
C H A P T E R 7

Categorical Data: Contingency Tables

7.1 INTRODUCTION

In Chapter 6, discrete variables came up by counting the number of times that specific outcomes

occurred. In looking at the presence or absence of a risk factor and a disease, odds ratio and

relative risk were introduced. In doing this, we looked at the relationship between two discrete

variables; each variable took on one of two possible states (i.e., risk factor present or absent

and disease present or absent). In this chapter we show how to analyze more general discrete

data. Two types of generality are presented.

The first generalization considers two jointly distributed discrete variables. Each variable

may take on more than two possible values. Some examples of discrete variables with three

or more possible values might be: smoking status (which might take on the values “never

smoked,” “former smoker,” and “current smoker”); employment status (which could be coded

as “full-time,” “part-time,” “unemployed,” “unable to work due to medical reason,” “retired,”

“quit,” and “other”); and clinical judgment of improvement (classified into categories of “con-

siderable improvement,” “slight improvement,” “no change,” “slight worsening,” “considerable

worsening,” and “death”).

The second generalization allows us to consider three or more discrete variables (rather than

just two) at the same time. For example, method of treatment, gender, and employment status

may be analyzed jointly. With three or more variables to investigate, it becomes difficult to

obtain a “feeling” for the interrelationships among the variables. If the data fit a relatively

simple mathematical model, our understanding of the data may be greatly increased.

In this chapter, our first multivariate statistical model is encountered. The model is the log-

linear model for multivariate discrete data. The remainder of the book depends on a variety of

models for analyzing data; this chapter is an exciting, important, and challenging introduction

to such models!

7.2 TWO-WAY CONTINGENCY TABLES

Let two or more discrete variables be measured on each unit in an experiment or observational

study. In this chapter, methods of examining the relationship among the variables are studied.

In most of the chapter we study the relationship of two discrete variables. In this case we count

the number of occurrences of each pair of possibilities and enter them in a table. Such tables

are called contingency tables. Example 7.1 presents two contingency tables.
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Example 7.1. In 1962, Wangensteen et al., published a paper in the Journal of the Amer-

ican Medical Association advocating gastric freezing. A balloon was lowered into a subject’s

stomach, and coolant at a temperature of −17 to −20◦C was introduced through tubing con-

nected to the balloon. Freezing was continued for approximately 1 hour. The rationale was that

gastric digestion could be interrupted and it was thought that a duodenal ulcer might heal if

treatment could be continued over a period of time. The authors advanced three reasons for the

interruption of gastric digestion: (1) interruption of vagal secretory responses; (2) “rendering

of the central mucosa nonresponsive to food ingestion . . . ”; and (3) “impairing the capac-

ity of the parietal cells to secrete acid and the chief cells to secrete pepsin.” Table 7.1 was

presented as evidence for the effectiveness of gastric freezing. It shows a decrease in acid

secretion.

On the basis of this table and other data, the authors state: “These data provide convincing

objective evidence of significant decreases in gastric secretory responses attending effective

gastric freezing” and conclude: “When profound gastric hypothermia is employed with resultant

freezing of the gastric mucosa, the method becomes a useful agent in the control of many of the

manifestations of peptic ulcer diathesis. Symptomatic relief is the rule, followed quite regularly

by x-ray evidence of healing of duodenal ulcer craters and evidence of effective depression of

gastric secretory responses.” Time [1962] reported that “all [the patients’] ulcers healed within

two to six weeks.”

However, careful studies attempting to confirm the foregoing conclusion failed. Two studies in

particular failed to confirm the evidence, one by Hitchcock et al. [1966], the other by Ruffin et al.

[1969]. The latter study used an elaborate sham procedure (control) to simulate gastric freezing,

to the extent that the tube entering the patient’s mouth was cooled to the same temperature as in

the actual procedure, but the coolant entering the stomach was at room temperature, so that no

freezing took place. The authors defined an endpoint to have occurred if one of the following

criteria was met: “perforation; ulcer pain requiring hospitalization for relief; obstruction, partial

or complete, two or more weeks after hyperthermia; hemorrhage, surgery for ulcer; repeat

hypothermia; or x-ray therapy to the stomach.”

Several institutions cooperated in the study, and to ensure objectivity and equal numbers,

random allocations to treatment and sham were balanced within groups of eight. At the termina-

tion of the study, patients were classified as in Table 7.2. The authors conclude: “The results of

Table 7.1 Gastric Response of 10 Patients with Duodenal Ulcer Whose Stomachs Were Frozen at

−17 to −20◦C for 1 Hour

Average Percent Decrease in HCl

after Gastric Freezing
Patients

with Decrease in Overnight Peptone

Patients Free HCl Secretion Stimulation Insulin

10 10a 87 51 71

Source: Data from Wangensteen et al. [1962].
aAll patients, except one, had at least a 50% decrease in free HCl in overnight secretion.

Table 7.2 Causes of Endpoints

With With With Not Reaching

Group Patients Hemorrhage Operation Hospitalization Endpoint

F (freeze) 69 9 17 9 34

S (sham) 68 9 14 7 38

Source: Data from Ruffin et al. [1969].
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Table 7.3 Contingency Table

for Gastric Freezing Data
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this study demonstrate conclusively that the ‘freezing’ procedure was not better than the sham

in the treatment of duodenal ulcer, confirming the work of others. . . . It is reasonable to assume

that the relief of pain and subjective improvement reported by early investigators was probably

due to the psychological effect of the procedure.”

Contingency tables set up from two variables are called two-way tables. Let the variable cor-

responding to rows have r (for “row”) possible outcomes, which we index by i (i = 1, 2, . . . , r).

Let the variables corresponding to the column headings have c (for “column”) possible states

indexed by j (j = 1, 2, . . . , c). One speaks of an r × c contingency table. Let n

ij

be the num-

ber of observations corresponding to the ith state of the row variable and the j th state of the

column variable. In the example above, n11 = 9, n12 = 17, n13 = 9, n14 = 34, n21 = 9, n22 =

14, n23 = 7, and n24 = 38. In general, the data are presented as shown in Table 7.3. Such tables

usually arise in one of two ways:

1. A sample of observations is taken. On each unit we observe the values of two traits. Let

π

ij

be the probability that the row variable takes on level i and the column variable takes

on level j . Since one of the combinations must occur,

r

∑

i=1

c

∑

j=1

π

ij

= 1 (1)

2. Each row corresponds to a sample from a different population. In this case, let π

ij

be the

probability the column variable takes on state j when sampling from the ith population.

Thus, for each i,

c

∑

j=1

π

ij

= 1 (2)

If the samples correspond to the column variable, the π

ij

are the probabilities that the

row variable takes on state i when sampling from population j . In this circumstance, for

each j ,

r

∑

i=1

π

ij

= 1 (3)

Table 7.2 comes from the second model since the treatment is assigned by the experimenter;

it is not a trait of the experimental unit. Examples for the first model are given below.
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The usual null hypothesis in a model 1 situation is that of independence of row and col-

umn variables. That is (assuming row variable = i and column variable = j ), P [i and j ] =

P [i]P [j ],

H0: π

ij

= π

i·π·j

In the model 2 situation, suppose that the row variable identifies the population. The usual

null hypothesis is that all r populations have the same probabilities of taking on each value of

the column variable. That is, for any two rows, denoted by i and i

′, say, and all j ,

H0: π

ij

= π

i

′
j

If one of these hypotheses holds, we say that there is no association; otherwise, the table is said

to have association between the categorical variables.

We will use the following notation for the sum over the elements of a row and/or column:

n

i· is the sum of the elements of the ith row; n·j is the sum of the elements of the j th column:

n

i· =

c

∑

j=1

n

ij

, n·j =

r

∑

i=1

n

ij

, n·· =

r

∑

i=1

c

∑

j=1

n

ij

It is shown in Note 7.1 that under either model 1 or model 2, the null hypothesis is reasonably

tested by comparing n

ij

with

n

i·n·j

n··

The latter is the value expected in the ij th cell given the observed marginal configuration and

assuming either of the null hypotheses under model 1 or model 2. This is shown as

n11 = 9 n12 = 17 n13 = 9 n14 = 34 n1· = 69

n21 = 9 n22 = 14 n23 = 7 n24 = 38 n2· = 68

n·1 = 18 n·2 = 31 n·3 = 16 n·4 = 72 n·· = 137

Under the null hypothesis, the table of expected values n

i·n·j /n·· is

69 × 18/137 69 × 31/137 69 × 16/137 69 × 72/137

68 × 18/137 68 × 31/137 68 × 16/137 68 × 72/137

or

9.07 15.61 8.06 36.26

8.93 15.39 7.94 35.74

It is a remarkable fact that both null hypotheses above may be tested by the χ

2 statistic,

X

2
=

r

∑

i=1

c

∑

j=1

(n

ij

− n

i·n·j /n··)
2

n

i·n·j/n··

Note that n

ij

is the observed cell entry; n

i·n·j /n·· is the expected cell entry, so this statistic

may be remembered as

X

2
=

∑

(observed − expected)

2

expected
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For example, the array above gives

X

2
=

(9 − 9.07)

2

9.07
+

(17 − 15.61)

2

15.61
+

(9 − 8.06)

2

8.06

+

(34 − 36.26)

2

36.26
+

(9 − 8.93)

2

8.93
+

(14 − 15.39)

2

15.39

+

(7 − 7.94)

2

7.94
+

(38 − 35.76)

2

35.76
= 0.752

Under the null hypothesis, the X

2 statistic has approximately a χ

2 distribution with (r−1)(c−1)

degrees of freedom. This approximation is for large samples and is appropriate when all of

the expected values, n

i·n·j /n··, are 5 or greater. There is some evidence to indicate that the

approximation is valid if all the expected values, except possibly one, are 5 or greater.

For our example, the degrees of freedom for the example are (2−1)(4−1) = 3. The rejection

region is for X

2 too large. The 0.05 critical value is 7.81. As 0.752 < 7.81, we do not reject

the null hypothesis at the 0.05 significance level.

Example 7.2. Robertson [1975] examined seat belt use in automobiles with starter interlock

and buzzer/light systems. The use or nonuse of safety belts by drivers in their vehicles was

observed at 138 sites in Baltimore, Maryland; Houston, Texas; Los Angeles, California; the

New Jersey suburbs; New York City; Richmond, Virginia; and Washington, DC during late

1973 and early 1974. The sites were such that observers could see whether or not seat belts

were being used. The sites were freeway entrances and exits, traffic-jam areas, and other points

where vehicles usually slowed to less than 15 miles per hour. The observers dictated onto tape

the gender, estimated age, and racial appearance of the driver of the approaching car; as the

vehicles slowed alongside, the observer recorded whether or not the lap belt and/or shoulder

belt was in use, not in use, or could not be seen. The license plate numbers were subsequently

sent to the appropriate motor vehicle administration, where they were matched to records from

which the manufacturer and year were determined. In the 1973 models, a buzzer/light system

came on when the seat belt was not being used. The buzzer was activated for at least 1 minute

when the driver’s seat was occupied, the ignition switch was on, the transmission gear selector

was in a forward position, and the driver’s lap belt was not extended at least 4 inches from

its normal resting position. Effective on August 15, 1973, a federal standard required that the

automobile could be started only under certain conditions. In this case, when the driver was

seated, the belts had to be extended more than 4 inches from their normally stored position

and/or latched. Robertson states that as a result of the strong negative public reaction to the

interlock system, federal law has banned the interlock system. Data on the buzzer/light-equipped

models and interlock-equipped models are given in Table 7.4. As can be seen from the table,

column percentages were presented to aid assimilation of the information in the table.

Table 7.4 Robertson [1975] Seat Belt Data

1973 Models 1974 Models

(Buzzer/Light) (Interlock)

Belt Use % Number % Number Total

Lap and shoulder 7 432 48 1007 1439

Lap only 21 1262 11 227 1489

None 72 4257 41 867 5124

Total 100 5951 100 2101 8052
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Percentages in two-way contingency tables are useful in aiding visual comprehension of the

contents. There are three types of percent tables:

1. Column percent tables give the percentages for each column (the columns add to 100%,

except possibly for rounding errors). This is best for comparing the distributions of dif-

ferent columns.

2. Row percent tables give the percentages for each row (the rows add to 100%). This is

best for comparing the distributions of different rows.

3. The total percent table gives percentages, so that all the entries in a table add to 100%.

This aids investigation of the proportions in each combination.

The column percentages in Table 7.4 facilitate comparison of seat belt use in the 1973

buzzer/light models and the 1974 interlock models. They illustrate that there are strategies for

getting around the interlock system, such as disabling it, connecting the seat belt and leaving it

connected on the seat, as well as possible other strategies, so that even with an interlock system,

not everyone uses it. The computed value of the chi-square statistic for this table is 1751.6 with

two degrees of freedom. The p-value is effectively zero, as shown in Table A.3 in the Appendix.

Given that we have a statistically significant association, the next question that arises is: To

what may we attribute this association? To determine why the association occurs, it is useful

to have an idea of which entries in the table differ more than would be expected by chance

from their value under the null hypothesis of no association. Under the null hypothesis, for

each entry in the table, the following adjusted residual value is approximately distributed as a

standard normal distribution. The term residual is used since it looks at the difference between

the observed value and the value expected under the null hypothesis. This difference is then

standardized by its standard error,

z

ij

=

n

ij

− (n

i·n·j/n··)

√

n

i·n·j/n·· (1 − n

i·/n··)

(

1 − n·j /n··

)

(4)

For example, for the (1, 1) entry in the table, a standardized residual, is given by

(432 − 1439 × 5951/8052)

√

1439(5951)

8052

(

1 −

1439

8052

)(

1 −

5951

8052

)

= 41.83

The matrix of the residual values observed with the corresponding normal probability p-values

is given in Table 7.5. Note that the values add to zero for the residuals across each row. This

occurs because there are only two columns. The adjusted residual values observed are so far

from zero that the normal p-values are miniscule.

In general, there is a problem in looking at a contingency table with many cells. Because

there are a large number of residual values in the table, it may be that one or more of them differs

by chance from zero at the 5% significance level. Even under the null hypothesis, because of the

many possibilities examined, this would occur much more than 5% of the time. One conservative

way to deal with this problem is to multiply the p-values by the number of rows minus one

and the number of columns minus one. If the corresponding p-value is less than 0.05, one

can conclude that the entry is different from that expected by the null hypothesis at the 5%

significance level even after looking at all of the different entries. (This problem of looking at

many possibilities, called the multiple comparison problem, is dealt with in considerable detail

in Chapter 12.) For this example, even after multiplying by the number of rows minus one

and the number of columns minus one, all of the entries differ from those expected under the

null hypothesis. Thus, one can conclude, using the sign of the residual to tell us whether the
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Table 7.5 Adjusted Residual Values (Example 7.2)

Residual

i j (Z

ij

) p-value p-value × (r − 1) × (c − 1)

1 1 −41.83 0+ 0+

1 2 41.83 0+ 0+

2 1 10.56 3 × 10−22 6 × 10−22

2 2 −10.56 3 × 10−22 6 × 10−22

3 1 24.79 9 × 10−53 2 × 10−52

3 2 −24.79 9 × 10−53 2 × 10−52

percentage is too high or too low, that in the 1973 models there is less lap and shoulder belt

use than in the 1974 models. Further, if we look at the “none” category, there are fewer people

without any belt use in the 1974 interlock models than in the 1973 buzzer/light-equipped models.

One would conclude that the interlock system, although a system disliked by the public, was

successful as a public health measure in increasing the amount of seat belt use.

Suppose that we decide there is an association in a contingency table. We can interpret the

table by using residuals (as we have done above) to help to find out whether particular entries

differ more than expected by chance. Another approach to interpretation is to characterize

numerically the amount of association between the variables, or proportions in different groups,

in the contingency table. To date, no single measure of the amount of association in contingency

tables has gained widespread acceptance. There have been many proposals, all of which have

some merit. Note 7.2 presents some measures of the amount of association.

7.3 CHI-SQUARE TEST FOR TREND IN 2 × k TABLES

There are a variety of techniques for improving the statistical power of χ

2 tests. Recall that

power is a function of the alternative hypothesis. One weakness of the chi-square test is that it

is an “omnibus” test; it tests for independence vs. dependence without specifying the nature of

the latter. In some cases, a small subset of alternative hypotheses may be specified to increase

the power of the chi-square test by defining a special test. One such situation occurs in 2 × k

tables when the alternative hypothesis is that there is an ordering in the variable producing the

k categories. For example, exposure categories can be ordered, and the alternative hypothesis

may be that the probability of disease increases with increasing exposure.

In this case the row variable takes on one of two states (say + or − for definiteness). For

each state of the column variable (j = 1, 2, . . . , k), let π

j

be the conditional probability of a

positive response. The test for trend is designed to have statistical power against the alternatives:

H1 : π1 ≤ π2 ≤ · · · ≤ π

k

, with at least one strict inequality

H2 : π1 ≥ π2 ≥ · · · ≥ π

k

, with at least one strict inequality

That is, the alternatives of interest are that the proportion of + responses increases or decreases

with the column variable. For these alternatives to be of interest, the column variable will have

a “natural” ordering. To compute the statistic, a score needs to be assigned to each state j of

the column variable. The scores x

j

are assigned so that they increase or decrease. Often, the x

j

are consecutive integers. The data are laid out as shown in Table 7.6.
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Table 7.6 Scores Assigned to State j

j

i 1 2 · · · k Total

1+ n11 n12 · · · n1k

n1·

2− n21 n22 · · · n2k

n2·

Total n·1 n·2 · · · n·k n··

Score x1 x2 · · · x

k

Before stating the test, we define some notation. Let

[n1x] =

k

∑

j=1

n1j

x

j

−

n1·

∑

n·jxj

n··

and

[x2] =

k

∑

j=1

n·jx
2
j

−

(

∑

n·jxj

)

2

n··

and

p =

n1·

n··

Then the chi-square test for trend is defined to be

X

2
trend =

[n1x]2

[x2]p(1 − p)

and when there is no association, this quantity has approximately a chi-square distribution with

one degree of freedom. [In the terminology of Chapter 9, this is a chi-square test for the slope

of a weighted regression line with dependent variable p

j

= n1j

/n·j , predictor variable x

j

, and

weights n1j

/p(1 − p), where j = 1, 2, . . . , k.]

Example 7.3. For an example of this test, we use data of Maki et al. [1977], relating risk

of catheter-related infection to the duration of catheterization. An infection was considered to

be present if there were 15 or more colonies of microorganisms present in a culture associated

with the withdrawn catheter. A part of the data dealing with the number of positive cultures as

related to duration of catheterization is given in Table 7.7. A somewhat natural set of values

of the scores x

i

is the duration of catheterization in days. The designation ≥4 is, somewhat

arbitrarily, scored 4.

Before carrying out the analysis, note that a graph of the proportion of positive cultures vs.

duration such as in the one shown in Figure 7.1 clearly suggests a trend. The general chi-square

test on the 2 × 4 table produces a value of X

2
= 6.99 with three degrees of freedom and a

significance level of 0.072.
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Table 7.7 Relations of Results of Semiquantitative

Culture and Catheterization

Duration of Catheterization (days)

Culture 1 2 3 ≥ 4 Total

Positivea 1b 5 5 14 25

Negative 46 64 39 76 225

Total 47 69 44 90 250

Source: Data from Maki et al. [1977].
aCulture is positive if 15 or more colonies on the primary plate.
bNumbers in the body of the table are the numbers of catheters.

Figure 7.1 Graph of percentage of cultures positive vs. duration of catheterization. The fractions 1/47,

etc., are the number of positive cultures to the total number of cultures for a particular day. (Data from

Maki et al. [1977]; see Table 7.7.)

To calculate the chi-square test for trend, we calculate the quantities [n1x], [x2], and p as

defined above.

[n1x] = 82 −

(25)(677)

250
= 14.3

[x2] = 2159 −

6772

250

.

= 325.6840

p =

25

250
= 0.1, (1 − p) = 0.9

X

2
trend =

[n1x]2

[x2]p(1 − p)

.

=

14.32

325.6840(0.1)(0.9)

.

= 6.98

This statistic has one degree of freedom associated with it, and from the chi-square Table A.3,

it can be seen that 0.005 < p < 0.01; hence there is a significant linear trend.
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Note two things about the chi-square test for trend. First, the degrees of freedom are one,

regardless of how large the value k. Second, the values of the scores chosen (x

j

) are not too

crucial, and evenly spaced scores will give more statistical power against a trend than will the

usual χ

2 test. The example above indicates one type of contingency table in which ordering is

clear: when the categories result from grouping a continuous variable.

7.4 KAPPA: MEASURING AGREEMENT

It often happens in measuring or categorizing objects that the variability of the measurement

or categorization is investigated. For example, one might have two physicians independently

judge a patient’s status as “improved,” “remained the same,” or “worsened.” A study of psy-

chiatric patients might have two psychiatrists independently classifying patients into diagnostic

categories. When we have two discrete classifications of the same object, we may put the entries

into a two-way square (r = c) contingency table. The chi-square test of this chapter may then

be used to test for association. Usually, when two measurements are taken of the same objects,

there is not much trouble showing association; rather, the concern is to study the degree or

amount of agreement in the association. This section deals with a statistic, kappa (κ), designed

for such situations. We will see that the statistic has a nice interpretation; the value of the statistic

can be taken as a measure of the degree of agreement. As we develop this statistic, we shall

illustrate it with the following example.

Example 7.4. Fisher et al. [1982] studied the reproducibility of coronary arteriography. In

the coronary artery surgery study (CASS), coronary arteriography is the key diagnostic proce-

dure. In this procedure, a tube is inserted into the heart and fluid injected that is opaque to

x-rays. By taking x-ray motion pictures, the coronary arteries may be examined for possible

narrowing, or stenosis. The three major arterial systems of the heart were judged with respect

to narrowing. Narrowing was significant if it was 70% or more of the diameter of the artery.

Because the angiographic films are a key diagnostic tool and are important in the decision about

the appropriateness of bypass surgery, the quality of the arteriography was monitored and the

amount of agreement was ascertained.

Table 7.8 presents the results for randomly selected films with two readings. One reading

was that of the patient’s clinical site and was used for therapeutic decisions. The angiographic

film was then sent to another clinical site designated as a quality control site. The quality control

site read the films blindly, that is, without knowledge of the clinical site’s reading. From these

readings, the amount of disease was classified as “none” (entirely normal), “zero-vessel disease

but some disease,” and one-, two-, and three-vessel disease.

We wish to study the amount of agreement. One possible measure of this is the proportion

of the pairs of readings that are the same. This quantity is estimated by adding up the numbers

Table 7.8 Agreement with Respect to Number of Diseased Vessels

Clinical Site Reading
Quality Control

Site Reading Normal Some One Two Three Total

Normal 13 8 1 0 0 22

Some 6 43 19 4 5 77

One 1 9 155 54 24 243

Two 0 2 18 162 68 250

Three 0 0 11 27 240 278

Total 20 62 204 247 337 870
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on the diagonal of the table; those are the numbers where both the clinical and quality control

sites read the same quantity. In such a situation, the contingency table will be square. Let r be

the number of categories (in the table of this example, r = 5). The proportion of cases with

agreement is given by

P

A

=

n11 + n22 + · · · + n

rr

n··

=

r

∑

i=1

n

ii

n··

For this table, the proportion with agreement is given by P

A

= (13+43+155+162+240)/870 =

613/870
.

= 0.7046.

The proportion of agreement is limited because it is determined heavily by the proportions

of people in the various categories. Consider, for example, a situation where each of two judges

places 90% of the measurements in one category and 10% in the second category, such as in

the following array:

81 9 90

9 1 10

90 10 100

Here there is no association whatsoever between the two measurements. In fact, the chi-square

value is precisely zero by design; there is no more agreement between the patients than that

expected by chance. Nevertheless, because both judges have a large proportion of the cases

in the first category, in 82% of the cases there is agreement; that is, P

A

= 0.82. We have a

paradox: On the one hand, the agreement seems good (there is an agreement 82% of the time);

on the other hand, the agreement is no more than can be expected by chance. To have a more

useful measure of the amount of agreement, the kappa statistic was developed to adjust for the

amount of agreement that one expects purely by chance.

If one knows the totals of the different rows and columns, the proportion of observations

expected to agree by chance is given by the following equation:

P

C

=

n1·n·1 + · · · + n

r·n·r

n

2
··

=

r

∑

i=1

n

i·n·i

n

2
··

For the angiography example, the proportion of agreement expected by chance is given by

P

C

=

22 × 20 + 77 × 62 + 243 × 204 + 250 × 247 + 278 × 337

8702

.

= 0.2777

The kappa statistic uses the fact that the best possible agreement is 1 and that, by chance, one

expects an agreement P

C

. A reasonable measure of the amount of agreement is the proportion

of difference between 1 and P

C

that can be accounted for by actual observed agreement. That

is, kappa is the ratio of the agreement actually observed minus the agreement expected by

chance, divided by 1 (which corresponds to perfect agreement), minus the agreement expected

by chance:

κ =

P

A

− P

C

1 − P

C

For our example, the computed value of kappa is

κ =

0.7046 − 0.2777

1 − 0.2777

.

= 0.59

The kappa statistic runs from −P

C

/(1 − P

C

) to 1. If the agreement is totally by chance, the

expected value is zero. Kappa is equal to 1 if and only if there is complete agreement between

the two categorizations [Cohen, 1968; Fleiss, 1981].
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Since the kappa statistic is generally used where it is clear that there will be statistically

significant agreement, the real issue is the amount of agreement. κ is a measure of the amount

of agreement. In our example, one can state that 59% of the difference between perfect agreement

and the agreement expected by chance is accounted for by the agreement between the clinical

and quality control reading sites.

Now that we have a parameter to measure the amount of agreement, we need to consider the

effect of the sample size. For small samples, the estimation of κ will be quite variable; for larger

samples it should be quite good. For relatively large samples, when there is no association, the

variance of the estimate is estimated as follows:

var0(κ) =

P

C

+ P

2
C

−

r

∑

i=1

(n

2
i·
n·i + n

i·n
2
·i
)/n

3
··

n··(1 − P

C

)

2

The subscript on var0(κ) indicates that it is the variance under the null hypothesis. The standard

error of the estimate is the square root of this quantity. κ divided by the standard error is

approximately a standard normal variable when there is no association between the quantities.

This may be used as a statistical test for association in lieu of the chi-square test [Fleiss et al.,

1969].

A more useful function of the general standard error is construction of a confidence interval

for the true κ . A 100(1−α)% confidence interval for the population value of κ for large samples

is given by

(κ − z1−α/2

√

var(κ), κ + z1−α/2

√

var(κ))

The estimated standard error, allowing for association, is the square root of

var(κ) =

∑

i=1

n

ii

n··

[

1−

(

n

i·+n·i

n··

)

(1 − κ)

]2

+

∑

i �=j

∑

n

ij

n··

[(

n·i + n

j·

n··

)

(1 − κ)

]2

−[κ − P

C

(1 − κ)]2

n··(1 − P

C

)

2

For our particular example, the estimated variance of κ is

var(κ) = 0.000449

The standard error of κ is approximately 0.0212. The 95% confidence interval is

(0.57 − 1.96 × 0.0212, 0.57 + 1.96 × 0.0212)

.

= (0.55, 0.63)

A very comprehensive discussion of the use of κ in medical research can be found in Kraemer

et al. [2002], and a discussion in the context of other ways to measure agreement is given by

Nelson and Pepe [2000].

The kappa statistic has drawbacks. First, as indicated, the small sample variance is quite

complicated. Second, while the statistic is supposed to adjust for marginal agreement is does

not really do so (see, e.g., Agresti [2002, p. 453]). Third, κ ignores the ordering of the categories

(see Maclure and Willett [1987]). Finally, it is difficult to embed κ in a statistical model: as, for

example, a function of the odds ratio or correlation coefficient. Be sure to consider alternatives

to kappa when measuring agreement; for example, the odds ratio and logistic regression as in

Chapter 6 or the log-linear models discussed in the next section.



220 CATEGORICAL DATA: CONTINGENCY TABLES

*7.5 LOG-LINEAR MODELS

For the first time we will examine statistical methods that deal with more than two variables

at one time. Such methods are important for the following reasons: In one dimension, we have

been able to summarize data with the normal distribution and its two parameters, the mean

and the variance, or equivalently, the mean and the standard deviation. Even when the data did

not appear normally distributed, we could get a feeling for our data by histograms and other

graphical methods in one dimension. When we observe two numbers at the same time, or are

working with two-dimensional data, we can plot the points and examine the data visually. (This

is discussed further in Chapter 9. Even in the case of two variables, we shall see that it is

useful to have models summarizing the data.) When we move to three variables, however, it is

much harder to get a “feeling” for the data. Possibly, in three dimensions, we could construct

visual methods of examining the data, although this would be difficult. With more than three

variables, such physical plots cannot be obtained; although mathematicians may think of space

and time as being a four-dimensional space, we, living in a three-dimensional world, cannot

readily grasp what the points mean. In this case it becomes very important to simplify our

understanding of the data by fitting a model to the data. If the model fits, it may summarize the

complex situation very succinctly. In addition, the model may point out relationships that may

reasonably be understood in a simple way. The fitting of probability models or distributions to

many variables at one time is an important topic.

The models are necessarily mathematically complex; thus, the reader needs discipline and

perseverance to work through and understand the methods. It is a very worthwhile task. Such

methods are especially useful in the analysis of observational biomedical data. We now proceed

to our first model for multiple variables, the log-linear model.

Before beginning the details of the actual model, we define some terms that we will be using.

The models we investigate are for multivariate categorical data. We already know the meaning

of categorical data: values of a variable or variables that put subjects into one of a finite number

of categories. The term multivariate comes from the prefix multi -, meaning “many,” and variate,

referring to variables; the term refers to multiple variables at one time.

Definition 7.1. Multivariate data are data for which each observation consists of values

for more than one random variable on each experimental unit. Multivariate statistical analysis

consists of data analysis of multivariate data.

The majority of data collected are, in fact, multivariate data. If one measures systolic and

diastolic blood pressure on each subject, there are two variables—thus, multivariate data. If we

administer a questionnaire on the specifics of brushing teeth, flossing, and so on, the response of

a person to each question is a separate variable, and thus one has multivariate data. Strictly speak-

ing, some of the two-way contingency table data we have looked at are multivariate data since

they cross-classify by two variables. On the other hand, tables that arose from looking at one

quantity in different subgroups are not multivariate when the group was not observed on experi-

mental units picked from a population but was part of a data collection or experimental procedure.

Additional terminology is included in the term log-linear models. We already have an idea

of the meaning of a model. Let us consider the two terms log and linear. The logarithm was

discussed in connection with the likelihood ratio chi-square statistics. (In this section, and indeed

throughout this book, the logarithm will be to the base e.) Recall, briefly some of the properties

of the logarithm. Of most importance to us is that the log of the product of terms is the sum of

the individual logs. For example, if we have three numbers, a, b, and c (all positive), then

ln(abc) = ln a + ln b + ln c

Here, “ln” represents the natural logarithm, the log to the base e. Recall that by the definition

of natural log, if one exponentiates the logarithm—that is, takes the number e to the power
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represented by the logarithm—one gets the original number back:

e

ln a

= a

Inexpensive hand calculators compute both the logarithm and the exponential of a number.

If you are rusty with such manipulations, Problem 7.24 will give you practice in the use of

logarithms and exponentials.

The second term we have used is the term linear. It is associated with a straight line or a

linear relationship. For two variables x and y, y is a linear function of x if y = a + bx, where

a and b are constants. For three variables, x, y, and z, z is a linear function of x and y if

z = a + bx + cy, where a, b, and c are constant. In general, in a linear relationship, one adds

a constant multiple for each of the variables involved. The linear models we use will look like

the following: Let

g

IJ

ij

be the logarithm of the probability that an observation falls into the ij th cell in the two-

dimensional contingency table. Let there be I rows and J columns. One possible model would be

g

IJ

ij

= u + u

I

i

+ u

J

j

(For more detail on why the term linear is used for such models, see Note 7.4.)

We first consider the case of two-way tables. Suppose that we want to fit a model for

independence. We know that independence in terms of the cell probabilities π

ij

is equivalent to

the following equation:

π

ij

= π

i·π·j

If we take logarithms of this equation and use the notation g

ij

for the natural log of the cell

probability, the following results:

g

ij

= ln π

ij

= ln π

i· + ln π·j

When we denote the natural logs of π

i· and π·j by the quantities h

I

i

and h

J

j

, we have

g

ij

= h

I

i

+ h

J

j

The quantities h

I

i

and h

J

j

are not all independent. They come from the marginal probabilities

for the I row variables and the J column variables. For example, the h

I

i

’s satisfy the equation

e

h

I

1 + e

h

I

2 + · · · + e

h

I

I = 1

This equation is rather awkward and unwieldy to work with; in particular, given I − 1 of the

h

i

’s, determination of the other coefficient takes a bit of work. It is possible to choose a different

normalization of the parameters if we add a constant. Rewrite the equation above as follows:

g

ij

=

(

I

∑

i

′
=1

h

I

i

′

I

)

+





J

∑

j

′
=1

h

J

j

′

J



 +

(

h

I

i

−

I

∑

i

′
=1

h

I

i

′

I

)

+





h

J

j

−

J

∑

j

′
=1

h

J

j

′

J
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The two quantities in parentheses farthest to the right both add to zero when we sum over the

indices i and j , respectively. In fact, that is why those terms were added and subtracted. Thus,

we can rewrite the equation for g

ij

as follows:

g

ij

= u + u

I

i

+ u

J

j

, i = 1, . . . , I, j = 1, . . . , J

where

I

∑

i=1

u

I

i

= 0,

J

∑

j=1

u

J

j

= 0

It is easier to work with this normalization. Note that this is a linear model for the log of the

cell probability π

ij

; that is, this is a log-linear model.

Recall that estimates for the π

i· and π·j were n

i·/n·· and n·j/n··, respectively. If one follows

through all of the mathematics involved, estimates for the parameters in the log-linear model

result. At this point, we shall slightly abuse our notation by using the same notation for both

the population parameter values and the estimated parameter values from the sample at hand.

The estimates are

u =

1

I

I

∑

i=1

ln
n

i·

n··

+

1

J

J

∑

j=1

ln
n·j

n··

u

I

i

= ln
n

i·

n··

−

1

I

I

∑

i

′
=1

ln
n

i

′·

n··

u

J

j

= ln
n·j

n··

−

1

J

I

∑

j

′
=1

ln
n·j ′

n··

From these estimates we get fitted values for the number of observations in each cell. This

is done as follows: By inserting the estimated parameters from the log-linear model and then

taking the exponential, we have an estimate of the probability that an observation falls into the

ij th cell. Multiplying this by n··, we have an estimate of the number of observations we should

see in the cell if the model is correct. In this particular case, the fitted value for the ij th cell

turns out to be the expected value from the chi-square test presented earlier in this chapter, that

is, n

i·n·j/n··.

Let us illustrate these complex formulas by finding the estimates for one of the examples

above.

Example 7.1. (continued ) We know that for the 2 × 4 table, we have the following values:

n·1 = 18, n·2 = 31, n·3 = 16, n·4 = 72, n1· = 69, n2· = 68, n·· = 137

ln(n1·/n··)
.

= −0.6859, ln(n2·/n··)
.

= −0.7005

ln(n·1/n··)
.

= −2.0296, ln(n·2/n··)
.

= −1.4860

ln(n·3/n··)
.

= −2.1474, ln(n·4/n··)
.

= −0.6433
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With these numbers, we may compute the parameters for the log-linear model. They are

u

.

=

−0.6859 − 0.7005

2
+

−2.0296 − 1.4860 − 2.1474 − 0.6433

4
.

= −0.6932 − 1.5766 = −2.2698

u

J

1

.

= −2.0296 − (−1.5766)

.

= −0.4530

u

I

1

.

= −0.6859 − (−0.6932)

.

= 0.0073 u

J

2

.

= −1.4860 − (−1.5766)

.

= 0.0906

u

I

2

.

= −0.7004 − (−0.6932)

.

= −0.0073 u

J

3

.

= −2.1474 − (−1.5766)

.

= −0.5708

u

J

4

.

= −0.6433 − (−1.5766)

.

= 0.9333

The larger the value of the coefficient, the larger will be the cell probability. For example,

looking at the two values indexed by i, the second state having a minus sign will lead to a

slightly smaller contribution to the cell probability than the term with the plus sign. (This is

also clear from the marginal probabilities, which are 68/137 and 69/137.) The small magnitude

of the term means that the difference between the two I state values has very little effect on

the cell probability. We see that of all the contributions for the j variable values, j = 4 has

the biggest effect, 1 and 3 have fairly large effects (tending to make the cell probability small),

while 2 is intermediate.

The chi-square goodness of fit and the likelihood ratio chi-square statistics that may be

applied to this setting are

X

2
=

∑

(observed − fitted)

2

fitted

lrx
2

= 2
∑

(

observed ln
observed

fitted

)

Finally, if the model for independence does not hold, we may add more parameters. We can

find a log-linear model that will fit any possible pattern of cell probabilities. The equation for

the log of the cell probabilities is given by the following:

g

ij

= u + u

I

i

+ u

J

j

+ u

IJ

ij

, i = 1, . . . , I, j = 1, . . . , J

where
I

∑

i=1

u

I

i

= 0,

J

∑

j=1

u

J

j

= 0,

I

∑

i=1

u

IJ

ij

= 0,

J

∑

j=1

u

IJ

ij

= 0

It seems rather paradoxical, or at least needlessly confusing, to take a value indexed by i

and j and to set it equal to the sum of four values, including some indexed by i and j ; the

right-hand side is much more complex than the left-hand side. The reason for doing this is that,

usually, the full (or saturated) model, which can give any possible pattern of cell probabilities,

is not desirable. It is hoped during the modeling effort that the data will allow a simpler model,

which would allow a simpler interpretation of the data. In the case at hand, we examine the

possibility of the simpler interpretation that the two variables are independent. If they are not,

the particular model is not too useful.

Note two properties of the fitted values. First, in order to fit the independence model, where

each term depends on at most one factor or one variable, we only needed to know the marginal

values of the frequencies, the n

i· and n·j . We did not need to know the complete distribution of

the frequencies to find our fitted values. Second, when we had fit values to the frequency table,

the fitted values summed to the marginal value used in the estimation; that is, if we sum across

i or j , the sum of the expected values is equal to the sum actually observed.
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At this point it seems that we have needlessly confused a relatively easy matter: the analysis

of two-way contingency tables. If only two-way contingency tables were involved, this would

be a telling criticism; however, the strength of log-linear models appears when we have more

than two cross-classified categorical variables. We shall now discuss the situation for three cross-

classified categorical variables. The analyses may be extended to any number of variables, but

such extensions are not done in this book.

Suppose that the three variables are labeled X, Y , and Z, where the index i is used for the X

variable, j for the Y variable, and k for the Z variable. (This is to say that X will take values

1, . . . , I, Y will take on 1, . . . , J , and so on.) The methods of this section are illustrated by the

following example.

Example 7.5. The study of Weiner et al. [1979] is used in this example. The study involves

exercise treadmill tests for men and women. Among men with chest pain thought probably to

be angina, a three-way classification of the data is as follows: One variable looks at the resting

electrocardiogram and tells whether or not certain parts of the electrocardiogram (the ST- and

T-waves) are normal or abnormal. Thus, J = 2. A second variable considers whether or not

the exercise test was positive or negative (I = 2). A positive exercise test shows evidence of

an ischemic response (i.e., lack of appropriate oxygen to the heart muscles for the effort being

exerted). A positive test is thought to be an indicator of coronary artery disease. The third variable

was an evaluation of the coronary artery disease as determined by coronary arteriography. The

disease is classified as normal or minimal disease, called zero-vessel disease, one-vessel disease,

and multiple-vessel disease (K = 3). The data are presented in Table 7.9.

The most general log-linear model for the three factors is given by the following extension

of the two-factor work:

g

ijk

= u + u

I

i

+ u

J

j

+ u

K

k

+ u

IJ

ij

+ u

IK

ik

+ u

JK

jk

+ u

IJK

ijk

where

I

∑

i=1

u

I

i

=

J

∑

j=1

u

J

j

=

K

∑

k=1

u

K

k

= 0

I

∑

i=1

u

IJ

ij

=

J

∑

j=1

u

IJ

ij

=

I

∑

i=1

u

IK

ik

=

K

∑

k=1

u

IK

ik

=

J

∑

j=1

u

JK

jk

=

K

∑

k=1

u

JK

jk

= 0

I

∑

i=1

u

IJK

ijk

=

J

∑

j=1

u

IJK

ijk

=

K

∑

k=1

u

IJK

ijk

= 0

Table 7.9 Exercise Test Data

Number of Vessels Diseased (K)

Exercise Test Resting Electrocardiogram 0 1 2 or 3

Response (I ) ST- and T-Waves (J ) (k = 1) (k = 2) (k = 3)

+ Normal (j = 1) 30 64 147

(i = 1) Abnormal (j = 2) 17 22 80

− Normal (j = 1) 118 46 38

(i = 2) Abnormal (j = 2) 14 7 11

Source: Weiner et al. [1979].
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In other words, there is a u term for every possible combination of the variables, including

no variables at all. For each term involving one or more variables, if we sum over any one

variable, the sum is equal to zero. The term involving I , J , and K is called a three-factor term,

or a second-order interaction term; in general, if a coefficient involves M variables, it is called

an M-factor term or an (M − 1)th-order interaction term.

With this notation we may now formulate a variety of simpler models for our three-way

contingency table. For example, the model might be any one of the following simpler models:

H1 : g

ijk

= u + u

I

i

+ u

J

j

+ u

K

k

H2 : g

ijk

= u + u

I

i

+ u

J

j

+ u

K

k

+ u

IJ

ij

H3 : g

ijk

= u + u

I

i

+ u

J

j

+ u

K

k

+ u

IJ

ij

+ u

IK

ik

+ u

JK

jk

The notation has become so formidable that it is useful to introduce a shorthand notation for

the hypotheses. One or more capitalized indices contained in brackets will indicate a hypothesis

where the terms involving that particular set of indices as well as any terms involving subsets

of the indices are to be included in the model. Any terms not specified in this form are assumed

not to be in the model. For example,

[IJ ] −→ u + u

I

i

+ u

J

j

+ u

IJ

ij

[K] −→ u + u

K

k

[IJK] −→ u + u

I

i

+ u

J

j

+ u

K

k

+ u

IJ

ij

+ u

IK

ik

+ u

JK

jk

+ u

IJK

ijk

The formulation of the three hypotheses given above in this notation would be simplified as

follows:

H1 : [I ][J ][K]

H2 : [IJ ][K]

H3 : [IJ ][IK][JK]

This notation describes a hierarchical hypothesis; that is, if we have two factor terms con-

taining, say, variables I and J , we also have the one-factor terms for the same variables. The

hypothesis would not be written [IJ ][I ][J ], for example, because the last two parts would be

redundant, as already implied by the first. Using this bracket notation for the three-factor model,

there are eight possible hypotheses of interest. All except the most complex one have a simple

interpretation in terms of the probability relationships among the factors X, Y , and Z. This is

given in Table 7.10.

Hypotheses 5, 6, and 7 are of particular interest. Take, for example, hypothesis 5. This

hypothesis states that if you take into account the X variable, there is no association between

Y and Z. In particular, if one only looks at the two-way table of Y and Z, an association may

be seen, because in fact they are associated. However, if hypothesis 5 holds, one could then

conclude that the association is due to interaction with the variable X and could be “explained

away” by taking into account the values of X.

There is a relationship between hypotheses involving the bracket notation and the correspond-

ing tables that one gets from the higher-dimensional contingency table. For example, consider

the term [IJ ]. This is related to the contingency table one gets by summing over K (i.e., over

the Z variable). In general, a contingency table that results from summing over the cells for one

or more variables in a higher-dimensional contingency table is called a marginal table. Very

simple examples of marginal tables are the marginal total column and the marginal total row

along the bottom of the two-way table.
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Table 7.10 Three-Factor Hypotheses and their Interpretation

Hypothesis Restated

Hypothesis Meaning in Words in Terms of the π

ijk

’s

1. [I ][J ][K] X, Y , and Z are independent π

ijk

= π

i··π·j·π··k

2. [IJ ][K] Z is independent of X and Y π

ijk

= π

ij·π··k

3. [ IK ][J ] Y is independent of X and Z π

ijk

= π

i·kπ·j·

4. [ I ][ JK ] X is independent of Y and Z π

ijk

= π

i··π·jk

5. [ IJ ][ IK ] For X known, Y and Z are independent; π

ijk

= π

ij.

π

i.k

/π

i··

that is, Y and Z are conditionally

independent given X

6. [ IJ ][ JK ] X and Z are conditionally independent π

ijk

= π

ij.

π

.jk

/π

.j.

given Y

7. [ IK ][ JK ] X and Y are conditionally independent π

ijk

= π

i.k

π

.jk

/π··k

given Z

8. [ IJ ][ IK ][ JK ] No three-factor interaction No simple form

Using the idea of marginal tables, we can discuss some properties of fits of the various

hierarchical hypotheses for log-linear models. Three facts are important:

1. The fit is estimated using only the marginal tables associated with the bracket terms that

state the hypothesis. For example, consider hypothesis 1, the independence of the X,

Y , and Z variables. To compute the estimated fit, one only needs the one-dimensional

frequency counts for the X, Y , and Z variables individually and does not need to know

the joint relationship between them.

2. Suppose that one looks at the fitted estimates for the frequencies and sums the fitted

values to give marginal tables. The marginal sum for the fit is equal to the marginal table

for the actual data set when the marginal table is involved in the fitting.

3. The chi-square and likelihood ratio chi-square tests discussed above using the observed

and fitted values still hold.

We consider fitting hypothesis 5 to the data of Example 7.5. The hypothesis stated that if one

knows the response to the maximal treadmill test, the resting electrocardiogram ST- and T-wave

abnormalities are independent of the number of vessels diseased. The observed frequencies and

the fitted frequencies, as well as the values of the u-parameters for this model, are given in

Table 7.11.

The relationship between the fitted parameter values and the expected, or fitted, number of

observations in a cell is given by the following equations:

π̂

ijk

= e

u+u

I

i

+u

J

j

+u

K

k

+u

IJ

ij

+u

IK

ik

The fitted value = n···π̂ijk

, where n··· is the total number of observations.

For these data, we compute the right-hand side of the first equation for the (1,1,1) cell. In this

case,

π̂111 = exp(−2.885 + 0.321 + 0.637 − 0.046 − 0.284 − 0.680)

= e

−2.937 .

= 0.053

fitted value
.

= 594 × 0.053
.

= 31.48
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Table 7.11 Fitted Model for the Hypothesis That the Resting Electrocardiogram ST- and T-Wave

(Normal or Abnormal) Is Independent of the Number of Vessels Diseased (0, 1, and 2–3)

Conditionally upon Knowing the Exercise Response (+ or −)

Cell (i, j , k) Observed Fitted u-Parameters

(1,1,1) 30 31.46 u = −2.885

(1,1,2) 64 57.57 u

I

1 = −u

I

2 = 0.321

(1,1,3) 147 151.97 u

J

1 = −u

J

2 = 0.637

(1,2,1) 17 15.54 u

K

1 = −0.046, u

K

2 = −0.200

(1,2,2) 22 28.43 u

K

3 = 0.246

(1,2,3) 80 75.04 u

IJ

1,1 = −0.284, u

IJ

1,2 = 0.284

(2,1,1) 118 113.95 u

IJ

2,1 = 0.284, u

IJ

2,2 = −0.284

(2,1,2) 46 45.75 u

IK

1,1 = −0.680, u

IK

1,2 = 0.078

(2,1,3) 38 42.30 u

IK

1,3 = 0.602

(2,2,1) 14 18.05 u

IK

2,1 = 0.680, u

IK

2,2 = −0.078

(2,2,2) 7 7.25 u

IK

2,3 = −0.602

(2,2,3) 11 6.70

where exp(argument) is equal to the number e raised to a power equal to the argument. The com-

puted value of 31.48 differs slightly from the tabulated value, because the tabulated value came

from computer output that carried more accuracy than the accuracy used in this computation.

We may test whether the hypothesis is a reasonable fit by computing the chi-square value

under this hypothesis. The likelihood ratio chi-square value is computed as follows:

LRX2
= 2(30 ln

30

31.46
+ · · · + 11 ln

11

6.70
)

.

= 6.86

To assess the statistical significance we need the degrees of freedom to examine the chi-square

value. For the log-linear model the degrees of freedom is given by the following rule:

Rule 1. The chi-square statistic for model fit of a log-linear model has degrees of freedom

equal to the total number of cells in the table (I × J × K) minus the number of independent

parameters fitted. By independent parameters we mean the following: The number of parameters

fitted for the X variable is I − 1 since the u

I

i

terms sum to zero. For each of the possible terms

in the model, the number of independent parameters is given in Table 7.12.

For the particular model at hand, the number of independent parameters fitted is the sum of

the last column in Table 7.13. There are 12 cells in the table, so that the number of degrees of

freedom is 12 − 8, or 4. The p-value for a chi-square of 6.86 for four degrees of freedom is

0.14, so that we cannot reject the hypothesis that this particular model fits the data.

We are now faced with a new consideration. Just because this model fits the data, there may

be other models that fit the data as well, including some simpler model. In general, one would

like as simple a model as possible (Occam’s razor); however, models with more parameters

generally give a better fit. In particular, a simpler model may have a p-value much closer to the

significance level that one is using. For example, if one model has a p of 0.06 and is simple, and

a slightly more complicated model has a p of 0.78, which is to be preferred? If the sample size

is small, the p of 0.06 may correspond to estimated cell values that differ considerably from the

actual values. For a very large sample, the fit may be excellent. There is no hard-and-fast rule

in the trade-off between the simplicity of the model and the goodness of the fit. To understand

the data, we are happy with the simple model that fits fairly well, although presumably, it is

not precisely the probability model that would fit the entirety of the population values. Here we

would hope for considerable scientific understanding from the simple model.
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Table 7.12 Degrees of Freedom

for Log-Linear Model Chi-Square

Term Number of Parameters

u 1

u

I

i

I − 1

u

J

j

J − 1

u

K

k

K − 1

u

IJ

ij

(I − 1)(J − 1)

u

IK

ik

(I − 1)(K − 1)

u

JK

jk

(J − 1)(K − 1)

u

IJK

ijk

(I − 1)(J − 1)(K − 1)

Table 7.13 Parameters for Example 7.5

Number of Parameters

Model Terms General Example 7.5

u 1 1

u

I

i

I − 1 1

u

J

j

J − 1 1

u

K

k

K − 1 2

u

IJ

ij

(I − 1)(J − 1) 1

u

IK

ik

(I − 1)(K − 1) 2

Table 7.14 Chi-Square Goodness-of-Fit Statistics

for Example 7.5 Data

Model d.f. LRX2
p-Value X

2

[I ][J ][K] 7 184.21 < 0.0001 192.35

[IJ ][K] 6 154.35 < 0.0001 149.08

[IK ][J ] 5 36.71 < 0.0001 34.09

[I ][JK] 5 168.05 < 0.0001 160.35

[IJ ][IK] 4 6.86 0.14 7.13

[IJ ][JK] 4 138.19 < 0.0001 132.30

[IK ][JK] 3 20.56 0.0001 21.84

[IJ ][IK][JK] 2 2.96 0.23 3.03

For this example, Table 7.14 shows for each of the eight possible models the degrees of

freedom (d.f.), the LRX2 value (with its corresponding p-value for reference), and the “usual”

goodness-of-fit chi-square value. We see that there are only two possible models if we are to

simplify at all rather than using the entire data set as representative. They are the model fit

above and the model that contains each of the three two-factor interactions. The model fit above

is simpler, while the other model below has a larger p-value, possibly indicating a better fit.

One way of approaching this is through what are called nested hypotheses.

Definition 7.2. One hypothesis is nested within another if it is the special case of the

other hypothesis. That is, whenever the nested hypothesis holds it necessarily implies that the

hypothesis it is nested in also holds.
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If nested hypotheses are considered, one takes the difference between the likelihood ratio chi-

square statistic for the more restrictive hypothesis, minus the likelihood ratio chi-square statistic

for the more general hypothesis. This difference will itself be a chi-square statistic if the special

case holds. The degrees of freedom of the difference is equal to the difference of freedom for

the two hypotheses. In this case, the chi-square statistic for the difference is 6.86−2.96 = 3.90.

The degrees of freedom are 4 − 2 = 2. This corresponds to a p-value of more than 0.10. At

the 5% significance level, there is marginal evidence that the more general hypothesis does

fit the data better than the restrictive hypothesis. In this case, however, because of the greater

simplicity of the restrictive hypothesis, one might choose it to fit the data. Once again, there is

no hard and fast answer to the payoff between fit of the data and simplicity of interpretation of

a hypothesis.

This material is an introduction to log-linear models. There are many extensions, some of

which are mentioned briefly in the Notes at the end of the chapter. An excellent introduction

to log-linear models is given in Fienberg [1977]. Other elementary books on log-linear models

are those by Everitt [1992] and Reynolds [1977]. A more advanced and thorough treatment is

given by Haberman [1978, 1979]. A text touching on this subject and many others is Bishop

et al. [1975].

NOTES

7.1 Testing Independence in Model 1 and Model 2 Tables

This note refers to Section 7.2.

1. Model 1. The usual null hypothesis is that the results are statistically independent. That

is (assuming row variable = i and column variable = j ):

P [i and j ] = P [i]P [j ]

The probability on the left-hand side of the equation is π

ij

. From Section 7.2, the marginal

probabilities are found to be

π

i· =

c

∑

j=1

π

ij

and π·j =

r

∑

i=1

π

ij

The null hypothesis of statistical independence of the variables is

H0 : π

ij

= π

i·π·j

Consider how one might estimate these probabilities under two circumstances:

a. Without assuming the variables are independent.

b. Assuming the variables are independent.

In the first instance we are in a binomial situation. Let a success be the occurrence of the

ij th pair. Let

n·· =

r

∑

i=1

c

∑

j=1

n

ij
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The binomial estimate for π

ij

is the number of successes divided by the number of trials:

p

ij

=

n

ij

n··

If we assume independence, the natural approach is to estimate π

i· and π·j . But the occurrence

of state i for the row variable is also a binomial event. The estimate of π

i· is the number of

occurrences of state i for the row variable (n

i·) divided by the sample size (n··). Thus,

p

i· =

n

i·

n··

Similarly, π·j is estimated by

p·j =

n·j

n··

Under the hypothesis of statistical independence, the estimate of π

i·π·j = π

ij

is

n

i·n·j

n

2
··

The chi-square test will involve comparing estimates of the expected number of observations

with and without assuming independence. With independence, we expect to observe n··πij

entries in the ij th cell. This is estimated by

n··pi·p·j =

n

i·n·j

n··

2. Model 2. Suppose that the row variable identifies the population. The null hypothesis is

that all r populations have the same probabilities of taking on each value of the column variable.

That is, for any two rows, denoted by i and i

′, say, and all j ,

H0 : π

ij

= π

i

′
j

As in the first part above, we want to estimate these probabilities in two cases:

a. Without assuming anything about the probabilities.

b. Under H0, that is, assuming that each population has the same distribution of the

column variable.

Under (a), if no assumptions are made, π

ij

is the probability of obtaining state j for the

column variable in the n

i· trials from the ith population. Again the binomial estimate holds:

p

ij

=

n

ij

n

i·

If the null hypothesis holds, we may “pool” all our n·· trials to get a more accurate estimate of

the probabilities. Then the proportion of times the column variable takes on state j is

p

j

=

n·j

n···
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As in the first part, let us calculate the numbers we expect in the cells under (a) and (b). If

(a) holds, the expected number of successes in the n

i· trials of the ith population is n

i·πij

. We

estimate this by

n

i·(

n

ij

n

i·

) = n

ij

Under the null hypothesis, the expected number n

i·πij

is estimated by

n

i·pj

=

n

i·n·j

n··

In summary, under either model 1 or model 2, the null hypothesis is reasonably tested by

comparing n

ij

with n

i·n·j/n··.

7.2 Measures of Association in Contingency Tables

Suppose that we reject the null hypothesis of no association between the row and column

categories in a contingency table. It is useful then to have a measure of the degree of association.

In a series of papers, Goodman and Kruskal [1979] argue that no single measure of association

for contingency tables is best for all purposes. Measures must be chosen to help with the problem

at hand. Among the measures they discuss are the following:

1. Measure λ

C

. Call the row variable or row categorization R and the column variable or

column categorization C. Suppose that we wish to use the value of R to predict the value of C.

The measure λ

C

is an estimate of the proportion of the errors made in classification if we do

not know R that can be eliminated by knowing R before making a prediction. From the data,

λ

C

is given by

λ

C

=

(
∑

r

i=1 max
j

n

ij

)

− max
j

n·j

n·· − max
j

n·j

λ

R

is defined analogously.

2. Symmetric measure λ. λ

C

does not treat the row and column classifications symmetrically.

A symmetric measure may be found by assuming that the chances are 1/2 and 1/2 of needing to

predict the row and column variables, respectively. The proportion of the errors in classification

that may be reduced by knowing the other (row or column variable) when predicting is estimated

by λ:

λ =

(
∑

r

i=1 max
j

n

ij

)

+

(

∑

c

j=1 max
i

n

ij

)

− max
i

n

i· − max
j

n·j

2n·· − (max
i

n

i· + max
j

n·j )

3. Measure γ for ordered categories. In many applications of contingency tables the cate-

gories have a natural order: for example, last grade in school, age categories, number of weeks

hospitalized. Suppose that the orderings of the variables correspond to the indices i and j for

the rows and columns. The γ measure is the difference in the proportion of the time that the two

measures have the same ordering minus the proportion of the time that they have the opposite

ordering, when there are no ties. Suppose that the indices for the two observations are i, j and

i, j . The indices have the same ordering if

(1)i < i and j < j or (2)i > i and j > j
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They have the opposite ordering if

(1) i < i and j > j or (2) i > i and j < j

There are ties if i = i and/or j = j . The index is

γ =

2S − 1 + T

1 − T

where

S = 2

r

∑

i=1

c

∑

j=1

n

ij

∑

i>i

∑

j>j

nij

n

2
··

and

T =

∑

r

i=1

(

∑

c

j=1 n

ij

)2
+

∑

c

j=1

(
∑

r

i=1 n

ij

)2
−

∑

r

i=1

∑

c

j=1 n

2
ij

n

2
··

4. Karl Pearson’s contingency coefficient, C. Since the chi-square statistic (X

2
) is based

on the square of the difference between the values observed in the contingency table and the

values estimated, if association does not hold, it is reasonable to base a measure of association

on X

2. However, chi-square increases as the sample size increases. One would like a measure

of association that estimated a property of the total population. For this reason, X

2
/n·· is used

in the next three measures. Karl Pearson proposed the measure C.

C =

√

X

2
/n··

1 + X

2
/n··

5. Cramer’s V . Harold Cramer proposed a statistic with values between 0 and 1. The coef-

ficient can actually attain both values.

V =

√

X

2
/n··

minimum(r − 1, c − 1)

6. Tshuprow’s T , and the �

2 coefficient. The two final coefficients based on X

2 are

T =

√

X

2
/n··

√

(r − 1)(c − 1)

and � =

√

X

2
/n··

We compute these measures of association for two contingency tables. The first table comes

from the Robertson [1975] seat belt paper discussed in the text. The data are taken for 1974 cars

with the interlock system. They relate age to seat belt use. The data and the column percents

are given in Table 7.15. Although the chi-square value is 14.06 with p = 0.007, we can see

from the column percentages that the relationship is weak. The coefficients of association are

λ

C

= 0, λ = 0.003, C = 0.08, T = 0.04

λ

R

= 0.006, γ = −0.03, V = 0.06, � = 0.08
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Table 7.15 Seat Belt Data by Age

Age (Years) Column Percents (Age)

Belt Use <30 30–49 ≥ 50 < 30 30–49 ≥ 50

Lap and shoulder 206 580 213 45 50 45

Lap only 36 125 65 8 11 14

None 213 459 192 47 39 41

100 100 100

In general, all these coefficients lie between −1 or 0, and +1. They are zero if the variables are

not associated at all. These values are small, indicating little association.

Consider the following data from Weiner et al. [1979], relating clinical diagnosis of chest

pain to the results of angiographic examination of the coronary arteries:

Frequency Row Percents

(Vessels Diseased) (Vessels Diseased)

Chest Pain 0 1 2 or 3 0 1 2 or 3 Total

Definite angina 66 135 419 11 22 68 101

Probable angina 179 139 276 30 23 46 99

Nonischemic 197 39 15 78 16 6 100

The chi-square statistic is 418.48 with a p-value of effectively zero. Note that those with

definite angina were very likely (89%) to have disease, and even the probability of having

multivessel disease was 68%. Chest pain thought to be nonischemic was associated with “no

disease” 78% of the time. Thus, there is a strong relationship. The measures of association

are

λ

C

= 0.24, λ = 0.20, C = 0.47, T = 0.38

λ

R

= 0.16, γ = −0.64, V = 0.38, � = 0.53

More information on these measures of association and other potentially useful measures is

available in Reynolds [1977] and in Goodman and Kruskal [1979].

7.3 Testing for Symmetry in a Contingency Table

In a square table, one sometimes wants to test the table for symmetry. For example, when

examining two alternative means of classification, one may be interested not only in the amount

of agreement (κ), but also in seeing that the pattern of misclassification is the same. In this

case, estimate the expected value in the ij th cell by (n

ij

+ n

ji

)/2. The usual chi-square value is

appropriate with r(r − 1)/2 degrees of freedom, where r is the number of rows (and columns).

See van Belle and Cornell [1971].

7.4 Use of the Term Linear in Log-Linear Models

Linear equations are equations of the form y = c+a1X1 +a2X2 +· · ·+a

n

X

n

for some variables

X1, . . . , X

n

and constants c and a1, . . . , a

n

. The log-linear model equations can be put into

this form. For concreteness, consider the model [IJ ][K], where i = 1, 2, j = 1, 2, and k = 1, 2.

Define new variables as follows:
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X1 =

{

1 if i = 1,

0 if i = 2;
X2 =

{

1 if i = 2,

0 if i = 1;
X3 =

{

1 if j = 1,

0 if j = 2;

X4 =

{

1 if j = 2,

0 if j = 1
X5 =

{

1 if k = 1,

0 if k = 2
X6 =

{

1 if k = 2,

0 if k = 1,

X7 =

{

1 if i = 1, j = 1,

0 otherwise;
X8 =

{

1 if i = 1, j = 2,

0 otherwise;

X9 =

{

1 if i = 2, j = 1,

0 otherwise
X10 =

{

1 if i = 2, j = 2,

0 otherwise

Then the model is

log π

ijk

= u + u

I

1X1 + u

I

2X2 + u

J

1 X3 + u

J

2 X4 + u

K

1 X5 + u

K

2 X6

+ u

IJ

1,1X7 + u

IJ

1,2X8 + u

IJ

2,1X9 + u

IJ

2,2X10

Thus the log-linear model is a linear equation of the same form as y = c + a1X1 + a2X2 +

· · · + a

n

X

n

. We discuss such equations in Chapter 11. Variables created to pick out a certain

state (e.g., i = 2) by taking the value 1 when the state occurs, and taking the value 0 otherwise,

are called indicator or dummy variables.

7.5 Variables of Constant Probability in Log-Linear Models

Consider the three-factor X, Y , and Z log-linear model. Suppose that Z terms are entirely

“omitted” from the model, for example, [IJ ] or

log π

ijk

= u + u

I

i

+ u

J

j

+ u

IJ

ij

The model then fits the situation where Z is uniform on its state; that is,

P [Z = k] =

1

k

, k = 1, . . . , K

7.6 Log-Linear Models with Zero Cell Entries

Zero values in the contingency tables used for log-linear models are of two types. Some arise

as sampling zeros (values could have been observed, but were not in the sample). In this case,

if zeros occur in marginal tables used in the estimation:

• Only certain u-parameters may be estimated.

• The chi-square goodness-of-fit statistic has reduced degrees of freedom.

Some zeros are necessarily fixed; for example, some genetic combinations are fatal to off-

spring and will not be observed in a population. Log-linear models can be used in the analysis

(see Bishop et al., [1975]; Haberman [1979]; Fienberg [1977]).

7.7 GSK Approach to Higher-Dimensional Contingency Tables

The second major method of analyzing multivariate contingency tables is due to Grizzle et al.

[1969]. They present an analysis method closely related to multiple regression (Chapter 11). Ref-

erences in which this method are considered are Reynolds [1977] and Kleinbaum et al. [1988].
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PROBLEMS

In Problems 7.1–7.9, perform the following tasks as well as any other work requested. Prob-

lems 7.1–7.5 are taken from the seat belt paper of Robertson [1975].

(a) If a table of expected values is given with one or more missing values, compute

the missing values.

(b) If the chi-square value is not given, compute the value of the chi-square statistic.

(c) State the degrees of freedom.

(d) State whether the chi-square p-value is less than or greater than 0.01, 0.05, and

0.10 .

(e) When tables are given with missing values for the adjusted residual values, p-

values and (r − 1) × (c − 1) × p-values, fill in the missing values.

(f) When percent tables are given with missing values, fill in the missing percent-

ages for the row percent table, column percent table, and total percent table, as

applicable.

(g) Using the 0.05 significance level, interpret the findings. (Exponential notation is

used for some numbers, e.g., 34, 000 = 3.4×104
= 3.4E4; 0.0021 = 2.1×10−3

=

2.1E − 3.)

(h) Describe verbally what the row and column percents mean. That is, “of those

with zero vessels diseased . . . ,” and so on.

7.1 In 1974 vehicles, seat belt use was considered in association with the ownership of the

vehicle. (“L/S” means “both lap and shoulder belt.”)

Ownership

Belt Use Individuals Rental Lease Other Corporate

L/S 583 145 86 182

Lap Only 139 24 24 31

None 524 59 74 145

Expected

615.6 112.6 90.9 176.9

134.7 24.7 19.9 38.7

495.7 90.7 ? ?

Adjusted Residuals

−2.99 ? −0.76 0.60

0.63 −0.15 1.02 −1.44

2.65 −4.55 ? 0.31

p−Values

0.0028 5E − 6 0.4481 0.5497

0.5291 0.8821 ? ?

0.0080 5.3E − 6 0.8992 0.7586

(r − 1) × (c − 1) × p− Values

0.017 3E − 5 1+ 1+

1+ 1+ 1+ 0.8869

0.048 3E − 5 1+ 1+

Column Percents

47 ? 47 51

11 11 13 9

42 ? ? 41

d.f. =?

X

2
= 26.72
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7.2 In 1974 cars, belt use and manufacturer were also examined. One hundred eighty-nine

cars from “other” manufacturers are not entered into the table.

Manufacturer

Belt Use GM Toyota AMC Chrysler Ford VW

L/S 498 25 36 74 285 33

Lap only 102 5 12 29 43 11

None 334 18 30 67 259 51

Adjusted Residuals

3.06 0.33 −0.65 −1.70 −0.69 −3.00

0.49 −0.03 ? 2.89 −3.06 0.33

−3.43 −0.32 −0.23 −0.08 2.63 ?

p−Values

0.0022 0.7421 0.5180 0.0898 0.4898 0.0027

0.6208 0.9730 ? 0.0039 0.0022 0.7415

0.0006 0.7527 ? 0.9366 0.0085 0.0043

Column Percents

53 52 46 44 49 ?

11 10 15 17 7 ?

36 38 38 39 ? ?

d.f. =?

X

2
= 34.30

7.3 The relationship between belt use and racial appearance in the 1974 models is given

here. Thirty-four cases whose racial appearance was “other” are excluded from this

table.

Racial Appearance

Belt Use White Black

L/S 866 116

Lap only 206 20

None 757 102

Expected

868.9 113.1

? 26.0

? 98.9

Adjusted Residuals

−0.40 0.40

1.33 −1.33

? ?

p−Values

0.69 0.69

? ?

0.67 0.67

d.f. =?

X

2
=?

7.4 The following data are given as the first example in Note 7.2. In the 1974 cars, belt

use and age were cross-tabulated.
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Expected

217.59 556.64 ?

49.22 125.93 ?

? 481.42 194.39

Adjusted Residuals

? 2.06 −1.23

−2.26 −0.13 ?

2.67 −2.00 −0.25

p−Values

0.219 ? 0.217

0.024 0.895 0.017

0.007 ? 0.799

(r − 1) × (c − 1) × p−Values

0.88 0.16 0.87

? ? ?

0.03 0.18 1+

Column %s

45 ? 45

? ? 14

47 39 41

Row %s

? ? ?

16 55 29

25 53 22

d.f. =?

X

2
= 14.06

7.5 In the 1974 cars, seat belt use and gender of the driver were related as follows:

Gender

Belt Use Female Male

L/S 267 739

Lap only 85 142

None 261 606

Expected

? ?

66.3 160.7

253.1 613.9

Adjusted Residuals

? ?

2.90 −2.90

0.77 −0.77

p−Values

0.0104 0.0104

0.0038 0.0038

? ?

(r − 1) × (c − 1) × p−Values

0.02 0.02

0.01 0.01

? ?

Column %s

44 50

14 ?

43 ?

Total %s

13 35

4 ?

? ?

d.f. =?

X

2
=?

7.6 The data are given in the second example of Note 7.2. The association of chest pain

classification and amount of coronary artery disease was examined.
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Adjusted Residuals

−13.95 0.33 12.54

? 1.57 −1.27

18.32 −2.47 −14.80

(r − 1) × (c − 1) × p−Values

1.0E − 30 1+ 4.3E − 27

1+ 0.47 0.82

1.4E − 40 0.05 8.8E − 33

Row %s

11 22 68

30 23 46

? ? ?

Column %s

? 43 59

? 44 39

? 12 2

d.f. =?

X

2
= 418.48

7.7 Peterson et al. [1979] studied the age at death of children who died from sudden infant

death syndrome (SIDS). The deaths from a variety of causes, including SIDS, were

cross-classified by the age at death, as in Table 7.16, taken from death records in King

County, Washington, over the years 1969–1977.

Table 7.16 Death Data for Problem 7.7a

Age at Death

0 1–6 2–4 5–26 27–51

Cause Days Days Weeks Weeks Weeks

Hyaline membrane disease 19 51 7 0 0

Respiratory distress syndrome 68 191 46 0 3

Asphyxia of the newborn 105 60 7 4 2

Immaturity 104 34 3 0 0

Birth injury 115 105 17 2 0

Congenital malformation 79 101 72 75 32

Infection 7 38 36 43 18

SIDS 0 0 24 274 24

All other 60 51 28 58 35

ad.f. =?; X

2
= 1504.18.

(a) The values of (r − 1)× (c − 1)×p-value for the adjusted residual are given here

multiplied by −1 if the adjusted residual is negative and multiplied by +1 if the

adjusted residual is positive.

−1+ 1.4E − 9 −1+ −3.8E − 5 −0.89

−0.43 4.6E − 26 1+ −3.3E − 20 −3.2E − 3

3.0E − 18 1+ −0.02 −4.5E − 10 −0.18

2.3E − 26 −1+ −5.8E − 3 −1.2E − 9 −0.08

1.1E − 11 3.9E − 4 −0.42 −3.8E − 15 −1.6E − 3

−0.20 −1+ 7.7E − 6 −1+ 0.12

−1.1E − 8 −1+ 1.3E − 5 0.90 6.5E − 3

−31.2E − 25 −3.4E − 28 −0.19 1.7E − 57 1+

−1+ −0.03 1+ 1+ 2.9E − 9
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What is the distribution of SIDS cases under the null hypothesis that all causes

have the same distribution?

(b) What percent display (row, column, or total) would best emphasize the difference?

7.8 Morehead [1975] studied the relationship between the retention of intrauterine devices

(IUDs) and other factors. The study participants were from New Orleans, Louisiana.

Tables relating retention to the subjects’ age and to parity (the number of pregnancies)

are studied in this problem (one patient had a missing age).

(a) Was age related to IUD retention?

Age Continuers Terminators

19–24 41 48

25–29 50 40

30+ 63 27

Expected

50.95 ?

51.52 38.5

51.52 38.5

Adjusted Residuals

−2.61 2.61

−0.40 0.40

? ?

p−Values

0.0091 0.0091

? ?

0.0027 0.0027

Column %s

26.6 41.7

? 34.8

? 23.5

Row %s

46.1 53.9

? ?

70.0 30.0

d.f. =?

X

2
=?

(b) The relationship of parity and IUD retention gave these data:

Parity Continuers Terminators

1–2 59 53

3–4 39 34

5+ 57 28

Adjusted Residuals

−1.32 1.32

−0.81 0.81

? ?

Total %s

? 19.6

14.4 ?

21.1 ?

d.f. =?

X

2
= 4.74

7.9 McKeown et al. [1952] investigate evidence that the environment is involved in infantile

pyloric stenosis. The relationship between the age at onset of the symptoms in days,

and the rank of the birth (first child, second child, etc.) was given as follows:
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Age at Onset of Symptoms (Days)

Birth Rank 0–6 7–13 14–20 21–27 28–34 35–41 ≥ 42

1 42 41 116 140 99 45 58
2 28 35 63 53 49 23 31

≥ 3 26 21 39 48 39 14 23

(a) Find the expected value (under independence) for cell (i = 2, j = 3). For this

cell compute (observed - expected)

2/ expected.

(b) The chi-square statistic is 13.91. What are the degrees of freedom? What can you

say about the p-value?

(c) In the paper, the authors present, the column percents, not the frequencies, as

above. Fill in the missing values in both arrays below. The arrangement is the

same as the first table.

44 42 53 58 53 55 52

29 36 29 ? 26 28 28

? ? 18 20 21 17 21

The adjusted residual p-values are

0.076 0.036 0.780 0.042 0.863 0.636 0.041

0.667 0.041 0.551 0.035 0.710 0.874 0.734

0.084 0.734 ? 0.856 0.843 0.445 0.954

What can you conclude?

(d) The authors note that the first two weeks appear to have different patterns. They

also present the data as:

Age at Onset (Days)

Birth Rank 0–13 ≥ 14

1 83 458
2 63 219

≥ 3 47 163

For this table, X

2
= 8.35. What are the degrees of freedom? What can you

say about the p-value?

(e) Fill in the missing values in the adjusted residual table, p-value table, and column

percent table. Interpret the data.

Adjusted Residuals

−2.89 2.89
? ?

1.54 −1.54

p−Values

0.0039 0.0039
0.065 0.065

? ?

Column %s

43 55
33 ?
24 ?

(f) Why is it crucial to know whether prior to seeing these data the investigators had

hypothesized a difference in the parity distribution between the first two weeks

and the remainder of the time period?

Problems 7.10–7.16 deal with the chi-square test for trend. The data are from a paper

by Kennedy et al. [1981] relating operative mortality during coronary bypass operations
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to various risk factors. For each of the tables, let the scores for the chi-square test for

trend be consecutive integers. For each of the tables:

a. Compute the chi-square statistic for trend. Using Table A.3, give the strongest

possible statement about the p-value.

b. Compute, where not given, the percentage of operative mortality, and plot the

percentage for the different categories using equally spaced intervals.

c. The usual chi-square statistic (with k − 1 degrees of freedom) is given with

its p-value. When possible, from Table A.3 or the chi-square values, tell which

statistic is more highly significant (has the smallest p-value). Does your figure in

(b) suggest why?

7.10 The amount of anginal (coronary artery disease) chest pain is categorized by the Cana-

dian Heart Classification from mild (class I) to severe (class IV).

Anginal Pain Classification

Surgical Mortality I II III IV

Yes 6 19 47 59

No 242 1371 2494 1314

% surgical mortality 2.4 1.4 1.8 ?

Usual

X

2
= 31.19

p = 7.7E − 7

7.11 Congestive heart failure occurs when the heart is not pumping sufficient blood. A heart

damaged by a myocardial infarction, heart attack, can incur congestive heart failure.

A score from 0 (good) to 4 (bad) for congestive heart failure is related to operative

mortality.

Congestive Heart Failure Score

Operative Mortality 0 1 2 3 4

Yes 73 50 13 12 4

No 4480 1394 404 164 36

% operative mortality 1.6 3.4 ? 6.8 10.0

Usual

X

2
= 46.45

p = 1.8E − 9

7.12 A measure of left ventricular performance, or the pumping action of the heart, is the

ejection fraction, which is the percentage of the blood in the left ventricle that is pumped

during the beat. A high number indicates a more efficient performance.

Ejection Fraction (%)

Operative Mortality < 19 20–29 30–39 40–49 ≥ 50

Yes 1 4 5 22 74

No 14 88 292 685 3839

% operative mortality 6.7 ? ? 3.1 1.9

Usual

X

2
= 8.34

p = 0.080
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7.13 A score was derived from looking at how the wall of the left ventricle moved while

the heart was beating (details in CASS [1981]). A score of 5 was normal; the larger

the score, the worse the motion of the left ventricular wall looked. The relationship to

operative mortality is given here.

Wall Motion Score

Operative Mortality 5–7 8–11 12–15 16–19 ≥ 20

Yes 65 36 32 10 2

No 3664 1605 746 185 20

% operative mortality 1.7 2.2 ? 5.1 9.1

Usual

X

2
= 28.32

p = 1.1E − 5

What do you conclude about the relationship? That is, if you were writing a paragraph

to describe this finding in a medical journal, what would you say?

7.14 After the blood has been pumped from the heart, and the pressure is at its lowest point,

a low blood pressure in the left ventricle is desirable. This left ventricular end diastolic

pressure [LVEDP] is measured in millimeters of mercury (mmHg).

LVEDP

Operative Mortality 0–12 13–18 19–24 ≥24

Yes 56 43 22 26

No 3452 1692 762 416

% operative mortality ? 2.5 2.8 5.9

Usual

X

2
= 34.49

p = 1.6E − 7

7.15 The number of diseased vessels and operative mortality are given by:

Diseased Vessels

Operative Mortality 1 2 3

Yes 17 43 91

No 1196 2018 3199

% operative mortality 1.4 2.1 ?

Usual

X

2
= 7.95

p = 0.019

7.16 The left main coronary artery, if occluded (i.e., totally blocked), blocks two of the three

major arterial vessels to the heart. Such an event almost always leads to death. Thus,

people with much narrowing of the left main coronary artery usually receive surgical

therapy. Is this narrowing also associated with higher surgical mortality?

Percentage Narrowing

Operative Mortality 0–49 50–74 75–89 ≥ 90

Yes 116 8 10 19

No 5497 486 268 222

% operative mortality 2.1 1.6 ? 7.9

Usual

X

2
= 37.75

p = 3.2E − 8
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7.17 In Robertson’s [1975] seat belt study, the observers (unknown to them) were checked

by sending cars through with a known seat belt status. The agreement numbers between

the observers and the known status were:

Belt Use in Vehicles Sent

Belt Use Reported S/L Lap Only No Belt

Shoulder and lap 28 2 0

Lap only 3 33 6

No belt 0 15 103

(a) Compute P

A

, P

C

, and κ .

(b) Construct a 95% confidence interval for κ .

(c) Find the two-sided p-value for testing κ = 0 (for the entire population) by using

Z = κ/SE0(κ).

7.18 The following table is from [Fisher et al., 1982]. The coronary artery tree has consid-

erable biological variability. If the right coronary artery is normal-sized and supplies

its usual share of blood to the heart, the circulation of blood is called right dominant.

As the right coronary artery becomes less important, the blood supply is characterized

as balanced and then left dominant. The data for the clinical site and quality control

site joint readings of angiographic films are given here.

Dominance (Clinical Site)

Dominance (QC Site) Left Balanced Right

Left 64 7 4

Balanced 4 35 32

Right 8 21 607

(a) Compute P

A

, P

C

, and κ (Section 7.4).

(b) Find var(κ) and construct a 90% confidence interval for the population value of κ .

7.19 Example 7.4 discusses the quality control data for the CASS arteriography (films of

the arteries). A separate paper by Wexler et al. [1982] examines the study of the left

ventricle. Problem 7.12 describes the ejection fraction. Clinical site and quality control

site readings of ejection gave the following table:

Ejection Fraction (QC Site)

Ejection Fraction (Clinical Site) ≥ 50% 30–49% < 30%

≥ 50% 302 27 5

30–49% 40 55 9

< 30% 1 9 18

(a) Compute P

A

, P

C

, and κ .

(b) Find SE(κ) and construct a 99% confidence interval for the population value of κ .
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7.20 The value of κ depends on how we construct our categories. Suppose that in Example 7.4

we combine normal and other zero-vessel disease to create a zero-vessel disease category.

Suppose also that we combine two- and three-vessel disease into a multivessel-disease

category. Then the table becomes:

Vessels Diseased

(Clinical Site)
Vessels Diseased

(QC Site) 0 1 Multi-

0 70 20 9

1 10 155 78

Multi- 2 29 497

(a) Compute P

A

, P

C

, and κ .

(b) Is this kappa value greater than or less than the value in Example 7.4? Will this

always occur? Why?

(c) Construct a 95% confidence interval for the population value of κ .

7.21 Zeiner-Henriksen [1972a] compared personal interview and postal inquiry methods of

assessing infarction. His introduction follows:

The questionnaire developed at the London School of Hygiene and Tropical Medicine and

later recommended by the World Health Organization for use in field studies of cardiovas-

cular disease has been extensively used in various populations. While originally developed

for personal interviews, this questionnaire has also been employed for postal inquiries. The

postal inquiry method is of course much cheaper than personal interviewing and is without

interviewer error.

A Finnish–Norwegian lung cancer study offered an opportunity to evaluate the repeatability

at interview of the cardiac pain questionnaire, and to compare the interview symptom results

with those of a similar postal inquiry. The last project, confined to a postal inquiry of the

chest pain questions in a sub-sample of the 4092 men interviewed, was launched in April

1965, 2 1
2

to 3 years after the original interviews.

The objective was to compare the postal inquiry method with the personal interview method

as a means of assessing the prevalence of angina and possible infarction . . . .

The data are given in Table 7.17.

(a) Compute P

A

, P

C

, and κ .

(b) Construct a 90% confidence interval for the population value of κ(

√

var(κ) =

0.0231).

(c) Group the data in three categories by:

(i) combining PI + AP, PI only, and AP only; (ii) combining the two PI/AP

negatives categories; (iii) leaving “incomplete” as a third category. Recompute

P

A

, P

C

, and κ . (This new grouping has the categories “cardiovascular symptoms,”

“no symptoms,” and “incomplete.”)
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Table 7.17 Interview Data for Problem 7.21

Interview

PI/AP Negative
PI AP

Postal Inquiry PIa + APa Only Only Nonspecific Other Incomplete Total

PI + AP 23 15 9 6 — 1 54

PI only 14 18 14 24 8 — 78

AP only 3 5 20 12 17 3 60

PI/AP negative

Nonspecific 2 8 8 54 24 5 101

Other 2 3 5 62 279 1 352

Incomplete — 2 — 22 37 — 61

Total 44 51 56 180 365 10 706

aPI, possible infarction; AP, angina pectoris.

Table 7.18 Interview Results for Problem 7.22

Interview

I− A−

Postal Inquirya I+ A+ I+ A− I− A+ Nonspecific Other Total

I+ A+ 11 3 1 1 — 16

I+ A− 2 14 — 4 — 20

I− A+ 5 2 7 1 1 16

I− A−

Nonspecific 1 4 5 39 9 58

Other 1 8 6 40 72 127

Total 20 31 19 85 82 237

a I+, positive infarction; I−, negative infarction; A+ and A−, positive or negative indication of angina.

7.22 In a follow-up study, Zeiner-Henriksen [1972b] evaluated the reproducibility of their

method using reinterviews. Table 7.18 shows the results.

(a) Compute P

A

, P

C

, and κ for these data.

(b) Construct a 95% confidence interval for the population value of kappa. SE(κ) =

0.043.

(c) What is the value of the Z-statistic for testing no association that is computed

from kappa and its estimated standard error
√

var0(κ) = 0.037?

7.23 Weiner et al. [1979] studied men and women with suspected coronary disease. They

were studied by a maximal exercise treadmill test. A positive test (≥ 1 mm of ST-wave

depression on the exercise electrocardiogram) is thought to be indicative of coronary

artery disease. Disease was classified into zero-, one- (or single-), and multivessel

disease. Among people with chest pain thought probably anginal (i.e., due to coronary

artery disease), the following data are found.



246 CATEGORICAL DATA: CONTINGENCY TABLES

Vessels Diseased

Category 0 1 Multi-

Males, + test 47 86 227

Males, − test 132 53 49

Females, + test 62 28 44

Females, − test 83 14 9

The disease prevalence is expected to be significantly different in men and women.

We want to see whether the exercise test is related to disease separately for men

and women.

(a) For males, the relationship of + or − test and disease give the data below. Fill

in the missing values, interpret these data, and answer the questions.

Vessels Diseased

Exercise Test 0 1 Multi-

+ 47 86 ?

− 132 ? 49

Expected

108.5 84.2 167.3

70.5 54.8 ?

Adjusted Residuals

0+ 0.73 0+

0+ 0.73 0+

Row Percents

? ? 63.1

56.4 22.6 20.9

Column Percents

26.3 61.9 ?

73.7 38.1 ?

Formulate a question for which the row percents would be a good method of

presenting the data. Formulate a question where the column percents would be

more appropriate.

*7.24 (a) Find the natural logarithms, ln x, of the following x: 1.24, 0.63, 0.78, 2.41,

2.7182818, 1.00, 0.10. For what values do you think ln x is positive? For what

values do you think ln x is negative? (A plot of the values may help.)

(b) Find the exponential, e

x , of the following x: −2.73, 5.62, 0.00, −0.11, 17.3, 2.45.

When is e

x less than 1? When is e

x greater than 1?

(c) ln(a × b) = ln a + ln b. Verify this for the following pairs of a and b:

a : 2.00 0.36 0.11 0.62

b : 0.50 1.42 0.89 0.77

(d) e

a+b

= e

a

· e

b. Verify this for the following pairs of numbers:

a: −2.11 0.36 0.88 −1.31

b: 2.11 1.59 −2.67 −0.45
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Table 7.19 Angina Data for Problem 7.25

Modela d.f. LRX2
p−Value

[I ][J ][K] 7 114.41 0+

[I ][K] 6 103.17 0+

[IK ][J ] 5 26.32 0+

[I ][JK] 5 94.89 0+

[IJ ][IK] 4 15.08 0.0045

[IJ ][JK] 4 83.65 0+

[IK ][JK] 3 6.80 0.079

[IJ ][IK] [JK] 2 2.50 0.286

a

I , J , and K refer to variables as in Example 7.5.

Table 7.20 Hypothesis Data for Problem 7.25

Cell (i, j, k) Observed r Fitted u-Parameters

(1,1,1) 17 18.74 u = −3.37

(1,1,2) 86 85.01 u

I

1 = −u

I

2 = 0.503

(1,1,3) 244 243.25 u

J

1 = −u

J

2 = 0.886

(1,2,1) 5 3.26 u

K

1 = −0.775, u

K

2 = −0.128, u

K

3 = 0.903

(1,2,2) 14 14.99 u

IJ

1,1 = −u

IJ

1,2 = −u

IJ

2,1 = u

IJ

2,2 = −0.157

(1,2,3) 99 99.75 u

IK

1,1 = −u

IK

2,1 = −0.728

(2,1,1) 42 40.26 u

IK

1,2 = −u

IK

2,2 = 0.143

(2,1,2) 31 31.99 u

IK

1,3 = −u

IK

2,3 = 0.586

(2,1,3) 37 37.75 u

JK

1,1 = −u

JK

2,1 = 0.145

(2,2,1) 2 3.74 u

JK

1,2 = −u

JK

2,2 = 0.138

(2,2,2) 4 3.01 u

JK

1,3 = −u

JK

2,3 = −0.283

(2,2,3) 9 8.25

*7.25 Example 7.5 uses Weiner et al. [1979] data for cases with probable angina. The results

for the cases with definite angina are given in Table 7.19.

(a) Which models are at all plausible?

(b) The data for the fit of the [IJ ][IK ][JK ] hypothesis are given in Table 7.20.

Using the u-parameters, compute the fitted value for the (1,2,3) cell, showing that

it is (approximately) equal to 99.75 as given.

(c) Using the fact that hypothesis 7 is nested within hypothesis 8, compute the chi-

square statistic for the additional gain in fit between the models. What is the

p-value (as best as you can tell from the tables)?

*7.26 As in Problem 7.25, the cases of Example 7.5, but with chest pain thought not to be

due to heart disease (nonischemic), gave the goodness-of-fit likelihood ratio chi-square

statistics shown in Table 7.21.

(a) Which model would you prefer? Why?

(b) For model [IJ ] [IK ], the information on the fit is given in Table 7.22.

Using the u-parameter values, verify the fitted value for the (2,1,1) cell.

(c) Interpret the probabilistic meaning of the model in words for the variables of

this problem.
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Table 7.21 Goodness-of-Fit Data for

Problem 7.23

Model d.f. LRX2
p−Value

[I ][J ][ K] 7 35.26 0+

[IJ ][ K] 6 28.45 0+

[IK ][J ] 5 11.68 0.039

[I ][ JK ] 5 32.46 0+

[IJ ][ IK ] 4 4.87 0.30

[IJ ][ JK ] 4 25.65 0+

[IK ][ JK ] 3 8.89 0.031

[IJ ][ IK ][ JK ] 2 2.47 0.29

Table 7.22 Fit Data for Problem 7.23

Cell (i, j , k) Observed r Fitted u-Parameters

(1,1,1) 33 32.51 u = −3.378

(1,1,2) 13 12.01 u

I

1 = −u

I

2 = 0.115

(1,1,3) 7 8.48 u

J

1 = −u

J

2 = 0.658

(1,2,1) 13 13.49 u

K

1 = 1.364, u

K

2 = −0.097, u

K

3 = −1.267

(1,2,2) 4 4.99 u

IJ

1,1 = −u

IJ

1,2 = −u

IJ

2,1 = u

IJ

2,2 = −0.218

(1,2,3) 5 3.52 u

IK

1,1 = −u

IK

2,1 = −0.584

(2,1,1) 126 128.69 u

IK

1,2 = −u

IK

2,2 = −0.119

(2,1,2) 21 18.75 u

IK

1,3 = −u

IK

2,3 = 0.703

(2,1,3) 3 2.56

(2,2,1) 25 22.31

(2,2,2) 1 3.25

(2,2,3) 0 0.44

*7.27 Willkens et al. [1981] study possible diagnostic criteria for Reiter’s syndrome. This

rheumatic disease was considered in the context of other rheumatic diseases. Eighty-

three Reiter’s syndrome cases were compared with 136 cases with one of the following

four diagnoses: ankylosing spondylitis, seronegative definite rheumatoid arthritis, pso-

riatic arthritis, and gonococcal arthritis. A large number of potential diagnostic criteria

were considered. Here we consider two factors: the presence or absence of urethritis

and/or cervicitis (for females); and the duration of the initial attack evaluated as greater

than or equal to one month or less than one month. The data are given in Table 7.23,

and the goodness-of-fit statistics are given in Table 7.24.

(a) Fill in the question marks in Table 7.24.

(b) Which model(s) seem plausible (at the 0.05 significance level)?

(c) Since we are looking for criteria to differentiate between Reiter’s syndrome and

the other diseases, one strategy that makes sense is to assume independence of the

disease category ([K]) and then look for the largest departures from the observed

and fitted cells. The model we want is then [IJ ][K]. The fit is given in Table 7.25.

Which cell of Reiter’s syndrome cases has the largest excess of observed minus

fitted?

(d) If you use the cell found in part (c) as your criteria for Reiter’s syndrome, what

are the specificity and sensitivity of this diagnostic criteria for these cases?
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Table 7.23 Reiter’s Syndrome Data for Problem 7.27

Initial Attack [J]
Urethritis and/or

Cervicitis [I] l Disease [K] <1 Month ≥1 Month

Yes Reiter’s 2 70

Other 11 3

No Reiter’s 1 10

Other 20 132

Table 7.24 Goodness-of-Fit Data for

Problem 7.27

Model d.f. LRX2
p−Value

[I ][J ][ K] ? 200.65 ?

[IJ ][ K] ? 200.41 ?

[IK ]][J ] ? 40.63 ?

[I ][ JK ] ? 187.78 ?

[IJ ][ IK ] ? 40.39 ?

[IJ ][ JK ] ? 187.55 ?

[IK ][ JK ] ? 27.76 ?

[IJ ][ IK ][ JK ] ? 5.94 ?

Table 7.25 Goodness-of-Fit Data

for Problem 7.27

Cell (i, j, k) Observed Fitted

(1,1,1) 70 24.33

(1,1,2) 3 48.67

(1,2,1) 2 4.33

(1,2,2) 11 8.67

(2,1,1) 10 47.33

(2,1,2) 132 94.67

(2,2,1) 1 7.00

(2,2,2) 20 14.00

*7.28 We claim in the text that the three-factor log-linear model [IJ ][ IK ] means that the

J and K variables are independent conditionally upon the I variable. Prove this by

showing the following steps:

(a) By definition, Y and Z are independent conditionally upon X if

P [Y = j and Z = k|X = i] = P [Y = j |X = i]P [Z = k|X = i]

Using the probabilities π

ijk

, show that this is equivalent to

π

ijk

π

i··

=

(

π

ij·

π

i··

) (

π

i·k

π

i··

)
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(b) If the equation above holds true, show that

ln π

ijk

= u + u

I

i

+ u

J

j

+ u

K

k

+ u

IJ

ij

+ u

IK

ik

where

u

IJ

ij

= ln(π

ij·) −

1

I

I

∑

i=1

ln(πij·) −

1

J

J

∑

j=1

ln(π

ij ·) +

1

IJ

I

∑

i=1

J

∑

j=1

ln(πij ·)

u

IK

ik

= ln(π

i·k) −

1

I

I

∑

i=1

ln(πi·k) −

1

K

K

∑

k=1

ln(π

i·k) +

1

IK

I

∑

i=1

K

∑

k=1

ln(πi·k)

u

I

i

=

1

J

J

∑

j=1

ln(π

ij ·) +

1

K

K

∑

k=1

ln(π

i·k) − ln(π

i··) +

1

IJ

I

∑

i=1

J

∑

j=1

ln(πij ·)

+

1

IK

I

∑

i=1

K

∑

k=1

ln(πi·k) −

1

I

I

∑

i=1

ln(πi··)

u

J

j

=

1

I

I

∑

i=1

ln(πij·) −

1

IJ

J

∑

j=1

I

∑

i=1

ln(πij ·)

u

J

k

=

1

I

I

∑

i=1

ln(πi·k) −

1

IK

K

∑

k=1

I

∑

i=1

ln(πi·k)

u = −

1

IJ

I

∑

i=1

J

∑

j=1

ln(πij ·) −

1

IK

I

∑

i=1

K

∑

k=1

ln(πi·k) −

1

I

I

∑

i=1

ln(πi··)

(c) If the equation above holds, use π

ijk

= e

ln π

ijk to show that the first equation then

holds.

*7.29 The notation and models for the three-factor log-linear model extend to larger numbers

of factors. For example, for variables W , X, Y , and Z (denoted by the indices i, j , k,

and l, respectively), the following notation and model correspond:

[IJK][L] = u + u

I

i

+ u

J

j

+ u

K

k

+ u

L

l

+ u

IJ

ij

+ u

IK

ik

+ u

JK

jk

+ u

IJK

ijk

(a) For the four-factor model, write the log-linear u-terms corresponding to

the following model notations: (i) [IJ ][KL]; (ii) [IJK][IJL][JKL]; (iii)

[IJ ][IK][JK][L].

(b) Give the bracket notation for the models corresponding to the u-parameters: (i)

u + u

I

i

+ u

J

j

+ u

K

k

+ u

L

l

; (ii) u + u

I

i

+ u

J

j

+ u

K

k

+ u

L

l

+ u

IJ

ij

+ u

KL

kl

; (iii) u + u

I

i

+

u

J

j

+ u

K

k

+ u

L

l

+ u

IJ

ij

+ u

IK

ik

+ u

IL

il

+ u

JK

jk

+ u

IJK

ijk

.

*7.30 Verify the values of the contingency coefficients, or measures of association, given in

the first example of Note 7.2.

*7.31 Verify the values of the measures of association given in the second example of

Note 7.2.
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*7.32 Prove the following properties of some of the measures of association, or contingency

coefficients, presented in Note 7.2.

(a) 0 ≤ λ

C

≤ 1. Show by example that 0 and 1 are possible values.

(b) 0 ≤ λ ≤ 1. Show by example that 0 and 1 are possible values. What happens if

the two traits are independent in the sample n

ij

= n

i·n·j/n··?

(c) −1 ≤ γ ≤ 1. Can γ be −1 or +1? If the traits are independent in the sample,

show that γ = 0. Can γ = 0 otherwise? If yes, give an example.

(d) 0 < C < 1.

(e) 0 ≤ V ≤ 1.

(f) 0 ≤ T ≤ 1 [use part (e) to show this].

(g) Show by example that φ

2 can be larger than 1.

*7.33 Compute the contingency coefficients of Note 7.2, omitting γ , for the data of:

(a) Problem 7.1.

(b) Problem 7.5.
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C H A P T E R 8

Nonparametric, Distribution-Free,
and Permutation Models: Robust
Procedures

8.1 INTRODUCTION

In Chapter 4 we worked with the normal distribution, noting the fact that many populations

have distributions that are approximately normal. In Chapter 5 we presented elegant one- and

two-sample methods for estimating the mean of a normal distribution, or the difference of the

means, and constructing confidence intervals. We also examined the corresponding tests about

the mean(s) from normally distributed populations. The techniques that we learned are very

useful. Suppose, however, that the population under consideration is not normal. What should

we do? If the population is not normal, is it appropriate to use the same t-statistic that applies

when the sample comes from a normally distributed population? If not, is there some other

approach that can be used to analyze such data?

In this chapter we consider such questions. In Section 8.2 we introduce terminology associ-

ated with statistical procedures needing few assumptions and in Section 8.3 we note that some

of the statistical methods that we have already looked at require very few assumptions.

The majority of this chapter is devoted to specific statistical methods that require weaker

assumptions than that of normality. Statistical methods are presented that apply to a wide range

of situations. Methods of constructing statistical tests for specific situations, including computer

simulation, are also discussed. We conclude with

1. An indication of newer research in the topics of this chapter

2. Suggestions for additional reading if you wish to learn more about the subject matter

8.2 ROBUSTNESS: NONPARAMETRIC AND DISTRIBUTION-FREE PROCEDURES

In this section we present terminology associated with statistical procedures that require few

assumptions for their validity.

The first idea we consider is robustness:

Definition 8.1. A statistical procedure is robust if it performs well when the needed assump-

tions are not violated “too badly” or if the procedure performs well for a large family of

probability distributions.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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By a procedure we mean an estimate, a statistical test, or a method of constructing a confi-

dence interval. We elaborate on this definition to give the reader a better idea of the meaning of

the term. The first thing to note is that the definition is not a mathematical definition. We have

talked about a procedure performing “well” but have not given a precise mathematical definition

of what “well” means. The term robust is analogous to beauty: Things may be considered more

or less beautiful. Depending on the specific criteria for beauty, there may be greater or lesser

agreement about the beauty of an object. Similarly, different statisticians may disagree about

the robustness of a particular statistical procedure depending on the probability distributions of

concern and use of the procedure. Nevertheless, as the concept of beauty is useful, the concept

of robustness also proves to be useful conceptually and in discussing the range of applicability

of statistical procedures.

We discuss some of the ways that a statistical test may be robust. Suppose that we have a test

statistic whose distribution is derived for some family of distributions (e.g., normal distributions).

Suppose also that the test is to be applied at a particular significance level, which we designate

the nominal significance level. When other distributions are considered, the actual probability

of rejecting the null hypothesis when it holds may differ from the nominal significance level

if the distribution is not one of those used to derive the statistical test. For example, in testing

for a specific value of the mean with a normally distributed sample, the t-test may be used.

Suppose, however, that the distribution considered is not normal. Then, if testing at the 5%

significance level, the actual significance level (the true probability of rejecting under the null

hypothesis that the population mean has the hypothesized value) may not be 5%; it may vary.

A statistical test would be robust over a larger family of distributions if the true significance

level and nominal significance level were close to each other. Also, a statistical test is robust

if under specific alternatives, the probability of rejecting the null hypothesis tends to be large

even when the alternatives are in a more extensive family of probability distributions.

A statistical test may be robust in a particular way for large samples, but not for small

samples. For example, for most distributions, if one uses the t-test for the mean when the

sample size becomes quite large, the central limit theory shows that the nominal significance

level is approximately the same as the true significance level when the null hypothesis holds.

On the other hand, if the samples come from a skewed distribution and the sample size is small,

the t-test can perform quite badly. Lumley et al., [2002] reviewed this issue and reported that

in most cases the t-test performs acceptably even with 30 or so observations, and even in a very

extreme example the performance was excellent with 250 observations.

A technique of constructing confidence intervals is robust to the extent that the nominal

confidence level is maintained over a larger family of distributions. For example, return to

the t-test. If we construct 95% confidence intervals for the mean, the method is robust to the

extent that samples from a nonnormal distribution straddle the mean about 95% of the time.

Alternatively, a method of constructing confidence intervals is nonrobust if the confidence with

which the parameters are in the interval differs greatly from the nominal confidence level. An

estimate of a parameter is robust to the extent that the estimate is close to the true parameter

value over a large class of probability distributions.

Turning to a new topic, the normal distribution model is useful for summarizing data, because

two parameters (in this case, the mean and variance, or equivalently, the mean and the standard

deviation) describe the entire distribution. Such a set or family of distribution functions with

each member described (or indexed) by a few parameters is called a parametric family. The

distributions used for test statistics are also parametric families. For example, the t-distribution,

the F -distribution, and the χ

2-distribution depend on one or two integer parameters: the degrees

of freedom. Other examples of parametric families are the binomial distribution, with its two

parameters n and π , and the Poisson distribution, with its parameter λ.

By contrast, semiparametric families and nonparametric families of distributions are families

that cannot be conveniently characterized, or indexed, by a few parameters. For example, if one

looked at all possible continuous distributions, it is not possible to find a few parameters that

characterize all these distributions.
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Definition 8.2. A family of probability distributions that can be characterized by a few

parameters is a parametric family. A family is nonparametric if it can closely approximate any

arbitrary probability distribution. A family of probability distributions that is neither parametric

nor nonparametric is semiparametric.

In small samples the t-test holds for the family of normal distributions, that is, for a parametric

family. It would be nice to have a test statistic whose distribution was valid for a larger family

of distributions. In large samples the t-test qualifies, but in small samples it does not.

Definition 8.3. Statistical procedures that hold, or are valid for a nonparametric family of

distributions, are called nonparametric statistical procedures.

The definition of nonparametric here can be made precise in a number of nonequivalent

ways, and no single definition is in universal use. See also Note 8.1. The usefulness of the

t-distribution in small samples results from the fact that samples from a normal distribution give

the same t-distribution for all normal distributions under the null hypothesis. More generally,

it is very useful to construct a test statistic whose distribution is the same for all members of

some family of distributions. That is, assuming that the sample comes from some member of

the family, and the null hypothesis holds, the statistic has a known distribution; in other words,

the distribution does not depend upon, or is free of, which member of the underlying family of

distributions is sampled. This leads to our next definition.

Definition 8.4. A statistical procedure is distribution-free over a specified family of dis-

tributions if the statistical properties of the procedure do not depend on (or are free of) the

underlying distribution being sampled.

A test statistic is distribution-free if under the null hypothesis, it has the same distribution

for all members of the family. A method of constructing confidence intervals is distribution-free

if the nominal confidence level holds for all members of the underlying family of distributions.

The usefulness of the (unequal variances) t-test in large samples results from the fact that

samples from any distribution give the same large-sample normal distribution under the null

hypothesis that the means are equal. That is, the t-statistic becomes free of any information

about the shape of the distribution as the sample size increases. This leads to a definition:

Definition 8.5. A statistical procedure is asymptotically distribution-free over a specified

family of distributions if the statistical properties of the procedure do not depend on (or are free

of) the underlying distribution being sampled for sufficiently large sample sizes.

In practice, one selects statistical procedures that hold over a wide class of distributions.

Often, the wide class of distributions is nonparametric, and the resulting statistical proce-

dure is distribution-free for the family. The procedure would then be both nonparametric and

distribution-free. The terms nonparametric and distribution-free are used somewhat loosely and

are often considered interchangeable. The term nonparametric is used much more often than

the term distribution-free.

One would expect that a nonparametric procedure would not have as much statistical power

as a parametric procedure if the sample observed comes from the parametric family. This is

frequently, but not necessarily, true. One method of comparing procedures is to look at their

relative efficiency. Relative efficiency is a complex term when defined precisely (see Note 8.2),

but the essence is contained in the following definition:

Definition 8.6. The relative efficiency of statistical procedure A to statistical procedure B

is the ratio of the sample size needed for B to the sample size needed for A in order that both

procedures have the same statistical power.

For example, if the relative efficiency of A to B is 1.5, then B needs 50% more observations

than A to get the same amount of statistical power.
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8.3 SIGN TEST

Suppose that we are testing a drug to reduce blood pressure using a crossover design with a

placebo. We might analyze the data by taking the blood pressure while not on the drug and

subtracting it from the blood pressure while on the drug. These differences resulting from the

matched or paired data will have an expected mean of zero if the drug under consideration

had no more effect than the placebo effect. If we want to assume normality, a one-sample

t-test with a hypothesized mean of zero is appropriate. Suppose, however, that we knew from

past experience that there were occasional large fluctuations in blood pressure due to biological

variability. If the sample size were small enough that only one or two such fluctuations were

expected, we would be hesitant to use the t-test because of the known fact that one or two large

observations, or outliers, destroyed the probability distribution of the test (see Problem 8.20).

What should we do?

An alternative nonparametric way of analyzing the data is the following. Suppose that there is

no treatment effect. All of the difference between the blood pressures measured on-drug and on-

placebo will be due to biological variability. Thus, the difference between the two measurements

will be due to symmetric random variability; the number is equally likely to be positive or

negative. The sign test is appropriate for the null hypothesis that observed values have the same

probability of being positive or negative: If we look at the number of positive numbers among the

differences (and exclude values equal to zero), under the null hypothesis of no drug effect, this

number has a binomial distribution, with π =
1
2

. A test of the null hypothesis could be a test of the

binomial parameter π =
1
2

. This was discussed in Chapter 6 when we considered McNemar’s

test. Such tests are called sign tests, since we are looking at the sign of the difference.

Definition 8.7. Tests based on the sign of an observation (i.e., plus or minus), and which

test the hypothesis that the observation is equally likely to be a plus or minus, are called sign

test procedures.

Note that it is possible to use a sign test in situations where numbers are not observed, but

there is only a rating. For example, one could have a blinded evaluation of patients as worse on-

drug than on-placebo, the same on-drug as on-placebo, and better on-drug than on-placebo. By

considering only those who were better or worse on the drug, the null hypothesis of no effect is

equivalent to testing that each outcome is equally likely; that is, the binomial probability is 1/2,

the sign test may be used. Ratings of this type are useful in evaluating drugs when numerical

quantification is not available. As tests of π =
1
2

for binomial random variables were discussed

in Chapter 6, we will not elaborate here. Problems 8.1 to 8.3 use the sign test.

Suppose that the distribution of blood pressures did follow a normal distribution: How much

would be lost in the way of efficiency by using the sign test? We can answer this question

mathematically in large sample sizes. The relative efficiency of the sign test with respect to

the t-test when the normal assumptions are satisfied is 0.64; that is, compared to analyzing

data using the t-test, 36% of the samples are effectively thrown away. Alternatively, one needs

1/0.64, or 1.56 times as many observations for the sign test as one would need using the t-test

to have the same statistical power in a normal distribution. On the other hand, if the data came

from a different mathematical distribution, the Laplace or double exponential distribution, the

sign test would be more efficient than the t-test.

In some cases a more serious price paid by switching to the sign test is that a different

scientific question is being answered. With the t-test we are asking whether the average blood

pressure is lower on drug than on placebo; with the sign test we are asking whether the majority

of patients have lower blood pressure on drug than on placebo. The answers may be different

and it is important to consider which is the more important question.

The sign test is useful in many situations. It is a “quick-and-dirty” test that one may compute

mentally without the use of computational equipment; provided that statistical tables are avail-

able, you can get a quick estimate of the statistical significance of an appropriate null hypothesis.
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8.4 RANKS

Many of the nonparametric, distribution-free tests are based on one simple and brilliant idea.

The approach is motivated by an example.

Example 8.1. The following data are for people who are exercised on a treadmill to their

maximum capacity. There were five people in a group that underwent heavy distance-running

training and five control subjects who were sedentary and not trained. The maximum oxygen

intake rate adjusted for body weight is measured in mL/kg per minute. The quantity is called

VO2MAX. The values for the untrained subjects were 45, 38, 48, 49, and 51. The values for the

trained subjects were 63, 55, 59, 65, and 77. Because of the larger spread among the trained

subjects, especially one extremely large VO2MAX (as can be seen from Figure 8.1), the values

do not look like they are normally distributed. On the other hand, it certainly appears that the

training has some benefits, since the five trained persons all exceed the treadmill times of the five

sedentary persons. Although we do not want to assume that the values are normally distributed,

we should somehow use the fact that the larger observations come from one group and the

smaller observations come from the other group. We desire a statistical test whose distribution

can be tabulated under the null hypothesis that the probability distributions are the same in the

two groups.

The crucial idea is the rank of the observation, which is the position of the observation

among the other observations when they are arranged in order.

Definition 8.8. The rank of an observation, among a set of observations, is its position when

the observations are arranged from smallest to largest. The smallest observation has rank 1, the

next smallest has rank 2, and so on. If observations are tied, the rank assigned is the average of

the ranks appropriate to the equal numbers.

For example, the ranks of the 10 observations given above would be found as follows:

first, order the observations from the smallest to largest; then number them from left to right,

beginning at 1.

Observation 38 45 48 49 51 55 59 63 65 77

Rank 1 2 3 4 5 6 7 8 9 10

We now consider several of the benefits of using ranks. In the example above, suppose

there was no difference in the VO2 MAX value between the two populations. Then we have 10

independent samples (five from each population). Since there would be nothing to distinguish

between observations, the five observations from the set of people who experienced training

would be equally likely to be any five of the given observations. That is, if we consider the

Figure 8.1 VO2 MAX in trained and untrained persons.
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ranks from 1 to 10, all subsets of size 5 would be equally likely to represent the ranks of the five

trained subjects. This is true regardless of the underlying distribution of the 10 observations.

We repeat for emphasis: If we consider continuous probability distributions (so that there are

no ties) under the null hypothesis that two groups of observations come from the same distribution,

the ranks have the same distribution! Thus, tests based on the ranks will be nonparametric tests

over the family of continuous probability distributions. Another way of making the same point:

Any test that results from using the ranks will be distribution-free, because the distribution of

the ranks does not depend on the underlying probability distribution under the null hypothesis.

There is a price to be paid in using rank tests. If we have a small number of observations, say

two in each group, even if the two observations in one group are larger than both observations in

the other group, a rank test will not allow rejection of the null hypothesis that the distributions

are the same. On the other hand, if one knows that the data are approximately normally dis-

tributed if the two large observations are considerably larger than the smaller observations, the

t-test would allow one to reject the null hypothesis that the distributions are the same. However,

this increased statistical power in tiny samples critically depends on the normality assumptions.

With small sample sizes, one cannot check the adequacy of the assumptions. One may reject the

null hypothesis incorrectly (when, in fact, the two distributions are the same) because a large

outlying value is observed. This price is specific to small samples: In large samples a partic-

ular rank-based test may be more or less powerful than the t-test. Note 8.6 describes another

disadvantage of rank tests.

Many nonparametric statistical tests can be devised using the simple idea of ranks. In the

next three sections of this chapter we present specific rank tests of certain hypotheses.

8.5 WILCOXON SIGNED RANK TEST

In this section we consider our first rank test. The test is an alternative to the one-sample t-test.

Whenever the one-sample t-test of Chapter 5 is appropriate, this test may also be used, as its

assumptions will be satisfied. However, since the test is a nonparametric test, its assumptions

will be satisfied much more generally than under the assumptions needed for the one-sample

t-test. In this section we first discuss the needed assumptions and null hypothesis for this test.

The test itself is then presented and illustrated by an example. For large sample sizes, the value

of the test statistic may be approximated by a standard normal distribution; the appropriate

procedure for this is also presented.

8.5.1 Assumptions and Null Hypotheses

The signed rank test is appropriate for statistically independent observations. The null hypothesis

to be tested is that each observation comes from a distribution that is symmetric with a mean of

zero. That is, for any particular observation, the value is equally likely to be positive or negative.

For the one-sample t-test, we have independent observations from a normal distribution;

suppose that the null hypothesis to be tested has a mean of zero. When the mean is zero, the

distribution is symmetric about zero, and positive or negative values are equally likely. Thus, the

signed rank test may be used wherever the one-sample t-test of mean zero is appropriate. For

large sample sizes, the signed rank test has an efficiency of 0.955 relative to the t-test; the price

paid for using this nonparametric test is equivalent to losing only 4.5% of the observations. In

addition, when the normal assumptions for the t-test hold and the mean is not zero, the signed

rank test has equivalent statistical power.

An example where the signed rank test is appropriate is a crossover experiment with a drug

and a placebo. Suppose that subjects have the sequence “placebo, then drug” or “drug, then

placebo,” each assigned at random, with a probability of 0.5. The null hypothesis of interest is

that the drug has the same effect as the placebo. If one takes the difference between measurements
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taken on the drug and on the placebo, and if the treatment has no effect, the distribution of the dif-

ference will not depend on whether the drug was given first or second. The probability is one-half

that the placebo was given first and that the observation being looked at is the second observation

minus the first observation. The probability is also 1/2 that the observation being examined came

from a person who took the drug first. In this case, the observation being used in the signed rank

test would be the first observation minus the second observation. Since under the null hypoth-

esis, these two differences have the same distribution except for a minus sign, the distribution

of observations under the null hypothesis of “no treatment effect” is symmetric about zero.

8.5.2 Alternative Hypotheses Tested with Power

To use the test, we need to know what type of alternative hypotheses may be detected with

some statistical power. For example, suppose that one is measuring blood pressure, and the

drug supposedly lowers the blood pressure compared to a placebo. The difference between the

measurements on the drug and the blood pressure will tend to be negative. If we look at the

observations, two things will occur. First, there will tend to be more observations that have a

negative value (i.e., a minus sign) than expected by chance. Second, if we look at the values

of the data, the largest absolute values will tend to be negative values. The differences that are

positive will usually have smaller absolute values. The signed rank test is designed to use both

sorts of information. The signed rank statistic is designed to have power where the alternatives

of interest correspond roughly to a shift of the distribution (e.g., the median, rather than being

zero, is positive or negative).

8.5.3 Computation of the Test Statistic

We compute the signed rank statistic as follows:

1. Rank the absolute values of the observations from smallest to largest. Note that we do

not rank the observations themselves, but rather, the absolute values; that is, we ignore

minus signs. Drop observations equal to zero.

2. Add up the values of the ranks assigned to the positive observations. Do the same to the

negative observations. The smaller of the two values is the value of the Wilcoxon signed

rank statistic used in Table A.9 in the Appendix.

The procedure is illustrated in the following example.

Example 8.2. Brown and Hurlock [1975] investigated three methods of preparing the

breasts for breastfeeding. The methods were:

1. Toughening the skin of the nipple by nipple friction or rolling

2. Creams to soften and lubricate the nipple

3. Prenatal expression of the first milk secreted before or after birth (colostrum)

Each subject had one randomly chosen treated breast and one untreated breast. Nineteen

different subjects were randomized to each of three treatment groups; that is, each subject

received the three treatments in random order. The purpose of the study was to evaluate methods

of preventing postnatal nipple pain and trauma. The effects were evaluated by the mothers

filling out a subjective questionnaire rating nipple sensitivity from “comfortable” (1) to “painful”

(2) after each feeding. The data are presented in Table 8.1.

We use the signed rank test to examine the statistical significance of the nipple-rolling data.

The first step is to rank the absolute values of the observations, omitting zero values. The

observations ranked by absolute value and their ranks are given in Table 8.2.

Note the tied absolute values corresponding to ranks 4 and 5. The average rank 4.5 is used

for both observations. Also note that two zero observations were dropped.
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Table 8.1 Mean Subjective Difference between Treated

and Untreated Breasts

Nipple Rolling Masse Cream Expression of Colostrum

−0.525 0.026 −0.006

0.172 0.739 0.000

−0.577 −0.095 −0.257

0.200 −0.040 −0.070

0.040 0.006 0.107

−0.143 −0.600 0.362

0.043 0.007 −0.263

0.010 0.008 0.010

0.000 0.000 −0.080

−0.522 −0.100 −0.010

0.007 0.000 0.048

−0.122 0.000 0.300

−0.040 0.060 0.182

0.000 −0.180 −0.378

−0.100 0.000 −0.075

0.050 0.040 −0.040

−0.575 0.080 −0.080

0.031 −0.450 −0.100

−0.060 0.000 −0.020

Source: Data from Brown and Hurlock [1975].

Table 8.2 Ranked Observation Data

Observation Rank Observation Rank

0.007 1 −0.122 10

0.010 2 −0.143 11

0.031 3 0.172 12

0.040 4.5 0.200 13

−0.040 4.5 −0.522 14

0.043 6 −0.525 15

0.050 7 −0.575 16

−0.060 8 −0.577 17

−0.100 9

The sum of the ranks of the positive numbers is S = 1+2+3+4.5+6+7+12+13 = 48.5.

This is less than the sum of the negative ranks. For a sample size of 17, Table A.9 shows that the

two-sided p-value is ≥ 0.10. If there are no ties, Owen [1962] shows that P [S ≥ 48.5] = 0.1

and the two-sided p-value is 0.2. No treatment effect has been shown.

8.5.4 Large Samples

When the number of observations is moderate to large, we may compute a statistic that has

approximately a standard normal distribution under the null hypothesis. We do this by subtracting

the mean under the null hypothesis from the observed signed rank statistic, and dividing by the

standard deviation under the null hypothesis. Here we do not take the minimum of the sums of

positive and negative ranks; the usual one- and two-sided normal procedures can be used. The
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mean and variance under the null hypothesis are given in the following two equations:

E(S) =

n(n + 1)

4
(1)

var(S) =

n(n + 1)(2n + 1)

24
(2)

From this, one gets the following statistic, which is approximately normally distributed for

large sample sizes:

Z =

S − E(S)

√

var(S)

(3)

Sometimes, data are recorded on such a scale that ties can occur for the absolute values. In

this case, tables for the signed rank test are conservative; that is, the probability of rejecting

the null hypothesis when it is true is less than the nominal significance level. The asymptotic

statistic may be adjusted for the presence of ties. The effect of ties is to reduce the variance

in the statistic. The rank of a term involved in a tie is replaced by the average of the ranks of

those tied observations. Consider, for example, the following data:

6, −6,−2, 0, 1, 2, 5, 6, 6,−3,−3,−2, 0

Note that there are not only some ties, but zeros. In the case of zeros, the zero observations

are omitted from the computation as noted before. These data, ranked by absolute value, with

average ranks replacing the given rank when the absolute values are tied, are shown below. The

first row (A) represents the data ranked by absolute value, omitting zero values; the second row

(B) gives the ranks; and the third row (C) gives the ranks, with ties averaged (in this row, ranks

of positive numbers are shown in bold type):

A 1 −2 2 −2 −3 −3 5 6 −6 6 6

B 1 2 3 4 5 6 7 8 9 10 11

C 1 3 3 3 5.5 5.5 7 9.5 9.5 9.5 9.5

Note that the ties are with respect to the absolute value (without regard to sign). Thus the

three ranks corresponding to observations of −2 and +2 are 2, 3, and 4, the average of which

is 3. The S-statistic is computed by adding the ranks for the positive values. In this case,

S = 1 + 3 + 7 + 9.5 + 9.5 + 9.5 = 39.5

Before computing the asymptotic statistic, the variance of S must be adjusted because of

the ties. To make this adjustment, we need to know the number of groups that have ties and

the number of ties in each group. In looking at the data above, we see that there are three

sets of ties, corresponding to absolute values 2, 3, and 6. The number of ties corresponding to

observations of absolute value 2 (the “2 group”) is 3; the number of ties in the “3 group” is 2;

and the number of ties in the “6 group” is 4. In general, let q be the number of groups of ties,

and let t

i

, where i goes from 1 to q, be the number of observations involved in the particular

group. In this case,

t1 = 3, t2 = 2, t3 = 4, q = 3
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In general, the variance of S is reduced according to the equation:

var(S) =

n(n + 1)(2n + 1) −
1
2

∑

q

i=1 t

i

(t

i

− 1)(t

i

+ 1)

24
(4)

For the data that we are working with, we started with 13 observations, but the n used for

the test statistic is 11, since two zeros were eliminated. In this case, the expected mean and

variance are

E(S) = 11 ×

12

4
= 33

var(S) =

11 × 12 × 23 −
1
2
(3 × 2 × 4 + 2 × 1 × 3 + 4 × 3 × 5)

24

.

= 135.6

Using test statistic S gives

Z =

S − E(S)

√

var(S)

=

39.5 − 33
√

135.6

.

= 0.56

With a Z-value of only 0.56, one would not reject the null hypothesis for commonly used

values of the significance level. For testing at a 0.05 significance level, if n is 15 or larger with

few ties, the normal approximation may reasonably be used. Note 8.4 and Problem 8.22 have

more information about the distribution of the signed-rank test.

Example 8.2. (continued ) We compute the asymptotic Z-statistic for the signed rank test

using the data given. In this case, n = 17 after eliminating zero values. We have one set of two

tied values, so that q = 1 and t1 = 2. The null hypothesis mean is 17 × 18/4 = 76.5. This vari-

ance is [17×18×35− (1/2)×2×1×3]/24 = 446.125. Therefore, Z = (48.5−76.5)/21.12
.

=

−1.326. Table A.9 shows that a two-sided p is about 0.186. This agrees with p = 0.2 as given

above from tables for the distribution of S.

8.6 WILCOXON (MANN–WHITNEY) TWO-SAMPLE TEST

Our second example of a rank test is designed for use in the two-sample problem. Given samples

from two different populations, the statistic tests the hypothesis that the distributions of the two

populations are the same. The test may be used whenever the two-sample t-test is appropriate.

Since the test given depends upon the ranks, it is nonparametric and may be used more generally.

In this section, we discuss the null hypothesis to be tested, and the efficiency of the test relative to

the two-sample t-test. The test statistic is presented and illustrated by two examples. The large-

sample approximation to the statistic is given. Finally, the relationship between two equivalent

statistics, the Wilcoxon statistic and the Mann–Whitney statistic, is discussed.

8.6.1 Null Hypothesis, Alternatives, and Power

The null hypothesis tested is that each of two independent samples has the same probability

distribution. Table A.10 for the Mann–Whitney two-sample statistic assumes that there are no

ties. Whenever the two-sample t-test may be used, the Wilcoxon statistic may also be used. The

statistic is designed to have statistical power in situations where the alternative of interest has

one population with generally larger values than the other. This occurs, for example, when the

two distributions are normally distributed, but the means differ. For normal distributions with a

shift in the mean, the efficiency of the Wilcoxon test relative to the two-sample t-test is 0.955.
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For other distributions with a shift in the mean, the Wilcoxon test will have relative efficiency

near 1 if the distribution is light-tailed and greater than 1 if the distribution is heavy-tailed.

However, as the Wilcoxon test is designed to be less sensitive to extreme values, it will

have less power against an alternative that adds a few extreme values to the data. For example,

a pollutant that generally had a normally distributed concentration might have occasional very

high values, indicating an illegal release by a factory. The Wilcoxon test would be a poor

choice if this were the alternative hypothesis. Johnson et al. [1987] shows that a quantile test

(see Note 8.5) is more powerful than the Wilcoxon test against the alternative of a shift in the

extreme values, and the U.S. EPA [1994] has recommended using this test. In large samples a

t-test might also be more powerful than the Wilcoxon test for this alternative.

8.6.2 Test Statistic

The test statistic itself is easy to compute. The combined sample of observations from both

populations are ordered from the smallest observation to the largest. The sum of the ranks of

the population with the smaller sample size (or in the case of equal sample sizes, an arbitrarily

designated first population) gives the value of the Wilcoxon statistic.

To evaluate the statistic, we use some notation. Let m be the number of observations for the

smaller sample, and n the number of observations in the larger sample. The Wilcoxon statistic

W is the sum of the ranks of the m observations when both sets of observations are ranked

together.

The computation is illustrated in the following example:

Example 8.3. This example deals with a small subset of data from the Coronary Artery

Surgery Study [CASS, 1981]. Patients were studied for suspected or proven coronary artery

disease. The disease was diagnosed by coronary angiography. In coronary angiography, a tube

is placed into the aorta (where the blood leaves the heart) and a dye is injected into the arteries

of the heart, allowing x-ray motion pictures (angiograms) of the arteries. If an artery is narrowed

by 70% or more, the artery is considered significantly diseased. The heart has three major arterial

systems, so the disease (or lack thereof) is classified as zero-, one-, two-, or three-vessel disease

(abbreviated 0VD, 1VD, 2VD, and 3VD). Narrowed vessels do not allow as much blood to give

oxygen and nutrients to the heart. This leads to chest pain (angina) and total blockage of arteries,

killing a portion of the heart (called a heart attack or myocardial infarction). For those reasons,

one does not expect people with disease to be able to exercise vigorously. Some subjects in

CASS were evaluated by running on a treadmill to their maximal exercise performance. The

treadmill increases in speed and slope according to a set schedule. The total time on the treadmill

is a measure of exercise capacity. The data that follow present treadmill time in seconds for men

with normal arteries (but suspected coronary artery disease) and men with three-vessel disease

are as follows:

Normal 1014 684 810 990 840 978 1002 1111

3VD 864 636 638 708 786 600 1320 750 594 750

Note that m = 8 (normal arteries) and n = 10 (three-vessel disease). The first step is to rank

the combined sample and assign ranks, as in Table 8.3. The sum of the ranks of the smaller

normal group is 101. Table A.10, for the closely related Mann–Whitney statistic of Section 8.6.4,

shows that we reject the null hypothesis of equal population distributions at a 5% significance

level.

Under the null hypothesis, the expected value of the Wilcoxon statistic is

E(W) =

m(m + n + 1)

2
(5)



264 NONPARAMETRIC, DISTRIBUTION-FREE, AND PERMUTATION MODELS: ROBUST PROCEDURES

Table 8.3 Ranking Data for Example 8.3

Value Rank Group Value Rank Group Value Rank Group

594 1 3VD 750 7.5 3VD 978 13 Normal

600 2 3VD 750 7.5 3VD 990 14 Normal

636 3 3VD 786 9 3VD 1002 15 Normal

638 4 3VD 810 10 Normal 1014 16 Normal

684 5 Normal 840 11 Normal 1111 17 Normal

708 6 3VD 864 12 3VD 1320 18 3VD

In this case, the expected value is 76. As we conjectured (before seeing the data) that the

normal persons would exercise longer (i.e., W would be large), a one-sided test that rejects

the null hypothesis if W is too large might have been used. Table A.10 shows that at the 5%

significance level, we would have rejected the null hypothesis using the one-sided test. (This is

also clear, since the more-stringent two-sided test rejected the null hypothesis.)

8.6.3 Large-Sample Approximation

There is a large-sample approximation to the Wilcoxon statistic (W ) under the null hypothesis

that the two samples come from the same distribution. The approximation may fail to hold if

the distributions are different, even if neither has systematically larger or smaller values. The

mean and variance of W , with or without ties, is given by equations (5) through (7). In these

equations, m is the size of the smaller group (the number of ranks being added to give W ), n

the number of observations in the larger group, q the number of groups of tied observations (as

discussed in Section 8.6.2), and t

i

the number of ranks that are tied in the ith set of ties. First,

without ties,

var(W) =

mn(m + n + 1)

12
(6)

and with ties,

var(W) =

mn(m + n + 1)

12
−

[

q

∑

i=1

t

i

(t

i

− 1)(t

i

+ 1)

]

mn

12(m + n)(m + n − 1)

(7)

Using these values, an asymptotic statistic with an approximately standard normal distribu-

tion is

Z =

W − E(W)

√

var(W)

(8)

Example 8.3. (continued ) The normal approximation is best used when n ≥ 15 and m ≥

15. Here, however, we compute the asymptotic statistic for the data of Example 8.3.

E(W) =

8(10 + 8 + 1)

2
= 76

var(W) =

8 · 10(8 + 10 + 1)

12
− 2(2 − 1)(2 + 1)

[

8 · 10

12(8 + 10)(8 + 10 + 1)

]

= 126.67 − 0.12 = 126.55

Z =

101 − 76
√

126.55

.

= 2.22
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The one-sided p-value is 0.013, and the two-sided p-value is 2(0.013) = 0.026. In fact, the

exact one-sided p-value is 0.013. Note that the correction for ties leaves the variance virtually

unchanged.

Example 8.4. The Wilcoxon test may be used for data that are ordered and ordinal. Consider

the angiographic findings from the CASS [1981] study for men and women in Table 8.4. Let us

test whether the distribution of disease is the same in the men and women studied in the CASS

registry.

You probably recognize that this is a contingency table, and the χ

2-test may be applied. If

we want to examine the possibility of a trend in the proportions, the χ

2-test for trend could

be used. That test assumes that the proportion of females changes in a linear fashion between

categories. Another approach is to use the Wilcoxon test as described here.

The observations may be ranked by the six categories (none, mild, moderate, 1VD, 2VD,

and 3VD). There are many ties: 4517 ties for the lowest rank, 1396 ties for the next rank, and so

on. We need to compute the average rank for each of the six categories. If J observations have

come before a category with K tied observations, the average rank for the k tied observations is

average rank =

2J + K + 1

2
(9)

For these data, the average ranks are computed as follows:

K J Average K J Average

4,517 0 2,259 4,907 6,860 9,314

1,396 4,517 5,215.5 5,339 11,767 14,437

947 5,913 6,387 6,997 17,106 20,605

Now our smaller sample of females has 2360 observations with rank 2259, 572 observations

with rank 5215.5, and so on. Thus, the sum of the ranks is

W = 2360(2259) + 572(5215.5) + 291(6387) + 1020(9314) + 835(14,437) + 882(20,605)

= 49,901,908

The expected value from equation (5) is

E(W) =

5960(5960 + 18,143 + 1)

2
= 71,829,920

Table 8.4 Extent of Coronary Artery

Disease by Gender

Extent of Disease Male Female Total

None 2,157 2,360 4,517

Mild 824 572 1,396

Moderate 656 291 947

Significant

1VD 3,887 1,020 4,907

2VD 4,504 835 5,339

3VD 6,115 882 6,997

Total 18,143 5,960 24,103

Source: Data from CASS [1981].
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From equation (7), the variance, taking into account ties, is

var(W) = 5960 × 18,143 ×

5960 + 18,143 + 1

12

−(4517 × 4516 × 4518 + · · · + 6997 × 6996 × 6998)

5960 × 18,143

12 × 20,103 × 20,102

= 2.06 × 1011

From this,

z =

W − E(W)

√

var(W)

.

= −48.29

The p-value is extremely small and the population distributions clearly differ.

8.6.4 Mann–Whitney Statistic

Mann and Whitney developed a test statistic that is equivalent to the Wilcoxon test statistic.

To obtain the value for the Mann–Whitney test, which we denote by U , one arranges the

observations from the smallest to the largest. The statistic U is obtained by counting the number

of times an observation from the group with the smallest number of observations precedes an

observation from the second group. With no ties, the statistics U and W are related by the

following equation:

U + W =

m(m + 2n + 1)

2
(10)

Since the two statistics add to a constant, using one of them is equivalent to using the other. We

have used the Wilcoxon statistic because it is easier to compute by hand. The values of the two

statistics are so closely related that books of statistical tables contain tables for only one of the

two statistics, since the transformation from one to the other is almost immediate. Table A.10

is for the Mann–Whitney statistic.

To use the table for Example 8.3, the Mann–Whitney statistic would be

U =

8[8 + 2(10) + 1]

2
− 101 = 116 − 101 = 15

From Table A.10, the two-sided 5% significance levels are given by the tabulated values and

mn minus the tabulated value. The tabulated two-sided value is 63, and 8 × 10 − 63 = 17. We

do reject for a two-sided 5% test. For a one-sided test, the upper critical value is 60; we want

the lower critical value of 8 × 10 − 60 = 20. Clearly, again we reject at the 5% significance

level.

8.7 KOLMOGOROV–SMIRNOV TWO-SAMPLE TEST

Definition 3.9 showed one method of describing the distributions of values from a population:

the empirical cumulative distribution. For each value on the real line, the empirical cumulative

distribution gives the proportion of observations less than or equal to that value. One visual

way of comparing two population samples would be a graph of the two empirical cumulative

distributions. If the two empirical cumulative distributions differ greatly, one would suspect that
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the populations being sampled were not the same. If the two curves were quite close, it would

be reasonable to assume that the underlying population distributions were essentially the same.

The Kolmogorov–Smirnov statistic is based on this observation. The value of the statistic is

the maximum absolute difference between the two empirical cumulative distribution functions.

Note 8.7 discusses the fact that the Kolmogorov–Smirnov statistic is a rank test. Consequently,

the test is a nonparametric test of the null hypothesis that the two distributions are the same.

When the two distributions have the same shape but different locations, the Kolmogorov–

Smirnov statistic is far less powerful than the Wilcoxon rank-sum test (or the t-test if it applies),

but the Kolmogorov–Smirnov test can pick up any differences between distributions, whatever

their form.

The procedure is illustrated in the following example:

Example 8.4. (continued ) The data of Example 8.3 are used to illustrate the statistic. Using

the method of Chapter 3, Figure 8.2 was constructed with both distribution functions.

From Figure 8.2 we see that the maximum difference is 0.675 between 786 and 810. Tables

of the statistic are usually tabulated not in terms of the maximum absolute difference D, but

in terms of (mn/d)D or mnD, where m and n are the two sample sizes and d is the lowest

common denominator of m and n. The benefit of this is that (mn/d)D or mnD is always an

integer. In this case, m = 8, n = 10, and d = 2. Thus, (mn/d)D = (8)(10/2)(0.675) = 27

and mnD = 54. Table 44 of Odeh et al. [1977] gives the 0.05 critical value for mnD as

48. Since 54 > 48, we reject the null hypothesis at the 5% significance level. Tables of

critical values are not given in this book but are available in standard tables (e.g., Odeh

et al. [1977]; Owen [1962]; Beyer [1990]) and most statistics packages. The tables are designed

for the case with no ties. If there are ties, the test is conservative; that is, the probabil-

ity of rejecting the null hypothesis when it is true is even less than the nominal signifi-

cance level.

Figure 8.2 Empirical cumulative distributions for the data of Example 8.3.
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The large-sample distribution of D is known. Let n and m both be large, say, both 40 or

more. The large-sample test rejects the null hypothesis according to the following table:

Significance Level Reject the Null Hypothesis if:

0.001 KS ≥ 1.95

0.01 KS ≥ 1.63

0.05 KS ≥ 1.36

0.10 KS ≥ 1.22

KS is defined as

KS = max
x

√

nm

n + m

|F
n

(x) − G

m

(x)| =

√

nm

n + m

D (11)

where F

n

and G

m

are the two empirical cumulative distributions.

8.8 NONPARAMETRIC ESTIMATION AND CONFIDENCE INTERVALS

Many nonparametric tests have associated estimates of parameters. Confidence intervals for

these estimates are also often available. In this section we present two estimates associated with

the Wilcoxon (or Mann–Whitney) two-sample test statistic. We also show how to construct a

confidence interval for the median of a distribution.

In considering the Mann–Whitney test statistic described in Section 8.6, let us suppose that

the sample from the first population was denoted by X’s, and the sample from the second

population by Y ’s. Suppose that we observe mX’s and nY ’s. The Mann–Whitney test statistic

U is the number of times an X was less than a Y among the nmX and Y pairs. As shown

in equation (12), the Mann–Whitney test statistic U , when divided by mn, gives an unbiased

estimate of the probability that X is less than Y .

E

(

U

mn

)

= P [X < Y ] (12)

Further, an approximate 100(1 − α)% confidence interval for the probability that X is less than

Y may be constructed using the asymptotic normality of the Mann–Whitney test statistic. The

confidence interval is given by the following equation:

U

mn

± Z1−α/2

√

1

min(m, n)

U

mn

(

1 −

U

mn

)

(13)

In large samples this interval tends to be too long, but in small samples it can be too short if

U/mn is close to 0 or 1 [Church and Harris, 1970]. In Section 8.10.2 we show another way to

estimate a confidence interval.

Example 8.5. This example illustrates use of the Mann–Whitney test statistic to estimate

the probability that X is less than Y and to find a 95% confidence interval for P [X < Y ].

Examine the normal/3VD data in Example 8.3. We shall estimate the probability that the

treadmill time of a randomly chosen person with normal arteries is less than that of a three-vessel

disease patient.
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Note that 1014 is less than one three-vessel treadmill time; 684 is less than 6 of the three-

vessel treadmill times, and so on. Thus,

U = 1 + 6 + 2 + 1 + 2 + 1 + 1 + 1 = 15

We also could have found U by using equation (9) and W = 101 from Example 8.3. Our

estimate of P [X < Y ] is 15/(8 × 10) = 0.1875. The confidence interval is

0.1875 ± (1.96)

√

1

8
(0.1875)(1 − 0.1875) = 0.1875 ± 0.2704

We see that the lower limit of the confidence interval is below zero. As zero is the minimum

possible value for P [X < Y ], the confidence interval could be rounded off to [0, 0.458].

If it is known that the underlying population distributions of X and Y are the same shape

and differ only by a shift in means, it is possible to use the Wilcoxon test (or any other rank

test) to construct a confidence interval. This is an example of a semiparametric procedure: it

does not require the underlying distributions to be known up to a few parameters, but it does

impose strong assumptions on them and so is not nonparametric. The procedure is to perform

Wilcoxon tests of X + δ vs. Y to find values of δ at which the p-value is exactly 0.05. These

values of δ give a 95% confidence interval for the difference in locations.

Many statistical packages will compute this confidence interval and may not warn the user

about the assumption that the distributions have the same shape but a different location. In the

data from Example 8.5, the assumption does not look plausible: The treadmill times for patients

with three-vessel disease are generally lower but with one outlier that is higher than the times

for all the normal subjects.

In Chapter 3 we saw how to estimate the median of a distribution. We now show how to

construct a confidence interval for the median that will hold for any distribution. To do this, we

use order statistics.

Definition 8.9. Suppose that one observes a sample. Arrange the sample from the smallest

to the largest number. The smallest number is the first-order statistic, the second smallest is the

second-order statistic, and so on; in general, the i th-order statistic is the ith number in line.

The notation used for an order statistic is to put the subscript corresponding to the particular

order statistic in parentheses. That is,

X

(1)

≤ X

(2)

≤ · · · ≤ X

(n)

To find a 100(1 − α)% confidence interval for the median, we first find from tables of the

binomial distribution with π = 0.5, the largest value of k such that the probability of k or fewer

successes is less than or equal to α/2. That is, we choose k to be the largest value of k such

that

P [number of heads in n flips of a fair coin = 0 or 1 or . . . or k] ≤

α

2

Given the value of k, the confidence interval for the median is the interval between the

(k + 1)- and (n − k)-order statistics. That is, the interval is

(X

(k+1)

, X

(n−k)

)
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Example 8.6. The treadmill times of 20 females with normal or minimal coronary artery

disease in the CASS study are

570, 618, 30, 780, 630, 738, 900, 750, 750, 540, 660,

780, 720, 750, 936, 900, 762, 840, 816, 690

We estimate the median time and construct a 90% confidence interval for the median of this

population distribution. The order statistics (ordered observations) from 1 to 20 are

30, 540, 570, 618, 630, 660, 690, 720, 738, 750, 750,

750, 762, 780, 780, 816, 840, 900, 900, 936

Since we have an odd number of observations,

median =

X

(10)

+ X

(11)

2
=

750 + 750

2
= 750

If X is binomial, n = 20 and π = 0.5, P [X ≤ 5] = 0.0207 and P [X ≤ 6] = 0.0577. Thus,

k = 5. Now, X

(6)

= 690 and X

(15)

= 780. Hence, the confidence interval is (690, 780). The

actual confidence is 100(1 − 2 × 0.0207)%
.

= 95.9%. Because of the discrete nature of the data,

the nominal 90% confidence interval is also a 95.9% confidence interval.

*8.9 PERMUTATION AND RANDOMIZATION TESTS

In this section we present a method that may be used to generate a wide variety of statistical

procedures. The arguments involved are subtle; you need to pay careful attention to understand

the logic. We illustrate the idea by working from an example.

Suppose that one had two samples, one of size n and one of size m. Consider the null

hypothesis that the distributions of the two populations are the same. Let us suppose that, in

fact, this null hypothesis is true; the combined n+m observations are independent and sampled

from the same population. Suppose now that you are told that one of the n + m observations

is equal to 10. Which of the n + m observations is most likely to have taken the value 10?

There is really nothing to distinguish the observations, since they are all taken from the same

distribution or population. Thus, any of the n + m observations is equally likely to be the one

that was equal to 10. More generally, suppose that our samples are taken in a known order;

for example, the first n observations come from the first population and the next m from the

second. Let us suppose that the null hypothesis still holds. Suppose that you are now given the

observed values in the sample, all n + m of them, but not told which value was obtained from

which ordered observation. Which arrangement is most likely? Since all the observations come

from the same distribution, and the observations are independent, there is nothing that would

tend to associate any one sequence or arrangement of the numbers with a higher probability than

any other sequence. In other words, every assignment of the observed numbers to the n + m

observations is equally likely. This is the idea underlying a class of tests called permutation

tests. To understand why they are called this, we need the definition of a permutation:

Definition 8.10. Given a set of (n + m) objects arranged or numbered in a sequence, a

permutation of the objects is a rearrangement of the objects into the same or a different order.

The number of permutations is (n + m)!.

What we said above is that if the null hypothesis holds in the two-sample problem, all

permutations of the numbers observed are equally likely. Let us illustrate this with a small

example. Suppose that we have two observations from the first group and two observations

from the second group. Suppose that we know that the four observations take on the values 3,
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Table 8.5 Permutations of Four Observations

x y x − y x y x − y

3 7 8 10 7 8 3 10

3 7 10 8















−4
7 8 10 3















17 3 8 10 8 7 3 10

7 3 10 8 8 7 10 3

3 8 7 10 7 10 3 8

3 8 10 7















−3
7 10 8 3















38 3 7 10 10 7 3 8

8 3 10 7 10 7 8 3

3 10 7 8 8 10 3 7

3 10 8 7















−1
8 10 7 3















410 3 7 8 10 8 3 7

10 3 8 7 10 8 7 3

7, 8, and 10. Listed in Table 8.5 are the possible permutations where the first two observations

would be considered to come from the first group and the second two from the second group.

(Note that x represents the first group and y represents the second.)

If we only know the four values 3, 7, 8, and 10 but do not know in which order they

came, any of the 24 possible arrangements listed above are equally likely. If we wanted to

perform a two-sample test, we could generate a statistic and calculate its value for each of the

24 arrangements. We could then order the values of the statistic according to some alternative

hypothesis so that the more extreme values were more likely under the alternative hypothesis.

By looking at what sequence actually occurred, we can get a p-value for this set of data. The

p-value is determined by the position of the statistic among the possible values. The p-value

is the number of possibilities as extreme or more extreme than that observed divided by the

number of possibilities.

Suppose, for example, that with the data above, we decided to use the difference in means

between the two groups, x − y, as our test statistic. Suppose also that our alternative hypothesis

is that group 1 has a larger mean than group 2. Then, if any of the last four rows of Table had

occurred, the one-sided p-value would be 4/24, or 1/6. Note that this would be the most extreme

finding possible. On the other hand, if the data had been 8, 7, 3, and 10, with an x − y = 1, the

p-value would be 12/24, or 1/2.

The tests we have been discussing are called permutation tests. They are possible when

a permutation of all or some subset of the data is considered equally likely under the null

hypothesis; the test is based on this fact. These tests are sometimes also called conditional tests,

because the test takes some portion of the data as fixed or known. In the case above, we assume

that we know the actual observed values, although we do not know in which order they occurred.

We have seen an example of a conditional test before: Fisher’s exact test in Chapter 6 treated the

row and column totals as known; conditionally, upon that information, the test considered what

happened to the entries in the table. The permutation test can be used to calculate appropriate

p-values for tests such as the t-test when, in fact, normal assumptions do not hold. To do this,

proceed as in the next example.

Example 8.7. Given two samples, a sample of size n of X observations and a sample of size

m of Y observations, it can be shown (Problem 8.24) that the two-sample t-test is a monotone

function of x −y; that is, as x −y increases, t also increases. Thus, if we perform a permutation

test on x − y, we are in fact basing our test on extreme values of the t-statistic. The illustration

above is equivalent to a t-test on the four values given. Consider now the data

x1 = 1.3, x2 = 2.3, x3 = 1.9, y1 = 2.8, y2 = 3.9
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The 120 permutations (3 + 2)! fall into 10 groups of 12 permutations with the same value of

x −y (a complete table is included in the Web appendix). The observed value of x −y is −1.52,

the lowest possible value. A one-sided test of E(Y ) < E(X) would have p = 0.1 = 12/120.

The two-sided p-value is 0.2.

The Wilcoxon test may be considered a permutation test, where the values used are the ranks

and not the observed values. For the Wilcoxon test we know what the values of the ranks will

be; thus, one set of statistical tables may be generated that may be used for the entire sample. For

the general permutation test, since the computation depends on the numbers actually observed,

it cannot be calculated until we have the sample in hand. Further, the computations for large

sample sizes are very time consuming. If n is equal to 20, there are over 2 × 1018 possible

permutations. Thus, the computational work for permutation tests becomes large rapidly. This

would appear to limit their use, but as we discuss in the next section, it is possible to sample

permutations rather than evaluating every one.

We now turn to randomization tests. Randomization tests proceed in a similar manner to

permutation tests. In general, one assumes that some aspects of the data are known. If certain

aspects of the data are known (e.g., we might know the numbers that were observed, but not

which group they are in), one can calculate a number of equally likely outcomes for the complete

data. For example, in the permutation test, if we know the actual values, all possible permutations

of the values are equally likely under the null hypothesis. In other words, it is as if a permutation

were to be selected at random; the permutation tests are examples of randomization tests.

Here we consider another example. This idea is the same as that used in the signed rank test.

Suppose that under the null hypothesis, the numbers observed are independent and symmetric

about zero. Suppose also that we are given the absolute values of the numbers observed but

not whether they are positive or negative. Take a particular number a. Is it more likely to be

positive or negative? Because the distribution is symmetric about zero, it is not more likely to

be either one. It is equally likely to be +a or −a. Extending this to all the observations, every

pattern of assigning pluses or minuses to our absolute values is equally likely to occur under

the null hypothesis that all observations are symmetric about zero. We can then calculate the

value of a test statistic for all the different patterns for pluses and minuses. A test basing the

p-value on these values would be called a randomization test.

Example 8.8. One can perform a randomization one-sample t-test, taking advantage of the

absolute values observed rather than introducing the ranks. For example, consider the first four

paired observations of Example 8.2. The values are −0.0525, 0.172, 0.577, and 0.200. Assign

all 16 patterns of pluses and minuses to the four absolute values (0.0525, 0.172, 0.577, and

0.200) and calculate the values of the paired or one-sample t-test. The 16 computed values, in

increasing order, are −3.47, −1.63, −1.49, −0.86, −0.46, −0.34, −0.08, −0.02, 0.02, 0.08,

0.34, 0.46, 0.86, 1.48, 1.63, and 3.47. The observed t-value (in bold type) is −0.86. It is the

fourth of 16 values. The two-sided p-value is 2(4/16) = 0.5.

*8.10 MONTE CARLO OR SIMULATION TECHNIQUES

*8.10.1 Evaluation of Statistical Significance

To compute statistical significance, we need to compare the observed values with something else.

In the case of symmetry about the origin, we have seen it is possible to compare the observed

value to the distribution where the plus and minus signs are independent with probability 1/2. In

cases where we do not know a prior appropriate comparison distribution, as in a drug trial, the

distribution without the drug is found by either using the same subjects in a crossover trial or

forming a control group by a separate sample of people who are not treated with the drug. There

are cases where one can conceptually write down the probability structure that would generate
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the distribution under the null hypothesis, but in practice could not calculate the distribution.

One example of this would be the permutation test. As we mentioned previously, if there are 20

different values in the sample, there are more than 2 × 1018 different permutations. To generate

them all would not be feasible, even with modern electronic computers. However, one could

evaluate the particular value of the test statistic by generating a second sample from the null

distribution with all permutations being equally likely. If there were some way to generate

permutations randomly and compute the value of the statistic, one could take the observed

statistic (thinking of this as a sample of size 1) and compare it to the randomly generated value

under the null hypothesis, the second sample. One would then order the observed and generated

values of the statistic and decide which values are more extreme; this would lead to a rejection

region for the null hypothesis. From this, a p-value could be computed. These abstract ideas

are illustrated by the following examples.

Example 8.9. As mentioned above, for fixed observed values, the two-sample t-test is a

monotone function of the value of x−y, the difference in the means of the two samples. Suppose

that we have the x − y observed. One might then generate random permutations and compute

the values of x − y. Suppose that we generate n such values. For a two-sided test, let us order

the absolute values of the statistic, including both our random sample under the null hypothesis

and the actual observation, giving us n + 1 values. Suppose that the actual observed value of

the statistic from the data is the kth-order statistic, where we have ordered the absolute values

from smallest to largest. Larger values tend to give more evidence against the null hypothesis of

equal means. Suppose that we would reject for all observations as large as the kth-order statistic

or larger. This corresponds to a p-value of (n + 2 − k)/(n + 1).

One problem that we have not discussed yet is the method for generating the random per-

mutation and x − y values. This is usually done by computer. The computer generates random

permutations by using what are called random number generators (see Note 8.10). A study

using the generation of random quantities by computer is called a Monte Carlo study, for the

gambling establishment at Monte Carlo with its random gambling devices and games. Note that

by using Monte Carlo permutations, we can avoid the need to generate all possible permutations!

This makes permutation tests feasible for large numbers of observations.

Another type of example comes about when one does not know how to compute the distri-

bution theoretically under the null hypothesis.

Example 8.10. This example will not give all the data but will describe how a Monte Carlo

test was used. In the Coronary Artery Surgery Study (CASS [1981], Alderman et al. [1982]), a

study was made of the reasons people that were treated by coronary bypass surgery or medical

therapy. Among 15 different institutions, it was found that many characteristics affected the

assignments of patients to surgical therapy. A multivariate statistical analysis of a type described

later in this book (linear discriminant analysis) was used to identify factors related to choice

of therapy and to estimate the probability that someone would have surgery. It was clear that

the sites differed in the percentage of people assigned to surgery, but it was also clear that

the clinical sites had patient populations with different characteristics. Thus, one could not

immediately conclude that the clinics had different philosophies of assignment to therapy merely

by running a χ

2 test. Conceivably, the differences between clinics could be accounted for by

the different characteristics of the patient populations. Using the estimated probability that each

patient would or would not have surgery, the total number of surgical cases was distributed

among the clinics using a Monte Carlo technique. The corresponding χ

2 test for the observed

and expected values was computed for each of these randomly generated assignments under the

null hypothesis of no clinical difference. This was done 1000 times. The actual observed value

for the statistic turned out to be larger than any of the 1000 simulations. Thus, the estimated

p-value for the significance of the conjecture that the clinics had different methods of assigning
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people to therapy was less than 1/1001. It was thus concluded that the clinics had different

philosophies by which they assigned people to medical or surgical therapy.

We now turn to other possible uses of the Monte Carlo technique.

8.10.2 The Bootstrap

The motivation for distribution-free statistical procedures is that we need to know the distri-

bution of a statistic when the frequency distribution F of the data is not known a priori. A

very ingenious way around this problem is given by the bootstrap, a procedure due in its full

maturity to Efron [1979], although special cases and related ideas had been around for many

years.

The idea behind the bootstrap is that although we do not know F , we have a good estimate of

it in the empirical frequency distribution F

n

. If we can estimate the distribution of our statistic

when data are sampled from F

n

, we should have a good approximation to the distribution of

the statistic when data are sampled from the true, unknown F . We can create data sets sampled

from F

n

simply by resampling the observed data: We take a sample of size n from our data set

of size n (replacing the sampled observation each time). Some observations appear once, others

twice, others not at all.

The bootstrap appears to be too good to be true (the name emphasizes this, coming from

the concept of “lifting yourself by your bootstraps”), but both empirical and theoretical analysis

confirm that it works in a fairly wide range of cases. The two main limitations are that it works

only for independent observations and that it fails for certain extremely nonrobust statistics

(the only simple examples being the maximum and minimum). In both cases there are more

sophisticated variants of the bootstrap that relax these conditions.

Because it relies on approximating F by F

n

the bootstrap is a large-sample method that is only

asymptotically distribution-free, although it is successful in smaller samples than, for example,

the t-test for nonnormal data. Efron and Tibshirani [1986, 1993] are excellent references; much

of the latter is accessible to the nonstatistician. Davison and Hinckley [1997] is a more advanced

book covering many variants on the idea of resampling. The Web appendix to this chapter links

to more demonstrations and examples of the bootstrap.

Example 8.11. We illustrate the bootstrap by reexamining the confidence interval for P [X

< Y ] generated in Example 8.5. Recall that we were comparing treadmill times for normal

subjects and those with three-vessel disease. The observed P [X < Y ] was 15/80 = 0.1875.

In constructing a bootstrap sample we sample 8 observations from the normal and 10 from the

three-vessel disease data and compute U/mn for the sample. Repeating this 1000 times gives

an estimate of the distribution of P [X < Y ]. Taking the upper and lower α/2 percentage points

of the distribution gives an approximate 95% confidence interval. In this case the confidence

interval is [0, 0.41]. Figure 8.3 shows a histogram of the bootstrap distribution with the normal

approximation from Example 8.5 overlaid on it.

Comparing this to the interval generated from the normal approximation, we see that both

endpoints of the bootstrap interval are slightly higher, and the bootstrap interval is not quite

symmetric about the observed value, but the two intervals are otherwise very similar. The

bootstrap technique requires more computer power but is more widely applicable: It is less

conservative in large samples and may be less liberal in small samples.

Related resampling ideas appear elsewhere in the book. The idea of splitting a sample to

estimate the effect of a model in an unbiased manner is discussed in Chapters 11 and 13 and

elsewhere. Systematically omitting part of a sample, estimating values, and testing on the omitted

part is used; if one does this, say for all subsets of a certain size, a jackknife procedure is being

used (see Efron [1982]; Efron and Tibshirani [1993]).
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Figure 8.3 Histogram of bootstrap distribution of U/mn and positive part of normal approximation

(dashed line). (Data from CASS [1981]; see Example 8.5.)

8.10.3 Empirical Evaluation of the Behavior of Statistics: Modeling and Evaluation

Monte Carlo generation on a computer is also useful for studying the behavior of statistics.

For example, we know that the χ

2-statistic for contingency tables, as discussed in Chapter 7,

has approximately a χ

2-distribution for large samples. But is the distribution approximately χ

2

for smaller samples? In other words, is the statistic fairly robust with respect to sample size?

What happens when there are small numbers of observations in the cells? One way to evaluate

small-sample behavior is a Monte Carlo study (also called a simulation study). One can generate

multinomial samples with the two traits independent, compute the χ

2-statistic, and observe, for

example, how often one would reject at the 5% significance level. The Monte Carlo simulation

would allow evaluation of how large the sample needs to be for the asymptotic χ

2 critical value

to be useful.

Monte Carlo simulation also provides a general method for estimating power and sample size.

When designing a study one usually wishes to calculate the probability of obtaining statistically

significant results under the proposed alternative hypothesis. This can be done by simulating

data from the alternative hypothesis distribution and performing the planned test. Repeating this

many times allows the power to be estimated. For example, if 910 of 1000 simulations give a

statistically significant result, the power is estimated to be 91%. In addition to being useful when

no simple formula exists for the power, the simulation approach is helpful in concentrating the

mind on the important design factors. Having to simulate the possible results of a study makes

it very clear what assumptions go into the power calculation.

Another use of the Monte Carlo method is to model very complex situations. For example,

you might need to design a hospital communications network with many independent inputs. If

you knew roughly the distribution of calls from the possible inputs, you could simulate by Monte

Carlo techniques the activity of a proposed network if it were built. In this manner, you could

see whether or not the network was often overloaded. As another example, you could model

the hospital system of an area under the assumption of new hospitals being added and various

assumptions about the case load. You could also model what might happen in catastrophic

circumstances (provided that realistic assumptions could be made). In general, the modeling

and simulation approach gives one method of evaluating how changes in an environment might
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affect other factors without going through the expensive and potentially catastrophic exercise

of actually building whatever is to be simulated. Of course, such modeling depends heavily

on the skill of the people constructing the model, the realism of the assumptions they make,

and whether or not the probabilistic assumptions used correspond approximately to the real-life

situation.

A starting reference for learning about Monte Carlo ideas is a small booklet by Hoff-

man [1979]. More theoretical texts are Edgington [1987] and Ripley [1987] .

*8.11 ROBUST TECHNIQUES

Robust techniques cover more than the field of nonparametric and distribution-free statistics.

In general, distribution-free statistics give robust techniques, but it is possible to make more

classical methods robust against certain violations of assumptions.

We illustrate with three approaches to making the sample mean robust. Another approach

discussed earlier, which we shall not discuss again here, is to use the sample median as a

measure of location. The three approaches are modifications of the traditional mean statistic x.

Of concern in computing the sample mean is the effect that an outlier will have. An observation

far away from the main data set can have an enormous effect on the sample mean. One would

like to eliminate or lessen the effect of such outlying and possibly spurious observations.

An approach that has been suggested is the α-trimmed mean. With the α-trimmed mean,

we take some of the largest and smallest observations and drop them from each end. We then

compute the usual sample mean on the data remaining.

Definition 8.11. The α-trimmed mean of n observations is computed as follows: Let k be

the smallest integer greater than or equal to αn. Let X

(i)

be the order statistics of the sample.

The α-trimmed mean drops approximately a proportion α of the observations from both ends

of the distribution. That is,

α-trimmed mean =

1

n − 2k

n−k

∑

i=k+1

X

(i)

We move on to the two other ways of modifying the mean, and then illustrate all three with

a data set. The second method of modifying the mean is called Winsorization. The α-trimmed

mean drops the largest and smallest observations from the samples. In the Winsorized mean,

such observations are included, but the large effect is reduced. The approach is to shrink the

smallest and largest observations to the next remaining observations, and count them as if they

had those values. This will become clearer with the example below.

Definition 8.12. The α-Winsorized mean is computed as follows. Let k be the smallest

integer greater than or equal to αn. The α-Winsorized mean is

α-Winsorized mean =

1

n





(k + 1)(X

(k+1)

+ X

(n−k)

) +

n−k−1
∑

i=k+2

X

(i)





The third method is to weight observations differentially. In general, we would want to

weight the observations at the ends or tails less and those in the middle more. Thus, we will

base the weights on the order statistics where the weights for the first few order statistics and
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the last few order statistics are typically small. In particular, we define the weighted mean to be

weighted mean =

∑

n

i=1 W

i

X

(i)

∑

n

i=1 W

i

, where W

i

≥ 0

Problem 8.26 shows that the α-trimmed mean and the α-Winsorized mean are examples of

weighted means with appropriately chosen weights.

Example 8.12. We compute the mean, median, 0.1-trimmed mean, and 0.1-Winsorized

mean for the female treadmill data of Example 8.6.

mean = x =

30 + · · · + 936

20
= 708

median =

X

(10)

+ X

(11)

2
= 750

Now 0.1 × 20 = 2, so k = 2.

α-trimmed mean =

570 + · · · + 900

16
= 734.6

α-Winsorized mean =

1

20
(3(579 + 900) + 618 + · · · + 840) = 734.7

Note that the median and both robust mean estimates are considerably higher than the sample

mean x. This is because of the small outlier of 30.

The Winsorized mean was intended to give outlying observations the same influence on the

estimate as the most extreme of the interior estimates. In fact, the trimmed mean does this and

the Winsorized mean gives outlying observations rather more influence. This, combined with

the simplicity of the trimmed mean, makes it more attractive.

Robust techniques apply in a much more general context than shown here, and indeed are

more useful in other situations. In particular, for regression and multiple regression (subjects of

subsequent chapters in this book), a large amount of statistical theory has been developed for

making the procedures more robust [Huber, 1981].

*8.12 FURTHER READING AND DIRECTIONS

There are several books dealing with nonparametric statistics. Among these are Lehmann and

D’Abrera [1998] and Kraft and van Eeden [1968]. Other books deal exclusively with non-

parametric statistical techniques. Three that are accessible on a mathematical level suitable for

readers of this book are Marascuilo and McSweeney [1977], Bradley [1968], and Siegel and

Castellan [1990].

A book that gives more of a feeling for the mathematics involved at a level above this text but

which does not require calculus is Hajek [1969]. Another very comprehensive text that outlines

much of the theory of statistical tests but is on a somewhat more advanced mathematical level,

is Hollander and Wolfe [1999]. Finally, a comprehensive text on robust methods, written at a

very advanced mathematical level, is Huber [2003].

In other sections of this book we give nonparametric and robust techniques in more general

settings. They may be identified by one of the words nonparametric, distribution-free, or robust

in the title of the section.
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NOTES

8.1 Definitions of Nonparametric and Distribution-Free

The definitions given in this chapter are close to those of Huber [2003]. Bradley [1968] states

that “roughly speaking, a nonparametric test is a test which makes no hypothesis about the

value of a parameter in a statistical density function, whereas a distribution-free test is one

which makes no assumptions about the precise form of the sampled population.”

8.2 Relative Efficiency

The statements about relative efficiency in this chapter refer to asymptotic relative effi-

ciency [Bradley, 1968; Hollander and Wolfe, 1999; Marascuilo and McSweeney, 1977]. For

two possible estimates, the asymptotic relative efficiency of A to B is the limit of the ratio of

the variance of B to the variance of A as the sample size increases. For two possible tests,

first select a sequence of alternatives such that as n becomes large, the power (probability of

rejecting the null hypothesis) for test A converges to a fixed number greater than zero and less

than 1. Let this number be C. For each member of the sequence, find sample sizes n

A

and n

B

such that both tests have (almost) power C. The limit of the ratio n

B

to n

A

is the asymptotic

relative efficiency. Since the definition is for large sample sizes (asymptotic), for smaller sample

sizes the efficiency may be more or less than the figures we have given. Both Bradley [1968]

and Hollander and Wolfe [1999] have considerable information on the topic.

8.3 Crossover Designs for Drugs

These are subject to a variety of subtle differences. There may be carryover effects from the

drugs. Changes over time—for example, extreme weather changes—may make the second part

of the crossover design different than the first. Some drugs may permanently change the subjects

in some way. Peterson and Fisher [1980] give many references germane to randomized clini-

cal trials.

8.4 Signed Rank Test

The values of the ranks are known; for n observations, they are the integers 1 − n. The only

question is the sign of the observation associated with each rank. Under the null hypothesis,

the sign is equally likely to be plus or minus. Further, knowing the rank of an observation

based on the absolute values does not predict the sign, which is still equally likely to be plus

or minus independently of the other observations. Thus, all 2n patterns of plus and minus signs

are equally likely. For n = 2, the four patterns are:

Ranks 1 2 1 2 1 2 1 2

Signs − − + − − + + +

S 0 1 2 3

So P [S ≤ 0] = 1/4, P [S ≤ 1] = 1/2, P [S ≤ 2] = 3/4, and P [S ≤ 3] = 1.

8.5 Quantile Test

If the alternative hypothesis of interest is an increase in extreme values of the outcome variable,

a more powerful rank test can be based on the number of values above a given threshold. That

is, the outcome value X

i

is recoded to 1 if it is above the threshold and 0 if it is below the

threshold. This recoding reduces the data to a 2 × 2 table, and Fisher’s exact test can be used

to make the comparison (see Section 6.3). Rather than prespecifying a threshold, one could
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specify that the threshold was to be, say, the 90th percentile of the combined sample. Again the

data would be recoded to 1 for an observation in the top 10%, 0 for other observations, giving

a 2 × 2 table. It is important that either a threshold or a percentile be specified in advance.

Selecting the threshold that gives the largest difference in proportions gives a test related to

the Kolmogorov–Smirnov test, and when proper control of the implicit multiple comparisons is

made, this test is not particularly powerful.

8.6 Transitivity

One disadvantage of the rank tests is that they are not necessarily transitive. Suppose that we

conclude from the Mann–Whitney test that group A has larger values than group B, and group

B has larger values than group C. It would be natural to assume that group A has larger values

than group C, but the Mann–Whitney test could conclude the reverse—that C was larger than

A. This fact is important in the theory of elections, where different ways of running elections

are generally equivalent to different rank tests. It implies that candidate A could beat B, B

could beat C, and C could beat A in fair two-way runoff elections, a problem noted in the

late eighteenth century by Condorcet. Many interesting issues related to nontransitivity were

discussed in Martin Gardner’s famous “Mathematical Games” column in Scientific American of

December 1970, October 1974, and November 1997.

The practical importance of nontransitivity is unclear. It is rare in real data, so may largely

be a philosophical issue. On the other hand, it does provide a reminder that the rank-based tests

are not just a statistical garbage disposal that can be used for any data whose distribution is

unattractive.

8.7 Kolmogorov–Smirnov Statistic Is a Rank Statistic

We illustrate one technique used to show that the Kolmogorov–Smirnov statistic is a rank test.

Looking at Figure 8.2, we could slide both curves along the x-axis without changing the value

of the maximum difference, D. Since the curves are horizontal, we can stretch them along the

axis (as long as the order of the jumps does not change) and not change the value of D. Place

the first jump at 1, the second at 2, and so on. We have placed the jumps then at the ranks!

The height of the jumps depends on the sample size. Thus, we can compute D from the ranks

(and knowing which group have the rank) and the sample sizes. Thus, D is nonparametric and

distribution-free.

8.8 One-Sample Kolmogorov–Smirnov Tests and One-Sided Kolmogorov–Smirnov Tests

It is possible to compare one sample to a hypothesized distribution. Let F be the empirical

cumulative distribution function of a sample. Let H be a hypothesized distribution function.

The statistic

D = max
x

|F(x) − H(x)|

is the one-sample statistic. If H is continuous, critical values are tabulated for this nonparametric

test in the tables already cited in this chapter. An approximation to the p-value for the one-sample

Kolmogorov–Smirnov test is

P(D > d) ≤ 2e

−2d

2
/n

This is conservative regardless of sample size, the value of d , the presence or absence of ties,

and the true underlying distribution F , and is increasingly accurate as the p-value decreases.

This approximation has been known for a long time, but the fact that it is guaranteed to be

conservative is a recent, very difficult mathematical result [Massart, 1990].
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The Kolmogorov–Smirnov two-sample statistic was based on the largest difference between

two empirical cumulative distribution functions; that is,

D = max
x

|F(x) − G(x)|

where F and G are the two empirical cumulative distribution functions. Since the absolute value

is involved, we are not differentiating between F being larger and G being larger. If we had

hypothesized as an alternative that the F population took on larger values in general, F would

tend to be less than G, and we could use

D

+
= max

x

(G(x) − F(x))

Such one-sided Kolmogorov–Smirnov statistics are used and tabulated. They also are nonpara-

metric rank tests for use with one-sided alternatives.

8.9 More General Rank Tests

The theory of tests based on ranks is well developed [Hajek, 1969; Hajek and Sidak, 1999;

Huber, 2003]. Consider the two-sample problem with groups of size n and m, respectively. Let

R

i

(i = 1, 2, . . . , n) be the ranks of the first sample. Statistics of the following form, with a a

function of R

i

, have been studied extensively.

S =

1

n

n

∑

i=1

a(R

i

)

The a(R

i

) may be chosen to be efficient in particular situations. For example, let a(R

i

) be such

that a standard normal variable has probability R

i

/(n+m+1) of being less than or equal to this

value. Then, when the usual two-sample t-test normal assumptions hold, the relative efficiency

is 1. That is, this rank test is as efficient as the t-test for large samples. This test is called the

normal scores test or van der Waerden test.

8.10 Monte Carlo Technique and Pseudorandom Number Generators

The term Monte Carlo technique was introduced by the mathematician Stanislaw Ulam [1976]

while working on the Manhattan atomic bomb project.

Computers typically do not generate random numbers; rather, the numbers are generated

in a sequence by a specific computer algorithm. Thus, the numbers are called pseudorandom

numbers. Although not random, the sequence of numbers need to appear random. Thus, they are

tested in part by statistical tests. For example, a program to generate random integers from zero

to nine may have a sequence of generated integers tested by the χ

2 goodness-of-fit test to see

that the “probability” of each outcome is 1/10. A generator of uniform numbers on the interval

(0, 1) can have its empirical distribution compared to the uniform distribution by the one-sample

Kolmogorov–Smirnov test (Note 8.8). The subject of pseudorandom number generators is very

deep both philosophically and mathematically. See Chaitin [1975] and Dennett [1984, Chaps.

5 and 6] for discussions of some of the philosophical issues, the former from a mathematical

viewpoint.

Computer and video games use pseudorandom number generation extensively, as do computer

security systems. A number of computer security failures have resulted from poor-quality pseu-

dorandom number generators being used in encryption algorithms. One can generally assume

that the generators provided in statistical packages are adequate for statistical (not cryptographic)

purposes, but it is still useful to repeat complex simulation experiments with a different gener-

ator if possible. A few computer systems now have “genuine” random number generators that

collect and process randomness from sources such as keyboard and disk timings.
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PROBLEMS

8.1 The following data deal with the treatment of essential hypertension (essential is a

technical term meaning that the cause is unknown; a synonym is idiopathic) and is from

a paper by Vlachakis and Mendlowitz [1976]. Seventeen patients received treatments C,

A, and B, where C is the control period, A is propranolol+phenoxybenzamine, and B is

propranolol + phenoxybenzamine + hydrochlorothiazide. Each patient received C first,

then either A or B, and finally, B or A. The data in Table 8.6 consist of the systolic

blood pressure in the recumbent position.

Table 8.6 Blood Pressure Data for Problem 8.1

Patient C A B Patient C A B

1 185 148 132 10 180 132 136

2 160 128 120 11 176 140 135

3 190 144 118 12 200 165 144

4 192 158 115 13 188 140 115

5 218 152 148 14 200 140 126

6 200 135 134 15 178 135 140

7 210 150 128 16 180 130 130

8 225 165 140 17 150 122 132

9 190 155 138

(a) Take the differences between the systolic blood pressures on treatments A and C.

Use the sign test to test for a treatment A effect (two-sided test; give the p-value).

(b) Take the differences between treatments B and C. Use the sign test to test for a

treatment B effect (one-sided test; give the p-value).

(c) Take the differences between treatments B and A. Test for a treatment difference

using the sign test (two-sided test; give the p-value).

8.2 Several population studies have demonstrated an inverse correlation of sudden infant

death syndrome (SIDS) rate with birthweight. The occurrence of SIDS in one of a

pair of twins provides an opportunity to test the hypothesis that birthweight is a major

determinant of SIDS. The set of data in Table 8.7 was collected by D. R. Peterson of the

Table 8.7 Birthweight Data for Problem 8.2

Dizygous Twins Monozygous Twins Dizygous Twins Monozygous Twins

SIDS Non-SIDS SIDS Non-SIDS SIDS Non-SIDS SIDS Non-SIDS

1474 2098 1701 1956 2381 2608 1956 1588

3657 3119 2580 2438 2892 2693 2296 2183

3005 3515 2750 2807 2920 3232 3232 2778

2041 2126 1956 1843 3005 3005 1446 2268

2325 2211 1871 2041 2268 2325 1559 1304

2296 2750 2296 2183 3260 3686 2835 2892

3430 3402 2268 2495 3260 2778 2495 2353

3515 3232 2070 1673 2155 2552 1559 2466

1956 1701 1786 1843 2835 2693

2098 2410 3175 3572 2466 1899

3204 2892 2495 2778 3232 3714
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Department of Epidemiology, University of Washington, consists of the birthweights

of each of 22 dizygous twins and each of 19 monozygous twins.

(a) For the dizygous twins test the alternative hypothesis that the SIDS child of each

pair has the lower birthweight by taking differences and using the sign test. Find

the one-sided p-value.

(b) As in part (a), but do the test for the monozygous twins.

(c) As in part (a), but do the test for the combined data set.

8.3 The following data are from Dobson et al. [1976]. Thirty-six patients with a confirmed

diagnosis of phenylketonuria (PKU) were identified and placed on dietary therapy

before reaching 121 days of age. The children were tested for IQ (Stanford–Binet test)

between the ages of 4 and 6; subsequently, their normal siblings of closest age were

also tested with the Stanford–Binet. The 15 pairs shown in Table 8.8 are the first 15

listed in the paper. The null hypothesis is that the PKU children, on average, have the

same IQ as their siblings. Using the sign test, find the two-sided p-value for testing

against the alternative hypothesis that the IQ levels differ.

Table 8.8 PKU/IQ Data for Problem 8.3

IQ of IQ of IQ of IQ of

Pair PKU Case Sibling Pair PKU Case Sibling

1 89 77 9 110 88

2 98 110 10 90 91

3 116 94 11 76 99

4 67 91 12 71 93

5 128 122 13 100 104

6 81 94 14 108 102

7 96 121 15 74 82

8 116 114

8.4 Repeat Problem 8.1 using the signed rank test rather than the sign test. Test at the 0.05

significance level.

8.5 Repeat Problem 8.2, parts (a) and (b), using the signed rank test rather than the sign

test. Test at the 0.05 significance level.

8.6 Repeat Problem 8.3 using the signed rank test rather than the sign test. Test at the 0.05

significance level.

8.7 Bednarek and Roloff [1976] deal with the treatment of apnea (a transient cessation

of breathing) in premature infants using a drug called aminophylline. The variable

of interest, “average number of apneic episodes per hour,” was measured before and

after treatment with the drug. An episode was defined as the absence of spontaneous

breathing for more than 20 seconds, or less if associated with bradycardia or cyanosis.

Table 8.9 details the response of 13 patients to aminophylline treatment at 16 hours

compared with 24 hours before treatment (in apneic episodes per hour).

(a) Use the sign test to examine a treatment effect (give the two-sided p-value).

(b) Use the signed rank test to examine a treatment effect (two-sided test at the 0.05

significance level).
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Table 8.9 Before/After Treatment Data for Problem 8.7

Before–After

Patient 24 Hours Before 16 Hours After (Difference)

1 1.71 0.13 1.58

2 1.25 0.88 0.37

3 2.13 1.38 0.75

4 1.29 0.13 1.16

5 1.58 0.25 1.33

6 4.00 2.63 1.37

7 1.42 1.38 0.04

8 1.08 0.50 0.58

9 1.83 1.25 0.58

10 0.67 0.75 −0.08

11 1.13 0.00 1.13

12 2.71 2.38 0.33

13 1.96 1.13 0.83

8.8 The following data from Schechter et al. [1973] deal with sodium chloride preference

as related to hypertension. Two groups, 12 normal and 10 hypertensive subjects, were

isolated for a week and compared with respect to Na+ intake. The average daily Na+

intakes are listed in Table 8.10. Compare the average daily Na+ intake of the hyperten-

sive subjects with that of the normal volunteers by means of the Wilcoxon two-sample

test at the 5% significance level.

Table 8.10 Sodium Data for Problem 8.8

Normal Hypertensive Normal Hypertensive

10.2 92.8 45.8 34.7

2.2 54.8 63.6 62.2

0.0 51.6 1.8 11.0

2.6 61.7 0.0 39.1

0.0 250.8 3.7

43.1 84.5 0.0

8.9 During July and August 1976, a large number of Legionnaires attending a convention

died of a mysterious and unknown cause. Epidemiologists have talked of “an outbreak

of Legionnaires’ disease.” Chen et al. [1977] examined the hypothesis of nickel con-

tamination as a toxin. They examined the nickel levels in the lungs of nine cases and

nine controls. The authors point out that contamination at autopsy is a possibility. The

data are as follows (µg per 100 g dry weight):

Legionnaire Cases 65 24 52 86 120 82 399 87 139

Control Cases 12 10 31 6 5 5 29 9 12

Note that there was no attempt to match cases and controls. Use the Wilcoxon test

at the one-sided 5% level to test the null hypothesis that the numbers are samples from

similar populations.
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Table 8.11 Plasma iPGE Data for Problem 8.10

Patient Mean Plasma Mean Serum

Number iPGE (pg/mL) Calcium (ml/dL)

Patients with Hypercalcemia

1 500 13.3

2 500 11.2

3 301 13.4

4 272 11.5

5 226 11.4

6 183 11.6

7 183 11.7

8 177 12.1

9 136 12.5

10 118 12.2

11 60 18.0

Patients without Hypercalcemia

12 254 10.1

13 172 9.4

14 168 9.3

15 150 8.6

16 148 10.5

17 144 10.3

18 130 10.5

19 121 10.2

20 100 9.7

21 88 9.2

8.10 Robertson et al. [1976] discuss the level of plasma prostaglandin E (iPGE in pg/mL) in

patients with cancer with and without hypercalcemia. The data are given in Table 8.11.

Note that the variables are “mean plasma iPGE” and “mean serum Ca” levels; presum-

ably more than one assay was carried out for each patient’s level. The number of such

tests for each patient is not indicated, nor is the criterion for the number. Using the

Wilcoxon two-sample test, test for differences between the two groups in:

(a) Mean plasma iPGE.

(b) Mean serum Ca.

8.11 Sherwin and Layfield [1976] present data about protein leakage in the lungs of male

mice exposed to 0.5 part per million of nitrogen dioxide (NO2). Serum fluorescence data

were obtained by sacrificing animals at various intervals. Use the two-sided Wilcoxon

test, 0.05 significance level, to look for differences between controls and exposed

mice.

(a) At 10 days:

Controls 143 169 95 111 132 150 141

Exposed 152 83 91 86 150 108 78
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(b) At 14 days:

Controls 76 40 119 72 163 78

Exposed 119 104 125 147 200 173

8.12 Using the data of Problem 8.8:

(a) Find the value of the Kolmogorov–Smirnov statistic.

(b) Plot the two empirical distribution functions.

(c) Do the curves differ at the 5% significance level? For sample sizes 10 and 12,

the 10%, 5%, and 1% critical values for mnD are 60, 66, and 80, respectively.

8.13 Using the data of Problem 8.9:

(a) Find the value of the Kolmogorov–Smirnov statistic.

(b) Do you reject the null hypothesis at the 5% level? For m = 9 and n = 9, the

10%, 5%, and 1% critical values of mnD are 54, 54, and 63, respectively.

8.14 Using the data of Problem 8.10:

(a) Find the value of the Kolmogorov–Smirnov statistic for both variables.

(b) What can you say about the p-value? For m = 10 and n = 11, the 10%, 5%, and

1% critical values of mnD are 57, 60, and 77, respectively.

8.15 Using the data of Problem 8.11:

(a) Find the value of the Kolmogorov–Smirnov statistic.

(b) Do you reject at 10%, 5%, and 1%, respectively? Do this for parts (a) and (b) of

Problem 8.11. For m = 7 and n = 7, the 10%, 5%, and 1% critical values of mnD

are 35, 42, and 42, respectively. The corresponding critical values for m = 6 and

n = 6 are 30, 30, and 36.

8.16 Test at the 0.05 significance level for a significant improvement with the cream treatment

of Example 8.2.

(a) Use the sign test.

(b) Use the signed rank test.

(c) Use the t-test.

8.17 Use the expression of colostrum data of Example 8.2, and test at the 0.10 significance

level the null hypothesis of no treatment effect.

(a) Use the sign test.

(b) Use the signed rank test.

(c) Use the usual t-test.

8.18 Test the null hypothesis of no treatment difference from Example 8.2 using each of the

tests in parts (a), (b), and (c).

(a) The Wilcoxon two-sample test.

(b) The Kolmogorov–Smirnov two-sample test. For m = n = 19, the 20%, 10%,

5%, 1%, and 0.1% critical values for mnD are 133, 152, 171, 190, and 228,

respectively.
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(c) The two-sample t-test.

Compare the two-sided p-values to the extent possible. Using the data of Exam-

ple 8.2, examine each treatment.

(d) Nipple-rolling vs. masse cream.

(e) Nipple-rolling vs. expression of colostrum.

(f) Masse cream vs. expression of colostrum.

8.19 As discussed in Chapter 3, Winkelstein et al. [1975] studied systolic blood pressures

of three groups of Japanese men: native Japanese, first-generation immigrants to the

United States (Issei), and second-generation Japanese in the United States (Nisei). The

data are listed in Table 8.12. Use the asymptotic Wilcoxon two-sample statistic to test:

(a) Native Japanese vs. California Issei.

(b) Native Japanese vs. California Nisei.

(c) California Issei vs. California Nisei.

Table 8.12 Blood Pressure Data for

Problem 8.19

Blood Pressure Native

(mmHg) Japanese Issei Nisei

<106 218 4 23

106–114 272 23 132

116–124 337 49 290

126–134 362 33 347
136–144 302 41 346

146–154 261 38 202

156–164 166 23 109

>166 314 52 112

*8.20 Rascati et al. [2001] report a study of medical costs for children with asthma in which

children prescribed steroids had a higher mean cost than other children, but lower costs

according to a Wilcoxon rank-sum test. How can this happen, and what conclusions

should be drawn?

*8.21 An outlier is an observation far from the rest of the data. This may represent valid

data or a mistake in experimentation, data collection, or data entry. At any rate, a few

outlying observations may have an extremely large effect. Consider a one-sample t-test

of mean zero based on 10 observations with

x = 10 and s

2
= 1

Suppose now that one observation of value x is added to the sample.

(a) Show that the value of the new sample mean, variance, and t-statistic are

x =

100 + x

11

s

2
=

10x

2
− 200x + 1099

11 × 10

t =

100 + x

√

x

2
− 20x + 109.9
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*(b) Graph t as a function of x.

(c) For which values of x would one reject the null hypothesis of mean zero? What

does the effect of an outlier (large absolute value) do in this case?

(d) Would you reject the null hypothesis without the outlier?

(e) What would the graph look like for the Wilcoxon signed rank test? For the sign

test?

*8.22 Using the ideas of Note 8.4 about the signed rank test, verify the values shown in

Table 8.13 when n = 4.

Table 8.13 Signed-Rank Test

Data for Problem 8.23

s P [S ≤ s] s P [S ≤ s]

0 0.062 6 0.688

1 0.125 7 0.812

2 0.188 8 0.875

3 0.312 9 0.938

4 0.438 10 1.000

5 0.562

Source: Owen [1962]; by permission
of Addison-Wesley Publishing Com-
pany.

*8.23 The Wilcoxon two-sample test depends on the fact that under the null hypothesis, if

two samples are drawn without ties, all

(

n + m

n

)

arrangements of the n ranks from

the first sample, and the m ranks from the second sample, are equally likely. That is,

if n = 1 and m = 2, the three arrangements

1 2 3; W = 1

1 2 3; W = 2

1 2 3; W = 3

are equally likely. Here, the rank from population 1 appears in bold type.

(a) If n = 2 and m = 4, graph the distribution function of the Wilcoxon two-sample

statistic when the null hypothesis holds.

(b) Find E(W). Does it agree with equation (5)?

(c) Find var(W). Does it agree with equation (6)?

*8.24 (Permutation Two-Sample t-Test) To use the permutation two-sample t-test, the text

(in Section *8.9) used the fact that for n + m fixed values, the t-test was a monotone

function of x − y. To show this, prove the following equality:

t =

1
√

√

√

√

(n + m)

(
∑

i

x

2
i

+

∑

i

y

2
i

)

−

(
∑

i

x

i

+

∑

i

y

i

)2
− nm(x − y)

2

nm(n + m − 2)(x − y)

2

Note that the first two terms in the numerator of the square root are constant for all

permutations, so t is a function of x − y.
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*8.25 (One-Sample Randomization t-Test) For the randomization one-sample t-test, the paired

x

i

and y

i

values give x−y values. Assume that the |x
i

−y

i

| are known but the signs are

random, independently + or − with probability 1/2. The 2n

(i = 1, 2, . . . , n) patterns

of pluses and minuses are equally likely.

(a) Show that the one-sample t-statistic is a monotone function of x − y when the

|x
i

− y

i

| are known. Do this by showing that

t =

x − y

√

[

−n(x − y)

2
+

∑

i

(x

i

− y

i

)

2
]

/n(n − 1)

(b) For the data

i X
i

Y
i

1 1 2

2 3 1

3 1 5

compute the eight possible randomization values of t . What is the two-sided

randomization p-value for the t observed?

*8.26 (Robust Estimation of the Mean) Show that the α-trimmed mean and the α-Winsorized

mean are weighted means by explicitly showing the weights W

i

that are given the two

means.

*8.27 (Robust Estimation of the Mean)

(a) For the combined data for SIDS in Problem 8.2, compute (i) the 0.05 trimmed

mean; (ii) the 0.05 Winsorized mean; (iii) the weighted mean with weights

W

i

= i(n + 1 − i), where n is the number of observations.

(b) The same as in Problem 8.27(a), but do this for the non-SIDS twins.

REFERENCES

Alderman, E., Fisher, L. D., Maynard, C., Mock, M. B., Ringqvist, I., Bourassa, M. G., Kaiser, G. C., and

Gillespie, M. J. [1982]. Determinants of coronary surgery in a consecutive patient series from geo-

graphically dispersed medical centers: the Coronary Artery Surgery Study. Circulation, 66: 562–568.

Bednarek, E., and Roloff, D. W. [1976]. Treatment of apnea of prematurity with aminophylline. Pediatrics,

58: 335–339.

Beyer, W. H. (ed.) [1990]. CRC Handbook of Tables for Probability and Statistics. 2nd ed. CRC Press, Boca

Raton, FL.

Bradley, J. V. [1968]. Distribution-Free Statistical Tests. Prentice Hall, Englewood Cliffs, NJ.

Brown, M. S., and Hurlock, J. T. [1975]. Preparation of the breast for breast-feeding. Nursing Research,

24: 448–451.

CASS [1981]. (Principal investigators of CASS and their associates; Killip, T. (ed.); Fisher, L. D.,

and Mock, M. (assoc. eds.) National Heart, Lung and Blood Institute Coronary Artery Surgery

Study. Circulation, 63: part II, I–1 to I–81. Used with permission from the American Heart

Association.



REFERENCES 289

Chaitin, G. J. [1975]. Randomness and mathematical proof, Scientific American, 232(5): 47–52.

Chen, J. R., Francisco, R. B., and Miller, T. E. [1977]. Legionnaires’ disease: nickel levels. Science, 196:

906–908.

Church, J. D., and Harris, B. [1970]. The estimation of reliability from stress–strength relationships. Tech-

nometrics, 12: 49–54.

Davison, A. C., and Hinckley, D. V. [1997]. Bootstrap Methods and Their Application. Cambridge University

Press, New York.

Dennett, D. C. [1984]. Elbow Room: The Varieties of Free Will Worth Wanting. MIT Press, Cambridge, MA.

Dobson, J. C., Kushida, E., Williamson, M., and Friedman, E. [1976]. Intellectual performance of

36 phenylketonuria patients and their nonaffected siblings. Pediatrics, 58: 53–58.

Edgington, E. S. [1995]. Randomization Tests, 3rd ed. Marcel Dekker, New York.

Efron, B. [1979]. Bootstrap methods: another look at the jackknife. Annals of Statistics, 7: 1–26.

Efron, B. [1982]. The Jackknife, Bootstrap and Other Resampling Plans. Society for Industrial and Applied

Mathematics, Philadelphia.

Efron, B., and Tibshirani, R. [1986]. The bootstrap (with discussion). Statistical Science, 1: 54–77.

Efron, B., and Tibshirani, R. [1993]. An Introduction to the Bootstrap. Chapman & Hall, London.

Hajek, J. [1969]. A Course in Nonparametric Statistics. Holden-Day, San Francisco.

Hajek, J., and Sidak, Z. [1999]. Theory of Rank Tests. 2nd ed. Academic Press, New York.

Hoffman, D. T. [1979]. Monte Carlo: The Use of Random Digits to Simulate Experiments. Models and

monographs in undergraduate mathematics and its Applications, Unit 269, EDC/UMAP, Newton,

MA.

Hollander, M., and Wolfe, D. A. [1999]. Nonparametric Statistical Methods, 2nd ed. Wiley, New York.

Huber, P. J. [2003]. Robust Statistics. Wiley, New York.

Johnson, R. A., Verill, S., and Moore D. H. [1987]. Two-sample rank tests for detecting changes that occur

in a small proportion of the treated population. Biometrics, 43: 641–655

Kraft, C. H., and van Eeden, C. [1968]. A Nonparametric Introduction to Statistics. Macmillan, New York.

Lehmann, E. L., and D’Abrera, H. J. M. [1998]. Nonparametrics: Statistical Methods Based on Ranks.

Holden-Day, San Francisco.

Lumley, T., Diehr, P., Emerson, S., and Chen, L. [2002]. The importance of the normality assumption in

large public health data sets. Annual Review of Public Health, 23: 151–169.

Marascuilo, L. A., and McSweeney, M. [1977]. Nonparametric and Distribution-Free Methods for the Social

Sciences. Brooks/Cole, Scituate, MA.

Massart, P. [1990]. The tight constant in the Dvoretsky-Kiefer-Wolfowitz inequality. Annals of Probability,

18: 897–919.

Odeh, R. E., Owen, D. B., Birnbaum, Z. W., and Fisher, L. D. [1977]. Pocket Book of Statistical Tables.

Marcel Dekker, New York.

Owen, D. B. [1962]. Handbook of Statistical Tables. Addison-Wesley, Reading, MA.

Peterson, A. P., and Fisher, L. D. [1980]. Teaching the principles of clinical trials design. Biometrics, 36:

687–697.

Rascati, K. L., Smith, M. J., and Neilands, T. [2001]. Dealing with skewed data: an example using asthma-

related costs of Medicaid clients. Clinical Therapeutics, 23: 481–498.

Ripley B. D. [1987]. Stochastic Simulation. Wiley, New York.

Robertson, R. P., Baylink, D. J., Metz, S. A., and Cummings, K. B. [1976]. Plasma prostaglandin in

patients with cancer with and without hypercalcemia. Journal of Clinical Endocrinology and

Metabolism, 43: 1330–1335.

Schechter, P. J., Horwitz, D., and Henkin, R. I. [1973]. Sodium chloride preference in essential hyperten-

sion. Journal of the American Medical Association, 225: 1311–1315.

Sherwin, R. P., and Layfield, L. J. [1976]. Protein leakage in the lungs of mice exposed to 0.5 ppm nitrogen

dioxide: a fluorescence assay for protein. Archives of Environmental Health, 31: 116–118.

Siegel, S., and Castellan, N. J., Jr. [1990]. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.

McGraw-Hill, New York.



290 NONPARAMETRIC, DISTRIBUTION-FREE, AND PERMUTATION MODELS: ROBUST PROCEDURES

Ulam, S. M. [1976]. Adventures of a Mathematician. Charles Scribner’s Sons, New York.

U.S. EPA [1994]. Statistical Methods for Evaluating the Attainment of Cleanup Standards, Vol. 3, Reference-

Based Standards for Soils and Solid Media. EPA/600/R-96/005. Office of Research and Development,

U.S. EPA, Washington, DC.

Vlachakis, N. D., and Mendlowitz, M. [1976]. Alpha- and beta-adrenergic receptor blocking agents com-

bined with a diuretic in the treatment of essential hypertension. Journal of Clinical Pharmacology,

16: 352–360.

Winkelstein, W., Jr., Kazan, A., Kato, H., and Sachs, S. T. [1975]. Epidemiologic studies of coronary heart

disease and stroke in Japanese men living in Japan, Hawaii, and California: blood pressure distribu-

tions. American Journal of Epidemiology, 102: 502–513.


