
C H A P T E R 17

Sample Sizes for Observational Studies

17.1 INTRODUCTION

In this chapter we deal with the problem of calculating sample sizes in various observational set-

tings. There is a very diverse literature on sample size calculations, dealing with many interesting

areas. We can only give you a feeling for some approaches and some pointers for further study.

We start the chapter by considering the topic of screening in the context of adverse effects

attributable to drug usage, trying to accommodate both the “rare disease” assumption and the

multiple comparison problem. Section 17.3 discusses sample-size considerations when costs of

observations are not equal, or the variability is unequal; some very simple but elegant relationships

are derived. Section 17.4 considers sample size consideration in the context of discriminant

analysis. Three questions are considered: (1) how to select variables to be used in discriminating

between two populations in the face of multiple comparisons; (2) given that m variables have been

selected, what sample size is needed to discriminate between two populations with satisfactory

power; and (3) how large a sample size is needed to estimate the probability of correct classification

with adequate precision and power. Notes, problems, and references complete the chapter.

17.2 SCREENING STUDIES

A screening study is a scientific fishing expedition: for example, attempting to relate exposure

to one of several drugs to the presence or absence of one or more side effects (disease). In such

screening studies the number of drug categories is usually very large—500 is not uncommon—

and the number of diseases is very large—50 or more is not unusual. Thus, the number of

combinations of disease and drug exposure can be very large—25,000 in the example above. In

this section we want to consider the determination of sample size in screening studies in terms

of the following considerations: many variables are tested and side effects are rare. A cohort

of exposed and unexposed subjects is either followed or observed. We have looked at many

diseases or exposures, want to “protect” ourselves against a large Type I error, and want to know

how many observations are to be taken. We proceed in two steps: First, we derive the formula

for the sample size without consideration of the multiple testing aspect, then we incorporate the

multiple testing aspect. Let

X1 = number of occurrences of a disease of interest (per 100,000

person-years, say) in the unexposed population
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X2 = number of occurrences (per 100,000 person-years) in the

exposed population

If X1 and X2 are rare events, X1 ∼ Poisson(θ1) and X2 ∼ Poisson(θ2). Let θ2 = Rθ1; that

is, the risk in the exposed population is R times that in the unexposed population (0 < R < ∞).

We can approximate the distributions by using the variance stabilizing transformation (discussed

in Chapter 10):

Y1 =

√

X1 ∼ N(

√

θ1, σ

2
= 0.25)

Y2 =

√

X2 ∼ N(

√

θ2, σ

2
= 0.25)

Assuming independence,

Y2 − Y1 ∼ N

(

√

θ1(

√

R − 1), σ

2
= 0.5

)

(1)

For specified Type I and Type II errors α and β, the number of events n1 and n2 in the unexposed

and exposed groups required to detect a relative risk of R with power 1 − β are given by the

equation

n1 =

(Z1−α/2 + Z1−β

)

2

2(

√

R − 1)

2
, n2 = Rn1 (2)

Equation (2) assumes a two-sided, two-sample test with an equal number of subjects observed

in each group. It is an approximation, based on the normality of the square root of a Poisson

random variable. If the prevalence, π1, in the unexposed population is known, the number of

subjects per group, N , can be calculated by using the relationship

Nπ1 = n1 or N = n1/π1 (3)

Example 17.1. In Section 15.4, mortality was compared in active participants in an exercise

program and in dropouts. Among the active participants, there were 16 deaths in 593 person-

years of active participation; in dropouts there were 34 deaths in 723 person-years. Using an α of

0.05, the results were not significantly different. The relative risk, R, for dropouts is estimated by

R =

34/723

16/593
= 1.74

Assuming equal exposure time in the active participants and dropouts, how large should the

sample sizes n1 and n2 be to declare the relative risk, R = 1.74, significant at the 0.05 level with

probability 0.95? In this case we use a two-tailed test and Z1−α/2 = 1.960 and Z1−β

= 1.645,

so that

n1 =

(1.960 + 1.645)

2

2(

√

1.74 − 1)

2
= 63.4

.

= 64 and n2 = (1.74)n1 = 111

for a total number of observed events = n1 + n1 = 64 + 111 = 175 deaths. We would need

approximately (111/34) × 723 = 2360 person-years exposure in the dropouts and the same

number of years of exposure among the controls. The exposure years in the observed data are

not split equally between the two groups. We discuss this aspect further in Note 17.1.

If there is only one observational group, the group’s experience perhaps being compared

with that of a known population, the sample size required is n1/2, again illustrating the fact that

comparing two groups requires four times more exposure time than comparing one group with

a known population.
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Table 17.1 Relationship between Overall Significance Level α, Significance Level per Test, Number

of Tests, and Associated Z-Values, Using the Bonferroni Inequality

Z-Values
Number of Overall Required Level

Tests (K) α Level per Test (α) One-Tailed Two-Tailed

1 0.05 0.05 1.645 1.960

2 0.05 0.025 1.960 2.241

3 0.05 0.01667 2.128 2.394

4 0.05 0.0125 2.241 2.498

5 0.05 0.01 2.326 2.576

10 0.05 0.005 2.576 2.807

100 0.05 0.0005 3.291 3.481

1000 0.05 0.00005 3.891 4.056

10000 0.05 0.000005 4.417 4.565

We now turn to the second aspect of our question. Suppose that the comparison above is

one of a multitude of comparisons? To maintain a per experiment significance level of α, we

use the Bonferroni inequality to calculate the per comparison error rate. Table 17.1 relates the

per comparison critical values to the number of tests performed and the per experiment error

rate. It is remarkable that the critical values do not increase too rapidly with the number of

tests.

Example 17.2. Suppose that the FDA is screening a large number of drugs, relating 10 kinds

of congenital malformations to 100 drugs that could be taken during pregnancy. A particular drug

and a particular malformation is now being examined. Equal numbers of exposed and unexposed

women are to be selected and a relative risk of R = 2 is to be detected with power 0.80 and

per experiment one-sided error rate of α = 0.05. In this situation α

∗
= α/1000 and Z1−α

∗ =

Z1−α/1000 = Z0.99995 = 3.891. The required number of events in the unexposed group is

n1 =

(3.891 + 0.842)

2

2(

√

2 − 1)

2
=

22.4013

0.343146
= 65.3

.

= 66

n2 = 2n1 = 132

In total, 66 + 132 = 198 malformations must be observed. For a particular malformation,

if the congenital malformation rate is on the order of 3/1000 live births, approximately 22,000

unexposed women and 22,000 women exposed to the drug must be examined. This large sample

size is not only a result of the multiple testing but also the rarity of the disease. [The comparable

number testing only once, α

∗
= α = 0.05, is n1 =

1
2
(1.645 + 0.842)

2
/(

√

2 − 1)

2
= 18, or 3000

women per group.]

17.3 SAMPLE SIZE AS A FUNCTION OF COST AND AVAILABILITY

17.3.1 Equal-Variance Case

Consider the comparison of means from two independent groups with the same variance σ ; the

standard error of the difference is

σ

√

1

n1
+

1

n2
(4)
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where n1 and n2 are the sample sizes in the two groups. As is well known, for fixed N the

standard error of the difference is minimized (maximum precision) when

n1 = n2 = N

That is, the sample sizes are equal. Suppose now that there is a differential cost in obtaining

the observations in the two groups; then it may pay to choose n1 and n2 unequal, subject to the

constraint that the standard error of the difference remains the same. For example,

1

10
+

1

10
=

1

6
+

1

30

Two groups of equal sample size, n1 = n2 = 10, give the same precision as two groups with

n1 = 6 and n2 = 30. Of course, the total number of observations N is larger, 20 vs. 36.

In many instances, sample size calculations are based on additional considerations, such as:

1. Relative cost of the observations in the two groups

2. Unequal hazard or potential hazard of treatment in the two groups

3. The limited number of observations available for one group

In the last category are case–control studies where the number of cases is limited. For

example, in studying sudden infant death syndrome (SIDS) by means of a case–control study,

the number of cases in a defined population is fairly well fixed, whereas an arbitrary number of

(matching) controls can be obtained.

We now formalize the argument. Suppose that there are two groups, G1 and G2, with costs

per observations c1 and c2, respectively. The total cost, C, of the experiment is

C = c1n1 + c2n2 (5)

where n1 and n2 are the number of observations in G1 and G2, respectively. The values of n1

and n2 are to be chosen to minimize (maximum precision),

1

n1
+

1

n2

subject to the constraint that the total cost is to be C. It can be shown that under these conditions

the required sample sizes are

n1 =

C

c1 +

√

c1c2
(6)

and

n2 =

C

c2 +

√

c1c2
(7)

The ratio of the two sample sizes is

n2

n1

=

√

c1

c2

= h, say (8)

That is, if costs per observation in groups G1 and G2, are c1 and c2, respectively, then choose

n1 and n2 on the basis of the ratio of the square root of the costs. This rule has been termed

the square root rule by Gail et al. [1976]; the derivation can also be found in Nam [1973] and

Cochran [1977].
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If the costs are equal, n1 = n2, as before. Application of this rule can decrease the cost of an

experiment, although it will increase the total number of observations. Note that the population

means and standard deviation need not be known to determine the ratio of the sample sizes, only

the costs. If the desired precision is specified—perhaps on the basis of sample size calculations

assuming equal costs—the values of n1 and n2 can be determined. Compared with an experiment

with equal sample sizes, the ratio ρ of the costs of the two experiments can be shown to be

ρ =

1

2
+

h

1 + h

2
(9)

If h = 1, then ρ = 1, as expected; if h is very close to zero or very large, ρ =
1
2

; thus, no

matter what the relative costs of the observations, the savings can be no larger than 50%.

Example 17.3. (After Gail et al. [1976]) A new therapy, G1, for hypertension is intro-

duced and costs $400 per subject. The standard therapy, G2, costs $16 per subject. On the basis

of power calculations, the precision of the experiment is to be equivalent to an experiment using

22 subjects per treatment, so that

1

22
+

1

22
= 0.09091

The square root rule specifies the ratio of the number of subjects in G1 and G2 by

n2 =

√

400

16
n1

= 5n1

To obtain the same precision, we need to solve

1

n1
+

1

5n1
= 0.09091

or

n1 = 13.2 and n2 = 66.0

(i.e., 1/13.2+1/66.0 = 0.09091, the same precision). Rounding up, we require 14 observations

in G1 and 66 observations in G2. The costs can also be compared as in Table 17.2.

A savings of $3896 has been obtained, yet the precision is the same. The total number of

observations is now 80, compared to 44 in the equal-sample-size experiment. The ratio of the

savings is

ρ =

6656

9152
= 0.73

Table 17.2 Costs Comparisons for Example 17.3

Sample Size

Equal Sample Size Determined by Cost

n Cost n Cost

G1 22 8800 14 5600

G2 22 352 66 1056

Total 44 9152 80 6656



714 SAMPLE SIZES FOR OBSERVATIONAL STUDIES

The value for ρ calculated from equation (9) is

ρ =

1

2
+

5

26
= 0.69

The reason for the discrepancy is the rounding of sample sizes to integers.

17.3.2 Unequal-Variance Case

Suppose that we want to compare the means from groups with unequal variance. Again, suppose

that there are n1 and n2 observations in the two groups. Then the standard error of the difference

between the two means is
√

σ

2
1

n1
+

σ

2
2

n2

Let the ratio of the variances be η

2
= σ

2
2 /σ

2
1 . Gail et al. [1976] show that the sample size

should now be allocated in the ratio

n2

n1
=

√

σ

2
2

σ

2
1

c1

c2
= ηh

The calculations can then be carried out as before. In this case, the cost relative to the experiment

with equal sample size is

ρ

∗
=

(h + η)

2

(1 + h

2
)(1 + η

2
)

(10)

These calculations also apply when the costs are equal but the variances unequal, as is the case

in binomial sampling.

17.3.3 Rule of Diminishing Precision Gain

One of the reasons advanced at the beginning of Section 17.3 for distinguishing between the

sample sizes of two groups is that a limited number of observations may be available for one

group and a virtually unlimited number in the second group. Case–control studies were cited

where the number of cases per population is relatively fixed. Analogous to Gail et al. [1976], we

define a rule of diminishing precision gain. Suppose that there are n cases and that an unlimited

number of controls are available. Assume that costs and variances are equal. The precision of

the difference is then proportional to

σ

√

1

n

+

1

hn

where hn is the number of controls selected for the n cases.

We calculate the ratio P

h

:

P

h

=

√

1/n + 1/hn

√

1/n + 1/n

=

√

1

2

(

1 +

1

h

)

This ratio P

h

is a measure of the precision of a case–control study with n and hn cases and

controls, respectively, relative to the precision of a study with an equal number, n, of cases

and controls. Table 17.3 presents the values of P

h

and 100(P

h

− P∞)/P∞ as a function of h.
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Table 17.3 Comparison of Precision

of Case Control Study with n and hn

Cases and Controls, Respectively

h P

h

100[(P
h

− P∞)/P∞]%

1 1.00 41

2 0.87 22

3 0.82 15

4 0.79 12

5 0.77 10

10 0.74 5

∞ 0.71 0

This table indicates that in the context above, the gain in precision with, say, more than four

controls per case is minimal. At h = 4, one obtains all but 12% of the precision associated with

a study using an infinite number of controls. Hence, in the situation above, there is little merit

in obtaining more than four or five times as many controls as cases. Lubin [1980] approaches

this from the point of view of the logarithm of the odds ratio and comes to a similar conclusion.

17.4 SAMPLE-SIZE CALCULATIONS IN SELECTING CONTINUOUS VARIABLES

TO DISCRIMINATE BETWEEN POPULATIONS

In certain situations, there is interest in examining a large number of continuous variables to

explain the difference between two populations. For example, an investigator might be “fishing”

for clues explaining the presence (one population) or absence (the other population) of a disease

of unknown etiology. Or in a disease where a variety of factors are known to affect prognosis,

the investigator may desire to find a good set of variables for predicting which subjects will

survive for a fixed number of years. In this section, the determination of sample size for such

studies is discussed.

There are a variety of approaches to the data analysis in this situation. With a large, say

50 or more, number of variables, we would hesitate to run stepwise discriminant analysis to

select a few important variables, since (1) in typical data sets there are often many dependencies

that make the method numerically unstable (i.e., the results coming forth from some computers

cannot be relied on); (2) the more complex the mathematical model used, the less faith we have

that it is useful in other situations (i.e., the more parameters that are used and estimated, the less

confidence we can have that the result is transportable to another population in time or space;

here we might be envisioning a discriminant function with a large number of variables); and

(3) the multiple-comparison problems inherent in considering the large number of variables at

each step in the stepwise procedure make the result of doubtful value.

One approach to the analysis is first to perform a univariate screen. This means that variables

(used singly, that is, univariately) with the most power to discriminate between the two pop-

ulations are selected. Second, use these univariate discriminating variables in the discriminant

analysis. The sample-size calculations below are based on this method of analysis. There is

some danger in this approach, as variables that univariately are not important in discrimination

could be important when used in conjunction with other variables. In many practical situations,

this is not usually the case. Before discussing the sample-size considerations, we will consider

a second approach to the analysis of such data as envisioned here.

Often, the discriminating variables fall naturally in smaller subsets. For example, the subsets

for patients may involve data from (1) the history, (2) a physical exam, and (3) some routine

tests. In many situations the predictive information of the variables within each subset is roughly
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the same. This being the case, a two-step method of selecting the predictive variables is to (1) use

stepwise selection within subsets to select a few variables from each subset, and (2) combine

the selected variables into a group to be used for another stepwise selection procedure to find

the final subset of predictive variables.

After selecting a smaller subset of variables to use in the prediction process, one of two steps

is usually taken. (1) The predictive equation is validated (tested) on a new sample to show that

it has predictive power. That is, an F -test for the discriminant function is performed. Or, (2) a

larger independent sample is used to provide an indication of the accuracy of the prediction.

The second approach requires a larger sample size than merely establishing that there is some

predictive ability, as in the first approach. In the next three sections we make this general

discussion precise.

17.4.1 Univariate Screening of Continuous Variables

To obtain an approximate idea of the sample size needed to screen among k variables, the

following is assumed: The variables are normally distributed with the same variance in each

population and possibly different means. The power to classify into the two populations depends

on δ, the number of standard deviations distance between the two populations means:

δ =

µ1 − µ2

σ

Some idea of the relationship of classificatory power to δ is given in Figure 17.1.

Suppose that we are going to screen k variables and want to be sure, with probability at

least 1 − α, to include all variables with δ ≥ D. In this case we must be willing to accept

some variables with values close to but less than D. Suppose that at the same time we want

probability at least 1 − α of not including any variables with δ ≤ f D, where 0 < f < 1. One

approach is to look at confidence intervals for the difference in the population means. If the

absolute value of the difference is greater than f D+ (1−f )D/2, the variable is included. If the

Figure 17.1 Probability of correct classification between N(0, σ

2
) and N(δσ, σ

2
) populations, assuming

equal priors and δσ/2 as the cutoff values for classifying into the two populations.
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Figure 17.2 Inclusion and exclusion scheme for differences in sample means |d1 − d2| from populations

G1 and G2.

absolute value of the difference is less than this value, the variable is not included. Figure 17.2

presents the situation. To recap, with probability at least 1 − α, we include for use in prediction

all variables with δ ≥ D and do not include those with δ ≤ f D. In between, we are willing for

either action to take place. The dividing line is placed in the middle.

Let us suppose that the number of observations, n, is large enough so that a normal approxi-

mation for confidence intervals will hold. Further, suppose that a fraction p of the data is from

the first population and that 1−p is from the second population. If we choose 1−α

∗ confidence

intervals so that the probability is about 1 − α that all intervals have half-width σ(1 − f )D/2,

the result will hold.

If n is large, the pooled variance is approximately σ and the half-interval has width (in

standard deviation units) of about

√

1

Np

+

1

N(1 − p)

Z1−α

∗

where Z1−α

∗ is the N(0, 1) critical value. To make this approximately (1 − f )D/2, we need

N =

4z

2
1−α

∗

p(1 − p)D

2
(1 − f )

2
(11)

In Chapter 12 it was shown that α

∗
= α/2k was an appropriate choice by Bonferroni’s inequal-

ity. In most practical situations, the observations tend to vary together, and the probability of

all the confidence statements holding is greater than 1 − α. A slight compromise is to use

α

∗
= [1 − (1 − α)

1/k]/2 as if the tests are independent. This α

∗ was used in computing

Table 17.4.

From the table it is very clear that there is a large price to be paid if the smaller population

is a very small fraction of the sample. There is often no way around this if the data need to be

collected prospectively before subjects have the population membership determined (by having

a heart attack or myocardial infarction, for example).



718 SAMPLE SIZES FOR OBSERVATIONAL STUDIES

Table 17.4 Sample Sizes Needed for Univariate Screening When f = 2
3

a

p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9

D 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

k = 20 2121 527 132 2210 553 136 2525 629 157 3315 829 204 5891 1471 366

2478 616 153 2580 642 157 2950 735 183 3872 965 238 6881 1717 429

3289 825 204 3434 859 213 3923 978 242 5151 1288 319 9159 2287 570

k = 100 2920 721 179 3043 761 187 3477 867 217 4565 1139 285 8118 2028 506

3285 820 204 3421 854 213 3910 978 242 5134 1284 319 9129 2282 570

4118 1029 255 4288 1071 268 4905 1224 306 6435 1607 400 11445 2860 714

k = 300 3477 867 217 3625 905 225 4140 1033 255 5436 1356 336 9665 2414 604

3846 961 238 4008 999 247 4577 1143 285 6010 1500 374 10685 2669 667

4684 1169 289 4879 1220 302 5576 1394 349 7323 1828 455 13018 3251 812

aFor each entry the top, middle, and bottom numbers are for α = 0.10, 0.05, and 0.01, respectively.

17.4.2 Sample Size to Determine That a Set of Variables Has Discriminating Power

In this section we find the answer to the following question. Assume that a discriminant analysis

is being performed at significance level α with m variables. Assume that one population has

a fraction p of the observations and that the other population has a fraction 1 − p of the

observations. What sample size, n, is needed so that with probability 1 − β, we reject the null

hypothesis of no predictive power (i.e., Mahalanobis distance equal to zero) when in fact the

Mahalanobis distance is 	 > 0 (where 	 is fixed and known)? (See Chapter 13 for a definition

of the Mahalanobis distance.)

The procedure is to use tables for the power functions of the analysis of variance tests as

given in the CRC tables [Beyer, 1968 pp. 311–319]. To enter the charts, first find the chart for

v1 = m, the number of predictive variables.

The charts are for α = 0.05 or 0.01. It is necessary to iterate to find the correct sample size

n. The method is as follows:

1. Select an estimate of n.

2. Compute

φ

n

= 	

√

p(1 − p)

m + 1
×

√

n (12)

This quantity indexes the power curves and is a measure of the difference between the

two populations, adjusting for p and m.

3. Compute v2 = n − 2.

4. On the horizontal axis, find φ and go vertically to the v2 curve. Follow the intersection

horizontally to find 1 − ˜

β.

5. a. If 1 − ˜

β is greater than 1 − β, decrease the estimate of n and go back to step 2.

b. If 1 − ˜

β is less than 1 − β, increase the estimate of n and go back to step 2.

c. If 1 − ˜

β is approximately equal to 1 − β, stop and use the given value of n as your

estimate.

Example 17.4. Working at a significance level 0.05 with five predictive variables, find the

total sample size needed to be 90% certain of establishing predictive power when ·	 = 1 and

p = 0.34. Figure 17.3 is used in the calculation.

We use

φ

n

= 1 ×

√

0.3 × 0.7

5 + 1

√

n = 0.187
√

n
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The method proceeds as follows:

1. Try n = 30, φ = 1.024, v2 = 28, 1 − β

.

= 0.284.

2. Try n = 100, φ = 1.870, v2 = 98, 1 − β

.

= 0.958.

3. Try n = 80, φ = 1.672, v2 = 78, 1 − β

.

= 0.893.

4. Try n = 85, φ = 1.724, v2 = 83, 1 − β

.

= 0.92.

Use n = 83. Note that the method is somewhat approximate, due to the amount of interpo-

lation (rough visual interpretation) needed.

17.4.3 Quantifying the Precision of a Discrimination Method

After developing a method of classification, it is useful to validate the method on a new

independent sample from the data used to find the classification algorithm. The approach of

Section 17.4.2 is designed to show that there is some classification power. Of more interest is to

be able to make a statement on the amount of correct and incorrect classification. Suppose that

one is hoping to develop a classification method that classifies correctly 100π% of the time.

To estimate with 100(1 − α)% confidence the correct classification percentage to within

100ε%, what number of additional observations are required? The confidence interval (we’ll

assume n large enough for the normal approximation) will be, letting c equal the number of n

trials correctly classified,

c

n

±

√

1

n

c

n

(

1 −

c

n

)

z1−α/2

where z1−α/2 is the N(0, 1) critical value. We expect c/n

.

= π , so it is reasonable to choose n

to satisfy z1−α/2 = ε

√

π(1 − π)/n. This implies that

n = z

2
1−α/2π(1 − π)/ε

2 (13)

where ε = (predicted - actual) probability of misclassification.

Example 17.5. If one plans for π = 90% correct classification and wishes to be 99%

confident of estimating the correct classification to within 2%, how many new experimental

units must be allowed? From Equation (13) and z0.995 = 2.576, the answer is

n = (2.576)

2
×

0.9(1 − 0.9)

(0.02)

2

.

= 1493

17.4.4 Total Sample Size for an Observational Study to Select Classification Variables

In planning an observational study to discriminate between two populations, if the predictive

variables are few in number and known, the sample size will be selected in the manner of

Section 17.4.2 or 17.4.3. The size depends on whether the desire is to show some predictive

power or to have desired accuracy of estimation of the probability of correct classification. In

addition, a different sample is needed to estimate the discriminant function. Usually, this is of

approximately the same size.

If the predictive variables are to be culled from a large number of choices, an additional
number of observations must be added for the selection of the predictive variables (e.g., in

the manner of Section 17.4.1). Note that the method cannot be validated by application to the

observations used to select the variables and to construct the discriminant function: This would

lead to an exaggerated idea of the accuracy of the method. As the coefficients and variables

were chosen specifically for these data, the method will work better (often considerably better)

on these data than on an independent sample chosen as in Section 17.4.2 or 17.4.3.
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NOTES

17.1 Sample Sizes for Cohort Studies

Five major journals are sources for papers dealing with sample sizes in cohort and case–control

studies: Statistics in Medicine, Biometrics, Controlled Clinical Trials, Journal of Clinical Epi-
demiology, and the American Journal of Epidemiology. In addition, there are books by Fleiss

[1981], Schlesselman [1982], and Schuster [1993].

A cohort study can be thought of as a cross-sectional study; there is no selection on case

status or exposure status. The table generated is then the usual 2 × 2 table. Let the sample

proportions be as follows:

Exposure No Exposure

Case p11 p12 p1·

Control p21 p22 p2·

p·1 p·2 1

If p11, p1·, p2·, p·1, and p·2 estimate π11, π1·, π2·, π·1, and π·2, respectively, then the required

total sample size for significance level α, and power 1 − β is approximately

n =

(

Z1−α/2 + Z1−β

)2
π11π1·π2·π·1π·2

(π11 − π1·π·1)
2

(14)

Given values of π1·, π·1, and R = (π11/π·1)/(π12/π·2) = the relative risk, the value of π11 is

determined by

π11 =

Rπ·1π1·

Rπ·1 + π·2
(15)

The formula for the required sample size then becomes

n =

(

Z1−α/2 + Z1−β

)2 π·1

1 − π·1

1 − π·1

π·1

[

1 +

1

π·1(R − 1)

]2

(16)

If the events are rare, the Poisson approximation derived in the text can be used. For a discussion

of sample sizes in r × c contingency tables, see Lachin [1977] and Cohen [1988].

17.2 Sample-Size Formulas for Case–Control Studies

There are a variety of sample-size formulas for case–control studies. Let the data be arranged

in a table as follows:

Exposed Not Exposed

Case X11 X12 n

Control X21 X22 n

and

P [exposure|case] = π1, P [exposure|control] = π2

estimated by P1 = X11/n and P2 = X21/n (we assume that n1 = n2 = n). For a two-sample,

two-tailed test with

P [Type I error] = α and P [Type II error] = β
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the approximate sample size per group is

n =

[Z1−α/2

√

2π(1 − π) + Z1−β

√

π1(1 − π1) + π2(1 − π2)]
2

(π1 − π2)
2

(17)

where π =
1
2
(π1 + π2). The total number of subjects is 2n, of which n are cases and n are

controls. Another formula is

n =

[π1(1 − π) + π2(1 − π2)](Z1−α/2 + Z1−β

)

2

(π1 − π2)
2

(18)

All of these formulas tend to give the same answers, and underestimate the sample sizes required.

The choice of formula is primarily a matter of aesthetics.

The formulas for sample sizes for case–control studies are approximations, and several correc-

tions are available to get closer to the exact value. Exact values for equal sample sizes have been

tabulated in Haseman [1978]. Adjustment for the approximate sample size have been presented

by Casagrande et al. [1978], who give a slightly more complicated and accurate formulation.

See also Lachin [1981, 2000] and Ury and Fleiss [1980].

Two other considerations will be mentioned. The first is unequal sample size. Particularly in

case–control studies, it may be difficult to recruit more cases. Suppose that we can select n obser-

vations from the first population and rn from the second (0 < r < ∞). Following Schlesselman

[1982], a very good approximation for the exact sample size for the number of cases is

n1 = n

(

r + 1

2r

)

(19)

and for the number of controls

n2 = n

(

r + 1

2

)

(20)

where n is determined by equation (17) or (18). The total sample size is then n((r + 1)

2
/2r).

Note that the number of cases can never be reduced to more than n/2 no matter what the

number of controls. This is closely related to the discussion in Section 17.3. Following Fleiss

et al. [1980], a slightly improved estimate can be obtained by using

n

∗

1 = n1 +

r + 1

r	

= number of cases

and

n

∗

2 = rn

∗

1 = number of controls

A second consideration is cost. In Section 17.3 we considered sample sizes as a function of cost

and related the sample sizes to precision. Now consider a slight reformulation of the problem in

the case–control context. Suppose that enrollment of a case costs c1 and enrollment of a control

costs c2. Pike and Casagrande [1979] show that a reasonable sample size approximation is

n1 = n

(

1 +

√

c1

c0

)

n2 = n

(

1 +

√

c0

c1

)

where n is defined by equations (17) or (18).
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Finally, frequently case–control study questions are put in terms of odds ratios (or relative

risks). Let the odds ratio be R = π1(1 − π2)/π2(1 − π1), where π1 and π2 are as defined

at the beginning of this section. If the control group has known exposure rate π2, that is,

P [exposure|control] = π2, then

π1 =

Rπ2

1 + π2(R − 1)

To calculate sample sizes, use equation (17) for specified values of π2 and R.

Mantel [1983] gives some clever suggestions for making binomial sample-size tables more

useful by making use of the fact that sample size is “inversely proportional to the square of the

difference being sought, everything else being more or less fixed.”

Newman [2001] is a good reference for sample-size questions involving survival data.

17.3 Power as a Function of Sample Size

Frequently, the question is not “How big should my sample size be” but rather, “I have 60

observations available; what kind of power do I have to detect a specified difference, relative

risk, or odds ratio?” The charts by Feigl illustrated in Chapter 6 provided one answer. Basically,

the question involves inversion of formulas such as given by equations (17) and (18), solving

them for Z1−β

, and calculating the associated area under the normal curve. Besides Feigl, several

authors have studied this problem or variations of it. Walter [1977] derived formulas for the

smallest and largest relative risk, R, that can be detected as a function of sample size, Type I

and Type II errors. Brittain and Schlesselman [1982] present estimates of power as a function

of possibly unequal sample size and cost.

17.4 Sample Size as a Function of Coefficient of Variation

Sometimes, sample-size questions are asked in the context of percent variability and percent

changes in means. With an appropriate, natural interpretation, valid answers can be provided.

Specifically, assume that by percent variability is meant the coefficient of variation, call it V ,

and that the second mean differs from the first mean by a factor f .

Let two normal populations have means µ1 and µ2 and standard deviations σ1 and σ2. The

usual sample-size formula for two independent samples needed to detect a difference µ1 − µ2

in means with Type I error α and power 1 − β is given by

n =

(z1−α/2 + z1−β

)

2
(σ

2
1 + σ

2
2 )

(µ1 − µ2)
2

where z1−γ

is the 100(1 − γ )th percentile of the standard normal distribution. This is the

formula for a two-sided alternative; n is the number of observations per group. Now assume

that µ1 = f µ2 and σ1/µ1 = σ2/µ2 = V . Then the formula transforms to

n = (z1−α/2 + z1−β

)

2
V

2

[

1 +

2f

(f − 1)

2

]

(21)

The quantity V is the usual coefficient of variation and f is the ratio of means. It does not matter

whether the ratio of means is defined in terms of 1/f rather than f .

Sometimes the problem is formulated with the variability V as specified but a percentage

change between means is given. If this is interpreted as the second mean, µ2, being a percent

change from the first mean, this percentage change is simply 100(f − 1)% and the formula

again applies. However, sometimes, the relative status of the means cannot be specified, so an
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interpretation of percent change is needed. If we know only that σ1 = V µ1 and σ2 = V µ2, the

formula for sample size becomes

n =

V

2
(z1−α/2 + z1−β

)

2

(

(µ1 − µ2)/
√

µ1µ2

)2

The quantity
(

(µ1 − µ2)/
√

µ1µ2

)

is the proportional change from µ1 to µ2 as a function

of their geometric mean. If the questioner, therefore, can only specify a percent change, this

interpretation is quite reasonable. Solving equation (21) for z1−β

allows us to calculate values

for power curves:

z1−β

= −z1−α/2 +

√

n|f − 1|

V

√

f

2
+ 1

(22)

A useful set of curves as a function of n and a common coefficient of variation V = 1 can be

constructed by noting that for two coefficients of variation V1 and V2, the sample sizes n(V1)

and n(V2), as functions of V1 and V2, are related by

n(V1)

n(V2)
=

σ

2
1

σ

2
2

for the same power and Type I error. See van Belle and Martin [1993] and van Belle [2001].

PROBLEMS

17.1 (a) Verify that the odds ratio and relative risk are virtually equivalent for

P [exposure] = 0.10, P [disease] = 0.01

in the following two situations:

π11 = P [exposed and disease] = 0.005

and π11 = 0.0025.

(b) Using equation (2), calculate the number of disease occurrences in the exposed

and unexposed groups that would have to be observed to detect the relative risks

calculated above with α = 0.05 (one-tailed) and β = 0.10.

(c) How many exposed persons would have to be observed (and hence, unexposed

persons as well)?

(d) Calculate the sample size needed if this test is one of K tests for K = 10, 100,

and 1000.

(e) In part (d), plot the logarithm of the sample size as a function of log K . What

kind of relationship is suggested? Can you state a general rule?

17.2 (After N. E. Breslow) Workers at all nuclear reactor facilities will be observed for a

period of 10 years to determine whether they are at excess risk for leukemia. The rate

in the general population is 7.5 cases per 100,000 person-years of observation. We want

to be 80% sure that a doubled risk will be detected at the 0.05 level of significance.

(a) Calculate the number of leukemia cases that must be detected among the nuclear

plant workers.



PROBLEMS 725

(b) How many workers must be observed? That is, assuming the null hypothesis

holds, how many workers must be observed to accrue 9.1 leukemia cases?

(c) Consider this as a binomial sampling problem. Let π1 = 9.1/answer in part (b),

and let π2 = 2π1. Now use equation (17) to calculate n/2 as the required sample

size. How close is your answer to part (b)?

17.3 (After N. E. Breslow) The rate of lung cancer for men of working age in a certain

population is known to be on the order of 60 cases per 100,000 person-years of

observation. A cohort study using equal numbers of exposed and unexposed persons is

desired so that an increased risk of R = 1.5 can be detected with power 1 − β = 0.95

and α = 0.01.

(a) How many cases will have to be observed in the unexposed population? The

exposed population?

(b) How many person-years of observation at the normal rates will be required for

either of the two groups?

(c) How many workers will be needed assuming a 20-year follow-up?

17.4 (After N. E. Breslow) A case–control study is to be designed to detect an odds ratio

of 3 for bladder cancer associated with a certain medication that is used by about one

person out of 50 in the general population.

(a) For α = 0.05, and β = 0.05, calculate the number of cases and number of

controls needed to detect the increased odds ratio.

(b) Use the Poisson approximation procedure to calculate the sample sizes required.

(c) Four controls can be provided for each case. Use equations (19) and (20) to cal-

culate the sample sizes. Compare this result with the total sample size in part (a).

17.5 The sudden infant death syndrome (SIDS) occurs at a rate of approximately three

cases per 1000 live births. It is thought that smoking is a risk factor for SIDS, and

a case–control study is initiated to check this assumption. Since the major effort was

in the selection and recruitment of cases and controls, a questionnaire was developed

that contained 99 additional questions.

(a) Calculate the sample size needed for a case–control study using α = 0.05, in which

we want to be 95% certain of picking up an increased relative risk of 2 associated

with smoking. Assume that an equal number of cases and controls are selected.

(b) Considering smoking just one of the 100 risk factors considered, what sample

sizes will be needed to maintain an α = 0.05 per experiment error rate?

(c) Given the increased value of Z in part (b), suppose that the sample size is not

changed. What is the effect on the power? What is the power now?

(d) Suppose in part (c) that the power also remains fixed at 0.95. What is the mini-

mum relative risk that can be detected?

(e) Since smoking was the risk factor that precipitated the study, can an argument

be made for not testing it at a reduced α level? Formulate your answer carefully.

*17.6 Derive the square root rule starting with equations (4) and (5).

*17.7 Derive formula (16) from equation (14).

17.8 It has been shown that coronary bypass surgery does not prolong life in selected patients

with relatively mild angina (but may relieve the pain). A surgeon has invented a new
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bypass procedure that, she claims, will prolong life substantially. A trial is planned

with patients randomized to surgical treatment or standard medical therapy. Currently,

the five-year survival probability of patients with relatively mild symptoms is 80%.

The surgeon claims that the new technique will increase survival to 90%.

(a) Calculate the sample size needed to be 95% certain that this difference will be

detected using an α = 0.05 significance level.

(b) Suppose that the cost of a coronary bypass operation is approximately $50,000;

the cost of general medical care is about $10,000. What is the most economical

experiment under the conditions specified in part (a)? What are the total costs of

the two studies?

(c) The picture is more complicated than described in part (b). Suppose that about

25% of the patients receiving the medical treatment will go on to have a coronary

bypass operation in the next five years. Recalculate the sample sizes under the

conditions specified in part (a).

*17.9 Derive the sample sizes in Table 17.4 for D = 0.5, p = 0.8, α = 0.5, and k =

20,100,300.

*17.10 Consider the situation in Example 17.4.

(a) Calculate the sample size as a function of m, the number of variables, by con-

sidering m = 10 and m = 20.

(b) What is the relationship of sample size to variables?

17.11 Two groups of rats, one young and the other old, are to be compared with respect to

levels of nerve growth factor (NGF) in the cerebrospinal fluid. It is estimated that the

variability in NGF from animal to animal is on the order of 60%. We want to look at

a twofold ratio in means between the two groups.

(a) Using the formula in Note 17.4, calculate the sample size per group using a

two-sided alternative, α = 0.05, and a power of 0.80.

(b) Suppose that the ratio of the means is really 1.6. What is the power of detecting

this difference with the sample sizes calculated in part (a)?
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Longitudinal Data Analysis

18.1 INTRODUCTION

One of the most common medical research designs is a “pre–post” study in which a single

baseline health status measurement is obtained, an intervention is administered, and a single

follow-up measurement is collected. In this experimental design, the change in the outcome

measurement can be associated with the change in the exposure condition. For example, if

some subjects are given placebo while others are given an active drug, the two groups can be

compared to see if the change in the outcome is different for those subjects who are actively

treated as compared to control subjects. This design can be viewed as the simplest form of a

prospective longitudinal study.

Definition 18.1. A longitudinal study refers to an investigation where participant outcomes

and possibly treatments or exposures are collected at multiple follow-up times.

A longitudinal study generally yields multiple or “repeated” measurements on each subject.

For example, HIV patients may be followed over time and monthly measures such as CD4

counts or viral load are collected to characterize immune status and disease burden, respectively.

Such repeated-measures data are correlated within subjects and thus require special statistical

techniques for valid analysis and inference.

A second important outcome that is commonly measured in a longitudinal study is the time

until a key clinical event such as disease recurrence or death. Analysis of event-time endpoints

is the focus of survival analysis, which is covered in Chapter 16.

Longitudinal studies play a key role in epidemiology, clinical research, and therapeutic eval-

uation. Longitudinal studies are used to characterize normal growth and aging, to assess the

effect of risk factors on human health, and to evaluate the effectiveness of treatments.

Longitudinal studies involve a great deal of effort but offer several benefits, which include:

1. Incident events recorded. A prospective longitudinal study measures the new occurrence

of disease. The timing of disease onset can be correlated with recent changes in patient exposure

and/or with chronic exposure.

2. Prospective ascertainment of exposure. In a prospective study, participants can have their

exposure status recorded at multiple follow-up visits. This can alleviate recall bias where sub-

jects who subsequently experience disease are more likely to recall their exposure (a form of

measurement error). In addition, the temporal order of exposures and outcomes is observed.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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3. Measurement of individual change in outcomes. A key strength of a longitudinal study is

the ability to measure change in outcomes and/or exposure at the individual level. Longitudinal

studies provide the opportunity to observe individual patterns of change.

4. Separation of time effects: cohort, period, age. When studying change over time, there are

many time scales to consider. The cohort scale is the time of birth, such as 1945 or 1963; period

is the current time, such as 2003; and age is (period − cohort), for example, 58 = 2003 − 1945,

and 40 = 2003 − 1963. A longitudinal study with measurements at times t1, t2, . . . , t

n

can

simultaneously characterize multiple time scales such as age and cohort effects using covariates

derived from the calendar time of visit and the participant’s birth year: the age of subject i at

time t

j

is age
ij

= t

j

− birth
i

; and their cohort is simply cohort
ij

= birth
i

. Lebowitz [1996]

discusses age, period, and cohort effects in the analysis of pulmonary function data.

5. Control for cohort effects. In a cross-sectional study the comparison of subgroups of differ-

ent ages combines the effects of aging and the effects of different cohorts. That is, comparison

of outcomes measured in 2003 among 58-year-old subjects and among 40-year-old subjects

reflects both the fact that the groups differ by 18 years (aging) and the fact that the subjects

were born in different eras. For example, the public health interventions, such as vaccinations

available for a child under 10 years of age, may differ in 1945–1955 compared to the preventive

interventions experienced in 1963–1973. In a longitudinal study, the cohort under study is fixed,

and thus changes in time are not confounded by cohort differences.

An overview of longitudinal data analysis opportunities in respiratory epidemiology is pre-

sented in Weiss and Ware [1996].

The benefits of a longitudinal design are not without cost. There are several challenges posed:

1. Participant follow-up. There is the risk of bias due to incomplete follow-up, or dropout of

study participants. If subjects who are followed to the planned end of a study differ from subjects

who discontinue follow-up, a naive analysis may provide summaries that are not representative

of the original target population.

2. Analysis of correlated data. Statistical analysis of longitudinal data requires methods that

can properly account for the intrasubject correlation of response measurements. If such cor-

relation is ignored, inferences such as statistical tests or confidence intervals can be grossly

invalid.

3. Time-varying covariates. Although longitudinal designs offer the opportunity to associate

changes in exposure with changes in the outcome of interest, the direction of causality can

be complicated by “feedback” between the outcome and the exposure. For example, in an

observational study of the effects of a drug on specific indicators of health, a patient’s current

health status may influence the drug exposure or dosage received in the future. Although scientific

interest lies in the effect of medication on health, this example has reciprocal influence between

exposure and outcome and poses analytical difficulty when trying to separate the effect of

medication on health from the effect of health on drug exposure.

18.1.1 Example studies

In this section we give some examples of longitudinal studies and focus on the primary scientific

motivation in addition to key outcome and covariate measurements.

Child Asthma Management Program

In the Child Asthma Management Program (CAMP) study, children are randomized to different

asthma management regimes. CAMP is a multicenter clinical trial whose primary aim is evalua-

tion of the long-term effects of daily inhaled anti-inflammatory medication use on asthma status

and lung growth in children with mild to moderate asthma [The Childhood Asthma Management
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Program Research group, 2000]. Outcomes include continuous measures of pulmonary function

and categorical indicators of asthma symptoms. Secondary analyses have investigated the asso-

ciation between daily measures of ambient pollution and the prevalence of symptoms. Analysis

of an environmental exposure requires specification of a lag between the day of exposure and

the resulting effect. In the air pollution literature, short lags of 0 to 2 days are commonly used

[Samet et al., 2000; Yu et al., 2000]. For both the evaluation of treatment and exposure to

environmental pollution, the scientific questions focus on the association between an exposure

(treatment, pollution) and health measures. The within-subject correlation of outcomes is of

secondary interest, but must be acknowledged to obtain valid statistical inference.

Cystic Fibrosis Foundation Registry

The Cystic Fibrosis Foundation maintains a registry of longitudinal data for subjects with

cystic fibrosis. Pulmonary function measures, such as the 1-second forced expiratory volume

(FEV1), and patient health indicators, such as infection with Pseudomonas aeruginosa, have

been recorded annually since 1966. One scientific objective is to characterize the natural course

of the disease and to estimate the average rate of decline in pulmonary function. Risk factor anal-

ysis seeks to determine whether measured patient characteristics such as gender and genotype

correlate with disease progression or with an increased rate of decline in FEV1. The registry data

represent a typical observational design where the longitudinal nature of the data are important

for determining individual patterns of change in health outcomes such as lung function.

Multicenter AIDS Cohort Study

The Multicenter AIDS Cohort Study (MACS) enrolled more than 3000 men who were at risk

for acquisition of HIV1 [Kaslow et al., 1987]. This prospective cohort study observed N = 479

incident HIV1 infections and has been used to characterize the biological changes associated with

disease onset. In particular, this study has demonstrated the effect of HIV1 infection on indicators

of immunologic function such as CD4 cell counts. One scientific question is whether baseline

characteristics such as viral load measured immediately after seroconversion are associated with

a poor patient prognosis as indicated by a greater rate of decline in CD4 cell counts. We use

these data to illustrate analysis approaches for continuous longitudinal response data.

HIVNET Informed Consent Substudy

Numerous reports suggest that the process of obtaining informed consent in order to participate

in research studies is often inadequate. Therefore, for preventive HIV vaccine trials a prototype

informed consent process was evaluated among N = 4892 subjects participating in the Vaccine

Preparedness Study (VPS). Approximately 20% of subjects were selected at random and asked

to participate in a mock informed consent process [Coletti et al., 2003]. Participant knowledge of

key vaccine trial concepts was evaluated at baseline prior to the informed consent visit, which

occurred during a special three-month follow-up visit for the intervention subjects. Vaccine

trial knowledge was then assessed for all participants at the scheduled six-, 12-, and 18-month

visits. This study design is a basic longitudinal extension of a pre–post design. The primary

outcomes include individual knowledge items and a total score that calculates the number of

correct responses minus the number of incorrect responses. We use data on a subset of men

and women VPS participants. We focus on subjects who were considered at high risk of HIV

acquisition, due to injection drug use.

18.1.2 Notation

In this chapter we use Y

ij

to denote the outcome measured on subject i at time t

ij

. The index

i = 1, 2, . . . , N is for subject, and the index j = 1, 2, . . . , n is for observations within a

subject. In a designed longitudinal study the measurement times will follow a protocol with
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a common set of follow-up times, t

ij

= t

j

. For example, in the HIVNET Informed Consent

Study, subjects were measured at baseline, t1 = 0, at six months after enrollment, t2 = six

months, and at 12 and 18 months, t3 = 12 months, t4 = 18 months. We let X

ij

denote

covariates associated with observation Y

ij

. Common covariates in a longitudinal study include

the time, t

ij

, and person-level characteristics such as treatment assignment or demographic

characteristics.

Although scientific interest often focuses on the mean response as a function of covariates

such as treatment and time, proper statistical inference must account for the within-person

correlation of observations. Define ρ

jk

= corr(Y
ij

, Y

ik

), the within-subject correlation between

observations at times t

j

and t

k

. In the following section we discuss methods for exploring the

structure of within-subject correlation, and in Section 18.5 we discuss estimation methods that

model correlation patterns.

18.2 EXPLORATORY DATA ANALYSIS

Exploratory analysis of longitudinal data seeks to discover patterns of systematic variation across

groups of patients, as well as aspects of random variation that distinguish individual patients.

18.2.1 Group Means over Time

When scientific interest is in the average response over time, summary statistics such as means

and standard deviations can reveal whether different groups are changing in a similar or different

fashion.

Example 18.1. Figure 18.1 shows the mean knowledge score for the informed consent

subgroups in the HIVNET Informed Consent Substudy. At baseline the intervention and control

groups have very similar mean scores. This is expected since the group assignment is determined

by randomization that occurs after enrollment. At an interim three-month visit the intervention

subjects are given a mock informed consent for participation in a hypothetical phase III vaccine

efficacy trial. The impact of the intervention can be seen by the mean scores at the six-month

visit. In the control group the mean at six months is 1.49(SE = 0.11), up slightly from the

baseline mean of 1.16(SE = 0.11). In contrast, the intervention group has a six-month mean

score of 3.43(SE = 0.24), a large increase from the baseline mean of 1.09(SE = 0.24). The

intervention and control groups are significantly different at six months based on a two-sample

t-test. At later follow-up times, further change is observed. The control group has a mean that

increases to 1.98 at the 12-month visit and to 2.47 at the 18-month visit. The intervention group

fluctuates slightly with means of 3.25(SE = 0.27) at month 12 and 3.76(SE = 0.25) at 18

months. These summaries suggest that the intervention has a significant effect on knowledge,

and that a small improvement is seen over time in the control group.

Example 18.2. In the MACS study we compare different groups of subjects formed on

the basis of their initial viral load measurement. Low viral load is defined by a baseline value

less than 15 × 103, medium as 15 × 103 to 46 × 103, and high viral load is classified for

subjects with a baseline measurement greater than 46 × 103. Table 18.1 gives the average CD4

count for each year of follow-up. The mean CD4 declines over time for each of the viral load

groups. The subjects with the lowest baseline viral load have a mean of 744.8 for the first year

after seroconversion and then decline to a mean count of 604.8 during the fourth year. The

744.8 − 604.8 = 140.0-unit reduction is smaller than the decline observed for the medium-

viral-load group, 638.9 − 470.0 = 168.9, and the high-viral-load group, 600.3 − 353.9 = 246.4.

Therefore, these summaries suggest that higher baseline viral-load measurements are associated

with greater subsequent reduction in mean CD4 counts.
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Figure 18.1 Mean knowledge scores over time by treatment group, HIVNET informed consent substudy.

Table 18.1 Mean CD4 Count and Standard Error

over Timea

Baseline Viral Load

Low Medium High

Year Mean SE Mean SE Mean SE

0–1 744.8 35.8 638.9 27.3 600.3 30.4

1–2 721.2 36.4 588.1 25.7 511.8 22.5

2–3 645.5 37.7 512.8 28.5 474.6 34.2

3–4 604.8 46.8 470.0 28.7 353.9 28.1

aSeparate summaries are given for groups defined by baseline
viral load level.

Example 18.1. (continued ) In the HIVNET informed consent substudy we saw a substantial

improvement in the knowledge score. It is also relevant to consider key individual items that

comprise the total score, such as the “safety item” or “nurse item.” Regarding safety, participants

were asked whether it was true or false that “Once a large-scale HIV vaccine study begins, we

can be sure the vaccine is completely safe.” Table 18.2 shows the number of responding subjects

at each visit and the percent of subjects who correctly answered that the safety statement is false.

These data show that the control and intervention groups have a comparable understanding of the

safety item at baseline with 40.9% answering correctly among controls, and 39.2% answering

correctly among the intervention subjects. A mock informed consent was administered at a

three-month visit for the intervention subjects only. The impact of the intervention appears

modest, with only 50.3% of intervention subjects correctly responding at six months. This

represents a 10.9% increase in the proportion answering correctly, but a two-sample comparison

of intervention and control proportions at six months (e.g., 50.3% vs. 42.7%) is not significant
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Table 18.2 Number of Subjects and Percent

Answering Correctly for the Safety Item from the

HIVNET Informed Consent Substudy

Control Group Intervention Group

Visit N % Correct N % Correct

Baseline 946 40.9 176 39.2

six-month 838 42.7 171 50.3

12-month 809 41.5 163 43.6

18-month 782 43.5 153 43.1

Table 18.3 Number of Subjects and Percent

Answering Correctly for the Nurse Item from the

HIVNET Informed Consent Substudy

Control Group Intervention Group

Visit n % Correct n % Correct

Baseline 945 54.1 176 50.3

six-month 838 44.7 171 72.1

12-month 808 46.3 163 60.1

18-month 782 48.2 153 66.0

statistically. Finally, the modest intervention impact does not appear to be retained, as the

fraction correctly answering this item declines to 43.6% at 12 months and 43.1% at 18 months.

Therefore, these data suggest a small but fleeting improvement in participant understanding that

a vaccine studied in a phase III trial cannot be guaranteed to be safe.

Other items show different longitudinal trends. Subjects were also asked whether it was true

or false that “The study nurse will decide who gets the real vaccine and who gets the placebo.”

Table 18.3 shows that the groups are again comparable at baseline, but for the nurse item we see

a large increase in the fraction answering correctly among intervention subjects at six months

with 72.1% answering correctly that the statement is false. A cross-sectional analysis indicates

a statistically significant difference in the proportion answering correctly at six months with a

confidence interval for the difference in proportions of (0.199, 0.349). Although the magnitude

of the separation between groups decreases from 27.4% at six months to 17.8% at 18 months,

the confidence interval for the difference in proportions at 18 months is (0.096, 0.260) and

excludes the null comparison, p1 − p0 = 0. Therefore, these data suggest that the intervention

has a substantial and lasting impact on understanding that research nurses do not determine

allocation to real vaccine or placebo.

18.2.2 Variation among Subjects

With independent observations we can summarize the uncertainty or variability in a response

measurement using a single variance parameter. One interpretation of the variance is given

as one-half the expected squared distance between any two randomly selected measurements,

σ

2
=

1
2
E[(Y

i

− Y

j

)

2]. However, with longitudinal data the “distance” between measurements

on different subjects is usually expected to be greater than the distance between repeated mea-

surements taken on the same subject. Thus, although the total variance may be obtained with

outcomes from subjects i and i

′ observed at time t

j

, σ

2
=

1
2
E[(Y

ij

− Y

i

′
j

)

2] [assuming that

E(Y

ij

) = E(Y

i

′
j

) = µ], the expected variation for two measurements taken on the same person
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(subject i) but at times t

j

and t

k

may not equal the total variation σ

2 since the measurements

are correlated: σ

2
(1 − ρ

jk

) =
1
2
E[(Y

ij

− Y

ik

)

2] [assuming that E(Y

ij

) = E(Y

ik

) = µ]. When

ρ

jk

> 0, this shows that between-subject variation is greater than within-subject variation. In

the extreme, ρ

jk

= 1 and Y

ij

= Y

ik

, implying no variation for repeated observations taken on

the same subject.

Graphical methods can be used to explore the magnitude of person-to-person variability in

outcomes over time. One approach is to create a panel of individual line plots for each study

participant. These plots can then be inspected for both the amount of variation from subject to

subject in the overall “level” of the response and the magnitude of variation in the “trend” over

time in the response. Such exploratory data analysis can be useful for determining the types of

correlated data regression models that would be appropriate. In Section 18.5 we discuss random

effects regression models for longitudinal data. In addition to plotting individual series, it is also

useful to plot multiple series on a single plot, stratifying on the value of key covariates. Such a

plot allows determination of whether the type and magnitude of intersubject variation appears

to differ across the covariate subgroups.

Example 18.2. (continued ) In Figure 18.2 we plot an array of individual series from the

MACS data. In each panel the observed CD4 count for a single subject is plotted against the

times that measurements were obtained. Such plots allow inspection of the individual response

patterns and whether there is strong heterogeneity in the trajectories. Figure 18.2 shows that

there can be large variation in the “level” of CD4 for subjects. Subject ID = 1120 in the upper

right corner has CD4 counts greater than 1000 for all times, while ID = 1235 in the lower left

corner has all measurements below 500. In addition, individuals plots can be evaluated for the

change over time. Figure 18.2 indicates that most subjects are either relatively stable in their

measurements over time, or tend to be decreasing.

In the common situation where we are interested in correlating the outcome to measured

factors such as treatment group or exposure, it will also be useful to plot individual series

stratified by covariate group. Figure 18.3 takes a sample of the MACS data and plots lines for

each subject stratified by the level of baseline viral load. This figure suggests that the highest viral

load group has the lowest mean CD4 count and suggests that variation among measurements

may also be lower for the high baseline viral-load group compared to the medium- and low-

viral-load groups. Figure 18.3 can also be used to identify those who exhibit time trends that

differ markedly from the profiles of others. In the high-viral-load group there is a person who

appears to improve dramatically over time, and there is a single unusual measurement where

the CD4 count exceeds 2000. Plotting individual series is a useful exploratory prelude to more

careful confirmatory statistical analysis.

18.2.3 Characterizing Correlation and Covariance

With correlated outcomes it is useful to understand the strength of correlation and the pattern

of correlations across time. Characterizing correlation is useful for understanding components

of variation and for identifying a variance or correlation model for regression methods such as

mixed-effects models or generalized estimating equations (GEEs), discussed in Section 18.5.2.

One summary that is used is an estimate of the covariance matrix, which is defined as
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Figure 18.2 A sample of individual CD4 trajectories from the MACS data.
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Figure 18.3 Individual CD4 trajectories from the MACS data by tertile of viral load.
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The covariance can also be written in terms of the variances σ

2
j

and the correlations ρ

jk

:

cov(Y

i

) =











σ

2
1 σ1σ2ρ12 · · · σ1σn

ρ1n

σ2σ1ρ21 σ
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Finally, the correlation matrix is given as

corr(Y
i

) =
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which is useful for comparing the strength of association between pairs of outcomes, particularly

when the variances σ

2
j

are not constant. Sample estimates of the correlations can be obtained

using

ρ̂

jk

=

1

N − 1

∑

i

(Y

ij

− Y ·j )

σ̂

j

(Y

ik

− Y ·k)

σ̂

k

where σ̂

2
j

and σ̂

2
k

are the sample variances of Y

ij

and Y

ik

, respectively (i.e., across subjects for

times t

j

and t

k

).

Graphically, the correlation can be viewed using plots of Y

ij

vs. Y

ik

for all possible pairs

of times t

j

and t

k

. These plots can be arranged in an array that corresponds to the covariance

matrix and patterns of association across rows or columns can reveal changes in the correlation

as a function of increasing time separation between measurements.

Example 18.1. (continued ) For the HIVNET informed consent data, we focus on correla-

tion analysis of outcomes from the control group. Parallel summaries would usefully characterize

the similarity or difference in correlation structures for the control and intervention groups. The

correlation matrix is estimated as follows:

Month 0 Month 6 Month 12 Month 18

Month 0 1.00 0.471 0.394 0.313

Month 6 0.471 1.00 0.444 0.407

Month 12 0.394 0.444 1.00 0.508

Month 18 0.313 0.407 0.508 1.00

The matrix suggests that the correlation in outcomes from the same person is slightly decreasing

as the time between the measurements increases. For example, the correlation between knowl-

edge scores from baseline and month 6 is 0.471, while the correlation between baseline and

month 12 decreases to 0.394, and decreases further to 0.313 for baseline and month 18. Correla-

tion that decreases as a function of time separation is common among biomedical measurements

and often reflects slowly varying underlying processes.

Example 18.2. (continued ) For the MACS data the timing of measurement is only approx-

imately regular. The following displays both the correlation matrix and the covariance matrix:
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Year 1 Year 2 Year 3 Year 4

Year 1 92,280.4 [ 0.734] [ 0.585] [ 0.574]

Year 2 63,589.4 81,370.0 [ 0.733] [ 0.695]

Year 3 48,798.2 57,457.5 75,454.5 [ 0.806]

Year 4 55,501.2 63,149.9 70,510.1 101,418.2

The correlations are shown in brackets above. The variances are shown on a diagonal

below the correlations. For example, the standard deviation among year 1 CD4 counts is
√

92,280.4 = 303.8, while the standard deviations for years 2 through 4 are
√

81,370.0 =

285.3,
√

75,454.5 = 274.7, and
√

101,418.2 = 318.5, respectively. Below the diagonal are

the covariances, which together with the standard deviations determine the correlations. These

data have a correlation for measurements that are one year apart of 0.734, 0.733, and 0.806.

For measurements two years apart, the correlation decreases slightly to 0.585 and 0.695.

Finally, measurements that are three years apart have a correlation of 0.574. Thus, the CD4

counts have a within-person correlation that is high for observations close together in time,

but the correlation tends to decrease with increasing time separation between the measurement

times.

An alternative method for exploring the correlation structure is through an array of scatter

plots showing CD4 measured at year j versus CD4 measured at year k. Figure 18.4 displays

these scatter plots. It appears that the correlation in the plot of year 1 vs. year 2 is stronger than

for year 1 vs. year 3, or for year 1 vs. year 4. The sample correlations ρ̂12 = 0.734, ρ̂13 = 0.585,

and ρ̂14 = 0.574 summarize the linear association presented in these plots.

18.3 DERIVED VARIABLE ANALYSIS

Formal statistical inference with longitudinal data requires either that a univariate summary be

created for each subject or that methods for correlated data are used. In this section we review

and critique common analytic approaches based on creation of summary measures.

A derived variable analysis is a method that takes a collection of measurements and collapses

them into a single meaningful summary feature. In classical multivariate methods principal com-

ponent analysis is one approach for creating a single major factor. With longitudinal data the

most common summaries are the average response and the time slope. A second approach is

a pre–post analysis which analyzes a single follow-up response in conjunction with a base-

line measurement. In Section 18.3.1 we first review average or slope analyses, and then in

Section 18.3.2 we discuss general approaches to pre–post analysis.

18.3.1 Average or Slope Analysis

In any longitudinal analysis the substantive aims determine which aspects of the response tra-

jectory are most important. For some applications the repeated measures over time may be

averaged, or if the timing of measurement is irregular, an area under the curve (AUC) sum-

mary can be the primary feature of interest. In these situations statistical analysis will focus on

Y

i

= 1/n

∑

n

j=1 Y

ij

. A key motivation for computing an individual average and then focusing

analysis on the derived averages is that standard methods can be used for inference such as a

two-sample t-test. However, if there are any incomplete data, the advantage is lost since either

subjects with partial data will need to be excluded, or alternative methods need to be invoked

to handle the missingness. Attrition in longitudinal studies is unfortunately quite common, and

thus derived variable methods are often more difficult to apply validly than they may first

appear.
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Figure 18.4 Scatter plots of CD4 measurements (counts/mL) taken at years 1 to 4 after seroconversion.

Example 18.1. (continued ) In the HIVNET informed consent study, the goal is to improve

participant knowledge. A derived variable analysis to evaluate evidence for an effect due to

the mock informed consent process can be conducted using Y

i

= (Y

i1 + Y

i2 + Y

i3)/3 for the

post-baseline times t1 = six months, t2 = 12 months, and t3 = 18 months. The following table

summarizes the data for subjects who have all three post-baseline measurements:
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Baseline Final

Group N N Mean SE 95% CI

Control 947 714 2.038 0.095

Intervention 177 147 3.444 0.223

Difference 1.406 0.243 [0.928, 1.885]

First, notice that only 714/947 = 75.4% of control subjects, and 147/177 = 83.1% of interven-

tion subjects have complete data and are therefore included in the analysis. This highlights one

major limitation to derived variable analysis: There may be selection bias due to exclusion of sub-

jects with missing data. We discuss missing data issues in Section 18.6. Based on the data above,

we would conclude that there is a statistically significant difference between the mean knowl-

edge for the intervention and control groups with a two-sample t-test of t = 5.796, p < 0.001.

Analysis of the single summary for each subject allows the repeated outcome variables to be

analyzed using standard independent sample methods.

In other applications, scientific interest centers on the rate of change over time and therefore

an individual’s slope may be considered as the primary outcome. Typically, each subject in a

longitudinal study has only a small number of outcomes collected at the discrete times specified

in the protocol. For example, in the MACS data, each subject was to complete a study visit

every 6 months and with complete data would have nine measurements between baseline and

48 months. If each subject has complete data, an individual summary statistic can be computed

as the regression of outcomes Y

ij

on times t

j

: Y

ij

= β

i,0 + β

i,1tj + ǫ

ij

; and ̂

β

i

is the ordinary

least squares estimate based on data from subject i only. In the case where all subjects have the

same collection of measurement times and have complete data, the variation in the estimated

slope, ̂

β

i,1, will be equal across subjects provided that the variance of ǫ

ij

is also constant across

subjects. Therefore, if

1. The measurement times are common to all subjects: t1, t2, . . . , t

n

,

2. Each subject has a complete collection of measurements: Y

i1, Y

i2, . . . , Y

in

,

3. The within-subject variation σ

2
i

= var(ǫ
ij

) is constant across subjects: σ

2
i

≡ σ

2,

then the summaries ̂

β

i,1 will have equal variances attributable to using simple linear regression

to estimate individual slopes. If any of points 1 to 3 above do not hold, the variance of individual

summaries may vary across subjects. This will be the case when each subject has a variable

number of outcomes, due to missing data.

When points 1 to 3 are satisfied, simple inference on the derived outcomes ̂

β

i,1 can be

performed using standard two-sample methods or regression methods. This allows inference

regarding factors that are associated with the rate of change over time. If any of points 1 to 3 do

not hold, mixed model regression methods (Section 18.5) may be preferable to simple derived

variable methods. See Frison and Pocock [1992, 1997] for further discussion of derived variable

methods.

Example 18.2. (continued ) For the MACS data, we are interested in determining whether

the rate of decline in CD4 is correlated with the baseline viral load measurement. In Section 18.2

we looked at descriptive statistics comparing the mean CD4 count over time for categories of

viral load. We now explore the association between the rate of decline and baseline viral load

by obtaining a summary statistic, using the individual time slope ̂

β

i

obtained from a regression

of the CD4 count Y

ij

on measurement time t

ij

. Figure 18.5 shows a scatter plot of the individual

slope estimates plotted against the log of baseline viral load. First notice that plotting symbols

of different sizes are used to reflect the fact that the number of measurements per subject, n

i

,
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Figure 18.5 Individual CD4 slopes (count/month) vs. log of baseline viral load, MACS data.

is not constant. The plotting symbol size is proportional to n

i

. For the MACS data we have the

following distribution for the number of observations per subjects over the first four years:

Number of Observations, n
i

1 2 3 4 5 6 7 8 9

Number of 5 13 8 10 25 44 82 117 3

subjects

For Figure 18.5 the (5 + 13) = 18 subjects with either one or two measurements were excluded

as a summary slope is either unestimable (n
i

= 1) or highly variable (n
i

= 2). Figure 18.5

suggests that there is a pattern of decreasing slope with increasing log baseline viral load.

However, there is also a great deal of subject-to-subject variation in the slopes, with some

subjects having ̂

β

i,1 > 0 count/month, indicating a stable or increasing trend, and some subjects

having ̂

β

i,1 < 15 count/month, suggesting a steep decline in their CD4. A linear regression

using the individual slope as the response and log baseline viral load as the predictor yields

a p-value of 0.124, implying a nonsignificant linear association between the summary statistic
̂

β

i,1 and log baseline viral load.

A categorical analysis using tertiles of baseline viral load parallels the descriptive statistics

presented in Table 18.1. The average rate of decline in CD4 can be estimated as the mean of

the individual slope estimates:

N Subjects Average Slope SE

Low viral load 66 −5.715 1.103

Medium viral load 69 −4.697 0.802

High viral load 65 −7.627 0.789
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We find similar average rates of decline for the medium- and low-viral-load groups and find a

greater rate of decline for the high-viral-load group. Using anova, we obtain an F -statistic of

2.68 on 2 and 197 degrees of freedom, with a p-value of 0.071, indicating that we would not

reject equality of average rates of decline using the nominal 5% significance level.

Note that neither simple linear regression nor anova accounts for the fact that response

variables ̂

β

i,1 may have unequal variance due to differing n

i

. In addition, a small number of

subjects were excluded from the analysis since a slope summary was unavailable. In Section

18.5 we discuss regression methods for correlated data that can efficiently use all of the available

data to make inferences with longitudinal data.

18.3.2 Pre–Post Analysis

In this section we discuss analytic methods appropriate when a single baseline and a single

follow-up measurement are available. We focus on the situation where interest is in the com-

parison of two groups: X

i

= 0 denotes membership in a reference or control group; and X

i

= 1

denotes membership in an exposure or intervention group. Assume for each subject i that we

have a baseline measurement denoted as Y

i0 and a follow-up measurement denoted as Y

i1. The

following table summarizes three main analysis options using regression methods to characterize

the two-group comparison:

Follow-up only: Y

i1 = β0 + β1Xi

+ ǫ

i

Change analysis: Y

i1 − Y

i0 = β

∗

0 + β

∗

1 X

i

+ ǫ

∗

i

ancova: Y

i1 = β

∗∗

0 + β

∗∗

1 X

i

+ β

∗∗

2 Y

i0 + ǫ

∗∗

i

Since X

i

is a binary response variable we can interpret the coefficients β1, β
∗

1 , and β

∗∗

1 as

differences in means comparing X

i

= 1 to X

i

= 0. Specifically, for the follow-up only analysis

the coefficient β1 represents the difference in the mean response at follow-up comparing X

i

= 1

to X

i

= 0. If the assignment to X

i

= 0/1 was randomized, the simple follow-up comparison is

a valid causal analysis of the effect of the treatment. For change analysis the coefficient β

∗

1 is

interpreted as the difference between the average change for X

i

= 1 as compared to the average

change for X

i

= 0. Finally, using ancova estimates β

∗∗

1 , which represents the difference in

the mean follow-up outcome comparing exposed (X
i

= 1) to unexposed (X
i

= 0) subjects who

are equal in their baseline response. Equivalently, we interpret β

∗∗

1 as the comparison of treated

versus control subjects after adjusting for baseline.

It is important to recognize that each of these regression models provides parameters with

different interpretations. In situations where the selection of treatment or exposure is not ran-

domized, the ancova analysis can control for “confounding due to indication,” or where the

baseline value Y

i0 is associated with a greater or lesser likelihood of receiving the treatment

X

i

= 1. When treatment is randomized, Frison and Pocock [1992] show that β1 = β

∗

1 = β

∗∗

1 .

This result implies that for a randomized exposure each approach can provide a valid estimate

of the average causal effect of treatment. However, Frison and Pocock [1992] also show that

the most precise estimate of β1 is obtained using ancova, and that final measurement analysis

is more precise than the change analysis when the correlation between baseline and follow-up

measurements is less than 0.50. This results from var(Y
i1 − Y

i0) = 2σ

2
(1 − ρ), which is less

than σ

2 only when ρ >

1
2

.

Example 18.1. (continued ) To evaluate the effect of the HIVNET mock informed consent,

we focus analysis on the baseline and six-month knowledge scores. The following tables give
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inference for the follow-up, Y

i1:

6-month

Group N Mean SE 95% CI

Control 834 1.494 0.111

Intervention 169 3.391 0.240

Difference 1.900 0.264 [1.375, 2.418]

and for the change in knowledge score, Y

i1 − Y

i0, for the 834/947 control subjects and 169/177

intervention subjects who have both baseline and six-month outcomes:

Mean

Group N Change SE 95% CI

Control 834 0.243 0.118

Intervention 169 2.373 0.263

Difference 2.130 0.288 [1.562, 2.697]

The correlation between baseline and month 6 knowledge score is 0.462 among controls and

0.411 among intervention subjects. Since ρ < 0.5, we expect an analysis of the change in

knowledge score to lead to a larger standard error for the treatment effect than a simple cross-

sectional analysis of scores at the six-month visit.

Alternatively, we can regress the follow-up on baseline and treatment:

Coefficients Estimate SE Z-value

(Intercept) 0.946 0.105 9.05

Treatment 1.999 0.241 8.30

Baseline (Y
i0) 0.438 0.027 16.10

In this analysis the estimate of the treatment effect is 1.999, with a standard error of 0.241.

The estimate of β1 is similar to that obtained from a cross-sectional analysis using six-month

data only, and to the analysis of the change in knowledge score. However, as predicted, the

standard error is smaller that the standard error for each alternative analysis approach. Finally,

in Figure 18.6, the six-month knowledge score is plotted against the baseline knowledge score.

Separate regression lines are fit and plotted for the intervention and control groups. We see

that the fitted lines are nearly parallel, indicating that the ancova assumption is satisfied for

these data.

For discrete outcomes, different pre–post analysis options can be considered. For example,

with a binary baseline, Y

i0 = 0/1, and a binary follow-up, Y

i1 = 0/1, the difference, Y

i1 − Y

i0,

takes the values −1, 0,+1. A value of −1 means that a subject has changed from Y

i0 = 1 to

Y

i1 = 0, while +1 means that a subject has changed from Y

i0 = 0 to Y

i1 = 1. A difference of 0

means that a subject had the same response at baseline and follow-up and does not distinguish

between Y

i0 = Y

i1 = 0 and Y

i0 = Y

i1 = 1. Rather than focus on the difference, it is useful to

consider an analysis of change by subsetting on the baseline value. For example, in a comparative

study we can subset on subjects with baseline value Y

i0 = 1 and then assess the difference

between intervention and control groups with respect to the percent that respond Y

i1 = 1 at

follow-up. This analysis allows inference regarding differential change from 0 to 1 comparing
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Figure 18.6 Month 6 knowledge score vs. baseline knowledge score (jittered), HIVNET informed consent

substudy. Open points and dashed line represent intervention; solid points and line represent control.

the two groups. When a response value of 1 indicates a positive outcome, this analysis provides

information about the “corrective” potential for intervention and control groups. An analysis that

restricts to subjects with baseline Y

i0 = 1 and then comparing treatment and control subjects

at follow-up will focus on a second aspect of change. In this case we are summarizing the

fraction of subjects that start with Y

i0 = 1 and then remain with Y

i1 = 1 and thus do not

change their outcome but rather, maintain the outcome. When the outcome Y

ij

= 1 indicates a

favorable status, this analysis summarizes the relative ability of intervention and control groups

to “maintain” the favorable status. Statistical inference can be based on standard two-sample

methods for binary data (see Chapter 6). An analysis that summarizes current status at follow-

up stratifying on the baseline, or previous outcome, is a special case of a transition model (see

Diggle et al. [2002, Chap. 10]).

Example 18.1. (continued ) The HIVNET informed consent substudy was designed to eval-

uate whether an informed consent procedure could correct misunderstanding regarding vaccine

trial conduct and to reinforce understanding that may be tentative. In Section 18.2 we saw

that for the safety item assessment at six months the intervention group had 50% of subjects

answer correctly as compared to only 43% of control subjects. For the nurse item the frac-

tions answering correctly at six months were 72% and 45% for intervention and control groups,

respectively. By analyzing the six-month outcome separately for subjects that answered incor-

rectly at baseline, Y

i0 = 0, and for subjects that answered correctly at baseline, Y

i0 = 1, we

can assess the mechanisms that lead to the group differences at six months: Does the inter-

vention experience lead to greater rates of “correction” where answers go from 0 → 1 for

baseline and six-month assessments; and does intervention appear to help “maintain” or rein-

force correct knowledge by leading to increased rates of 1 → 1 for baseline and six-month

responses?
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The following table stratifies the month 6 safety knowledge item by the baseline response:

Safety Item

“Correction” : Y
i0 = 0 “Maintain” : Y

i0 = 1

Percent Correct Percent Correct

N Y
i1 = 1 N Y

i1 = 1

Control 488 160/488 = 33% Control 349 198/349 = 57%

Intervention 105 43/105 = 41% Intervention 65 42/65 = 65%

This table shows that of the 105 intervention subjects that answered the safety item at baseline

incorrectly, a total of 43, or 41%, subsequently answered the item correctly at the 6-month

follow-up visit. In the control group only 160/488 = 33% answered this item correctly at six

months after they had answered incorrectly at baseline. A two-sample test of proportions yields

a p-value of 0.118, indicating a nonsignificant difference between the intervention and control

groups in their rates of correcting knowledge of this item. For subjects that answered this item

correctly at baseline, 42/65 = 65% of intervention subjects and 198/349 = 57% of control sub-

jects continued to respond correctly. A two-sample test of proportions yields a p-value of 0.230,

indicating a nonsignificant difference between the intervention and control groups in their rates

of maintaining correct knowledge of the safety item. Therefore, although the intervention group

has slightly higher proportions of subjects that switch from incorrect to correct, and that stay

correct, these differences are not statistically significant.

For the nurse item we saw that the informed consent led to a large fraction of subjects who

answered the item correctly. At six months the intervention group had 72% of subjects answer

correctly, while the control group had 45% answer correctly. Focusing on the mechanisms for

this difference we find:

Nurse Item

“Correction” : Y
i0 = 0 “Maintain” : Y

i0 = 1

Percent Correct Percent Correct

N Y
i1 = 1 N Y

i1 = 1

Control 382 122/382 = 32% Control 455 252/455 = 55%

Intervention 87 59/87 = 68% Intervention 85 65/85 = 76%

Thus intervention led to a correction for 68% of subjects with an incorrect baseline response

compared to 32% among controls. A two-sample test of proportions yields a p-value of <0.001,

and a confidence interval for the difference in proportions of (0.250, 0.468). Therefore, the inter-

vention has led to a significantly different rate of correction for the nurse item. Among subjects

who correctly answered the nurse item at baseline, only 55% of control subjects answered cor-

rectly again at month 6, while 76% of intervention subjects maintained a correct answer at six

months. Comparison of the proportion that maintain correct answers yields a p-value of <0.001

and a 95% confidence interval for the difference in probability of a repeat correct answer of

(0.113, 0.339). Therefore, the informed consent intervention led to significantly different rates

of both correction and maintenance for the safety item.

These categorical longitudinal data could also be considered as multiway contingency tables

and analyzed by the methods discussed in Chapter 7.
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18.4 IMPACT OF CORRELATION ON INFERENCE

For proper analysis of longitudinal data the within-subject correlation needs to be addressed.

In Section 18.3.1 we discussed one method that avoids considering correlation among repeated

measures by reducing the multiple measurements to a single summary statistic. In situations

where there are variable numbers of observations per subject, alternative approaches are prefer-

able. However, to analyze longitudinal outcomes, either a model for the correlation needs to

be adopted or the standard error for statistical summaries needs to be adjusted. In this section

we discuss some common correlation models and discuss the impact of the correlation on the

standard errors and sample size.

18.4.1 Common Types of Within-Subject Correlation

The simplest correlation structure is the exchangeable or compound symmetric model, where

corr(Y
i

) =
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In this case the correlation between any two measurements on a given subject is assumed to be

equal, corr(Y
ij

, Y

ik

) = ρ

jk

≡ ρ. The longitudinal outcomes form a simple “cluster” of responses,

and the time ordering is not considered when characterizing correlation.

In other models the measurement time or measurement order is used to model correlation.

For example, a banded correlation is

corr(Y
i

) =
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and an autoregressive structure is

corr(Y
i

) =
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· · · 1















Each of these models is a special case of a serial correlation model where the distance between

observations determines the correlation. In a banded model correlation between observations is

determined by their order. All observations that are adjacent in time are assumed to have an equal

correlation: corr(Y
i1, Y

i2) = corr(Y
i2, Y

i3) = · · · = corr(Y
in−1, Yin

) = ρ1. Similarly, all observa-

tions that are two visits apart have correlation ρ2, and in general all pairs of observations that are

k visits apart have correlation ρ

k

. A banded correlation matrix will have a total of n−1 correlation

parameters. The autoregressive correlation model uses a single correlation parameter and assumes

that the time separation between measurements determines their correlation through the model
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corr(Y
ij

, Y

ik

) = ρ

|t
j

−t

k

|. Thus, if ρ = 0.8 and observations are 1 unit apart in time, their correla-

tion will be 0.81
= 0.8, while if they are 2 units apart, their correlation will be 0.82

= 0.64. In an

autoregressive model the correlation will decay as the distance between observations increases.

There are a large number of correlation models beyond the simple exchangeable and serial

models given above. See Verbeke and Molenberghs [2000] and Diggle et al. [2002] for further

examples.

18.4.2 Variance Inflation Factor

The impact of correlated observations on summaries such as the mean of all observations

taken over time and across all subjects will depend on the specific form of the within-subject

correlation. For example,

Y =

1
∑

i

n

i

N

∑

i=1

n

i

∑

j=1

Y

ij

var(Y ) =

1

(

∑

i

n

i

)

2

N

∑

i=1





n

i

∑

j=1

var(Y
ij

) +

n

i

−1
∑

j=1

n

i

∑

k=(j+1)

2 × cov(Y

ij

, Y

ik

)





If the variance is constant, var(Y
ij

) = σ

2, we obtain

var(Y ) =

σ

2

(

∑

i

n

i

)

2

N

∑

i=1





n

i

+

n

i

−1
∑

j=1

n

i

∑

k=(j+1)

2 × corr(Y
ij

, Y

ik

)





Finally, if all subjects have the same number of observations, n

i

≡ n, and the correlation is

exchangeable, ρ

jk

≡ ρ, the variance of the mean is

var(Y ) =

σ

2

Nn

[1 + (n − 1)ρ]

The factor [1 + (n− 1) ·ρ] is referred to as the variance inflation factor, since this measures the

increase (when ρ > 0) in the variance of the mean (calculated using N · n observations) that is

due to the within-subject correlation of measurements.

To demonstrate the impact of correlation on the variance of the mean, we calculate the vari-

ance inflation factor, 1 + (n − 1)ρ, for various values of cluster size, n, and correlation, ρ, in

Table 18.4. This shows that even very small within-cluster correlations can have an important

impact on standard errors if clusters are large. For example, a variance inflation factor of 2.0

arises with (ρ = 0.001, n = 1001), (ρ = 0.01, n = 101), or (ρ = 0.10, n = 11). The variance

Table 18.4 Variance Inflation Factors

n ρ

Cluster

Size 0.001 0.01 0.02 0.05 0.1

2 1.001 1.01 1.02 1.05 1.10

5 1.004 1.04 1.08 1.20 1.40

10 1.009 1.09 1.18 1.45 1.90

100 1.099 1.99 2.98 5.95 10.90

1000 1.999 10.99 20.98 50.95 100.90
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inflation factor becomes important when planning a study. In particular, when treatment is given

to groups of subjects (e.g., a cluster randomized study), the variance inflation factor needs to

be estimated to power the study properly. See Koepsell et al. [1991] or Donner and Klar [1994,

1997] for a discussion of design and analysis issues in cluster randomized studies. For longitu-

dinal data each subject is a “cluster,” with individual measurements taken within each subject.

18.5 REGRESSION METHODS

Regression methods permit inference regarding the average response trajectory over time and

how this evolution varies with patient characteristics such as treatment assignment or other

demographic factors. However, standard regression methods assume that all observations are

independent and if applied to longitudinal outcomes may produce invalid standard errors. There

are two main approaches to obtaining valid inference: A complete model that includes specific

assumptions regarding the correlation of observations within a subject can be adopted and used

to estimate the standard error of regression parameter estimates; general regression methods

can be used and the standard errors can be corrected to account for the correlated outcomes.

In the following section we review a regression method for continuous outcomes that models

longitudinal data by assuming random errors within a subject and random variation in the

trajectory among subjects.

18.5.1 Mixed Models

Figure 18.7 presents hypothetical longitudinal data for two subjects. In the figure monthly obser-

vations are recorded for up to one year, but one person drops out prior to the eight-month visit,

and thus the observations for months 8 through 12 are not recorded. Notice that each subject
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Figure 18.7 Hypothetical longitudinal data for two subjects. Each subject has an individual linear trajec-

tory, and one subject has incomplete data due to dropout.
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appears to be tracking his or her own linear trajectory but with small fluctuations about the

line. The deviations from the individual observations to the individual’s line are referred to as

the within-subject variation in the outcomes. If we only had data for a single subject, these

would be the typical error terms in a regression equation. In most situations the subjects in a

study represent a random sample from a well-defined target population. In this case the specific

individual line that a subject happens to follow is not of primary interest, but rather the typical

linear trajectory and perhaps the magnitude of subject-to-subject variation in the longitudinal

process. A dashed line in the center of Figure 18.7 shows the average of individual linear-time

trajectories. This average curve characterizes the average for the population as a function of

time. For example, the value of the dashed line at month 2 denotes the cross-sectional mean

response if the two-month observation for all subjects was averaged. Similarly, the fitted value

for the dashed line at 10 months represents the average in the population for the 10-month

measurement. Therefore, the average line in Figure 18.7 represents both the typical trajectory

and the population average as a function of time.

Linear mixed models make specific assumptions about the variation in observations attributable

to variation within a subject and to variation among subjects. The within-subject variation is

seen in Figure 18.7 as the deviation between individual observations, Y

ij

, and the individual

linear trajectory. Let β

i,0 + β

i,1Xij

denote the line that characterizes the observation path for

subject i. In this example X

ij

denotes the time of measurement j on subject i. Note that each

subject has an individual-specific intercept and slope. Within-subject variation is seen in the

magnitude of variation in the deviation between the observations and the individual trajectory,

Y

ij

− (β

i,0 + β

i,1Xij

). The between-subject variation is represented by the variation among the

intercepts, var(β
i,0), and the variation among subjects in the slopes, var(β

i,1).

If parametric assumptions are made regarding the within- and between-subject components

of variation, maximum likelihood methods can be used to estimate the regression parameters

which characterize the population average, and the variance components which characterize

the magnitude of within- and between-subject heterogeneity. For continuous outcomes it is

convenient to assume that within-subject errors are normally distributed and to assume that

intercepts and slopes are normally distributed among subjects. Formally, these assumptions are

written as:

within-subjects : E(Y

ij

| β

i

) = β

i,0 + β

i,1Xij

Y

ij

= β

i,0 + β

i,1Xij

+ ǫ

ij

ǫ

ij

∼ N(0, σ

2
)

between-subjects :

(

β

i,0

β

i,1

)

∼ N

[(

β0

β1

)

,

(

D00 D01

D10 D11

)]

The model can be rewritten using b

i,0 = (β

i,0 − β0) and b

i,1 = (β

i,1 − β1):

Y

ij

= β0 + β1Xij

︸ ︷︷ ︸

systematic

+ b

i,0 + b

i,1Xij

+ ǫ

ij

︸ ︷︷ ︸

random

(1)

In this representation the terms b

i,0 and b

i,1 represent deviations from the population average

intercept and slope, respectively. These “random effects” now have mean 0 by definition, but

their variance and covariance is still given by the elements of the matrix D. For example,

var(b
i,0) = D00 and var(b

i,0) = D11. In equation (1) the “systematic” variation in outcomes is

given by the regression parameters β0 and β1. These parameters determine how the average for

subpopulations differs across distinct values of the covariates, X

ij

.
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In equation (1) the random components are partitioned into the observation-level and subject-

level fluctuations:

Y

ij

= β0 + β1Xij

+ b

i,0 + b

i,1Xij

︸ ︷︷ ︸

between-subject

+ ǫ

ij

︸ ︷︷ ︸

within-subject

A more general form is

Y

ij

= β0 + β1Xi1 + · · · + β

p

X

ip

︸ ︷︷ ︸

fixed effects

+ b

i,0 + b

i,1Xi1 + · · · + b

i,q

X

iq

︸ ︷︷ ︸

random effects

+ ǫ

ij

Y

ij

= X

′

ij

β + Z

′

ij

b

i

+ ǫ

ij

where X

′

ij

= [X
ij,1, X

ij,2, . . . , X

ij,p

] and Z

′

ij

= [X
ij,1, X

ij,2, . . . , X

ij,q

]. In general, we assume

that the covariates in Z

ij

are a subset of the variables in X

ij

and thus q < p. In this model

the coefficient of covariate k for subject i is given as (β

k

+ b

i,k

) if k ≤ q and is simply β

k

if q < k ≤ p. Therefore, in a linear mixed model there may be some regression parameters

that vary among subjects, while some regression parameters are common to all subjects. For

example, in Figure 18.7 it is apparent that each subject has his or her own intercept, but the

subjects may have a common slope. A random intercept model assumes parallel trajectories for

any two subjects and is given as a special case of the general mixed model:

Y

ij

= β0 + β1Xi1 + b

i,0 + ǫ

ij

In this model the intercept for subject i is given by β0 + b

i,0, while the slope for subject i is

simply β1, since there is no additional random slope, b

i,1, in the random intercept model.

Laird and Ware [1982] discuss the linear mixed model and specific methods to obtain maxi-

mum likelihood estimates. Although linear mixed models can be computationally difficult to fit,

modern software packages contain excellent numerical routines for estimating parameters and

computing standard errors. For example, the SAS package contains the MIXED procedure and

S-PLUS has the lme() function.

Example 18.2. (continued ) In Section 18.3.1 we explored the change over time in CD4

counts for groups of subjects according to their baseline viral load value. Using linear mixed

models we can estimate the average rate of decline for each baseline viral load category, and

test for differences in the rate of decline.

To test for differences in the rate of decline, we use linear regression with

E(Y

ij

| X

ij

) = β0 +

β1 · month +

β2 · I (medium viral load) +

β3 · I (high viral load) +

β4 · month · I (medium viral load) +

β5 · month · I (high viral load) .

Here X

ij,3 = I (medium viral load) = 1 if subject i has a medium value for baseline viral load

and otherwise = 0, and X

ij,4 = I (high viral load) = 1 if subject i has a high baseline viral load

and otherwise = 0. Using this regression model, the average slope for the low baseline viral

category is given by β1, while the average slope for the other viral load categories are given

by (β1 + β4) and (β1 + β5) for the medium- and high-viral-load categories, respectively. If the
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estimate of β4 is not significantly different from 0, we cannot reject equality of the average

rates of decline for the low- and medium-viral-load subjects. Similarly, inference regarding

β5 determines whether there is evidence that the rate of decline for high-viral-load subjects is

different than for low-viral-load subjects.

The linear mixed model is specified by the regression model for E(Y

ij

| X

ij

) = µ

ij

and

assumptions about random effects. We first assume random intercepts, Y

ij

= µ

ij

+b

i,0 +ǫ

ij

, and

then allow random intercepts and slopes, Y

ij

= µ

ij

+b

i,0+b

i,1 ·month+ǫ

ij

. Maximum likelihood

estimates are presented in Tables 18.5 and 18.6. In Table 18.5 the mixed model assumes that

each subject has a random intercept, b

i,0, but assumes a common slope. In this model there are

two estimated variance components: 162.5 = σ̂ =

√

v̂ar(ǫ
ij

) and 219.1 =

√

̂

D00 =

√

v̂ar(b
i,0).

The total variation in CD4 is estimated as 162.52
+ 219.12

= 272.82, and the proportion

of total variation that is attributed to within-person variability is 162.52
/272.82

= 35% with

219.12
/272.82

= 65% of total variation attributable to individual variation in their general level

of CD4 (e.g., attributable to random intercepts).

Estimates from Table 18.5 are interpreted as follows:

• (Intercept) ̂

β0 = 803.4. The intercept is an estimate of the mean CD4 count at serocon-

version (i.e., month = 0) among the low-viral-load subjects.

• month ̂

β1 = −5.398: Among subjects in the low-viral-load group, the mean CD4 declines

-5.398 units per month.

• I[Medium Viral Load] ̂

β2 = −123.72. At seroconversion the average CD4 among subjects

with a medium value for baseline viral load is 123.72 units lower than the average CD4

among the low-viral-load subjects.

• I[High Viral Load] ̂

β3 = −146.40. At seroconversion the average CD4 among subjects

with a high value for baseline viral load is 146.40 units lower than the average CD4 among

the low-viral-load subjects.

• month * I[Medium Viral Load] ̂

β4 = 0.169. The rate of decline for subjects in the medium-

viral-load category is estimated to be 0.169 count/month higher than the rate of decline

among subjects with a low-baseline viral load. The rate of change in mean CD4 is esti-

mated as −5.398 + 0.169 = −5.229 counts/month among subjects with medium-baseline

viral load.

Table 18.5 Linear Mixed Model Results for the CD4 Data Assuming Random Interceptsa

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19838.98 19881.38 −9911.491

Random effects:

Formula: ˜ 1 | id

(Intercept) Residual

StdDev: 219.1106 162.5071

Fixed effects: cd4 ˜ month * vcat

Value Std.Error DF t-value p-value

(Intercept) 803.356 29.712 1250 27.04 <.0001

month −5.398 0.578 1250 −9.34 <.0001

I[Medium Viral Load] −123.724 42.169 223 −2.93 0.0037

I[High Viral Load] −146.401 42.325 223 −3.46 0.0006

month * I[Medium Viral Load] 0.169 0.812 1250 0.21 0.8351

month * I[High Viral Load] −1.968 0.817 1250 −2.41 0.0162

aOutput from S-PLUS.
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Table 18.6 Linear Mixed Model Results for the CD4 Data Assuming Random Intercepts and Slopesa

Linear mixed-effects model fit by maximum likelihood

Data: MACS

AIC BIC logLik

19719.85 19772.84 −9849.927

Random effects:

Formula: ˜ 1 + month | id

Structure: General positive-definite

StdDev Corr

(Intercept) 244.05874 (Inter

month 5.68101 −0.441

Residual 142.22835

Fixed effects: cd4 ˜ month * vcat
Value Std.Error DF t-value p-value

(Intercept) 803.509 31.373 1250 25.61 <.0001

month −5.322 0.857 1250 −6.21 <.0001

I[Medium Viral Load] −125.548 44.536 223 −2.82 0.0053

I[High Viral Load] −142.177 44.714 223 −3.18 0.0017

month * I[Medium Viral Load] 0.159 1.205 1250 0.13 0.8954

month * I[High Viral Load] −2.240 1.212 1250 −1.85 0.0648

aOutput from S-PLUS.

• month * I[High Viral Load] ̂

β5 = −1.967. The rate of decline for subjects in the high-viral-

load category is estimated to be −1.967 counts/month lower than the rate of decline among

subjects with a low-baseline viral load. The rate of change in mean CD4 is estimated

as −5.398 − 1.967 = −7.365 counts/month among subjects with a high-baseline viral

load.

Although the regression output also includes standard errors for each of the regression esti-

mates, we defer making inference since a model with random intercepts and random slopes

appears more appropriate and affects the resulting confidence intervals or tests for the regression

estimates (see Table 18.6).

In Table 18.6 we present maximum likelihood estimates assuming random intercepts and

random slopes. To assess whether the additional flexibility is warranted, we can evaluate the

improvement in the fit to the data as measured by the maximized log likelihood. The maximized

log likelihood for random intercepts is −9911.49 (see Table 18.5), while the maximized log

likelihood is increased by 61.56 to −9849.93 when also allowing random intercepts. A formal

likelihood ratio test is possible since the random intercepts and random intercepts plus slopes

form nested models, but since the null hypothesis restriction involves D11 = 0, which is on the

boundary of the allowable values for variance components (i.e., D11 ≥ 0), the null reference

distribution is of nonstandard form [Stram and Lee, 1994; Verbeke and Molenberghs, 2000].

However, the increase in maximized log likelihood of 61.56 is quite substantial and statistically

significant with p < 0.001. Although the variance assumptions can be further relaxed to allow

serial correlation in the measurement errors, ǫ

ij

, the improvement in the maximized log likeli-

hood is small and does not substantially affect the conclusions. We refer the reader to Diggle

et al. [2002] and Verbeke and Molenberghs [2000] for further detail regarding linear mixed

models that also include serial correlation in the errors.

Table 18.6 gives estimates of the variance components. For example, the standard devia-

tion in intercepts is estimated as
√

̂

D00 = 244.1 and the standard deviation of slopes is given
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as
√

̂

D11 = 5.681. Under the assumption of normally distributed random effects, these esti-

mates imply that 95% of subjects with a low-baseline viral load would have a mean CD4 at

seroconversion between 803.5 − 1.96 × 244.1 = 325.1 and 803.5 + 1.96 × 244.1 = 1281.9. We

emphasize that this interval is for individual values of the mean CD4 at baseline rather than for

individual measurements at baseline. The interval (325.1, 1281.9) does not include the measure-

ment variation attributable to ǫ

ij

so only describes the variation in the means, β0 + b

i,0, and not

the actual CD4 measurements, Y

ij

= β0 + b

i,0 + ǫ

ij

. Similarly, 95% of low-viral-load subjects

are expected to have a slope of −5.322 ± 1.96 × 5.681 = (−16.456, 5.813) counts/month.

The estimated regression parameters can be used to make inference regarding the average

rate of decline for each of the baseline viral load categories. For example, ̂

β4 = 0.159 estimates

the difference between the rate of decline among medium-viral-load subjects and low-viral-load

subjects and is not significantly different from 0 using the standardized regression coefficient

as test statistic: 0.159/1.205 = 0.13 with p = 0.8954. Although the estimated rate of decline

is lower for the high-viral-load group, ̂

β5 = −2.240, this is also not significantly different from

0 with p-value 0.0648. It is important to point out that inference using linear mixed models

can be quite sensitive to the specific random effects assumptions. If a random intercepts model

were used, the comparison of high- versus low-viral-load group slopes over time becomes

statistically significant, as seen in Table 18.5, where the p-value for testing H0 : β5 = 0 is

p = 0.0162, which would naively lead to rejection of the null hypothesis. This inference is

invalid, as it assumes that slopes do not vary among individuals, and the data clearly suggest

between-subject variation in slopes.

Residual plots can be useful for checking the assumptions made by the linear mixed model.

However, there are two types of residuals that can be used. First, the population residuals are

defined as

R

P

ij

= Y

ij

− (

̂

β0 + ̂

β1Xij,1 + · · · + ̂

β

p

X

ij,p

)

= Y

ij

− X

′

ij

̂

β

The population residuals measure the deviation from the individual measurement to the fitted

population mean value. These residuals contain all components of variation, including between-

and within-subject deviations since

Y

ij

− X

′

ij

β = Z

′

ij

b

i

+ ǫ

ij

The population residuals can be used to evaluate evidence for systematic departures from linear

assumptions. Similar to standard multiple regression, plots of residuals versus predictors can be

inspected for curvature.

Individual random effects b

i

can also be estimated and used to form a second type of residual.

Under the linear mixed model, these random effects are typically not estimated simply by using

subject i data only to estimate b

i

, but rather by using both the individual data Y

i1, Y

i2, . . . , Y

i,n

i

and the assumption that random effects are realizations from a normal distribution among sub-

jects. Empirical Bayes’ estimates of b

i

balance the assumption that b

i

is intrinsic to generating

the data Y

ij

in addition to the assumption that the distribution of b

i

is multivariate normal

with mean 0. Thus, empirical Bayes’ estimates are typically closer to 0 than estimates that

would be obtained solely by using individual i data. See Carlin and Louis [1996] for more

detail on empirical Bayes’ estimation. Using the estimated random effects provides a second

residual:

R

W

ij

= Y

ij

− (

̂

β0 + ̂

β1Xij,1 + · · · + ̂

β

p

X

ij,p

)

− (b̂

i,0 + b̂

i,1Xij,1 + · · · + b̂

i,q

X

ij,q

)

= Y

ij

− X

′

ij

̂

β − Z

′

ij

̂

b

i
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If the regression parameter β and the random effects b were known rather than estimated, the

residual R

W

ij

would equal the within-subject error ǫ

ij

. The within-subject residuals R

W

ij

can be

used to assess the assumptions regarding the within-subject errors.

Example 18.2. (continued ) We use the random intercepts and random slopes model for

the CD4 data to illustrate residual analysis for linear mixed models. The population residuals

are plotted in Figure 18.8, and the within-subject residuals are plotted in Figure 18.9. First, no

violation of the linearity assumption for month is apparent in either of these plots. Second, the

population residuals are weakly suggestive of an increasing variance over time. However, it is

important to note that under the assumption of random intercepts and random slopes, the total

variance, var(b
i,0 +b

i,1 ·month+ ǫ

ij

), may be an increasing or decreasing function of time. The

population residuals suggest right skewness in the cross-sectional distribution of CD4. Since the

within-subject residuals do not appear skewed, the population residuals suggest that the random

effects may not be normally distributed. Figure 18.10 presents histograms of the estimated

intercepts and slopes obtained using ordinary linear regression for subject i data rather than the

empirical Bayes estimates. The histograms for the individual intercepts appear to be right skewed,

while the individual slopes appear symmetrically distributed. Therefore, residual analysis coupled

with exploratory analysis of individual regression estimates suggests that linearity assumptions

appear satisfied, but normality of random effects may be violated. The linear mixed model is

known to be moderately robust to distributional assumptions, so large-sample inference regarding

the average rate of decline for baseline viral load groups can be achieved.

Mixed models can be adopted for use with categorical and count response data. For example,

random effects can be included in logistic regression models for binary outcomes and can be

included in log-linear models for count data. Maximum likelihood estimation for these models

requires specialized software. Extensions of mixed models to alternate regression contexts is

discussed in Chapters 7 and 9 of Diggle et al. [2002].
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Figure 18.8 Population residuals, R

P

ij

, vs. visit month for the MACS CD4 data. The dashed line is a

smooth curve through the residuals.
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Figure 18.9 Within-subject residuals, R

W

ij

, vs. visit month for the MACS CD4 data. The dashed line is a

smooth curve through the residuals.

18.5.1.1 Summary

• Linear mixed models permit regression analysis with correlated data.

• Mixed models specify variance components that represent within-subject variance in out-

comes and between-subject variation in trajectories.

• Linear mixed model parameters can be estimated using maximum likelihood.

18.5.2 Generalized Estimating Equations

A second regression approach for inference with longitudinal data is known as generalized

estimating equations (GEE) [Liang and Zeger, 1986]. In this approach two models are specified.

First, a regression model for the mean response is selected. The form of the regression model is

completely flexible and can be a linear model, a logistic regression model, a log-linear model,

or any generalized linear model [McCullagh and Nelder, 1989]. Second, a model for the within-

subject correlation is specified. The correlation model serves two purposes: It is used to obtain

weights (covariance inverse) that are applied to the vectors of observations from each subject to

obtain regression coefficient estimates; and the correlation model is used to provide model-based

standard errors for the estimated coefficients.

A regression model specifies a structure for the mean response, µ

ij

= E(Y

ij

| X

ij

), as a func-

tion of covariates. For longitudinal data the mean µ

ij

has been called the marginal mean since

it does not involve any additional variables, such as random effects, b

i

, or past outcomes, Y

ij−1.

Mixed models consider means conditional on random effects, and transition models include past

outcomes as covariates. Adding additional variables leads to subtle changes in the interpretation

of covariate coefficients, which becomes particularly important for nonlinear models such as

logistic regression. See Diggle et al. [2002, Chaps. 7 and 11] for further discussion.

GEE has two important robustness properties. First, the estimated regression coefficients, ̂

β,

obtained using GEE are broadly valid estimates that approach the correct value with increasing
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sample size regardless of the choice of correlation model. In this respect the correlation model is

used simply to weight observations, and a good correlation model choice can lead to more precise

estimation of regression coefficients than can a poor choice. Based on optimal estimation theory

(e.g., Gauss–Markov theory), the best correlation model choice for efficiency of estimation is the

true correlation structure. Second, the correlation choice is used to obtain model-based standard

errors, and these do require that the correlation model choice is correct in order to use the

standard errors for inference. A standard feature of GEE is the additional reporting of empirical

standard errors, which provide valid estimates of the uncertainty in ̂

β, even if the correlation

model is not correct. Therefore, the correlation model can be any model, including one that

assumes observations are independent, and proper large-sample standard errors obtained using

the empirical estimator. Liang and Zeger [1993] provide an overview of regression methods for

correlated data, and Hanley et al. [2003] give an introduction to GEE for an epidemiological

audience.

Example 18.2. (continued ) We return to the CD4 data and use GEE to investigate whether

the rate of decline in CD4 over the first 48 months postseroconversion seems to depend on

the baseline viral load category. Table 18.7 presents the estimates obtained using GEE and an

independence correlation model. Standard errors using the independence correlation model are

identical to those obtained from linear regression and are labeled as “model-based.” In this

application the key feature provided by GEE are the “empirical” standard errors, which are

generally valid estimates of the uncertainty associated with the regression estimates. Notice that

most of the empirical standard errors are larger than the naive model-based standard errors,

which assume that the data are independent. However, corrected standard errors can be either

larger or smaller than standard errors obtained under an independence assumption, and the nature

of the covariate and the correlation structure interact to determine the proper standard error. It

is an oversimplification to state that correction for correlation will lead to larger standard errors.

Using GEE we obtain conclusions similar to that obtained using linear mixed models: The high-

viral-load group has a steeper estimated rate of decline, but the difference between low and high

groups is not statistically significant.

Example 18.1. (continued ) GEE is particularly useful for binary data and count data. We

now turn to analysis of the nurse item from the HIVNET informed consent study. We need to

choose a regression model and a correlation model. For our first analysis we assume a common

proportion answering correctly after randomization. For this analysis we create the covariate

“post,” which takes the value 1 if the visit occurs at month 6, 12, or 18, and takes the value

0 for the baseline visit. We use the variable “ICgroup” to denote the intervention and control

group, where ICgroup
ij

= 1 for all visits j = 1, 2, 3, 4 if the subject was randomized to the

mock informed consent, and ICgroup
ij

= 0 for all visits, j = 1, 2, 3, 4, if the subject was

randomized to the control group. Since the response is binary, Y

ij

= 1 if the item was correctly

answered by subject i at visit j and 0 otherwise, we use logistic regression to characterize the

Table 18.7 GEE Estimates for the CD4 Data Using an Independence Working Correlation Model

Standard Error Z-statistic

Estimate Model Empirical Model Empirical

(Intercept) 792.897 26.847 36.651 29.534 21.633

Month −4.753 0.950 1.101 −5.001 −4.318

I (Medium viral load) −121.190 37.872 46.886 −3.200 −2.585

I (high viral load) −150.705 37.996 45.389 −3.966 −3.320

Month · I (medium viral load) −0.301 1.341 1.386 −0.224 −0.217

Month · I (high viral load) −1.898 1.346 1.297 −1.410 −1.464
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probability of a correct response as a function of time and treatment group:

logitP(Y

ij

= 1 | X

i

) = β0 +

β1 · post
ij

+

β2 · ICgroup
ij

+

β3 · ICgroup
ij

· post
ij

Since the visits are equally spaced and each subject is scheduled to have a total of four mea-

surements, we choose to use an unstructured correlation matrix. This allows the correlations ρ

jk

to be different for each pair of visit times (j, k).

In Table 18.8 we provide GEE estimates obtained using the SAS procedure GENMOD. The

estimated working correlation is printed and indicates correlation that decreases as the time

separation between visits increases. For example, the estimated correlation for Y

i1 and Y

i2 is

ρ̂12 = 0.204, while for Y

i1 and Y

i3, ρ̂13 = 0.194, and for Y

i1 and Y

i4, ρ̂14 = 0.163. The

correlation between sequential observations also appears to increase over time with ρ̂23 = 0.302

and ρ34 = 0.351.

Regression parameter estimates are reported along with the empirical standard error estimates.

These parameters are interpreted as follows:

• (Intercept) ̂

β0 = 0.1676. The intercept is an estimate of log odds of a correct response to the

nurse item at baseline for the control group. This implies an estimate for the probability of

Table 18.8 GEE Analysis of the Nurse Item from the HIVNET Informed Consent Studya

GEE Model Information

Correlation Structure Unstructured

Subject Effect id (1123 levels)

Number of Clusters 1123

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 1

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.2044 0.1936 0.1625

Row2 0.2044 1.0000 0.3022 0.2755

Row3 0.1936 0.3022 1.0000 0.3511

Row4 0.1625 0.2755 0.3511 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1676 0.0652 0.0398 0.2954 2.57 0.0102

Post −0.3238 0.0704 −0.4618 −0.1857 −4.60 <.0001

ICgroup −0.1599 0.1643 −0.4819 0.1622 −0.97 0.3306

ICgroup*Post 1.0073 0.2012 0.6128 1.4017 5.01 <.0001

aOutput from SAS procedure GENMOD.
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a correct response at baseline among controls of exp(0.1676)/[1+exp(0.1676)] = 0.5418,

which agrees closely with the observed proportion presented in Table 18.3.

• Post ̂

β1 = −0.3238. The coefficient of Post is an estimate of the log of the odds ratio com-

paring the odds of a correct response among control subjects after randomization (either

month 6, 12, or 18) relative to the odds of a correct response among the control group

at baseline. Since the odds ratio estimate is exp(−0.3238) = 0.7234 < 1, the odds of a

correct response is lower after baseline. A test for equality of odds comparing postbaseline

to baseline yields a p-value p < 0.001.

• ICgroup ̂

β2 = −0.1599. The coefficient of ICgroup is an estimate of the log of the odds

ratio comparing the odds of a correct response among intervention subjects at baseline

relative to the odds of a correct response among the control subjects at baseline. Since

the assignment to treatment and control was based on randomization, we expect this odds

ratio to be 1.0, and the log odds ratio estimate is not significantly different from 0.0.

• ICgroup * Post ̂

β3 = 1.0073. This interaction coefficient measures the difference between

the comparison of treatment and control after randomization and the comparison of treat-

ment and control at baseline. Specifically, (β3+β2) represents the log odds ratio comparing

the odds of a correct response among intervention subjects postbaseline to the odds of a

correct response among control subjects postbaseline. Since β2 represents the group com-

parison at baseline, β3 = (β3 + β2) − β2, or β3 measures the difference between the

comparison after baseline and the group comparison at baseline. Therefore, the parameter

β3 becomes the primary parameter of interest in this study, as it assesses the change in

the treatment/control comparison that is attributable to the intervention. A test of β3 = 0

is statistically significant with p < 0.001.

GEE is a convenient analysis tool for the informed consent data, as it allows inference

regarding the differences between treatment and control groups over time. A standard logistic

regression model is adopted and valid standard errors are calculated that account for the within-

subject correlation of outcomes.

In Table 18.8 we used a single time variable that was an indicator for the postbaseline visits at

six, 12, and 18 months. However, inspection of crude proportions responding correctly suggest

that the treatment/control comparison may be decreasing over time. For example, in Table 18.3

we see (treatment, control) proportions of (72.1%, 44.7%) at month 6, (60.1%, 46.3%) and

(66.0%, 48.2%) at months 12 and 18. To assess whether the treatment effect appears to be

decreasing over time, we fit a second logistic regression model that uses indicator variables for

months 6, 12, and 18. Table 18.9 presents GEE estimates using an exchangeable working corre-

lation model. In this model the coefficient of month6*ICgroup contrasts the treatment/control log

odds ratio at the six-month visit and at baseline. Similar to our earlier analysis, this difference in

time-specific log odds ratios is the primary treatment effect observed at six months. Similarly,

the coefficients of month12*ICgroup and month18*ICgroup represent treatment effects at 12

and 18 months. Each of the estimated differences in log odds ratios are significant as indicated

by the individual p-values in Table 18.9. In addition, we contrast the observed treatment effect

at six months with the treatment effect observed at 12 and 18 months. The difference between

the estimated coefficient of month6*ICgroup and month12*ICgroup assesses the change in the

treatment effect and is estimated as 1.3232 − 0.7362 = −0.5871. A test of this contrast yields a

p-value of 0.0035, indicating a different treatment effect at 12 months as compared to the treat-

ment effect at 6 months. A similar analysis for the 18-month effect as compared to 6 months is

barely statistically significant with p = 0.041. Therefore, there is evidence that the effect of the

intervention may be changing over time. Once again GEE provides a general tool for evaluating

the evolution of mean outcomes over time for different subgroups of subjects.

There are a number of extensions of the GEE approach introduced by Liang and Zeger [1986].

More flexible and tailored dependence models have been proposed for binary data [Lipsitz et al.,
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Table 18.9 GEE Analysis of the Nurse Item from the HIVNET Informed Consent Studya

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 0.1644 0.0653 0.0364 0.2923 2.52 0.0118

month6 −0.3803 0.0839 −0.5448 −0.2158 −4.53 <.0001

month12 −0.3261 0.0854 −0.4934 −0.1587 −3.82 0.0001

month18 −0.2460 0.0886 −0.4197 −0.0723 −2.78 0.0055

ICgroup −0.1536 0.1639 −0.4748 0.1676 −0.94 0.3487

month6*ICgroup 1.3232 0.2319 0.8687 1.7777 5.71 <.0001

month12*ICgroup 0.7362 0.2358 0.2739 1.1984 3.12 0.0018

month18*ICgroup 0.9101 0.2273 0.4647 1.3556 4.00 <.0001

Contrast Estimate Results

Standard Chi-

Label Estimate Error Alpha Confidence Limits Square

Effect at 12 versus 6 −0.5871 0.2014 0.05 −0.9817 −0.1924 8.50

Effect at 18 versus 6 −0.4131 0.2023 0.05 −0.8097 −0.0166 4.17

Contrast Estimate Results

Label Pr > ChiSq

Effect at 12 versus 6 0.0035

Effect at 18 versus 6 0.0412

aOutput from SAS procedure GENMOD.

1991; Carey et al., 1993], and extension for multiple survival times has been developed [Wei

et al., 1989; Lee et al., 1992].

Summary

• GEE permits regression analysis with correlated continuous, binary, or count data.

• GEE requires specification of a regression model and a working correlation model.

• Two standard error estimates are provided with GEE: a model-based standard error that

is valid if the correlation model is specified correctly; and empirical standard errors that

are valid even if the correlation model is not correct provided that the data contain a large

number of independent clusters.

• Estimation with GEE does not involve a likelihood function; rather, it is based on the

solution to regression equations that use models only for the mean and covariance.

18.6 MISSING DATA

One of the major issues associated with the analysis of longitudinal data is missing data, or

more specifically, monotone missing data, which arise when subjects drop out of the study. It is

assumed that once a participant drops out, he or she provides no further outcome information.

Missing data can lead to biased estimates of means and/or regression parameters when the prob-

ability of missingness is associated with outcomes. In this section we first review a standard tax-

onomy of missing data mechanisms and then briefly discuss methods that can be used to alleviate

bias due to attrition. We also discuss some simple exploratory methods that can help determine

whether subjects who complete the longitudinal study appear to differ from those who drop out.
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18.6.1 Classification of Missing Data Mechanisms

To discuss factors that are associated with missing data, it is useful to adopt the notation R

ij

= 1

if observation Y

ij

is observed, and R

ij

= 0 if Y

ij

is missing. Let R

i

= (R

i1, Ri2, . . . , R

in

).

Monotone missing data imply that if R

ij

= 0, then R

ij+k

= 0 for all k > 0. Let Y

O

i

denote the

subset of the outcomes Y

i

= (Y

i1, Y

i2, . . . , Y

in

) that are observed, and let Y

M

i

denote the missing

outcomes. For longitudinal data a missing data classification is based on whether observed or

unobserved outcomes are predictive of missing data [Laird, 1988]:

Missing completely at random (MCAR) : P(R

i

| Y

O

i

, Y

M

i

, X

i

) = P(R

i

| X

i

)

Missing at random (MAR): P(R

i

| Y

O

i

, Y

M

i

, X

i

) = P(R

i

| Y

O

i
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Nonignorable (NI): P(R

i

| Y

O

i
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M

i

, X

i

) depends on Y

M

i

In Figure 18.7 an example of monotone missing data is presented. For subject 1, all observations

after the 7-month visit are missing. If the reason that these observations are missing is purely

unrelated to outcomes (observed or not), the missing data are called MCAR. However, if the

observed data are predictive of missingness, the missing data are called MAR, and the mechanism

introduces a form of selection bias. MAR data could occur if an attending physician decides

to disenroll any participant who appears to be failing treatment, particularly when the decision

is based on the value of past measurements or factors associated with the past outcomes, Y

ij

.

Finally, the unobserved outcomes may be associated with missingness if, for example, subjects

who are the most ill refuse to travel to attend their scheduled study visit.

The missing data taxonomy translates directly into implications for potential selection bias.

If data are MCAR, both the missing and the observed outcomes are representative of the

source population. Therefore, when data are MCAR, standard statistical summaries based on the

observed data remain valid. However, if data are MAR or NI, summaries based on the available

cases may be biased. Returning to Figure 18.7, if the dropout for patient 1 is indicative of a

general process by which those subjects who have a high response value do not return for study,

the observed mean for the measured outcomes will not be representative of what would be

observed had the entire population been followed. In this example, the mean among available

subjects would underestimate the population mean for later months.

Formally, we write E(Y

ij

| X

i

, R

ij

= 1) to denote the expected response conditional on

responding, and we write E(Y

ij

| X

i

) for the target of inference. If the data are MCAR,

then E(Y

ij

| X

i

, R

ij

= 1) = E(Y

ij

| X

i

). However, if data are either MAR or NI, then

E(Y

ij

| X

i

, R

ij

= 1) 	= E(Y

ij

| X

i

), implying that the available data, R

ij

= 1, may not provide

valid estimates of population parameters.

In any given application, serious thought needs to be given to the types of processes that

lead to missing data. External information can help determine whether missingness mechanisms

may be classified as MCAR, MAR, or NI. Unfortunately, since NI missingness implies that

unobserved data, Y

M

i

, predicts dropout, we cannot empirically test whether data are NI vs.

MAR or MCAR. Essentially, one would need the unobserved data to check to see if they

are associated with missingness, but these data are missing! The observed data can be used

to assess whether the missingness appears to be MAR or MCAR. First, the dropout time can

be considered a discrete-time “survival” outcome, and methods introduced in Chapter 16 can

be used to assess whether past outcomes Y

ij−1, Y

ij−2, . . . are predictive of dropout, R

ij

= 0.

Second, each subject will have a dropout time, or equivalently, a “last measurement” time, with

those completing the study having the final assessment time as their time of last measurement.

The longitudinal data can be stratified according to the dropout time. For example, the mean

at baseline can be calculated separately for those subjects that dropout at the first visit, second

visit, through those that complete the study. Similarly, the mean response at the first follow-up

visit can be computed for all subjects who have data for that visit. Such analyses can be used

to determine whether the outcomes for the dropout subjects appear to be different from those
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of the “completers.” Naturally, subjects who are lost can only be compared to others at the visit

times prior to their dropout. These exploratory analyses are complementary: The first approach

assesses whether outcomes predict dropout, and the second approach evaluates whether the

dropout time predicts the outcomes. An example of such modeling can be found in Zhou and

Castelluccio [2004].

18.6.2 Approaches to Analysis with Missing Data

There are several statistical approaches that attempt to alleviate bias due to missing data. General

methods include:

1. Data imputation. See Little and Rubin [1987], Schafer [1997], or Koepsell and Weiss

[2003] for more information on imputation methods. Imputation refers to “filling in” missing

data. Proper methods of imputation use multiple imputation to account for uncertainty in the

missing data. Imputation methods require that a model be adopted that links the missing data

to the observed data.

2. Data modeling. In this method the missing data process and the longitudinal data are

both modeled using maximum likelihood for estimation. Use of a linear mixed model estimated

with maximum likelihood is one example of this approach. However, to correct validly for

MAR missingness, the mean and the covariance must be specified correctly. See Verbeke and

Molenberghs [2000] for more details.

3. Data weighting. Nonresponse methods with available data are used to weight the observed

data to account for the missing data. Use of inverse probability weighting or nonresponse

weighting can be applied to general statistical summaries and has been proposed to allow for

use of GEE in MAR situations. See Robins et al. [1995] for the statistical theory and Preisser

et al. [2002] for a simulation study of the performance of weighted GEE methods.

However, it is important to note that these methods are designed to address data that are

assumed to be MAR rather than the more serious nonignorable (NI) missing data. Nonignorable

missing data can lead to bias, which cannot be corrected simply through modeling and estimation

of the dropout model and/or the response model since unidentifiable parameters that link the

probability of missingness to the unobserved data are needed. Therefore, reliance on statistical

methods to correct for bias due to attrition either requires an untestable assumption that the

data are MAR or requires some form of sensitivity analysis to characterize plausible estimates

based on various missingness assumptions. See Diggle et al. [2002, Chap. 13] for discussion

and illustration.

Example 18.1. (continued ) In the HIVNET Informed Consent Study, there was substantial

missing data due to attrition. In Tables 18.2 and 18.3 we see a decreasing number of subjects

over time. In the control group there are 946 subjects with baseline data and only 782 with 18-

month data. Is the knowledge score for subjects who complete the study different from the score

for those who dropout? Figure 18.11 shows the mean response over time stratified by dropout

time. For example, among subjects that dropout at the 12-month visit, their mean knowledge

score at baseline and 6 months is plotted. This plot suggests that subjects who complete only the

baseline interview have a lower mean baseline knowledge score than that of all other subjects.

In addition, for subjects who complete the study, the average knowledge score at six and 12

months appears greater than the mean knowledge score among subjects who do not complete

the 18-month visit. Thus, Figure 18.11 suggests that the completers and the dropout subjects

differ with respect to their knowledge scores. Any analysis that does not account for differential

dropout is susceptible to selection bias.
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Figure 18.11 Patterns of mean knowledge score by dropout time for the control group. HIVNET informed

consent substudy.

18.7 SUMMARY

Longitudinal data provide unique opportunities for inference regarding the effect of an inter-

vention or an exposure. Changes in exposure conditions can be correlated with changes in

outcome conditions. However, analysis of longitudinal data requires methods that account for

the within-subject correlation of repeated measures. Texts by Diggle et al. [2002], Verbeke and

Molenberghs [2000], Brown and Prescott [1999], and Crowder and Hand [1990] provide com-

prehensive discussions of statistical methods for the analysis of longitudinal data. There are a

number of additional issues that warrant attention but are beyond the scope of this book.

NOTES

18.1 Nonlinear Mixed Models

We have introduced linear mixed models and GEE. However, mixed models have also been

extended to logistic regression and other nonlinear model settings. See Diggle et al. [2002,

Chap. 8 and 11] for illustrations.

18.2 Models for Survival and Repeated Measurements

In many longitudinal studies information on both repeated measurements and on ultimate time

until death or key clinical endpoint is collected. Methods have been developed to analyze such

data jointly. See Hogan and Laird [1997a, b] for an overview of approaches for the joint analysis

of survival and repeated measures.

18.3 Models for Time-Dependent Covariates

In designed experiments the exposures X

ij

may be controlled by the investigator. However, in

many observational studies, exposures or treatments that are selected over time may be related to
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past health outcomes. For example, subjects with low values of CD4 may be more likely to be

exposed to a therapeutic agent. Analysis of such serial data to assess the effect of the intervention

is complicated by the feedback between outcome and exposure. Robins [1986] and Robins et al.

[1999] have identified proper causal targets of inference and methods for estimation in settings

where time-varying covariates are both causes and effects. See Diggle et al. [2002, Chap. 12].

PROBLEMS

18.1 This exercise considers the interplay between the covariate distribution and the corre-

lation. For each of the following scenarios, assume that there are a total of N pairs of

observations, (Y

i1, Yi2), with covariates (X

i1, X

i2). Assume that the covariate is binary:

X

ij

= 0 or X

ij

= 1, denoting control and treatment exposures. Let Y 1 denote the mean

of all observations where X

ij

= 1, and let Y 0 denote the mean of all observations

where X

ij

= 0. Assume a constant variance σ

2
= var(Y

ij

| X

ij

) and a correlation

ρ = corr(Y
i1, Y

i2).

(a) Assume that half of the subjects are assigned to control for both visits, (X

i1, Xi2) =

(0, 0), and half of the subjects are assigned to intervention for both visits, (X

i1,

X

i2) = (1, 1). What is the variance of the estimated mean difference, ̂� = (Y 1−Y 0)?

(b) Assume that subjects change their treatment over time with half of the subjects are

assigned to control and then treatment, (X

i1, Xi2) = (0, 1), and half of the subjects

assigned to treatment and then control, (X

i1, Xi2) = (1, 0). This design is referred

to as a crossover study. What is the variance of the estimated mean difference
̂

� = (Y 1 − Y 0)?

(c) Comment on the advantages and disadvantages of these two study designs.

18.2 Consider a study with a single prerandomization measurement, Y

i0, and a single postran-

domization measurement, Y

i1. For any constant a we can define the average contrast,

D(a) = mean[d
i

(a)], where d

i

(a) = Y

i1 − aY

i0. Let D0(a) denote the mean for the

control group, and let D1(a) denote the mean for the intervention group. Assume that

σ

2
= var(Y

ij

) for j = 0, 1, and let ρ = corr(Y
i0, Yi1). We assume that the subjects

are randomized to treatment and control after randomization at baseline. Therefore, the

following table illustrates the mean response as a function of treatment and time:

Control Intervention

Baseline µ0 µ0

Follow-up µ1 µ1 + �

(a) Show that the expected value of ̂

�(a) = D1(a) − D0(a) equals � for any choice

of a.

(b) When a = 0, we effectively do not use the baseline value, and ̂

�(0) is the difference

of means at follow-up. What is the variance of ̂

�(0)?

(c) When a = 1, we effectively analyze the change in outcomes since d

i

(1) = Y

i1−Y

i0.

What is the variance of ̂

�(1)?

(d) What value of a leads to the smallest variance for ̂

�(a)?

18.3 Use the data from the Web page to perform GEE analysis of the HIVNET Informed

Consent Substudy “safety” item.
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18.4 For the random intercepts and slopes model given in Table 18.6, the proportion of total

variation that is attributable to within-subject variation is not constant over time. Compute

estimates of the proportion of total variation at 0, 12, 24, and 36 months that is attributable

to within-subject variation, ǫ
ij

, as opposed to between subject variation, b

i,0 +b

i,1 ·month.

18.5 For the HIVNET Informed Consent Substudy data, create pairs of plots:

(a) Plot month 12 vs. month 6 knowledge score. Add a pair of lines that show the

ordinary least squares estimate for the intervention and the control group.

(b) Plot month 18 vs. month 12 knowledge score. Add a pair of lines that shows the

ordinary least squares estimate for the intervention and the control group.

(c) Do these plots suggest that there are additional differences between the intervention

and control groups that is not captured by the difference that manifests at the

six-month visit?

18.6 For the NURSE and SAFETY items from the HIVNET Informed Consent Substudy,

evaluate the transition from incorrect to correct, and from correct to correct again, for

the times (six-month → 12-month visit) and (12-month → 18-month visit). Is there

evidence that the intervention and control groups differ in terms of the “correction” and

“maintenance” of knowledge at the later times?
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