
C H A P T E R 5

One- and Two-Sample Inference

5.1 INTRODUCTION

In Chapter 4 we laid the groundwork for statistical inference. The following steps were involved:

1. Define the population of interest.

2. Specify the parameter(s) of interest.

3. Take a random sample from the population.

4. Make statistical inferences about the parameter(s): (a) estimation; and (b) hypothesis

testing.

A good deal of “behind-the-scenes” work was necessary, such as specifying what is meant

by a random sample, but you will recognize that the four steps above summarize the process.

In this chapter we (1) formalize the inferential process by defining pivotal quantities and their

uses (Section 5.2); (2) consider normal distributions for which both the mean and variance are

unknown, which will involve the use of the famous Student t-distribution (Sections 5.3 and

5.4); (3) extend the inferential process to a comparison of two normal populations, including

comparison of the variances (Sections 5.5 to 5.7); and (4) finally begin to answer the question

frequently asked of statisticians: “How many observations should I take?” (Section 5.9).

5.2 PIVOTAL VARIABLES

In Chapter 4, confidence intervals and tests of hypotheses were introduced in a somewhat ad

hoc fashion as inference procedures about population parameters. To be able to make infer-

ences, we needed the sampling distributions of the statistics that estimated the parameters. To

make inferences about the mean of a normal distribution (with variance known), we needed to

know that the sample mean of a random sample was normally distributed; to make inferences

about the variance of a normal distribution, we used the chi-square distribution. A pattern also

emerged in the development of estimation and hypothesis testing procedures. We discuss next

the unifying scheme. This will greatly simplify our understanding of the statistical procedures,

so that attention can be focused on the assumptions and appropriateness of such procedures

rather than on understanding the mechanics.
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118 ONE- AND TWO-SAMPLE INFERENCE

In Chapter 4, we used basically two quantities in making inferences:

Z =

Y − µ

σ/

√

n

and χ

2
=

(n − 1)s

2

σ

2

What are some of their common features?

1. Each of these expressions involves at least a statistic and a parameter for the statistic

estimated: for example, s

2 and σ

2 in the second formula.

2. The distribution of the quantity was tabulated in a standard normal table or chi-square

table.

3. Distribution of the quantity was not dependent on a value of the parameter. Such a

distribution is called a fixed distribution.

4. Both confidence intervals and tests of hypotheses were derived from a probability inequal-

ity involving either Z or χ

2.

Formally, we define:

Definition 5.1. A pivotal variable is a function of statistic(s) and parameter(s) having the

same fixed distribution (usually tabulated) for all values of the parameter(s).

The quantities Z and χ

2 are pivotal variables. One of the objectives of theoretical statistics

is to develop appropriate pivotal variables for experimental situations that cannot be modeled

adequately by existing variables.

In Table 5.1 are listed eight pivotal variables and their use in statistical inference. In this

chapter we introduce pivotal variables 2, 5, 6, and 8. Pivotal variables 3 and 4 are introduced

in Chapter 6. For each variable, the fixed or tabulated distribution is given as well as the

formula for a 100(1−α)% confidence interval. The corresponding test of hypothesis is obtained

by replacing the statistic(s) by the hypothesized parameter value(s). The table also lists the

assumptions underlying the test. Most of the time, the minimal assumption is that of normality

of the underlying observations, or appeal is made to the central limit theorem.

Pivotal variables are used primarily in inferences based on the normal distribution. They

provide a methodology for estimation and hypothesis testing. The aim of estimation and hypoth-

esis testing is to make probabilistic statements about parameters. For example, confidence

intervals and p-values make statements about parameters that have probabilistic aspects. In

Chapters 6 to 8 we discuss inferences that do not depend as explicitly on pivotal variables;

however, even in these procedures, the methodology associated with pivotal variables is used;

see Figure 5.1.

5.3 WORKING WITH PIVOTAL VARIABLES

We have already introduced the manipulation of pivotal variables in Section 4.7. Table 5.1

summarizes the end result of the manipulations. In this section we again outline the process for

the case of one sample from a normal population with the variance known. We have a random

sample of size n from a normal population with mean µ and variance σ

2 (known). We start

with the basic probabilistic inequality

P [z
α/2 ≤ Z ≤ z1−α/2] = 1 − α
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120 ONE- AND TWO-SAMPLE INFERENCE

Figure 5.1 Methodology associated with pivotal variables.

We substitute Z = (Y − µ)/(σ0/
√

n), writing σ0 to indicate that the population variance is

assumed to be known:

P

[

z

α/2 ≤

Y − µ

σ0/
√

n

≤ z1−α/2

]

= 1 − α

Solving for µ produces a 100(1−α)% confidence interval for µ; solving for Y and substituting

a hypothesized value, µ0, for µ produces the nonrejection region for a 100(α)% test of the

hypothesis:

100(1 − α)% confidence interval for µ:

[Y + z

α/2σ0/
√

n, Y + z1−α/2σ0/
√

n]

100(α)% hypothesis test of µ = µ0; reject if Y is not in

[µ0 + z

α/2σ0/
√

n, µ0 + z1−α/2σ0/
√

n]

Notice again the similarity between the two intervals. These intervals can be written in an

abbreviated form using the fact that z

α/2 = −z1−α/2,

Y ±

z1−α/2σ0
√

n

and µ0 ±

z1−α/2σ0
√

n

for the confidence intervals and tests of hypothesis, respectively.

To calculate the p-value associated with a test statistic, again use is made of the pivotal

variable. The null hypothesis value of the parameter is used to calculate the probability of the

observed value of the statistic or an observation more extreme. As an illustration, suppose that

a population variance is claimed to be 100(σ

2
0 = 100) vs. a larger value (σ

2
0 > 100). From
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a random sample of size 11, we are given s

2
= 220. What is the p-value for this value (or

more extreme)? We use the pivotal quantity (n − 1)s

2
/σ

2
0 , which under the null hypothesis is

chi-square with 10 degrees of freedom.

The one-sided p-value is the probability of a value of s

2
≥ 220. Using the pivotal variable,

we get

P

[

χ

2
≥

(11 − 1)(220)

100

]

= P [χ2
≥ 22.0]

where χ

2 has 11 − 1 = 10 degrees of freedom, giving a one-sided p-value of 0.0151.

Additional examples in the use of pivotal variables will occur throughout this and later

chapters. See Note 5.1 for some additional comments on the pivotal variable approach.

5.4 t-DISTRIBUTION

For a random sample from a normal distribution with mean µ and variance σ

2 (known), the

quantity Z = (Y − µ)/(σ/

√

n) is a pivotal quantity that has a normal (0,1) distribution. What

if the variance is unknown? Suppose that we replace the variance σ

2 by its estimate s

2 and

consider the quantity (Y − µ)/(s/

√

n). What is its sampling distribution?

This problem was solved by the statistician W. S. Gossett, in 1908, who published the result

under the pseudonym “Student” using the notation

t =

Y − µ

s/

√

n

The distribution of this variable is now called Student’s t-distribution. Gossett showed that the

distribution of t was similar to that of the normal distribution, but somewhat more “heavy-tailed”

(see below), and that for each sample size there is a different distribution. The distributions are

indexed by n − 1, the degrees of freedom identical to that of the chi-square distribution. The

t-distribution is symmetrical, and as the degrees of freedom become infinite, the standard normal

distribution is reached.

A picture of the t-distribution for various degrees of freedom, as well as the limiting case of

the normal distribution, is given in Figure 5.2. Note that like the standard normal distribution,

the t-distribution is bell-shaped and symmetrical about zero. The t-distribution is heavy-tailed:

The area to the right of a specified positive value is greater than for the normal distribution; in

other words, the t-distribution is less “pinched.” This is reasonable; unlike a standard normal

deviate where only the mean (Y ) can vary (µ and σ are fixed), the t statistic can vary with both

Y and s, so that t will vary even if Y is fixed.

Percentiles of the t-distribution are denoted by the symbol t

v,α

, where v indicates the degrees

of freedom and α the 100αth percentile. This is indicated in Figure 5.3. In Table 5.1, rather than

writing all the subscripts on the t variate, an asterisk is used and explained in the comment part

of the table.

Table A.4 lists the percentiles of the t-distribution for each degree of freedom to 30, by fives

to 100, and values for 200, 500, and ∞ degrees of freedom. This table lists the t-values such that

the percent to the left is as specified by the column heading. For example, for an area of 0.975

(97.5%), the t-value for six degrees of freedom is 2.45. The last row in this column corresponds

to a t with an infinite number of degrees of freedom, and the value of 1.96 is identical to the

corresponding value of Z; that is, P [Z ≤ 1.96] = 0.975. You should verify that the last row

in this table corresponds precisely to the normal distribution values (i.e., t∞ = Z) and that for

practical purposes, t

n

and Z are equivalent for n > 30. What are the mean and the variance of

the t-distribution? The mean will be zero, and the variance is v/(v − 2). In the symbols used in

Chapter 4, E(t) = 0 and Var(t) = v/(v − 2).
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Figure 5.2 Student t-distribution with one, four, and ∞ degrees of freedom.

Figure 5.3 Percentiles of the t-distribution.

The converse table of percentiles for a given absolute t-value is given in the Web appendix,

and most statistical software will calculate it. We find that the probability of a t-value greater

than 1 in absolute value for one degree of freedom is 0.500; the corresponding areas for 7,

30, and ∞ degrees of freedom are 0.351, 0.325, and 0.317, respectively. Thus, at 30 degrees

of freedom, the t-distribution is for most practical purposes, indistinguishable from a normal

distribution. The term heavy-tailed can now be made precise: For a specified value (e.g., with

an abscissa value of 1), P [t1 ≥ 1] > P [t7 ≥ 1] > P [t10 ≥ 1] > P [Z ≥ 1].

5.5 ONE-SAMPLE INFERENCE: LOCATION

5.5.1 Estimation and Testing

We begin this section with an example.
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Example 5.1. In Example 4.9 we considered the birthweight in grams of the first 11 SIDS

cases occurring in King Country in 1969. In this example, we consider the birthweights of the

first 15 cases born in 1977. The birthweights for the latter group are

2013 3827 3090 3260 4309 3374 3544 2835

3487 3289 3714 2240 2041 3629 3345

The mean and standard deviation of this sample are 3199.8 g and 663.00 g, respectively. Without

assuming that the population standard deviation is known, can we obtain an interval estimate

for the population mean or test the null hypothesis that the population birthweight average of

SIDS cases is 3300 g (the same as the general population)?

We can now use the t-distribution. Assuming that birthweights are normally distributed, the

quantity

Y − µ

s/

√

15

has a t-distribution with 15 − 1 = 14 degrees of freedom.

Using the estimation procedure, the point estimate of the population mean birthweight of

SIDS cases is 3199.8
.

= 3200 g. A 95% confidence interval can be constructed on the basis of

the t-distribution. For a t-distribution with 15 − 1 = 14 degrees of freedom, the critical values

are ±2.14, that is, P [−2.14 ≤ t14 ≤ 2.14] = 0.95. Using Table 5.1, a 95% confidence interval

is constructed using pivotal variable 5:

3200 ±

(2.14)(663.0)

√

15
= 3200 ± 366, lower limit : 2834 g, upper limit : 3566 g

Several comments are in order:

1. This interval includes 3300 g, the average birthweight in the non-SIDS population. If the

analysis had followed a hypothesis-testing procedure, we could not have rejected the null

hypothesis on the basis of a two-tailed test.

2. The standard error, 633.0/

√

15, is multiplied by 2.14 rather than the critical value 1.96

using a normal distribution. Thus, the confidence interval is wider by approximately

9%. This is the price paid for our ignorance about the value of the population standard

deviation. Even in this fairly small sample, the price is modest.

5.5.2 t-Tests for Paired Data

A second example of the one-sample t-test involves its application to paired data. What are paired

data? Typically, the term refers to repeated or multiple measurements on the same subjects. For

example, we may have a measurement of the level of pain before and after administration of an

analgesic drug. A somewhat different experiment might consider the level of pain in response

to each of two drugs. One of these could be a placebo. The first experiment has the weakness

that there may be a spontaneous reduction in level of pain (e.g., postoperative pain level), and

thus the difference in the responses (after/before) may be made up of two effects: an effect of

the drug as well as the spontaneous reduction. Some experimental design considerations are

discussed further in Chapter 10. The point we want to make with these two examples is that

the basic data consist of pairs, and what we want to look at is the differences within the pairs.

If, in the second example, the treatments are to be compared, a common null hypothesis is

that the effects are the same and therefore the differences in the treatments should be centered

around zero. A natural approach then tests whether the mean of the sample differences could

have come from a population of differences with mean zero. If we assume that the means of the

sample differences are normally distributed, we can apply the t-test (under the null hypothesis),
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Cartoon 5.1 PEANUTS. (Reprinted by permission of UFS, Inc.)

Table 5.2 Response of 13 Patients to

Aminophylline Treatment at 16 Hours Compared

with 24 Hours before Treatment (Apneic Episodes

per Hour)

24 h 16 h Before–After

Patient Before After (Difference)

1 1.71 0.13 1.58

2 1.25 0.88 0.37

3 2.13 1.38 0.75

4 1.29 0.13 1.16

5 1.58 0.25 1.33

6 4.00 2.63 1.37

7 1.42 1.38 0.04

8 1.08 0.50 0.58

9 1.83 1.25 0.58

10 0.67 0.75 −0.08

11 1.13 0.00 1.13

12 2.71 2.38 0.33

13 1.96 1.13 0.83

Total 22.76 12.79 9.97

Mean 1.751 0.984 0.767

Variance 0.7316 0.6941 0.2747

Standard deviation 0.855 0.833 0.524

Source: Data from Bednarek and Roloff [1976].

and estimate the variance of the population of differences σ

2, by the variance of the sample

differences, s

2.

Example 5.2. The procedure is illustrated with data from Bednarek and Roloff [1976] deal-

ing with the treatment of apnea (a transient cessation of respiration) using a drug, aminophylline,

in premature infants. The variable of interest, “average number of apneic episodes per hour,”

was measured before and after treatment with the drug. An episode was defined as the absence

of spontaneous breathing for more than 20 seconds or less if associated with bradycardia or

cyanosis.

Patients who had “six or more apneic episodes on each of two consecutive 8 h shifts were

admitted to the study.” For purposes of the study, consider only the difference between the

average number of episodes 24 hours before treatment and 16 hours after. This difference is

given in the fourth column of Table 5.2. The average difference for the 13 patients is 0.767

episode per hour. That is, there is a change from 1.751 episodes per hour before treatment to

0.984 episode per hour at 16 hours after treatment.
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The standard deviation of the differences is s = 0.524. The pivotal quantity to be used is

variable 5 from Table 5.1. The argument is as follows: The basic statement about the pivotal

variable t with 13 − 1 = 12 degrees of freedom is P [−2.18 ≤ t12 ≤ 2.18] = 0.95 using

Table A.4. The form taken for this example is

P

[

−2.18 ≤

Y − µ

0.524/

√

13
≤ 2.18

]

= 0.95

To set up the region to test some hypothesis, we solve for Y as before. The region then is

P [µ − 0.317 ≤ Y ≤ µ + 0.317] = 0.95

What is a “reasonable” value to hypothesize for µ? The usual procedure in this type of situation

is to assume that the treatment has “no effect.” That is, the average difference in the number

of apneic episodes from before to after treatment represents random variation. If there is no

difference in the population average number of episodes before and after treatment, we can

write this as

H0: µ = 0

We can now set up the hypothesis-testing region as illustrated in Figures 5.4 and 5.5. Figure 5.4

indicates that the sample space can be partitioned without knowing the observed value of Y .

Figure 5.5 indicates the observed value of Y = 0.767 episode per hour; it clearly falls into the

rejection region. Note that the scale has been changed from Figure 5.4 to accommodate the value

observed. Hence the null hypothesis is rejected and it is concluded that the average number of

apneic episodes observed 16 hours after treatment differs significantly from the average number

of apneic episodes observed 24 hours before treatment.

This kind of test is often used when two treatments are applied to the same experimental unit

or when the experimental unit is observed over time and a treatment is administered so that it

Figure 5.4 Partitioning of sample space of Y into two regions: (a) region where the null hypothesis is

not rejected, and (b) region where it is rejected. (Data from Bednarek and Roloff [1976]; see Table 5.2.)

Figure 5.5 Observed value of Y and location on the sample space. (Data from Bednarek and Roloff

[1976]; see Table 5.2.)
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Figure 5.6 A 95% confidence interval for the difference in number of apneic episodes per hour. (Data

from Bednarek and Roloff [1976]; see Table 5.2.)

is meaningful to speak of pretreatment and posttreatment situations. As mentioned before, there

is the possibility that changes, if observed, are in fact due to changes over time and not related

to the treatment.

To construct a confidence interval, we solve the inequality for µ so that we get

P [Y − 0.317 ≤ µ ≤ Y + 0.317] = 0.95

Again, this interval can be set up to this point without knowing the value of Y . The value of Y

is observed to be 0.767 episode per hour, so that the 95% confidence interval becomes

[0.767 − 0.317 ≤ µ ≤ 0.767 + 0.317] or [0.450 ≤ µ ≤ 1.084]

This interval is displayed in Figure 5.6. Two things should be noted:

1. The width of the confidence interval is the same as the width of the region where the null

hypothesis is not rejected (cf. Figure 5.5).

2. The 95% confidence interval does not include zero, the null hypothesis value of µ.

5.6 TWO-SAMPLE STATISTICAL INFERENCE: LOCATION

5.6.1 Independent Random Variables

A great deal of research activity involves the comparison of two or more groups. For example,

two cancer therapies may be investigated: one group of patients receives one treatment and a

second group the other. The experimental situation can be thought of in two ways: (1) there

is one population of subjects, and the treatments induce two subpopulations; or (2) we have

two populations that are identical except in their responses to their respective treatments. If the

assignment of treatment is random, the two situations are equivalent.

Before exploring this situation, we need to state a definition and a statistical result:

Definition 5.2. Two random variables Y1 and Y2 are statistically independent if for all fixed

values of numbers (say, y1 and y2),

P [Y1 ≤ y1, Y2 ≤ y2] = P [Y1 ≤ y1]P [Y2 ≤ y2]

The notation [Y1 ≤ y1, Y2 ≤ y2] means that Y1 takes on a value less than or equal to y1,

and Y2 takes on a value less than or equal to y2. If we define an event A to have occurred

when Y1 takes on a value less than or equal to y1, and an event B when Y2 takes on a value

less than or equal to y2, Definition 5.2 is equivalent to the statistical independence of events

P [AB] = P [A]P [B] as defined in Chapter 4. So the difference between statistical independence

of random variables and statistical independence of events is that the former in effect describes

a relationship between many events (since the definition has to be true for any set of values of

y1 and y2). A basic result can now be stated:
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Result 5.1. If Y1 and Y2 are statistically independent random variables, then for any two

constants a1 and a2, the random variable W = a1Y1 + a2Y2 has mean and variance

E(W) = a1E(Y1) + a2E(Y2)

Var(W) = a

2
1Var(Y1) + a

2
2Var(Y2)

The only new aspect of this result is that of the variance. In Note 4.10, the expectation of

W was already derived. Before giving an example, we also state:

Result 5.2. If Y1 and Y2 are statistically independent random variables that are normally

distributed, W = a1Y1+a2Y2 is normally distributed with mean and variance given by Result 5.1.

Example 5.3. Let Y1 be normally distributed with mean µ1 = 100 and variance σ

2
1 = 225;

let Y2 be normally distributed with mean µ2 = 50 and variance σ

2
2 = 175. If Y1 and Y2 are

statistically independent, W = Y1 + Y2 is normally distributed with mean 100 + 50 = 150 and

variance 225 + 175 = 400. This and additional examples are given in the following summary:

Y1 ∼ N(100, 225), Y2 ∼ N(50, 175)

W Mean of W Variance of W

Y1 + Y2 150 400

Y1 − Y2 50 400

2Y1 + Y2 250 1075

2Y1 − 2Y2 100 1600

Note that the variance of Y1 − Y2 is the same as the variance of Y1 + Y2; this is because the

coefficient of Y1, −1, is squared in the variance formula and (−1)

2
= (+1)

2
= 1. In words, the

variance of a sum of independent random variables is the same as the variance of a difference

of independent random variables.

Example 5.4. Now we look at an example that is more interesting and indicates the useful-

ness of the two results stated. Heights of females and males are normally distributed with means

162 cm and 178 cm and variances (6.4 cm)

2 and (7.5 cm)

2, respectively. Let Y1 = height of

female; let Y2 = height of male. Then we can write

Y1 ∼ N(162, (6.4)

2
) and Y2 ∼ N(178, (7.5)

2
)

Now consider husband–wife pairs. Suppose (probably somewhat contrary to societal mores) that

husband–wife pairs are formed independent of stature. That is, we interpret this statement to

mean that Y1 and Y2 are statistically independent. The question is: On the basis of this model,

what is the probability that the wife is taller than the husband? We formulate the problem as

follows: Construct the new variable W = Y1 − Y2. From Result 5.2 it follows that

W ∼ N(−16, (6.4)

2
+ (7.5)

2
)

Now the question can be translated into a question about W ; namely, if the wife is taller than the

husband, Y1 > Y2, or Y1 − Y2 > 0, or W > 0. Thus, the question is reformulated as P [W > 0].
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Figure 5.7 Heights of husband–wife pairs.

Hence,

P [W > 0] = P

[

Z >

0 − (−16)

√

(6.4)

2
+ (7.5)

2

]

.

= P

[

Z >

16

9.86

]

.

= P [Z > 1.62]

.

= 0.053

so that under the model, in 5.3% of husband–wife pairs the wife will be taller than the husband.

Figure 5.7 indicates the area of interest.

5.6.2 Estimation and Testing

The most important application of Result 5.1 involves distribution of the difference of two

sample means. If Y 1 and Y 2 are the means from two random samples of size n1 and n2,

respectively, and Y1 and Y2 are normally distributed with means µ1 and µ2 and variances σ

2
1

and σ

2
2 , then by Result 5.2,

Y 1 − Y 2 ∼ N

(

µ1 − µ2,
σ

2
1

n1
+

σ

2
2

n2

)

so that
(Y 1 − Y 2) − (µ1 − µ2)

√

σ

2
1 /n1 + σ

2
2 /n2

= Z

has a standard normal distribution. This, again, is a pivotal variable, number 2 in Table 5.1.

We are now in a position to construct confidence intervals for the quantity µ1 − µ2 or to do

hypothesis testing. In many situations, it will be reasonable to assume (null hypothesis) that

µ1 = µ2, so that µ1 − µ2 = 0; although the values of the two parameters are unknown, it is

reasonable for testing purposes to assume that they are equal, and hence, the difference will be

zero. For example, in a study involving two treatments, we could assume that the treatments

were equally effective (or ineffective) and that differences between the treatments should be

centered at zero.
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How do we determine whether or not random variables are statistically independent? The

most common way is to note that they are causally independent in the population. That is, the

value of Y for one person does not affect the value for another. As long as the observations

are sampled independently (e.g., by simple random sampling), they will remain statistically

independent. In some situations it is not clear a priori whether variables are independent and

there are statistical procedures for testing this assumption. They are discussed in Chapter 9.

For the present we will assume that the variables we are dealing with are either statistically

independent or if not (as in the case of the paired t-test discussed in Section 5.5.2), use aspects

of the data that can be considered statistically independent.

Example 5.5. Zelazo et al. [1972] studied the age at which children walked as related to

“walking exercises” given newborn infants. They state that “if a newborn infant is held under

his arms and his bare feet are permitted to touch a flat surface, he will perform well-coordinated

walking movements similar to those of an adult.” This reflex disappears by about eight weeks.

They placed 24 white male infants into one of four “treatment” groups. For purposes of this

example, we consider only two of the four groups: “active exercise group” and “eight-week

control group.” The active group received daily stimulation of the walking reflex for eight weeks.

The control group was tested at the end of the eight-week treatment period, but there was no

intervention. The age at which the child subsequently began to walk was then reported by the

mother. The data and basic calculations are shown in Table 5.3.

For purposes of this example, we assume that the sample standard deviations are, in fact,

population standard deviations, so that Result 5.2 can be applied. In Example 5.6 we reconsider

this example using the two-sample t-test. For this example, we have

n1 = 6 n2 = 5

Y 1 = 10.125 months Y 2 = 12.350 months

σ1 = 1.4470 months (assumed) σ2 = 0.9618 month (assumed)

For purposes of this example, the quantity

Z =

(Y 1 − Y 2) − (µ1 − µ2)
√

(1.4470)

2
/6 + (0.9618)

2
/5

=

(Y 1 − Y 2) − (µ1 − µ2)

0.7307

has a standard normal distribution and is based on pivotal variable 2 of Table 5.1. Let us first

set up a 95% confidence interval on the difference (µ1 −µ2) in the population means. The 95%

confidence interval is

(Y 1 − Y 2) ± 1.96(0.7307)

with

upper limit = (10.125 − 12.350) + 1.4322 = −0.79 month

lower limit = (10.125 − 12.350) − 1.4322 = −3.66 months

The time line is shown in Figure 5.8.

The 95% confidence interval does not straddle zero, so we would conclude that there is a

real difference in age in months when the baby first walked in the exercise group compared to

the control group. The best estimate of the difference is 10.125 − 12.350 = −2.22 months; that

is, the age at first walking is about two months earlier than the control group.

Note the flow of the argument: The babies were a homogeneous group before treatment.

Allocation to the various groups was on a random basis (assumed but not stated explicitly in the

article); the only subsequent differences between the groups were the treatments, so significant

differences between the groups must be attributable to the treatments. (Can you think of some

reservations that you may want checked before accepting the conclusion?)
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Table 5.3 Distribution of Ages (in Months) in Infants

for Walking Alone

Age for Walking Alone

Active Exercise Eight-Week

Group Control Group

9.00 13.25

9.50 11.50

9.75 12.00

10.00 13.50

13.00 11.50

9.50 a

n 6 5

Mean 10.125 12.350

Standard deviation 1.4470 0.9618

Source: Data from Zelazo et al. [1972].
aOne observation is missing from the paper.

Figure 5.8 Time line for difference in time to infants walking alone.

Figure 5.9 Plot showing the nonrejection region.

Formulating the problem as a hypothesis-testing problem is done as follows: A reasonable

null hypothesis is that µ1 −µ2 = 0; in this case, the hypothesis of no effect. Comparable to the

95% confidence interval, a test at the 5% level will be carried out. Conveniently, µ1 − µ2 = 0,

so that the nonrejection region is simply 0 ± 1.96(0.7307) or 0 ± 1.4322. Plotting this on a line,

we get Figure 5.9.

We would reject the null hypothesis, H0 : µ1 −µ2 = 0, and accept the alternative hypothesis,

H

A

: µ1 �= µ2; in fact, on the basis of the data, we conclude that µ1 < µ2.

To calculate the (one-sided) p-value associated with the difference observed, we again use

the pivotal variable

P

[

[Y 1 − Y 2] ≤ −2.225
]

.

= P

[

Z ≤

−2.225 − 0

0.7307

]

.

= P [Z ≤ −3.05]

.

= 0.0011
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The p-value is 0.0011, much less than 0.05, and again, we would reject the null hypothesis. To

make the p-value comparable to the two-sided confidence and hypothesis testing procedure, we

must multiply it by 2, to give a p-value

p-value = 2(0.0011) = 0.0022

We conclude this section by considering the two sample location problem when the population

variances are not known. For this we need:

Result 5.3. If Y 1 and Y 2 are based on two independent random samples of size n1 and

n2 from two normal distributions with means µ1 and µ2 and the same variances σ

2
1 = σ

2
2 =

σ

2, then
(Y 1 − Y 2) − (µ1 − µ2)

s

p

√

1/n1 + 1/n2

has a t-distribution with n1 + n2 − 2 degrees of freedom. Here s

2
p

is “the pooled estimate of

common variance σ

2,” as defined below.

This result is summarized by pivotal variable 6 in Table 5.1. Result 5.3 assumes that the

population variances are the same, σ

2
1 = σ

2
2 = σ

2. There are then two estimates of σ

2 : s

2
1

from the first sample and s

2
2 from the second sample. How can these estimates be combined to

provide the best possible estimate of σ

2? If the sample sizes, n1 and n2, differ, the variance

based on the larger sample should be given more weight; the pooled estimate of σ

2 provides

this. It is defined by

s

2
p

=

(n1 − 1)s

2
1 + (n2 − 1)s

2
2

n1 + n2 − 2

If n1 = n2, then s

2
p

=
1
2
(s

2
1 + s

2
2 ), just the arithmetic average of the variances. For n1 �= n2, the

variance with the larger sample size receives more weight. See Note 5.2 for a further discussion.

Example 5.5. (continued ) Consider again the data in Table 5.3 on the age at which children

first walk. We will now take the more realistic approach by treating the standard deviations as

sample standard deviations, as they should be.

The pooled estimate of the (assumed) common variance is

s

2
p

.

=

(6 − 1)(1.4470)

2
+ (5 − 1)(0.9618)

2

6 + 5 − 2

.

=

14.1693

9

.

= 1.5744

s

p

.

= 1.2547 months

A 95% confidence interval for the difference µ1 − µ2 is constructed first. From Table A.4, the

critical t-value for nine degrees of freedom is t9,0.975 = 2.26. The 95% confidence interval is

calculated to be

(10.125 − 12.350) ± (2.26)(1.2547)

√

1/6 + 1/5
.

= −2.225 ± 1.717

lower limit = −3.94 months and upper limit = −0.51 month

Notice that these limits are wider than the limits (−3.66,−0.79) calculated on the assumption

that the variances are known. The wider limits are the price for the additional uncertainty.

The same effect is observed in testing the null hypothesis that µ1 − µ2 = 0. The rejection

region (Figure 5.10), using a 5% significance level, is outside

0 ± (2.26)(2.2547)

√

1/6 + 1/5
.

= 0 ± 1.72



132 ONE- AND TWO-SAMPLE INFERENCE

Figure 5.10 Plot showing the rejection region.

The observed value of −2.22 months also falls in the rejection region. Compared to the

regions constructed when the variances were assumed known, the region where the null hypoth-

esis is not rejected in this case is wider.

5.7 TWO-SAMPLE INFERENCE: SCALE

5.7.1 F -Distribution

The final inference procedure to be discussed in this chapter deals with the equality of variances

of two normal populations.

Result 5.4. Given two random samples of size n1 and n2, with sample variances s

2
1 and

s

2
2 , from two normal populations with variances σ

2
1 and σ

2
2 , the variable

F =

s

2
1/σ

2
1

s

2
2/σ

2
2

has an F -distribution with n1 − 1 and n2 − 1 degrees of freedom.

The F -distribution (named in honor of Sir R. A. Fisher) does not have a simple mathematical

formula, but most statistical packages can compute tables of the distribution. The F -distribution

is indexed by the degrees of freedom associated with s

2
1 (the numerator degrees of freedom) and

the degrees of freedom associated with s

2
2 (the denominator degrees of freedom). A picture of

the F -distribution is presented in Figure 5.11. The distribution is skewed; the extent of skewness

depends on the degrees of freedom. As both increase, the distribution becomes more symmetric.

Figure 5.11 F -distribution for three sets of degrees of freedom.
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We write F

v1,v2,α
to indicate the 100αth percentile value of an F -statistic with v1 and v2

degrees of freedom. The mean of an F -distribution is v2/(v2 − 2), for v2 > 2; the variance is

given in Note 5.3. In this note you will also find a brief discussion of the relationship between

the four distributions we have now discussed: normal, chi-square, Student t , and F .

It is clear that

F =

s

2
1/σ

2
1

s

2
2/σ

2
2

is a pivotal variable, listed as number 8 in Table 5.1. Inferences can be made on the ratio σ

2
1 /σ

2
2 .

[To make inferences about σ

2
1 (or σ

2
2 ) by itself, we would use the chi-square distribution and

the procedure outlined in Chapter 4.] Conveniently, if we want to test whether the variances are

equal, that is, σ

2
1 = σ

2
2 , the ratio σ

2
1 /σ

2
2 is equal to 1 and “drops out” of the pivotal variable,

which can then be written

F =

s

2
1/σ

2
1

s

2
2/σ

2
2

=

s

2
1

s

2
2

We would reject the null hypothesis of equality of variances if the observed ratio s

2
1/s

2
1 is “very

large” or “very small,” how large or small to be determined by the F -distribution.

5.7.2 Testing and Estimation

Continuing Example 5.5, the sample variances in Table 5.3 were s

2
1 = (1.4470)

2
= 2.0938 and

s

2
2 = (0.9618)

2
= 0.9251. Associated with s

2
1 are 6 − 1 = 5 degrees of freedom, and with s

2
2 ,

5 − 1 = 4 degrees of freedom. Under the null hypothesis of equality of population variances,

the ratio s

2
1/s

2
2 has an F -distribution with (5, 4) degrees of freedom. For a two-tailed test at the

10% level, we need F5,4,0.05 and F5,4,0.95. From Table A.7, the value for F5,4,0.95 is 6.26. Using

the relationship F

v1,v2,α
= 1/F

v2,v1,1−α

, we obtain F5,4,0.05 = 1/F4,5,0.95 = 0.19. The value of

F observed is F5,4 = s

2
1/s

2
2 = 2.0938/0.9251

.

= 2.26.

From Figure 5.12 it is clear that the null hypothesis of equality of variances is not rejected.

Notice that the rejection region is not symmetric about 1, due to the zero bound on the left-

hand side. It is instructive to consider F -ratios for which the null hypothesis would have been

rejected. On the right-hand side, F5,4,0.95 = 6.26; this implies that s

2
1 must be 6.26 times as

large as s

2
2 before the 10% significance level is reached. On the left-hand side, F5,4,0.05 = 0.19,

so that s

2
1 must be 0.19 times as small as s

2
2 before the 10% significance level is reached. These

are reasonably wide limits (even at the 10% level).

At one time statisticians recommended performing an F -test for equality of variances before

going on to the t-test. This is no longer thought to be useful. In small samples the F -test

cannot reliably detect even quite large differences in variance; in large samples it will reject the

hypothesis of equality of variances for differences that are completely unimportant. In addition,

the F -test is extremely sensitive to the assumption of normality, even in large samples. The

modern solution is to use an approximate version of the t-test that does not assume equal

variances (see Note 5.2). This test can be used in all cases or only in cases where the sample

variances appear substantially different. In large samples it reduces to the Z-test based on pivotal

variable 2 in Table 5.1. The F -test should be restricted to the case where there is a genuine

scientific interest in whether two variances are equal.

Figure 5.12 Plot showing nonrejection of the null hypothesis of equality of variances.
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A few comments about terminology: Sample variances that are (effectively) the same are

called homogeneous, and those that are not are called heterogeneous. A test for equality of

population variances, then, is a test for homogeneity or heterogeneity. In the more technical

statistical literature, you will find the equivalent terms homoscedasticity and heteroscedasticity

tests.

A confidence interval on the ratios of the population variances σ

2
1 /σ

2
2 can be constructed

using the pivotal variable approach once more. To set up a 100(1 − α)% confidence interval,

we need the 100(α/2) percentile and 100(1 − α/2) percentile of the F -distribution.

Continuing with Example 5.5, suppose that we want to construct a 90% confidence interval

on σ

2
1 /σ

2
2 on the basis of the observed sample. Values for the 5th and 95th percentiles have

already been obtained: F5,4,0.05 = 0.19 and F5,4,0.95 = 6.26. A 90% confidence interval on

σ

2
1 /σ

2
2 is then determined by

(

s

2
1/s

2
2

F5,4,0.95
,

s

2
1/s

2
2

F5,4,0.05

)

For the data observed, this is

(

2.0938/0.9251

6.26
,

2.0938/0.9251

0.19

)

= (0.36, 11.9)

Thus, on the basis of the data observed, we can be 90% confident that the interval (0.36, 11.9)

straddles or covers the ratio σ

2
1 /σ

2
2 of the population variances. This interval includes 1.0. So,

also on the basis of the estimation procedure, we conclude that σ

2
1 /σ

2
2 = 1 is not unreasonable.

A 90% confidence interval on the ratio of the standard deviations, σ1/σ2, can be obtained

by taking square roots of the points (0.36, 11.9), producing (0.60, 3.45) for the interval.

5.8 SAMPLE-SIZE CALCULATIONS

One of the questions most frequently asked of a statistician is: How big must my n be? Stripped

of its pseudojargon, a valid question is being asked: How many observations are needed in this

study? Unfortunately, the question cannot be answered before additional information is supplied.

We first put the requirements in words in the context of a study comparing two treatments; then

we introduce the appropriate statistical terminology. To determine sample size, you need to

specify or know:

1. How variable the data are

2. The chance that you are willing to tolerate concluding incorrectly that there is an effect

when the treatments are equivalent

3. The magnitude of the effect to be detected

4. The certainty with which you wish to detect the effect

Each of these considerations is clearly relevant. The more variation in the data, the more

observations are needed to pin down a treatment effect; when there is no difference, there

is a chance that a difference will be observed, which due to sampling variability is declared

significant. The more certain you want to be of detecting an effect, the more observations you

will need, everything else remaining equal. Finally, if the difference in the treatments is very

large, a rather economical experiment can be run; conversely, a very small difference in the

treatments will require very large sample sizes to detect.

We now phrase the problem in statistical terms: The model we want to consider involves

two normal populations with equal variances σ

2, differing at most in their means, µ1 and µ2.

To determine the sample size, we must specify:
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Figure 5.13 Distributions of the Z-statistic under the null and an alternative hypothesis. The probability

of Z < −1.96 or Z > 1.96 under the null hypothesis (the level) is dark gray. The probability under the

alternative hypothesis (the power) is light gray.

1. σ

2

2. The probability, α, of a Type I error

3. The magnitude of the difference µ1 − µ2 to be detected

4. The power, 1 − β, or equivalently, the probability of a Type II error, β

Figure 5.13 shows an example of these quantities visually. There are two normal distributions,

corresponding to the distribution of the two-sample Z-statistic under the null hypothesis that

two means are equal and under the alternative hypothesis that the mean of the first sample is

greater than the mean of the second. In the picture, (µ1 − µ2)/(σ/

√

n) = 3, for example, a

difference in means of µ1 − µ2 = 3 with a standard deviation σ = 10 and a sample size of

n = 100.

The level, or Type I error rate, is the probability of rejecting the null hypothesis if it is true.

We are using a 0.05-level two-sided test. The darkly shaded regions are where Z < −1.96 or

Z > 1.96 if µ1 = µ2, adding up to a probability (area under the curve) of 0.05. The power

is the probability of rejecting the null hypothesis if it is not true. The lightly shaded region is

where Z > 1.96 if the alternative hypothesis is true. In theory there is a second lightly shaded

region where Z < −1.96, but this is invisibly small: There is effectively no chance of rejecting

the null hypothesis “in the wrong direction.” In this example the lightly shaded region adds up

to a probability of 0.85, meaning that we would have 85% power.

Sample sizes are calculated as a function of

� =

|µ1 − µ2|

σ

which is defined to be the standardized distance between the two populations. For a two-sided

test, the formula for the required sample size per group is

n =

2(z1−α/2 + z1−β

)

2

�

2

It is instructive to contemplate this formula. The standardized difference enters as a square.

Thus, to detect a treatment different half as small as perhaps considered initially will require
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four times as many observations per group. Decreasing the probabilities of Type I and Type

II errors has the same effect on the sample size; it increases it. However, the increment is not

as drastic as it is with �. For example, to reduce the probability of a Type I error from 0.05

to 0.025 changes the Z-value from Z0.975 = 1.96 to Z0.9875 = 2.24; even though Z1−α/2 is

squared, the effect will not even be close to doubling the sample size. Finally, the formula

assumes that the difference µ1 − µ2 can either be positive or negative. If the direction of

the difference can be specified beforehand, a one-tailed value for Z can be used. This will

result in a reduction of the sample sizes required for each of the groups, since z1−α

would

be used.

Example 5.6. At a significance level of 1 − α = 0.95 (one tail) and power 1 − β = 0.80,

a difference � = 0.3 is to be detected. The appropriate Z-values are

Z0.95 = 1.645 (a more accurate value than given in Table A.2)

Z0.80 = 0.84

The sample size required per group is

n =

2(1.645 + 0.84)

2

(0.3)

2
= 137.2

The value is rounded up to 138, so that at least 138 observations per group are needed to detect

the specified difference at the specified significant level and power.

Suppose that the variance σ

2 is not known, how can we estimate the sample size needed to

detect a standardized difference �? One possibility is to have an estimate of the variance σ

2

based on a previous study or sample. Unfortunately, no explicit formulas can be given when the

variance is estimated; many statistical texts suggest adding between two and four observations

per group to get a reasonable approximation to the sample size (see below).

Finally, suppose that one group—as in a paired experiment—is to be used to determine

whether a populations mean µ differs from a hypothesized mean µ0. Using the same standardized

difference � = |µ − µ0|/σ , it can be shown that the appropriate number in the group is

n =

(z1−α/2 + z1−β

)

2

�

2

or one-half the number needed in one group in the two-sample case. This is why tables for

sample sizes in the one-sample case tell you, in order to apply the table to the two-sample case,

to (1) double the number in the table, and (2) use that number for each group.

Example 5.7. Consider data involving PKU children. Assume that IQ in the general pop-

ulation has mean µ = 100 and standard deviation = 15. Suppose that a sample of eight PKU

children whose diet has been terminated has an average IQ of 94, which is not significantly

different from 100. How large would the sample have to be to detect a difference of six IQ

points (i.e., the population mean is 94)? The question cannot be answered yet. (Before reading

on: What else must be specified?) Additionally, we need to specify the Type I and Type II

errors. Suppose that α = 0.05 and β = 0.10. We make the test one-tailed because the alter-

native hypothesis is that the IQ for PKU children is less than that of children in the general

population. A value of β = 0.10 implies that the power is 1 − β = 0.90. We first calculate the

standardized distance

� =

|94 − 100|

15
=

6

15
= 0.40
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Then z1−0.05 = z0.95 = 1.645 and z1−0.10 = z0.90 = 1.28. Hence,

n =

(1.645 + 1.28)

2

(0.40)

2
= 53.5

Rounding up, we estimate that it will take a sample of 54 observations to detect a difference of

100 − 94 = 6 IQ points (or greater) with probabilities of Type I and Type II errors as specified.

If the variance is not known, and estimated by s

2, say s

2
= 152, then statistical tables (not

included in this book) indicate that the sample size is 55, not much higher than the 54 we

calculated. A summary outline for calculating sample sizes is given in Figure 5.14.

Figure 5.14 Sample-size calculations for measurement data.
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There is something artificial and circular about all of these calculations. If the difference �

is known, there is no need to perform an experiment to estimate the difference. Calculations

of this type are used primarily to make the researcher aware of the kinds of differences that

can be detected. Often, a calculation of this type will convince a researcher not to carry out

a piece of research, or at least to think very carefully about the possible ways of increasing

precision, perhaps even contemplating a radically different attack on the problem. In addition,

the size of a sample may be limited by considerations such as cost, recruitment rate, or time

constraints beyond control of the investigations. In Chapter 6 we consider questions of sample

size for discrete variables.

NOTES

5.1 Inference by Means of Pivotal Variables: Some Comments

1. The problem of finding pivotal variables is a task for statisticians. Part of the problem

is that such variables are not always unique. For example, when working with the normal

distribution, why not use the sample median rather than the sample mean? After all, the median

is admittedly more robust. However, the variance of the sample median is larger than that of

the sample mean, so that a less precise probabilistic statement would result.

2. In many situations there is no exactly pivotal variable available in small samples, although

a pivotal variable can typically be found in large samples.

3. The principal advantage of using the pivotal variable approach is that it gives you a unified

picture of a great number of procedures that you will need.

4. There is a philosophical problem about the interpretation of a confidence interval. For

example, consider the probability inequality

P [−1.96 ≤ Z ≤ 1.96] = 0.95

which leads to a 95% confidence interval for the mean of a normal population on the basis of

a random sample of size n:

P

[

Y −

1.96σ

√

n

≤ µ ≤ Y +

1.96σ

√

n

]

= 0.95

It is argued that once Y is observed, this interval either covers the mean or not; that is, P is

either 0 or 1. One answer is that probabilities are not associated with a particular event—whether

they have occurred or may occur at some future time—but with a population of events. For this

reason we say after the fact that we are 95% confident that the mean is in the interval, not that

the probability is 0.95 that the mean is in the interval.

5. Given two possible values for a parameter, which one will be designated as the null

hypothesis value and which one as the alternative hypothesis value in a hypothesis testing

situation? If nothing else is given, the designation will be arbitrary. Usually, there are at least

four considerations in designating the null value of a parameter:

a. Often, the null value of the parameter permits calculation of a p-value. For example,

if there are two hypotheses, µ = µ0 and µ �= µ0, only under µ = µ0 can we calculate

the probability of an occurrence of the observed value or a more extreme value.

b. Past experience or previous work may suggest a specified value. The new experimen-

tation or treatment then has a purpose: rejection of the value established previously,

or assessment of the magnitude of the change.



NOTES 139

c. Occam’s razor can be appealed to. It states: “Do not multiply hypotheses beyond

necessity,” meaning in this context that we usually start from the value of a parameter

that we would assume if no new data were available or to be produced.

d. Often, the null hypothesis is a “straw man” we hope to reject, for example, that a new

drug has the same effect as a placebo.

6. Sometimes it is argued that the smaller the p-value, the stronger the treatment effect.

You now will recognize that this cannot be asserted baldly. Consider the two-sample t-test. A

p-value associated with this test will depend on the quantities µ1 − µ2, sp, n1, and n2. Thus,

differences in p-values between two experiments may simply reflect differences in sample size

or differences in background variability (as measured by s

p

).

5.2 Additional Notes on the t-Test

1. Heterogeneous variances in the two-sample. t-test. Suppose that the assumption of homo-

geneity of variances in the two-sample t-test is not tenable. What can be done? At least three

avenues are open:

a. Use an approximation to the t procedure.

b. Transform the data.

c. Use another test, such as a nonparametric test.

With respect to the last point, alternative approaches are discussed in Chapter 8. With respect to

the first point, one possibility is to rank the observations from smallest to largest (disregarding

group membership) and then carry out the t-test on the ranks. This is a surprisingly good test

but does not allow us to estimate the magnitude of the difference between the two groups.

See Conover and Iman [1981] for an interesting discussion and Thompson [1991] for some

precautions. Another approach adjusts the degrees of freedom of the two-sample t-test. The

procedure is as follows: Let Y1 ∼ N(µ1, σ

2
1 ) and Y2 ∼ N(µ2, σ

2
2 ), and samples of size n1 and

n2 are taken, respectively. The variable

(Y 1 − Y 2) − (µ1 − µ2)
√

σ

2
1 /n1 + σ

2
2 /n2

has a standard normal distribution. However, the analogous quantity with the population vari-

ances σ

2
1 and σ

2
2 replaced by the sample variances s

2
1 and s

2
2 does not have a t-distribution. The

problem of finding the distribution of this quantity is known as the Behrens–Fisher problem.

It is of theoretical interest in statistics because there is no exact solution to such an apparently

simple problem. There are, however, perfectly satisfactory practical solutions. One approach

adjusts the degrees of freedom of this statistic in relation to the extent of dissimilarity of

the two sample variances. The t-table is entered not with n1 + n2 − 2 degrees of freedom,

but with

degrees of freedom =

(s

2
1/n1 + s

2
2/n2)

2

(s

2
1/n1)

2
/(n1 + 1) + (s

2
2/n2)

2
/(n2 + 1)

− 2

This value need not be an integer; if you are working from tables of the t-distribution rather

than software, it may be necessary to round down this number. The error in this approximation

is very small and is likely to be negligible compared to the errors caused by nonnormality. For
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large samples (e.g., n1, n2 > 30), the statistic

(Y 1 − Y 2) − (µ1 − µ2)
√

s

2
1/n1 + s

2
2/n2

can be treated as a standard normal deviate even if the distribution of Y is not a normal

distribution.

2. The two-sample t-test and design of experiments. Given that a group has to be divided

into two subgroups, the arrangement that minimizes the standard error of the difference is that

of equal sample sizes in each group when there is a common σ

2. To illustrate, suppose that

10 objects are to be partitioned into two groups; consider the multiplier
√

1/n1 + 1/n2, which

determines the relative size of the standard errors.

n1 n2

√

1/n1 + 1/n2

5 5 0.63

6 4 0.65

7 3 0.69

8 2 0.79

This list indicates that small deviations from a 5 : 5 ratio do not affect the multiplier very

much. It is sometimes claimed that sample sizes must be equal for a valid t-test: Except for

giving the smallest standard error of the difference, there is no such constraint.

3. The “wrong” t-test. What is the effect of carrying out a two-sample t-test on paired data,

that is, data that should have been analyzed by a paired t-test? Usually, the level of significance

is reduced. On the one hand, the degrees of freedom are increased from (n − 1), assuming n

pairs of observations, to 2(n − 1), but at the same time, additional variation is introduced, so

that the standard error of the difference is now larger. In any event the assumption of statistical

independence between “groups” is usually inappropriate.

4. Robustness of the t-test. The t-test tends to be sensitive to outliers, unusually small or

large values of a variable. We discuss other methods of analysis in Chapter 8. As a matter of

routine, you should always graph the data in some way. A simple box plot or histogram will

reveal much about the structure of the data. An outlier may be a perfectly legitimate value and

its influence on the t-test entirely appropriate, but it is still useful to know that this influence is

present.

5.3 Relationships and Characteristics of the Fixed Distributions in This Chapter

We have already suggested some relationships between the fixed distributions. The connection

is more remarkable yet and illustrates the fundamental role of the normal distribution. The basic

connection is between the standard normal and the chi-square distribution. Suppose that we

draw randomly 10 independent values from a standard normal distribution, square each value,

and sum them. This sum is a random variable. What is its sampling distribution? It turns out

to be chi-square with 10 degrees of freedom. Using notation, let Z1, Z2, . . . , Z10 be the values

of Z obtained in drawings 1 to 10. Then, Z

2
1 + · · · + Z

2
10 has a chi-square distribution with 10

degrees of freedom: χ

2
10 = Z

2
1 + · · · + Z

2
10. This generalizes the special case χ

2
1 = Z

2.

The second connection is between the F -distribution and the chi-square distribution. Suppose

that we have two independent chi-square random variables with v1 and v2 degrees of freedom.

The ratio
χ

2
v1

/v1

χ

2
v2

/v2

= F

v1,v2
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has an F -distribution with v1 and v2 degrees of freedom. Finally, the square of a t-variable with

v degrees of freedom is F1,v

. Summarizing yields

χ

2
v

=

v

∑

i=1

Z

2
i

, t

2
v

= F1,v

=

χ

2
1 /1

χ

2
v

/v

A special case connects all four pivotal variables:

Z

2
= t

2
∞

= χ

2
1 = F1,∞

Thus, given the F -table, all the other tables can be generated from it. For completeness, we

summarize the mean and variance of the four fixed distributions:

Distribution Symbol Mean Variance

Normal Z 0 1

Student t t

v

0 v

v−2
(v > 2)

Chi-square χ

2
v

v 2v

Fisher’s F F

v1,v2

v2

v2 − 2

2v

2
2(v1 + v2 − 2)

v1(v2 − 2)

2
(v2 − 4)

(v2 > 4)

5.4 One-Sided Tests and One-Sided Confidence Intervals

Corresponding to one-sided (one-tailed) tests are one-sided confidence intervals. A one-sided

confidence interval is derived from a pivotal quantity in the same was as a two-sided confidence

interval. For example, in the case of a one-sample t-test, a pivotal equation is

P

[

−∞ ≤

x − µ

s/

√

n

≤ t

n−1,1−α

]

= 1 − α

Solving for µ produces a 100(1 − α)% upper one-sided confidence interval for µ : (x −

t

n−1,1−α

s/

√

n, ∞). Similar intervals can be constructed for all the pivotal variables.

PROBLEMS

5.1 Rickman et al. [1974] made a study of changes in serum cholesterol and triglyceride

levels of subjects following the Stillman diet. The diet consists primarily of protein and

animal fats, restricting carbohydrate intake. The subjects followed the diet with length

of time varying from 3 to 17 days. (Table 5.4). The mean cholesterol level increased

significantly from 215 mg per/100 mL at baseline to 248 mg per/100 mL at the end of

the diet. In this problem, we deal with the triglyceride level.

(a) Make a histogram or stem-and-leaf diagram of the changes in triglyceride levels.

(b) Calculate the average change in triglyceride level. Calculate the standard error of

the difference.

(c) Test the significance of the average change.

(d) Construct a 90% confidence interval on the difference.

(e) The authors indicate that subjects (5,6), (7,8), (9,10), and (15,16) were “repeaters,”

that is, subjects who followed the diet for two sequences. Do you think it is
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Table 5.4 Diet Data for Problem 5.1

Triglyceride

Weight (kg) (mg/100 ml)
Days on

Subject Diet Initial Final Baseline Final

1 10 54.6 49.6 159 194

2 11 56.4 52.8 93 122

3 17 58.6 55.9 130 158

4 4 55.9 54.6 174 154

5 9 60.0 56.7 148 93

6 6 57.3 55.5 148 90

7 3 62.7 59.6 85 101

8 6 63.6 59.6 180 99

9 4 71.4 69.1 92 183

10 4 72.7 70.5 89 82

11 4 49.6 47.1 204 100

12 7 78.2 75.0 182 104

13 8 55.9 53.2 110 72

14 7 71.8 68.6 88 108

15 7 71.8 66.8 134 110

16 14 70.5 66.8 84 81

reasonable to include their data the “second time around” with that of the other sub-

jects? Supposing not, how would you now analyze the data? Carry out the analysis.

Does it change your conclusions?

5.2 In data of Dobson et al. [1976], 36 patients with a confirmed diagnosis of phenylketonuria

(PKU) were identified and placed on dietary therapy before reaching 121 days of age.

The children were tested for IQ (Stanford–Binet test) between the ages of 4 and 6;

subsequently, their normal siblings of closest age were also tested with the Stanford–

Binet. The following are the first 15 pairs listed in the paper:

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IQ of PKU case 89 98 116 67 128 81 96 116 110 90 76 71 100 108 74

IQ of sibling 77 110 94 91 122 94 121 114 88 91 99 93 104 102 82

(a) State a suitable null and an alternative hypotheses with regard to these data.

(b) Test the null hypothesis.

(c) State your conclusions.

(d) What are your assumptions?

(e) Discuss the concept of power with respect to this set of data using the fact that

PKU invariably led to mental retardation until the cause was found and treatment

comprising a restricted diet was instituted.

(f) The mean difference (PKU case−sibling) in IQ for the full 36 pairs was −5.25; the

standard deviation of the difference was 13.18. Test the hypothesis of no difference

in IQ for this entire set of data.

5.3 Data by Mazze et al. [1971] deal with the preoperative and postoperative creatinine

clearance (ml/min) of six patients anesthetized by halothane:
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Patient

1 2 3 4 5 6

Preoperative 110 101 61 73 143 118

Postoperative 149 105 162 93 143 100

(a) Why is the paired t-test preferable to the two-sample t-test in this case?

(b) Carry out the paired t-test and test the significance of the difference.

(c) What is the model for your analysis?

(d) Set up a 99% confidence interval on the difference.

(e) Graph the data by plotting the pairs of values for each patient.

5.4 Some of the physiological effects of alcohol are well known. A paper by Squires et al.

[1978] assessed the acute effects of alcohol on auditory brainstem potentials in humans.

Six volunteers (including the three authors) participated in the study. The latency (delay)

in response to an auditory stimulus was measured before and after an intoxicating dose of

alcohol. Seven different peak responses were identified. In this exercise, we discuss only

latency peak 3. Measurements of the latency of peak (in milliseconds after the stimulus

onset) in the six subjects were as follows:

Latency of Peak

1 2 3 4 5 6

Before alcohol 3.85 3.81 3.60 3.68 3.78 3.83

After alcohol 3.82 3.95 3.80 3.87 3.88 3.94

(a) Test the significance of the difference at the 0.05 level.

(b) Calculate the p-value associated with the result observed.

(c) Is your p-value based on a one- or two-tailed test? Why?

(d) As in Problem 5.3, graph these data and state your conclusion.

(e) Carry out an (incorrect) two-sample test and state your conclusions.

(f) Using the sample variances s

2
1 and s

2
2 associated with the set of readings observed

before and after, calculate the variance of the difference, assuming independence

(call this variance 1). How does this value compare with the variance of the

difference calculated in part (a)? (Call this variance 2.) Why do you suppose

variance 1 is so much bigger than variance 2? The average of the differences

is the same as the difference in the averages. Show this. Hence, the two-sample

t-test differed from the paired t-test only in the divisor. Which of the two tests in

more powerful in this case, that is, declares a difference significant when in fact

there is one?

5.5 The following data from Schechter et al. [1973] deal with sodium chloride preference

as related to hypertension. Two groups, 12 normal and 10 hypertensive subjects, were

isolated for a week and compared with respect to Na+ intake. The following are the

average daily Na+ intakes (in milligrams):

Normal 10.2 2.2 0.0 2.6 0.0 43.1 45.8 63.6 1.8 0.0 3.7 0.0

Hypertensive 92.8 54.8 51.6 61.7 250.8 84.5 34.7 62.2 11.0 39.1
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(a) Compare the average daily Na+ intake of the hypertensive subjects with that of the

normal volunteers by means of an appropriate t-test.

(b) State your assumptions.

(c) Assuming that the population variances are not homogeneous, carry out an appro-

priate t-test (see Note 5.2).

5.6 Kapitulnik et al. [1976] compared the metabolism of a drug, zoxazolamine, in placentas

from 13 women who smoked during pregnancy and 11 who did not. The purpose of

the study was to investigate the presence of the drug as a possible proxy for the rate at

which benzo[a]pyrene (a by-product of cigarette smoke) is metabolized. The following

data were obtained in the measurement of zoxazolamine hydroxylase production (nmol

3H2O formed/g per hour):

Nonsmoker 0.18 0.36 0.24 0.50 0.42 0.36 0.50 0.60 0.56 0.36 0.68

Smoker 0.66 0.60 0.96 1.37 1.51 3.56 3.36 4.86 7.50 9.00 10.08 14.76 16.50

(a) Calculate the sample mean and standard deviation for each group.

(b) Test the assumption that the two sample variances came from a population with

the same variance.

(c) Carry out the t-test using the approximation to the t-procedure discussed in

Note 5.2. What are your conclusions?

(d) Suppose we agree that the variability (as measured by the standard deviations)

is proportional to the level of the response. Statistical theory then suggests that

the logarithms of the responses should have roughly the same variability. Take

logarithms of the data and test, once more, the homogeneity of the variances.

5.7 Sometime you may be asked to do a two-sample t-test knowing only the mean, standard

deviation, and sample sizes. A paper by Holtzman et al. [1975] dealing with terminating

a phenylalanine-restricted diet in 4-year-old children with phenylketonuria (PKU) illus-

trates the problem. The purpose of the diet is to reduce the phenylalanine level. A high

level is associated with mental retardation. After obtaining informed consent, eligible

children of 4 years of age were randomly divided into two groups. Children in one group

had their restricted diet terminated while children in the other group were continued on

the restricted diet. At 6 years of age, the phenylalanine levels were tested in all children

and the following data reported:

Diet Terminated Diet Continued

Number of children 5 4

Mean phenylalanine level (mg/dl) 26.9 16.7

Standard deviation 4.1 7.3

(a) State a reasonable null hypothesis and alternative hypothesis.

(b) Calculate the pooled estimate of the variance s

2
p

.

(c) Test the null hypothesis of part (a). Is your test one-tailed, or two? Why?

(d) Test the hypothesis that the sample variances came from two populations with the

same variance.

(e) Construct a 95% confidence interval on the difference in the population phenylala-

nine levels.
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(f) Interpret the interval constructed in part (e).

(g) “This set of data has little power,” someone says. What does this statement mean?

Interpret the implications of a Type II error in this example.

(h) What is the interpretation of a Type I error in this example? Which, in your opinion,

is more serious in this example: a Type I error or a Type II error?

(i) On the basis of these data, what would you recommend to a parent with a 4-year-old

PKU child?

(j) Can you think of some additional information that would make the analysis more

precise?

5.8 Several population studies have demonstrated an inverse correlation of sudden infant

death syndrome (SIDS) rate with birthweight. The occurrence of SIDS in one of a

pair of twins provides an opportunity to test the hypothesis that birthweight is a major

determinant of SIDS. The data shown in Table 5.5 consist of the birthweights (in grams)

of each of 22 dizygous twins and each of 19 monozygous twins.

(a) With respect to the dizygous twins, test the hypothesis given above. State the null

hypothesis.

(b) Make a similar test on the monozygous twins.

(c) Discuss your conclusions.

Table 5.5 Birthweight Data for Problem 5.8

Dizygous Twins Monozygous Twins

SID Non-SID SID Non-SID

1474 2098 1701 1956

3657 3119 2580 2438

3005 3515 2750 2807

2041 2126 1956 1843

2325 2211 1871 2041

2296 2750 2296 2183

3430 3402 2268 2495

3515 3232 2070 1673

1956 1701 1786 1843

2098 2410 3175 3572

3204 2892 2495 2778

2381 2608 1956 1588

2892 2693 2296 2183

2920 3232 3232 2778

3005 3005 1446 2268

2268 2325 1559 1304

3260 3686 2835 2892

3260 2778 2495 2353

2155 2552 1559 2466

2835 2693

2466 1899

3232 3714

Source: D. R. Peterson, Department of Epidemiology,
University of Washington.
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5.9 A pharmaceutical firm claims that a new analgesic drug relieves mild pain under standard

conditions for 3 hours with a standard deviation of 1 hour. Sixteen patients are tested

under the same conditions and have an average pain relief of 2.5 hours. The hypothesis

that the population mean of this sample is also 3 hours is to be tested against the

hypothesis that the population mean is in fact less than 3 hours; α = 0.5.

(a) What is an appropriate test?

(b) Set up the appropriate critical region.

(c) State your conclusion.

(d) Suppose that the sample size is doubled. State precisely how the nonrejection region

for the null hypothesis is changed.

5.10 Consider Problem 3.9, dealing with the treatment of essential hypertension. Compare

treatments A and B by means of an appropriate t-test. Set up a 99% confidence interval

on the reduction of blood pressure under treatment B as compared to treatment A.

5.11 During July and August 1976, a large number of Legionnaires attending a convention died

of mysterious and unknown cause. Epidemiologists talked of “an outbreak of Legion-

naires’ disease.” One possible cause was thought to be toxins: nickel, in particular. Chen

et al. [1977] examined the nickel levels in the lungs of nine of the cases, and selected

nine controls. All specimens were coded by the Centers for Disease Control in Atlanta

before being examined by the investigators. The data are as follows (µg per 100 g dry

weight):

Legionnaire cases 65 24 52 86 120 82 399 87 139

Control cases 12 10 31 6 5 5 29 9 12

Note that there was no attempt to match cases and controls.

(a) State a suitable null hypothesis and test it.

(b) We now know that Legionnaires’ disease is caused by a bacterium, genus

Legionella, of which there are several species. How would you explain the “signifi-

cant” results obtained in part (a)? (Chen et al. [1977] consider various explanations

also.)

5.12 Review Note 5.3. Generate a few values for the normal, t , and chi-square tables from

the F -table.

5.13 It is claimed that a new drug treatment can substantially reduce blood pressure. For

purposes of this exercise, assume that only diastolic blood pressure is considered. A

certain population of hypertensive patients has a mean blood pressure of 96 mmHg.

The standard deviation of diastolic blood pressure (variability from subject to subject)

is 12 mmHg. To be biologically meaningful, the new drug treatment should lower the

blood pressure to at least 90 mmHg. A random sample of patients from the hypertensive

population will be treated with the new drug.

(a) Assuming that α = 0.05 and β = 0.05, calculate the sample size required to

demonstrate the effect specified.

(b) Considering the labile nature of blood pressure, it might be argued that any “treat-

ment effect” will merely be a “put-on-study effect.” So the experiment is redesigned

to consider two random samples from the hypertensive population, one of which

will receive the new treatment, and the other, a placebo. Assuming the same spec-

ifications as above, what is the required sample size per group?
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(c) Blood pressure readings are notoriously variable. Suppose that a subject’s diastolic

blood pressure varies randomly from measurement period to measurement period

with a standard deviation of 4 mmHg. Assuming that measurement variability is

independent of subject-to-subject variability, what is the overall variance or the

total variability in the population? Recalculate the sample sizes for the situation

described in parts (a) and (b).

(d) Suppose that the change in blood pressure from baseline is used. Suppose that the

standard deviation of the change is 6 mmHg. How will this change the sample

sizes of parts (a) and (b)?

5.14 In a paper in the New England Journal of Medicine, Rodeheffer et al. [1983] assessed

the effect of a medication, nifedipine, on the number of painful attacks in patients with

Raynaud’s phenomenon. This phenomenon causes severe digital pain and functional

disability, particularly in patients with underlying connective tissue disease. The drug

causes “vascular smooth-muscle relaxation and relief of arterial vasospasm.” In this study,

15 patients were selected and randomly assigned to one of two treatment sequences:

placebo–nifedipine, or nifedipine–placebo. The data in Table 5.6 were obtained.

(a) Why were patients randomly assigned to one of the two sequences? What are the

advantages?

(b) The data of interest are in the columns marked “placebo” and “nifedipine.” State

a suitable null hypothesis and alternative hypothesis for these data. Justify your

choices. Test the significance of the difference in total number of attacks in two

weeks on placebo with that of treatment. Use a t-test on the differences in the

response. Calculate the p-value.

(c) Construct a 95% confidence interval for the difference. State your conclusions.

(d) Make a scatter plot of the placebo response (x-axis) vs. the nifedipine response

(y-axis). If there was no significant difference between the treatments, about what

line should the observations be scattered?

(e) Suppose that a statistician considers only the placebo readings and calculates a 95%

confidence interval on the population mean. Similarly, the statistician calculates a

95% confidence interval on the nifedipine mean. A graph is made to see if the

intervals overlap. Do this for these data. Compare your results with that of part (c).

Is there a contradiction? Explain.

(f) One way to get rid of outliers is to carry out the following procedure: Take the

differences of the data in columns 7 (placebo) and 9 (nifedipine), and rank them

disregarding the signs of the differences. Put the sign of the difference on the rank.

Now, carry out a paired t-test on the signed ranks. What would be an appropriate

null hypothesis? What would be an appropriate alternative hypothesis? Name one

advantage and one disadvantage of this procedure. (It is one form of a nonparametric

test discussed in detail in Chapter 8.)

5.15 Rush et al. [1973] reported the design of a randomized controlled trial of nutritional

supplementation in pregnancy. The trial was to be conducted in a poor American black

population. The variable of interest was the birthweight of infants born to study par-

ticipants; study design called for the random allocation of participants to one of three

treatment groups. The authors then state: “The required size of the treatment groups was

calculated from the following statistics: the standard deviation of birthweight . . . is of

the order of 500 g. An increment of 120 g in birthweight was arbitrarily taken to consti-

tute a biologically meaningful gain. Given an expected difference between subjects and

controls of 120 g, the required sample size for each group, in order to have a 5% risk of

falsely rejecting, and a 20% risk of falsely accepting the null hypothesis, is about 320.”
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(a) What are the values for α and β?

(b) What is the estimate of �, the standardized difference?

(c) The wording in the paper suggests that sample size calculations are based on a

two-sample test. Is the test one-tailed or two?

(d) Using a one-tailed test, verify that the sample size per group is n = 215. The

number 320 reflects adjustments for losses and, perhaps, “multiple comparisons”

since there are three groups (see Chapter 12).

5.16 This problem deals with the data of Problem 5.14. In column 4 of Table 5.6, patients are

divided into those with a history of digital ulcers and those without. We want to compare

these two groups. There are seven patients with a history and eight without.

(a) Consider the total number of attacks (in column 9) on the active drug. Carry out a

two-sample t-test. Compare the group with a digital ulcer history with the group

without this history. State your assumptions and conclusions.

(b) Rank all the observations in column 9, then separate the ranks into the two groups

defined in part (a). Now carry out a two-sample t-test on the ranks. Compare your

conclusions with those of part (b). Name an advantage to this approach. Name a

disadvantage to this approach.

(c) We now do the following: Take the difference between the “placebo” and “nifedip-

ine” columns and repeat the procedures of parts (a) and (b). Supposing that the

conclusions of part (a) are not the same as those in this part, how would you

interpret such discrepancies?

(d) The test carried out in part (c) is often called a test for interaction. Why do you

suppose that this is so?
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C H A P T E R 6

Counting Data

6.1 INTRODUCTION

From previous chapters, recall the basic ideas of statistics. Descriptive statistics present data,

usually in summary form. Appropriate models describe data concisely. The model parameters

are estimated from the data. Standard errors and confidence intervals quantify the preci-

sion of estimates. Scientific hypotheses may be tested. A formal hypothesis test involves four

things: (1) planning an experiment, or recognizing an opportunity, to collect appropriate data;

(2) selecting a significance level and critical region; (3) collecting the data; and (4) rejecting the

null hypothesis being tested if the value of the test statistic falls into the critical region. A less

formal approach is to compute the p-value, a measure of how plausibly the data agree with the

null hypothesis under study. The remainder of this book shows you how to apply these concepts

in different situations, starting with the most basic of all data: counts.

Throughout recorded history people have been able to count. The word statistics comes

from the Latin word for “state”; early statistics were counts used for the purposes of the state.

Censuses were conducted for military and taxation purposes. Modern statistics is often dated

from the 1662 comments on the Bills of Mortality in London. The Bills of Mortality counted

the number of deaths due to each cause. John Graunt [1662] noticed patterns of regularity in

the Bills of Mortality (see Section 3.3.1). Such vital statistics are important today for assessing

the public health. In this chapter we return to the origin of statistics by dealing with data that

arise by counting the number of occurrences of some event.

Count data lead to many different models. The following sections present examples of count

data. The different types of count data will each be presented in three steps. First, you learn

to recognize count data that fit a particular model. (This is the diagnosis phase.) Second, you

examine the model to be used. (You learn about the illness.) Third, you learn the methods of

analyzing data using the model. (At this stage you learn how to treat the disease.)

6.2 BINOMIAL RANDOM VARIABLES

6.2.1 Recognizing Binomial Random Variables

Four conditions characterize binomial data:

1. A response or trait takes on one and only one of two possibilities. Such a response is

called a binary response. Examples are:

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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a. In a survey of the health system, people are asked whether or not they have hospital-

ization insurance.

b. Blood samples are tested for the presence or absence of an antigen.

c. Rats fed a potential carcinogen are examined for tumors.

d. People are classified as having or not having cleft lip.

e. Injection of a compound does or does not cause cardiac arrhythmia in dogs.

f. Newborn children are classified as having or not having Down syndrome.

2. The response is observed a known number of times. Each observation of the response is

sometimes called a Bernoulli trial. In condition 1(a) the number of trials is the number of

people questioned. In 1(b), each blood sample is a trial. Each newborn child constitutes

a trial in 1(f).

3. The chance, or probability, that a particular outcome occurs is the same for each trial.

In a survey such as 1(a), people are sampled at random from the population. Since each

person has the same chance of being interviewed, the probability that the person has

hospitalization insurance is the same in each case. In a laboratory receiving blood samples,

the samples could be considered to have the same probability of having an antigen if the

samples arise from members of a population who submit tests when “randomly” seeking

medical care. The samples would not have the same probability if batches of samples

arrive from different environments: for example, from schoolchildren, a military base,

and a retirement home.

4. The outcome of one trial must not be influenced by the outcome of other trials. Using

the terminology of Chapter 5, the trials outcomes are independent random variables. In

1(b), the trials would not be independent if there was contamination between separate

blood samples. The newborn children of 1(f) might be considered independent trials for

the occurrence of Down syndrome if each child has different parents. If multiple births

are in the data set, the assumption of independence would not be appropriate.

We illustrate and reinforce these ideas by examples that may be modeled by the binomial

distribution.

Example 6.1. Weber et al. [1976] studied the irritating effects of cigarette smoke. Sixty

subjects sat, in groups of five to six, in a 30-m2 climatic chamber. Tobacco smoke was produced

by a smoking machine. After 10 cigarettes had been smoked, 47 of the 60 subjects reported that

they wished to leave the room.

Let us consider the appropriateness of the binomial model for these data. Condition 1 is

satisfied. Each subject was to report whether or not he or she desired to leave the room. The

answer gives one of two possibilities: yes or no. Sixty trials are observed to take place (i.e.,

condition 2 is satisfied).

The third condition requires that each subject have the same probability of “wishing to

leave the room.” The paper does not explain how the subjects were selected. Perhaps the

authors advertised for volunteers. In this case, the subjects might be considered “represen-

tative” of a larger population who would volunteer. The probability would be the unknown

probability that a person selected at random from this larger population would wish to leave

the room.

As we will see below, the binomial model is often used to make inferences about the unknown

probability of an outcome in the “true population.” Many would say that an experiment such as

this shows that cigarette smoke irritates people. The extension from the ill-defined population

of this experiment to humankind in general does not rest on this experiment. It must be based

on other formal or informal evidence that humans do have much in common; in particular, one

would need to assume that if one portion of humankind is irritated by cigarette smoke, so will

other segments. Do you think such inferences are reasonable?
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The fourth condition needed is that the trials are independent variables. The authors report

in detail that the room was cleared of all smoke between uses of the climatic chamber. There

should not be a carryover effect here. Recall that subjects were tested in groups of five or

six. How do you think that one person’s response would be changed if another person were

coughing? Rubbing the eyes? Complaining? It seems possible that condition 4 is not fulfilled;

that is, it seems possible that the responses were not independent.

In summary, a binomial model might be used for these data, but with some reservation. The

overwhelming majority of data collected on human populations is collected under less than ideal

conditions; a subjective evaluation of the worth of an experiment often enters in.

Example 6.2. Karlowski et al. [1975] reported on a controlled clinical trial of the use of

ascorbic acid (vitamin C) for the common cold. Placebo and vitamin C were randomly assigned

to the subjects; the experiment was to be a double-blind trial. It turned out that some subjects

were testing their capsules and claimed to know the medication. Of 64 subjects who tested the

capsule and guessed at the treatment, 55 were correct. Could such a split arise by chance if

testing did not help one to guess correctly?

One thinks of using a binomial model for these data since there is a binary response (correct

or incorrect guess) observed on a known number of people. Assuming that people tested only

their own capsules, the guesses should be statistically independent. Finally, if the guesses are “at

random,” each subject should have the same probability—one-half—of making a correct guess

since half the participants receive vitamin C and half a placebo. This binomial model would

lead to a test of the hypothesis that the probability of a correct guess was 1/2.

Example 6.3. Bucher et al. [1976] studied the occurrence of hemolytic disease in newborns

resulting from ABO incompatibility between the parents. Parents are said to be incompatible

if the father has antigens that the mother lacks. This provides the opportunity for production

of maternal antibodies from fetal–maternal stimulation. Low-weight immune antibodies that

cross the placental barrier apparently cause the disease [Cavalli-Sforza and Bodmer, 1999]. The

authors reviewed 7464 consecutive infants born at North Carolina Hospital. Of 3584 “black

births,” 43 had ABO hemolytic disease. What can be said about the true probability that a black

birth has ABO hemolytic disease?

It seems reasonable to consider the number of ABO hemolytic disease cases to be binomial.

The presence of disease among the 3584 trials should be independent (assuming that no parents

had more than one birth during the period of case recruitment—October 1965 to March 1973—

and little or no effect from kinship of parents). The births may conceptually be thought of as a

sample of the population of “potential” black births during the given time period at the hospital.

6.2.2 Binomial Model

In speaking about a Bernoulli trial, without reference to a particular example, it is customary

to label one outcome as a “success” and the other outcome as a “failure.” The mathematical

model for the binomial distribution depends on two parameters: n, the number of trials, and π ,

the probability of a success in one trial. A binomial random variable, say Y , is the count of the

number of successes in the n trials. Of course, Y can only take on the values 0, 1, 2, . . . , n.

If π , the probability of a success, is large (close to 1), then Y , the number of successes, will

tend to be large. Conversely, if the probability of success is small (near zero), Y will tend to be

small.

To do statistical analysis with binomial variables, we need the probability distribution of Y .

Let k be an integer between 0 and n inclusive. We need to know P [Y = k]. In other words,

we want the probability of k successes in n independent trials when π is the probability of

success. The symbol b(k; n, π) will be used to denote this probability. The answer involves

the binomial coefficient. The binomial coefficient

(

n

k

)

is the number of different ways that
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k objects may be selected from n objects. (Problem 6.24 helps you to derive the value of
(

n

k

)

.) For each positive integer n, n factorial (written n!) is defined to be 1 × 2 × · · · × n.

So 6! = 1 × 2 × 3 × 4 × 5 × 6 = 720. 0!, zero factorial, is defined to be 1. With this notation

the binomial coefficient may be written

(

n

k

)

=

n!

(n − k)! k!
=

n(n − 1) · · · (k + 1)

(n − k)(n − k − 1) · · · 1
(1)

Example 6.4. This is illustrated with the following two cases:

1. Of 10 residents, three are to be chosen to cover a hospital service on a holiday. In how

many ways may the residents be chosen? The answer is

(

10

3

)

=

10!

7! 3!
=

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10

(1 × 2 × 3 × 4 × 5 × 6 × 7)(1 × 2 × 3)

= 120

2. Of eight consecutive patients, four are to be assigned to drug A and four to drug B. In

how many ways may the assignments be made? Think of the eight positions as eight

objects; we need to choose four for the drug A patients. The answer is

(

8

4

)

=

8!

4! 4!
=

1 × 2 × 3 × 4 × 5 × 6 × 7 × 8

(1 × 2 × 3 × 4)(1 × 2 × 3 × 4)

= 70

The binomial probability, b(k; n, π), may be written

b(k; n, π) =

(

n

k

)

π

k

(1 − π)

n−k (2)

Example 6.5. Ten patients are treated surgically. For each person there is a 70% chance

of successful surgery (i.e., π = 0.7). What is the probability of only five or fewer successful

surgeries?

P [five or fewer successful cases] = P [five successful cases] + P [four successful cases]

+ P [three successful cases] + P [two successful cases]

+ P [one successful case] + P [no successful case]

= b(5; 10, 0.7) + b(4; 10, 0.7) + b(3; 10, 0.7) + b(2; 10, 0.7)

+ b(1; 10, 0.7) + b(0; 10, 0.7)

= 0.1029 + 0.0368 + 0.0090 + 0.0014 + 0.0001 + 0.0000

= 0.1502

(Note: The actual value is 0.1503; the answer 0.1502 is due to round-off error.)

The binomial probabilities may be calculated directly or found by a computer program. The

mean and variance of a binomial random variable with parameters π and n are given by

E(Y ) = nπ

var(Y ) = nπ(1 − π)

(3)
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From equation (3) it follows that Y/n has the expected value π :

E

(

Y

n

)

= π (4)

In other words, the proportion of successes in n binomial trials is an unbiased estimate of the

probability of success.

6.2.3 Hypothesis Testing for Binomial Variables

The hypothesis-testing framework established in Chapter 4 may be used for the binomial dis-

tribution. There is one minor complication. The binomial random variable can take on only a

finite number of values. Because of this, it may not be possible to find hypothesis tests such

that the significance level is precisely some fixed value. If this is the case, we construct regions

so that the significance level is close to the desired significance level.

In most situations involving the binomial distribution, the number of trials (n) is known. We

consider statistical tests about the true value of π . Let p = Y/n. If π is hypothesized to be

π0, an observed value of p close to π0 reinforces the hypothesis; a value of p differing greatly

from π0 makes the hypothesis seem unlikely.

Procedure 1. To construct a significance test of H0: π = π0 against H

A

: π �= π0, at

significance level α:

1. Find the smallest c such that P [|p − π0| ≥ c] ≤ α when H0 is true.

2. Compute the actual significance level of the test; the actual significance level is P [|p −

π0| ≥ c].

3. Observe p, call it p̂; reject H0 if |p̂ − π0| ≥ c.

The quantity c is used to determine the critical value (see Definition 4.19); that is, determine

the bounds of the rejection region, which will be π0 ± c. Equivalently, working in the Y scale,

the region is defined by nπ0 ± nc.

Example 6.6. For n = 10, we want to construct a test of the null hypothesis H0: π = 0.4

vs. the alternative hypothesis H

A

: π �= 0.4. Thus, we want a two-sided test. The significance

level is to be as close to α = 0.05 as possible. We work in the Y = np scale. Under H0, Y has

mean nπ = (10)(0.4) = 4. We want to find a value C such that P [|Y − 4| ≥ C] is as close

to α = 0.05 (and less than α) as possible. The quantity C is the distance Y is from the null

hypothesis value 4. Using the definition of the binomial distribution, we construct Table 6.1.

The closest α-value to 0.05 is α = 0.0183; the next value is 0.1012. Hence we choose C = 4;

we reject the null hypothesis H0: nπ = 4 if Y = 0 or Y ≥ 8; equivalently, if p = 0 or p ≥ 0.8,

or in the original formulation, if |p − 0.4| ≥ 0.4 since C = 10c.

Table 6.1 C -Values for Example 6.6

C 4 − C C + 4 P [|Y − 4| ≥ C] = α

6 — 10 0.0001 = P [Y = 10]

5 — 9 0.0017 = P [Y ≥ 9]

4 0 8 0.0183 = P [Y = 0] + P [Y ≥ 8]

3 1 7 0.1012 = P [Y ≤ 1] + P [Y ≥ 7]

2 2 6 0.3335 = P [Y ≤ 2] + P [Y ≥ 6]

1 3 5 0.7492 = P [Y ≤ 3] + P [Y ≥ 5]
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Procedure 2. To find the p-value for testing the hypothesis H0: π = π0 vs. H

A

: π �= π0:

1. Observe p : p̂ is now fixed, where p̂ = y/n.

2. Let p̃ be a binomial random variable with parameters n and π0. The p-value is P [|p̃ −

π0| ≥ |p̂ − π0|].

Example 6.7. Find the p-value for testing π = 0.5 if n = 10 and we observe that p =

0.2. |p̃ − 0.5| ≥ |0.2 − 0.5| = 0.3 only if p̃ = 0.0, 0.1, 0.2, 0.8, 0.9, or 1.0. The p-value

can be computed by software or by adding up the probabilities of the “more extreme” values:

0.0010 + 0.0098 + 0.0439 + 0.0439 + 0.0098 + 0.0010 = 0.1094. Tables for this calculation are

provided in the Web appendix. The appropriate one-sided hypothesis test and calculation of a

one-sided p-value is given in Problem 6.25.

6.2.4 Confidence Intervals

Confidence intervals for a binomial proportion can be found by computer or by looking up

the confidence limits in a table. Such tables are not included in this book, but are available in

any standard handbook of statistical tables, for example, Odeh et al. [1977], Owen [1962], and

Beyer [1968].

6.2.5 Large-Sample Hypothesis Testing

The central limit theorem holds for binomial random variables. If Y is binomial with parameters

n and π , then for “large n,”
Y − E(Y )

√

var(Y )

=

Y − nπ

√

nπ(1 − π)

has approximately the same probability distribution as an N(0, 1) random variable. Equivalently,

since Y = np, the quantity (p − π)/

√

π(1 − π)/n approaches a normal distribution. We will

work interchangeably in the p scale or the Y scale. For large n, hypothesis tests and confidence

intervals may be formed by using critical values of the standard normal distribution.

The closer π is to 1/2, the better the normal approximation will be. If n ≤ 50, it is preferable

to use tables for the binomial distribution and hypothesis tests as outlined above. A reasonable

rule of thumb is that n is “large” if nπ(1 − π) ≥ 10.

In using the central limit theorem, we are approximating the distribution of a discrete random

variable by the continuous normal distribution. The approximation can be improved by using a

continuity correction. The normal random variable with continuity correction is given by

Z

c

=



































Y − nπ − 1/2
√

nπ(1 − π)

if Y − nπ > 1/2

Y − nπ

√

nπ(1 − π)

if |Y − nπ | ≤ 1/2

Y − nπ + 1/2
√

nπ(1 − π)

if Y − nπ < −1/2

For nπ(1 − π) ≥ 100, or quite large, the factor of 1/2 is usually ignored.

Procedure 3. Let Y be binomial n, π , with a large n. A hypothesis test of H0: π = π0 vs.

H

A

: π �= π0 at significance level α is given by computing Z

c

with π = π0. The null hypothesis

is rejected if |Z
c

| ≥ z1−α/2.
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Example 6.8. In Example 6.2, of the 64 persons who tested their capsules, 55 guessed the

treatment correctly. Could so many people have guessed the correct treatment “by chance”? In

Example 6.2 we saw that chance guessing would correspond to π0 = 1/2. At a 5% significance

level, is it plausible that π0 = 1/2?

As nπ0(1 − π0) = 64 × 1/2 × 1/2 = 16, a large-sample approximation is reasonable.

y − nπ0 = 55 − 64 × 1/2 = 23, so that

Z

c

=

Y − nπ0 − 1/2
√

nπ0(1 − π0)
=

22.5
√

64 × 1/2 × 1/2
= 5.625

As |Z
c

| = 5.625 > 1.96 = z0.975, the null hypothesis that the correct guessing occurs purely by

chance must be rejected.

Procedure 4. The large-sample two-sided p-value for testing H0: π = π0 vs. H

A

: π �= π0

is given by 2(1 −�(|Z
c

|)). �(x) is the probability that an N(0, 1) random variable is less than

x. |Z
c

| is the absolute value of Z

c

.

6.2.6 Large-Sample Confidence Intervals

Procedure 5. For large n, say np̂(l−p̂) ≥ 10, an approximate 100(1−α)% confidence interval

for π is given by
(

p̂ − z1−α/2

√

p̂(1 − p̂)

n

, p̂ + z1−α/2

√

p̂(1 − p̂)

n

)

(5)

where p̂ = y/n is the observed proportion of successes.

Example 6.9. Find a 95% confidence interval for the true fraction of black children having

ABO hemolytic disease in the population represented by the data of Example 6.3. Using formula

(5) the confidence interval is

43

3584
± 1.96

√

(43/3584)(1 − 43/3584)

3584
or (0.0084, 0.0156)

6.3 COMPARING TWO PROPORTIONS

Often, one is not interested in only one proportion but wants to compare two proportions. A

health services researcher may want to see whether one of two races has a higher percentage of

prenatal care. A clinician may wish to discover which of two drugs has a higher proportion of

cures. An epidemiologist may be interested in discovering whether women on oral contraceptives

have a higher incidence of thrombophlebitis than those not on oral contraceptives. In this section

we consider the statistical methods appropriate for comparing two proportions.

6.3.1 Fisher’s Exact Test

Data to estimate two different proportions will arise from observations on two populations. Call

the two sets of observations sample 1 and sample 2. Often, the data are presented in 2 × 2

(verbally, “two by two”) tables as follows:

Success Failure

Sample 1 n11 n12

Sample 2 n21 n22
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The first sample has n11 successes in n11 + n12 trials; the second sample has n21 successes

in n21 + n22 trials. Often, the null hypothesis of interest is that the probability of success in the

two populations is the same. Fisher’s exact test is a test of this hypothesis for small samples.

The test uses the row and column totals. Let n1· denote summation over the second index;

that is, n1· = n11 + n12. Similarly define n2·, n·1, and n·2. Let n·· denote summation over both

indices; that is, n·· = n11 +n12 +n21 +n22. Writing the table with row and column totals gives:

Success Failure

Sample 1 n11 n12 n1·

Sample 2 n21 n22 n2·

n·1 n·2 n··

Suppose that the probabilities of success in the two populations are the same. Suppose further

that we are given the row and column totals but not n11, n12, n21, and n22. What is the probability

distribution of n11?

Consider the n·· trials as n·· objects; for example, n1· purple balls and n2· gold balls. Since

each trial has the same probability of success, any subset of n·1 trials (balls) has the same

probability of being chosen as any other. Thus, the probability that n11 has the value k is the

same as the probability that there are k purple balls among n·1 balls chosen without replacement

from an urn with n1· purple balls and n2· gold balls. The probability distribution of n11 is called

the hypergeometric distribution.

The mathematical form of the hypergeometric probability distribution is derived in Prob-

lem 6.26.

Example 6.10. Kennedy et al. [1981] consider patients who have undergone coronary artery

bypass graft surgery (CABG). CABG takes a saphenous vein from the leg and connects the vein

to the aorta, where blood is pumped from the heart, and to a coronary artery, an artery that

supplies the heart muscle with blood. The vein is placed beyond a narrowing, or stenosis, in the

coronary artery. If the artery would close at the narrowing, the heart muscle would still receive

blood. There is, however, some risk to this open heart surgery. Among patients with moderate

narrowing (50 to 74%) of the left main coronary artery emergency cases have a high surgical

mortality rate. The question is whether emergency cases have a surgical mortality different from

that of nonemergency cases. The in-hospital mortality figures for emergency surgery and other

surgery were:

Discharge Status

Surgical Priority Dead Alive

Emergency 1 19

Other 7 369

From the hypergeometric distribution, the probability of an observation this extreme is

0.3419 = P [n11 ≥ 1] = P [n11 = 1] + · · · + P [n11 = 8]. (Values for n·· this large are

not tabulated and need to be computed directly.) These data do not show any difference beyond

that expected by chance.

Example 6.11. Sudden infant death syndrome (SIDS), or crib death, results in the unex-

plained death of approximately two of every 1000 infants during their first year of life. To study

the genetic component of such deaths, Peterson et al. [1980] examined sets of twins with at least

one SIDS child. If there is a large genetic component, the probability of both twins dying will
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be larger for identical twin sets than for fraternal twin sets. If there is no genetic component,

but only an environmental component, the probabilities should be the same. The following table

gives the data:

SIDS Children

Type of Twin One Both

Monozygous (identical) 23 1

Dizygous (fraternal) 35 2

The Fisher’s exact test one-sided p-value for testing that the probability is higher for

monozygous twins is p = 0.784. Thus, there is no evidence for a genetic component in

these data.

6.3.2 Large-Sample Tests and Confidence Intervals

As mentioned above, in many situations one wishes to compare proportions as estimated by

samples from two populations to see if the true population parameters might be equal or if one

is larger than the other. Examples of such situations are a drug and placebo trial comparing the

percentage of patients experiencing pain relief; the percentage of rats developing tumors under

diets involving different doses of a food additive; and an epidemiologic study comparing the

percentage of infants suffering from malnutrition in two countries.

Suppose that the first binomial variable (the sample from the first population) is of size n1

with probability π1, estimated by the sample proportion p1. The second sample estimates π2 by

p2 from a sample of size n2.

It is natural to compare the proportions by the difference p1 − p2. The mean and variance

are given by

E(p1 − p2) = π1 − π2,

var(p1 − p2) =

π1(1 − π1)

n1
+

π2(1 − π2)

n2

A version of the central limit theorem shows that for large n1 and n2 [say, both n1π1(1 − π1)

and n2π2(1 − π2) greater than 10],

p1 − p2 − (π1 − π2)
√

p1(1 − p1)/n1 + p2(1 − p2)/n2

= Z

is an approximately normal pivotal variable. From this, hypothesis tests and confidence intervals

develop in the usual manner, as illustrated below.

Example 6.12. The paper by Bucher et al. [1976] discussed in Example 6.3 examines racial

differences in the incidence of ABO hemolytic disease by examining records for infants born at

North Carolina Memorial Hospital. In this paper a variety of possible ways of defining hemolytic

disease are considered. Using their class I definition, the samples of black and white infants

have the following proportions with hemolytic disease:

black infants, n1 = 3584, p1 =

43

3584

white infants, n2 = 3831, p2 =

17

3831
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It is desired to perform a two-sided test of the hypothesis π1 = π2 at the α = 0.05 significance

level. The test statistic is

Z =

(43/3584) − (17/3831)

√

[(43/3584)(1 − 43/3584)]/3584 + [(17/3831)(1 − 17/3831)]/3831

.

= 3.58

The two-sided p-value is P [|Z| ≥ 3.58] = 0.0003 from Table A.1. As 0.0003 < 0.05, the null

hypothesis of equal rates, π1 = π2, is rejected at the significance level 0.05.

The pivotal variable may also be used to construct a confidence interval for π1−π2. Algebraic

manipulation shows that the endpoints of a symmetric (about p1 − p2) confidence interval are

given by

p1 − p2 ± z1−α/2

√

p1(1 − p1)

n1
+

p2(1 − p2)

n2

For a 95% confidence interval z1−α/2 = 1.96 and the interval for this example is

0.00756 ± 0.00414 or (0.00342, 0.01170)

A second statistic for testing for equality in two proportions is the χ

2 (chi-square) statistic.

This statistic is considered in more general situations in Chapter 7. Suppose that the data are as

follows:

Sample 1 Sample 2

Success n1p1 = n11 n2p2 = n12 n1·

Failure n1(1 − p1) = n21 n2(1 − p2) = n22 n2·

n1 = n·1 n2 = n·2 n··

A statistic for testing H0: π1 = π2 is the χ

2 statistic with one degree of freedom. It is

calculated by

X

2
=

n··(n11n22 − n12n21)
2

n1·n2·n·1n·2

For technical reasons (Note 6.2) the chi-square distribution with continuity correction, designated

by X

2
c

, is used by some people. The formula for X

2
c

is

X

2
c

=

n··(|n11n22 − n12n21| −
1
2
n··)

2

n1·n2·n·1n·2

For the Bucher et al. [1976] data, the values are as follows:

Race

ABO Hemolytic Disease Black White Total

Yes 43 17 60

No 3541 3814 7355

Total 3584 3831 7415
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X

2
=

7415(43 × 3814 − 17 × 3541)

2

60(7355)(3584)(3831)

= 13.19

X

2
c

=

7415(|43 × 3814 − 17 × 3541| − 7415/2)

2

60(7355)(3584)(3831)

= 12.26

These statistics, for large n, have a chi-square (χ

2
) distribution with one degree of freedom

under the null hypothesis of equal proportions. If the null hypothesis is not true, X

2 or X

2
c

will

tend to be large. The null hypothesis is rejected for large values of X

2 or X

2
c

. Table A.3 has

χ

2 critical values. The Bucher data have p < 0.001 since the 0.001 critical value is 10.83 and

require rejection of the null hypothesis of equal proportions.

From Note 5.3 we know that χ

2
1 = Z

2. For this example the value of Z

2
= 3.582

= 12.82 is

close to the value X

2
= 13.19. The two values would have been identical (except for rounding)

if we had used in the calculation of Z an estimate of the standard error of
√

pq(1/n1 + 1/n2),

where p = 60/7415 is the pooled estimate of π under the null hypothesis π1 = π2 = π .

6.3.3 Finding Sample Sizes Needed for Testing the Difference between Proportions

Consider a study planned to test the equality of the proportions π1 and π2. Only studies in which

both populations are sampled the same number of times, n = n1 = n2, will be considered here.

There are five quantities that characterize the performance and design of the test:

1. π1, the proportion in the first population.

2. π2, the proportion in the second population under the alternative hypothesis.

3. n, the number of observations to be obtained from each of the two populations.

4. The significance level α at which the statistical test will be made. α is the probability of

rejecting the null hypothesis when it is true. The null hypothesis is that π1 = π2.

5. The probability, β, of accepting the null hypothesis when it is not true, but the alternative

is true. Here we will have π1 �= π2 under the alternative hypothesis (π1 and π2 as specified

in quantities 1 and 2 above).

These quantities are interrelated. It is not possible to change one of them without changing at

least one of the others. The actual determination of sample size is usually an iterative process; the

usual state of affairs is that the desire for precision and the practicality of obtaining an appropriate

sample size are in conflict. In practice, one usually considers various possible combinations and

arrives at a “reasonable” sample size or decides that it is not possible to perform an adequate

experiment within the constraints involved.

The “classical” approach is to specify π1, π2 (for the alternative hypothesis), α, and β. These

parameters determine the sample size n. Table A.8 gives some sample sizes for such binomial

studies using one-sided hypothesis tests (see Problem 6.27). An approximation for n is

n = 2

{

z1−α

+ z1−β

π1 − π2

√

1

2
[π1(1 − π1) + π2(1 − π2)]

}2

where α = 1 − �(z1−α

); that is, z1−α

is the value such that a N(0, 1) variable Z has P [Z >

z1−α

] = α. In words, z1−α

is the one-sided normal α critical value. Similarly, z1−β

is the

one-sided normal β critical value.

Figure 6.1 is a flow diagram for calculating sample sizes for discrete (binomial) as well

as continuous variables. It illustrates that the format is the same for both: first, values of α

and β are selected. A one- or two-sided test determines z1−α

or z1−α/2 and the

quantity NUM, respectively. For discrete data, the quantities π1 and π2 are specified, and
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Figure 6.1 Flowchart for sample-size calculations (continuous and discrete variables).

1 Values of Z

c

for various values of c are:

c 0.500 0.800 0.900 0.950 0.975 0.990 0.995

Z

c

0.000 0.842 1.282 1.645 1.960 2.326 2.576

2 If one sample, µ2 and π2 are null hypothesis values.

3 If σ

2
1 � =σ

2
2 , calculate σ

2
=

1
2
(σ

2
1 + σ

2
2 ).

4 σ =

√

1
2

(π1(1 − π1) + π2(1 − π2)).

5 Sample size for discrete case is an approximation. For an improved estimate, use n

∗
= n + 2/�.

Note: Two sample case, unequal sample sizes. Let n1 and kn1 be the required sample sizes. Calculate

n as before. Then calculate n1 = n(k + 1)/2k and n2 = kn1. (Total sample size will be larger.) If also,

σ

2
1 � =σ

2
2 calculate n using σ1; then calculate n1 = (n/2)[1 + σ

2
2 /(kσ

2
1 )] and n2 = kn1.

� = |π1−π2|/

√

1
2
(π1(1 − π1) + π2(1 − π2)) is calculated. This corresponds to the standardized

differences � = |µ1 − µ2|/σ associated with normal or continuous data. The quantity n =

2(NUM/�)

2 then produces the sample size needed for a two-sample procedure. For a one-

sample procedure, the sample size is n/2. Hence a two-sample procedure requires a total of four
times the number of observations of the one-sample procedure. Various refinements are available
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in Figure 6.1. A list of the most common Z-values is provided. If a one-sample test is wanted,

the values of µ2 and π2 can be considered the null hypothesis values. Finally, the equation for

the sample size in the discrete case is an approximation, and a more precise estimate, n

∗, can

be obtained from

n

∗
= n +

2

�

This formula is reasonably accurate.

Other approaches are possible. For example, one might specify the largest feasible sample

size n, α, π1, and π2 and then determine the power 1 − β. Figure 6.2 relates π1,� = π2 − π1,

and n for two-sided tests for α = 0.05 and β = 0.10.

Finally, we note that in certain situations where sample size is necessarily limited, for

example, a rare cancer site with several competing therapies, trials with α = 0.10 and β = 0.50

have been run.

Figure 6.2 Sample sizes required for testing two proportions, π1 and π2 with 90% probability of obtaining

a significant result at the 5% (two-sided) level. (From Feigl [1978].)
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In practice, it is difficult to arrive at a sample size. To one unacquainted with statistical ideas,

there is a natural tendency to expect too much from an experiment. In answer to the question,

“What difference would you like to detect?” the novice will often reply, “any difference,” leading

to an infinite sample size!

6.3.4 Relative Risk and the Odds Ratio

In this section we consider studies looking for an association between two binary variables, that

is, variables that take on only two outcomes. For definiteness we speak of the two variables

as disease and exposure, since the following techniques are often used in epidemiologic and

public health studies. In effect we are comparing two proportions (the proportions with disease)

in two populations: those with and without exposure. In this section we consider methods of

summarizing the association.

Suppose that one had a complete enumeration of the population at hand and the true propor-

tions in the population. The probabilities may be presented in a 2 × 2 table:

Disease

Exposure + (Yes) − (No)

+ (Yes) π11 π12

− (No) π21 π22

where π11 + π12 + π21 + π22 = 1.

There are subtleties glossed over here. For example, by disease (for a human population),

does one mean that the person develops the disease at some time before death, has the disease

at a particular point in time, or develops it by some age? This ignores the problems of accurate

diagnosis, a notoriously difficult problem. Similarly, exposure needs to be defined carefully as

to time of exposure, length of exposure, and so on.

What might be a reasonable measure of the effect of exposure? A plausible comparison is

P [disease+|exposure+] with P [disease+|exposure−]. In words, it makes sense to compare the

probability of having disease among those exposed with the probability of having the disease

among those not exposed.

Definition 6.1. A standard measure of the strength of the exposure effect is the relative

risk. The relative risk is defined to be

ρ =

P [disease + |exposure+]

P [disease + |exposure−]
=

π11/(π11 + π12)

π21/(π21 + π22)
=

π11(π21 + π22)

π21(π11 + π12)

Thus, a relative risk of 5 means that an exposed person is five times as likely to have the

disease. The following tables of proportions or probabilities each has a relative risk of 2:

Disease Disease Disease Disease

Exposure + − + − + − + −

+ 0.50 0.00 0.25 0.25 0.10 0.40 0.00010 0.49990

− 0.25 0.25 0.125 0.375 0.05 0.45 0.0005 0.49995

We see that many patterns may give rise to the same relative risk. This is not surprising, as

one number is being used to summarize four numbers. In particular, information on the amount

of disease and/or exposure is missing.
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Definition 6.2. Given that one has the exposure, the odds (or betting odds) of getting the

disease are

P [disease + |exposure+]

P [disease − |exposure+]

Similarly, one may define the odds of getting the disease given no exposure. Another measure

of the amount of association between the disease and exposure is the odds ratio defined to be

ω =

P [disease + |exposure+]/P [disease − |exposure+]

P [disease + |exposure−]/P [disease − |exposure−]

=

(π11/(π11 + π12))/(π12/(π11 + π12))

(π21/(π21 + π22))/(π22/(π21 + π22))

=

π11π22

π12π21

The odds ratio is also called the cross-product ratio on occasion; this name is suggested by

the following scheme:

Consider now how much the relative risk and odds ratio may differ by looking at the ratio of

the two terms, ρ and ω,
ρ

ω

=

(

π21 + π22

π22

)(

π12

π11 + π12

)

Suppose that the disease affects a small segment of the population. Then π11 is small com-

pared to π12, so that π12/(π11 + π12) is approximately equal to 1. Also, π21 will be small

compared to π22, so that (π21 + π22)/π22 is approximately 1. Thus, in this case, ρ/ω = 1.

Restating this: If the disease affects a small fraction of the population (in both exposed and

unexposed groups), the odds ratio and the relative risk are approximately equal. For this reason

the odds ratio is often called the approximate relative risk. If the disease affects less than 5%

in each group, the two quantities can be considered approximately equal.

The data for looking at the relative risk or the odds ratio usually arise in one of three ways,

each of which is illustrated below. The numbers observed in each of the four cells will be

denoted as follows:

Disease

Exposure + −

+ n11 n12

− n21 n22

As before, a dot will replace a subscript when the entries for that subscript are summed. For

example,

n1· = n11 + n12

n·2 = n12 + n22

n·· = n11 + n12 + n21 + n22
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Pattern 1. (Cross-Sectional Studies: Prospective Studies of a Sample of the Population)

There is a sample of size n·· from the population; both traits (exposure and disease) are measured

on each subject. This is called cross-sectional data when the status of the two traits is measured at

some fixed cross section in time. In this case the expected number in each cell is the expectation:

n··π11 n··π12

n··π21 n··π22

n··

Example 6.13. The following data are from Meyer et al. [1976]. This study collected infor-

mation on all births in 10 Ontario (Canada) teaching hospitals during 1960–1961. A total of

51,490 births was involved, including fetal deaths and neonatal deaths (perinatal mortality). The

paper considers the association of perinatal events and maternal smoking during pregnancy. Data

relating perinatal mortality and smoking are as follows:

Perinatal Mortality

Maternal Smoking Yes No Total

Yes 619 20,443 21,062

No 634 26,682 27,316

Total 1,253 47,125 48,378

Estimation of the relative risk and odds ratio is discussed below.

Pattern 2. (Prospective Study: Groups Based on Exposure) In a prospective study of expo-

sure, fixed numbers—say n1· and n2·—of people with and without the exposure are followed.

The endpoints are then noted. In this case the expected number of observations in the cells are:

n1·
π11

π11 + π12
n1·

π12

π11 + π12
n1·

n2·
π21

π21 + π22
n2·

π22

π21 + π22
n2·

Note that as the sample sizes of the exposure and nonexposure groups are determined by the

experimenter, the data will not allow estimates of the proportion exposed, only the conditional

probability of disease given exposure or nonexposure.

Example 6.14. As an example, consider a paper by Shapiro et al. [1974] in which they state

that “by the end of this [five-year] period, there were 40 deaths in the [screened] study group

of about 31,000 women as compared with 63 such deaths in a comparable group of women.”

Placing this in a 2 × 2 table and considering the screening to be the exposure, the data are:

Breast Cancer Death

On Study (Screened) Yes No Total

Yes 40 30,960 31,000

No 63 30,937 31,000

Pattern 3. (Retrospective Studies) The third way of commonly collecting the data is the

retrospective study. Usually, cases and an appropriate control group are identified. (Matched or

paired data are not being discussed here.) In this case, the sizes of the disease and control groups,
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n·1 and n·2, are specified. From such data one cannot estimate the probability of disease but

rather, the probability of being exposed given that a person has the disease and the probability

of exposure given that a person does not have the disease. The expected number of observations

in each cell is

n·1
π11

π11 + π21
n·2

π12

π12 + π22

n·1
π21

π11 + π21
n·2

π22

π12 + π22

n·1 n·2

Example 6.15. Kelsey and Hardy [1975] studied the driving of motor vehicles as a risk

factor for acute herniated lumbar intervertebral disk. Their cases were people between the ages

of 20 and 64; the studies were conducted in the New Haven metropolitan area at three hospitals

or in the office of two private radiologists. The cases had low-back x-rays and were interviewed

and given a few simple diagnostic tests. A control group was composed of those with low-back

x-rays who were not classified as surgical probable or possible cases of herniated disk and who

had not had their symptoms for more than one year. The in-patients, cases, and controls, of the

Yale–New Haven hospital were asked if their job involved driving a motor vehicle. The data

were:

Herniated Disk?

Motor Vehicle Job? Yes (Cases) No (Controls)

Yes 8 1

No 47 26

Total 55 27

Consider a two-way layout of disease and exposure to an agent thought to influence the

disease:

Disease

Exposure + −

+ n11 n12

− n21 n22

The three types of studies discussed above can be thought of as involving conditions on the

marginal totals indicated in Table 6.2.

Table 6.2 Characterization of Cross-Sectional, Prospective, and Retrospective Studies and

Relationship to Possible Estimation of Relative Risk and Odds Ratio

Totals for: Can One Estimate the:

Type of Study Column Row Relative Risk? Odds Ratio?

Cross-sectional or prospective sample Random Random Yes Yes

Prospective on exposure Random Fixed Yes Yes

Retrospective Fixed Random No Yes



168 COUNTING DATA

For example, a prospective study can be thought of as a situation where the totals for

“exposure+” and “exposure−” are fixed by the experimenter, and the column totals will vary

randomly depending on the association between the disease and the exposure.

For each of these three types of table, how might one estimate the relative risk and/or the

odds ratio? From our tables of expected numbers of observations, it is seen that for tables of

types 1 and 2,

E(n11)/(E(n11) + E(n12))

E(n21)/(E(n21) + E(n22))
=

E(n11)/E(n1·)

E(n21)/E(n2·)
=

π11/(π11 + π12)

π21/(π21 + π22)
= ρ

Thus, one estimates the relative risk ρ by replacing the expected value of n11 by the observed

value of n11, etc., giving

ρ̂ =

n11/n1·

n21/n2·

For retrospective studies of type 3 it is not possible to estimate ρ unless the disease is rare, in

which case the estimate of the odds ratio gives a reasonable estimate of the relative risk.

For all three types of tables, one sees that

E(n11)E(n22)

E(n12)E(n21)
=

π11π22

π12π21
= ω

Therefore, we estimate the odds ratio by

ω̂ =

n11n22

n12n21

It is clear from the definition of relative risk that if exposure has no association with the

disease, ρ = 1. That is, both “exposed” and “nonexposed” have the same probability of disease.

We verify this mathematically, and also that under the null hypothesis of no association, the

odds ratio ω is also 1. Under H0:

π

ij

= π

i·π·j for i = 1, 2 and j = 1, 2

Thus,

ρ =

π11/π1·

π21/π2·
=

π1·π·1/π1·

π2·π·1/π2·
= 1 and ω =

π11π22

π12π21
=

π1·π·1π2·π·2

π1·π·2π2·π·1
= 1

If ρ or ω are greater than 1, the exposed group has an increased risk of the disease. If ρ or ω are

less than 1, the group not exposed has an increased risk of the disease. Note that an increased

or decreased risk may, or may not, be due to a causal mechanism.

For the three examples above, let us calculate the estimated relative risk and odds ratio where

appropriate. For the smoking and perinatal mortality data,

ρ̂ =

619/21,062

634/27,316

.

= 1.27, ω̂ =

619(26,682)

634(20,443)

.

= 1.27

From these data we estimate that smoking during pregnancy is associated with an increased risk

of perinatal mortality that is 1.27 times as large. (Note: We have not concluded that smoking

causes the mortality, only that there is an association.)
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The data relating screening for early detection of breast cancer and five-year breast cancer

mortality gives estimates

ρ̂ =

40/31,000

63/31,000

.

= 0.63, ω̂ =

40(30,937)

63(30,960)

.

= 0.63

Thus, in this study, screening was associated with a risk of dying of breast cancer within five

years only 0.63 times as great as the risk among those not screened.

In the unmatched case–control study, only ω can be estimated:

ω̂ =

8 × 26

1 × 47

.

= 4.43

It is estimated that driving jobs increase the risk of a herniated lumbar intervertebral disk by a

factor of 4.43.

Might there really be no association in the tables above and the estimated ρ̂’s and ω̂’s differ

from 1 merely by chance? You may test the hypothesis of no association by using Fisher’s exact

test (for small samples) or the chi-squared test (for large samples).

For the three examples, using the table of χ

2 critical values with one degree of freedom, we

test the statistical significance of the association by using the chi-square statistic with continuity

correction.

Smoking–perinatal mortality:

X

2
c

=

48,378[|619 × 26,682 − 634 × 20,443| −
1
2
(48,378)]2

21,062(27,316)(1253)(47,125)

= 17.76

From Table A.3, p < 0.001, and there is significant association. (Equivalently, for one degree

of freedom, Z =

√

χ

2
c

= 4.21 and Table A.3 shows p < 0.0001.)

Breast cancer and screening:

X

2
c

=

62,000[|40 × 30,937 − 63 × 30,960| −
1
2
(62,000)]2

31,000(31,000)(103)(61,897)

= 4.71

From the table, 0.01 < p < 0.05 and the association is statistically significant at the 0.05 level.

Motor-vehicle job and herniated disk: X

2
c

= 1.21. From the χ

2 table, p > 0.25, and there is

not a statistical association using only the Yale–New Haven data. In the next section we return

to this data set.

If there is association, what can one say about the accuracy of the estimates? For the first

two examples, where there is a statistically significant association, we turn to the construction

of confidence intervals for ω. The procedure is to construct a confidence interval for ln ω, the

natural log of ω, and to “exponentiate” the endpoints to find the confidence interval for ω. Our

logarithms are natural logarithms, that is, to the base e. Recall e is a number; e = 2.71828 . . . .

The estimate of ln ω is ln ω̂. The standard error of ln ω̂ is estimated by

√

1

n11
+

1

n12
+

1

n21
+

1

n22

The estimate is approximately normally distributed; thus, normal critical values are used in

constructing the confidence intervals. A 100(1 − α)% confidence interval for ln ω is given by

ln ω̂ ± z1−α/2

√

1

n11
+

1

n12
+

1

n21
+

1

n22

where an N(0, 1) variable has probability α/2 of exceeding z1−α/2.
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Upon finding the endpoints of this confidence interval, we exponentiate the values of the

endpoints to find the confidence interval for ω. We find a 99% confidence interval for ω with

the smoking and perinatal mortality data. First we construct the confidence interval for ln ω:

ln(1.27) ± 2.576

√

1

619
+

1

20,443
+

1

26,682
+

1

634

or 0.2390 ± 0.1475 or (0.0915, 0.3865). The confidence interval for ω is

(e

0.0915
, e

0.3865
) = (1.10, 1.47)

To find a 95% confidence interval for the breast cancer–screening data,

ln(0.63) ± 1.96

√

1

40
+

1

30,960
+

1

30,937
+

1

63

or −0.4620 ± 0.3966 or (−0.8586,−0.0654). The 95% confidence interval for the odds ratio,

ω, is (0.424, 0.937).

The reason for using logarithms in constructing the confidence intervals is that ln ω̂ is more

normally distributed than ω. The standard error of ω may be estimated directly by

ω̂

√

1

n11
+

1

n12
+

1

n21
+

1

n22

(see Note 6.2 for the rationale). However, confidence intervals should be constructed as illus-

trated above.

6.3.5 Combination of 2 × 2 Tables

In this section we consider methods of combining 2 × 2 tables. The tables arise in one of two

ways. In the first situation, we are interested in investigating an association between disease

and exposure. There is, however, a third variable taking a finite number of values. We wish

to “adjust” for the effect of the third variable. The values of the “confounding” third variable

sometimes arise by taking a continuous variable and grouping by intervals; thus, the values are

sometimes called strata. A second situation in which we will deal with several 2 × 2 tables is

when the study of association and disease is made in more than one group. In some reasonable

way, one would like to consider the combination of the 2 × 2 tables from each group.

Why Combine 2 × 2 Tables?

To see why one needs to worry about such things, suppose that there are two strata. In our first

example there is no association between exposure and disease in each stratum, but if we ignore

strata and “pool” our data (i.e., add it all together), an association appears. For stratum 1,

Disease

Exposure + − ω̂1 =

5(100)

10(50)

= 1

+ 5 50

− 10 100
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and for stratum 2,

Disease

Exposure + − ω̂2 =

40(60)

40(60)

= 1

+ 40 60

− 40 60

In both tables the odds ratio is 1 and there is no association. Combining tables, the combined

table and its odds ratio are:

Disease

Exposure + − ω̂combined =

45(160)

50(110)

.

= 1.31

+ 45 110

− 50 160

When combining tables with no association, or odds ratios of 1, the combination may show

association. For example, one would expect to find a positive relationship between breast cancer

and being a homemaker. Possibly tables given separately for each gender would not show such

an association. If the inference to be derived were that homemaking might be related causally

to breast cancer, it is clear that one would need to adjust for gender.

On the other hand, there can be an association within each stratum that disappears in the

pooled data set. The following numbers illustrate this:

Stratum 1:

Disease

Exposure + − ω̂1 =

60(50)

10(100)

= 3

+ 60 100

− 10 50

Stratum 2:

Disease

Exposure + − ω̂2 =

50(60)

100(10)

= 3

+ 50 10

− 100 60

Combined data:

Disease

Exposure + − ω̂combined = 1

+ 110 110

− 110 110
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Thus, ignoring a confounding variable may “hide” an association that exists within each stratum

but is not observed in the combined data.

Formally, our two situations are the same if we identify the stratum with differing groups.

Also, note that there may be more than one confounding variable, that each strata of the “third”

variable could correspond to a different combination of several other variables.

Questions of Interest in Multiple 2 × 2 Tables

In examining more than one 2 × 2 table, one or more of three questions is usually asked. This

is illustrated by using the data of the study involving cases of acute herniated lumbar disk

and controls (not matched) in Example 6.15, which compares the proportions with jobs driving

motor vehicles. Seven different hospital services are involved, although only one of them was

presented in Example 6.15. Numbering the sources from 1 to 7 and giving the data as 2 × 2

tables, the tables and the seven odds ratios are:

Source 1:

Herniated Disk

Motor Vehicle Job + − ω̂ = 4.43

+ 8 1

− 47 26

Source 2: Source 5:

+ − + −

+ 5 0 ω̂ = ∞ + 1 3 ω̂ = 0.67

− 17 21 − 5 10

Source 3: Source 6:

+ − + −

+ 4 4 ω̂ = 5.92 + 1 2 ω̂ = 1.83

− 13 77 − 3 11

Source 4: Source 7:

+ − + −

+ 2 10 ω̂ = 1.08 + 2 2 ω̂ = 3.08

− 12 65 − 12 37

The seven odds ratios are 4.43, ∞, 5.92, 1.08, 0.67, 1.83, and 3.08. The ratios vary so

much that one might wonder whether each hospital service has the same degree of association

(question 1). If they do not have the same degree of association, one might question whether

the controls are appropriate, the patient populations are different, and so on.

One would also like an estimate of the overall or average association (question 2). From the

previous examples it is seen that it might not be wise to sum all the tables and compute the

association based on the pooled tables.

Finally, another question, related to the first two, is whether there is any evidence of any

association, either overall or in some of the groups (question 3).

Two Approaches to Estimating an Overall Odds Ratio

If the seven different tables come from populations with the same odds ratio, how do we estimate

the common or overall odds ratio? We will consider two approaches.
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The first technique is to work with the natural logarithm, log to the base e, of the estimated

odds ratio, ω̂. Let a

i

= ln ω̂

i

, where ω̂

i

is the estimated odds ratio in the ith of k 2 × 2 tables.

The standard error of a

i

is estimated by

s

i

=

√

1

n11

+

1

n12

+

1

n21

+

1

n22

where n11, n12, n21, and n22 are the values from the ith 2 × 2 table. How do we investigate

the problems mentioned above? To do this, one needs to understand a little of how the χ

2

distribution arises. The square of a standard normal variable has a chi-square distribution with

one degree of freedom. If independent chi-square variables are added, the result is a chi-square

variable whose degrees of freedom comprises the sum of the degrees of freedom of the variables

that were added (see Note 5.3 also).

We now apply this to the problem at hand. Under the null hypothesis of no association in

any of the tables, each a

i

/s

i

is approximately a standard normal value. If there is no association,

ω = 1 and ln ω = 0. Thus, log ω̂

i

has a mean of approximately zero. Its square, (a

i

/s

i

)

2, is

approximately a χ

2 variable with one degree of freedom. The sum of all k of these independent,

approximately chi-square variables is approximately a chi-square variable with k degrees of

freedom. The sum is

X

2
=

k

∑

i=1

(

a

i

s

i

)2

and under the null hypothesis it has approximately a χ

2-distribution with k degrees of freedom.

It is possible to partition this sum into two parts. One part tests whether the association

might be the same in all k tables (i.e., it tests for homogeneity). The second part will test to see

whether on the basis of all the tables there is any association.

Suppose that one wants to “average” the association from all of the 2 × 2 tables. It seems

reasonable to give more weight to the better estimates of association; that is, one wants the

estimates with higher variances to get less weight. An appropriate weighted average is

a =

k

∑

i=1

a

i

s

2
i

/

k

∑

i=1

1

s

2
i

The χ

2-statistic then is partitioned, or broken down, into two parts:

X

2
=

k

∑

i=1

(

a

i

s

i

)2

=

k

∑

i=1

1

s

2
i

(a

i

− a)

2
+

k

∑

i=1

1

s

2
i

a

2

On the right-hand side, the first sum is approximately a χ

2 random variable with k−1 degrees

of freedom if all k groups have the same degree of association. It tests for the homogeneity of

the association in the different groups. That is, if χ

2 for homogeneity is too large, we reject

the null hypothesis that the degree of association (whatever it is) is the same in each group.

The second term tests whether there is association on the average. This has approximately a

χ

2-distribution with one degree of freedom if there is no association in each group. Thus, define

χ

2
H

=

k

∑

i=1

1

s

2
i

(a

i

− a)

2
=

k

∑

i=1

a

2
i

s

2
i

− a

2
k

∑

i=1

1

s

2
i

and

χ

2
A

= a

2
k

∑

i=1

1

s

2
i
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Of course, if we decide that there are different degrees of association in different groups, this

means that at least one of the groups must have some association.

Consider now the data given above. A few additional points are introduced. We use the log

of the odds ratio, but the second group has ω̂ = ∞. What shall we do about this?

With small numbers, this may happen due to a zero in a cell. The bias of the method is

reduced by adding 0.5 to each cell in each table:

[1] + −

+ 8.5 1.5

− 47.5 26.5

[2] + −

+ 5.5 0.5

− 17.5 21.5

[5] + −

+ 1.5 3.5

− 5.5 10.5

[3] + −

+ 4.5 4.5

− 13.5 77.5

[6] + −

+ 1.5 2.5

− 3.5 11.5

[4] + −

+ 2.5 10.5

− 12.5 65.5

[7] + −

+ 2.5 2.5

− 12.5 37.5

Now

ω̂

i

=

(n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)

, s

i

=

√

1

n11 + 0.5
+

1

n22 + 0.5
+

1

n12 + 0.5
+

1

n21 + 0.5

The calculations above are shown in Table 6.3.

Table 6.3 Calculations for the Seven Tables

Table i ω̂

i

a

i

= log ω̂

i

s

2
i

1/s

2
i

a

2
i

/s

2
i

a

i

/s

2
i

1 3.16 1.15 0.843 1.186 1.571 1.365

2 13.51 2.60 2.285 0.438 2.966 1.139

3 5.74 1.75 0.531 1.882 5.747 3.289

4 1.25 0.22 0.591 1.693 0.083 0.375

5 0.82 −0.20 1.229 0.813 0.033 −0.163

6 1.97 0.68 1.439 0.695 0.320 0.472

7 3.00 1.10 0.907 1.103 1.331 1.212

Total 7.810 12.051 7.689
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Then

a =

k

∑

i=1

a

i

s

2
i

/

k

∑

i=1

1

s

2
i

=

7.689

7.810

.

= 0.985

X

2
A

= (0.985)

2
(7.810)

.

= 7.57

X

2
H

=

∑

a

2
i

s

2
i

− χ

2
A

= 12.05 − 7.57 = 4.48

X

2
H

with 7 − 1 = 6 degrees of freedom has an α = 0.05 critical value of 12.59 from Table A.3.

We do not conclude that the association differs between groups.

Moving to the X

2
A

, we find that 7.57 > 6.63, the χ

2 critical value with one degree of freedom

at the 0.010 level. We conclude that there is some overall association.

The odds ratio is estimated by ω̂ = e

a

= e

0.985
= 2.68. The standard error of a is esti-

mated by
1

√

∑

k

i=1
(1/s

2
i

)

To find a confidence interval for ω, first find one for ln ω and “exponentiate” back. To find a

95% confidence interval, the calculation is

a ±

z0.975
√

∑

(1/s

2
i

)

= 0.985 ±

1.96
√

7.810
or 0.985 ± 0.701 or (0.284, 1.696)

Taking exponentials, the confidence interval for the overall odds ratio is (1.33, 5.45).

The second method of estimation is due to Mantel and Haenszel [1959]. Their estimate of

the odds ratio is

ω̂ =

k

∑

i=1

n11(i)n22(i)

n··(i)

/

k

∑

i=1

n12(i)n21(i)

n··(i)

where n11(i), n22(i), n12(i), n21(i), and n··(i) are n11, n22, n12, n21, and n·· for the ith table.

In this problem,

ω̂ =

8 × 26

82
+

5 × 21

43
+

4 × 77

98
+

2 × 65

89
+

1 × 10

19
+

1 × 11

17
+

2 × 37

53
47 × 1

82
+

17 × 10

43
+

13 × 4

98
+

12 × 10

89
+

5 × 3

19
+

3 × 2

17
+

12 × 12

53

.

=

12.1516

4.0473

.

= 3.00

A test of association is given by the following statistic, X

2
A

, which is approximately a

chi-square random variable with one degree of freedom:

X

2
A

=

[∣

∣

∣

∣

∑

k

i=1
n11(i) −

∑

k

i=1
n1·(i)n·1(i)/n··(i)

∣

∣

∣

∣

−
1
2

]2

∑

k

i=1
n1·(i)n2·(i)n·1(i)n·2(i)/n··(i)

2[n··(i) − 1]

The herniated disk data yield X

2
A

= 7.92, so that, as above, there is a significant (p < 0.01)

association between an acute herniated lumbar intervertebral disk and whether or not a job
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requires driving a motor vehicle. See Schlesselman [1982] and Breslow and Day [1980] for

methods of setting confidence intervals for ω using the Mantel–Haenszel estimate.

In most circumstances, combining 2 × 2 tables will be used to adjust for other variables

that define the strata (i.e., that define the different tables). The homogeneity of the odds ratio

is usually of less interest unless the odds ratio differs widely among tables. Before testing for

homogeneity of the odds ratio, one should be certain that this is what is desired (see Note 6.3).

6.3.6 Screening and Diagnosis: Sensitivity, Specificity, and Bayes’ Theorem

In clinical medicine, and also in epidemiology, tests are often used to screen for the presence or

absence of a disease. In the simplest case the test will simply be classified as having a positive

(disease likely) or negative (disease unlikely) finding. Further, suppose that there is a “gold stan-

dard” that tells us whether or not a subject actually has the disease. The definitive classification

might be based on data from follow-up, invasive radiographic or surgical procedures, or autopsy

results. In many cases the gold standard itself will only be relatively correct, but nevertheless

the best classification available. In this section we discuss summarization of the prediction of

disease (as measured by our gold standard) by the test being considered. Ideally, those with the

disease should all be classified as having disease, and those without disease should be classified

as nondiseased. For this reason, two indices of the performance of a test consider how often

such correct classification occurs.

Definition 6.3. The sensitivity of a test is the percentage of people with disease who are

classified as having disease. A test is sensitive to the disease if it is positive for most people

having the disease. The specificity of a test is the percentage of people without the disease who

are classified as not having the disease. A test is specific if it is positive for a small percentage

of those without the disease.

Further terminology associated with screening and diagnostic tests are true positive, true

negative, false positive, and false negative tests.

Definition 6.4. A test is a true positive test if it is positive and the subject has the disease.

A test is a true negative test if the test is negative and the subject does not have the disease.

A false positive test is a positive test of a person without the disease. A false negative test is a

negative test of a person with the disease.

Definition 6.5. The predictive value of a positive test is the percentage of subjects with a

positive test who have the disease; the predictive value of a negative test is the percentage of

subjects with a negative test who do not have the disease.

Suppose that data are collected on a test and presented in a 2 × 2 table as follows:

Disease Category

Screening Test Result Disease (+) Nondiseased (−)

a b

Positive (+) test (true +
′ s) (false +

′ s)

c d

Negative (−) test (false −
′ s) (true −

′ s)

The sensitivity is estimated by 100a/(a+c), the specificity by 100d/(b+d). If the subjects are

representative of a population, the predictive value of positive and negative tests are estimated
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by 100a/(a + b) and 100d/(c + d), respectively. These predictive values are useful only when

the proportions with and without the disease in the study group are approximately the same as

in the population where the test will be used to predict or classify (see below).

Example 6.16. Remein and Wilkerson [1961] considered a number of screening tests for

diabetes. They had a group of consultants establish criteria, their gold standard, for diabetes.

On each of a number of days, they recruited patients being seen in the outpatient department

of the Boston City Hospital for reasons other than suspected diabetes. The table below presents

results on the Folin–Wu blood test used 1 hour after a test meal and using a blood sugar level

of 150 mg per 100 mL of blood sugar as a positive test.

Test Diabetic Nondiabetic Total

+ 56 49 105

− 14 461 475

Total 70 510 580

From this table note that there are 56 true positive tests compared to 14 false negative tests.

The sensitivity is 100(56)/(56 + 14) = 80.0%. The 49 false positive tests and 461 true negative

tests give a specificity of 100(461)/(49 + 461) = 90.4%. The predictive value of a positive test

is 100(56)/(56+49) = 53.3%. The predictive value of a negative test is 100(461)/(14+461) =

97.1%.

If a test has a fixed value for its sensitivity and specificity, the predictive values will change

depending on the prevalence of the disease in the population being tested. The values are

related by Bayes’ theorem. This theorem tells us how to update the probability of an event

A: for example, the event of a subject having disease. If the subject is selected at random

from some population, the probability of A is the fraction of people having the disease. Sup-

pose that additional information becomes available; for example, the results of a diagnostic

test might become available. In the light of this new information we would like to update

or change our assessment of the probability that A occurs (that the subject has disease). The

probability of A before receiving additional information is called the a priori or prior proba-

bility. The updated probability of A after receiving new information is called the a posteriori

or posterior probability. Bayes’ theorem is an explanation of how to find the posterior proba-

bility.

Bayes’ theorem uses the concept of a conditional probability. We review this concept in

Example 6.17.

Example 6.17. Comstock and Partridge [1972] conducted an informal census of Washing-

ton County, Maryland, in 1963. There were 127 arteriosclerotic heart disease deaths in the

follow-up period. Of the deaths, 38 occurred among people whose usual frequency of church

attendance was once or more per week. There were 24,245 such people as compared to 30,603

people whose usual attendance was less than once weekly. What is the probability of an arte-

riosclerotic heart disease death (event A) in three years given church attendance usually once

or more per week (event B)?

From the data

P [A] =

127

24,245 + 30,603
= 0.0023

P [B] =

24,245

24,245 + 30,603
= 0.4420
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P [A & B] =

38

24,245 + 30,603
= 0.0007

P [A | B] =

P [A and B]

P [B]
=

0.0007

0.4420
= 0.0016

If you knew that someone attended church once or more per week, the prior estimate of 0.0023

of the probability of an arteriosclerotic heart disease death in three years would be changed to

a posterior estimate of 0.0016.

Using the conditional probability concept, Bayes’ theorem may be stated.

Fact 1. (Bayes’ Theorem) Let B1, . . . , B

k

be events such that one and only one of them

must occur. Then for each i,

P [B
i

|A] =

P [A|B
i

]P [B
i

]

P [A|B1]P [B1] + · · · + P [A|B
k

]P [B
k

]

Example 6.18. We use the data of Example 6.16 and Bayes’ theorem to show that the

predictive power of the test is related to the prevalence of the disease in the population. Suppose

that the prevalence of the disease were not 70/580 (as in the data given), but rather, 6%. Also

suppose that the sensitivity and specificity of the test were 80.0% and 90.4%, as in the example.

What is the predictive value of a positive test?

We want P [disease+|test+]. Let B1 be the event that the patient has disease and B2 be the

event of no disease. Let A be the occurrence of a positive test. A sensitivity of 80.0% is the

same as P [A|B1] = 0.800. A specificity of 90.4% is equivalent to P [notA|B2] = 0.904. It is

easy to see that

P [not A|B] + P [A|B] = 1

for any A and B. Thus, P [A|B2] = 1−0.904 = 0.096. By assumption, P [disease+] = P [B1] =

0.06, and P [disease−] = P [B2] = 0.94. By Bayes’ theorem,

P [disease+|test+] =

P [test + |disease+]P [disease+]

P [test + |disease+]P [disease+] + P [test + |disease−]P [disease−]

Using our definitions of A, B1, and B2, this is

P [B1|A] =

P [A|B1]P [B1]

P [A|B1]P [B1] + P [A|B2]P [B2]

=

0.800 × 0.06

0.800 × 0.06 + 0.096 × 0.94

= 0.347

If the disease prevalence is 6%, the predictive value of a positive test is 34.7% rather than 53.3%

when the disease prevalence is 70/580 (12.1%).

Problems 6.15 and 6.28 illustrate the importance of disease prevalence in assessing the results

of a test. See Note 6.8 for relationships among sensitivity, specificity, prevalence, and predictive

values of a positive test. Sensitivity and specificity are discussed further in Chapter 13. See also

Pepe [2003] for an excellent overview.
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6.4 MATCHED OR PAIRED OBSERVATIONS

The comparisons among proportions in the preceding sections dealt with samples from different

populations or from different subsets of a specified population. In many situations, the estimates

of the proportions are based on the same objects or come from closely related, matched, or

paired observations. You have seen matched or paired data used with a one-sample t-test.

A standard epidemiological tool is the retrospective paired case–control study. An example

was given in Chapter 1. Let us recall the rationale for such studies. Suppose that one wants to

see whether or not there is an association between a risk factor (say, use of oral contraceptives),

and a disease (say, thromboembolism). Because the incidence of the disease is low, an extremely

large prospective study would be needed to collect an adequate number of cases. One strategy

is to start with the cases. The question then becomes one of finding appropriate controls for the

cases. In a matched pair study, one control is identified for each case. The control, not having

the disease, should be identical to the case in all relevant ways except, possibly, for the risk

factor (see Note 6.6).

Example 6.19. This example is a retrospective matched pair case–control study by Sartwell

et al. [1969] to study thromboembolism and oral contraceptive use. The cases were 175 women

of reproductive age (15 to 44), discharged alive from 43 hospitals in five cities after initial

attacks of idiopathic (i.e., of unknown cause) thrombophlebitis (blood clots in the veins with

inflammation in the vessel walls), pulmonary embolism (a clot carried through the blood and

obstructing lung blood flow), or cerebral thrombosis or embolism. The controls were matched

with their cases for hospital, residence, time of hospitalization, race, age, marital status, parity,

and pay status. More specifically, the controls were female patients from the same hospital

during the same six-month interval. The controls were within five years of age and matched

on parity (0, 1, 2, 3, or more prior pregnancies). The hospital pay status (ward, semiprivate, or

private) was the same. The data for oral contraceptive use are:

Control Use?

Case Use? Yes No

Yes 10 57

No 13 95

The question of interest: Are cases more likely than controls to use oral contraceptives?

6.4.1 Matched Pair Data: McNemar’s Test and Estimation of the Odds Ratio

The 2 × 2 table of Example 6.19 does not satisfy the assumptions of previous sections. The

proportions using oral contraceptives among cases and controls cannot be considered samples

from two populations since the cases and controls are paired; that is, they come together. Once

a case is selected, the control for the case is constrained to be one of a small subset of people

who match the case in various ways.

Suppose that there is no association between oral contraceptive use and thromboembolism

after taking into account relevant factors. Suppose a case and control are such that only one

of the pair uses oral contraceptives. Which one is more likely to use oral contraceptives? They

may both be likely or unlikely to use oral contraceptives, depending on a variety of factors.

Since the pair have the same values of such factors, neither member of the pair is more likely

to have the risk factor! That is, in the case of disagreement, or discordant pairs, the probability

that the case has the risk factor is 1/2. More generally, suppose that the data are
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Control Has Risk Factor?

Case Has Risk Factor? Yes No

Yes a b

No c d

If there is no association between disease (i.e., case or control) and the presence or absence

of the risk factor, the number b is binomial with π = 1/2 and n = b + c. To test for association

we test π = 1/2, as shown previously. For large n, say n ≥ 30,

X

2
=

(b − c)

2

b + c

has a chi-square distribution with one degree of freedom if π = 1/2. For Example 6.19,

X

2
=

(57 − 13)

2

57 + 13
= 27.66

From the chi-square table, p < 0.001, so that there is a statistically significant association

between thromboembolism and oral contraceptive use. This statistical test is called McNemar’s

test.

Procedure 6. For retrospective matched pair data, the odds ratio is estimated by

ω̂paired =

b

c

The standard error of the estimate is estimated by

(1 + ω̂paired)

√

ω̂paired

b + c

In Example 6.19, we estimate the odds ratio by

ω̂ =

57

13

.

= 4.38

The standard error is estimated by

(1 + 4.38)

√

4.38

70

.

= 1.35

An approximate 95% confidence interval is given by

4.38 ± (1.96)(1.35) or (1.74, 7.02)

More precise intervals may be based on the use of confidence intervals for a binomial proportion

and the fact that ω̂paired/(ω̂paired + 1) = b/(b + c) is a binomial proportion (see Fleiss [1981]).

See Note 6.5 for further discussion of the chi-square analysis of paired data.
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6.5 POISSON RANDOM VARIABLES

The Poisson distribution occurs primarily in two closely related situations. The first is a situation

in which one counts discrete events in space or time, or some other continuous situation. For

example, one might note the time of arrival (considered as a particular point in time) at an

emergency medical service over a fixed time period. One may count the number of discrete

occurrences of arrivals over this continuum of time. Conceptually, we may get any nonnegative

integer, no matter how large, as our answer. A second example occurs when counting numbers

of red blood cells that occur in a specified rectangular area marked off in the field of view.

In a diluted blood sample where the distance between cells is such that they do not tend to

“bump into each other,” we may idealize the cells as being represented by points in the plane.

Thus, within the particular area of interest, we are counting the number of points observed. A

third example where one would expect to model the number of counts by a Poisson distribution

would be a situation in which one is counting the number of particle emissions from a radioactive

source. If the time period of observation is such that the radioactivity of the source does not

decrease significantly (i.e., the time period is small compared to the half-life of a particle), the

counts (which may be considered as coming at discrete time points) would again be modeled

appropriately by a Poisson distribution.

The second major use of the Poisson distribution is as an approximation to the binomial

distribution. If n is large and π is small in a binomial situation, the number of successes is very

closely modeled by the Poisson distribution. The closeness of the approximation is specified by

a mathematical theorem. As a rough rule of thumb, for most purposes the Poisson approximation

will be adequate if π is less than or equal to 0.1 and n is greater than or equal to 20.

For the Poisson distribution to be an appropriate model for counting discrete points occurring

in some sort of a continuum, the following two assumptions must hold:

1. The number of events occurring in one part of the continuum should be statistically

independent of the number of events occurring in another part of the continuum. For

example, in the emergency room, if we measure the number of arrivals during the first

half hour, this event could reasonably be considered statistically independent of the number

of arrivals during the second half hour. If there has been some cataclysmic event such

as an earthquake, the assumption will not be valid. Similarly, in counting red blood cells

in a diluted blood solution, the number of red cells in one square might reasonably be

modeled as statistically independent of the number of red cells in another square.

2. The expected number of counts in a given part of the continuum should approach zero as

its size approaches zero. Thus, in observing blood cells, one does not expect to find any

in a very small area of a diluted specimen.

6.5.1 Examples of Poisson Data

Example 6.3 [Bucher et al., 1976] examines racial differences in the incidence of ABO hemolytic

disease by examining records for infants born at the North Carolina Memorial Hospital. The

samples of black and white infants gave the following estimated proportions with hemolytic

disease:

black infants, n1 = 3584, p1 = 43/3584

white infants, n2 = 3831, p2 = 17/3831

The observed number of cases might reasonably be modeled by the Poisson distribution.

(Note: The n is large and π is small in a binomial situation.) In this paper, studying the

incidence of ABO hemolytic disease in black and white infants, the observed fractions for black

and white infants of having the disease were 43/3584 and 17/3831. The 43 and 17 cases may

be considered values of Poisson random variables.
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A second example that would be modeled appropriately by the Poisson distribution is the

number of deaths resulting from a large-scale vaccination program. In this case, n will be very

large and π will be quite small. One might use the Poisson distribution in investigating the

simultaneous occurrence of a disease and its association within a vaccination program. How

likely is it that the particular “chance occurrence” might actually occur by chance?

Example 6.20. As a further example, a paper by Fisher et al. [1922] considers the accuracy

of the plating method of estimating the density of bacterial populations. The process we are

speaking about consists in making a suspension of a known mass of soil in a known volume

of salt solution, and then diluting the suspension to a known degree. The bacterial numbers

in the diluted suspension are estimated by plating a known volume in a nutrient gel medium

and counting the number of colonies that develop from the plate. The estimate was made by

a calculation that takes into account the mass of the soil taken and the degree of dilution. If

we consider the colonies to be points occurring in the volume of gel, a Poisson model for

the number of counts would be appropriate. Table 6.4 provides counts from seven different

plates with portions of soil taken from a sample of Barnfield soil assayed in four parallel

dilutions:

Example 6.21. A famous example of the Poisson distribution is data by von Bortkiewicz

[1898] showing the chance of a cavalryman being killed by a horse kick in the course of a

year (Table 6.5). The data are from recordings of 10 corps over a period of 20 years supplying

200 readings. A question of interest here might be whether a Poisson model is appropriate.

Was the corps with four deaths an “unlucky” accident, or might there have been negligence of

some kind?

Table 6.4 Counts for Seven Soil Samples

Dilution

Plate I II III IV

1 72 74 78 69

2 69 72 74 67

3 63 70 70 66

4 59 69 58 64

5 59 66 58 62

6 53 58 56 58

7 51 52 56 54

Mean 60.86 65.86 64.29 62.86

Table 6.5 Horse-kick Fatality

Data

Number of Deaths per

Corps per Year Frequency

0 109

1 65

2 22

3 3

4 1

5 0

6 0
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6.5.2 Poisson Model

The Poisson probability distribution is characterized by one parameter, λ. For each nonnegative

integer k, if Y is a variable with the Poisson distribution with parameter λ,

P [Y = k] =

e

−λ

λ

k

k!

The parameter λ is both the mean and variance of the Poisson distribution,

E(Y ) = var(Y ) = λ

Bar graphs of the Poisson probabilities are given in Figure 6.3 for selected values of λ. As the

mean (equal to the variance) increases, the distribution moves to the right and becomes more

spread out and more symmetrical.

Figure 6.3 Poisson distribution.
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Table 6.6 Binomial and Poisson Probabilities

Binomial Probabilities

n = 10 n = 20 n = 40 Probabilities

k π = 0.20 π = 0.10 π = 0.05 Poisson

0 0.1074 0.1216 0.1285 0.1353

1 0.2684 0.2702 0.2706 0.2707

2 0.3020 0.2852 0.2777 0.2707

3 0.2013 0.1901 0.1851 0.1804

4 0.0881 0.0898 0.0901 0.0902

5 0.0264 0.0319 0.0342 0.0361

6 0.0055 0.0089 0.0105 0.0120

In using the Poisson distribution to approximate the binomial distribution, the parameter λ

is chosen to equal nπ , the expected value of the binomial distribution. Poisson and binomial

probabilities are given in Table 6.6 for comparison. This table gives an idea of the accuracy of

the approximation (table entry is P [Y = k], λ = 2 = nπ) for the first seven values of three

distributions.

A fact that is often useful is that a sum of independent Poisson variables is itself a Poisson

variable. The parameter for the sum is the sum of the individual parameter values. The parameter

λ of the Poisson distribution is estimated by the sample mean when a sample is available. For

example, the horse-kick data leads to an estimate of λ—say l—given by

l =

0 × 109 + 1 × 65 + 2 × 22 + 3 × 3 + 4 × 1

109 + 65 + 22 + 3 + 1
= 0.61

Now, we consider the construction of confidence intervals for a Poisson parameter. Consider

the case of one observation, Y , and a small result, say, Y ≤ 100. Note 6.8 describes how

confidence intervals are calculated and there is a table in the Web appendix to this chapter.

From this we find a 95% confidence interval for the proportion of black infants having ABO

hemolytic disease, in the Bucher et al. [1976] study. The approximate Poisson variable is the

binomial variable, which in this case is equal to 43; thus, a 95% confidence interval for λ = nπ

is (31.12, 57.92). The equation λ = nπ equates the mean values for the Poisson and binomial

models. Now nπ is in (31.12, 57.92) if and only if π is in the interval

(

31.12

n

,

57.92

n

)

In this case, n = 3584, so the confidence interval is

(

31.12

3584
,

57.92

3584

)

or (0.0087, 0.0162)

These results are comparable with the 95% binomial limits obtained in Example 6.9: (0.0084,

0.0156).

6.5.3 Large-Sample Statistical Inference for the Poisson Distribution

Normal Approximation to the Poisson Distribution

The Poisson distribution has the property that the mean and variance are equal. For the mean

large, say ≥ 100, the normal approximation can be used. That is, let Y ∼ Poisson(λ) and

λ ≥ 100. Then, approximately, Y ∼ N(λ, λ). An approximate 100(1 − α)% confidence interval
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for λ can be formed from

Y ± z1−α/2

√

Y

where z1−α/2 is a standard normal deviate at two-sided significance level α. This formula is

based on the fact that Y estimates the mean as well as the variance. Consider, again, the data

of Bucher et al. [1976] (Example 6.3) dealing with the incidence of ABO hemolytic disease.

The observed value of Y , the number of black infants with ABO hemolytic disease, was 43.

A 95% confidence interval for the mean, λ, is (31.12, 57.92). Even though Y ≤ 100, let us

use the normal approximation. The estimate of the variance, σ

2, of the normal distribution is

Y = 43, so that the standard deviation is 6.56. An approximate 95% confidence interval is

43 ± (1.96)(6.56), producing (30.1, 55.9), which is close to the values (31.12, 57.92) tabled.

Suppose that instead of one Poisson value, there is a random sample of size n, Y1, Y2, . . . , Y

n

from a Poisson distribution with mean λ. How should one construct a confidence interval for λ

based on these data? The sum Y = Y1 + Y2 + · · · + Y

n

is Poisson with mean nλ. Construct a

confidence interval for nλ as above, say (L, U). Then, an appropriate confidence interval for λ

is (L/n, U/n). Consider Example 6.20, which deals with estimating the bacterial density of soil

suspensions. The results for sample I were 72, 69, 63, 59, 59, 53, and 51. We want to set up a

95% confidence interval for the mean density using the seven observations. For this example,

n = 7.

Y = Y1 + Y2 + · · · + Y7 = 72 + 69 + · · · + 51 = 426

A 95% confidence interval for 7λ is 426 ± 1.96
√

426.

L = 385.55,

L

7
= 55.1

U = 466.45,

U

7
= 66.6

Y = 60.9

The 95% confidence interval is (55.1, 66.6).

Square Root Transformation

It is often considered a disadvantage to have a distribution with a variance not “stable” but

dependent on the mean in some way, as, for example, the Poisson distribution. The question

is whether there is a transformation, g(Y ), of the variable such that the variance is no longer

dependent on the mean. The answer is “yes.” For the Poisson distribution, it is the square root

transformation. It can be shown for “reasonably large” λ, say λ ≥ 30, that if Y ∼ Poisson(λ),

then var(
√

Y )

.

= 0.25.

A side benefit is that the distribution of
√

Y is more “nearly normal,” that is, for specified λ,

the difference between the sampling distribution of
√

Y and the normal distribution is smaller

for most values than the difference between the distribution of Y and the normal distribution.

For the situation above, it is approximately true that

√

Y ∼ N(

√

λ, 0.25)

Consider Example 6.20 again. A confidence interval for
√

λ will be constructed and then

converted to an interval for λ. Let X =

√

Y .

Y 72 69 63 59 59 53 51

X =

√

Y 8.49 8.31 7.94 7.68 7.68 7.28 7.14
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The sample mean and variance of X are X = 7.7886 and s

2
x

= 0.2483. The sample variance

is very close to the variance predicted by the theory σ

2
x

= 0.2500. A 95% confidence interval

on
√

λ can be set up from

X ± 1.96
s

x

√

7
or 7.7886 ± (1.96)

√

0.2483

7

producing lower and upper limits in the X scale.

L

x

= 7.4195, U

x

= 8.1577

L

2
x

= 55.0, U

2
x

= 66.5

which are remarkably close to the values given previously.

Poisson Homogeneity Test

In Chapter 4 the question of a test of normality was discussed and a graphical procedure was

suggested. Fisher et al. [1922], in the paper described in Example 6.20, derived an approximate

test for determining whether or not a sample of observations could have come from a Poisson

distribution with the same mean. The test does not determine “Poissonness,” but rather, equality

of means. If the experimental situations are identical (i.e., we have a random sample), the test

is a test for Poissonness.

The test, the Poisson homogeneity test, is based on the property that for the Poisson distribu-

tion, the mean equals the variance. The test is the following: Suppose that Y1, Y2, . . . , Y

n

are a

random sample from a Poisson distribution with mean λ. Then, for a large λ—say, λ ≥ 50—the

quantity

X

2
=

(n − 1)s

2

Y

has approximately a chi-square distribution with n − 1 degrees of freedom, where s

2 is the

sample variance.

Consider again the data in Example 6.20. The mean and standard deviation of the seven

observations are

n = 7, Y = 60.86, s

y

= 7.7552

X

2
=

(7 − 1)(7.7552)

2

60.86
= 5.93

Under the null hypothesis that all the observations are from a Poisson distribution with the

same mean, the statistic X

2
= 5.93 can be referred to a chi-square distribution with six degrees

of freedom. What will the rejection region be? This is determined by the alternative hypothesis.

In this case it is reasonable to suppose that the sample variance will be greater than expected if

the null hypothesis is not true. Hence, we want to reject the null hypothesis when χ

2 is “large”;

“large” in this case means P [X2
≥ χ

2
1−α

] = α.

Suppose that α = 0.05; the critical value for χ

2
1−α

with 6 degrees of freedom is 12.59. The

observed value X

2
= 5.93 is much less than that and the null hypothesis is not rejected.

6.6 GOODNESS-OF-FIT TESTS

The use of appropriate mathematical models has made possible advances in biomedical science;

the key word is appropriate. An inappropriate model can lead to false or inappropriate ideas.
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In some situations the appropriateness of a model is clear. A random sample of a population

will lead to a binomial variable for the response to a yes or no question. In other situations the

issue may be in doubt. In such cases one would like to examine the data to see if the model

used seems to fit the data. Tests of this type are called goodness-of-fit tests. In this section we

examine some tests where the tests are based on count data. The count data may arise from

continuous data. One may count the number of observations in different intervals of the real

line; examples are given in Sections 6.6.2 and 6.6.4.

6.6.1 Multinomial Random Variables

Binomial random variables count the number of successes in n independent trials where one and

only one of two possibilities must occur. Multinomial random variables generalize this to allow

more than two possible outcomes. In a multinomial situation, outcomes are observed that take

one and only one of two or more, say k, possibilities. There are n independent trials, each with

the same probability of a particular outcome. Multinomial random variables count the number

of occurrences of a particular outcome. Let n

i

be the number of occurrences of outcome i. Thus,

n

i

is an integer taking a value among 0, 1, 2, . . . , n. There are k different n

i

, which add up to

n since one and only one outcome occurs on each trial:

n1 + n2 + · · · + n

k

= n

Let us focus on a particular outcome, say the ith. What are the mean and variance of n

i

? We

may classify each outcome into one of two possibilities, the ith outcome or anything else. There

are then n independent trials with two outcomes. We see that n

i

is a binomial random variable

when considered alone. Let π

i

, where i = 1, . . . , k, be the probability that the ith outcome

occurs. Then

E(n

i

) = nπ

i

, var(n
i

) = nπ

i

(1 − π

i

) (6)

for i = 1, 2, . . . , k.

Often, multinomial outcomes are visualized as placing the outcome of each of the n trials

into a separate cell or box. The probability π

i

is then the probability that an outcome lands in

the ith cell.

The remainder of this section deals with multinomial observations. Tests are presented to see

if a specified multinomial model holds.

6.6.2 Known Cell Probabilities

In this section, the cell probabilities π1, . . . , π

k

are specified. We use the specified values as a

null hypothesis to be compared with the data n1, . . . , n

k

. Since E(n

i

) = nπ

i

, it is reasonable

to examine the differences n

i

− nπ

i

. The statistical test is given by the following fact.

Fact 2. Let n

i

, where i = 1, . . . , k, be multinomial. Under H0 : π

i

= π

0
i

,

X

2
=

k

∑

i=1

(n

i

− nπ

0
i

)

2

nπ

0
i

has approximately a chi-square distribution with k − 1 degrees of freedom. If some π

i

are not

equal to π

0
i

, X

2 will tend to be too large.

The distribution of X

2 is well approximated by the chi-square distribution if all of the

expected values, nπ

0
i

, are at least five, except possibly for one or two of the values. When the

null hypothesis is not true, the null hypothesis is rejected for X

2 too large. At significance level
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α, reject H0 if X

2
≥ χ

2
1−α,k−1, where χ

2
1−α,k−1 is the 1 − α percentage point for a χ

2 random

variable with k − 1 degrees of freedom.

Since there are k cells, one might expect the labeling of the degrees of freedom to be k

instead of k − 1. However, since the n

i

add up to n we only need to know k − 1 of them to

know all k values. There are really only k−1 quantities that may vary at a time; the last quantity

is specified by the other k − 1 values.

The form of X

2 may be kept in mind by noting that we are comparing the observed values,

n

i

, and expected values, nπ

0
i

. Thus,

X

2
=

∑

(observed − expected)

2

expected

Example 6.22. Are births spread uniformly throughout the year? The data in Table 6.7

give the number of births in King County, Washington, from 1968 through 1979 by month. The

estimated probability of a birth in a given month is found by taking the number of days in that

month and dividing by the total number of days (leap years are included in Table 6.7).

Testing the null hypothesis using Table A.3, we see that 163.15 > 31.26 = χ

2
0.001,11, so that

p < 0.001. We reject the null hypothesis that births occur uniformly throughout the year. With

this large sample size (n = 160,654) it is not surprising that the null hypothesis can be rejected.

We can examine the magnitude of the effect by comparing the ratio of observed to expected

numbers of births, with the results shown in Table 6.8. There is an excess of births in the spring

(March and April) and a deficit in the late fall and winter (October through January). Note

that the difference from expected values is small. The maximum “excess” of births occurred

Table 6.7 Births in King County, Washington, 1968–1979

Month Births Days π

0
i

nπ

0
i

(n

i

− nπ

0
i

)

2
/nπ

0
i

January 13,016 310 0.08486 13,633 27.92

February 12,398 283 0.07747 12,446 0.19

March 14,341 310 0.08486 13,633 36.77

April 13,744 300 0.08212 13,193 23.01

May 13,894 310 0.08486 13,633 5.00

June 13,433 300 0.08212 13,193 4.37

July 13,787 310 0.08486 13,633 1.74

August 13,537 310 0.08486 13,633 0.68

September 13,459 300 0.08212 13,193 5.36

October 13,144 310 0.08486 13,633 17.54

November 12,497 300 0.08212 13,193 36.72

December 13,404 310 0.08486 13,633 3.85

Total 160,654 (n) 3653 0.99997 163.15 = X

2

Table 6.8 Ratios of Observed to Expected Births

Observed/Expected Observed/Expected

Month Births Month Births

January 0.955 July 1.011

February 0.996 August 0.993

March 1.052 September 1.020

April 1.042 October 0.964

May 1.019 November 0.947

June 1.018 December 0.983
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in March and was only 5.2% above the number expected. A plot of the ratio vs. month would

show a distinct sinusoidal pattern.

Example 6.23. Mendel [1866] is justly famous for his theory and experiments on the prin-

ciples of heredity. Sir R. A. Fisher [1936] reviewed Mendel’s work and found a surprisingly

good fit to the data. Consider two parents heterozygous for a dominant–recessive trait. That is,

each parent has one dominant gene and one recessive gene. Mendel hypothesized that all four

combinations of genes would be equally likely in the offspring. Let A denote the dominant gene

and a denote the recessive gene. The two parents are Aa. The offspring should be

Genotype Probability

AA 1/4

Aa 1/2

aa 1/4

The Aa combination has probability 1/2 since one cannot distinguish between the two cases

where the dominant gene comes from one parent and the recessive gene from the other parent.

In one of Mendel’s experiments he examined whether a seed was wrinkled, denoted by a, or

smooth, denoted by A. By looking at offspring of these seeds, Mendel classified the seeds as

aa, Aa, or AA. The results were

AA Aa aa Total

Number 159 321 159 639

as presented in Table II of Fisher [1936]. Do these data support the hypothesized 1 : 2 : 1 ratio?

The chi-square statistic is

X

2
=

(159 − 159.75)

2

159.75
+

(321 − 319.5)

2

319.5
+

(159 − 159.75)

2

159.75
= 0.014

For the χ

2 distribution with two degrees of freedom, p > 0.95 from Table A.3 (in fact

p = 0.993), so that the result has more agreement than would be expected by chance. We return

to these data in Example 6.24.

6.6.3 Addition of Independent Chi-Square Variables: Mean and Variance of the

Chi-Square Distribution

Chi-square random variables occur so often in statistical analysis that it will be useful to know

more facts about chi-square variables. In this section facts are presented and then applied to an

example (see also Note 5.3).

Fact 3. Chi-square variables have the following properties:

1. Let X

2 be a chi-square random variable with m degrees of freedom. Then

E(X

2
) = m and var(X2

) = 2m

2. Let X

2
1, . . . , X

2
n

be independent chi-square variables with m1, . . . , m

n

degrees of freedom.

Then X

2
= X

2
1 +· · ·+X

2
n

is a chi-square random variable with m = m1 +m2 +· · ·+m

n

degrees of freedom.
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Table 6.9 Chi-Square Values for Mendel’s Experiments

Experiments X

2 Degrees of Freedom

3 : 1 Ratios 2.14 7

2 : 1 Ratios 5.17 8

Bifactorial experiments 2.81 8

Gametic ratios 3.67 15

Trifactorial experiments 15.32 26

Total 29.11 64

3. Let X

2 be a chi-square random variable with m degrees of freedom. If m is large, say

m ≥ 30,

X

2
− m

√

2m

is approximately a N(0, 1) random variable.

Example 6.24. We considered Mendel’s data, reported by Fisher [1936], in Example 6.23.

As Fisher examined the data, he became convinced that the data fit the hypothesis too well [Box,

1978, pp. 195, 300]. Fisher comments: “Although no explanation can be expected to be satis-

factory, it remains a possibility among others that Mendel was deceived by some assistant who

knew too well what was expected.”

One reason Fisher arrived at his conclusion was by combining χ

2 values from different

experiments by Mendel. Table 6.9 presents the data.

If all the null hypotheses are true, by the facts above, X

2
= 29.11 should look like a χ

2

with 64 degrees of freedom. An approximate normal variable,

Z =

29.11 − 64
√

128
= −3.08

has less than 1 chance in 1000 of being this small (p = 0.99995). One can only conclude that

something peculiar occurred in the collection and reporting of Mendel’s data.

6.6.4 Chi-Square Tests for Unknown Cell Probabilities

Above, we considered tests of the goodness of fit of multinomial data when the probability

of being in an individual cell was specified precisely: for example, by a genetic model of how

traits are inherited. In other situations, the cell probabilities are not known but may be estimated.

First, we motivate the techniques by presenting a possible use; next, we present the techniques,

and finally, we illustrate the use of the techniques by example.

Consider a sample of n numbers that may come from a normal distribution. How might we

check the assumption of normality? One approach is to divide the real number line into a finite

number of intervals. The number of points observed in each interval may then be counted. The

numbers in the various intervals or cells are multinomial random variables. If the sample were

normal with known mean µ and known standard deviation σ , the probability, π

i

, that a point

falls between the endpoints of the ith interval—say Y1 and Y2—is known to be

π

i

= �

(

Y2 − µ

σ

)

− �

(

Y1 − µ

σ

)
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where � is the distribution function of a standard normal random variable. In most cases, µ

and σ are not known, so µ and σ , and thus π

i

, must be estimated. Now π

i

depends on two

variables, µ and σ : π

i

= π

i

(µ, σ ) where the notation π

i

(µ, σ ) means that π

i

is a function of

µ and σ . It is natural if we estimate µ and σ by, say, µ̂ and σ̂ , to estimate π

i

by p

i

(µ̂, ω̂).

That is,

p

i

(µ̂, σ̂ ) = �

(

Y2 − µ̂

σ̂

)

− �

(

Y1 − µ̂

σ̂

)

From this, a statistic (X

2
) can be formed as above. If there are k cells,

X

2
=

∑

(observed − expected)

2

expected
=

k

∑

i=1

[n
i

− np

i

(µ̂, σ̂ )]2

np

i

(µ̂, σ̂ )

Does X

2 now have a chi-square distribution? The following facts describe the situation.

Fact 4. Suppose that n observations are grouped or placed into k categories or cells such

that the probability of being in cell i is π

i

= π

i

(�1, . . . , �

s

), where π

i

depends on s parameters

�

j

and where s < k−1. Suppose that none of the s parameters are determined by the remaining

s − 1 parameters. Then:

1. If ̂

�1, . . . ,

̂

�

s

, the parameter estimates, are chosen to minimize X

2, the distribution of

X

2 is approximately a chi-square random variable with k − s − 1 degrees of freedom for

large n. Estimates chosen to minimize the value of X

2 are called minimum chi-square

estimates.

2. If estimates of �1, . . . , �

s

other than the minimum chi-square estimates are used, then

for large n the distribution function of X

2 lies between the distribution functions of chi-

square variables with k − s − 1 degrees of freedom and k − 1 degrees of freedom. More

specifically, let X

2
1−α,m

denote the α-significance-level critical value for a chi-square

distribution with m degrees of freedom. The significance-level-α critical value of X

2 is

less than or equal to X

2
1−α,k−1. A conservative test of the multinomial model is to reject

the null hypothesis that the model is correct if X

2
≥ χ

2
1−α,k−1.

These complex statements are best understood by applying them to an example.

Example 6.25. Table 3.4 in Section 3.3.1 gives the age in days at death of 78 SIDS cases.

Test for normality at the 5% significance level using a χ

2-test.

Before performing the test, we need to divide the real number line into intervals or cells.

The usual approach is to:

1. Estimate the parameters involved. In this case the unknown parameters are µ and σ . We

estimate by Y and s.

2. Decide on k, the number of intervals. Let there be n observations. A good approach is to

choose k as follows:

a. For 20 ≤ n ≤ 100, k

.

= n/5.

b. For n > 300, k

.

= 3.5n

2/5 (here, n

2/5 is n raised to the 2/5 power).
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3. Find the endpoints of the k intervals so that each interval has probability 1/k. The k

intervals are
(−∞, a1] interval 1

(a1, a2] interval 2

.

.

.

.

.

.

(a

k−2, a

k−1] interval (k − 1)

(a

k−1, ∞) interval k

Let Z

i

be a value such that a standard normal random variable takes a value less than Z

i

with probability i/k. Then

a

i

= X + sZ

i

(In testing for a distribution other than the normal distribution, other methods of finding

cells of approximately equal probability need to be used.)

4. Compute the statistic

X

2
=

k

∑

i=1

(n

i

− n/k)

2

n/k

where n

i

is the number of data points in cell i.

To apply steps 1 to 4 to the data at hand, one computes n = 78, X = 97.85, and s = 55.66.

As 78/5 = 15.6, we will use k = 15 intervals. From tables of the normal distribution, we find

Z

i

, i = 1, 2, . . . , 14, so that a standard normal random variable has probability i/15 of being

less than Z

i

. The values of Z

i

and a

i

are given in Table 6.10.

The number of observations observed in the 15 cells, from left to right, are 0, 8, 7, 5, 7, 9,

7, 5, 6, 6, 2, 2, 3, 5, and 6. In each cell, the number of observations expected is np

i

= n/k or

78/15 = 5.2. Then

X

2
=

(0 − 5.2)

2

5.2
+

(8 − 5.2)

2

5.2
+ · · · +

(6 − 5.2)

2

5.2
= 16.62

We know that the 0.05 critical values are between the chi-square critical values with 12 and 14

degrees of freedom. The two values are 21.03 and 23.68. Thus, we do not reject the hypothesis

of normality. (If the X

2 value had been greater than 23.68, we would have rejected the null

hypothesis of normality. If X

2 were between 21.03 and 23.68, the answer would be in doubt. In

that case, it would be advisable to compute the minimum chi-square estimates so that a known

distribution results.)

Note that the largest observation, 307, is (307 − 97.85)/55.6 = 3.76 sample standard devi-

ations from the sample mean. In using a chi-square goodness-of-fit test, all large observations

are placed into a single cell. The magnitude of the value is lost. If one is worried about large

outlying values, there are better tests of the fit to normality.

Table 6.10 Zi and ai Values

i Z

i

a

i

i Z

i

a

i

i Z

i

a

i

1 −1.50 12.8 6 −0.25 84.9 11 0.62 135.0

2 −1.11 35.3 7 −0.08 94.7 12 0.84 147.7

3 −0.84 50.9 8 0.08 103.9 13 1.11 163.3

4 −0.62 63.5 9 0.25 113.7 14 1.50 185.8

5 −0.43 74.5 10 0.43 124.1
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NOTES

6.1 Continuity Correction for 2 × 2 Table Chi-Square Values

There has been controversy about the appropriateness of the continuity correction for 2 × 2

tables [Conover, 1974]. The continuity correction makes the actual significance levels under the

null hypothesis closer to the hypergeometric (Fisher’s exact test) actual significance levels. When

compared to the chi-square distribution, the actual significance levels are too low [Conover,

1974; Starmer et al., 1974; Grizzle, 1967]. The uncorrected “chi-square” value referred to chi-

square critical values gives actual and nominal significance levels that are close. For this reason,

the authors recommend that the continuity correction not be used. Use of the continuity correc-

tion would be correct but overconservative. For arguments on the opposite side, see Mantel and

Greenhouse [1968]. A good summary can be found in Little [1989].

6.2 Standard Error of ω̂ as Related to the Standard Error of log ω̂

Let X be a positive variate with mean µ

x

and standard deviation σ

x

. Let Y = log
e

X. Let the

mean and standard deviation of Y be µ

y

and σ

y

, respectively. It can be shown that under certain

conditions
σ

x

µ

x

.

= σ

y

The quantity σ

x

/µ

x

is known as the coefficient of variation. Another way of writing this is

σ

x

.

= µ

x

σ

y

If the parameters are replaced by the appropriate statistics, the expression becomes

s

x

.

= xs

y

and the standard deviation of ω̂ then follows from this relationship.

6.3 Some Limitations of the Odds Ratio

The odds ratio uses one number to summarize four numbers, and some information about the

relationship is necessarily lost. The following example shows one of the limitations. Fleiss [1981]

discusses the limitations of the odds ratio as a measure for public health. He presents the mortality

rates per 100,000 person-years from lung cancer and coronary artery disease for smokers and

nonsmokers of cigarettes [U.S. Department of Health, Education and Welfare, 1964]:

Smokers Nonsmokers Odds Ratio Difference

Cancer of the lung 48.33 4.49 10.8 43.84

Coronary artery disease 294.67 169.54 1.7 125.13

The point is that although the risk ω is increased much more for cancer, the added number

dying of coronary artery disease is higher, and in some sense smoking has a greater effect in

this case.

6.4 Mantel–Haenszel Test for Association

The chi-square test of association given in conjunction with the Mantel–Haenszel test discussed

in Section 6.3.5 arises from the approach of the section by choosing a

i

and s

i

appropriately
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[Fleiss, 1981]. The corresponding chi-square test for homogeneity does not make sense and

should not be used. Mantel et al. [1977] give the problems associated with using this approach

to look at homogeneity.

6.5 Matched Pair Studies

One of the difficult aspects in the design and execution of matched pair studies is to decide

on the matching variables, and then to find matches to the degree desired. In practice, many

decisions are made for logistic and monetary reasons; these factors are not discussed here. The

primary purpose of matching is to have a valid comparison. Variables are matched to increase

the validity of the comparison. Inappropriate matching can hurt the statistical power of the

comparison. Breslow and Day [1980] and Miettinen [1970] give some fundamental background.

Fisher and Patil [1974] further elucidate the matter (see also Problem 6.30).

6.6 More on the Chi-Square Goodness-of-Fit Test

The goodness-of-fit test as presented in this chapter did not mention some of the subtleties

associated with the subject. A few arcane points, with appropriate references, are given in

this note.

1. In Fact 4, the estimate used should be maximum likelihood estimates or equivalent esti-

mates [Chernoff and Lehmann, 1954].

2. The initial chi-square limit theorems were proved for fixed cell boundaries. Limiting

theorems where the boundaries were random (depending on the data) were proved later

[Kendall and Stuart, 1967, Secs. 30.20 and 30.21].

3. The number of cells to be used (as a function of the sample size) has its own literature.

More detail is given in Kendall and Stuart [1967, Secs. 30.28 to 30.30]. The recommen-

dations for k in the present book are based on this material.

6.7 Predictive Value of a Positive Test

The predictive value of a positive test, PV+, is related to the prevalence (prev), sensitivity

(sens), and specificity (spec) of a test by the following equation:

PV+
=

1

1 +

[

(1 − spec)/sens
] [

(1 − prev)/prev
]

Here prev, sens, and spec, are on a scale of 0 to 1 of proportions instead of percentages.

If we define logit(p) = log[p/(1 − p)], the predictive value of a positive test is related very

simply to the prevalence as follows:

logit[PV+] = log

(

sens

1 − spec

)

+ logit(prev)

This is a very informative formula. For rare diseases (i.e., low prevalence), the term “logit

(prev)” will dominate the predictive value of a positive test. So no matter what the sensitivity

or specificity of a test, the predictive value will be low.

6.8 Confidence Intervals for a Poisson Mean

Many software packages now provide confidence intervals for the mean of a Poisson distribution.

There are two formulas: an approximate one that can be done by hand, and a more complex

exact formula. The approximate formula uses the following steps. Given a Poisson variable Y :
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1. Take
√

Y .

2. Add and subtract 1.

3. Square the result [(
√

Y − 1)

2
, (

√

Y + 1)

2].

This formula is reasonably accurate for Y ≥ 5. See also Note 6.9 for a simple confidence interval

when Y = 0. The exact formula uses the relationship between the Poisson and χ

2 distributions

to give the confidence interval

[

1

2
χ

2
α/2(2x),

1

2
χ

2
1−α/2(2x + 2)

]

where χ

2
α/2(2x) is the α/2 percentile of the χ

2 distribution with 2x degrees of freedom.

6.9 Rule of Threes

An upper 90% confidence bound for a Poisson random variable with observed values 0 is, to

a very good approximation, 3. This has led to the rule of threes, which states that if in n trials

zero events of interest are observed, a 95% confidence bound on the underlying rate is 3/n. For

a fuller discussion, see Hanley and Lippman-Hard [1983]. See also Problem 6.29.

PROBLEMS

6.1 In a randomized trial of surgical and medical treatment a clinic finds eight of nine

patients randomized to medicine. They complain that the randomization must not be

working; that is, π cannot be 1/2.

(a) Is their argument reasonable from their point of view?

*(b) With 15 clinics in the trial, what is the probability that all 15 clinics have fewer

than eight people randomized to each treatment, of the first nine people random-

ized? Assume independent binomial distributions with π = 1/2 at each site.

6.2 In a dietary study, 14 of 20 subjects lost weight. If weight is assumed to fluctuate by

chance, with probability 1/2 of losing weight, what is the exact two-sided p-value for

testing the null hypothesis π = 1/2?

6.3 Edwards and Fraccaro [1960] present Swedish data about the gender of a child and the

parity. These data are:

Order of Birth

Gender 1 2 3 4 5 6 7 Total

Males 2846 2554 2162 1667 1341 987 666 12,223

Females 2631 2361 1996 1676 1230 914 668 11,476

Total 5477 4915 4158 3343 2571 1901 1334 23,699

(a) Find the p-value for testing the hypothesis that a birth is equally likely to be of

either gender using the combined data and binomial assumptions.
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(b) Construct a 90% confidence interval for the probability that a birth is a female

child.

(c) Repeat parts (a) and (b) using only the data for birth order 6.

6.4 Ounsted [1953] presents data about cases with convulsive disorders. Among the cases

there were 82 females and 118 males. At the 5% significance level, test the hypothesis

that a case is equally likely to be of either gender. The siblings of the cases were

121 females and 156 males. Test at the 10% significance level the hypothesis that the

siblings represent 53% or more male births.

6.5 Smith et al. [1976] report data on ovarian carcinoma (cancer of the ovaries). People

had different numbers of courses of chemotherapy. The five-year survival data for those

with 1–4 and 10 or more courses of chemotherapy are:

Five-Year Status

Courses Dead Alive

1–4 21 2

≥10 2 8

Using Fisher’s exact test, is there a statistically significant association (p ≤ 0.05) in

this table? (In this problem and the next, you will need to compute the hypergeometric

probabilities using the results of Problem 6.26.)

6.6 Borer et al. [1980] study 45 patients following an acute myocardial infarction (heart

attack). They measure the ejection fraction (EF), the percent of the blood pumped from

the left ventricle (the pumping chamber of the heart) during a heart beat. A low EF

indicates damaged or dead heart muscle (myocardium). During follow-up, four patients

died. Dividing EF into low (<35%) and high (≥35%) EF groups gave the following

table:

Vital Status

EF Dead Alive

<35% 4 9

≥35% 0 32

Is there reason to suspect, at a 0.05 significance level, that death is more likely in the

low EF group? Use a one-sided p-value for your answer, since biological plausibility

(and prior literature) indicates that low EF is a risk factor for mortality.

6.7 Using the data of Problem 6.4, test the hypothesis that the proportions of male births

among those with convulsive disorders and among their siblings are the same.

6.8 Lawson and Jick [1976] compare drug prescription in the United States and Scotland.

(a) In patients with congestive heart failure, two or more drugs were prescribed in

257 of 437 U.S. patients. In Scotland, 39 of 179 patients had two or more drugs

prescribed. Test the null hypothesis of equal proportions giving the resulting p-

value. Construct a 95% confidence interval for the difference in proportions.
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(b) Patients with dehydration received two or more drugs in 55 of 74 Scottish

cases as compared to 255 of 536 in the United States. Answer the questions

of part (a).

6.9 A randomized study among patients with angina (heart chest pain) is to be conducted

with five-year follow-up. Patients are to be randomized to medical and surgical treat-

ment. Suppose that the estimated five-year medical mortality is 10% and it is hoped

that the surgical mortality will be only half as much (5%) or less. If a test of binomial

proportions at the 5% significance level is to be performed, and we want to be 90%

certain of detecting a difference of 5% or more, what sample sizes are needed for the

two (equal-sized) groups?

6.10 A cancer with poor prognosis, a three-year mortality of 85%, is studied. A new mode

of chemotherapy is to be evaluated. Suppose that when testing at the 0.10 significance

level, one wishes to be 95% certain of detecting a difference if survival has been

increased to 50% or more. The randomized clinical trial will have equal numbers of

people in each group. How many patients should be randomized?

6.11 Comstock and Partridge [1972] show data giving an association between church atten-

dance and health. From the data of Example 6.17, which were collected from a prospec-

tive study:

(a) Compute the relative risk of an arteriosclerotic death in the three-year follow-up

period if one usually attends church less than once a week as compared to once

a week or more.

(b) Compute the odds ratio and a 95% confidence interval.

(c) Find the percent error of the odds ratio as an approximation to the relative risk;

that is, compute 100(OR − RR)/RR.

(d) The data in this population on deaths from cirrhosis of the liver are:

Cirrhosis Fatality?
Usual Church

Attendance Yes No

≥1 per week 5 24,240

<1 per week 25 30,578

Repeat parts (a), (b), and (c) for these data.

6.12 Peterson et al. [1979] studied the patterns of infant deaths (especially SIDS) in King

County, Washington during the years 1969–1977. They compared the SIDS deaths with

a 1% sample of all births during the time period specified. Tables relating the occurrence

of SIDS with maternal age less than or equal to 19 years of age, and to birth order

greater than 1, follow for those with single births.

Child Child

Birth Order SIDS Control Maternal Age SIDS Control

>1 201 689 ≤19 76 164

=1 92 626 >19 217 1151



198 COUNTING DATA

Child

SIDS Control

Birth order >1 and maternal age ≤19 26 17

Birth order =1 or maternal age >19 267 1298

Birth order >1 and maternal age ≤19 26 17

Birth order =1 and maternal age >19 42 479

(a) Compute the odds ratios and 95% confidence intervals for the data in these tables.

(b) Which pair of entries in the second table do you think best reflects the risk of

both risk factors at once? Why? (There is not a definitely correct answer.)

*(c) The control data represent a 1% sample of the population data. Knowing this,

how would you estimate the relative risk directly?

6.13 Rosenberg et al. [1980] studied the relationship between coffee drinking and myocar-

dial infarction in young women aged 30–49 years. This retrospective study included

487 cases hospitalized for the occurrence of a myocardial infarction (MI). Nine hundred

eighty controls hospitalized for an acute condition (trauma, acute cholecystitis, acute

respiratory diseases, and appendicitis) were selected. Data for consumption of five or

more cups of coffee containing caffeine were:

Cups

per Day MI Control

≥5 152 183

<5 335 797

Compute the odds ratio of a MI for heavy (≥5 cups per day) coffee drinkers vs.

nonheavy coffee drinkers. Find the 90% confidence interval for the odds ratio.

6.14 The data of Problem 6.13 were considered to be possibly confounded with smoking.

The 2 × 2 tables by smoking status, in cigarettes per day, are displayed in Table 6.11.

(a) Compute the Mantel–Haenszel estimate of the odds ratio and the chi-square statis-

tic for association. Would you reject the null hypothesis of no association between

coffee drinking and myocardial infarction at the 5% significance level?

(b) Using the log odds ratio as the measure of association in each table, compute

the chi-square statistic for association. Find the estimated overall odds ratio and

a 95% confidence interval for this quantity.

6.15 The paper of Remein and Wilkerson [1961] considers screening tests for diabetes. The

Somogyi–Nelson (venous) blood test (data at 1 hour after a test meal and using 130

mg per 100 mL as the blood sugar cutoff level) gives the following table:

Test Diabetic Nondiabetic Total

+ 59 48 107

− 11 462 473

Total 70 510 580
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Table 6.11 2 × 2 Tables for Problem 6.14

Cups per Day MI Control

Never smoked

≥5 7 31

<5 55 269

Former smoker

≥5 7 18

<5 20 112

1–14 cigarettes per day

≥5 7 24

<5 33 114

15–24 cigarettes per day

≥5 40 45

<5 88 172

25–34 cigarettes per day

≥5 34 24

<5 50 55

35–44 cigarettes per day

≥5 27 24

<5 55 58

45+ cigarettes per day

≥5 30 17

<5 34 17

(a) Compute the sensitivity, specificity, predictive value of a positive test, and pre-

dictive value of a negative test.

(b) Using the sensitivity and specificity of the test as given in part (a), plot curves

of the predictive values of the test vs. the percent of the population with dia-

betes (0 to 100%). The first curve will give the probability of diabetes given

a positive test. The second curve will give the probability of diabetes given a

negative test.

6.16 Remein and Wilkerson [1961] present tables showing the trade-off between sensitivity

and specificity that arises by changing the cutoff value for a positive test. For blood

samples collected 1 hour after a test meal, three different blood tests gave the data

given in Table 6.12.

(a) Plot three curves, one for each testing method, on the same graph. Let the vertical

axis be the sensitivity and the horizontal axis be (1 − specificity) of the test. The

curves are generated by the changing cutoff values.

(b) Which test, if any, looks most promising? Why? (See also Note 6.7)

6.17 Data of Sartwell et al. [1969] that examine the relationship between thromboembolism

and oral contraceptive use are presented below for several subsets of the population.

For each subset:

(a) Perform McNemar’s test for a case–control difference (5% significance level).

(b) Estimate the relative risk.

(c) Find an appropriate 90% confidence interval for the relative risk.
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Table 6.12 Blood Sugar Data for Problem 6.16

Type of Test

Somogyi–Nelson Folin–Wu Anthrone
Blood Sugar

(mg/100 mL) SENS SPEC SENS SPEC SENS SPEC

70 — — 100.0 8.2 100.0 2.7

80 — 1.6 97.1 22.4 100.0 9.4

90 100.0 8.8 97.1 39.0 100.0 22.4

100 98.6 21.4 95.7 57.3 98.6 37.3

110 98.6 38.4 92.9 70.6 94.3 54.3

120 97.1 55.9 88.6 83.3 88.6 67.1

130 92.9 70.2 78.6 90.6 81.4 80.6

140 85.7 81.4 68.6 95.1 74.3 88.2

150 80.0 90.4 57.1 97.8 64.3 92.7

160 74.3 94.3 52.9 99.4 58.6 96.3

170 61.4 97.8 47.1 99.6 51.4 98.6

180 52.9 99.0 40.0 99.8 45.7 99.2

190 44.3 99.8 34.3 100.0 40.0 99.8

200 40.0 99.8 28.6 100.0 35.7 99.8

For nonwhites:

Case

Control Yes No

Yes 3 3

No 11 9

For married:

Case

Control Yes No

Yes 8 10

No 41 46

and for ages 15–29:

Case

Control Yes No

Yes 5 33

No 7 57

6.18 Janerich et al. [1980] compared oral contraceptive use among mothers of malformed

infants and matched controls who gave birth to healthy children. The controls were

matched for maternal age and race of the mother. For each of the following, estimate

the odds ratio and form a 90% confidence interval for the odds ratio.
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(a) Women who conceived while using the pill or immediately following pill use.

Case

Control Yes No

Yes 1 33

No 49 632

(b) Women who experienced at least one complete pill-free menstrual period prior to

conception.

Case

Control Yes No

Yes 38 105

No 105 467

(c) Cases restricted to major structural anatomical malformations; use of oral con-

traceptives after the last menstrual period or in the menstrual cycle prior to

conception.

Case

Control Yes No

Yes 0 21

No 45 470

(d) As in part (c) but restricted to mothers of age 30 or older.

Case

Control Yes No

Yes 0 1

No 6 103

6.19 Robinette et al. [1980] studied the effects on health of occupational exposure to micro-

wave radiation (radar). The study looked at groups of enlisted naval personnel who were

enrolled during the Korean War period. Find 95% confidence intervals for the percent

of men dying of various causes, as given in the data below. Deaths were recorded that

occurred during 1950–1974.

(a) Eight of 1412 aviation electronics technicians died of malignant neoplasms.

(b) Six of the 1412 aviation electronics technicians died of suicide, homicide, or other

trauma.

(c) Nineteen of 10,116 radarmen died by suicide.

(d) Sixteen of 3298 fire control technicians died of malignant neoplasms.

(e) Three of 9253 radiomen died of infective and parasitic disease.
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(f) None of 1412 aviation electronics technicians died of infective and parasitic dis-

ease.

6.20 The following data are also from Robinette et al. [1980]. Find 95% confidence intervals

for the population percent dying based on these data: (1) 199 of 13,078 electronics

technicians died of disease; (2) 100 of 13,078 electronics technicians died of circulatory

disease; (3) 308 of 10,116 radarmen died (of any cause); (4) 441 of 13,078 electronics

technicians died (of any cause); (5) 103 of 10,116 radarmen died of an accidental

death.

(a) Use the normal approximation to the Poisson distribution (which is approximating

a binomial distribution).

(b) Use the large-sample binomial confidence intervals (of Section 6.2.6). Do you

think the intervals are similar to those calculated in part (a)?

6.21 Infant deaths in King County, Washington were grouped by season of the year. The

number of deaths by season, for selected causes of death, are listed in Table 6.13.

Table 6.13 Death Data for Problem 6.21

Season

Winter Spring Summer Autumn

Asphyxia 50 48 46 34

Immaturity 30 40 36 35

Congenital malformations 95 93 88 83

Infection 40 19 40 43

Sudden infant death syndrome 78 71 87 86

(a) At the 5% significance level, test the hypothesis that SIDS deaths are uniformly

(p = 1/4) spread among the seasons.

(b) At the 10% significance level, test the hypothesis that the deaths due to infection

are uniformly spread among the seasons.

(c) What can you say about the p-value for testing that asphyxia deaths are spread

uniformly among seasons? Immaturity deaths?

6.22 Fisher [1958] (after [Carver, 1927]) provided the following data on 3839 seedlings that

were progeny of self-fertilized heterozygotes (each seedling can be classified as either

starchy or sugary and as either green or white):

Number of Seedlings Green White Total

Starchy 1997 906 2903

Surgary 904 32 936

Total 2901 938 3839

(a) On the assumption that the green and starchy genes are dominant and that the

factors are independent, show that by Mendel’s law that the ratio of expected

frequencies (starchy green, starchy white, sugary green, sugary white) should be

9 : 3: 3 : 1.
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(b) Calculate the expected frequencies under the hypothesis that Mendel’s law holds

and assuming 3839 seedlings.

(c) The data are multinomial with parameters π1, π2, π3, and π4, say. What does

Mendel’s law imply about the relationships among the parameters?

(d) Test the goodness of fit.

6.23 Fisher [1958] presented data of Geissler [1889] on the number of male births in German

families with eight offspring. One model that might be considered for these data is the

binomial distribution. This problem requires a goodness-of-fit test.

(a) Estimate π , the probability that a birth is male. This is done by using the estimate

p = (total number of male births)/(total number of births). The data are given in

Table 3.10.

(b) Using the p of part (a), find the binomial probabilities for number of boys = 0,

1, 2, 3, 4, 5, 6, 7, and 8. Estimate the expected number of observations in each

cell if the binomial distribution is correct.

(c) Compute the X

2 value.

(d) The X

2 distribution lies between chi-square distributions with what two degrees

of freedom? (Refer to Section 6.6.4)

*(e) Test the goodness of fit by finding the two critical values of part (d). What can

you say about the p-value for the goodness-of-fit test?

*6.24 (a) Let R(n) be the number of ways to arrange n distinct objects in a row. Show that

R(n) = n! = 1 · 2 · 3 · . . . · n. By definition, R(0) = 1. Hint: Clearly, R(1) = 1.

Use mathematical induction. That is, show that if R(n − 1) = (n − 1)!, then

R(n) = n!. This would show that for all positive integers n, R(n) = n!. Why?

[To show that R(n) = n!, suppose that R(n − 1) = (n − 1)!. Argue that you

may choose any of the n objects for the first position. For each such choice,

the remaining n − 1 objects may be arranged in R(n − 1) = (n − 1)! different

ways.]

(b) Show that the number of ways to select k objects from n objects, denoted by
(

n

k

)

(the binomial coefficient), is n!/((n − k)! k!). Hint : We will choose

the k objects by arranging the n objects in a row; the first k objects will be

the ones we select. There are R(n) ways to do this. When we do this, we

get the same k objects many times. There are R(k) ways to arrange the same

k objects in the first k positions. For each such arrangement, the other n − k

objects may be arranged in R(n − k) ways. The number of ways to arrange

these objects is R(k)R(n − k). Since each of the k objects is counted R(k)R(n −

k) times in the R(n) arrangements, the number of different ways to select k

objects is

R(n)

R(k)R(n − k)

=

n!

k! (n − k)!

from part (a). Then check that

(

n

n

)

=

(

n

0

)

= 1

(c) Consider the binomial situation: n independent trials each with probability π of

success. Show that the probability of k successes
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b(k; n, π) =

(

n

k

)

π

k

(1 − π)

n−k

Hint : Think of the n trials as ordered. There are

(

n

k

)

ways to choose the k

trials that give a success. Using the independence of the trials, argue that the

probability of the k trials being a success is π

k

(1 − π)

n−k .

(d) Compute from the definition of b(k; n, π): (i) b(3; 5, 0.5); (ii) b(3; 3, 0.3); (iii)

b(2; 4, 0.2); (iv) b(1; 3, 0.7); (v) b(4; 6, 0.1).

6.25 In Section 6.2.3 we presented procedures for two-sided hypothesis tests with the bino-

mial distribution. This problem deals with one-sided tests. We present the procedures

for a test of H0 : π ≥ π0 vs. H

A

: π < π0. [The same procedures would be used for

H0 : π = π0 vs. H

A

: π < π0. For H0 : π ≤ π0 vs. H

A

: π > π0, the procedure would

be modified (see below).]

Procedure A: To construct a significance test of H0 : π ≥ π0 vs. H

a

: π < π0 at

significance level α:

(a) Let Y be binomial n, π0, and p = Y/n. Find the largest c such that P [p ≤ c] ≤ α.

(b) Compute the actual significance level of the test as P [p ≤ c].

(c) Observe p. Reject H0 if p ≤ c.

Procedure B : The p-value for the test if we observe p is P [p̃ ≤ p], where p is the

fixed observed value and p̃ equals ˜

Y/n, where ˜

Y is binomial n, π0.

(a) In Problem 6.2, let π be the probability of losing weight. (i) Find the critical

value c for testing H0 : π ≥ 1/2 vs. H

A

: π < 1/2 at the 10% significance level.

(ii) Find the one-sided p-value for the data of Problem 6.2.

(b) Modify procedures A and B for the hypotheses H0 : π ≤ π0 vs. H

A

: π > π0.

*6.26 Using the terminology and notation of Section 6.3.1, we consider proportions of success

from two samples of size n1· and n2·. Suppose that we are told that there are n·1 total

successes. That is, we observe the following:

Success Failures

Sample 1 ? n1·

Sample 2 n2·

n·1 n·2 n··

If both populations are equally likely to have a success, what can we say about

n11, the number of successes in population 1, which goes in the cell with the question

mark?

Show that

P [n11 = k] =

(

n1·

k

)(

n2·

n·1 − k

) / (

n··

n·1

)

for k ≤ n1·, k ≤ n·1, and n·1 − k ≤ n2·. Note: P [n11 = k], which has the param-

eters n1·, n2·, and n·1, is called a hypergeometric probability. Hint : As suggested in

Section 6.3.1, think of each trial (in sample 1 or 2) as a ball [purple (n1·) or gold (n2·)].
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Since successes are equally likely in either population, any ball is as likely as any other

to be drawn in the n·1 successes. All subsets of size n·1 are equally likely, so the prob-

ability of k successes is the number of subsets with k purple balls divided by the total

number of subsets of size n·1. Argue that the first number is

(

n1·

k

) (

n2·

n·1 − k

)

and the second is

(

n··

n·1

)

.

6.27 This problem gives more practice in finding the sample sizes needed to test for a

difference in two binomial populations.

(a) Use Figure 6.2 to find approximate two-sided sample sizes per group for α = 0.05

and β = 0.10 when (i) P1 = 0.5, P2 = 0.6; (ii) P1 = 0.20, P2 = 0.10; (iii)

P1 = 0.70, P2 = 0.90.

(b) For each of the following, find one-sided sample sizes per group as needed from

the formula of Section 6.3.3. (i) α = 0.05, β = 0.10, P1 = 0.25, P2 = 0.10;

(ii) α = 0.05, β = 0.05, P1 = 0.60, P2 = 0.50; (iii) α = 0.01, β = 0.01, P1 =

0.15, P2 = 0.05; (iv) α = 0.01, β = 0.05, P1 = 0.85, P2 = 0.75. To test π1 vs.

π2, we need the same sample size as we would to test 1 − π1 vs. 1 − π2. Why?

6.28 You are examined by an excellent screening test (sensitivity and specificity of 99%) for

a rare disease (0.1% or 1/1000 of the population). Unfortunately, the test is positive.

What is the probability that you have the disease?

*6.29 (a) Derive the rule of threes defined in Note 6.9.

(b) Can you find a similar constant to set up a 99% confidence interval?

*6.30 Consider the matched pair data of Problem 6.17: What null hypothesis does the usual

chi-square test for a 2 × 2 table test on these data? What would you decide about the

matching if this chi-square was not significant (e.g., the “married” table)?
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