviving past the time of death to find the new value of the

survival curve.

To be more precise, suppose that n persons are observed. Further, suppose that the time of

death is observed in l of the subjects at k distinct times t1 < t2 < · · · < t

k

. Let m

i

be the number

of deaths at time t

i

. The other n − l subjects are censored observations. If a censoring time and

a death occur at the same time, it is assumed that the true time of death for the censored subject

is greater than the censoring time observed. Let n

i

be the number of subjects at risk of dying

at time t

i

. That is, n

i

= n minus the number of deaths prior to t

i

and minus the number of

subjects whose observations were censored prior to time t

i

. The product limit estimate of the

survival curve expressed as a proportion is

S(t) =











































1 for t < t1

∏

i

j=1

n

i

− m

i

n

i

, t

i

≤ t < t

i+1(i < k)

0 for t

k

≤ t if m

k

= n

k

(i.e., no one survives past time t

k

)

∏

k

j=1

n

i

− m

i

n

i

for t

k

≤ t ≤ largest observed censored observation

(11)

If m

k

< n

k

, then S(t) is undefined for t > largest observed censored observation. Some software

will report either S(t) = 0 or S(t) = S(t

k

) for times after the last censored observation, but this

should not be encouraged.

We illustrate the method with an example.

Example 16.3. We again use the Stanford heart transplant data discussed in Section 15.4.

Suppose that we wished to estimate the survival of these patients given medical treatment only.

A complication is that when a donor heart becomes available, the patient has a heart transplant;

we can no longer observe what the survival without a transplant would have been. One incorrect

way to analyze such data would be the following. Since we are interested in medical survival,

we should not worry about patients who have had surgery. We should go through the records

and look at the survival curves only for patients who did not have surgery. Since by definition

such people died awaiting the donor heart, their early survival experience would be quite poor.

At the time of the Stanford study, waiting lists were short and a donor heart was transplanted

to the best-matching recipient on the waiting list [Crowley and Hu, 1977]. Thus, we may use

surgery for heart transplantation as a source of censoring for medical survival: The availability of

a heart should not be related to the severity of illness of the recipient. Current practice is quite dif-

ferent; more seriously ill patients are more likely to receive a transplant (http://www.optn.org/ ),

so the censoring by surgery would be informative (biased) in a modern study.

Table 16.4 presents the medical survival data using surgery as the source of censoring for the

Stanford heart transplant patients. The computations as described above are given. The product

limit estimate of the correct survival curve is shown by solid lines in Figure 16.8. Lines with

x’s is the incorrect curve if one ignores the effect of surgery as censoring and totally eliminates
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Table 16.4 Survival Data for Heart Transplant Patients

t (days) Death (*) n

i

(n

i

− m

i

)/n

i

S(t), t

i

≤ t < t

i+1

1 * 34 33/34 0.971

1 33

2 32

5 * 31 30/31 0.939

7 * 30 29/30 0.908

7 29

11 28

11 27

12 * 26 25/26 0.873

15 * 25 24/25 0.838

15 24

16 23

17 * 22 21/22 0.800

17 21

17 20

19 19

22 18

24 17

24 16

26 15

34 * 14 13/14 0.743

34 13

35 * 12 11/12 0.681

36 * 11 10/11 0.619

36 10

40 * 9 8/9 0.550

49 * 8 7/8 0.481

49 7

50 6

69 5

81 4

84 * 3 2/3 0.321

111 * 2 1/2 0.160

480 1

Figure 16.8 Days from acceptance in transplant program. Kaplan–Meier survival curve.
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such subjects from the analysis. Finally, note that there was one patient who spontaneously

improved under medical treatment and was reported alive at 16 months. The data of that subject

are reported in the medical survival data as a 480-day survivor. As before, an asymptotic formula

for the standard error of the estimate may be given. Greenwood’s formula for the approximate

standard error of the estimate also holds in this case. The form it takes is

SE(S(t))

.

= S(t)

√

√

√

√

i

∑

j=1

m

j

n

j

(n

j

− m

j

)

for t

i

≤ t < t

i+1 (12)

16.6 COMPARISON OF DIFFERENT SURVIVAL CURVES: LOG-RANK TEST

In this section we consider a test statistic for comparing two or more survival curves for different

groups of subjects. This statistic is based on the following idea. Take a particular interval in

which deaths occur, or in the case of the product limit curve, a time when one or more deaths

occur. Suppose that the first group considered has one-third of the subjects being observed.

How many deaths would we expect in the first group if, in fact, the survival experience is the

same for all the groups? We expect the number of deaths to be proportional to the fraction of

the people at risk of dying in the group. That is, for the first group the expected number of

deaths would be the observed number of deaths at that time divided by 3. The log-rank test uses

this simple fact. At each interval or time of death we take the observed number of deaths and

calculate the expected number of deaths that would occur in each of the groups if all had the

same risk of dying. For each group, the expected number of deaths is summed over all intervals

and then compared to the observed number of deaths. Using this comparison, we get a statistic,

the log-rank statistic, which has approximately a chi-square distribution with k − 1 degrees of

freedom when k groups are observed. We formalize this.

Suppose that one is interested in comparing the survival experience of k populations. Suppose

that there are M different times at which deaths appear. For the life table method, this will usually

be each interval. In the product limit approach, each death observed will be associated with a

unique time. At the mth time, let d

im

be the number of deaths observed in the ith population

and l

im

be the number at risk of dying. (For the life table approach with withdrawals, l

ij

is the

appropriate l

′

x

.) The data may be presented in M 2 × k contingency tables with totals:

1 2 · · · k

d1m

d2m

· · · d

km

D

m

dying

l1m

− d1m

l2m

− d2m

. . . l

km

− d

km

A

m

alive

l1m

l2m

· · · l

km

T

m

total

m = 1, 2, . . . , M

If all of the k populations are at equal risk of death, the probability of death will be the same

in each population, and conditionally upon the row and column totals,

E(d

im

) =

l

im

D

m

T

m

(13)

as in the chi-square test for contingency tables.

In the ith population, the total number of deaths observed is

O

i

=

M

∑

m=1

d

im

(14)



676 ANALYSIS OF THE TIME TO AN EVENT: SURVIVAL ANALYSIS

Examining all of the times of death, the expected number of deaths in the ith population is

E

i

=

M

∑

m=1

E(d

im

) =

M

∑

m=1

l

im

D

m

T

m

(15)

The test statistic is then computed from the observed minus expected values. A simple approx-

imate statistic suitable for hand calculation is

X

2
=

k

∑

i=1

(O

i

− E

i

)

2

/

E

i

(16)

The statistic is written in the familiar form of the chi-square test for comparing observed and

expected values. [If any E

i

= 0, define (O

i

−E

i

)

2
/E

i

= 0.] Under the null hypothesis of equal

survival curves in the k groups this statistic will have approximately a chi-square distribution

with k−1 degrees of freedom. The approximation is good when the subjects at risk are distributed

over the k groups in roughly the same proportions at all times. The complete formulas for the

log-rank test, which is implemented in most major statistics packages, are given in Note 16.3.

The log-rank test is illustrated by using the data of the Stanford transplant patients (Table 16.4)

and comparing them with the data of Houston heart transplant patients, as reported in Messmer

et al. [1969]. The time of survival for 15 Houston patients is read from Figure 16.9 and therefore

has some inaccuracy.

Ordering both the Stanford and Houston transplant patients by their survival time after trans-

plantation and status (dead or alive) gives Table 16.5. The dashes for the d

im

values indicate

where withdrawals occur, and those lines could have been omitted in the calculation. One stops

when there are no future deaths at a time when members of both populations are present.

Figure 16.9 Survival of 15 patients given a cardiac allograft. Arrows indicate patients still alive on March

1, 1969. (Data from Messmer et al. [1969].)
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Table 16.5 Stanford and Houston Survival Data

Stanford Houston

Day l1m

d1m

l2m

d2m

E(d1m

) E(d2m

)

1 20 1 15 0 0.571 0.429

3 19 1 15 0 0.559 0.441

4 18 0 15 1 0.545 0.455

6 18 0 14 2 1.125 0.875

7 18 0 12 1 0.600 0.400

10 18 1 11 0 0.621 0.379

12 17 0 11 1 0.607 0.393

15 17 1 10 0 0.630 0.370

24 16 1 10 0 0.615 0.385

39 15 1 10 0 0.600 0.400

46 14 1 10 0 0.583 0.417

48 13 0 10 1 0.565 0.435

54 13 0 9 1 0.591 0.409

60 13 1 8 0 0.619 0.381

61 12 1 8 1 1.200 0.800

102 11 0 7 0 — —

104 10 0 6 0 — —

110 10 0 6 1 0.625 0.375

118 10 0 5 0 — —

127 9 1 5 0 0.643 0.357

136 8 1 5 0 0.615 0.385

146 7 0 5 1 0.583 0.417

148 7 0 4 1 0.636 0.364

169 7 0 3 1 0.700 0.300

200 7 0 2 1 0.778 0.222

Summing the appropriate columns, one finds that

O1 =

∑

m

d1m

= 11

E1 =

∑

m

E(d1m

) = 14.611

O2 =

∑

m

d2m

= 13

E2 =

∑

m

E(d2m

) = 9.389

The log-rank statistic is 2.32. The simple, less powerful approximation is X

2
= (11−14.611)

2
/

14.611+(13−9.389)

2
/9.389 = 2.28. Looking at the critical values of the chi-square distribution

with one degree of freedom, there is not a statistically significant difference in the survival

experience of the two populations.

Another approach is to look at the difference between survival curves at a fixed time point.

Using either the life table or Kaplan–Meier product limit estimate at a fixed time T

o

, one can

estimate the probability of survival to T

o

, say, S(T

o

) and the standard error of S(T

o

), SE(S(T

o

)),

as described in the sections above. Suppose that a subscript is used on S to denote estimates

for different populations. To compare the survival experience of two populations with regard to
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surviving to T

o

, the following statistic is N(0, 1), as the sample sizes become large [when the

null hypothesis of S1(To

) = S2(To

) is valid]:

Z =

S1(To

) − S2(To

)

√

SE(S1(To

))

2
+ SE(S2(To

))

2
(17)

A one- or two-sided test may be performed, depending on the alternative hypothesis of interest.

For k groups, to compare the probability of survival to time T

o

, the estimated values may be

compared by constructing multiple comparison confidence intervals.

16.7 ADJUSTMENT FOR CONFOUNDING FACTORS BY STRATIFICATION

In Example 16.2, in the Coronary Artery Surgery Study (Passamani et al., 1982), the degree

of impairment due to chest pain pattern was related to survival. Patients with pain definitely

not angina had a better survival pattern than patients with definite angina. The chest pain

status is predictive of survival. These patients were studied by coronary angiography; the

amount of disease in their coronary arteries as well as their left ventricular performance (the

performance of the pumping part of the heart) were also evaluated. One might argue that

the amount of disease is a more fundamental predictor than type of chest pain. If the pain

results from coronary artery disease that affects the arteries and ventricle, the latter affects

survival more fundamentally. We might ask the question: Is there additional prognostic infor-

mation in the type of chest pain if one takes into account, or adjusts for, the angiographic

findings?

We have used various methods of adjusting for variables. As discussed in Chapter 2, twin

studies adjust for genetic variation by matching people with the same genetic pattern. Analo-

gously, matched-pairs studies match people to be (effectively) twins in the pertinent variables;

this adjusts for covariates. One step up from this is stratified analysis. In this case, the strata

are to be quite homogeneous. People in the same strata are (to a good approximation) the same

with respect to the variable or variables used to define the strata. One example of stratified

analysis occurred with the Mantel–Haenszel procedure for summing 2 × 2 tables. The point of

the stratification was to adjust for the variable or variables defining the strata. In this section we

consider the same approach to the analysis of the life table or actuarial method of comparing

survival curves from different groups.

16.7.1 Stratification of Life Table Analyses: Log-Rank Test

To extend the life table approach to stratification is straightforward. The first step is to per-

form the life table survival analysis within each stratum. If we do this for the four chest pain

classes as discussed in Example 16.2 to adjust for angiographic data, we would use strata

that depend on the angiographic findings. This is done below. Within each of the strata, we

will be comparing persons with the same angiographic findings but different chest pain sta-

tus. The log-rank statistic may be computed separately for each of the strata, giving us an

observed and expected number of deaths for each group being studied. Somehow we want

to combine the information across all the strata. This was done, for example, in the Mantel–

Haenszel approach to 2 × 2 tables. We do this by summing the values for each group of

the observed and expected numbers of deaths for the different strata. These observed and

expected numbers are then combined into a final log-rank statistic. Note 16.3 gives the details

of the computation of the statistic. Because it is based on many more subjects, the final

statistic will be much more powerful then the log-rank statistic for any one stratum, pro-

vided that there is a consistent trend in the same direction within strata. We illustrate this

by example.
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Example 16.2. (continued ) We continue with our study of chest pain groups. We would

like to adjust for angiographic variables. A study of the angiographic variables showed that most

of the prognostic information is contained within these variables:

1. The number of vessels diseased of the three major coronary vessels

2. The number of proximal vessels diseased (i.e., the number of diseased vessels where the

disease is near the point where the blood pumps into the heart)

3. The left ventricular function, measured by a variable called LVSCORE

Various combinations of these three variables were used to define 30 different strata. Table 16.6

gives the values of the variables and the strata. Separate survival curves result in the differing

strata. Figures 16.10 and 16.11 present the survival curves for two of the different strata used.

Note that the overall p-value is 0.69, a result that is not statistically significant. Thus although

the survival patterns differ among chest pain categories, the differences may be explained by

different amounts of underlying coronary artery disease. In other words, adjustment for the

arteriographic and ventriculographic findings removed the group differences.

Note that of 30 strata, one p-value, that of stratum 25, is less than 0.05. Because of the

multiple comparison problem, this is not a worry. Further, in this stratum, the definite angina

cases have one observed and 0.03 expected deaths. As the log-rank statistic has an asymptotic

chi-square distribution, the small expected number of deaths make the asymptotic distribution

inappropriate in this stratum.

16.8 COX PROPORTIONAL HAZARD REGRESSION MODEL

In earlier work on the life table method, we observed various ways of dealing with factors

that were related to survival. One method is to plot data for different groups, where the groups

were defined by different values on the factor(s) being analyzed. When we wanted to adjust for

covariates, we examined stratified life table analyses. These approaches are limited, however, by

the numbers involved. If we want to divide the data into strata on 10 variables simultaneously,

there will be so many strata that most strata will contain no one or at most one person. This

makes comparisons impossible. One way of getting around the number problem is to have an

appropriate mathematical model with covariates. In this section we consider the Cox proportional

hazards regression model. This model is a mathematical model of survival that allows covariate

values to be taken into account. Use of the model in survival analysis is quite similar to the

multiple regression analysis of Chapter 11. We first turn to examination of the model itself.

16.8.1 Cox Proportional Hazard Model

Suppose that we want to examine the survival pattern of two people, one of whom initially is

at higher risk than the other. A natural way to quantify the idea of risk is the hazard function

discussed previously. We may think of the hazard function as the instantaneous probability of

dying given that a person has survived to a particular time. The person with the higher risk will

have a higher value for the hazard function than a person who has lower risk at the particular

time. The Cox proportional hazard model works with covariates; the model expresses the hazard

as a function of the covariate values. The major assumption of the model is that if the first person

has a risk of death at the initial time point that is, say, twice as high as that of a second person,

the risk of death at later times is also twice as large. We now express this mathematically.

Suppose that at the average value of all of our covariates in the population, the hazard at time

t , is denoted by h0(t). Any other person whose values on the variables being considered are not

equal to the mean values will have a hazard function proportional to h0(t). This proportionality

constant varies from person to person depending on the values of the variables. We develop this
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Figure 16.10 Example 16.4: survival curves for stratum 7. Cases have one proximal vessels diseased with

good ventricular function (LVSCORE of 5–11).
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Figure 16.11 Example 16.4: survival curves for stratum 29. Cases have three proximal vessels diseased

with impaired ventricular function (LVSCORE of 12–17).

algebraically. There are variables X1, . . . , X

p

to be considered. Let X denote the values of all

the X

i

, that is, X = (X1, . . . , X

p

).

1. If a person has X = X = (X1, . . . , X

p

), the hazard function is h0(t).

2. If a person has different values for X, the hazard function is h0(t)C, where C is a constant

that depends on the values of X. If we think of the hazard as depending on X, as well as

t , the hazard is

h0(t)C(X)
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3. For any two people with values of X = X(1) and X = X(2), respectively, the ratio of

their two hazard functions is

h0(t)C(X(1))

h0(t)C(X(2))

=

C(X(1))

C(X(2))

(18)

The hazard functions are proportional; the ratio does not depend on t .

Let us reiterate this last point. Given two people, if one has one-half as much risk initially

as a second person, then at all time points, risk is one-half that of the second person. Thus, the

two hazard functions are proportional, and such models are called proportional hazard models.

Note that proportionality of the hazard function is an assumption that does not necessarily

hold. For example, if two people were such that one is to be treated medically and the second

surgically by open heart surgery, the person being treated surgically may be at higher risk initially

because of the possibility of operative mortality; later, however, the risk may be the same or

even less than that of the equivalent person being treated medically. In this case, if one of the

covariate values indicates whether a person is treated medically or surgically, the proportional

hazards model will not hold. In a given situation you need to examine the plausibility of the

assumption. The model has been shown empirically to hold reasonably well for many populations

over moderately long periods, say five to 10 years. Still, proportional hazards is an assumption.

As currently used, one particular parametric form has been chosen for the proportionality con-

stant C(X). Since it multiplies a hazard function, this constant must always be positive because

the resulting hazard function is an instantaneous probability of an endpoint and consequently

must be nonnegative. A convenient functional form that reasonably fits many data sets is

C(X) = e

α+β1X1+···+β

p

X

p

, where α = −β1X1 − · · · − β

p

X

p

(19)

In this parameterization, the unknown population parameters β

i

are to be estimated from a data

set at hand.

With hazard h0(t), let S0,pop(t) be the corresponding survival curve. For a person with

covariate values X = (X1, . . . , X

p

), let the survival be S(t |X). Using the previous equations,

the survival curve is

S(t |X) = (S0,pop(t))
exp(α+β1X1+···+β

p

X

p

) (20)

That is, the survival curve for any person is obtained by raising a standard survival curve

[S0,pop(t)] to an appropriate power. To estimate this quantity, the following steps are performed:

1. Estimate S0,pop and α, β1, . . . , β

p

by S0(t), a, b1, . . . , b

p

. This is done by a computer

program. The estimation is too complex to do by hand.

2. Compute Y = a + b1X1 + · · · + b

p

X

p

[where X = (X1, . . . , X

p

)].

3. Compute k = e

Y .

4. Finally, compute S0(t)
k .

The estimated survival curve is the population curve (the curve for the mean covariate values)

raised to a power. If the power k is equal to 1, corresponding to e

0, the underlying curve for

S0 results. If k is greater than 1, the curve lies below S0, and if k is less than 1, the curve lies

above S0. This is presented graphically in Figure 16.12.

Note several factors about these curves:

1. The curves do not cross each other. This means that a procedure having a high initial

mortality, such as a high dose of radiation in cancer therapy, but better long-term survival,
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Figure 16.12 Proportional hazard survival curves as a function of k = e

a+b1x1+···+b

p

x

p .

Figure 16.13 Two survival curves without proportional hazards.

as in Figure 16.13, could not be modeled by the proportional hazard model with one of

the variables, say X1, equal to 1 if the therapy were radiation and 0 if an alternative

therapy were used.

2. The proportionality constant in the proportional hazard model,

e

α+β1x1+···+β

p

x

p

is parametric. We have not specified the form of the underlying survival S0. This curve

is not estimated by a parametric model but by other means.
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3. Where there is a plateau in one curve, the other curve has a plateau at the same time points.

The proportional hazards assumption implies that covariates do not affect the timing of

plateaus or other distinctive features of the curves, only their height.

16.8.2 Example of the Cox Proportional Hazard Regression Model

The Cox proportional hazard model is also called the Cox proportional regression model or the

Cox regression model. The reason for calling this model a regression model is that the dependent

variable of interest, survival, is modeled upon or “regressed upon” the values of the covariates

or independent variables. The analogies between multiple regression and the Cox regression are

quite good, although there is not a one-to-one correspondence between the techniques. Computer

software for Cox regression typically produces at least the quantities shown in Table 16.7.

The following example illustrates the use of the Cox proportional hazards model.

Example 16.4. The left main coronary artery is a short segment of the arteries delivering

blood to the heart. Two of the three major arterial systems branch off the left main coronary

artery. If this artery should close, death is almost certain. Two randomized clinical trials (Veter-

ans’ Administration Study Group, Takaro et al. [1976] and the European Coronary Surgery Study

Group [1980]) reported superior survival in patients undergoing coronary artery bypass surgery.

Chaitman et al. [1981] examined the observational data of the Coronary Artery Surgery Study

(CASS), registry. Patients were analyzed as being in the medical group until censored at the time

of surgery. They were then entered into the surgical survival experience at the day of surgery.

A Cox model using a therapy indicator variable was used to examine the effect of therapy.

Eight variables were used in this model:

• CHFSCR: a score for congestive heart failure (CHF). The score ranged from 0 to 4; 0

indicated no CHF symptoms. A score of 4 was indicative of severe, treated CHF.

• LMCA: the percent of diameter narrowing of the left main coronary artery due to

atherosclerotic heart disease. By selection, all cases had at least 50% narrowing of the

left main coronary artery (LMCA).

• LVSCR: a measure of ventricular function, the pumping action of the heart. The score

ranged from 5 (normal) to a potential maximum of 30 (not attained). The higher the score,

the worse the ventricular function.

• DOM: the dominance of the heart shows whether the right coronary artery carries the

usual amount of blood; there is great biological variability. Patients are classed as right or

balanced dominance (DOM = 0). A left-dominant subject has a higher proportion of blood

flow through the LMCA, making left main disease even more important (DOM = 1).

• AGE: the patient’s age in years.

• HYPTEN: Is there a history of hypertension? HYPTEN = 1 for yes and HYPTEN = 0

for no.

• THRPY: This is 1 for medical therapy and 2 for surgical therapy.

• RCA: This variable is 1 if the right coronary artery has ≥ 70% stenosis and is zero

otherwise.

The Cox model produces the results shown in Table 16.8. The chi-square value for CHFSCR

is found by the square of β divided by the standard error. For example, (0.2985/0.0667)

2
=

20.03, which is the chi-square value to within the numerical accuracy. The underlying survival

curve (at the mean covariate values) has probabilities 0.944 and 0.910 of one- and two-year

survival, respectively. The first case in the file has values CHFSCR = 3, LMCA = 90, LVSCR =

18, DOM = 0, AGE = 49, HYPTEN = 1, THRPY = 1, and RCA = 1. What is the estimated
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Table 16.7 Computer Output for Cox Regression

Output Description Use of Output

b

i

Estimate of the regression

coefficient β

i

1. The b

i

give an estimate of the increase in

risk (the hazard function) for different val-

ues of X1, . . . , X

p

.

2. The regression coefficients allow

estimation of e

α+β1X1+···+β

p

X

p by

e

a+b1x1+···+b

p

x

p . By using this and the

estimate of S0(t), we can estimate survival

for any person in terms of the values of

X1, . . . , X

p

for each time t .

SE(b

i

) Estimated standard error of

b

i

1. The distribution of b

i

is approximately

N(β

i

, SE(b

i

)

2
) for large sample sizes. We

can obtain 100(1 − α)% confidence inter-

vals for β

i

as (b

i

− z1−α/2SE(b

i

), b

i

+

z1−α/2SE(b

i

)).

2. We test for statistical significance of β

i

(in

a model with the other X

j

’s) by rejecting

β

i

= 0 if b

2
i

/[SE(b

i

)]2
≥ χ

2
1,1−α

. χ

2
1,1−α

is

the 1 − α percentile of the χ

2 distribution

with one degree of freedom. This χ

2 test or

the equivalent z test is also given by most

software.

Model chi-square Chi-square value for the

entire model with p

degrees of freedom

1. For nested models the chi-square values

may be subtracted (as are the degrees of

freedom) to give a chi-square test.

2. For a single model this chi-square statis-

tic tests for any relationships among the

X1, . . . , X

p

and the survival experience.

The null hypothesis tested is β1 = · · · =

β

p

= 0, which is only occasionally an

interesting null hypothesis. This is analo-

gous to testing for zero multiple correlation

between survival and (X1, . . . , X

p

) in a

multiple regression setting.

S0(t) and α, or S0(t)
α Estimate of the survival

function for a person

with covariate values

equal to the mean of each

variable, or for a person

with zero values of the

covariate

1. With S0(t) and a, or S0(t)
α and the b

i

, we

may plot the estimated survival experience

of the population for any fixed value of the

covariates.

2. For a fixed time, say t0, by varying the val-

ues of the covariates X, we may present

the effect of combinations of the covariate

values (see Example 16.5).

probability of one- and two-year survival for this person?

a + b1X1 + · · · + b

n

X

n

= −2.8968 + (0.2985 × 3) + (0.0178 × 90)

+ (0.1126 × 18) + (1.2331 × 0) + (0.0423 × 49)

+ (−0.5428 × 1) + (−1.0777 × 1)

+ (0.5285 × 1)

= 2.6622
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Table 16.8 Results of Cox Model Fitting

Standard

Variable Beta Error Chi-Square Probability

CHFSCR 0.2985 0.0667 20.01 0.0000

LMCA 0.0178 0.0049 13.53 0.0002

LVSCR 0.1126 0.0182 38.41 0.0000

DOM 1.2331 0.3564 11.97 0.0006

AGE 0.0423 0.0098 18.75 0.0000

HYPTEN −0.5428 0.1547 12.31 0.0005

THRPY −1.0777 0.1668 41.77 0.0000

RCA 0.5285 0.2923 3.27 0.0706

Constant −2.8968

estimated probability of one-year survival = 0.944e

2.6622

= 0.94414.328

= 0.438

estimated probability of two-year survival = 0.91014.328

= 0.259

The estimated probability of survival under medical therapy is 44% for one year and 26% for

two years. This bad prognosis is due largely to heart failure (CHFSCR) and very poor ventricular

function (LVSCR).

16.8.3 Interpretation of the Regression Coefficients βi

In the multiple regression setting, the regression coefficients may be interpreted as the average

difference in the response variables between cases where the predictor variable differs by one

unit, with everything else the same. In this section we look at the interpretation of the β

i

for the Cox proportional hazard model. Recall that the hazard function is proportional to the

probability of failure in a short time interval. Suppose that we have two patients whose covariate

values are the same on all the p regression variables for the Cox model with the exception

of the ith variable. If we take the ratio of the hazard functions for the two people at some

time t , we have the ratio of the probability of an event in a short interval after time t . The

ratio of these two probabilities is the relative risk of an event during this time period. This

is also called the instantaneous relative risk. For the Cox proportional hazards model, we find

that

instantaneous relative risk (RR) =

h0(t)e
α+β1X1+···+β

i

X

(1)

i

+···+β

p

X

p

h0(t)e
α+β1X1+···+β

i

X

(2)

i

+···+β

p

X

p

= e

β

i

(X

(1)

i

−X

(2)

i

) (21)

An equivalent formulation is to take the logarithm of the instantaneous relative risk (RR). The

logarithm is given by

ln(RR) = β

i

(X

(1)

i

− X

(2)

i

) (22)
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In words, the regression coefficients β of the Cox proportional hazard model are equal to the

logarithm of the relative risk if the variable X is increased by one unit.

16.8.4 Evaluating the Proportional Hazards Assumption

One graphical assessment of the proportional hazards assumption for binary (or categorical)

variables plots the cumulative hazard in each group on a logarithmic scale. Under the proportional

hazards assumption, the resulting curves should be parallel, that is, separated by a constant

vertical difference (the reason is given in Section 16.8.3). Although popular, these log-log plots

are not particularly useful. Judging whether two curves (as opposed to straight lines) are parallel

is difficult, and the problem is compounded by the fact that the uncertainty in the estimated log

hazard varies substantially along the curves.

An better approach to judging proportional hazards involves smoothed plots of the scaled

Schoenfeld residuals, proposed by Therneau and Grambsch [2000]. These plots, available in

Stata and S, estimate how a coefficient β

i

varies over time. In addition to an easier visual

interpretation, the Schoenfeld residual methods provide a formal test of the proportional hazards

assumption and are valid for continuous as well as categorical variables.

The technical details of the Schoenfeld residual methods are complex, but there is a simple

underlying heuristic. Suppose that the hazard ratio for, say, hypertension is greater than unity.

Hypertensive persons will be overrepresented among the deaths in any given period. If, in

addition, the hazard ratio increases with time, overrepresentation of hypertensives among the

deaths will increase with time. By calculating the proportion of hypertensives among the deaths

and the population at risk in each short interval of time, we should be able to detect the increasing

hazard ratio.

If there is substantial nonproportionality of hazards, it may be desirable to stratify the model

(see Section 16.10.2) on the variable in question, or to define a time-dependent variable as in

Example 16.7 in Section 16.10.2.

Example 16.5. Primary biliary cirrhosis is a rare, autoimmune disease of the liver. Until

the advent of liver transplantation, it was untreatable and eventually fatal. The Mayo Clinic

performed a randomized trial of one proposed treatment, d–penicillamine, in 312 patients. The

treatment was not effective, but the data from the trial have been used to develop a widely used

prognostic model for survival of this disease. The data for this model have been made available

on the Web by Terry Therneau of the Mayo Clinic and are linked in the Web appendix.

The Mayo model includes five covariates:

• BILI: logarithm of serum bilirubin concentration. Bilirubin is excreted in the bile and

accumulates in liver disease.

• PROTIME: logarithm of the prothrombin time, a measure of blood clotting. Prothrombin

time is increased when the liver fails to produce certain clotting factors.

• ALBUMIN: logarithm of serum albumin concentration. The liver produces albumin to

prevent blood plasma from leaking out of capillaries.

• EDTRT: edema (fluid retention), coded as 0 for no edema, 1
2

for untreated edema or edema

resolved by treatment, 1 for edema present despite treatment.

• AGE: in tens of years. Age affects the risk for almost any cause of death.

Figure 16.14 shows scatter plots for two of these covariates against survival time. The cen-

sored observations are indicated by open triangles, the deaths by filled circles. There is clearly

a relationship with both variables. It is also interesting to note that according to Fleming and

Harrington [1991, Chap. 5], the outlying value of 18 for prothrombin time was a data-entry

error; it should be 11.
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Figure 16.14 Scatter plots of survival time vs. PROTIME and BILI in the Mayo PBC data. Triangles

indicate censored times.

The Mayo model has the following coefficients:

Variable b se(b)

BILI 0.88 0.10

EDTRT 0.79 0.30

ALBUMIN −3.06 0.72

PROTIME 3.01 1.02

AGE 0.33 0.08

The survival function for someone with no edema, albumin of 3.5 mg/dL, prothrombin time

of 10 seconds, bilirubin of 1.75 mg/dL, and age 50 is:

t (yr) S(t) (%) t (yr) S(t) (%)

1 98 6 80

2 97 7 74

3 92 8 68

4 88 9 61

5 84 10 51

Figure 16.15 shows a scaled Schoenfeld residual plot for PROTIME. The smooth curve that

estimates β(t) shows that the logarithm of the hazard ratio for elevated prothrombin time is

very high initially and then decreases to near zero over the first three to four years. That is, a

patient with high prothrombin time is at greatly increased risk of death, but a patient who had

a high prothrombin time four years ago and is still alive is not at particularly high risk. The

p-value for nonproportionality for PROTIME is 0.055, so there is moderately strong evidence

that the pattern we see in Figure 16.15 is real.

16.8.5 Use of the Cox Model as a Method of Adjustment

In Section 16.7 we considered stratified life table analyses to adjust for confounding factors

or covariates. The Cox model may be used for the same purpose. As in the multiple linear

regression model, there are two ways in which we may adjust. One is to consider a variable

whose effect we want to study in relationship to survival. Suppose that we want adjust for
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Figure 16.15 Assessing proportional hazards for PROTIME with scaled Schoenfeld residuals.

variables X1, . . . , X

k

. We run the Cox proportional hazards regression model with the variable

of interest and the adjustment covariates in the model. The statistical significance of the variable

of interest may be tested by taking its estimated regression coefficient, dividing by its standard

error and using a normal probability critical value. An equivalent approach, similar to nested

hypotheses in the multiple linear regression model, is to run the Cox proportional hazards model

with only the adjusting covariates. This will result in a chi-square statistic for the entire model.

A second Cox proportional hazards model may be run with the variable of interest in the model

in addition to the adjustment covariates. This will result in a second chi-square statistic for

the model. The chi-square statistic for the second model minus the chi-square statistic for the

first model will have approximately a chi-square distribution with one degree of freedom if the

variable of interest has no effect on the survival after adjustment for the covariates X1, . . . , X

p

.

Example 16.5. (continued ) Of the 418 patients in the Mayo Clinic PBC data set, 312 agreed

to participate in the randomized trial and 106 refused. As the data from the randomized trial were

used to develop a predictive model for survival, it is important to know whether the randomized

and nonrandomized patients differ in important ways.

A simple comparison of survival times in these two groups does not answer quite the right

question. Suppose that patients agreeing to be randomized had longer survival times but also had

lower levels of bilirubin that were sufficient to explain their improved survival. This discrepancy

in survival times does not invalidate the model. Conversely, if the two groups had very similar

survival times despite a difference in average bilirubin levels, this would be evidence against the

model.

We can estimate the adjusted difference between the randomized and nonrandomized patients

by fitting a Cox model that has the five Mayo model predictors and an additional variable

indicating which group the patient is in. The estimated hazard ratio for nonrandomized patients

is 0.97, with a 95% confidence interval from 0.66 to 1.41. We would not typically report

coefficients and confidence intervals for the other adjusting covariates; their associations with

survival are not of direct interest in this analysis.

There is no evidence of any difference in survival between randomized and nonrandomized

patients in this study, but the confidence intervals are quite wide, so these differences have not

been ruled out.

Other examples of estimating adjusted contrasts using the Cox model appear in Section 16.10.
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Figure 16.16 Log plot for exponential survival.

16.9 PARAMETRIC MODELS

16.9.1 Exponential Model; Rates

Suppose that at each instant of time, the instantaneous probability of death is the same. That is,

suppose that the hazard rate or force of mortality is constant. Although in human populations

this is not a useful assumption over a wide time interval, it may be a valid assumption over a

five- or 10-year interval, say.

If the constant hazard rate is λ, the survival curve is S(t) = e

−λt . From this expression

the term exponential survival arises. The expected length of survival is 1/λ. If the exponential

situation holds, the parameter λ is estimated by the number of events divided by total expo-

sure time. The methods and interpretation of rates are then appropriate. If S(t) is exponential,

log S(t) = −λt is a straight line with slope −λ. Plotting an estimate of S(t) on a logarithmic

scale is one way of visually examining the appropriateness of assuming an exponential model.

Figure 16.16 shows some of the patterns that one might observe.

To illustrate this we return to the Mayo primary biliary cirrhosis data set but now consider

an analysis of time until loss to follow-up, that is, a survival analysis where the event is loss to

follow-up. To avoid confusing patients lost to follow-up with those alive and under observation

at the end of the study, we look at just the first eight years of the study. From the plot one

sees that the data do not look exponential (Figure 16.17). Rather, it appears that the hazard of

dropping out is initially very low and increases progressively.

16.9.2 Two Other Parametric Models for Survival Analysis

There are a variety of parametric models for survival distributions. In this section, two are

mentioned. For details of the distributions and parameter estimates, the reader is referred to
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Figure 16.17 Loss to follow-up of 312 randomized and 106 nonrandomized patients with primary biliary

cirrhosis.

texts by Mann et al. [1974] and Gross and Clark [1975]. These books also present a variety of

models not touched on here.

The two-parameter Weibull distribution has a survival curve of the form

S(t) = e

−αt

β

for t > 0 (α > 0, β > 0) (23)

If β = 1, the Weibull distribution is the exponential model with constant hazard rate. The

hazard rate decreases with time if β < 1 and increases with time if β > 1. Often, if the time of

survival is measured from diagnosis of a disease, a Weibull with β > 1 will reasonably model

the situation. Estimates are made by computer.

Another distribution, the lognormal distribution, assumes that the logarithm of the survival

time is normally distributed. If there is no censoring of data, one may work with the logarithm

of the survival times and use methods appropriate for the normal distribution.

Regression versions of the exponential, lognormal, Weibull, and other parametric survival

models are also available in many statistical packages. The exponential and Weibull models are

special cases of the Cox proportional hazards model and have little advantage over the Cox

model. The lognormal model is not related to the Cox model.

16.10 EXTENSIONS

16.10.1 Cox Model with Time-Dependent Covariates

If two groups are defined by some baseline measurement, such as smokers and nonsmokers,

their hazard ratio would be expected to change over time simply because some of the smokers

will stop smoking and lower their risk of death. For this reason it may be desirable to base the

hazard ratio at time t on the most recent available values of covariates rather than on the values

at the start of follow-up. The Cox model is then most naturally written in terms of the hazard

rather than the survival:

hazard at time t = h0(t) exp
[

α + β1X1(t) + β2X2(t) + · · · + β

p

X

p

(t)

]

and we write X1(t) for the value of X1 at time t .
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The hazard ratio between two subjects with covariates X(1) and X(2) is then

h(t; X(1)

)

h(t; X(2)

)

=

h0(t) exp[α + β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

h0(t) exp[α + β1X1(t)
(2)

+ β2X2(t)
(2)

+ · · · + β

p

X

p

(t)

(2)]

=

exp[β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

exp[β1X1(t)
(1)

+ β2X2(t)
(1)

+ · · · + β

p

X

p

(t)

(1)]

= exp
{

β1

[

X1(t)
(1)

− (X1(t)
(2)

]

+ β2

[

X2(t)
(1)

− (X2(t)
(2)

]

+ · · · + β

p

[

X

p

(t)

(1)

− (X

p

(t)

(2)

]}

In the constant-covariate situation, the proportional hazards assumption means that the hazard

ratio does not change over time; in the time-dependent situation, it means that the hazard ratio

changes only due to changes in the covariates over time.

Example 16.6. An example of time-dependent covariates comes from a study by Holt and

colleagues [2002] that examined the effects of court protective orders on abuse of women by

their domestic partners. In this study the time-dependent covariates were the presence (1) or

absence (0) of temporary restraining orders and permanent restraining orders. At the start of the

study, after the first police report of abuse, both variables would be zero. Most of the women in

the study (2366) never obtained a protection order, so the variable remained at zero. Of those

who obtained a two-week temporary order (325), about half (185) later obtained a permanent

order. The time-dependent Cox model compares the risk of abuse in women who do and do

not have each type of protective order at the same time after their initial incident. Cox models

thus reduce the potential for confounding by time since the initial incident: Since permanent

protective orders tend to happen later in time, when risks are already lower, they might appear

protective even if they actually had no effect.

Temporary restraining orders were associated with an increase in the hazard of psychological

abuse (hazard ratio 4.9, 95% confidence interval 2.6 to 8.6) and no change in the hazard of

physical abuse (hazard ratio 1.6, 95% CI 0.6 to 4.4). Permanent restraining orders appeared to

reduce physical abuse (hazard ratio 0.2, 95% CI 0.1 to 0.8) and have no effect on psychological

abuse (hazard ratio 0.9, 95% CI 0.5 to 1.7).

In some settings it may be more appropriate to use values of covariates for some short or

long period in the past rather than the instantaneously updated values. These time-dependent

variables reflect the history of exposure rather than just the current status.

Example 16.7. Heckbert et al. [2001] studied how the risk of a recurrent heart attack

changed over time in women who had already had one heart attack and were taking hor-

mone replacement therapy (HRT). Estrogen, the active ingredient of HRT, is known to improve

cholesterol levels but also to increase blood clotting, and so might have positive or negative

effects on heart disease. A recent randomized trial, HERS [Hulley et al., 1998], suggested that

the balance of risk and benefit might change over time.

The researchers hypothesized that having recently started hormone replacement therapy would

increase the risk of heart attack, but that long-term therapy might not increase the risk. They

defined three time-dependent exposure variables:

• STARTING: 1 for women taking HRT who started less than 60 days ago, 0 otherwise

• RECENT: 1 for women taking HRT who started between 60 and 365 days previously, 0

otherwise

• LONGTERM: 1 for women taking HRT who started more than a year ago, 0 otherwise
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The hypothesis was that the coefficients for STARTING would be positive (increased risk),

but that coefficients for RECENT and LONGTERM would be lower, and possibly negative.

They found that the hazard ratio e

b for STARTING was 2.16, with a 95% confidence interval,

0.94 to 4.95, not quite excluding 1. The hazard ratio for LONGTERM was 0.76, a with 95%

confidence interval 0.42 to 1.36.

Time-dependent covariates are not always appropriate. In particular, they do not result in

useful predictive models: In order to estimate the chance of surviving for the next five years, it

is necessary to have covariate values for the next five years to plug into the model.

Even when time-dependent models are appropriate, they involve significantly more complex

computation, however, good facilities for time-dependent Cox models are now available in many

major statistics packages. Computational details vary between packages, and between versions

of the same package, but the basic approach is to break each person’s data into many short time

intervals on which their covariates are constant. These time intervals are treated as if they came

from separate people, which is valid as long as each person can have only one event.

Time-dependent covariates are discussed in many of the recent textbooks on survival analy-

sis, including Therneau and Grambsch [2000], Klein and Moeschberger [1997], and Kleinbaum

[1996] and in older references such as Kalbfleisch and Prentice [1980] and Breslow and

Day [1987].

16.10.2 Stratification in the Cox Model

The Cox model, which assumes that hazards are proportional over time, can be extended to a

stratified model in which hazards need only be proportional within the same stratum and can

differ arbitrarily between strata. Stratification can be useful when a small number of important

variables do not satisfy the proportional hazards assumption. In addition to the usual difficulties

that occur with stratifying on too many variables, the stratified model also suffers from the fact

that it is not possible to test the effects of the stratifying variables.

For example, Lumley et al. [2002] constructed a predictive model for the risk of stroke in

elderly people. The rates of stroke were not proportional between men and women, so a model

stratified by gender was used. Instead of a single underlying survival curve S

o

(t), the model

has curves S

m

(t) for men and S

w

(t) for women. The hazard ratio for other covariates, such

as diabetes or smoking, is assumed to be constant over time within each stratum. The hazard

ratio may be constrained to be the same for women and men or allowed to differ. As Table 16.9

shows, the stroke prediction model used a common hazard ratio for diabetes in men and women,

but the hazard ratio for history of heart disease was allowed to differ between men and women.

A Java applet showing this model is linked from the Web appendix.

Table 16.9 Stratified Cox Model for Risk of Stroke

Mean Coefficient

2495 Men 3393 Women Men Women

Left ventricular hypertrophy

by ECG (%)

5.1 4.9 0.501

Diabetes (%) 14.9 12.5 0.521

Elevated fasting glucose (%) 19.0 14.4 0.347

Creatinine >1.25 mg/dL (%) 39.6 8.1 0.141

Time to walk 15 ft (s) 5.5 6.0 0.099

Systolic blood pressure (mmHg) 143 144 172/10

History of heart disease (%) 26.5 16.1 0.445 0.073

Atrial fibrillation by ECG (%) 3.5 2.1 0.4097 1.346

Age (yr) 73 73 0.382/10 0.613/10
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16.10.3 Left Truncation

In the examples discussed so far, the survival time has been measured from the beginning of

the study, so that all subjects are under observation from time 0 under they die or are censored.

There are situations where this is not feasible. Consider a study of occupational exposure to a

potential carcinogen, where workers at a factory are interviewed about their past exposure and

other risk factors such as cancer, and then followed up.

It would be desirable to set time zero to be when each worker was first employed at the factory

rather than the date when the study was performed. This would more accurately approximate the

ideal study that recruited everyone as they entered employment and followed them for the rest of

their lives. There is a serious complication, however. Workers who died before the study started

will not be included, making the sample biased. This phenomenon is called left truncation.

Truncation is not quite the same as censoring, although both involve incomplete information.

With censoring, we have information on only part of a person’s life. With truncation, we have

no information on some people and complete information on others.

The solution to left truncation is similar to the solution to right censoring. If we break time

up into short intervals, each person contributes information about the probability of surviving

through an interval given that one is alive at the start of the interval. These probabilities can

be multiplied to give an overall survival probability. Most statistical software will allow you to

specify an entry time as well as a survival or censoring time, and will fit Cox regression models

to data specified in this way.

In the occupational exposure example, consider a worker who started at the factory in 1955,

who entered the study in 1985, and who died in 1995. We want to take time to be 0 in 1955, so

the entry time is 1985 − 1955, or 30 years, and the survival time is 1995 − 1955, or 40 years.

Another worker might have started at the factory in 1975, been recruited in 1985, and still be

alive at the end of the study in 2000. This would give an entry time of 1985 − 1975, or 10

years, and a censoring time of 2000 − 1975, or 25 years.

Breslow and Day [1987] discuss an example of this sort in some detail, comparing the

effects of placing time zero at different events in analyzing the cancer risks of workers at a

nickel refinery.

16.10.4 Other References Dealing with Survival Analysis and Heart Transplant Data

The first heart transplant data has been used extensively as an illustration in the development of

survival techniques. Further references are Mantel and Byar [1974], Turnbull et al. [1974], and

Crowley and Hu [1977].

NOTES

16.1 Recurrent Events

Some events can occur more than once for the same person. Although it is usually possible to

study just the time until the first event, it may be useful to incorporate subsequent events to

increase the information available. The hazard formulation of survival analysis extends naturally

to recurrent events. The hazard (now often called the intensity) is still defined in terms of the

probability of having an event in a small interval of time, conditional on being alive and under

observation. The difference is that now a person can still be alive and under observation after an

event occurs. Although computation for recurrent event models is fairly straightforward, there

are a number of important methodologic issues that need to be considered. In particular, there is

no really satisfactory way to handle recurrent events and deaths in the same analysis. Volume 16,

No. 18 of Statistics in Medicine (April 30, 1997) has a number of papers discussing these issues.

The Web appendix to this chapter includes some examples of analyses of recurrent infections

in children with chronic granulomatous disease, a genetic immune deficiency.
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16.2 More on the Hazard Rate and Proportional Hazards

Many of the concepts presented in this chapter are analogs of continuous quantities that are best

defined in terms of calculus. If the survival function is S(t), its probability density function is

f (t) = −

dS(t)

dt

The hazard rate is then

h(t) =

f (t)

S(t)

From this it follows that the survival is found from the hazard rate by the equation

S(t) = e

−

∫

t

0 h(x) dx

The quantity

H(t) =

∫

t

0

h(x) dx = − log S(t)

is called the cumulative hazard. Under the proportional hazards assumption, the cumulative

hazards H1 and H2 for two groups of cases are related by

H1(t) = λ × H2(t)

so

log H1(t) = log λ + log H2(t)

16.3 Log-Rank Statistic and Log-Rank Statistic for Stratified Data

We present the statistic using some matrix ideas. The notation is that of Section 16.6 on the

log-rank test. For the ith group at the mth time of a death (or deaths), there were d

im

deaths and

l

im

persons at risk. Suppose that we have k groups and M times of death. For i, j = 1, . . . , k,

let

V

ij

=























∑

M

m=1

l

im

(T

m

− l

im

)D

m

(T

m

− D

m

)

T

2
m

(T

m

− 1)

, i = j

∑

M

m=1

−l

im

l

jm

D

m

(T

m

− D

m

)

T

2
m

(T

m

− 1)

, i �= j

Define the (k − 1) × (k − 1) matrix V by

V =













V11 V12 · · · V1,k−1

V21

.

.

.

.

.

.

.

.

.

V

k−1,1 . . . . . . V

k−1,k−1















696 ANALYSIS OF THE TIME TO AN EVENT: SURVIVAL ANALYSIS

Define vectors of observed and expected number of deaths in groups 1, 2, . . . , k − 1 by

O =







O1

.

.

.

O

k−1






, E =







E1

.

.

.

E

k−1







The log-rank statistic is

(O − E)

′
V

−1
(O − E)

where ′ denotes a transpose and −1 a matrix inverse. If there are s = 1, . . . , S strata, for each

stratum we have O, E, and V . Let these values be indexed by s to denote the strata. The log-rank

statistic is

[

S

∑

s=1

(O
s

− E
s

)

]′ (
S

∑

s=1

V

s

)−1 [
S

∑

s=1

(O
s

− E
s

)

]

16.4 Estimating the Probability Density Function in Life Table Methods

The density function in the interval from x(i) to x(i + 1) for the life table is estimated by

f

i

=

P

i

− P

i+1

x(i + 1) − x(i)

The standard error of f

i

is estimated by

p

i

q

i

√

x(i + 1) − x(i)





i−1
∑

j=1

q

j

l

′

j

p

j

+

p

i

l

′

i

q

i





1/2

16.5 Other Confidence Intervals for the Survival Function

Direct use of Greenwood’s formula to construct confidence intervals in small samples can

lead to confidence intervals that cross 0% or 100% survival. Even when this does not occur,

the confidence intervals do not perform very well. Better confidence intervals are obtained

by multiplying, rather than adding, the same quantity above and below the estimated survival

function. That is, the confidence interval is given by

[

Ŝ(t) × exp

(

−z

α/2
se(Ŝ(t))

Ŝ(t)

)

, Ŝ(t) × exp

(

z

α/2
se(Ŝ(t))

Ŝ(t)

)]

Bie et al. [1987] studied this interval and a more complicated one based on transforming S(t)

to arcsin{exp[−S(t)/2]} and found that both performed well even with only 25 observations,

half of which were censored.

16.6 Group Expected Survival

The baseline survival curve S0(t) estimates the survival probability at time t for a person whose

covariates equal the average of the population. This is not the same as the survival curve expected

for the population S(t) as estimated by the Kaplan–Meier method. The population curve S(t)
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decreases faster than S0(t) initially, as those with worse-than-average covariates die and then

flattens out relative to S0(t), as the remaining sample has better-than-average covariates. The

difference between S(t) and S0(t) is more pronounced when covariate effects are strong and

when there is little censoring.

The relationship between the curves is that the population curve is the average of all the

predicted individual survival curves:

S(t) =

∑

i

S0(t)
e

α+β1X1+β2X2+···+β

p

X

p

This relationship can be used to predict the population curve for a new population and compare it

to the expected population, an extension of the direct standardization of rates in Chapter 15. For

example, the predictions of a Cox model can be validated in a new population by dividing the

new population into groups and comparing the expected S(t) for each group with the observed

survival curve calculated by the Kaplan–Meier method.

Example 16.5. (continued ) Figure 16.18 compares the expected and observed survival rates

for the 106 nonrandomized patients from the Mayo Clinic PBC data. These patients were divided

into three equal groups based on the risk predicted by the Mayo model. The Kaplan–Meier

survival curve and the group expected survival curve were calculated for each of the three groups.

The relatively smooth lines are the expected survival; the stepped lines are the Kaplan–Meier

estimates. There is no suggestion that the expected and observed curves differ importantly.
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Figure 16.18 Expected and observed survival curves for three groups of nonrandomized patients.
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For a stratified life table analysis, the same calculation of expected survival can be done

more easily. In this context it is called the method of direct adjustment. Suppose that we want

to compare survival in treatment groups j = 1, 2 and we have strata i = 1, 2, . . . , m. We

calculate the survival curve for each treatment group in each stratum S

ij

(t) and then add up

over strata

S

j

(t) =

m

∑

i=1

S

ij

(t)r

i

where r

i

is the proportion of subjects in stratum i.

16.7 Competing Risks

In certain situations one is only interested in certain causes of death that may be linked to the

disease in question. For example, in a study of heart disease a death in a plane crash might

be considered an unreasonable endpoint to attribute to the disease. It is tempting to censor

people who die of genuinely unrelated causes. This cannot be true noninformative censoring, as

someone who dies in a plane crash certainly has a reduced (zero) risk of heart disease in the

future. On the other hand, there seems to be no way that these deaths would bias the remaining

sample. It turns out that conclusions from Cox regression in this case are basically valid but

that estimated survival curves need to be rethought. Such endpoints are called competing risks.

In a more complicated version of the problem, there is often interest in the effects of a

treatment on more than one type of event. Lowering blood pressure reduces the risk of death

from stroke, heart attack, cardiac arrest, and congestive heart failure, but different drugs may

affect these events differently. Inference for these dependent competing risks is much more

difficult and is complicated further by the fact that it is theoretically impossible to determine

whether competing risks are dependent or independent. When all the events are rare, as in

primary prevention of cardiovascular disease, ignoring the competing-risks problem may be a

satisfactory practical approach. With more common events, this is not possible.

In some cases it is appropriate to treat deaths from other causes as indicating indefinitely long

“survival” for the cause of interest. For example, consider a study of time to stroke in elderly

people (e.g., Section 16.10.2). If a subject dies from breast cancer at 3.5 years follow-up, her

chance of ever having a stroke is known exactly: She never will. This can be represented by

censoring her observation time not at the time of death but at a time after the end of the study. The

resulting survival curve will estimate the proportion of people who have not had strokes, which

will not decrease to zero as follow-up time increases. In other cases this approach is undesirable

because decreases in stroke risk and increases in other risks have the same impact—in a clinical

trial of stroke prevention one would not want to declare the treatment successful just because it

made people die of other causes.

Kalbfleisch and Prentice [2003], Gross and Clark [1975], and Prentice et al. [1978] discuss

such issues. Pepe and Mori [1993] discuss alternatives to estimating the cause-specific survival

function. Misuse of the cause-specific survival function has been an important issue in radiation

oncology and is discussed by Gelman et al. [1990]. The impossibility of testing for dependent

competing risks was shown by Tsiatis [1978]. The proof is highly technical but the result should

be intuitively plausible: No data are available after censoring, so there should be no way to tell

if survival is the same as for noncensored people.

A related issue is multivariate failure time, where events of different types can be observed for

the same person. These could be ordered events, such as cancer recurrence and death; multiple

versions of the same event, such as time to vision impairment in left and right eyes; or separate

events, such as time to marriage and time to having children. Therneau and Grambsch [2000]

discuss multivariate failure times, as does Lin [1994]. Somewhat surprisingly, this is a more

tractable problem than competing risks.
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16.8 Counting Process Notation

Many modern books on survival analysis and most recent statistical papers on the subject use

a different mathematical notation from ours, the counting process notation. We have described

each person’s data by a covariate vector X
i

, an observation time T

i

, and a censoring indicator

�

i

. The counting process notation replaces the time and censoring indicator with two functions

of time: N

i

(t), which counts the number of times the person has been observed to “die” by time

t , and Y

i

(t), which is 1 when the person is under observation and 0 otherwise. The covariate

vector is usually called Z
i

(t) rather than X
i

.

For ordinary survival data this means N

i

(t) = 0 and Y

i

(t) = 1 for t < T

i

, N

i

(t) = �

i

and

Y

i

(t) = 1 for t = T

i

, and N

i

(t) = �

i

and Y

i

(t) = 0 for t > T

i

. The notation dN

i

(t) means the

jump in N

i

at time t . This is zero except at the time of a death, when it is 1.

As a final complication, integral notation is used to indicate sums over a time point. For

example, the notation
∫

Z

i

(t) dNi(t) means the sum of Z

i

(t) × dN

i

(t) over all time points. As

dNi(t) = 0 except at the time of death, this is 0 if the person is censored and is Z

i

(T

i

) if the

person dies at time T

i

.

This apparently cumbersome notation was introduced initially for purely mathematical reasons.

It becomes more obviously useful when handling recurrent events [when N

i

(t) counts the number

of events that have occurred], or left-truncation, when Y

i

(t) = 0 before entry into the study to

indicate that a death at that time would not have been observed. Klein and Moeschberger [1997]

provide a reasonably accessible treatment of survival analysis using counting process notation.

PROBLEMS

The first four problems deal with the life table or actuarial method of estimating the survival

curve. In each case, fill in the question marks from the other numbers given in the table.

16.1 Example 16.2 deals with chest pain in groups in the Coronary Artery Surgery Study;

all times are in days. The life table for the individuals with chest pain thought probably

not to be angina is given in Table 16.10.

16.2 From Example 16.2 for patients with chest pain thought definitely to be angina the life

table is as given in Table 16.11.

16.3 Patients from Example 16.4 on a beta-blocking drug are used here and those not on

a beta-blocking drug in Problem 16.4. The life table for those using such drugs at

enrollment is given in Table 16.12.

16.4 Those not using beta-blocking drugs have the survival experience shown in Table 16.13.

16.5 Take the Stanford heart transplant data of Example 16.3. Place the data in a life table

analysis using 50-day intervals. Plot the data over the interval from zero to 300 days.

(Do not compute the Greenwood standard errors.)

16.6 For Problem 16.1, compute the hazard function (in probability of dying/day) for inter-

vals:

(a) 546–637

(b) 1092–1183

(c) 1456–1547

16.7 For the data of Problem 16.2, compute the hazard rate for the patients:

(a) 0–91

(b) 91–182

(c) 819–910
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Table 16.10 Life Table for Patients with Chest Pain Probably Not Angina

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 2404 2404.0 2 0 0.0008 0.9992 ?

91.0–181.9 2402 ? 2 0 0.0008 0.9983 ?

182.0–272.9 2400 2400.0 ? 0 0.0021 0.9963 0.001

273.0–363.9 2395 2395.0 6 0 ? 0.9938 0.002

364.0–454.9 ? 2388.0 4 2 0.0017 0.9921 0.002

455.0–545.9 2383 2383.0 3 0 0.0013 ? 0.002

546.0–636.9 2380 2380.0 7 0 0.0029 0.9879 0.002

637.0–727.9 2373 ? 12 300 ? ? 0.003

728.0–818.9 2061 2051.5 ? 19 0.0015 0.9812 0.003

819.0–909.9 ? 2039.0 1 0 0.0005 0.9807 0.003

910.0–1000.9 2038 2037.0 2 ? 0.0010 0.9797 0.003

1001.0–1091.9 2034 ? 3 517 0.0017 0.9781 0.003

1092.0–1182.9 1514 1494.0 3 40 0.0020 0.9761 0.003

1183.0–1273.9 1471 1471.0 4 0 ? 0.9734 0.004

1274.0–1364.9 1467 1466.5 1 1 0.0007 0.9728 0.004

1365.0–1455.9 ? 1144.0 1 642 0.0009 0.9719 0.004

1456.0–1546.9 822 777.5 1 ? 0.0013 0.9707 0.004

1547.0–1637.9 732 732.0 1 0 0.0014 ? 0.004

1638.0–1728.9 731 730.0 2 2 0.0027 0.9667 0.004

1729.0–1819.9 727 449.0 1 ? 0.0022 0.9645 0.005

Table 16.11 Life Table for Patients with Definite Angina

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 426 426.0 2 ? 0.0047 0.9953 0.003

91.0–181.9 ? 424.0 2 0 0.0047 0.9906 ?

182.0–272.9 422 ? 3 0 ? ? 0.006

273.0–363.9 419 419.0 0 0 0.0000 0.9836 0.006

364.0–454.9 419 419.0 1 0 0.0024 0.9812 0.007

455.0–545.9 418 417.5 ? 1 0.0024 0.9789 0.007

546.0–636.9 416 416.0 1 0 0.0024 0.9765 0.007

637.0–727.9 415 382.0 0 ? 0.0000 0.9765 0.007

728.0–818.9 349 343.0 0 11 0.0000 0.9765 0.007

819.0–909.9 338 338.0 1 0 0.0030 0.9736 0.008

910.0–1000.9 337 336.5 0 1 0.0000 0.9736 0.008

1001.0–1091.9 336 ? 1 97 ? ? 0.009

1092.0–1182.9 238 232.5 0 11 0.0000 0.9702 0.009

1183.0–1273.9 227 ? 1 1 0.0044 0.9660 0.010

1274.0–1364.9 ? 224.5 1 1 0.0045 0.9617 0.010

1365.0–1455.9 ? 170.0 0 106 0.0000 0.9617 0.010

1456.0–1446.9 117 114.0 ? 6 0.0000 0.9617 0.010

1547.0–1637.9 ? ? 0 1 0.0000 0.9617 0.010

1638.0–1728.9 110 109.5 0 1 0.0000 0.9617 0.010

1729.0–1819.9 109 65.5 0 87 0.0000 0.9617 0.010
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Table 16.12 Life Table for Patients Taking a β-Blocker

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 4942 4942.0 ? 0 0.0097 0.9903 0.001

91.0–181.9 4894 4894.0 33 0 0.0067 0.9836 0.002

182.0–272.9 4861 4861.0 ? ? 0.0058 0.9779 ?

273.0–363.9 4833 4832.5 28 1 0.0058 0.9723 0.002

364.0–454.9 4804 4804.0 17 0 0.0035 ? 0.002

455.0–545.9 4787 4786.5 29 1 ? ? 0.003

546.0–636.9 4757 4757.0 22 0 0.0046 0.9585 0.003

637.0–727.9 4735 4376.0 25 718 0.0057 0.9530 0.003

728.0–818.9 ? ? ? 62 0.0043 0.9489 0.003

819.0–909.9 3913 3912.0 23 2 ? 0.9434 0.003

910.0–1000.9 3888 3884.5 19 7 0.0049 0.9388 0.004

1001.0–1091.9 ? ? ? 1191 0.0040 0.9350 0.004

1092.0–1182.9 2658 2624.5 14 67 0.0053 0.9300 0.004

1183.0–1273.9 2577 2576.5 11 1 0.0043 0.9261 0.004

1274.0–1364.9 2565 2561.0 15 8 ? 0.9206 0.004

1365.0–1455.9 2542 1849.5 12 1385 0.0065 0.9147 0.005

1456.0–1446.9 1145 1075.0 5 ? 0.0047 ? 0.005

1547.0–1637.9 1000 999.0 4 2 0.0040 0.9068 0.005

1638.0–1728.9 994 989.0 4 10 0.0040 0.9031 0.006

1729.0–1819.9 980 580.0 5 800 0.0086 0.8953 0.006

Table 16.13 Life Table for Patients Not Taking a β-Blocker

Withdraw Proportion Cumulative

t (i) Enter At Risk Dead Alive Dead Survival SE

0.0–90.9 6453 ? 45 0 ? ? ?

91.0–181.9 6408 ? 28 0 ? ? ?

182.0–272.9 6380 ? 42 0 ? ? ?

273.0–363.9 6338 ? 25 2 ? ? ?

364.0–454.9 6311 6310.0 24 2 0.0038 0.9746 0.002

455.0–545.9 6285 6285.0 32 0 0.0051 0.9696 0.002

546.0–636.9 6253 6253.0 ? 0 0.0048 0.9650 0.002

637.0–727.9 6223 5889.0 23 668 0.0039 0.9612 0.002

728.0–818.9 ? ? 23 40 0.0042 0.9572 0.003

819.0–909.9 ? 5467.0 17 4 ? 0.9542 0.003

910.0–1000.9 5448 5444.5 23 7 0.0042 0.9502 0.003

1001.0–1091.9 5418 4787.4 25 1261 0.0052 0.9452 0.003

1092.0–1182.9 4132 4082.0 ? 100 0.0054 0.9401 0.003

1183.0–1273.9 4010 4010.0 23 0 0.0057 0.9347 0.003

1274.0–1364.9 3987 3981.0 18 ? 0.0020 0.9329 0.003

1365.0–1455.9 3967 3100.0 13 1734 0.0042 0.9289 0.003

1456.0–1446.9 2220 2104.0 13 ? 0.0062 0.9232 0.004

1547.0–1637.9 1975 1974.0 ? 2 0.0020 0.9213 0.004

1638.0–1728.9 1969 1961.5 11 15 0.0056 0.9162 0.004

1729.0–1819.9 1943 1212.0 17 7 0.0058 0.9109 0.005
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16.8 Data used by Pike [1966] are quoted in Kalbfleisch and Prentice [2003]. Two groups of

rats with different pretreatment regimes were exposed to the carcinogen DBMA. The

time to mortality from vaginal cancer in the two groups was: (∗ indicates a censored

observation):

• Group 1: 143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 216∗, 220, 227, 230,

234, 244∗, 246, 265, 304

• Group 2: 142, 156, 163, 198, 204∗, 205, 232, 232, 233, 233, 233, 233, 239, 240,

261, 280, 280, 296, 296, 323, 344∗

(a) Compute and graph the two product limit curves of the groups.

(b) Compute the expected number of deaths in each group and the value of the

approximation [
∑

(O − E)

2
/E] to the log-rank test. Are the survival times dif-

ferent in the two groups at the 5% significance level?

(c) How close is the approximate log-rank statistic to the exact value reported by

your favorite statistics software?

16.9 The data of Problems 16.3 and 16.4, where stratified into the 30 strata discussed in the

text, give the results shown in Table 16.14.

(a) What are the observed and expected numbers in the two groups? (Why do you

have to add only three columns?)

(b) Two strata (12 and 17) are significant with p = 0.02. If the true survival patterns

(in the conceptual underlying populations) are the same, does this surprise you?

(c) What is
∑

(O−E)

2
/E? How does this compare to the more complicated log-rank

statistic which can be shown to be 6.510?

16.10 The paper by Chaitman et al. [1981] studied patients with left main coronary artery

disease, as discussed in Example 16.4. Separate Cox survival runs were performed for

the medical and surgical groups. The data are presented in Table 16.15. The survival,

at the mean covariate values, for one, two, and three years are given by S0(1), S0(2),

and S0(3), respectively. The zero–one variables are 0 for no and 1 for yes. Consider

five patients with the variable values given in Table 16.16.

(a) What is the estimate of the two-year medical survival for patients 1, 2,

and 3?

(b) What is the estimate of the three-year surgical survival for patients 4 and 5?

(c) What are the estimated one-year medical and one-year surgical survival rates for

patient 1? For patient 3?

(d) What is the logarithm of the instantaneous relative risk for two individuals treated

medically who differ by 20 years, but otherwise have the same values for the

variables? What is the instantaneous relative risk?

(e) What is the instantaneous relative risk due to diabetes (yes vs. no) for surgical

cases?

*(f) What is the standard error for the LV score coefficient for the surgical group? For

the age coefficient for the medical group? Form an approximate 95% confidence

interval for the age coefficient in the medical group.

16.11 Alderman et al. [1983] studied the medical and surgical survival of patients with poor

left ventricular function; that is, they studied patients whose hearts pumped poorly.

Their model (in one analysis) included the following variables:
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Table 16.14 Drug Use Data for Problem 16.9

Drug Use No Drug Use

Stratum Obs. Exp. Obs. Exp. p-Value

1 45 43.30 71 72.70 0.74

2 2 2.23 4 3.77 0.84

3 0 0.20 1 0.80 0.54

4 27 28.54 37 35.46 0.69

5 6 4.84 5 6.16 0.48

6 2 0.76 1 2.24 0.08

7 20 16.87 20 23.13 0.31

8 4 5.25 10 8.75 0.49

9 3 3.17 5 4.83 0.90

10 18 16.55 21 22.45 0.63

11 5 6.68 9 7.32 0.35

12 8 4.58 1 4.42 0.02

13 21 16.04 13 17.96 0.08

14 6 8.95 16 13.05 0.19

15 2 2.63 5 4.37 0.61

16 16 16.82 20 19.81 0.78

17 5 9.86 15 10.14 0.02

18 4 4.40 5 4.60 0.78

19 7 11.48 16 11.52 0.06

20 10 8.98 8 9.02 0.62

21 4 2.89 2 3.11 0.34

22 21 19.67 24 25.33 0.68

23 13 14.59 20 18.41 0.56

24 5 6.86 11 9.14 0.32

25 35 29.64 21 26.36 0.14

26 18 14.82 13 16.18 0.24

27 7 8.89 8 6.11 0.29

28 22 17.08 18 22.92 0.10

29 11 11.24 15 14.76 0.92

30 8 9.11 8 6.89 0.52

• Impairment: impairment due to congestive heart failure (CHF); 0 = never had CHF;

1 = had CHF but have no impairment; 2 = mild CHF impairment; 3 = moderate

CHF impairment; and 4 = severe CHF impairment

• Age: in years

• LMCA: percent of diameter narrowing of the left main coronary artery

• EF: ejection fraction, the percent of the blood in the pumping chamber (left ventricle)

of the heart pumped out during heartbeat

• Digitalis: Does the patient use digitalis? 1 = yes, 2 = no

• Therapy: 1 = medical; 2 = surgical

• Vessel: number (0 to 3) of vessels diseased with 70% or more stenosis

The β values and their standard errors are given in Table 16.17.

(a) Fill in the chi-square value column where missing.

(b) For which variables is p < 0.10? 0.05? 0.01? 0.001?
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Table 16.15 Significant Independent Predictors of Mortality in Patients with Greater Than 50%

Stenosis of the Left Main Coronary Artery

Medical Group Surgical Group

Variable X

2a

β

i

X

2a

β

i

LV score (5–30) 19.12 0.1231 18.54 0.1176

CHF score (0–4) 9.39 0.2815 8.16 0.2964

Age 14.42 0.0526 6.98 0.0402

% LMCA stenosis (50–100) 19.81 0.0293 — —

Hypertension (0–1) 9.41 0.7067 5.74 0.5455

Left dominance (0–1) — — 10.23 1.0101

Smoking (1 = never, 2 = ever, 3 = present) 7.26 0.4389 — —

MI status (0 = none, 1 = single, 2 = multiple) 4.41 −0.2842 — —

Diabetes (0–1) — — 4.67 0.5934

Total chi-square 90.97 — 67.11 —

Degrees of freedom 7 — 6 —

p <0.0001 — <0.0001 —

Constant c −7.2956 −3.7807

Estimated survival

S0(1) 0.90 0.97

S0(2) 0.83 0.95

S0(3) 0.76 0.93

aAdjusted chi-square (X2) statistics were computed with all variables considered together. Chi-square >6.63 corresponds
to p < 0.01, and chi-square >10.83, to p < 0.001. β, beta coefficient; CHF, congestive heart failure; LMCA, left main
coronary artery; LV, left ventricular; MI, myocardial infarction. Dashes indicate a variable not in the particular model.

Table 16.16 Variable Data for Problem 16.10

Patient Number

Variable 1 2 3 4 5

LV score 13 5 7 8 12

CHF score 2 0 1 0 3

Age 71 62 42 55 46

Percent LMCA stenosis 75 90 50 70 95

Hypertension No Yes Yes No No

Left dominance No No No Yes No

Smoking Ever Present Ever Ever Present

MI status Multiple None Single None Single

Diabetes No No No Yes No

Table 16.17 Data for Problem 16.11

Variable Beta Standard Error Chi-Square

Impairment 0.2677 0.0505 ?

Age 0.0430 0.0084 26.02

LMCA 0.0090 0.0024 ?

EF −0.0362 0.0098 ?

Digitalis −0.3802 0.1625 ?

Therapy −0.3418 0.1458 5.49

Vessel 0.2081 0.1012 4.23

Constant −1.2873
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Table 16.18 Variable Data for Problem 16.11

Patient Number

Variable 1 2 3

Impairment Severe Mild Moderate

Age 64 51 59

LMCA 50% 0% 0%
EF 15 32 23

Digitalis Yes Yes Yes

Therapy Medical Surgical Medical

Vessel 3 2 3

(c) What is the instantaneous relative risk of 70% LMCA compared to 0% LMCA?

(d) Consider three patients with the covariate values given in Table 16.18.

At the mean values of the data, the one- and two-year survival were 88.0%

and 80.16%, respectively. Find the probability of one- and two-year survival for

these three patients.

(e) With this model: (i) Can surgery be better for one person and medical treat-

ment for another? Why? What does this say about unthinking application of the

model? (ii) Under surgical therapy, can the curve cross over the estimated medi-

cal survival for some patients? For heavy surgical mortality, would a proportional

hazard model always seem appropriate?

16.12 The Clark et al. [1971] heart transplant data were collected as follows. People with

failing hearts waited for a donor heart to become available; this usually occurred

within 90 days. However, some patients died before a donor heart became available.

Figure 16.19 plots the survival curves of (1) those not transplanted (indicated by circles)

and (2) the transplant patients from time of surgery (indicated by the triangles).

Figure 16.19 Survival calculated by the life table method. Survival for transplanted patients is calculated

from the time of operation; survival of nontransplanted patients is calculated from the time of selection for

transplantation.
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(a) Is the survival of the nontransplanted patients a reasonable estimate of the non-

operative survival of candidates for heart transplant? Why or why not?

(b) Would you be willing to conclude from the figure (assuming a statistically signif-

icant result) that 1960s heart transplant surgery prolonged life? Why or why not?

(c) Consider a Cox model fitted with transplantation as a time-dependent covariate:

h

i

(t) = h0(t)e
exp(α+β×TRANSPLANT(t))

The estimate of β is 0.13, with a 95% confidence interval (−0.46, 0.72). (Verify

this if you have access to suitable software.) What is the interpretation of this

estimate? What would you conclude about whether 1960s-style heart transplant

surgery prolongs life?

(d) A later, expanded version of the Stanford heart transplant data includes the age

of the participant and the year of the transplant (from 1967 to 1973). Adding

these variables gives the following coefficients:

Variable β se(β) p-value

Transplant −0.030 0.318 0.92

Age 0.027 0.014 0.06

Year −0.179 0.070 0.01

What would you conclude from these results, and why?

16.13 Simes et al. [2002] analyzed results from the LIPID trial that compared the cholesterol-

lowering drug pravastatin to placebo in preventing coronary heart disease events. The

outcome defined by the trial was time until fatal coronary heart disease or nonfatal

myocardial infarction.

(a) The authors report that Cox model with one variable coded 1 for pravastatin and

0 for placebo gives a reduction in the risk of 24% (95% confidence interval,

15 to 32%). What is the hazard ratio? What is the coefficient for the treatment

variable?

(b) A second model had three variables: treatment, HDL (good) cholesterol level after

treatment, and total cholesterol level after treatment. The estimated risk reduction

for the treatment variable in this model is 9% (95% confidence interval, −7 to

22%). What is the interpretation of the coefficient for treatment in this model?

16.14 In an elderly cohort, the death rate from heart disease was approximately constant at

2% per year, and from other causes was approximately constant at 3% per year.

(a) Suppose that a researcher computed a survival curve for time to heart dis-

ease death, treating deaths from other causes as censored. As described in

Section 16.9.1, the survival function would be approximately S(t) = e

−0.02t .

Compute this function at 1, 2, 3, . . . ,10 years.

(b) Another researcher computed a survival curve for time to non-heart-disease death,

censoring deaths from heart disease. What would the survival function be? Com-

pute it at 1, 2, 3, . . . ,10 years.

(c) What is the true survival function for deaths from all causes? Compare it to the

two cause-specific functions and discuss why they appear inconsistent.
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