
C H A P T E R 9

Association and Prediction: Linear
Models with One Predictor Variable

9.1 INTRODUCTION

Motivation for the methods of this chapter is aided by the use of examples. For this reason,

we first consider three data sets. These data are used to motivate the methods to follow. The

data are also used to illustrate the methods used in Chapter 11. After the three examples are

presented, we return to this introduction.

Example 9.1. Table 9.1 and Figure 9.1 contain data on mortality due to malignant mela-

noma of the skin of white males during the period 1950–1969 for each state in the United States

as well as the District of Columbia. No mortality data are available for Alaska and Hawaii for

this period. It is well known that the incidence of melanoma can be related to the amount of

sunshine and, somewhat equivalently, the latitude of the area. The table contains the latitude

as well as the longitude for each state. These numbers were obtained simply by estimating the

center of the state and reading off the latitude as given in a standard atlas. Finally, the 1965

population and contiguity to an ocean are noted, where “1” indicates contiguity: the state borders

one of the oceans.

In the next section we shall be particularly interested in the relationship between the mela-

noma mortality and the latitude of the states. These data are presented in Figure 9.1.

Definition 9.1. When two variables are collected for each data point, a plot is very use-

ful. Such plots of the two values for each of the data points are called scatter diagrams or

scattergrams.

Note several things about the scattergram of malignant melanoma rates vs. latitude. There

appears to be a rough relationship. As the latitude increases, the melanoma rate decreases.

Nevertheless, there is no one-to-one relationship between the values. There is considerable

scatter in the picture. One problem is to decide whether or not the scatter could be due to

chance or whether there is some relationship. It might be of interest to estimate the melanoma

rate for various latitudes. In this case, how would we estimate the relationship? To convey the

relationship to others, it would also be useful to have some simple way of summarizing the

relationship. There are two aspects of the relationship that might be summarized. One is how

the melanoma rate changes with latitude; it would also be useful to summarize the variability

of the scattergram.
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Table 9.1 Mortality Rate [per 10 Million (107
)] of White Males Due to Malignant Melanoma of

the Skin for the Period 1950–1959 by State and Some Related Variables

Mortality Latitude Longitude Population Ocean

State per 10,000,000 (deg) (deg) (millions, 1965) Statea

Alabama 219 33.0 87.0 3.46 1

Arizona 160 34.5 112.0 1.61 0

Arkansas 170 35.0 92.5 1.96 0

California 182 37.5 119.5 18.60 1

Colorado 149 39.0 105.5 1.97 0

Connecticut 159 41.8 72.8 2.83 1

Delaware 200 39.0 75.5 0.50 1

Washington, DC 177 39.0 77.0 0.76 0

Florida 197 28.0 82.0 5.80 1

Georgia 214 33.0 83.5 4.36 1

Idaho 116 44.5 114.0 0.69 0

Illinois 124 40.0 89.5 10.64 0

Indiana 128 40.2 86.2 4.88 0

Iowa 128 42.2 93.8 2.76 0

Kansas 166 38.5 98.5 2.23 0

Kentucky 147 37.8 85.0 3.18 0

Louisiana 190 31.2 91.8 3.53 1

Maine 117 45.2 69.0 0.99 1

Maryland 162 39.0 76.5 3.52 1

Massachusetts 143 42.2 71.8 5.35 1

Michigan 117 43.5 84.5 8.22 0

Minnesota 116 46.0 94.5 3.55 0

Mississippi 207 32.8 90.0 2.32 1

Missouri 131 38.5 92.0 4.50 0

Montana 109 47.0 110.5 0.71 0

Nebraska 122 41.5 99.5 1.48 0

Nevada 191 39.0 117.0 0.44 0

New Hampshire 129 43.8 71.5 0.67 1

New Jersey 159 40.2 74.5 6.77 1

New Mexico 141 35.0 106.0 1.03 0

New York 152 43.0 75.5 18.07 1

North Carolina 199 35.5 79.5 4.91 1

North Dakota 115 47.5 100.5 0.65 0

Ohio 131 40.2 82.8 10.24 0

Oklahoma 182 35.5 97.2 2.48 0

Oregon 136 44.0 120.5 1.90 1

Pennsylvania 132 40.8 77.8 11.52 0

Rhode Island 137 41.8 71.5 0.92 1

South Carolina 178 33.8 81.0 2.54 1

South Dakota 86 44.8 100.0 0.70 0

Tennessee 186 36.0 86.2 3.84 0

Texas 229 31.5 98.0 10.55 1

Utah 142 39.5 111.5 0.99 0

Vermont 153 44.0 72.5 0.40 1

Virginia 166 37.5 78.5 4.46 1

Washington 117 47.5 121.0 2.99 1

West Virginia 136 38.8 80.8 1.81 0

Wisconsin 110 44.5 90.2 4.14 0

Wyoming 134 43.0 107.5 0.34 0

Source: U.S. Department of Health, Education, and Welfare [1974].
a1 = state borders on ocean.
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Figure 9.1 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white

males by state and latitude of the center of the state for the period 1950–1959.

Example 9.2. To assess physical conditioning in normal subjects, it is useful to know how

much energy they are capable of expending. Since the process of expending energy requires

oxygen, one way to evaluate this is to look at the rate at which they use oxygen at peak physical

activity. To examine the peak physical activity, tests have been designed where a person runs on

a treadmill. At specified time intervals, the speed at which the treadmill moves and the grade of

the treadmill both increase. The person is then run systematically to maximum physical capacity.

The maximum capacity is determined by the person, who stops when unable to go further. Data

from Bruce et al. [1973] are discussed.

The oxygen consumption was measured in the following way. The patient’s nose was blocked

off by a clip. Expired air was collected from a silicone rubber mouthpiece fitted with a very low

resistance valve. The valve was connected by plastic tubes into a series of evacuated neoprene

balloons. The inlet valve for each balloon was opened for 60 seconds to sample the expired air.

Measurements were made of the volumes of expired air, and the oxygen content was obtained

using a paramagnetic analyzer capable of measuring the oxygen. From this, the rate at which

oxygen was used in mm/min was calculated. Physical conditioning, however, is relative to the

size of the person involved. Smaller people need less oxygen to perform at the same speed. On

the other hand, smaller people have smaller hearts, so relatively, the same level of effort may be

exerted. For this reason, the maximum oxygen content is normalized by body weight; a quantity,

VO2 MAX, is computed by looking at the volume of oxygen used per minute per kilogram of

body weight. Of course, the effort expended to go further on the treadmill increases with the

duration of time on the treadmill, so there should be some relationship between VO2 MAX and

duration on the treadmill. This relationship is presented below.

Other pertinent variables that are used in the problems and in additional chapters are recorded

in Table 9.2, including the maximum heart rate during exercise, the subject’s age, height, and

weight. The 44 subjects listed in Table 9.2 were all healthy. They were classified as active if

they usually participated at least three times per week in activities vigorous enough to raise a

sweat.
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Table 9.2 Exercise Data for Healthy Active Males

Case Duration (s) VO2 MAX Heart Rate (beats/min) Age Height (cm) Weight (kg)

1 706 41.5 192 46 165 57

2 732 45.9 190 25 193 95

3 930 54.5 190 25 187 82

4 900 60.3 174 31 191 84

5 903 60.5 194 30 171 67

6 976 64.6 168 36 177 78

7 819 47.4 185 29 174 70

8 922 57.0 200 27 185 76

9 600 40.2 164 56 180 78

10 540 35.2 175 47 180 80

11 560 33.8 175 46 180 81

12 637 38.8 162 55 180 79

13 593 38.9 190 50 161 66

14 719 49.5 175 52 174 76

15 615 37.1 164 46 173 84

16 589 32.2 156 60 169 69

17 478 31.3 174 49 178 78

18 620 33.8 166 54 181 101

19 710 43.7 184 57 179 74

20 600 41.7 160 50 170 66

21 660 41.0 186 41 175 75

22 644 45.9 175 58 173 79

23 582 35.8 175 55 160 79

24 503 29.1 175 46 164 65

25 747 47.2 174 47 180 81

26 600 30.0 174 56 183 100

27 491 34.1 168 82 183 82

28 694 38.1 164 48 181 77

29 586 28.7 146 68 166 65

30 612 37.1 156 54 177 80

31 610 34.5 180 56 179 82

32 539 34.4 164 50 182 87

33 559 35.1 166 48 174 72

34 653 40.9 184 56 176 75

35 733 45.4 186 45 179 75

36 596 36.9 174 45 179 79

37 580 41.6 188 43 179 73

38 550 22.7 180 54 180 75

39 497 31.9 168 55 172 71

40 605 42.5 174 41 187 84

41 552 37.4 166 44 185 81

42 640 48.2 174 41 186 83

43 500 33.6 180 50 175 78

44 603 45.0 182 42 176 85

Source: Data from Bruce et al. [1973].

The duration of the treadmill exercise and VO2 MAX data are presented in Figure 9.2. In this

scattergram, we see that as the treadmill time increases, by and large, the VO2 MAX increases.

There is, however, some variability. The increase is not an infallible rule. There are subjects

who run longer but have less oxygen consumption than someone else who has exercised for a

shorter time period. Because of the expense and difficulty in collecting the expired air volumes,
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Figure 9.2 Oxygen consumption vs. treadmill duration.

it is useful to evaluate oxygen consumption and conditioning by having the subjects run on the

treadmill and recording the duration. As we can see from Figure 9.2, this would not be a perfect

solution to the problem. Duration would not totally determine the VO2 MAX level. Nevertheless,

it would give us considerable information. When we do this, how should we predict what the

VO2 MAX level would be from the duration? Clearly, such a predictive equation should be

developed from the data at hand. When we do this, we want to characterize the accuracy of

such predictions and succinctly summarize the relationship between the two variables.

Example 9.3. Dern and Wiorkowski [1969] collected data dealing with the erythrocyte

adenosine triphosphate (ATP) levels in youngest and older sons in 17 families. The purpose of

the study was to determine the effect of storage of the red blood cells on the ATP level. The

level is important because it determines the ability of the blood to carry energy to the cells of

the body. The study found considerable variation in the ATP levels, even before storage. Some

of the variation could be explained on the basis of variation by family (genetic variation). The

data for the oldest and youngest sons are extracted from the more complete data set in the paper.

Table 9.3 presents the data for 17 pairs of brothers along with the ages of the brothers.

Figure 9.3 is a scattergram of the values in Table 9.3. Again, there appears to be some

relationship between the two values, with both brothers tending to have high or low values at

the same time. Again, we would like to consider whether or not such variability might occur by

chance. If chance is not the explanation, how could we summarize the pattern of variation for

the pairs of numbers?

The three scattergrams have certain features in common:

1. Each scattergram refers to a situation where two quantities are associated with each

experimental unit. In the first example, the melanoma rate for the state and the latitude

of the state are plotted. The state is the individual unit. In the second example, for each

person studied on the treadmill, VO2 MAX vs. the treadmill time in seconds was plotted.

In the third example, the experimental unit was the family, and the ATP values of the

youngest and oldest sons were plotted.
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Table 9.3 Erythrocyte Adenosine Triphosphate

(ATP) Levelsa in Youngest and Oldest Sons in 17

Families Together with Age (Before Storage)

Youngest Oldest

Family Age ATP Level Age ATP Level

1 24 4.18 41 4.81

2 25 5.16 26 4.98

3 19 4.85 27 4.48

4 28 3.43 32 4.19

5 22 4.53 25 4.27

6 7 5.13 23 4.87

7 21 4.10 24 4.74

8 17 4.77 25 4.53

9 25 4.12 26 3.72

10 24 4.65 25 4.62

11 12 6.03 25 5.83

12 16 5.94 24 4.40

13 9 5.99 22 4.87

14 18 5.43 24 5.44

15 14 5.00 26 4.70

16 24 4.82 26 4.14

17 20 5.25 24 5.30

Source: Data from Dern and Wiorkowski [1969].
aATP levels expressed as micromoles per gram of hemoglobin.

Figure 9.3 ATP levels (µmol/g of hemoglobin) of youngest and oldest sons in 17 families. (Data from

Dern and Wiorkowski [1969].)



SIMPLE LINEAR REGRESSION MODEL 297

2. In each of the three diagrams, there appears to be a rough trend or association between the

variables. In the melanoma rate date, as the latitude increases, the melanoma rate tends to

decrease. In the treadmill data, as the duration on the treadmill increased, the VO2 MAX

also increased. In the ATP data, both brothers tended to have either a high or a low value

for ATP.

3. Although increasing and decreasing trends were evident, there was not a one-to-one rela-

tionship between the two quantities. It was not true that every state with a higher latitude

had a lower melanoma rate in comparison with a state at a lower latitude. It was not

true that in each case when individual A ran on the treadmill a longer time than individ-

ual B that individual A had a higher VO2 MAX value. There were some pairs of brothers

for which one pair did not have the two highest values when compared to the other

pair. This is in contrast to certain physical relationships. For example, if one plotted the

volume of a cube as a function of the length of a side, there is the one-to-one rela-

tionship: the volume increases as the length of the side increases. In the data we are

considering, there is a rough relationship, but there is still considerable variability or

scatter.

4. To effectively use and summarize such scattergrams, there is a need for a method to

quantitate how much of a change the trends represent. For example, if we consider two

states where one has a latitude 5◦ south of the other, how much difference is expected

in the melanoma rates? Suppose that we train a person to increase the duration of tread-

mill exercise by 70 seconds; how much of a change in VO2 MAX capacity is likely to

occur?

5. Suppose that we have some method of quantitating the overall relationship between the

two variables in the scattergram. Since the relationship is not precisely one to one, there

is a need to summarize how much of the variability the relationship explains. Another

way of putting this is that we need a summary quantity which tells us how closely the

two variables are related in the scattergram.

6. If we have methods of quantifying these things, we need to know whether or not any

estimated relationships might occur by chance. If not, we still want to be able to quantify

the uncertainty in our estimated relationships.

The remainder of this chapter deals with the issues we have just raised. In the next section

we use a linear equation (a straight line) to summarize the relationship between two variables

in a scattergram.

9.2 SIMPLE LINEAR REGRESSION MODEL

9.2.1 Summarizing the Data by a Linear Relationship

The three scattergrams above have a feature in common: the overall relationship is roughly

linear; that is, a straight line that characterizes the relationships between the two variables could

be placed through the data. In this and subsequent chapters, we look at linear relationships.

A linear relationship is one expressed by a linear equation. For variables U, V,W, . . . , and

constants a, b, c, . . . , a linear equation for Y is given by

Y = a + bU + cV + dW + · · ·

In the scattergrams for the melanoma data and the exercise data, let X denote the variable

on the horizontal axis (abscissa) and Y be the notation for the variable on the vertical axis

(ordinate). Let us summarize the data by fitting the straight-line equation Y = a + bX to the

data. In each case, let us think of the X variable as predicting a value for Y . In the first two
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examples, that would mean that given the latitude of the state, we would predict a value for the

melanoma rate; given the duration of the exercise test, we would predict the VO2 MAX value

for each subject.

There is terminology associated with this procedure. The variable being predicted is called

the dependent variable or response variable; the variable we are using to predict is called the

independent variable, the predictor variable, or the covariate. For a particular value, say, X

i

of

the predictor variable, our value predicted for Y is given by

̂

Y

i

= a + bX

i

(1)

The fit of the values predicted to the values observed (X

i

, Y

i

) may be summarized by the

difference between the value Y

i

observed and the value ̂

Y

i

predicted. This difference is called a

residual value:

residual value = y

i

− ŷ

i

= value observed − value predicted (2)

It is reasonable to fit the line by trying to make the residual values as small as possible. The

principle of least squares chooses a and b to minimize the sum of squares of the residual values.

This is given in the following definition:

Definition 9.2. Given data (x

i

, y

i

), i = 1, 2, . . . , n, the least squares fit to the data chooses

a and b to minimize
n

∑

i=1

(y

i

− ŷ

i

)

2

where ŷ

i

= a + bx

i

.

The values a and b that minimize the sum of squares are described below. At this point, we

introduce some notation similar to that of Section 7.3:

[y2] =

∑

i

(y

i

− y)

2

[x2] =

∑

i

(x

i

− x)

2

[xy] =

∑

i

(x

i

− x)(y

i

− y)

We decided to choose values a and b so that the quantity

∑

i

(y

i

− ŷ

i

)

2
=

∑

i

(y

i

− a − bx

i

)

2

is minimized. It can be shown that the values for a and b that minimize the quantity are given by

b =

∑

(x

i

− x)(y

i

− y)

∑

(x

i

− x)

2
=

[xy]

[x2]

and

a = y − bx

Note 9.4 gives another equivalent formula for b that emphasizes its role as a summary statistic

of the slope of the X–Y relationship.
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Table 9.4 Predicted Mortality Rates by Latitude for the

Data of Table 9.1a

Latitude (x) Predicted Mortality (y) s1 s2 s3

30 209.9 19.12 6.32 20.13

35 180.0 19.12 3.85 19.50

39.5 (mean) 152.9 (mean) 19.12 2.73 19.31

40 150.1 19.12 2.74 19.31

45 120.2 19.12 4.26 19.58

50 90.3 19.12 6.83 20.30

aFor the quantities s2 and s3, see Section 9.2.3.

For the melanoma data, we have the following quantities:

x = 39.533, y = 152.878
∑

i

(x

i

− x)(y

i

− y) = [xy] = −6100.171

∑

i

(x

i

− x)

2
= [x2] = 1020.499

∑

i

(y

i

− y)

2
= [y2] = 53, 637.265

The least squares slope b is

b =

−6100.171

1020.499
= −5.9776

and the least squares intercept a is

a = 152.878 − (−5.9776 × 39.533) = 389.190

Figure 9.4 presents the melanoma data with the line of least squares fit drawn in. Because of

the method of selecting the line, the line goes through the data, of course. The least squares

line always has the property that it goes through the point in the scattergram corresponding

to the sample mean of the two variables. The sample means of the variables are located by

the intersection of dotted lines. Further, the point for Tennessee is detailed in the box in the

lower left-hand corner. The value predicted from the equation was 174, whereas the actual

melanoma rate for this state was 186. Thus, the residual value is the difference, 12. We see

that the value predicted, 174, is closer to the value observed than to the overall Y mean, which

is 152.9.

For the melanoma data, the line of least squares fit is Y = 389.19 − 5.9776X. For each

state’s observed mortality rate, there is then a predicted mortality rate based on knowledge of

the latitude. Some predicted values are listed in Table 9.4. The farther north the state, the lower

the mortality due to malignant melanoma; but now we have quantified the change.

Note that the predicted mortality at the mean latitude (39.5◦
) is exactly the mean value of

the mortalities observed ; as noted above, the regression line goes through the point (x, y).

9.2.2 Linear Regression Models

With the line of least squares fit, we shall associate a mathematical model. This linear regression

model takes the predictor or covariate observation as being fixed. Even if it is sampled at random,
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Figure 9.4 Annual mortality (per 10,000,000 population) due to malignant melanoma of the skin for white

males by state and latitude of the center of the state for the period 1950–1959 (least squares regression line

is given).

the analysis is conditional upon knowing the value of X. In the first example above, the latitude

of each state is fixed. In the second example, the healthy people may be considered to be a

representative—although not random—sample of a larger population; in this case, the duration

may be considered a random quantity. In the linear regression analysis of this chapter, we know

X and are interested in predicting the value of Y . The regression model assumes that for a

fixed value of X, the expected value of Y is some function. In addition to this expected value,

a random error term is added. It is assumed that the error has a mean value of zero. We shall

restrict ourselves to situations where the expected value of Y for known X is a linear function.

Thus, our linear regression model is the following:

expected value of Y knowing X = E(Y |X) = α + βX

Y = α + βX + e, where e (error) has E(e) = 0

The parameters α and β are population parameters. Given a sample of observations, the

estimates a and b that we found above are estimates of the population parameters. In the

mortality rates of the states, the random variability arises both because of the randomness

of the rates in a given year and random factors associated with the state, other than lati-

tude. These factors make the observations during a particular time period reasonably mod-

eled as a random quantity. For the exercise test data, we may consider the normal subjects

tested as a random sample from a population of active normal males who might have been

tested.

Definition 9.3. The line E(Y |X) = α + βX is called the population regression line. Here,

E(Y |X) is the expected value of Y at X (assumed known). The coefficients α and β are called

population regression coefficients. The line Y = a + bX is called the estimated regression line,
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and a and b are called estimated regression coefficients. The term estimated is often dropped,

and regression line and regression coefficients are used for these estimated quantities.

For each X, E(Y |X) is the mean of a population of observations. On the left of Figure is

shown a linear regression situation; on the right, the regression E(Y |X) is not linear.

To simplify statistical inference, another assumption is often added: that the error term is

normally distributed with mean zero and variance σ

2
1 . As we saw with the t-test, the assumption

of normality is important for testing and confidence interval estimation only in fairly small sam-

ples. In larger samples the central limit theorem replaces the need for distributional assumptions.

Note that the variance of the error term is not the variance of the Y variable. It is the variance

of the Y variable when the value of the X variable is known.

Given data, the variance σ

2
1 is estimated by the quantity s

2
y·x

, where this quantity is defined as

s

2
y·x

=

∑

(Y

i

− ̂

Y

i

)

2

n − 2

Recall that the usual sample variance was divided by n − 1. The n − 2 occurs because two

parameters, α and β, are estimated in fitting the data rather than one parameter, the sample

mean, that was estimated before.

9.2.3 Inference

We have the model

Y = α + βX + e, where e ∼ N(0, σ

2
1 )

On the basis of n pairs of observations we presented estimates a and b of α and β, respectively.

To test hypotheses regarding α and β, we need to assume the normality of the term e.

The left panel of Figure 9.5 shows a situation where these assumptions are satisfied. Note

that:

1. E(Y |X) is linear.

2. For each X, the normal Y -distribution has the same variance.

3. For each X, the Y -distribution is normal (less important as the sample size is large).

The right panel of Figure 9.5 shows a situation where all these assumptions don’t hold.

1. E(Y |X) is not a straight line; it curves.

2. The variance of Y increases as X increases.

3. The distribution becomes more highly skewed as X increases.

It can be shown, under the correct normal model or in large samples, that

b ∼ N

(

β,

σ

2
1

[x2]

)

and a ∼ N

(

α, σ

2
1

[

1

n

+

x

2

[x2]

])

Recall that σ

2
1 is estimated by s

2
y.x

=

∑

(Y

i

− ̂

Y

i

)

2
/(n − 2). Note that the divisor is n − 2: the

number of degrees of freedom. The reason, as just mentioned, is that now two parameters are

estimated: α and β. Given these facts, we can now either construct confidence intervals or tests

of hypotheses after constructing appropriate pivotal variables:

b − β

σ1/

√

[x2]
∼ N(0, 1),

b − β

s

y.x

/

√

[x2]
∼ t

n−2

and similar terms involving the intercept a are discussed below.
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Figure 9.5 Linear regression assumptions and violations. On the left, the expected values of Y for given

X values fall on a straight line. The variation about the line has the same variance at each X. On the right,

the expected values fall on a curve, not a straight line. The distribution of Y is different for different X

values, with variance and skewness increasing with X.

Returning to Example 9.1, the melanoma data by state, the following quantities are known

or can be calculated:

a = 389.190, s

2
y·x

=

∑

i

(Y

i

− ̂

Y

i

)

2

n − 2
=

17,173.1

47
= 365.3844

b = −5.9776, [x2] = 1020.499, s

y.x

= 19.1150

On the assumption that there is no relationship between latitude and mortality, that is, β = 0,

the variable b has mean zero. A t-test yields

t47
.

=

−5.9776

19.1150/

√

1020.499

.

=

−5.9776

0.59837

.

= −9.99

From Table A.4, the critical value for a t-variable with 47 degrees of freedom, at the 0.0001

level (two-tailed) is approximately 4.25; hence, the hypothesis is rejected and we conclude

that there is a relationship between latitude and mortality; the mortality increases about 6.0

persons per 10,000,000 for every degree farther south. This, of course, comes from the value of

b = −5.9776
.

= −6.0. Similarly, a 95% confidence interval for β can be constructed using the

t-value of 2.01, and the standard error of the slope, 0.59837 = s

y·x/

√

[x2].

A 95% confidence interval is −5.9776± (2.01×0.59837), producing lower and upper limits

of −7.18 and −4.77, respectively. Again, the confidence interval does not include zero, and the

same conclusion is reached as in the case of the hypothesis test.

The inference has been concerned with the slope β and intercept α up to now. We now want

to consider two additional situations:

1. Inference about population means, α + βX, for a fixed value of X

2. Inference about a future observation at a fixed value of X

To distinguish between the two cases, let µ̂

x

and ŷ

x

be the predicted mean and a new random

single observation at the point x, respectively. It is important to note that for inference about a

future observation the normality assumption is critical even in large samples. This is in contrast

to inference about the predicted mean or about a and b, where normal distributions are required

only in small samples and the central limit theorem substitutes in large samples.
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First, then, inference about the population mean at a fixed X value: It is natural to estimate

α + βX by a + bx; the predicted value of Y at the value of X = x. Rewrite this quantity as

µ̂

x

= y + b(x − x)

It can be shown that y and b are statistically independent so that the variance of the quantity is

var[y + b(x − x)] = var(y) + (x − x)

2 var(b)

=

σ

2
1

n

+ (x − x)

2 σ

2
1

[x2]

= σ

2
1

[

1

n

+

(x − x)

2

[x2]

]

= σ

2
2 , say

Tests and confidence intervals for E(Y |X) at a fixed value of x may be based on the t-

distribution.

The quantity σ

2
2 reduces to the variance for the intercept, a, at X = 0. It is useful to study

this quantity carefully; there are important implications for design (see Note 9.3). The variance,

σ

2
2 , is not constant but depends on the value of x. The more x differs from x, the greater the

contribution of (x − x)

2
/[x2] to the variance of a + bx. The contribution is zero at x = x. At

x = x, y = y the slope is not used. Regardless of the slope the line goes through mean point

(X, Y ). Consider Example 9.1 again. We need the following information:

s

y·x = 19.1150

n = 49

x = 39.533

[x2] = 1020.499

Let

s

2
2 = s

2
y·x

[

1

n

+

(x − x)

2

[x2]

]

That is, s

2
2 estimates σ

2
2 . Values of s2 as related to latitude are given in Table 9.4. Confidence

interval bands for the mean, α +βX (at the 95% level), are given in Figure 9.6 by the narrower

bands. The curvature is slight due to the large value of [x2] and the relatively narrow range of

prediction.

We now turn to the second problem: predicting a future observation on the basis of the

observed data. The variance is given by

s

2
3 = s

2
y·x

[

1 +

1

n

+

(x − x)

2

[x2]

]

This is reasonable in view of the following argument: At the point α + βX an observation

has variance σ

2
2 (estimated by s

2
y·x

). In addition, there is uncertainty in the true value α + βX.

This adds variability to the estimate. A future observation is assumed to be independent of past

observations. Hence the variance can be added and the quantity s

2
3 results when σ

2
1 is estimated

by s

2
y·x

. Confidence interval bands for future observations (95% level) are represented by outer

lines in Figure 9.6. This band means that we are 95% certain that the next observation at the

fixed point x will be within the given bands. Note that the curvature is not nearly as marked.
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Figure 9.6 Data of Figure 9.1: 95% confidence bands for population means (solid) and 95% confidence

bands for a future observation (dashed).

9.2.4 Analysis of Variance

Consider Example 9.1 and the data for Tennessee, as graphed in Figure 9.4. The basic data for

this state are (omitting subscripts)

y = 186.0 = observed mortality

x = 36.0 = latitude of center of state

ŷ = 174.0 = predicted mortality using latitude of 36.0

y = 152.9 = average mortality for United States

Partition the data as follows:

(y − y) = (ŷ − y) + (y − ŷ)

total variation = attributable to regression + residual from regression

186.0 − 152.9 = (174.0 − 152.9) + (186.0 − 174.0)

33.1 = 21.1 + 12.0

Note that the quantity

ŷ − y = a + bx − y

= y − bx + bx − y

= b(x − x)

The quantity is zero if b = 0, that is, if there is no regression relationship between Y and X. In

addition, it is zero if prediction is made at the point x = x.

These quantities can be calculated for each state, as indicated in abbreviated form in Table 9.5.

The sums of squares of these quantities are given at the bottom of the table. The remarkable

fact is that
∑

(y

i

− y)

2
=

∑

(ŷ

i

− y)

2
+

∑

(y

i

− ŷ

i

)

2

53,637.3 = 36,464.2 + 17,173.1
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Table 9.5 Deviations from Mean and Regression Based on Data of Table 9.1

Variation

Observed

Mortality Latitude Predicted Total = Regression + Residual

Case State (y) (x) Mortalitya

y − y = ŷ − y + y − ŷ

1 Alabama 219.0 33.0 191.9 66.1 = 39.0 + 27.1

2 Arizona 160.0 34.5 183.0 7.1 = 30.1 + −23.0

.

.

.

.

.

.

.

.

.

.

.

.

41 Tennessee 186.0 36.0 174.0 33.1 = 21.1 + 12.0

.

.

.

.

.

.

.

.

.

.

.

.

48 Wisconsin 110.0 44.5 123.2 −42.9 = −29.7 + −13.2

49 Wyoming 134.0 43.0 132.2 −18.9 = −20.7 + 1.8

Total 0 = 0 + 0

Mean 152.9 39.5 152.9 0 = 0 + 0

Sum of squares 53,637.3 = 36,464.2 + 17,173.1

aPredicted mortality based on regression line y = 389.19 − 5.9776x, where x is the latitude at the center of the state.

that is, the total variation as measured by
∑

(y

i

− y)

2 has been partitioned additively into a

part attributable to regression and the residual from regression. The quantity
∑

(ŷ

i

− y)

2
=

∑

b

2
(x

i

− x)

2
= b

2[x2]. (But since b = [xy]/[x2], this becomes
∑

(ŷ

i

− y)

2
= [xy]2

/[x2].)

Associated with each sum of squares is a degree of freedom (d.f.) which can also be partitioned

as follows:

total variation = attributable to regression + residual variation

d.f. = n − 1 = 1 + n − 2

49 = 1 + 48

The total variation has n−1 d.f., not n, since we adjusted Y about the mean Y . These quantities

are commonly entered into an analysis of variance table as follows:

Source of Variation d.f. SS MS F -Ratio

Regression 1 36,464.2 36,464.2 99.80

Residual 47 17,173.1 365.384

Total 48 53,637.3

The quantity 365.384 is precisely s

2
y·x

. The F -ratio is discussed below. The mean square is

the sum of squares divided by the degrees of freedom. The analysis of variance table of any set

of n pairs of observations (x

i

, y

i

), i = 1, . . . , n, is

Source of Variation d.f. SS MS F -Ratio

Regression 1 [xy]2
/[x2] [xy]2

/[x2]
[xy]2

/[x2]

s

2
y·x

Residual n - 2 By subtraction s

2
y·x

Total n - 1 [y2]
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Several points should be noted about this table and the regression procedure:

1. Only five quantities need to be calculated from the raw data to completely determine the

regression line and sums of squares:
∑

x

i

,

∑

y

i

,

∑

x

2
i

,

∑

y

2
i

, and
∑

x

i

y

i

. From these

quantities one can calculate

[x2] =

∑

(x

i

− x)

2
=

∑

x

2
i

−

(
∑

x

i

)2

n

[y2] =

∑

(y

i

− y)

2
=

∑

y

2
i

−

(
∑

y

i

)2

n

[xy] =

∑

(x

i

− x)(y

i

− y) =

∑

x

i

y

i

−

∑

y

i

∑

x

i

n

.

2. The greater the slope, the greater the SS due to regression. That is,

SS(regression) = b

2
∑

(x

i

− x)

2
=

[xy]2

[x2]

If the slope is “negligible,” SS(regression) will tend to be “small.”

3. The proportion of the total variation attributable to regression is usually denoted by r

2;

that is,

r

2
=

variation attributable to regression

total variation

=

[xy]2
/[x2]

[y2]

=

[xy]2

[x2][y2]

It is clear that 0 ≤ r

2
≤ 1 (why?). If b = 0, then [xy]2

/[x2] = 0 and the variation

attributable to regression is zero. If [xy]2
/[x2] is equal to [y2], all of the variation can be

attributed to regression; to be more precise, to linear regression; that is, all the observations

fall on the line a + bx. Thus, r

2 measures the degree of linear relationship between X

and Y . The correlation coefficient, r , is studied in Section 9.3. For the data in Table 9.4,

r

2
=

36,464.2

53,637.3
= 0.67983

That is, approximately 68% of the variation in mortality can be attributed to variation in

latitude. Equivalently, the variation in mortality can be reduced 68% knowing the latitude.

4. Now consider the ratio

F =

[xy]2
/[x2]

s

2
y·x

Under the assumption of the model [i.e., y ∼ N(α + βX, σ

2
1 )], the ratio F tends to be

near 1 if β = 0 and tends to be larger than 1 if β �= 0 (either positively or negatively).

F has the F -distribution, as introduced in Chapter 5. In the example F1,47 = 99.80, the

critical value at the 0.05 level is F1,47 = 4.03 (by interpolation). The critical value at

the 0.001 level is F1,47 = 12.4 (by interpolation). Hence, we reject the hypotheses that

β = 0. We tested the significance of the slope using a t-test given the value

t47 = −9.9898
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The F -value we obtained was

F1,47 = 99.80

In fact,

(−9.9898)

2
= 99.80

That is,

t

2
47 = F1,47

Recall that

t

2
v

= F1,v

Thus, the t-test and the F -test for the significance of the slope are equivalent.

9.2.5 Appropriateness of the Model

In Chapter 5 we considered the appropriateness of the model y ∼ N(µ, σ

2
) for a set of data

and discussed briefly some ways of verifying the appropriateness of this model. In this section

we have the model

y ∼ N(α + βX, σ

2
1 )

and want to consider its validity. At least three questions can be asked:

1. Is the relationship between Y and X linear?

2. The variance σ

2
1 is assumed to be constant for all values of X (homogeneity of variable).

Is this so?

3. Does the normal model hold?

Two very simple graphical procedures, both utilizing the residuals from regression y

i

− ŷ

i

,

can be used to verify the assumptions above. Also, one computation on the residuals is useful.

The two graphical procedures are considered first.

To Check for: Graphical Procedure

1. Linearity of regression and

homogeneity of variance

Plot (y

i

− ŷ

i

) against ŷ

i

,

i = 1, . . . , n

2. Normality Normal probability plot of

y

i

− ŷ

i

, i = 1, . . . , n

We illustrate these with data created by Anscombe [1973]. As we noted above, just five

summaries of the data specify everything about the linear regression model. Anscombe created

four data sets in which these five summaries, and thus the fitted model, were identical, but where

the data were very different. Only one of these sets of data is appropriate for linear regression.

Linearity of Regression and Homogeneity of Variance

Given only one predictor variable, X, the graph of Y vs. X will suggest nonlinearity or hetero-

geneity of variance, see the top row of regression patterns in Figure 9.7. But if there is more than

one predictor variable, as in Chapter 11, the simple two-dimensional graph is not possible. But

there is a way of detecting such patterns by considering residual plots y − ŷ against a variety of

variables. A common practice is to plot y − ŷ against ŷ; this graph is usually referred to as a

residual plot. The advantage is, of course, that no matter how many predictor variables are used,
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ŷ
)
.

308



SIMPLE LINEAR REGRESSION MODEL 309

it is always possible to plot y − ŷ. The second row of graphs in Figure 9.7 indicate the residual

patterns associated with the regression patterns of the top row. Pattern 1 indicates a reasonable

linear trend, pattern 2 shows a very strong pattern in the residuals. Pattern 3 has a single very

large residual, and in pattern 4 it is the distribution of X rather than Y that is suspicious.

Before turning to the questions of normality of the data, consider the same kind of analysis

carried out on the melanoma data. The residuals are plotted in the left panel of Figure 9.8. There

is no evidence that there is nonlinearity or heterogeneity of variance.

Normality

One way of detecting gross deviations from normality is to graph the residuals from regression

against the expected quantiles of a normal distribution as introduced in Chapter 4. The last row

of patterns in Figure 9.6 are the normal probability plots of the deviations from linear regression.

The last row in Figure 9.6 indicates that a normal probability plot indicates outliers clearly but

is not useful in detecting heterogeneity of variance or curvilinearity.

Of particular concern are points not fit closely by the data. The upper right and lower left

points often tail in toward the center in least squares plot. Points on the top far to the right and

on the bottom far to the left (as in pattern 2) are of particular concern.

The normal probability plot associated with the residuals of the melanoma are plotted in the

right panel of Figure 9.8. There is no evidence against the normality assumption.

9.2.6 Two-Sample t-Test as a Regression Problem

In this section we show the usefulness of the linear model approach by illustrating how the two

sample t-test can be considered a special kind of linear model. For an example, we again return

to the data on mortality rates due to melanoma contained in Table 9.1. This time we consider the

rates in relationship to contiguity to an ocean; there are two groups of states: those that border

on an ocean and those that do not. The question is whether the average mortality rate for the first

group differs from that of the second group. The t-test and analysis are contained in Table 9.6.

The mean difference, y1 −y2 = 31.486, has a standard error of 8.5468 so that the calculated

t-value is t = 3.684 with 47 degrees of freedom, which exceeds the largest value in the t-table

at 40 or 60 degrees of freedom and consequently, p < 0.001. The conclusion then is that the

mortality rate due to malignant melanoma is appreciably higher in states contiguous to an ocean

as compared to “inland” states, the difference being approximately 31 deaths per 107 population

per year.
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Figure 9.8 Melanoma data (left) residuals (y − ŷ) from regression lines Y = 389.19 − 589.8X plotted

against ŷ and (right) normal quantile plot of residuals, y − ŷ.
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Table 9.6 Comparison by Two-Sample t-Test of Mortality Rates Due to Melanoma (Y ) by

Contiguity to Ocean

Contiguity to ocean No = 0 Yes = 1

Number of states n1 = 27 n2 = 22

Mean mortality y1 = 138.741 y2 = 170.227

Variancea

s

2
1 = 697.97 s

2
2 = 1117.70

Pooled variance s

2
p

= 885.51

Standard error of difference s

p

√

1

n1

+

1

n2

= 8.5468

Mean difference y2 − y1 = 31.487

t-Value t = 3.684

Degrees of freedom d.f. = 47

p-Value p < 0.001

aSubscripts on variances denote group membership in this table.

Now consider the following (equivalent) regression problem. Let Y be the mortality rate and

X the predictor variable; “X = contiguity to ocean” and X takes on only two values, 0, 1. (For

simplicity, we again label all the variables and parameters, Y,X, α, β, and σ

2
1 , but except for Y ,

they obviously are different from the way they were defined in earlier sections.) The model is

Y ∼ N(α + βX, σ

2
1 )

The data are graphed in Figure 9.9. The calculations for the regression line are as follows:

n = 49, b =

[xy]

[x2]
= 31.487

[y2] = 53637.265, a = 138.741

[xy] = 381.6939, Regression line

[x2] = 12.12245, Y = 138.741 + 31.487X

y = 152.8776, (n − 2)s

2
y·x

= [y2] −

[xy]2

[x2]

x = 0.44898, = 41,619.0488

s

2
y·x

= 885.51

The similarity to the t-test becomes obvious, the intercept a = 138.741 is precisely the mean

mortality for the “inland” states. The “slope,” b = 31.487, is the mean difference between the

two groups of states, and s

2
y·x

, the residual variance, is the pooled variance. The t-test for the

slope is equivalent to the t-test for the difference in the two means.

variance of slope = s

2
b

=

s

2
y·x

[x2]

=

885.51

12.12245

= 73.0471
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Figure 9.9 Melanoma data: regression of mortality rate on contiguity to ocean, coded 0 if not contiguous

to ocean, 1 if contiguous to ocean.

s

b

= 8.5468

t =

31.487

8.5468

= 3.684

The t-test for the slope has 47 degrees of freedom, as does the two-sample t-test. Note also

that s

b

is the standard error of the differences in the two-sample t-test.

Finally, the regression analysis can be put into analysis of variance form as displayed in

Table 9.7:

SS(regression) =

[xy]2

[x2]

=

(381.6939)

2

12.12245

= 12,018.22

SS(residual) = [y2] −

[xy]2

[x2]

= 53,637.26 − 12,018.22

= 41,619.04

We note that the proportion of variation in mortality rates attributable to “contiguity to

ocean” is

r

2
=

[xy]2
/[x2]

[y2]

=

12,018.22

53,637.06

= 0.2241
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Table 9.7 Regression Analysis of Mortality and Contiguity

to Ocean

Source of Variation d.f. SS MS F -Ratio

Regression 1 12,018.22 12,018.22 13.57a

Residual 47 41,619.04 885.51

Total 48 53,637.26

aSignificant at the 0.001 level.

Approximately 22% of the variation in mortality can be attributed to the predictor variable:

“contiguity to ocean.”

In Chapter 11 we deal with the relationships among the three variables: mortality, latitude,

and contiguity to an ocean. The predictor variable “contiguity to ocean,” which takes on only

two values, 0 and 1 in this case, is called a dummy variable or indicator variable. In Chapter 11

more use is made of such variables.

9.3 CORRELATION AND COVARIANCE

In Section 9.2 the method of least squares was used to find a line for predicting one variable from

the other. The response variable Y , or dependent variable Y , was random for given X. Even if X

and Y were jointly distributed so that X was a random variable, the model only had assumptions

about the distribution of Y given the value of X. There are cases, however, where both variables

vary jointly, and there is a considerable amount of symmetry. In particular, there does not seem

to be a reason to predict one variable from the other. Example 9.3 is of that type. As another

example, we may want to characterize the length and weight relationship of newborn infants.

The basic sampling unit is an infant, and two measurements are made, both of which vary. There

is a certain symmetry in this situation: There is no “causal direction”—length does not cause

weight, or vice versa. Both variables vary together in some way and are probably related to each

other through several other underlying variables which determine (cause) length and weight. In

this section we provide a quantitative measure of the strength of the relationship between the

two variables and discuss some of the properties of this measure. The measure (the correlation

coefficient) is a measure of the strength of the linear relationship between two variables.

9.3.1 Correlation and Covariance

We would like to develop a measure (preferable one number) that summarizes the strength of

any linear relationship between two variables X and Y . Consider Example 9.2, the exercise test

data. The X variable is measured in seconds and the Y variable is measured in milliliters per

minute per kilogram. When totally different units are used on the two axes, one can change the

units for one of the variables, and the picture seems to change. For example, if we went from

seconds to minutes where 1 minute was graphed over the interval of 1 second in Figure 9.2, the

data of Figure 9.2 would go almost straight up in the air. Whatever measure we use should not

depend on the choice of units for the two variables. We already have one technique of adjusting

for or removing the units involved: to standardize the variables. We have done this for the t-test,

and we often had to do it for the construction of test statistics in earlier chapters. Further, since

we are just concerned with how closely the family of points is related, if we shift our picture

(i.e., change the means of the X and Y variables), the strength of the relationship between the

two variables should not change. For that reason, we subtract the mean of each variable, so that

the pictures will be centered about zero. In order that we have a solution that does not depend
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Figure 9.10 Scatter diagrams for the standardized variables.

on units, we standardize each variable by dividing by the standard deviation. Thus, we are now

working with two new variables, say U and V , which are related to X and Y as follows:

U

i

=

X

i

− X

s

x

, V

i

=

Y

i

− Y

s

y

where

s

2
x

=

∑

(X

i

− X)

2

n − 1
and s

2
y

=

∑

(Y

i

− Y )

2

n − 1

Let us consider how the variables U

i

and V

i

vary together. In Figure 9.10 we see three

possible types of association. Part (a) presents a positive relationship, or association between,

the variables. As one increases, the other tends to increase. Part (b) represents a tighter, negative

relationship. As one decreases, the other tends to increase, and vice versa. By the word tighter,

we mean that the variability about a fitted regression line would not be as large. Part (c)

represents little or no association, with a somewhat circular distribution of points.

One mathematical function that would capture these aspects of the data results from mul-

tiplying U

i

and V

i

. If the variables tend to be positive or negative together, the product will

always be positive. If we add up those multiples, we would get a positive number. On the other

hand, if one variable tends to be negative when the other is positive, and vice versa, when we

multiply the U

i

and V

i

together, the product will be negative; when we add them, we will get

a negative number of substantial absolute value.

On the other hand, if there is no relationship between U and V , when we multiply them,

half the time the product will be positive and half the time the product will be negative; if we
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sum them, the positive and negative terms will tend to cancel out and we will get something

close to zero. Thus, adding the products of the standardized variables seems to be a reasonable

method of characterizing the association between the variables. This gives us our definition of

the correlation coefficient.

Definition 9.4. The sample Pearson product moment correlation coefficient, denoted by r ,

or r

XY

, is defined to be

r =

[xy]
√

[x2][y2]
=

∑

(x

i

− x)(y

i

− y)

√

∑

(x

i

− x)

2
∑

(y

i

− y)

2
=

1

n − 1

∑

u

i

v

i

This quantity is usually called the correlation coefficient.

Note that the denominator looks like the product of the sample standard deviations of X and

Y except for a factor of n − 1. If we define the sample covariance by the following equation,

we could define the correlation coefficient according to the second alternative definition.

Definition 9.5. The sample covariance, s

xy

, is defined by

s

xy

=

∑

i

(x

i

− x)(y

i

− y)

n − 1

Alternative Definition 9.4. The sample Pearson product moment correlation coefficient is

defined by

r =

[xy]
√

[x2][y2]
=

s

xy

s

x

s

y

The prefix co- is a prefix meaning “with,” “together,” and “in association,” occurring in words

derived from Latin: thus, the co-talks about the two variables varying together or in association.

The term covariance has the same meaning as the variance of one variable: how spread out

or variable things are. It is hard to interpret the value of the covariance alone because it is

composed of two parts; the variability of the individual variables and their linear association. A

small covariance can occur because X and/or Y has small variability. It can also occur because

the two variables are not associated. Thus, in interpreting the covariance, one usually needs to

have some idea of the variability in both variables. A large covariance, however, does imply

that at least one of the two variables has a large variance.

The correlation coefficient is a rescaling of the covariance by the standard deviations of X

and Y . The motivation for the construction of the covariance and correlation coefficient is the

following: s

xy

is the average of the product of the deviations about the means of X and Y . If

X tends to be large when Y is large, both deviations will be positive and the product will be

positive. Similarly, if X is small when Y is small, both deviations will be negative but their

products will still be positive. Hence, the average of the products for all the cases will tend to

be positive. If there is no relationship between X and Y , a positive deviation in X may be paired

with a positive or negative deviation in Y and the product will either be positive or negative,

and on the average will tend to center around zero. In the first case X and Y are said to be

positively correlated, in the second case there is no correlation between X and Y . A third case

results when large values of X tend to be associated with small values of Y , and vice versa. In

this situation, the product of deviations will tend to be negative and the variables are said to be

negatively correlated. The statistic r rescales the average of the product of the deviations about

the means by the standard deviations of X and Y .
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The statistic r has the following properties:

1. r has value between −1 and 1.

2. r = 1 if and only if all the observations are on a straight line with positive slope.

3. r = −1 if and only if all observations are on a straight line with negative slope.

4. r takes on the same value if X, or Y , changes units or has a constant added or subtracted.

5. r measures the extent of linear association between two variables.

6. r tends to be close to zero if there is no linear association between X and Y .

Some typical scattergrams and associated values of r are given in Figure 9.11. Figure 9.11(a)

and (b) indicate perfect linear relationships between two variables. Figure 9.11(c) indicates no

correlation. Figure 9.11(d) and (e) indicate typical patterns representing less than perfect cor-

relation. Figure 9.11(f ) to (j ) portray various pathological situations. Figure 9.11(f ) indicates

that although there is an explicit relationship between X and Y , the linear relationship is zero;

thus r = 0 does not imply that there is no relationship between X and Y . In statistical ter-

minology, r = 0 does not imply that the variables are statistically independent. There is one

important exception to this statement that is discussed in Section 9.3.3. Figure 9.11(g) indicates

that except for the one extreme point there is no correlation. The coefficient of correlation is very

sensitive to such outliers, and in Section 9.3.7 we discuss correlations that are not as sensitive,

that is, more robust. Figure 9.11(h) indicates that an explicit relationship between X and Y is not

identified by the correlation coefficient if the relationship is not linear. Finally, Figure 9.11(j )

Figure 9.11 Some patterns of association.



316 ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

suggests that there are three subgroups of cases; within each subgroup there is a positive cor-

relation, but the correlation is negative when the subgroups are combined. The reason is that

the subgroups have different means and care must be taken when combining data. For example,

natural subgroups defined by gender or race may differ in their means in a direction opposite

to the correlation within each subgroup.

Now consider Example 9.3. The scattergram in Figure 9.3 suggests a positive association

between the ATP level of the youngest son (X) and that of the oldest son (Y ). The data for

this example produce the following summary statistics (the subscripts on the values of X and

Y have been suppressed: for example,
∑

x

i

=

∑

x).

n = 17,
∑

x = 83.38, x = 4.90,
∑

y = 79.89, y = 4.70,
∑

x

2
= 417.1874,

∑

(x − x)

2
= 8.233024, s

x

= 0.717331
∑

y

2
= 379.6631,

∑

(y − y)

2
= 4.227094, s

y

= 0.513997
∑

xy = 395.3612,
∑

(x − x)(y − y) = 3.524247, s

xy

= 0.220265

r =

0.220265

(0.717331)(0.513997)

= 0.597

In practice, r will simply be calculated from the equivalent formula

r =

[xy]
√

[x2][y2]
=

3.524247
√

(8.233024)(4.227094)

=

3.524247

5.899302
= 0.597

The sample correlation coefficient and covariance estimate the population parameters. The

expected value of the covariance is

E(S

xy

) = E((X − µ

x

)(Y − µ

y

))

= σ

xy

where

µ

x

= E(X) and µ

y

= E(Y )

The population covariance is the average of the product of X about its mean times Y about its

mean.

The sample correlation coefficient estimates the population correlation coefficient ρ, defined

as follows:

Definition 9.6. Let (X, Y ) be two jointly distributed random variables. The (population)

correlation coefficient is

ρ =

σ

xy

σ

x

σ

y

=

E((X − µ

x

)(Y − µ

y

))

√

var(X)var(Y )

where σ

xy

is the covariance of X and Y , σ

x

the standard deviation of X, and σ

y

the standard

deviation of Y . ρ is zero if X and Y are statistically independent variables.

There is now a question about the statistical “significance” of a value r . In practical terms,

suppose that we have sampled 17 families and calculated the correlation coefficient in ATP
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levels between the youngest son and the oldest son. How much variation could we have expected

relative to the value observed for this set? Could the population correlation coefficient ρ = 0?

In the next two sections we deal with this question.

9.3.2 Relationship between Correlation and Regression

In Section 9.2.4, r

2 was presented, indicating a close connection between correlation and regres-

sion. In this section, the connection will be made explicit in several ways. Formally, one of the

variables X, Y could be considered the dependent variable and the other the predictor variable

and the techniques of Section 9.2 applied. It is easy to see that in most cases the slope of the

regression of Y on X will not be the same as that of X on Y . To keep the distinction clear, the

following notation will be used:

b

yx

= slope of the regression of the “dependent” variable Y on the “predictor” variable X

a

y

= intercept of the regression of Y on X

Similarly,

b

xy

= slope of the regression of the “dependent” variable X on the “predictor” variable Y

a

x

= intercept of the regression of X on Y

These quantities are calculated as follows:

Regress Y on X Regress X on Y

Slope b

yx

=

[xy]

[x2]
b

xy

=

[xy]

[y2]

Intercept a

y

= y − b

yx

x a

x

= x − b

xy

y

Residual variance S

2
y·x

=

[y2] − [xy]2
/[x2]

n − 2
S

2
x.y

=

[x2] − [xy]2
/[y2]

n − 2

From these quantities, the following relationships can be derived:

1. Consider the product

b

yx

b

xy

=

[xy]2

[x2][y2]

= r

2

Hence

r = ±

√

b

yx

b

xy

In words, r is the geometric mean of the slope of the regression of Y on X and the slope

of the regression of X on Y .

2.

b

yx

= r

S

y

S

x

, b

xy

= r

S

x

S

y

where S

x

and S

y

are the sample standard deviations of X and Y , respectively.
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3. Using the relationships in (2), the regression line of Y on X,

̂

Y = a

y

+ b

yx

X

can be transformed to

̂

Y = a

y

+

rS

y

S

x

X

= y +

rS

y

S

x

(X − x)

4. Finally, the t-test for the slope, in the regression of Y on X,

t

n−2 =

b

yx

S

b

yx

=

b

yx

S

y·x/

√

[x2]

is algebraically equivalent to

r

/

√

1 − r

2

n − 2

Hence, testing the significance of the slope is equivalent to testing the significance of the

correlation.

Consider Example 9.3 again. The data are summarized in Table 9.8. This table indicates that

the two regression lines are not the same but that the t-tests for testing the significance of the

slopes produce the same observed value, and this value is identical to the test of significance of

the correlation coefficient. If the corresponding analyses of variance are carried out, it will be

found that the F -ratio in the two analyses are identical and give an equivalent statistical test.

9.3.3 Bivariate Normal Distribution

The statement that a random variable Y has a normal distribution with mean µ and variance σ

2

is a statement about the distribution of the values of Y and is written in a shorthand way as

Y ∼ N(µ, σ

2
)

Such a distribution is called a univariate distribution.

Definition 9.7. A specification of the distribution of two (or more) variables is called a

bivariate (or multivariate) distribution.

The definition of such a distribution will require the specification of the numerical character-

istics of each of the variables separately as well as the relationships among the variables. The

most common bivariate distribution is the normal distribution. The equation for the density of

this distribution as well as additional properties are given in Note 9.6.

We write that (X, Y ) have a bivariate normal distribution as

(X, Y ) ∼ N(µ

x

, µ

y

, σ

2
x

, σ

2
y

, ρ)
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Table 9.8 Regression Analyses of ATP Levels of Oldest and Youngest Sons

Dependent variable Y

a

X

a

Predictor variable X

b

Y

b

Slope b

yx

= 0.42806 b

xy

= 0.83373

Intercept a

y

= 2.59989 a

x

= 0.98668

Regression line ̂

Y = 2.600 + 0.428X

̂

X = 0.987 + 0.834Y

Variance about mean s

2
y

= 0.26419 s

2
x

= 0.51456

Residual variance s

2
y·x

= 0.18123 s

2
x.y

= 0.35298

Standard error of slope s

b

y·x
= 0.14837 s

b

x.y

= 0.28897

Test of significance t15 =

0.42806

0.14837
= 2.885 t15 =

0.83373

0.28897
= 2.885

Correlation r

xy

= r

yx

= r = 0.597401

Test of significance t15 =

0.597401
√

1 − (0.597401)

2

17 − 2

=

0.597401

0.20706

= 2.885

Source: Data from Dern and Wiorkowski [1969].
aATP level of oldest son.
bATP level of youngest son.

Here µ

x

, µ

y

, σ

2
x

, and σ

2
y

are the means and variances of X and Y , respectively. The quantity ρ

is the (population) correlation coefficient. If we assume this model, it is this quantity, ρ, that is

estimated by the sample correlation, r .

The following considerations may help to give you some feeling for the bivariate normal

distribution. A continuous distribution of two variables, X and Y , may be modeled as follows.

Pour 1 pound of sand on a floor (the X–Y plane). The probability that a pair (X, Y ) falls into

an area, say A, on the floor is the weight of the sand on the area A. For a bivariate normal

distribution, the sand forms one mountain, or pile, sloping down from its peak at (µ

x

, µ

y

), the

mean of (X, Y ). Cross sections of the sand at constant heights are all ellipses. Figure 9.12 shows

a bivariate normal distribution. On the left is shown a view of the sand pile; on the right, a

topographical map of the terrain.

The bivariate normal distribution has the property that at every fixed value of X (or Y ) the

variable Y (or X) has a univariate normal distribution. In particular, write

Y

x

= random variable Y at a fixed value of X = x

It can be shown that at this fixed value of X = x,

Y

x

∼ N

(

α

y

+

σ

y

σ

x

ρx, σ

2
y

(1 − ρ

2
)

)

This is the regression model discussed previously:

Y

x

∼ N(α + βx, σ

2
1 )

where

α = µ

y

− βµ

x

, β =

σ

y

σ

x

ρ, σ

2
1 = σ

2
y

(1 − ρ

2
)
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Figure 9.12 Bivariate normal distribution.

Similarly, for

X

y

= random variable X at a fixed value of Y = y

it can be shown that

X

y

∼ N

(

α

x

+

σ

x

σ

y

ρy, σ

2
x

(1 − ρ

2
)

)

The null hypothesis β

yx

= 0 (or, β

xy

= 0) is equivalent then to the hypothesis ρ = 0, and the

t-test for β = 0 can be applied.

Suppose now that the null hypothesis is

ρ = ρ0
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where ρ0 is an arbitrary but specified value. The sample correlation coefficient r does not have

a normal distribution and the usual normal theory cannot be applied. However, R. A. Fisher

showed that the quantity

Z

r

=

1

2
log

e

1 + r

1 − r

has the following approximate normal distribution:

Z

r

∼ N

(

1

2
log

e

1 + ρ

1 − ρ

,

1

n − 3

)

where n is the number of pairs of values of X and Y from which r is computed. Not only does

Z

r

have approximately a normal distribution, but the variance of this normal distribution does

not depend on the true value ρ; that is, Z

r

− Z

ρ

is a pivotal quantity (5.2). This is illustrated

graphically in Figure 9.13, which shows the distribution of 1000 simulated values of r and Z

r

from distributions with ρ = 0 and ρ = 1/

√

2 ≈ 0.71. The distribution of r has a different

variance and different shape for the two values of ρ, but the distribution of Z

r

has the same

shape and same variance, differing only in location.
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Figure 9.13 Sampling distribution of correlation coefficient, r , before and after transformation, for

ρ = 0, 1/

√

2. Estimated from 1000 samples of size 10.
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Although the approximate distribution of Z

r

was derived under the assumption of a bivariate

normal distribution for X and Y , it is not very sensitive to this assumption and is useful quite

broadly. Z

r

may be used to test hypotheses about ρ and to construct a confidence interval for

ρ. This is illustrated below. The inverse, or reverse, function to r is (e

2Z

− 1)/(e

2Z

+ 1). Z

r

is

also the inverse of the hyperbolic tangent, tanh. To “undo” the operation, tanh is used.

Consider again Example 9.3 involving the ATP levels of youngest and oldest sons in the 17

families. The correlation coefficient was calculated to be

r = 0.5974

This value was significantly different from zero; that is, the null hypothesis ρ = 0 was rejected.

However, the authors show in the paper that genetic theory predicts the correlation to be ρ = 0.5.

Does the observed value differ significantly from this value? To test this hypothesis we use the

Fisher Z

r

transformation. Under the genetic theory, the null hypothesis stated in terms of Z

r

is

Z

r

∼ N

(

1

2
log

e

(

1 + 0.5

1 − 0.5

)

,

1

17 − 3

)

∼ N(0.5493, 0.07143)

The value observed is

Z

r

=

1

2
log

e

(

1 + 0.5974

1 − 0.5974

)

= 0.6891

The corresponding standard normal deviate is

z =

0.6891 − 0.5493
√

0.07143
=

0.1398

0.2673
= 0.5231

This value does not exceed the critical values at, say, the 0.05 level, and there is no evidence

to reject this null hypothesis.

Confidence intervals for ρ may be formed by first using Z

r

to find a confidence interval for

1/2 log
e

[(1 + ρ)/(1 − ρ)]. We then transform back to find the confidence interval for ρ. To

illustrate: a 100(1 − α)% confidence interval for 1/2 log
e

[(1 + ρ)/(1 − ρ)] is given by

Z

r

± z1−α/2

√

1

n − 3

For a 90% confidence interval with these data, the interval is (0 : 6891−1.645
√

1/14, 0.6891+

1.645
√

1/14) = (0.249, 1.13). When Z

r

= 0.249, r = 0.244, and when Z

r

= 0.811. Thus the

90% confidence interval for ρ is (0.244, 0.811). This value straddles 0.5.

9.3.4 Critical Values and Sample Size

We discussed the t-test for testing the hypothesis ρ = 0. The formula was

t

n−2 =

r

√

(1 − r

2
)/(n − 2)

This formula is very simple and can be used for finding critical values and for sample size

calculations: Given that the number of observation pairs is specified, the critical value for t with
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n − 2 degrees of freedom is determined, and hence the r critical value can be calculated. For

simplicity, write t

n−1 = t ; solving the equation above for r

2 yields

r

2
=

t

2

t

2
+ n − 2

For example, suppose that n = 20, the corresponding t-value with 18 degrees of freedom at the

0.05 level is t18 = 2.101. Hence,

r

2
=

(2.101)

2

(2.101)

2
+ 18

= 0.1969

and the corresponding value for r is r ± 0.444; that is, with 20 observations the value of r must

exceed 0.444 or be less than −0.444 to be significant at the 0.05 level. Table A.11 lists critical

values for r , as a function of sample size.

Another approach is to determine the sample size needed to “make” an observed value of r

significant. Algebraic manipulation of the formula gives

n =

t

2

r

2
− t

2
+ 2

A useful approximation can be derived if it is assumed that we are interested in reasonably

small values of r , say r < 0.5; in this case, t

.

= 2 at the 0.05 level and the formula becomes

n =

(

2

r

)2

− 2

For example, suppose that r = 0.3; the sample size needed to make this value significant is

n =

(

2

0.3

)2

− 2 = 44 − 2 = 42

A somewhat more refined calculation yields n = 43, so the approximation works reason-

ably well.

9.3.5 Using the Correlation Coefficient as a Measure of Agreement for Two Methods of

Measuring the Same Quantity

We have seen that for X and Y jointly distributed random variables, the correlation coefficient ρ

is a population parameter value: ρ is a measure of how closely X and Y have a linear association,

ρ

2 is the proportion of the Y variance that can be explained by linear prediction from X, and

vice versa.

Suppose that the regression holds and we may choose X. Figure 9.14 shows data from a

regression model with three different patterns of X variables chosen. The same errors were

added in each figure. The X values were spread out over larger and larger intervals. Since the

spread about the regression line remains the same and the range of Y increases as the X range

increases, the proportion of Y variability explained by X increases: 0.50 to 0.68 to 0.79. For

the same random errors and population regression line, r can be anywhere between 0 and 1,

depending on which X values are used! In this case the correlation coefficient depends not only

on the model, but also on experimental design, where the X’s are taken. For this reason some

authors say that the r should never be used unless one has a bivariate sample: Otherwise, we

do not know what r means; another experimenter with the same regression model could choose

different X values and obtain a radically different result.
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We discuss these ideas in the context of the exercise data of Example 9.2. Suppose that we

were strong supporters of maximal treadmill stress testing and wanted to show how closely

treadmill duration and VO2 MAX are related. Our strategy for obtaining a large correlation

coefficient will be to obtain a large spread of X values, duration. We may know that some of

the largest duration and VO2 MAX values were obtained by world-class cross-country skiers; so

we would recruit some. For low values we might search for elderly overweight and deconditioned

persons. Taking a combined group of these two types of subjects should result in a large value

of r . If the same experiment is run using only very old, very overweight, and very deconditioned

subjects, the small range will produce a small, statistically insignificant r value.

Since the same treadmill test procedure is associated with large and small r values, what does

r mean? A preferable summary indicator is the estimate, s

y·x of the residual standard deviation

σ1. If the linear regression model holds, this would be estimated to be the same in each case.

Is it wrong to calculate or present r when a bivariate sample is not obtained? Our answer is

a qualified no; that is, it is all right to present r in regression situations provided that:

1. The limitations are kept in mind and discussed. Possible comments on the situation for

other sorts of X values might be appropriate.

2. The standard deviation of the residuals should be estimated and presented.

In Chapter 7, the kappa statistic was presented. This was a measure of the amount of

agreement when two categorical measurements of the same objects were available. If the two

measurements were continuous, the correlation coefficient r is often used as a measure of the

agreement of the two techniques. Such use of r is subject to the comments above.

9.3.6 Errors in Both Variables

An assumption in the linear regression model has been that the predictor variable could be

measured without error and that the variation in the dependent variable was of one kind only

Figure 9.14 The regression model Y = 0.5X + e was used. Twenty-one random N (0, 1) errors were

generated by computer. The same errors were used in each panel.
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Figure 9.14 (continued)

and could be modeled completely if the value of the predictor variable was fixed. In almost all

cases, these assumptions do not hold. For example, in measuring psychological characteristics

of individuals, there is (1) variation in the characteristics from person to person; and (2) error

in the measurement of these psychological characteristics. It is almost certainly true that this

problem is present in all scientific work. However, it may be that the measurement error is

“small” relative to the variation of the individuals, and hence the former can be neglected.
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Another context where the error is unimportant is where the scientific interest is in the variable

as measured, not some underlying quantity. For example, in examining how well blood pressure

predicts stroke, we are interested in practical prediction, not in what might hypothetically be

possible with perfect measurements.

The problem is difficult and we will not discuss it beyond the effect of errors on the corre-

lation coefficient. For a more complete treatment, consult Acton [1984] or Kendall and Stuart

[1967, Vol. 2], and for a discussion of measurement error in more complex models, see Carrol

et al. [1995].

Suppose that we are interested in the correlation between two random variables X and Y

which are measured with errors so that instead of X and Y , we observe that

W = X + d, V = Y + e

where d and e are errors. The sampling we have in mind is the following: a “case” is selected

at random from the population of interest. The characteristics X and Y are measured but with

random independent errors d and e. It is assumed that these errors have mean zero and variances

σ

2
1 and σ

2
2 , respectively. Another “case” is then selected and the measurement process is repeated

with error. Of interest is the correlation ρ

XY

between X and Y , but the correlation ρ

V W

is

estimated. What is the relationship between these two correlations? The correlation ρ

XY

can be

written

ρ

XY

=

σ

XY

√

σ

2
X

σ

2
Y

The reason for writing the correlation this way can be understood when the correlation between

V and W is considered:

ρ

V W

=

σ

XY

√

(σ

2
X

+ σ

2
1 )(σ

2
Y

+ σ

2
2 )

=

σ

XY

σ

X

σ

Y

√

(

1 + σ

2
1 /σ

2
X

) (

1 + σ

2
2 /σ

2
Y

)

=

ρ

XY

√

(

1 + σ

2
1 /σ

2
X

) (

1 + σ

2
2 /σ

2
Y

)

The last two formulas indicate that the correlation between V and W is smaller in absolute value

than the correlation between X and Y by an amount determined by the ratio of the measurement

errors to the variance in the population. Table 9.9 gives the effect on ρ

XY

as related to the ratios

of σ

2
1 /σ

2
X

and σ

2
2 /σ

2
Y

.

A 10% error of measurement in the variables X and Y produces a 9% reduction in the

correlation coefficient. The conclusion is that errors of measurement reduce the correlation

between two variables; this phenomenon is called attenuation.

Table 9.9 Effect of Errors of Measurement on

the Correlation between Two Random Variables

σ

2
1

σ

2
X

σ

2
2

σ

2
Y

ρ

V W

σ

2
1

σ

2
X

σ

2
2

σ

2
Y

ρ

V W

0 0 1 ρ

XY

0.20 0.10 0.87ρ

XY

0.05 0.05 0.95ρ

XY

0.20 0.20 0.83ρ

XY

0.10 0.10 0.91ρ

XY

0.30 0.30 0.77ρ

XY
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Table 9.10 Schema for Spearman Rank Correlation

Case X Rank(X) Y Rank(Y ) d = Rank(X) − Rank(Y )

1 x1 R

x1
y1 R

y1
d1 = R

x1
− R

y1

2 x2 R

x2
y2 R

y2
d2 = R

x2
− R

y2

3 x3 R

x3
y3 R

y3
d3 = R

x3
− R

y3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n x

n

R

x

n

y

n

R

y

n

d

n

= R

x

n

− R

y

n

9.3.7 Nonparametric Estimates of Correlation

As indicated earlier, the correlation coefficient is quite sensitive to outliers. There are many

ways of getting estimates of correlation that are more robust; the paper by Devlin et al. [1975]

contains a description of some of these methods. In this section we want to discuss two methods

of testing correlations derived from the ranks of observations.

The procedure leading to the Spearman rank correlation is as follows: Given a set of n

observations on the variables X, Y , the values for X are replaced by their ranks, and similarly,

the values for Y . Ties are simply assigned the average of the ranks associated with the tied

observations. The scheme shown in Table 9.10 illustrates the procedure.

The correlation is then calculated between R

x

and R

y

. In practice, the Spearman rank cor-

relation formula is used:

r

s

= r

R

x

R

y

= 1 −

6
∑

d

2
i

n

3
− n

It can be shown that the usual Pearson product-moment correlation formula reduces to this

formula when the calculations are made on the ranks, if there are no ties. Note: For one or two

ties, the results are virtually the same. It is possible to correct the Spearman formula for ties,

but a simpler procedure is to calculate r

s

by application of the usual product-moment formula

to the ranks. Table A.12 gives percentile points for testing the hypothesis that X and Y are

independent.

Example 9.4. Consider again the data in Table 9.3 dealing with the ATP levels of the oldest

and youngest sons. These data are reproduced in Table 9.11 together with the ranks, the ATP

levels being ranked from lowest to highest.

Note that the oldest sons in families 6 and 13 had the same ATP levels; they would have

been assigned ranks 12 and 13 if the values had been recorded more accurately; consequently,

they are both assigned a rank of 12.5. For this example,

n = 17
∑

d

2
i

= 298.5

r

s

= 1 −

(6)(298.5)

173
− 17

= 1 − 0.3658 = 0.6342

This value compares reasonably well with the value r

xy

= 0.597 calculated on the actual data.

If the usual Pearson product-moment formula is applied to the ranks, the value r

s

= 0.6340 is

obtained. The reader may verify that this is the case. The reason for the slight difference is due

to the tie in values for two of the oldest sons. Table A.12 shows the statistical significance at

the two-sided 0.05 level since r

s

= 0.6342 > 0.490.

The second nonparametric correlation coefficient is the Kendall rank correlation coefficient.

Recall our motivation for the correlation coefficient r . If there is positive association, increase in
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Table 9.11 Rank Correlation Analysis of ATP Levels in

Youngest and Oldest Sons in 17 Families

Youngest Oldest

Family ATP Level Rank ATP Level Rank d

a

(X) (Y )

1 4.18 4 4.81 11 −7

2 5.16 12 4.98 14 −2

3 4.85 9 4.48 6 3

4 3.43 1 4.19 3 −2

5 4.53 5 4.27 4 1

6 5.13 11 4.87 12.5 −1.51

7 4.10 2 4.74 10 −8

8 4.77 7 4.53 7 0

9 4.12 3 3.72 1 2

10 4.65 6 4.62 8 −2

11 6.03 17 5.83 17 0

12 5.94 15 4.40 5 10

13 5.99 16 4.87 12.5 3.5

14 5.43 14 5.44 16 −2

15 5.00 10 4.70 9 1

16 4.82 8 4.14 2 6

17 5.25 13 5.30 15 −2
∑

d = 0
∑

d

2
= 298.5

aRank(X) − rank(Y ).

X will tend to correspond to increase in Y . That is, given two data points (X1, Y1) and (X2, Y2),

if X1 − X2 is positive, Y1 − Y2 is positive. In this case, (X1 − X2)(Y1 − Y2) is usually positive.

If there is negative association, (X1 − X2)(Y1 − Y2) will usually be negative. If X and Y are

independent, the expected value is zero. Kendall’s rank correlation coefficient is based on this

observation.

Definition 9.8. Consider a bivariate sample of size n, (X1, Y1), . . . , (X

n

, Y

n

). For each

pair, count 1 if (X

i

− X

j

)(Y

i

− Y

j

) > 0. Count −1 if (X

i

− X

j

)(Y

i

− Y

j

) < 0. Count zero if

(X

i

− X

j

)(Y

i

− Y

j

) = 0. Let κ be the sum of these n(n − 1)/2 counts. (Note that this κ is not

related to the kappa of Chapter 7.) Kendall’s τ is

τ =

κ

n(n − 1)/2

1. The value of τ is between −1 and 1. Under the null hypothesis of independence, τ is

symmetric about zero.

2. Note that (R

X

i

− R

X

j

)(R

Y

i

− R

Y

j

) has the same sign as (X

i

− X

j

)(Y

i

− Y

j

). That is,

both are positive or both are negative or both are zero. If we calculated τ from the ranks

of the (X

i

, Y

i

), we get the same number. Thus, τ is a nonparametric quantity based on

ranks; it does not depend on the distributions of X and Y .

3. The expected value of τ is

P [(X
i

− X

j

)(Y

i

− Y

j

) > 0] − P [(X
i

− X

j

)(Y

i

− Y

j

) < 0]
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Table 9.12 Data for Example 9.4a

j

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1

3 −1 1

4 1 1 1

5 −1 1 1 1

6 1 1 1 1 1

7 1 1 −1 1 −1 1

8 −1 1 −1 1 1 1 −1

9 1 1 1 −1 1 1 −1 1

10 −1 1 −1 1 1 1 −1 −1 1

11 1 1 1 1 1 1 1 1 1 1

12 −1 −1 −1 1 1 −1 −1 −1 1 −1 1

13 1 −1 1 1 1 0 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 −1 −1

15 −1 1 1 1 1 1 −1 1 1 1 1 −1 1 1

16 −1 1 1 −1 −1 1 −1 −1 1 −1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 −1 −1 1 1 1

aConsider (X

i

− X

j

)(Y

i

− Y

j

): the entries are 1 if this is positive, 0 if this equals 0, and −1 if this is negative.

4. For moderate to large n and no or few ties, an approximate standard normal test statistic is

Z =

κ

√

n(n − 1)(2n + 5)/18

More information where there are ties is given in Note 9.7.

5. If (X

i

−X

j

)(Y

i

−Y

j

) > 0, the pairs are said to be concordant. If (X

i

−X

j

)(Y

i

−Y

j

) < 0,

the pairs are discordant.

Return to the ATP data of Table 9.11. (X1 −X2)(Y1 −Y2) = (4.18−5.16)(4.81−4.98) > 0,

so we count +1. Comparing each of the 17 × 16/2 = 136 pairs gives the +1’s, 0’s and −1’s in

Table 9.12. Adding these numbers, κ = 67, and τ = 67/(17 × 16/2) = 0.493. The asymptotic

Z-value is

Z =

67
√

17 × 16 × 39/18
= 2.67

with p = 0.0076 (two-sided).

9.3.8 Change and Association

Consider two continuous measurements of the same quantity on the same subjects at different

times or under different circumstances. The two times might be before and after some treatment.

They might be for a person taking a drug and not taking a drug. If we want to see if there is

a difference in the means at the two times or under the two circumstances, we have several

statistical tests: the paired t-test, the signed rank test, and the sign test. Note that we have

observed pairs of numbers on each subject.

We now have new methods when pairs of numbers are observed: linear regression and corre-

lation. Which technique should be used in a given circumstance? The first set of techniques looks

for changes between the two measurements. The second set of techniques look for association

and sometimes the ability to predict. The two concepts are different ideas:
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1. Consider two independent length measurements from the same x-rays of a sample of

patients. Presumably there is a “true” length. The measurements should fluctuate about the

true length. Since the true length will fluctuate from patient to patient, the two readings

should be associated, hopefully highly correlated. Since both measurements are of the

same quantity, there should be little or no change. This would be a case where one

expects association, but no change.

2. Consider cardiac measurements on patients before and after a heart transplant. The initial

measurements refer to a failing heart. After heart transplant the measurements refer to the

donor heart. There will be little or no association because the measurements of output,

and so on, refer to different (somewhat randomly paired) hearts.

There are situations where both change and prediction or association are relevant. After

observing a change, one might like to investigate how the new changed values relate to the

original values.

9.4 COMMON MISAPPLICATION OF REGRESSION AND CORRELATION

METHODS

In this section we discuss some of the pitfalls of regression and correlation methods.

9.4.1 Regression to the Mean

Consider Figure 9.15, which has data points with approximately zero correlation or association,

considered as measurements before and after some intervention. On the left we see that the

before and after measurements have no association. The solid line indicates before = 0, and the

dashed line indicates before = after. On the right we plot the change against the value before

intervention. Again, the two lines are before = 0 and before = after (i.e., change = 0), and we

can see how selecting based on the value of the measurement before intervention distorts the

average change.

Cases with low initial values (circles on the graph) tend to have positive changes; those

with high initial values (triangles) have negative changes. If we admitted to our study only the

subjects with low values, it would appear that the intervention led to an increase. In fact, the

change would be due to random variability and the case selection. This phenomenon is called

regression to the mean.

As another example, consider subjects in a quantitative measurement of the amount of rash

due to an allergy. Persons will have considerable variability due to biology and environment.

Over time, in a random fashion, perhaps related to the season, the severity of rash will ebb and

flow. Such people will naturally tend to seek medical help when things are in a particularly

bad state. Following the soliciting of help, biological variability will give improvement with

or without treatment. Thus, if the treatment is evaluated (using before and after values), there

would be a natural drop in the amount of rash simply because medical help was solicited during

particularly bad times. This phenomenon again is regression to the mean. The phenomenon of

regression to the mean is one reason that control groups are used in clinical studies. Some

approaches to addressing it are given by Yanez et al. [1998].

9.4.2 Spurious Correlation

Consider a series of population units, for example, states. Suppose that we wish to relate the

occurrence of death from two distinct causes, for example, cancer at two different sites on the

body. If we take all the states and plot a scatter diagram of the number of deaths from the

two causes, there will be a relationship simply because states with many more people, such as
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Figure 9.15 Regression to the mean in variables with no association: Before vs. after and before vs.

change.

California or New York, will have a large number of deaths, compared to a smaller state such

as Wyoming or New Hampshire.

It is necessary to somehow adjust for or take the population into account. The most natural

thing to do is to take the death rate from certain causes, that is, to divide the number of deaths

by the population of the state. This would appear to be a good solution to the problem. This

introduces another problem, however. If we have two variables, X and Y , which are not related

and we divide them by a third variable, Z, which is random, the two ratios X/Z and Y/Z will

be related. Suppose that Z is the true denominator measured with error. The reason for the

relationship is that when Z is on the low side, since we are dividing by Z, we will increase

both numbers at the same time; when Z is larger than it should be and we divide X and Y

by Z, we decrease both numbers. The introduction of correlation due to computing rates using

the same denominator is called spurious correlation. For further discussion on this, see Neyman

[1952] and Kronmal [1993], who gives a superb, readable review. A preferable way to adjust for

population size is to use the techniques of multiple regression, which is discussed in Chapter 11.

9.4.3 Extrapolation beyond the Range of the Data

For many data sets, including the three of this chapter, the linear relationship does a reasonable

job of summarizing the association between two variables. In other situations, the relationship

may be reasonably well modeled as linear over a part of the range of X but not over the entire

range of X. Suppose, however, that data had been collected on only a small range of X. Then

a linear model might fit the accumulated data quite well. If one takes the regression line and

uses it as an indication of what would happen for data values outside the range covered by the

actual data, trouble can result. To have confidence in such extrapolation, one needs to know

that indeed the linear relationship holds over a broader range than the range associated with the

actual data. Sometimes this assumption is valid, but often, it is quite wrong. There is no way of

knowing in general to what extent extrapolation beyond the data gives problems. Some of the

possibilities are indicated graphically in Figure 9.16. Note that virtually any of these patterns of

curves, when data are observed over a short range, can reasonably be approximated by a linear

function. Over a wider range, a linear approximation is not adequate. But if one does not have

data over the wide range, this cannot be seen.

Sometimes it is necessary to extrapolate beyond the range of the data. For example, there is

substantial concern in Britain over the scale of transmission of “mad cow disease” to humans,

causing variant Creutzfeld–Jakob disease (vCJD). Forecasting the number of future cases is
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Figure 9.16 Danger of extrapolating beyond observed data.

important for public health, and intrinsically, requires extrapolation. A responsible approach to

this type of problem is to consider carefully what models (linear or otherwise) are consistent

with the data available and more important, with other existing knowledge. The result is a range

of predictions that acknowledge both the statistical uncertainty within each model and the (often

much greater) uncertainty about which model to use.

9.4.4 Inferring Causality from Correlation

Because two variables are associated does not necessarily mean that there is any causal con-

nection between them. For example, if one recorded two numbers for each year—the numbers

of hospital beds and the total attendance at major league baseball games—there would be a

positive association because both of these variables have increased as the population increased.

The direct connection is undoubtedly slight at best. Thus, regression and correlation approaches

show observed relationships, which may or may not represent a causal relationship. In general,

the strongest inference for causality comes from experimental data; in this case, factors are

changed by the experimenter to observe change in a response. Regression and correlation from

observational data may be very suggestive but do not definitively establish causal relationships.

9.4.5 Interpretation of the Slope of the Regression Line

During the discussion, we have noted that the regression equation implies that if the predictor

or independent variable X is higher by an amount �X, then on the average, Y is higher by an

amount �Y = b �X. This is sometimes interpreted to mean that if we can modify a situation

such that the X variable is changed by �X, the Y variable will change correspondingly; this

may or may not be the case. For example, if we look at a scatter diagram of adults’ height and

weight, it does not follow if we induce a change in a person’s weight, either by dieting or by

excess calories that the person’s height will change correspondingly. Nevertheless, there is an

association between height and weight. Thus, the particular inference depends on the science

involved. Earlier in this chapter, it was noted that from the relation between VO2 MAX and

the duration of the exercise test that if a person is trained to have an increased duration, the

VO2 MAX will also increase. This particular inference is correct and has been documented by
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serial studies recording both variables. It follows from other data and scientific understanding.

It is not a logical consequence of the observed association.

9.4.6 Outlying Observations

As noted above, outlying observations can have a large effect on the actual regression line (see

Figure 9.7, for example). If one examines these scattergrams or residual plots, the problem should

be recognized. In many situations, however, people look at large numbers of correlations and do

not have the time, the wherewithal, or possibly the knowledge to examine all of the necessary

visual presentations. In such a case, an outlier can be missed and data may be interpreted

inappropriately.

9.4.7 Robust Regression Models

The least squares regression coefficients result from minimizing

n

∑

i=1

g(Y

i

− a − bX

i

)

where the function g(z) = z

2. For large z (large residuals) this term is very large. In the

second column of figures in Figure 9.7 we saw that one outlying value could heavily modify an

otherwise nice fit.

One way to give less importance to large residuals is to choose the function g to put less

weight on outlying values. Many robust regression techniques take this approach. We can choose

g so that for most z, g(z) = z

2, as in the least squares estimates, but for very large |z|, g(z) is

less than z

2, even zero for extreme z! See Draper and Smith [1998, Chap. 25] and Huber [2003,

Chap. 7]. These resistant M–estimators protect against outlying Y but not against outlying X,

for which even more complex estimators are needed. It is also important to note that protection

against outliers is not always desirable. Consider the situation of a managed care organization

trying to determine if exercise reduces medical costs. A resistant regression estimator would

effectively ignore information on occasional very expensive subjects, who may be precisely the

most important in managing costs. See Chapter 8 and Lumley et al. [2002] for more discussion

of these issues.

NOTES

9.1 Origin of the Term Regression

Sir Francis Galton first used the term in 1885. He studied the heights of parents and offspring.

He found (on the average) that children of tall parents were closer to the average height (were

shorter); children of short parents were taller and closer to the average height. The children’s

height regressed to the average.

9.2 Maximum Likelihood Estimation of Regression and Correlation Parameters

For a data set from a continuous probability density, the probability of observing the data is

proportional to the probability density function. It makes sense to estimate the parameters by

choosing parameters to make the probability of the observed data as large as possible. Such esti-

mates are called maximum likelihood estimates (MLEs). Knowing X1, . . . , X

n

in the regression
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problem, the likelihood function for the observed Y1, . . . , Y

n

is (assuming normality)

n

∏

i=1

1
√

2πσ

exp

{

−

1

2σ

2
[Y

i

− (α + βX

i

)]2

}

The maximum likelihood estimates of α and β are the least squares estimates a and b. For the

bivariate normal distribution, the MLE of ρ is r .

9.3 Notes on the Variance of a, Variance of a + bx, and Choice of x for Small Variance
(Experimental Design)

1. The variance of a in the regression equation y = a + bx can be derived as follows:

a = y + bx; it is true that y and b are statistically independent; hence,

var(a) = var(y + bx)

= var(y) + x

2var(b)

=

σ

2
1

n

+ x

2 σ

2
1

[x2]

= σ

2
1

(

1

n

+

x

2

[x2]

)

2. Consider the variance of the estimate of the mean of y at some arbitrary fixed point X:

σ

2
1

(

1

n

+

(x − x)

2

[x2]

)

a. Given a choice of x, the quantity is minimized at x = x.

b. For values of x close to x the contribution to the variance is minimal.

c. The contribution increase as the square of the distance the predictor variable x is from

x.

d. If there was a choice in the selection of the predictor variables, the quantity [x2] =
∑

(x

i

− x)

2 is maximized if the predictor variables are spaced as far apart as possible.

If X can have a range of values, say, Xmin to Xmax, the quantity [x2] is maximized

if half the observations are placed at Xmin and the other half at Xmax. The quantity

(x − x)

2
/[x2] will then be as small as possible. Of course, a price is paid for this

design: it is not possible to check the linearity of the relationship between Y and X.

9.4 Average-Slope Formula for b

An alternative formula for the slope estimate b emphasizes the interpretation as an average

difference in Y for each unit difference in X. Suppose that we had just two points (X1, Y1) and

(X2, Y2). The obvious estimate of the slope comes from simply joining the points with a line:

b21 =

Y2 − Y1

X2 − X1

With more than two points we could calculate all the pairwise slope estimates

b

ij

=

Y

i

− Y

j

X

i

− X

j
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and then take some summary of these as the overall slope. More weight should be give to

estimates b

ij

where X

i

− X

j

is larger, as the expected difference in Y , β(X

i

− X

j

) is larger

relative to the residual error in Y

i

and Y

j

. If we assign weights w

ij

= (X

i

−X

j

)

2, a little algebra

shows that an alternative formula for the least squares estimate b is

b =

∑

i,j

w

ij

b

ij

∑

i,j

w

ij

a weighted average of the pairwise slopes.

This formulation makes it clear that b estimates the average slope of Y with respect to X

under essentially no assumptions. Of course, if the relationship is not at least roughly linear, the

average slope may be of little practical interest, and in any case some further assumptions are

needed for statistical inference.

9.5 Regression Lines through the Origin

Suppose that we want to fit the model Y ∼ N(βX, σ

2
), that is, the line goes through the

origin. In many situations this is an appropriate model (e.g., in relating body weight to height,

it is reasonable to assume that the regression line must go through the origin). However, the

regression relationship may not be linear over the entire range, and often, the interval of interest

is quite far removed from the origin.

Given n pairs of observation (x

i

, y

i

), i = 1, . . . , n, and a regression line through the origin

is desired, it can be shown that the least squares estimate, b, of β is

b =

∑

x

i

y

i

∑

x

2
i

The residual sum of squares is based on the quantity

∑

(y

i

− ŷ

i

)

2
=

∑

(y

i

− bx

i

)

2

and has associated with it, n − 1 degrees of freedom, since only one parameter, β, is estimated.

9.6 Bivariate Normal Density Function

The formula for the density of the bivariate normal distribution is

f

X,Y

(x, y) =

1

2πσ

X

σ

Y

√

1 − p

2
exp

[

−

1

2(1 − ρ

2
)

(Z

2
X

− 2ρZ

X

Z

Y

+ Z

2
Y

)

]

where

Z

X

=

x − µ

X

σ

X

and Z

Y

=

y − µ

Y

σ

Y

The quantities µ

X

, µ

Y

, σ

X

, and σ

Y

are, as usual, the means and standard deviations of X and

Y , respectively. Several characteristics of this distribution can be deduced from this formula:

1. If ρ = 0, the equation becomes

f

X,Y

(x, y) =

1

2πσ

X

σ

Y

exp

[

−

1

2
(Z

2
X

+ Z

2
Y

)

]
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and can be written as

=

1
√

2πσ

X

exp

(

−

1

2
Z

2
X

)

1
√

2πσ

Y

exp

(

−

1

2
Z

2
Y

)

= f

X

(x)f

Y

(y)

Thus in the case of the bivariate normal distribution, ρ = 0 (i.e., the correlation is zero),

implies that the random variables X and Y are statistically independent.

2. Suppose that f

X,Y

(x, y) is fixed at some specified value; this implies that the expression

in the exponent of the density f

X,Y

(x, y) has a fixed value, say, K:

K =

−1

2(1 − ρ

2
)

[

(

x − µ

X

σ

X

)2

− 2ρ

x − µ

X

σ

X

y − µ

Y

σ

Y

+

(

y − µ

Y

σ

Y

)2
]

This is the equation of an ellipse centered at (µ

X

, µ

Y

).

9.7 Ties in Kendall’s Tau

When there are ties in the X

i

and/or Y

i

values for Kendall’s tau, the variability is reduced. The

asymptotic formula needs to be adjusted accordingly [Hollander and Wolfe, 1999]. Let the X

i

values have g distinct values with ties with t

j

tied observations at the j th tied value. Let the

Y

i

values have h distinct tied values with u

k

tied observations at the kth tied value. Under the

null hypothesis of independence between the X and Y values, the variance of K is

var(K) =

n(n − 1)(2n + 5)

18
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j

(t

j

− 1)(2t

j

+ 5)
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−

h

∑
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k

(u

k

− 1)(2u

k

+ 5)
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+

[

∑

g

j=1 t

j

(t

j

− 1)(t

j

− 2)

] [

∑

h

k=1 u

k

(u

k

− 1)(u

k

− 2)

]

9n(n − 1)(n − 2)

+

[

∑

g

j=1 t

j

(t

j

− 1)

] [

∑

h

k=1 u

k

(u

k

− 1)

]

2n(n − 1)

The asymptotic normal Z value is

Z =

K

√

var(K)

Note that the null hypothesis is independence, not τ = 0. If the data are not independent but

nevertheless have τ = 0 (e.g., a U-shaped relationship), the test will be incorrect.

9.8 Weighted Regression Analysis

In certain cases the assumption of homogeneity of variance of the dependent variable, Y , at all

levels of X is not tenable. Suppose that the precision of value Y = y is proportional to a value
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W , the weight. Usually, the precision is the reciprocal of the variance at X

i

. The data can then

be modeled as follows:

Case X Y W

1 x1 y1 w1

2 x2 y2 w2

.

.

.

.

.

.

.

.

.

.

.

.

i x

i

y

i

w

i

.

.

.

.

.

.

.

.

.

.

.

.

n x

n

y

n

w

n

Define
∑

w

i

(x

i

− x

i

)

2
= [wx

2],
∑

w(x

i

− x)(y

i

− y) = [wxy]. It can be shown that the

weighted least squares line has slope and intercept,

b =

[wxy]

[wx

2]
and a = y − bx

where

y =

∑

w

i

y

i

∑

w

i

and x =

∑

w

i

x

i

∑

w

i

It is a weighted least squares solution in that the quantity
∑

w

i

(y

i

− ŷ

i

)

2 is minimized. If all

the weights are the same, say equal to 1, the ordinary least squares solutions are obtained.

9.9 Model-Robust Standard Error Estimates

We showed that Student’s t-test can be formulated as a regression problem. This raises the

question of whether we can also find a regression formulation of the Z-test or the unequal-

variance approximate t-test of Note 5.2. The answer is in the affirmative. Standard error estimates

are available that remove subsidiary assumptions such as equality of variance for a wide range

of statistical estimators. These model-robust or “sandwich” standard errors were discovered

independently in different fields of statistics and are typically attributed to Huber in biostatistics

and to White in econometrics. The Huber–White standard error estimates are available for linear

models in SAS and for nearly all regression models in State. In the case of linear regression

with a binary X variable, they are equivalent to the unequal-variance t-test except that there is

not complete agreement on whether n or n − 1 should be used as a denominator in computing

variances. See Huber [2003] for further discussion.

PROBLEMS

In most of the problems below, you are asked to perform some subset of the following tasks:

(a) Plot the scatter diagram for the data.

(b) Compute for X, Y , [x2], [y2], and [ xy] those quantities not given.



338 ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

(c) Find the regression coefficients a and b.

(d) Place the regression line on the scatter diagram.

(e) Give s

2
y·x

and s

y·x .

(f) Compute the missing predicted values, residuals, and normal deviates for the given

portion of the table.

(g) Plot the residual plot.

(h) Interpret the residual plot.

(i) Plot the residual normal probability plot.

(j) Interpret the residual normal probability plot.

(k) i. Construct the 90% confidence interval for β.

ii. Construct the 95% confidence interval for β.

iii. Construct the 99% confidence interval for β.

iv. Compute the t-statistic for testing β = 0. What can you say about its p-

value?

(l) i. Construct the 90% confidence interval for α.

ii. Construct the 95% confidence interval for α.

iii. Construct the 99% confidence interval for α.

(m) Construct the anova table and use Table A.7 to give information about the p-

value.

(n) Construct the 95% confidence interval for α + βX at the X value(s) specified.

(o) Construct the interval such that one is 95% certain that a new observation at the

specified X value(s) will fall into the interval.

(p) Compute the correlation coefficient r .

(q) i. Construct the 90% confidence interval for ρ.

ii. Construct the 95% confidence interval for ρ.

iii. Construct the 99% confidence interval for ρ.

(r) Test the independence of X and Y using Spearman’s rank correlation coefficient.

Compute the coefficient.

(s) Test the independence of X and Y using Kendall’s rank correlation coefficient.

Compute the value of the coefficient.

(t) Compute Student’s paired t-test for the data, if not given; in any case, inter-

pret.

(u) Compute the signed rank statistic, if not given; in any case, interpret.

The first set of problems, 9.1 to 9.4, come from the exercise data in Example 9.2.

9.1 Suppose that we use duration, X, to predict VO2 MAX, Y . The scatter diagram is shown

in Figure 9.2. X = 647.4, Y = 40.57, [x2] = 673,496.4, [y2] = 3506.2, and [xy] =

43,352.5. Do tasks (c), (e), (f), (h), (k-ii), (k-iv), (l-ii), (m), (n) at x = 650, (p), and (q-ii)

(the residual plot is Figure 9.17). All the data are listed in Table 9.13. What proportion

of the Y variance is explained by X? (In practice, duration is used as a reasonable

approximation to VO2 MAX.)
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Figure 9.17 Residual plot for the data of Example 9.2; VO2 MAX predicted from duration.

Table 9.13 Oxygen Data for Problem 9.1

X Y

̂

Y Y − ̂

Y Normal Deviate

706 41.5 44.5 −3.0 −0.80

732 45.9 46.13 −0.23 −0.06

930 54.5 ? ? ?

900 60.3 ? 3.59 0.96

903 60.5 56.90 3.60 0.97

976 64.6 61.50 3.10 0.83

819 47.4 ? −4.21 −1.13

922 57.0 58.10 −1.10 −0.29

600 40.2 37.82 ? 0.64

540 35.2 ? 1.16 0.31

560 33.8 35.30 −1.50 ?

637 38.8 40.15 −1.35 −0.36

593 38.9 ? 1.52 0.41

719 49.5 45.31 ? 1.23

615 37.1 38.77 −1.67 −0.45

589 32.2 37.13 ? −1.32

478 31.3 30.14 1.16 0.31

620 33.8 39.08 −5.28 ?

710 43.7 44.75 −1.05 −0.28

600 41.7 37.82 3.88 1.04

660 41.0 41.60 −0.60 −0.16

9.2 One expects exercise performance to reduce with age. In this problem, X = age and

Y = duration. X = 47.2, Y = 647.4, [x2] = 4303.2, [y2] = 673, 496.4, and [xy] =

−36, 538.5. Do tasks (c), (e), (k-i), (l-i), (p), and (q-i).
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9.3 To see if maximum heart rate changes with age, the following numbers are found where

X = age and Y = maximum heart rate. X = 47.2, Y = 174.8, [x2] = 4303.2, [y2] =

5608.5, and [xy] = −2915.4. Do tasks (c), (e), (k-iii), (k-iv), (m), (p), and (p-iii).

9.4 The relationship between height and weight was examined in these active healthy males.

X = height, Y = weight, X = 177.7, Y = 77.8, [x2] = 1985.2, [y2] = 3154.5, and

[xy] = 1845.6. Do tasks (c), (e), (m), (p), and (q-i). How do the p-values for the F -

test [in part (m)] and for the transformed Z for r compare? There were two normal

deviates of values 3.44 and 2.95. If these two people were removed from the calculation,

X = 177.5, Y = 76.7, [x2] = 1944.5, [y2] = 2076.12, and [xy] = 1642.5. How much

do the regression coefficients a and b, and correlation coefficient r , change?

Problems 9.5 to 9.8 also refer to the Bruce et al. [1973] paper, as did Example 9.2 and

Problems 9.1 to 9.4. The data for 43 active females are given in Table 9.14.

9.5 The duration and VO2 MAX relationship for the active females is studied in this problem.

X = 514.9, Y = 29.1, [x2] = 251, 260.4, [y2] = 1028.7, and [xy] = 12, 636.5. Do tasks

(c), (e), (f), (g), (h), (i), (j), (k-iv), (m), (p), and (q-ii). Table 9.15 contains the residuals.

If the data are rerun with the sixth case omitted, the values of X, Y , [x2], [y2], and [xy]

are changed to 512.9, 29.2, 243,843.1, 1001.5, and 13,085.6, respectively. Find the new

estimates a, b, and r . By what percent are they changed?

9.6 With X = age and Y = duration, X = 45.1, Y = 514.9, [x2] = 4399.2, [y2] =

251, 260.4, and [xy] = −22, 911.3. For each 10-year increase in age, how much does

duration tend to change? What proportion of the variability in VO2 MAX is accounted

for by age? Do tasks (m) and (q-ii).

9.7 With X = age and Y = maximum heart rate, X = 45.1, Y = 180.6, [x2] = 4399.2, [y2] =

5474.6, and [xy] = −2017.3. Do tasks (c), (e), (k-i), (k-iv), (l-i), (m), (n) at X = 30 and

X = 50, (o) at X = 45, (p), and (q-ii).

9.8 X = height and Y = weight, X = 164.7, Y = 61.3, [x2] = 1667.1, [y2] = 2607.4,

and [xy] = 1006.2. Do tasks (c), (e), (h), (k-iv), (m), and (p). Check that t

2
= F . The

residual plot is shown in Figure 9.18.

For Problems 9.9 to 9.12, additional Bruce et al. [1973] data are used. Table 9.16 presents

the data for 94 sedentary males.

9.9 The duration, X, and VO2 MAX, Y , give X = 577.1, Y = 35.6, [x2] = 1, 425, 990.9,

[y2] = 5245.3, and [xy] = 78, 280.1. Do tasks (c), (e), (j), (k-i), (k-iv), (l-i), (m),

and (p). The normal probability plot is shown in Figure 9.19.

9.10 X = age is related to Y = duration. X = 49.8, Y = 577.1, [x2] = 11, 395.7, [y2] =

1, 425, 990.9, and [xy] = −87, 611.9. Do tasks (c), (e), (m), (p), and (q-ii).

9.11 The prediction of age by maximal heart rate for sedentary males is considered here.

X = 49.8, Y = 18.6, [x2] = 11, 395.7, [y2] = 32, 146.4, and [xy] = −12, 064.1.

Do tasks (c), (m), and (p). Verify (to accuracy given) that (X, Y ) lies on the regres-

sion line.

9.12 The height and weight data give X = 177.3, Y = 79.0, [x2] = 4030.1, [y2] = 7060.0,

and [xy] = 2857.0. Do tasks (c), (e), (k-iv), (n) at X = 160, 170, and 180, and (p).
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Table 9.14 Exercise Data for Healthy Active Females

Duration VO2 MAX Heart Rate Age Height Weight

660 38.1 184 23 177 83

628 38.4 183 21 163 52

637 41.7 200 21 174 61

575 33.5 170 42 160 50

590 28.6 188 34 170 68

600 23.9 190 43 171 68

562 29.6 190 30 172 63

495 27.3 180 49 157 53

540 33.2 184 30 178 63

470 26.6 162 57 161 63

408 23.6 188 58 159 54

387 23.1 170 51 162 55

564 36.6 184 32 165 57

603 35.8 175 42 170 53

420 28.0 180 51 158 47

573 33.8 200 46 161 60

602 33.6 190 37 173 56

430 21.0 170 50 161 62

508 31.2 158 65 165 58

565 31.2 186 40 154 69

464 23.7 166 52 166 67

495 24.5 170 40 160 58

461 30.5 188 52 162 64

540 25.9 190 47 161 72

588 32.7 194 43 164 56

498 26.9 190 48 176 82

483 24.6 190 43 165 61

554 28.8 188 45 166 62

521 25.9 184 52 167 62

436 24.4 170 52 168 62

398 26.3 168 56 162 66

366 23.2 175 56 159 56

439 24.6 156 51 161 61

549 28.8 184 44 154 56

360 19.6 180 56 167 79

566 31.4 184 40 165 56

407 26.6 156 53 157 52

602 30.6 194 52 161 65

488 27.5 190 40 178 64

526 30.9 188 55 162 61

524 33.9 164 39 166 59

562 32.3 185 57 168 68

496 26.9 178 46 156 53

Source: Data from Bruce et al. [1973].

Mehta et al. [1981] studied the effect of the drug dipyridamole on blood platelet function in

eight patients with at least 50% narrowing of one or more coronary arteries. Active platelets

are sequestered in the coronary arteries, giving reduced platelet function in the coronary venous

blood, that is, in blood leaving the heart muscle after delivering oxygen and nutrients. More

active platelets in the coronary arteries can lead to thrombosis, blood clots, and a heart attack.

Drugs lessening the chance of thrombosis may be useful in treatment.
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Table 9.15 Data for Problem 9.5

X Y

̂

Y Residual Normal Deviate

660 38.1 36.35 1.75 0.56

628 38.4 34.74 3.66 1.18

637 41.7 35.19 6.51 2.10

575 33.5 32.08 1.42 0.46

590 28.6 32.83 −4.23 −1.37

600 23.9 ? ? ?

562 29.6 31.42 −1.82 −0.59

495 27.3 28.05 −0.75 −0.24

540 33.2 ? 2.88 0.93

470 26.6 26.80 −0.20 −0.06

408 23.6 23.68 −0.07 −0.02

387 23.1 22.62 0.48 0.15

564 36.6 31.52 5.08 1.64

603 35.8 33.49 2.21 0.75

420 28.0 24.28 3.72 1.20

573 33.8 ? ? 0.59

602 33.6 33.43 0.17 0.05

430 21.0 24.78 −3.78 ?

508 31.2 28.71 2.49 ?

565 31.2 31.57 −0.37 −0.12

464 23.7 26.49 −2.79 −0.90

495 24.5 28.05 −3.55 −1.10

461 30.5 26.34 4.16 1.34

540 25.9 30.32 −4.42 −1.43

588 32.7 ? −0.03 −0.00

498 26.9 ? −1.30 −0.42

483 24.6 27.45 −2.85 −0.92

554 28.8 31.02 −2.22 −0.72

521 25.9 29.36 −3.46 −1.12

436 24.4 25.09 −0.69 −0.22

398 26.3 23.18 3.12 1.01

366 23.2 21.57 1.63 0.53

439 24.6 25.24 −0.64 −0.21

549 28.8 30.77 −1.97 −0.64

360 19.6 21.26 −1.66 −0.54

566 31.4 31.62 −0.22 −0.07

407 26.6 23.63 2.97 0.96

602 30.6 33.43 −2.83 −0.92

488 27.5 27.70 −0.20 −0.06

526 30.9 29.61 1.29 0.42

524 33.9 29.51 4.39 1.42

562 32.3 31.42 0.88 0.28

496 26.9 28.10 −1.20 −0.39

Platelet aggregation measures the extent to which platelets aggregate or cluster together in

the presence of a chemical that stimulates clustering or aggregation. The measure used was the

percent increase in light transmission after an aggregating agent was added to plasma. (The

clustering of the cells make more “holes” in the plasma to let light through.) Two aggregating

agents, adenosine diphosphate (ADP) and epinephrine (EPI), were used in this experiment. A

second measure taken from the blood count was the count of platelets.
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Figure 9.18 Residual plot for Problem 9.8.
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Figure 9.19 Normal probability plot for Problem 9.9.

Blood was sampled from two sites, the aorta (blood being pumped from the heart) and the

coronary sinus (blood returning from nourishing the heart muscle). Control samples as well as

samples after intravenous infusion of 100 mg of dipyridamole were taken. The data are given

in Table 9.17 and 9.18. Problems 9.13 to 9.22 refer to these data.
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Table 9.16 Exercise Data for Sedentary Males

Duration VO2 MAX Heart Rate Age Height Weight

360 24.7 168 40 175 96

770 46.8 190 25 168 68

663 41.2 175 41 187 82

679 31.4 190 37 176 82

780 45.7 200 26 179 73

727 47.6 210 28 185 84

647 38.6 208 26 177 77

675 43.2 200 42 162 72

735 48.2 196 30 188 85

827 50.9 184 21 178 69

760 47.2 184 33 182 87

814 41.8 208 31 182 82

778 42.9 184 29 174 73

590 35.1 174 42 188 93

567 37.6 176 40 184 86

648 47.3 200 40 168 80

730 44.4 204 44 183 78

660 46.7 190 44 176 81

663 41.6 184 40 174 78

589 40.2 200 43 193 92

600 35.8 190 41 176 68

480 30.2 174 44 172 84

630 38.4 164 39 181 72

646 41.3 190 39 187 90

630 31.2 190 42 173 69

630 42.6 190 53 181 53

624 39.4 172 57 172 57

572 35.4 164 58 181 58

622 35.9 190 61 168 61

209 16.0 104 74 171 74

536 29.3 175 57 181 57

602 36.7 175 49 175 49

727 43.0 168 53 172 53

260 15.3 112 75 170 75

622 42.3 175 47 185 47

705 43.7 174 51 169 51

669 40.3 174 65 170 65

425 28.5 170 56 167 56

645 38.0 175 50 177 50

576 30.8 184 48 188 48

605 40.2 156 46 187 46

458 29.5 148 61 185 61

551 32.3 188 49 182 49

607 35.5 179 53 179 53

599 35.3 166 55 182 55

453 32.3 160 69 182 69

337 23.8 204 68 176 68

663 41.4 182 47 171 47

603 39.0 180 48 180 48

610 38.6 190 55 180 55

472 31.5 175 53 192 85
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Table 9.16 (continued)

Duration VO2 MAX Heart Rate Age Height Weight

458 25.7 166 58 178 81
446 24.6 160 50 178 77
532 30.0 160 51 175 82
656 42.0 186 52 176 73
583 34.4 175 52 172 77
595 34.9 180 48 179 78
552 35.5 156 45 167 89
675 38.7 162 58 183 85
622 38.4 186 45 175 76
591 32.4 170 62 175 79
582 33.6 156 63 171 69
518 30.0 166 57 174 75
444 28.9 170 48 180 105
473 29.5 175 52 177 77
490 30.4 168 59 173 74
596 34.4 192 46 190 92
529 37.0 175 54 168 82
652 43.4 156 54 180 85
714 46.0 175 46 174 77
646 43.0 184 45 178 80
551 29.3 160 54 172 86
601 36.8 184 48 169 82
579 35.0 170 54 180 80
325 21.9 140 61 175 76
392 25.4 168 60 180 89
659 40.7 178 45 181 81
631 33.8 184 48 173 74
405 28.8 170 63 168 79
560 35.8 180 60 181 82
615 40.3 190 47 178 78
580 33.4 180 66 173 68
530 39.0 174 47 169 64
495 23.2 145 69 171 84
330 20.5 138 60 185 87
600 36.4 200 50 182 81
443 23.5 166 50 175 84
508 29.7 188 61 188 80
596 43.2 168 57 174 66
461 30.4 170 47 171 65
583 34.7 164 46 187 83
620 37.1 174 61 165 71
620 41.4 190 45 171 79
180 19.8 125 71 185 80

Source: Data from Bruce et al. [1973]

9.13 Relate the control platelet counts in the aorta, X, and coronary sinus, Y . Do tasks (a),
(b), (c), (d), (e), compute the (X, Y , ̂

Y , residual, normal deviate) table, (g), (h), (i), (j),
(k-i), (k-iv), (l), (m), (p), (r), and (s).

9.14 Look at the association between the platelet counts in the aorta, X, and coronary sinus,
Y , when being treated with dipyridamole. Do tasks (a), (b), (c), (d), (m), (r), and (s).
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Table 9.17 Platelet Aggregation Data for Problem 9.12

Platelet Aggregation (%)

Control Dipyridamole

Aorta Coronary Sinus Aorta Coronary Sinus

Case EPI ADP EPI ADP EPI ADP EPI ADP

1 87 75 89 23 89 75 89 35

2 70 23 42 14 45 16 47 18

3 96 75 96 31 96 83 96 84

4 65 51 70 33 70 55 70 57

5 85 16 79 4 69 13 53 22

6 98 83 98 80 83 70 94 88

7 77 14 97 13 84 35 73 67

8 98 50 99 40 85 50 91 48

Mean 85 48 84 30 78 50 77 52

±SEM 5 10 7 8 6 9 7 9

Source: Data from Mehta et al. [1981].

9.15 Examine the control platelet aggregation percent for EPI, X, and ADP, Y , in the aorta.

Do tasks (a), (b), (c), (d), (e), and (m).

9.16 Examine the association between the EPI, X, and ADP, Y , in the control situation at the

coronary sinus. Do tasks (a), (b), (c), (d), (e), (m), (p), (r), and (s).

9.17 Interpret at the 5% significance level. Look at the platelet aggregation % for epinephrine

in the aorta and coronary sinus under the control data. Do tasks (m), (p) and (t), (u).

Explain in words how there can be association but no (statistical) difference between the

values at the two locations.

9.18 Under dipyridamole treatment, study the platelet aggregation percent for EPI in the aorta,

X, and coronary sinus, Y . Do tasks (a), (b), (c), (d), (e), (g), (h), (m), (p), (r), (s), (t),

and (u).

9.19 The control aggregation percent for ADP is compared in the aorta, X, and coronary sinus,

Y , in this problem. Do tasks (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), (m), (p), and (q-ii).

9.20 Under dipyridamole, the aggregation percent for ADP in the aorta, X, and coronary

sinus, Y , is studied here. Do tasks (b), (c), (e), (k-ii), (k-iv), (l-ii), (m), (p), (q-ii), (r),

and (s).

9.21 The aortic platelet counts under the control, X, and dipyridamole, Y , are compared in

this problem. Do tasks (b), (c), (e), (m), (p), (q-ii), (t), and (u). Do the platelet counts

differ under the two treatments? (Use α = 0.05.) Are the platelet counts associated under

the two treatments? (α = 0.05.)

9.22 The coronary sinus ADP aggregation percent was studied during the control period, the

X variable, and on dipyridamole, the Y variable. Do tasks (b), (c), (d), (e), (m), and

(t). At the 5% significance level, is there a change between the treatment and control

periods? Can you show association between the two values? How do you reconcile these

findings?
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Table 9.18 Platelet Count Data for Problem 9.12

Platelet Counts (×1000/mm

3
)

a

Control Dipyridamole

Case Aorta Coronary Sinus Aorta Coronary Sinus

1 390 355 455 445

2 240 190 248 205

3 135 125 150 145

4 305 268 285 290

5 255 195 230 220

6 283 307 291 312

7 435 350 457 374

8 290 250 301 284

Mean 292 255 302 284

±SEM 32 29 38 34

Source: Data from Mehta et al. [1981].

Problems 9.23 to 9.29 deal with the data in Tables 9.19 and 9.20. Jensen et al. [1980] studied

19 patients with coronary artery disease. Thirteen had a prior myocardial infarction (heart attack);

three had coronary bypass surgery. The patients were evaluated before and after three months

or more on a structured supervised training program.

The cardiac performance was evaluated using radionuclide studies while the patients were at

rest and also exercising with bicycle pedals (while lying supine). Variables measured included

(1) ejection fraction (EF), the fraction of the blood in the left ventricle ejected during a heart

beat, (2) heart rate (HR) at maximum exercise in beats per minute, (3) systolic blood pressure

(SBP) in millimeters of mercury, (4) the rate pressure product (RPP) maximum heart rate times

the maximum systolic blood pressure divided by 100, and (5) the estimated maximum oxygen

consumption in cubic centimeters of oxygen per kilogram of body weight per minute.

9.23 The resting ejection fraction is measured before, X, and after, Y , training. X = 0.574, Y =

0.553, [x2] = 0.29886, [y2] = 0.32541, [xy] = 0.23385, and paired t = −0.984. Do

tasks (c), (e), (k-iv), (m), and (p). Is there a change in resting ejection fraction demon-

strated with six months of exercise training? Are the two ejection fractions associated?

9.24 The ejection fraction at maximal exercise was measured before, X, and after, Y , training.

X = 0.556, Y = 0.564, [x2] = 0.30284, [y2] = 0.46706, and [xy] = 0.2809. Is there

association (α = 0.05) between the two ejection fractions? If yes, do tasks (c), (k-iii),

(l-iii), (p), and (q-ii). Is there a change (α = 0.05) between the two ejection fractions?

If yes, find a 95% confidence interval for the average difference.

9.25 The maximum systolic blood pressure was measured before, X, and after, Y , training.

X = 173.8, Y = 184.2, [x2] = 11, 488.5, [y2] = 10, 458.5, [xy] = 7419.5, and paired

t = 2.263. Do tasks (a), (b), (c), (d), (e), (m), (p), and (t). Does the exercise training

produce a change? How much? Can we predict individually the maximum SBP after

training from that before? How much of the variability in maximum SBP after exercise

is accounted for by knowing the value before exercise?

9.26 The before, X, and after, Y , rate pressure product give X = 223.0, Y = 245.7, [x2] =

58, 476, [y2] = 85, 038, [xy] = 54, 465, and paired t = 2.256 (Table 9.21). Do tasks (c),

(e), (f), (g), (h), and (m). Find the large-sample p-value for Kendall’s tau for association.
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Table 9.19 Resting and Maximal Ejection Fraction

Measured by Radionuclide Ventriculography, and

Maximal Heart Rate

Resting EF Maximal EF Maximal HR

Case Pre Post Pre Post Pre Post

1 0.39 0.48 0.46 0.48 110 119

2 0.57 0.49 0.51 0.57 120 125

3 0.77 0.63 0.70 0.82 108 105

4 0.48 0.50 0.51 0.51 85 88

5 0.55 0.46 0.45 0.55 107 103

6 0.60 0.50 0.52 0.54 125 115

7 0.63 0.61 0.75 0.68 170 166

8 0.73 0.61 0.53 0.71 160 142

9 0.70 0.68 0.80 0.79 125 114

10 0.66 0.68 0.54 0.43 131 150

11 0.40 0.31 0.42 0.30 135 174

12 0.48 0.46 0.48 0.30 97 94

13 0.63 0.78 0.60 0.75 135 132

14 0.41 0.37 0.41 0.44 127 162

15 0.75 0.54 0.76 0.57 126 148

16 0.58 0.64 0.62 0.72 102 112

17 0.50 0.58 0.54 0.65 145 140

18 0.71 0.81 0.65 0.60 152 145

19 0.37 0.38 0.32 0.31 155 170

Mean 0.57 0.55 0.56 0.56 127 132

±SD 0.13 0.13 0.13 0.16 23 26

Table 9.20 Systolic Blood Pressure, Rate Pressure

Product and Estimate VO2 MAX before (Pre) and

after (Post) Training

Est. VO2 MAX

Maximal SBP Maximal RPP (cm3
/kg · min)

Case Pre Post Pre Post Pre Post

1 148 156 163 186 24 30

2 180 196 216 245 28 44

3 185 200 200 210 28 28

4 150 148 128 130 34 38

5 150 156 161 161 20 28

6 164 172 205 198 30 36

7 180 210 306 349 64 54

8 182 176 291 250 44 40

9 186 170 233 194 30 28

10 220 230 288 345 30 30

11 188 205 254 357 28 44

12 120 165 116 155 22 20

13 175 160 236 211 20 36

14 190 180 241 292 36 38

15 140 170 176 252 36 44

16 200 230 204 258 28 36

17 215 185 312 259 44 44

18 165 190 251 276 28 34

19 165 200 256 340 44 52

Mean 174 184 223 246 31 37

±SD 25 24 57 69 8 9
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Table 9.21 Blood Pressure Data for Problem 9.26

Maximal SBP

Pre Post

X Y

̂

Y Y − ̂

Y Normal Deviate

163 186 189.90 −3.80 −0.08

216 245 239.16 ? ?

200 210 224.26 −14.26 −0.32

128 130 157.20 −27.20 −0.61

161 161 ? −26.94 ?

205 198 228.92 −30.92 −0.69

306 349 322.99 26.01 ?

291 250 309.02 −59.02 −1.31

233 194 255.00 −61.00 −1.36

288 345 306.22 38.77 0.86

254 357 ? ? ?

116 155 146.02 8.98 0.20

236 211 257.79 −46.79 −1.04

241 292 262.45 29.55 0.66

176 252 201.91 50.09 1.12

204 258 227.99 30.01 0.67

312 259 328.58 −69.58 −1.55

251 276 271.76 4.24 0.09

256 340 276.42 63.58 1.42

9.27 The maximum oxygen consumption, VO2 MAX, is measured before, X, and after, Y .

Here X = 32.53, Y = 37.05, [x2] = 2030.7, [y2] = 1362.9, [xy] = 54465, and paired

t = 2.811. Do tasks (c), (k-ii), (m), (n), at x = 30, 35, and 40, (p), (q-ii), and (t).

9.28 The ejection fractions at rest, X, and at maximum exercise, Y , before training is used in

this problem. X = 0.574, Y = 0.556, [x2] = 0.29886, [y2] = 0.30284, [xy] = 0.24379,

and paired t = −0.980. Analyze these data, including a scatter diagram, and write a

short paragraph describing the change and/or association seen.

9.29 The ejection fractions at rest, X, and after exercises, Y , for the subjects after training:

(1) are associated, (2) do not change on the average, (3) explain about 52% of the

variability in each other. Justify statements (1)–(3). X = 0.553, Y = 0.564, [x2] =

0.32541, [y2] = 0.4671, [xy] = 0.28014, and paired t = 0.424.

Problems 9.30 to 9.33 refer to the following study. Boucher et al. [1981] studied patients

before and after surgery for isolated aortic regurgitation and isolated mitral regurgitation. The

aortic valve is in the heart valve between the left ventricle, where blood is pumped from the heart,

and the aorta, the large artery beginning the arterial system. When the valve is not functioning

and closing properly, some of the blood pumped from the heart returns (or regurgitates) as the

heart relaxes before its next pumping action. To compensate for this, the heart volume increases

to pump more blood out (since some of it returns). To correct for this, open heart surgery

is performed and an artificial valve is sewn into the heart. Data on 20 patients with aortic

regurgitation and corrective surgery are given in Tables 9.22 and 9.23.

“NYHA Class” measures the amount of impairment in daily activities that the patient suffers:

I is least impairment, II is mild impairment, III is moderate impairment, and IV is severe

impairment; HR, heart rate; SBP, the systolic (pumping or maximum) blood pressure; EF, the

ejection fraction, the fraction of blood in the left ventricle pumped out during a beat; EDVI,



350 ASSOCIATION AND PREDICTION: LINEAR MODELS WITH ONE PREDICTOR VARIABLE

Table 9.22 Preoperative Data for 20 Patients with Aortic Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 33M I 75 150 0.54 225 121 104

2 36M I 110 150 0.64 82 52 30

3 37M I 75 140 0.50 267 134 134

4 38M I 70 150 0.41 225 92 133

5 38M I 68 215 0.53 186 99 87

6 54M I 76 160 0.56 116 65 51

7 56F I 60 140 0.81 79 64 15

8 70M I 70 160 0.67 85 37 28

9 22M II 68 140 0.57 132 95 57

10 28F II 75 180 0.58 141 82 59

11 40M II 65 110 0.62 190 118 72

12 48F II 70 120 0.36 232 84 148

13 42F III 70 120 0.64 142 91 51

14 57M III 85 150 0.60 179 107 30

15 61M III 66 140 0.56 214 120 94

16 64M III 54 150 0.60 145 87 58

17 61M IV 110 126 0.55 83 46 37

18 62M IV 75 132 0.56 119 67 52

19 64M IV 80 120 0.39 226 88 138

20 65M IV 80 110 0.29 195 57 138

Mean 49 75 143 0.55 162 85 77

±SD 14 14 25 0.12 60 26 43

Table 9.23 Postoperative Data for 20 Patients with Aortic Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 33M I 80 115 0.38 113 43 43

2 36M I 100 125 0.58 56 32 24

3 37M I 100 130 0.27 93 25 68

4 38M I 85 110 0.17 160 27 133

5 38M I 94 130 0.47 111 52 59

6 54M I 74 110 0.50 83 42 42

7 56F I 85 120 0.56 59 33 26

8 70M I 85 130 0.59 68 40 28

9 22M II 120 136 0.33 119 39 80

10 28F II 92 160 0.32 71 23 48

11 40M II 85 110 0.47 70 33 37

12 48F II 84 120 0.24 149 36 113

13 42F III 84 100 0.63 55 35 20

14 57M III 86 135 0.33 91 72 61

15 61M III 100 138 0.34 92 31 61

16 64M III 60 130 0.30 118 35 83

17 61M IV 88 130 0.62 63 39 24

18 62M IV 75 126 0.29 100 29 71

19 64M IV 78 110 0.26 198 52 147

20 65M IV 75 90 0.26 176 46 130

Mean 49 87 123 0.40 102 38 65

±SD 14 13 15 0.14 41 11 39
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Table 9.24 Preoperative Data for 20 Patients with Mitral Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 23M II 75 95 0.69 71 49 22

2 31M II 70 150 0.77 184 142 42

3 40F II 86 90 0.68 84 57 30

4 47M II 120 150 0.51 135 67 66

5 54F II 85 120 0.73 127 93 34

6 57M II 80 130 0.74 149 110 39

7 61M II 55 120 0.67 196 131 65

8 37M III 72 120 0.70 214 150 64

9 52M III 108 105 0.66 126 83 43

10 52F III 80 115 0.52 167 70 97

11 52M III 80 105 0.76 130 99 31

12 56M III 80 115 0.60 136 82 54

13 58F III 65 110 0.62 146 91 56

14 59M III 102 90 0.63 82 52 30

15 66M III 60 100 0.62 76 47 29

16 67F III 75 140 0.71 94 67 27

17 71F III 88 140 0.65 111 72 39

18 55M IV 80 125 0.66 136 90 46

19 59F IV 115 130 0.72 96 69 27

20 60M IV 64 140 0.60 161 97 64

Mean 53 81 121 0.66 131 86 45

±SD 12 17 17 0.09 40 30 19

Table 9.25 Postoperative Data for 20 Patients with Mitral Regurgitation

Age (yr) NYHA HR SBP EDVI SVI ESVI

Case and Gender Class (beats/min) (mmHG) EF (mL/m2) (mL/m2) (mL/m2)

1 23M II 90 100 0.60 67 40 27

2 31M II 95 110 0.64 64 41 23

3 40F II 80 110 0.77 59 45 14

4 47M II 90 120 0.36 96 35 61

5 54F II 100 110 0.41 59 24 35

6 57M II 75 115 0.54 71 38 33

7 61M II 140 120 0.41 165 68 97

8 37M III 95 120 0.25 84 21 63

9 52M III 100 125 0.43 67 29 38

10 52F III 90 90 0.44 124 55 69

11 52M III 98 116 0.55 68 37 31

12 56M III 61 108 0.56 112 63 49

13 58F III 88 120 0.50 76 38 38

14 59M III 100 100 0.48 40 19 21

15 66M III 85 124 0.51 31 16 15

16 67F III 84 120 0.39 81 32 49

17 71F III 100 100 0.44 76 33 43

18 55M IV 108 124 0.43 63 27 36

19 59F IV 100 110 0.49 62 30 32

20 60M IV 90 110 0.36 93 34 60

Mean 53 93 113 0.48 78 36 42

±SD 12 15 9 0.11 30 14 21
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the volume of the left ventricle after the heart relaxes (adjusted for physical size, to divide by

an estimate of the patient’s body surface area (BSA); SVI, the volume of the left ventricle after

the blood is pumped out, adjusted for BSA; ESVI, the volume of the left ventricle pumped

out during one cycle, adjusted for BSA; ESVI = EDVI − SVI. These values were measured

before and after valve replacement surgery. The patients in this study were selected to have left

ventricular volume overload; that is, expanded EDVI.

Another group of 20 patients with mitral valve disease and left ventricular volume overload

were studied. The mitral valve is the valve allowing oxygenated blood from the lungs into the left

ventricle for pumping to the body. Mitral regurgitation allows blood to be pumped “backward”

and to be mixed with “new” blood coming from the lungs. The data for these patients are given

in Tables 9.24 and 9.25.

9.30 (a) The preoperative, X, and postoperative, Y , ejection fraction in the patients with

aortic valve replacement gave X = 0.549, Y = 0.396, [x2] = 0.26158, [y2] =

0.39170, [xy] = 0.21981, and paired t = −6.474. Do tasks (a), (c), (d), (e), (m),

(p), and (t). Is there a change? Are ejection fractions before and after surgery

related?

(b) The mitral valve cases had X = 0.662, Y = 0.478, [x2] = 0.09592, [y2] =

0.24812, [xy] = 0.04458, and paired t = −7.105. Perform the same tasks as

in part (a).

(c) When the emphasis is on the change, rather than possible association and predictive

value, a figure like Figure 9.20 may be preferred to a scatter diagram. Plot the scatter

diagram for the aortic regurgitation data and comment on the relative merits of the

two graphics.
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Figure 9.20 Figure for Problem 9.30(c). Individual values for ejection fraction before (pre-OP) and early

after (post-OP) surgery are plotted; preoperatively, only four patients with aortic regurgitation had an ejection

fraction below normal. After operation, 13 patients with aortic regurgitation and 9 with mitral regurgitation

had an ejection fraction below normal. The lower limit of normal (0.50) is represented by a dashed line.

(From Boucher et al. [1981].).
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Table 9.26 Data for Problem 9.31

X Y

̂

Y Residuals Normal Deviate

22 67 51.26 15.74 0.75

42 64 74.18 −10.18 −0.48

30 59 60.42 −1.42 −0.06

66 96 101.68 −5.68 −0.27

34 59 65.01 −6.01 −0.28

39 71 70.74 0.26 0.01

65 165 ? ? ?

64 84 99.39 15.29 −0.73

43 67 75.32 ? −0.39

97 124 137.20 −13.20 ?

31 68 61.57 ? ?

54 112 87.93 24.07 1.14

56 76 ? ? −0.67

30 40 ? −20.42 −0.97

29 31 ? ? ?

27 81 56.99 24.01 1.14

39 76 70.74 5.26 0.25

46 63 78.76 −15.76 −0.75

27 62 56.99 5.01 0.24

64 93 99.39 −6.39 −0.30

9.31 (a) For the mitral valve cases, we use the end systolic volume index (ESVI) before

surgery to try to predict the end diastolic volume index (EDVI) after surgery.

X = 45.25, Y = 77.9, [x2] = 6753.8, [y2] = 16, 885.5, and [xy] = 7739.5. Do

tasks (c), (d), (e), (f), (h), (j), (k-iv), (m), and (p). Data are given in Table 9.26.

The residual plot and normal probability plot are given in Figures 9.21 and 9.22.

(b) If subject 7 is omitted, X = 44.2, Y = 73.3, [x2] = 6343.2, [y2] = 8900.1, and

[xy] = 5928.7. Do tasks (c), (m), and (p). What are the changes in tasks (a), (b),

and (r) from part (a)?

(c) For the aortic cases; X = 75.8, Y = 102.3, [x2] = 35,307.2, [y2] = 32,513.8,

[xy] = 27, 076. Do tasks (c), (k-iv), (p), and (q-ii).

9.32 We want to investigate the predictive value of the preoperative ESVI to predict the postop-

erative ejection fraction, EF. For each part, do tasks (a), (c), (d), (k-i), (k-iv), (m), and (p).

(a) The aortic cases have X = 75.8, Y = 0.396, [x2] = 35307.2, [y2] = 0.39170, and

[xy] = 84.338.

(b) The mitral cases have X = 45.3, Y = 0.478, [x2] = 6753.8, [y2] = 0.24812, and

[xy] = −18.610.

9.33 Investigate the relationship between the preoperative heart rate and the postoperative

heart rate. If there are outliers, eliminate (their) effect. Specifically address these ques-

tions: (1) Is there an overall change from preop to postop HR? (2) Are the preop and

postop HRs associated? If there is an association, summarize it (Tables 9.27 and 9.28).

(a) For the aortic cases,
∑

X = 1502,

∑

Y = 17.30,

∑

X

2
= 116, 446,

∑

Y

2
=

152, 662, and
∑

XY = 130, 556. Data are given in Table 9.27.

(b) For the mitral cases:
∑

X = 1640,

∑

Y = 1869,

∑

X

2
= 140, 338,

∑

Y

2
=

179, 089, and
∑

XY = 152, 860. Data are given in Table 9.28.
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Figure 9.21 Residual plot for Problem 9.31(a).
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Figure 9.22 Normal probability plot for Problem 9.31(a).

9.34 The Web appendix to this chapter contains county-by-county electoral data for the state

of Florida for the 2000 elections for president and for governor of Florida. The major

Democratic and Republican parties each had a candidate for both positions, and there

were two minor party candidates for president and one for governor. In Palm Beach

County a poorly designed ballot was used, and it was suggested that this led to some

voters who intended to vote for Gore in fact voting for Buchanan.
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Table 9.27 Data for Problem 9.33(a)

X Y

̂

Y Residuals Normal Deviate

75 80 86.48 −6.48 −0.51

110 100 92.56 7.44 0.59

75 100 86.48 13.52 1.06

70 85 85.61 0.61 −0.04

68 94 85.27 8.73 0.69

76 74 86.66 −12.66 −1.00

60 85 83.88 1.12 0.08

70 85 85.61 0.61 −0.04

68 120 85.27 34.73 2.73

75 92 86.48 5.52 0.43

65 85 84.75 0.25 0.02

70 84 85.61 −1.61 −0.13

70 84 85.61 −1.61 −0.13

85 86 88.22 −2.22 −0.17

66 100 84.92 15.08 1.19

54 60 82.84 −22.84 −1.80

110 88 92.56 −4.56 0.36

75 75 86.48 −11.48 −0.90

80 78 87.35 −9.35 −0.74

80 75 87.35 −12.35 −0.97

Table 9.28 Data for Problem 9.33(b)

X Y

̂

Y Residuals Normal Deviate

75 90 93.93 −3.93 −0.25

70 95 94.27 0.73 0.04

86 80 93.18 −13.18 −0.84

120 90 90.87 −0.87 −0.05

85 100 93.25 6.75 0.43

80 75 93.59 −18.59 −1.19

55 140 95.28 44.72 2.86

72 95 94.13 0.87 0.05

108 100 91.68 8.32 0.53

80 90 93.59 −3.59 −0.23

80 98 93.59 4.41 0.28

80 61 93.95 −32.59 −2.08

65 88 94.61 −6.61 0.42

102 100 92.09 7.91 0.51

60 85 94.94 −9.94 −0.64

75 84 93.93 −9.93 −0.63

88 100 93.04 6.96 0.44

80 108 93.59 14.41 0.92

115 100 91.21 8.79 0.56

64 90 94.67 −4.67 −0.30

(a) Using simple linear regression and graphs, examine whether the data support this

claim.

(b) Read the analyses linked from the Web appendix and critically evaluate their claims.
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C H A P T E R 10

Analysis of Variance

10.1 INTRODUCTION

The phrase analysis of variance was coined by Fisher [1950], who defined it as “the separation

of variance ascribable to one group of causes from the variance ascribable to other groups.”

Another way of stating this is to consider it as a partitioning of total variance into component

parts. One illustration of this procedure is contained in Chapter 9, where the total variability

of the dependent variable was partitioned into two components: one associated with regression

and the other associated with (residual) variation about the regression line. Analysis of variance

models are a special class of linear models.

Definition 10.1. An analysis of variance model is a linear regression model in which the

predictor variables are classification variables. The categories of a variable are called the levels

of the variable.

The meaning of this definition will become clearer as you read this chapter.

The topics of analysis of variance and design of experiments are closely related, which has

been evident in earlier chapters. For example, use of a paired t-test implies that the data are

paired and thus may indicate a certain type of experiment. Similarly, a partitioning of total

variation in a regression situation implies that two variables measured are linearly related. A

general principle is involved: The analysis of a set of data should be appropriate for the design.

We indicate the close relationship between design and analysis throughout this chapter.

The chapter begins with the one-way analysis of variance. Total variability is partitioned

into a variance between groups and a variance within groups. The groups could consist of

different treatments or different classifications. In Section 10.2 we develop the construction of

an analysis of variance from group means and standard deviations, and consider the analysis

of variance using ranks. In Section 10.3 we discuss the two-way analysis of variance: A spe-

cial two-way analysis involving randomized blocks and the corresponding rank analysis are

discussed, and then two kinds of classification variables (random and fixed) are covered. Spe-

cial but common designs are presented in Sections 10.4 and 10.5. Finally, in Section 10.6 we

discuss the testing of the assumptions of the analysis of variance, including ways of trans-

forming the data to make the assumptions valid. Notes and specialized topics conclude our

discussion.

Biostatistics: A Methodology for the Health Sciences, Second Edition, by Gerald van Belle, Lloyd D. Fisher,
Patrick J. Heagerty, and Thomas S. Lumley
ISBN 0-471-03185-2 Copyright  2004 John Wiley & Sons, Inc.
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A few comments about notation and computations: The formulas for the analysis of variance

look formidable but follow a logical pattern. The following rules are followed or held (we

remind you on occasion):

1. Indices for groups follow a mnemonic pattern. For example, the subscript i runs from

1, . . . , I ; the subscript j from 1, . . . , J ; k from 1, . . . , K , and so on.

2. Sums of values of the random variables are indicated by replacing the subscript by a dot.

For example,

Y

i· =

J

∑

j=1

Y

ij

, Y·jk

=

I

∑

i=1

Y

ijk

, Y·j· =

I

∑

i=1

K

∑

k=1

Y

ijk

3. It is expensive to print subscripts and superscripts on
∑

signs. A very simple rule is that

summations are always over the given subscripts. For example,

∑

Y

i

=

I

∑

i=1

Y

i

,

∑

Y

ijk

=

I

∑

i=1

J

∑

j=1

K

∑

k=1

Y

ijk

We may write expressions initially with the subscripts and superscripts, but after the patterns

have been established, we omit them. See Table 10.6 for an example.

4. The symbol n

ij

denotes the number of Y

ijk

observations, and so on. The total sample size

is denoted by n rather than n

...

; it will be obvious from the context that the total sample size is

meant.

5. The means are indicated by Y

ij·, Y ·j·, and so on. The number of observations associated

with a mean is always n with the same subscript (e.g., Y

ij· = Y

ij·/n

ij

or Y ·j· = Y·j·/n·j ).

6. The analysis of variance is an analysis of variability associated with a single obser-

vation. This implies that sums of squares of subtotals or totals must always be divided by

the number of observations making up the total; for example,
∑

Y

2
i·
/n

i

if Y

i· is the sum

of n

i

observations. The rule is then that the divisor is always the number of observations

represented by the dotted subscripts. Another example: Y

2
··
/n··, since Y·· is the sum of n··

observations.

7. Similar to rules 5 and 6, a sum of squares involving means always have as weighting

factor the number of observations on which the mean is based. For example,

I

∑

i=1

n

i

(Y

i· − Y ··)
2

because the mean Y

i· is based on n

i

observations.

8. The anova models are best expressed in terms of means and deviations from means.

The computations are best carried out in terms of totals to avoid unnecessary calculations and

prevent rounding error. (This is similar to the definition and calculation of the sample standard

deviation.) For example,

∑

n

i

(Y

i· − Y ··)
2

=

∑

Y

2
i·

n

i

−

Y

2
··

n··

See Problem 10.25.
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10.2 ONE-WAY ANALYSIS OF VARIANCE

10.2.1 Motivating Example

Example 10.1. To motivate the one-way analysis of variance, we return to the data of Zelazo

et al. [1972], which deal with the age at which children first walked (see Chapter 5). The

experiment involved reinforcement of the walking and placing reflexes in newborns. The walking

and placing reflexes disappear by about 8 weeks of age. In this experiment, newborn children

were randomly assigned to one of four treatment groups: active exercise; passive exercise; no

exercise; or an 8-week control group. Infants in the active-exercise group received walking

and placing stimulation four times a day for eight weeks, infants in the passive-exercise group

received an equal amount of gross motor stimulation, infants in the no-exercise group were

tested along with the first two groups at weekly intervals, and the eight-week control group

consisted of infants observed only at 8 weeks of age to control for possible effects of repeated

examination. The response variable was age (in months) at which the infant first walked. The

data are presented in Table 10.1. For purposes of this example we have added the mean of the

fourth group to that group to make the sample sizes equal; this will not change the mean of the

fourth group. Equal sample sizes are not required for the one-way analysis of variance.

Assume that the age at which an infant first walks alone is normally distributed with variance

σ

2. For the four treatment groups, let the means be µ1, µ2, µ3, and µ4. Since σ

2 is unknown,

we could calculate the sample variance for each of the four groups and come up with a pooled

estimate, s

2
p

, of σ

2. For this example, since the sample sizes per group are assumed to be

equal, this is

s

2
p

=

1

4
(2.0938 + 3.5938 + 2.3104 + 0.7400) = 2.1845

But we have one more estimate of σ

2. If the four treatments do not differ (H0 : µ1 = µ2 =

µ3 = µ4 = µ), the sample means are normally distributed with variance σ

2
/6. The quantity

σ

2
/6 can be estimated by s

2

Y

, the variance of the sample means. For this example it is

s

2

Y

= 0.87439

Table 10.1 Distribution of Ages (in Months) at which Infants

First Walked Alone

Active Passive No-Exercise Eight-Week

Group Group Group Control Group

9.00 11.00 11.50 13.25

9.50 10.00 12.00 11.50

9.75 10.00 9.00 12.00

10.00 11.75 11.50 13.50

13.00 10.50 13.25 11.50

9.50 15.00 13.00 12.35a

Mean 10.125 11.375 11.708 12.350

Variance 2.0938 3.5938 2.3104 0.7400

Y

i· 60.75 68.25 70.25 74.10

Source: Data from Zelazo et al. [1972].
aThis observation is missing from the original data set. For purposes of this
illustration, it is estimated by the sample mean. See the text for further dis-
cussion.
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Hence, 6s

2

Y

= 5.2463 is also an estimate of σ

2. Under the null hypothesis, 6s

2

Y

/s

2
p

will

follow an F -distribution. How many degrees of freedom are involved? The quantity s

2

Y

has

three degrees of freedom associated with it (since it is a variance based on four observations).

The quantity s

2
p

has 20 degrees of freedom (since each of its four component variances has five

degrees of freedom). So the quantity 6s

2

Y

/s

2
p

under the null hypothesis has an F -distribution with

3 and 20 degrees of freedom. What if the null hypothesis is not true (i.e., the µ1, µ2, µ3, and µ4

are not all equal)? It can be shown that 6s

2

Y

then estimates σ

2
+ positive constant, so that the

ratio 6s

2

Y

/s

2
p

tends to be larger than 1. The usual hypothesis-testing approach is to reject the

null hypothesis if the ratio is “too large,” with the critical value selected from an F -table. The

analysis is summarized in an analysis of variance table (anova), as in Table 10.2.

The variances 6s

2

Y

/s

2
p

and s

2
p

are called mean squares for reasons to be explained later. It is

clear that the first variance measures the variability between groups, and the second measures

the variability within groups. The F -ratio of 2.40 is referred to an F -table. The critical value

at the 0.05 level is F3,20,0.95 = 3.10, the observed value 2.40 is smaller, and we do not reject

the null hypothesis at the 0.05 level. The data are displayed in Figure 10.1. From the graph it

can be seen that the active group had the lowest mean value. The nonsignificance of the F -test

suggests that the active group mean is not significantly lower than that of the other three groups.

Table 10.2 Simplified anova Table of Data of Table 10.1

Source of

Variation d.f. MS F -Ratio

Between groups 3 6s

2

Y

= 5.2463
6s

2

Y

s

2
p

=

5.2463

2.1845
= 2.40

Within groups 20 s

2
p

= 2.1845

Figure 10.1 Distribution of ages at which infants first walked alone. (Data from Zelazo et al. [1972]; see

Table 10.1.)
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10.2.2 Using the Normal Distribution Model

Basic Approach

The one-way analysis of variance is a generalization of the t-test. As in the motivating example

above, it can be used to examine the age at which groups of infants first walk alone, each group

receiving a different treatment; or we may compare patient costs (in dollars per day) in a sample

of hospitals from a metropolitan area. (There is a subtle distinction between the two examples;

see Section 10.3.4 for a further discussion.)

Definition 10.2. An analysis of variance of observations, each of which belongs to one of

I disjoint groups, is a one-way analysis of variance of I groups.

Suppose that samples are taken from I normal populations that differ at most in their means;

the observations can be modeled by

Y

ij

= µ

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

(1)

The mean for normal population i is µ

i

; we assume that there are n

i

observations from this

population. Also, by assumption, the ǫ

ij

are independent N(0, σ

2
) variables. In words: Y

ij

denotes the j th sample from a population with mean µ

i

and variance σ

2. If I = 2, you can see

that this is precisely the model for the two-sample t-test.

The only difference between the situation now and that of Section 10.2.1 is that we allow the

number of observations to vary from group to group. The within-group estimate of the variance

σ

2 now becomes a weighted sum of sample variances. Let s

2
i

be the sample variance from group

i, where i = 1, . . . , I . The within-group estimate σ

2 is

∑

(n

i

− 1)s

2
i

∑

(n

i

− 1)

=

∑

(n

i

− 1)s

2
i

n − I

where n = n1 + n2 + · · · + n

I

is the total number of observations.

Under the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

= µ, the variability among the group

of sample means also estimates σ

2. We will show below that the proper expression is

∑

n

i

(Y

i· − Y ··)
2

I − 1

where

Y

i· =

n

i

∑

j=1

Y

ij

n

i

is the sample mean for group i, and

Y ·· =

I

∑

i=1

n

i

∑

j=1

Y

ij

n

=

∑

n

i

Y

i·

n

is the grand mean. These quantities can again be arranged in an anova table, as displayed in

Table 10.3. Under the null hypothesis, H0 : µ1 = µ2 = · · · = µ

I

= µ, the quantity A/B in

Table 10.3 follows an F -distribution with (I − 1) and (n − I ) degrees of freedom.

We now reanalyze our first example in Section 10.2.1, deleting the sixth observation, 12.35,

in the eight-week control group. The means and variances for the four groups are now:
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Table 10.3 One-Way anova Table for I Groups and ni

Observations per Group (i = 1, . . . , I)

Source of Variation d.f. MS F -Ratio

Between groups I − 1 A =

∑

n

i

(Y

i· − Y ··)
2

I − 1
A/B

Within groups n − I B =

∑ (n

i

− 1)s

2
i

n − I

Table 10.4 anova of Data from Example 10.1,

Omitting the Last Observation

Source of Variation d.f. MS F -Ratio

Between groups 3 4.9253 2.14

Within groups 19 2.2994

Active Passive No Exercise Control Overall

Mean (Y

i·) 10.125 11.375 11.708 12.350 11.348

Variance (s

2
i

) 2.0938 3.5938 2.3104 0.925 —

n

i

6 6 6 5 23

Therefore,

∑

n

i

(Y

i· − Y ··)
2

= 6(10.125 − 11.348)

2
+ 6(11.375 − 11.348)

2

+ 6(11.708 − 11.348)

2
+ 5(12.350 − 11.348)

2

= 14.776

The between-group mean square is 14.776/(4 − 1) = 4.9253. The within-group mean square is

1

23 − 4
[5(2.0938) + 5(3.5938) + 5(2.3104) + 4(0.925)] = 2.2994

The anova table is displayed in Table 10.4.

The critical value F3,19,0.95 = 3.13, so again, the four groups do not differ significantly.

Linear Model Approach

In this section we approach the analysis of variance using linear models. The model Y

ij

= µ

i

+ǫ

ij

is usually written as

Y

ij

= µ + α

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

(2)

The quantity µ is defined as

µ =

I

∑

i=1

n

i

∑

j=1

µ

i

n
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where n =

∑

n

i

(the total number of observations). The quantity α

i

is defined as α

i

= µ − µ

i

.

This implies that

I

∑

i=1

n

i

∑

j=1

α

i

=

∑

n

i

α

i

= 0 (3)

Definition 10.3. The quantity α

i

= µ − µ

i

is the main effect of the ith population.

Comments:

1. The symbol α with a subscript will denote an element of the analysis of variance model,

not the type I error. The context will make it clear which meaning is intended.

2. The equation
∑

n

i

α

i

= 0 is a constraint. It implies that fixing any (I − 1) of the main

effects determines the remaining value.

If we hypothesize that the I populations have the same means,

H0 : µ1 = µ2 = · · · = µ

I

= µ

then an equivalent statement is

H0 : α1 = α2 = · · · = α

I

= 0 or H0 : α

i

= 0, i = 1, . . . , I

How are the quantities µ

i

, i = 1, . . . , I and σ

2 to be estimated from the data? (Or, equiva-

lently, µ, α

i

, i = 1, . . . , I and σ

2.) Basically, we follow the same strategy as in Section 10.2.1.

The variances within the I groups are pooled to provide an estimate of σ

2, and the variability

between groups provides a second estimate under the null hypothesis. The data can be displayed

as shown in Table 10.5. For this set of data, a partitioning can be set up that mimics the model

defined by equation (2):

Model : Y

ij

= µ + α

i

+ ǫ

ij

Data : Y

ij

= Y ·· + a

i

+ e

ij

}

i = 1, . . . , I, j = 1, . . . , n

i

(4)

where a

i

= Y

i· − Y ·· and e

ij

= Y

ij

− Y

i· for i = 1, . . . , I and j = 1, . . . , n

i

. It is easy to

verify that the condition
∑

n

i

α

i

= 0 is mimicked by
∑

n

i

a

i

= 0. Each data point is partitioned

into three component estimates:

Y

ij

= Y ·· + (Y

i

− Y ··) + (Y

ij

− Y

i·) = mean + ith main effect + error

Table 10.5 Pooled Variances of I Groups

Sample

1 2 3 · · · I

Y11 Y21 Y31 · · · Y

I1

Y12 Y22 Y32 · · · Y

I2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Y1n1
Y2n2

Y3n3
· · · Y

In

I

Observations n1 n2 n3 · · · n

I

Means Y 1· Y 2· Y 3· · · · Y

I ·

Totals Y1· Y2· Y3· · · · Y

I ·
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The expression on the right side of Y

ij

is an algebraic identity. It is a remarkable property of

this partitioning that the sum of squares of the Y

ij

is equal to the sum of the three sums of

squares of the elements on the right side:

I

∑

i=1

n

i

∑

j=1

Y

2
ij

=

I

∑

i=1

n

i

∑

j=1

Y

2

··
+

I

∑

i=1

n

i

∑

j=1

(Y

i· − Y ··)
2
+

I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2

= nY

2

··
+

I

∑

i=1

n

i

(Y

i· − Y ··)
2
+

I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2 (5)

and the degrees of freedom can also be partitioned: n = 1+(I −1)+(n−I ). You will recognize

the terms on the right side as the ingredients needed for setting up the analysis of variance table

as discussed in the preceding section. It should also be noted that the quantities on the right side

are random variables (since they are based on statistics). It can be shown that their expected

values are

E

(

∑

n

i

(Y

i· − Y ··)
2
)

=

∑

n

i

α

2
i

+ (I − 1)σ

2 (6)

and

E





I

∑

i=1

n

i

∑

j=1

(Y

ij

− Y

i·)
2



 = (n − I )σ

2 (7)

If the null hypothesis H0 : α1 = α2 = · · · = α

I

= 0 is true (i.e., µ1 = µ2 = · · · = µ

I

= µ),

then
∑

n

i

α

2
i

= 0, and both of the terms above provide an estimate of σ

2 [after division by

(I − 1) and (n − I ), respectively]. This layout and analysis is summarized in Table 10.6.

The quantities making up the component parts of equation (5) are called sums of squares

(SS). “Grand mean” is usually omitted; it is used to test the null hypothesis that µ = 0. This

is rarely of very much interest, particularly if the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

is

rejected (but see Example 10.7). “Between groups” is used to test the latter null hypothesis, or

the equivalent hypothesis, H0 : α1 = α2 = · · · = α

I

= 0.

Before returning to Example 10.1, we give a few computational notes.

Computational Notes

As in the case of calculating standard deviations, the computations usually are not based on

the means but rather, on the group totals. Only three quantities have to be calculated for the

one-way anova. Let

Y

i· =

n

i

∑

j=1

Y

ij

= total in the ith treatment group (8)

and

Y·· =

∑

Y

i· = grand total (9)

The three quantities that have to be calculated are

I

∑

i=1

n

i

∑

j=1

Y

2
ij

=

∑ ∑

Y

2
ij

,

I

∑

i=1

Y

2
i·

n

i

=

∑

Y

2
i·

n

i

,

Y

2
··

n
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µ

=
n
Y
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·

M
S

µ

=
S

S
µ

M
S

µ

M
S

ǫ

(
1
,
n

−
1
)

n
µ

2
+

σ

2
µ

=
0

B
et

w
ee

n
g
ro

u
p
s

(m
ai

n
ef

fe
ct

s)

I
−

1
S

S
α

=

∑

n

i

(
Y

i
·
−

Y

·
·
)

2
M

S
α

=

S
S

α

I
−

1

M
S

α

M
S

ǫ

(
I

−
1
,
n

−
I
)

∑

n

i

α

2 i

I
−

1
+

σ

2
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1
=

·
·
·
=

α

I

o
r

µ
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=

·
·
·
=
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−

I
S

S
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=

∑
∑
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Y
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−
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i
·
)

2
M

S
ǫ

=

S
S

ǫ

n
−

I

—
—

σ

2
σ

2
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n

∑
∑

Y
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where n =

∑

n

i

= total observations. It is easy to establish the following relationships:

SS
µ

=

Y

2
··

n

(10)

SS
α

=

∑

Y

2
i·

n

i

−

Y

2
··

n

(11)

SS
ǫ

=

∑ ∑

Y

2
ij

−

∑

Y

2
i·

n

i

(12)

The subscripts are omitted.

We have an algebraic identity in
∑∑

Y

2
ij

= SS
µ

+SS
α

+SS
ǫ

. Defining SStotal as SStotal =

∑∑

Y

2
ij

−SS
µ

, we get SS
total

= SS
α

+SS
ǫ

and degrees of freedom (n−1) = (i−1)+(n−I ).

This formulation is a simplified version of equation (5). Note that the original data are needed

only for
∑∑

Y

2
ij

; all other sums of squares can be calculated from group or overall totals.

Continuing Example 10.1, omitting again the last observation (12.35):

∑ ∑

Y

2
ij

= 9.002
+ 9.502

+ · · · + 11.502
= 3020.2500

∑

Y

2
i·

n

i

=

60.752

6
+

68.252

6
+

70.252

6
+

61.752

5
= 2976.5604

Y

2
··

n

=

261.002

23
= 2961.7826

The anova table omitting rows for SS
µ

and SStotal becomes

Source of Variation d.f. SS MS F -Ratio

Between groups 3 14.7778 4.9259 2.14

Within groups 19 43.6896 2.2995

The numbers in this table are not subject to rounding error and differ slightly from those in

Table 10.4.

Estimates of the components of the expected mean squares of Table 10.6 can now be obtained.

The estimate of σ

2 is σ̂

2
= 2.2995, and the estimate of

∑

n

i

α

2
i

/(I − 1) is

∑

n

i

α̂

2
i

I − 1
= 4.9259 − 2.2995 = 2.6264

How is this quantity to be interpreted in view of the nonrejection of the null hypothesis?

Theoretically, the quantity can never be less than zero (all the terms are positive). The best

interpretation looks back to MS
α

, which is a random variable which (under the null hypothesis)

estimates σ

2. Under the null hypothesis, MS
α

and MS
ǫ

both estimate σ

2
, and

∑

n

i

α

2
i

/(I −1)

is zero.

10.2.3 One-Way anova from Group Means and Standard Deviation

In many research papers, the raw data are not presented but rather, the means and standard

deviations (or variances) for each of the, say, I treatment groups under consideration. It is

instructive to construct an analysis of variance from these data and see how the assumption
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of the equality of the population variances for each of the groups enters in. Advantages of

constructing the anova table are:

1. Pooling the sample standard deviations (variances) of the groups produces a more precise

estimate of the population standard deviation. This becomes very important if the sample

sizes are small.

2. A simultaneous comparison of all group means can be made by means of the F -test

rather than by a series of two-sample t-tests. The analysis can be modeled on the layout

in Table 10.3.

Suppose that for each of I groups the following quantities are available:

Group Sample Size Sample Mean Sample Variance

i n

i

Y

i· s

2
i

The quantities n =

∑

n

i

, Y

i· = n

i

Y

i·, and Y·· =

∑

Y

i· can be calculated. The “within

groups” SS is the quantity B in Table 10.3 times n − I , and the “between groups” SS can be

calculated as

SS
α

=

∑

Y

2
i·

n

i

−

Y

2
··

n

Example 10.2. Barboriak et al. [1972] studied risk factors in patients undergoing coronary

bypass surgery for coronary artery disease. The authors looked for an association between

cholesterol level (a putative risk factor) and the number of diseased blood vessels. The data are:

Diseased Sample Mean Cholesterol Standard

Vessels (i ) Size (n
i
) Level (Y

i·) Deviation (s
i
)

1 29 260 56.0

2 49 289 87.5

3 76 295 72.4

Using equations (8)–(12), we get n = 29 + 49 + 76 = 154,

Y1· = n1Y 1· = 29(260) = 7540, Y3· = n3Y 3· = 76(295) = 22,420

Y2· = n2Y 2· = 49(289) = 14,161, Y·· =

∑

n

i

Y

i· =

∑

Y

i· = 44, 121

SS
α

=

75402

29
+

14,1612

49
+

22,4202

76
−

44,1212

154

= 12,666,829.0 − 12,640,666.5 = 26,162.5

SS
ǫ

=

∑

(n

i

− 1)s

2
i

= 28 × 56.02
+ 48 × 87.52

+ 75 × 72.42
= 848, 440

The anova table (Table 10.7) can now be constructed. (There is no need to calculate the

total SS.)

The critical value for F at the 0.05 level with 2 and 120 degrees of freedom is 3.07; the

observed F -value does not exceed this critical value, and the conclusion is that the average

cholesterol levels do not differ significantly.
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Table 10.7 anova of Data of Example 10.2

Source d.f. SS MS F -Ratio

Main effects (disease status) 2 26,162.50 13,081.2 2.33

Residual (error) 151 848,440.0 5,618.5 —

10.2.4 One-Way anova Using Ranks

In this section the rank procedures discussed in Chapter 8 are extended to the one-way analysis

of variance. For three or more groups, Kruskal and Wallis [1952] have given a one-way anova

based on ranks. The model is

Y

ij

= µ

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

The only assumption about the ǫ

ij

is that they are independently and identically distributed, not

necessarily normal. It is assumed that there are no ties among the observations. For a small

number of ties in the data, the average of the ranks for the tied observations is usually assigned

(see Note 10.1). The test procedure will be conservative in the presence of ties (i.e., the p-value

will be smaller when adjustment for ties is made).

The null hypothesis of interest is

H0 : µ1 = µ2 = · · · = µ

I

= µ

The procedure for obtaining the ranks is similar to that for the two-sample Wilcoxon rank-sum

procedure: The n1 + n2 + · · · + n

I

= n observations are ranked without regard to which group

they belong. Let R

ij

= rank of observation j in group i.

TKW =

12
∑

n

i

(R

i· − R··)
2

n(n + 1)

(13)

where R

i· is the average of the ranks of the observations in group i:

R

i· =

n

i

∑

j=1

R

ij

n

i

and R·· is the grand mean of the ranks. The value of the mean (R··) must be (n + 1)/2 (why?)

and this provides a partial check on the arithmetic. Large values of TKW imply that the average

ranks for the group differ, so that the null hypothesis is rejected for large values of this statistic.

If the null hypothesis is true and all the n

i

become large, the distribution of the statistic TKW

approaches a χ

2-distribution with I −1 degrees of freedom. Thus, for large sample sizes, critical

values for TKW can be read from a χ

2-table. For small values of n

i

, say, in the range 2 to 5,

exact critical values have been tabulated (see, e.g., CRC Table X.9 [Beyer, 1968]). Such tables

are available for three or four groups.

An equivalent formula for TKW as defined by equation (13) is

TKW =

12
∑

R

2
i·
/n

i

n(n + 1)

− 3(n + 1) (14)

where R

i· is the total of the ranks for the ith group.



ONE-WAY ANALYSIS OF VARIANCE 369

Example 10.3. Chikos et al. [1977] studied errors in the reading of chest x-rays. The opin-

ion of 10 radiologists about the status of the left ventricle of the heart (“normal” vs. “abnormal”)

was compared to data obtained by ventriculography (which consists of the insertion of a catheter

into the left ventricle, injection of a radiopague fluid, and the taking of a series of x-rays). The

ventriculography data were used to classify a subject’s left ventricle as “normal” or “abnor-

mal.” Using this gold standard, the percentage of errors for each radiologist was computed. The

authors were interested in the effect of experience, and for this purpose the radiologists were

classified into one of three groups: senior staff, junior staff, and residents. The data for these

three groups are shown in Table 10.8.

To compute the Kruskal–Wallis statistic TKW, the data are ranked disregarding groups:

Observation 7.3 7.4 10.6 13.3 14.7 15.0 20.7 22.7 23.0 26.6

Rank 1 2 3 4 5 6 7 8 9 10

Group 1 1 2 2 3 2 2 3 3 3

The sums and means of the ranks for each group are calculated to be

R1· = 1 + 2 = 3, R1· = 1.5

R2· = 3 + 4 + 6 + 7 = 20, R2· = 5.0

R3· = 5 + 8 + 9 + 10 = 32, R3· = 8.0

[The sum of the ranks is R1 + R2 + R3 = 55 = (10 × 11)/2, providing a partial check of the

ranking procedure.]

Using equation (14), the TKW statistic has a value of

TKW =

12(32
/2 + 202

/4 + 322
/4)

10(10 + 1)

− 3(10 + 1) = 6.33

This value can be referred to as a χ

2-table with two degrees of freedom. The p-value is

0.025 < p < 0.05. The exact p-value can be obtained from, for example, Table X.9 of the

CRC tables [Beyer, 1968]. (This table does not list the critical values of TKW for n1 = 2,

n2 = 4, n3 = 4; however, the order in which the groups are labeled does not matter, so

that the values n1 = 4, n2 = 4, and n3 = 2 may be used.) From this table it is seen that

0.011 < p < 0.046, indicating that the chi-square approximation is satisfactory even for these

small sample sizes. The conclusion from both analyses is that among staff levels there are

significant differences in the accuracy of reading left ventricular abnormality from a chest x-ray.

Table 10.8 Data for Three Radiologist Groups

Senior Staff Junior Staff Residents

i 1 2 3

n

i

2 4 4

Y

ij

7.3 13.3 14.7

7.4 10.6 23.0

(Percent error) 15.0 22.7

20.7 26.6
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10.3 TWO-WAY ANALYSIS OF VARIANCE

10.3.1 Using the Normal Distribution Model

In this section we consider data that arise when a response variable can be classified in two ways.

For example, the response variable may be blood pressure and the classification variables type

of drug treatment and gender of the subject. Another example arises from classifying people by

type of health insurance and race; the response variable could be number of physician contacts

per year.

Definition 10.4. An analysis of variance of observations, each of which can be classified

in two ways is called a two-way analysis of variance.

The data are usually displayed in “cells,” with the row categories the values of one classifi-

cation variable and the columns representing values of the second classification variable.

A completely general two-way anova model with each cell mean any value could be

Y

ijk

= µ

ij

+ ǫ

ijk

(15)

where i = 1, . . . , I, j = 1, . . . , J, and k = 1, . . . , n

ij

. By assumption, the ǫ

ijk

are iid

N(0, σ

2
): independently and identically distributed N(0, σ

2
). This model could be treated as a

one-way anova with IJ groups with a test of the hypothesis that all µ

ij

are the same, implying

that the classification variables are not related to the response variable. However, if there is a

significant difference among the IJ group means, we want to know whether these differences

can be attributed to:

1. One of the classification variables,

2. Both of the classification variables acting separately (no interaction), or

3. Both of the classification variables acting separately and jointly (interaction).

In many situations involving classification variables, the mean µ

ij

may be modeled as the

sum of two terms, an effect of variable 1 plus an effect of variable 2:

µ

ij

= u

i

+ v

j

, i = 1, . . . , I, j = 1, . . . , J (16)

Here µ

ij

depends, in an additive fashion, on the ith level of the first variable and the j th level

of the second variable. One problem is that u

i

and v

j

are not defined uniquely; for any constant

C, if µ

∗

i

= u

i

+ C and v

∗

j

= v

j

− C, then µ

ij

= u

∗

i

+ v

∗

j

. Thus, the values of u

i

and v

j

can

be pinned down to within a constant. The constant is specified by convention and is associated

with the experimental setup. Suppose that there are n

ij

observations at the ith level of variable 1

and the j th level of variable 2. The frequencies of observations can be laid out in a contingency

table as shown in Table 10.9.

The experiment has a total of n·· observations. The notation is identical to that used in a

two-way contingency table layout. (A major difference is that all the frequencies are usually

chosen by the experimenter; we shall return to this point when talking about a balanced anova

design.) Using the model of equation (16), the value of µ

ij

is defined as

µ

ij

= µ + α

i

+ β

j

(17)

where µ =

∑∑

n

ij

µ

ij

/n··,

∑

n

i·αi

= 0, and
∑

n·jβj

= 0. This is similar to the constraints

put on the one-way anova model; see equations (2) and (10.3), and Problem 10.25(d).

Example 10.4. An experimental setup involves two explanatory variables, each at three

levels. There are 24 observations distributed as shown in Table 10.10. The effects of the first
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Table 10.9 Contingency Table for Variables

Levels of Variable 2
Levels of

Variable 1 1 2 · · · j · · · J Total

1 n11 n12 · · · n1j

· · · n1j

n1·

2 n21 n22 · · · n2j

· · · n2J

n2·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i n

i1 n

i2 · · · n

ij

· · · n

iJ

n

i·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I n

I1 n

I2 · · · n

Ij

· · · n

IJ

n

I ·

Total n·1 n·2 · · · n·j · · · n·J n··

Table 10.10 Observation Data

Levels of Variable 2
Levels of

Variable 1 1 2 3 Total

1 2 2 2 6

2 3 3 3 9

3 3 3 3 9

Total 8 8 8 24

Table 10.11 Data for Variable Effects

Effects of the Second Variable
Effects of the

First Variable β1 = 1 β2 = −3 β3 = 2 Total

α1 = 3 µ11 = 24 µ12 = 20 µ13 = 25 µ1· = 23

α2 = 6 µ21 = 27 µ22 = 23 µ23 = 28 µ2· = 26

α3 = −8 µ31 = 13 µ32 = 9 µ33 = 14 µ3· = 12

Total µ·1 = 21 µ·2 = 17 µ·3 = 22 µ = 20

variable are assumed to be α1 = 3, α2 = 6, and α3 = −8; the effects of the second variable

are β1 = 1, β2 = −3, and β3 = 2. The overall level is µ = 20. If the model defined by

equation (17) holds, the cell means µ

ij

are specified completely as shown in Table 10.11.

For example, µ11 = 20 + 3 + 1 = 24 and µ33 = 20 − 8 + 2 = 14. Note that
∑

n

i·αi

=

6.3 + 9.6 + 9(−8) = 0 and, similarly,
∑

n·jβj

= 0. Note also that µ1· =

∑

n1j

µ1j

/

∑

n

ij

=

µ + α1 = 20 + 3 = 23; that is, a marginal mean is just the overall mean plus the effect of the

variable associated with that margin. The means are graphed in Figure 10.2. The points have

been joined by dashed lines to make the pattern clear; there need not be any continuity between

the levels. A similar graph could be made with the level of the second variable plotted on the

abscissa and the lines indexed by the levels of the first variable.

Definition 10.5. A two-way anova model satisfying equation (17) is called an additive

model.
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Figure 10.2 Graph of additive anova model (see Example 10.4).

Some implications of this model are discussed. You will find it helpful to refer to

Example 10.4 and Figure 10.2 in understanding the following:

1. The statement of equation (17) is equivalent to saying that “changing the level of variable

1 while the level of the second variable remains fixed changes the value of the mean by

the same amount regardless of the (fixed) level of the second variable.”

2. Statement 1 holds with variables 1 and 2 interchanged.

3. If the values of µ

ij

(i = 1, . . . , I ) are plotted for the various levels of the second variable,

the curves are parallel (see Figure 10.2).

4. Statement 3 holds with the roles of variables 1 and 2 interchanged.

5. The model defined by equation (17) imposes 1 + (I − 1) + (J − 1) constraints on the IJ

means µ

ij

, leaving (I − 1)(J − 1) degrees of freedom.

We now want to define a nonadditive model, but before doing so, we must introduce one

other concept.

Definition 10.6. A two-way anova has a balanced (orthogonal) design if for every i and j ,

n

ij

=

n

i·n·j

n··

That is, the cell frequencies are functions of the product of the marginal totals. The reason this

characteristic is needed is that only for balanced designs can the total variability be partitioned in

an additive fashion. In Section 10.5 we introduce a discussion of unbalanced or nonorthogonal

designs; the topic is treated in terms of multiple regression models in Chapter 11.

Definition 10.7. A balanced two-way anova model with interaction (a nonadditive model)

is defined by

i = 1, . . . , I

Y

ijk

= µ + α

i

+ β

j

+ γ

ij

+ ǫ

ijk

, j = 1, . . . , J (18)

k = 1, . . . , n

ij
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subject to the following conditions:

1. n

ij

= n

i·n·j/n·· for every i and j .

2.
∑

n

i·αi

=

∑

n·jβj

= 0.

3.
∑

n

i·γij

= 0 for all j = 1, . . . , J,

∑

n·jγij

= 0 for all i = 1, . . . , I .

4. The ǫ

ijk

are iid N(0, σ

2
). This assumption implies homogeneity of variances among the

IJ cells.

If the γ

ij

are zero, the model is equivalent to the one defined by equation (17), there is no

interaction, and the model is additive.

As in Section 10.2, equations (4) and (5), a set of data as defined at the beginning of

this section can be partitioned into parts, each of which estimates the component part of the

model:

Y

ijk

= Y ··· + a

i

+ b

j

+ g

ij

+ e

ijk

(19)

where

Y ··· = grand mean

a

i

= Y

i·· − Y ··· = main effect of ith level of variable 1

b

j

= Y ·j· − Y ··· = main effect of j th level of variable 2

g

ij

= Y

ij· − Y

i·· − Y ·j· + Y ··· = interaction of ith and j th levels of variables 1 and 2

e

ijk

= Y

ijk

− Y

ij· = residual effect (error)

The quantities Y

i·· and Y ·j· are the means of the ith level of variable 1 and the j th level of

variable 2. In symbols,

Y

i·· =

J

∑

j=1

n

ij

∑

k=1

Y

ijk

n

i·

and Y ·j· =

I

∑

i=1

n

ij

∑

k=1

Y

ijk

n·j

The interaction term, g

ij

, can be rewritten as

g

ij

= (Y

ij· − Y ···) − (Y

i·· − Y ···) − (Y ·j · − Y ···)

which is the overall deviation of the mean of the ij th cell from the grand mean minus the main

effects of variables 1 and 2. If the data can be fully explained by main effects, the term g

ij

will

be zero. Hence, g

ij

measures the extent to which the data deviate from an additive model.

For a balanced design the total sum of squares, SSTOTAL =

∑∑∑

(Y

ijk

−Y ···)
2 and degrees

of freedom can be partitioned additively into four parts:

SSTOTAL = SS
α

+ SS
β

+ SS
γ

+ SS
ǫ

n·· − 1 = (I − 1) + (J − 1) + (I − 1)(J − 1) + (n·· − IJ ) (20)

Let

Y

ij· =

n

ij

∑

k=1

Y

ijk

= total for cell ij
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Y

i·· =

J

∑

j=1

Y

ij· = total for row i

Y·j· =

I

∑

i=1

Y

ij· = total for column j

Then the equations for the sums of squares together with computationally simpler formulas are

SS
α

=

∑

n

i·(Y i·· − Y ···)
2

=

∑

Y

2
i··

n

i·

−

Y

2
···

n··

SS
β

=

∑

n·j (Y ·j· − Y ···)
2

=

∑
Y

2
·j·

n·j

−

Y

2
···

n··

(21)

SS
γ

=

∑ ∑

n

ij

(Y

ij· − Y

i·· − Y ·j· + Y ···)
2

=

∑∑
Y

2
ij ·

n

ij

−

Y

2
···

n

− SS
α

− SS
β

SS
ǫ

=

∑ ∑ ∑

(Y

ijk

− Y

ij·)
2

=

∑ ∑ ∑

Y

2
ijk

−

∑ ∑
Y

2
ij·

n

ij

The partition of the sum of squares, the mean squares, and the expected mean squares are

given in Table 10.12.

A series of F -tests can be carried out to test the significance of the components of the model

specified by equation (18). The first test carried out is usually the test for interaction: MS
γ

/MS
ǫ

.

Under the null hypothesis H0 : γ

ij

= 0 for all i and j , this ratio has an F -distribution with

(I − 1)(J − 1) and n − IJ degrees of freedom. The null hypothesis is rejected for large values

of this ratio. Interaction is indicated by nonparallelism of the treatment effects. In Figure 10.3,

some possible patterns are indicated. The expected results of F -tests are given at the top of

each graph. For example, pattern 1 shows no–yes–no, implying that the test for the main effect

of variable 1 was not significant, the test for main effect of variable 2 was significant, and the

test for interaction was not significant. It now becomes clear that if interaction is present, main

effects are going to be difficult to interpret. For example, pattern 4 in Figure 10.3 indicates

significant interaction but no significant main effects. But the significant interaction implies that

at level 1 of variable 1 there is a significant difference in the main effect of variable 2. What

is happening is that the effect of variable 2 is in the opposite direction at the second level

of variable 1. This pattern is extreme. A more common pattern is that of pattern 6. How is

this pattern to be interpreted? First, there is interaction; second, above the interaction there are

significant main effects.

There are substantial practical problems associated with significant interaction patterns. For

example, suppose that the two variables represent two drugs for pain relief administered simul-

taneously to a patient. With pattern 2, the inference would be that the two drugs together are

more effective than either one acting singly. In pattern 4 (and pattern 3), the drugs are said to act

antagonistically. In pattern 6, the drugs are said to act synergistically ; the effect of both drugs

combined is greater than the sum of each acting alone. (For some subtle problems associated

with these patterns, see the discussion of transformations in Section 10.6.)

If interaction is not present, the main effects can be tested by means of the F -tests MS
α

/MS
ǫ

and MS
β

/MS
ǫ

with (I − 1, n − IJ ) and (J − 1, n − IJ ) degrees of freedom, respectively. If a

main effect is significant, the question arises: Which levels of the main effect differ significantly?

At this point, a visual inspection of the levels may be sufficient to establish the pattern; in

Chapter 12 we establish a more formal approach.

As usual, the test MS
µ

/MS
ǫ

is of little interest, and this line is frequently omitted in an

analysis of variance table.
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Figure 10.3 Some possible patterns for observed cell means in two-way anova with two levels for each

variable. Results of F -tests for main effects variable 1, variable 2, and interaction are indicated by yes or

no. See the text for a discussion.

Example 10.5. Nitrogen dioxide (NO2) is an automobile emission pollutant, but less is

known about its effects than those of other pollutants, such as particulate matter. Several animal

models have been studied to gain an understanding of the effects of NO2. Sherwin and Layfield

[1976] studied protein leakage in the lungs of mice exposed to 0.5 part per million (ppm) NO2

for 10, 12, and 14 days. Half of a total group of 44 animals was exposed to the NO2; the other

half served as controls. Control and experimental animals were matched on the basis of weight,

but this aspect will be ignored in the analysis since the matching did not appear to influence the

results. Thirty-eight animals were available for analysis; the raw data and some basic statistics

are listed in Table 10.13.

The response is the percent of serum fluorescence. High serum fluorescence values indicate

a greater protein leakage and some kind of insult to the lung tissue. The authors carried out

t-tests and state that with regard to serum fluorescence, “no significant differences” were found.
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Table 10.13 Serum Fluorescence Readings of Mice Exposed to Nitrogen

Dioxide (NO2) for 10, 12, and 14 Days Compared with Control Animals

Serum Fluorescence

10 Days (j = 1) 12 Days (j = 2) 14 Days (j = 3)

Control (i = 1) 143 179 76

169 160 40

95 87 119

111 115 72

132 171 163

150 146 78

141 — —

Exposed (i = 2) 152 141 119

83 132 104

91 201 125

86 242 147

150 209 200

108 114 178

75 — —

n
ij

j

i 1 2 3

1 7 6 6

2 7 6 6

Y
ij ·

j

i 1 2 3

1 941 858 548

2 745 1039 873

Y
ij ·

j

i 1 2 3

1 134.4 143.0 91.3

2 106.4 173.2 145.5

s
ij

j

i 1 2 3

1 24.7 35.5 43.2

2 32.1 51.0 37.1

The standard deviations are very similar, suggesting that the homogeneity of variance assump-

tion is probably valid. It is a good idea again to graph the results to get some “feel” for the

data, and this is done in Figure 10.4. We can see from this figure that there are no outlying

observations that would invalidate the normality assumption of the two-way anova model.

To obtain the entries for the two-way anova table, we basically need six quantities:

n, Y···,

∑

Y

2
ijk

,

∑

Y

2
i··

n

i·

,

∑
Y

2
·j·

n·j

,

∑
Y

2
ij·

n

ij

With these quantities, and using equations (20) and (21), the entire table can be computed. The

values are as follows:

n = 38, Y··· = 5004,

∑

Y

2
ijk

= 730,828

∑

Y

2
i··

n

i·

= 661,476.74,

∑
Y

2
·j·

n·j

= 671,196.74,

∑
Y

2
ij·

n

ij

= 685,472.90
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Figure 10.4 Serum fluorescence of mice exposed to nitrogen dioxide. (Data from Sherwin and Layfield

[1976]; see Example 10.5.)

Sums of squares can now be calculated:

SS
α

= SSTREATMENT = 661,476.74 −

50042

38
= 2528.95

SS
β

= SSDAYS = 671196.74 −

50042

38
= 12,248.95

SS
γ

= SSTREATMENT×DAYS = 685,472.90 −

50042

38
− 2528.95 − 12,248.95 = 11,747.21

SS
ǫ

= SSRESIDUAL = 730,828 − 685,472.90 = 45,355.10

(It can be shown that SS
ǫ

=

∑

(n

ij

− 1)s

2
ij

. You can verify this for these data.) The anova

table is presented in Table 10.14.
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Table 10.14 anova of Serum Fluorescence Levels of Mice Exposed to Nitrogen Dioxide (NO2)

Source of Variation d.f. SS MS F -Ratio p-Value

Treatment 1 2,528.95 2528.95 1.78 > 0.10

Days 2 12,248.95 6124.48 4.32 < 0.05

Treatment × days 2 11,747.21 5873.60 4.14 < 0.05

Residual 32 45,355.10 1417.35 — —

Total 37 71,880.21 — — —

Source: Data from Sherwin and Layfield [1976].

The MS for interaction is significant at the 0.05 level (F2,32 = 4.14, p < 0.05). How is this

to be interpreted? The means Y

ij· are graphed in Figure 10.5. There clearly is nonparallelism,

and the model is not an additive one. But more should be said in order to interpret the results,

particularly regarding the role of the control animals. Clearly, control animals were used to

provide a measurement of background variation. The differences in mean fluorescence levels

among the control animals indicate that the baseline response level changed from day 10 to

day 14. If we consider the response of the animals exposed to nitrogen dioxide standardized by

the control level, a different picture emerges. In Figure 10.5, the differences in means between

exposed and unexposed animals is plotted as a dashed line with scale on the right-hand side

of the graph. This line indicates that there is an increasing effect of exposure with time. The

interpretation of the significant interaction effect then is, possibly, that exposure did induce

increased protein leakage, with greater leakage attributable to longer exposure. This contradicts

the authors’ analysis of the data using t-tests. If the matching by weight was retained, it would

Figure 10.5 Mean serum fluorescence level of mice exposed to nitrogen dioxide, treatment vs. control.

The difference (treatment − control) is given by the dashed line. (Data from Sherwin and Layfield [1976];

see Example 10.5.)
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have been possible to consider the differences between exposed and control animals and carry

out a one-way anova on the differences. See Problem 10.5.

Two-Way ANOVA from Means and Standard Deviations

As in the one-way anova, a two-way anova can be reconstructed from means and standard

deviations. Let Y

ij· be the mean, s

ij

the standard deviation, and n

ij

the sample size associated

with cell ij (i = 1, . . . , I, j = 1, . . . , J ), assuming a balanced design. Then

Y··· =

I

∑

i=1

J

∑

j=1

n

ij

Y

ij·, Y

i·· =

J

∑

j=1

n

ij

Y

ij·, Y·j· =

I

∑

i=1

n

ij

Y

ij·

Using equation (21), SS
α

and SS
β

can now be calculated. The term
∑

Y

2
ij·

/n

ij

in SS
γ

is equiv-

alent to

∑
Y

2
ij·

n

ij

=

∑

n

ij

Y

2

ij·

Finally, SS
ǫ

can be calculated from

SS
ǫ

=

∑

(n

ij

− 1)s

2
ij

(22)

Problems 10.22 and 10.23 deal with data presented in terms of means and standard deviations.

There will be some round-off error in the two-way analysis constructed in this way, but it will

not affect the conclusion.

It is easy to write a computer subroutine that produces such a table upon input of means,

standard deviations, and sample sizes.

10.3.2 Randomized Block Design

In Chapter 2 we discussed the statistical concept of blocking. A block consists of a subset of

homogeneous experimental units. The background variability among blocks is usually much

greater than within blocks, and the experimental strategy is to assign all treatments randomly

to the units of a block. A simple example of blocking is illustrated by the paired t-test. Sup-

pose that two antiepileptic agents are to be compared. One possible (valid) design is to assign

randomly half of a group of patients to one agent and half to the other. By this randomization

procedure, the variability among patients is “turned” into error. Appropriate analyses are the

two-sample t-test, the one-way analysis of variance, or a two-sample nonparametric test. How-

ever, if possible, a better design would be to test both drugs on the same patient; this would

eliminate patient-to-patient variability, and comparisons are made within patients. The patients

in this case act as blocks. A paired t-test or analogous nonparametric test is now appropriate.

For this design to work, we would want to assign the drugs randomly within a patient. This

would eliminate a possible additive sequence effect; hence, the term randomized block design.

In addition, we would want to have a reasonably large time interval between drugs to eliminate

possible carryover effects; that is, we cannot permit a treatment × period interaction. Other

examples of naturally occurring blocks are animal litters, families, and classrooms. Constructed

blocks could be made up of sets of subjects matched on age, race, and gender.

Blocking is done for two purposes:

1. To obtain smaller residual variability

2. To examine treatments under a wide range of conditions
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A basic design principle is to partition a population of study units in such a way that

background variability between blocks is maximized, and consequently, background variability

within blocks is minimized.

Definition 10.8. In a randomized block design, each treatment is given once and only

once in each block. Within a block, the treatments are assigned randomly to the experimental

units.

Note that a randomized block design, by definition, is a balanced design: This is somewhat

restrictive. For example, in animal experiments it would require litters to be of the same size.

The statistical model associated with the randomized block design is

Y

ij

= µ + β

i

+ τ

j

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , J (23)

and (1)
∑

β

i

=

∑

τ

j

= 0 and (2) ǫ are iid N(0, σ

2
). In this model, β

i

is the effect of block i

and τ

j

the effect of treatment j . In this model, as indicated, we assume no interaction between

blocks and treatments (i.e., if there is a difference between treatments, the magnitude of this

effect does not vary from block to block except for random variation). In Section 10.6 we discuss

a partial check on the validity of the assumption of no interaction.

The analysis of variance table for this design is a simplified version of Table 10.12: The

number of observations is the same in each block and for each treatment. In addition, there is

no SS for interaction; another way of looking at this is that the SS for interaction is the error

SS. The calculations are laid out in Table 10.15.

Tests of significance proceed in the usual way. The expected mean squares can be derived

from Table 10.12, making use of the simpler design.

The computations for the randomized block design are very simple. You can verify that

SS
µ

=

Y

2
··

n

, SS
β

=

∑

Y

2
i·

J

−

Y

2
··

n

, SS
τ

=

∑

Y

2
·j

I

−

Y

2
··

n

(24)

SS
ǫ

=

∑

Y

2
ij

−

Y

2
··

n

− SS
β

− SS
τ

Example 10.6. The pancreas, a large gland, secretes digestive enzymes into the intestine.

Lack of this fluid results in bowel absorption problems (steatorrhea); this can be diagnosed

by excess fat in feces. Commercial pancreatic enzyme supplements are available in three

forms: capsule, tablets, and enteric-coated tablets. The enteric-coated tablets have a protec-

tive shell to prevent gastrointestinal reaction. Graham [1977] investigated the effectiveness of

these three formulations in six patients with steatorrhea; the three randomly assigned treat-

ments were preceded by a control period. For purposes of this example, we will consider the

control period as a treatment, even though it was not randomized. The data are displayed in

Table 10.16.

To use equation 4, we will need the quantities

Y·· = 618.6,

∑

Y

2
i·

4
= 21,532.80,

∑

Y

2
·j

6
= 17,953.02,

∑

Y

2
ij

= 25,146.8

The analysis of variance table, omitting SS
µ

, is displayed in Table 10.17.

The treatment effects are highly significant. A visual inspection of Table 10.16 suggests that

capsules and tablets are the most effective, enteric-coated tablets less effective. The author points

out that the “normal” amount of fecal fat is less than 6 g per day, suggesting that, at best, the

treatments are palliative. The F -test for patients is also highly significant, indicating that the

levels among patients varied considerably: Patient 4 had the lowest average level at 6.1 g in 24

hours; patient 5 had the highest level, with 47.1 g in 24 hours.
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Table 10.16 Effectiveness of Pancreatic Supplements on Fat Absorption in Patients with

Steatorrhea (Grams/Day)

None Enteric-Coated

Case (Control) Tablet Capsule Tablet Y

i· Y

i·

1 44.5 7.3 3.4 12.4 67.6 16.9

2 33.0 21.0 23.1 25.4 102.5 25.6

3 19.1 5.0 11.8 22.0 57.9 14.5

4 9.4 4.6 4.6 5.8 24.4 6.1

5 71.3 23.3 25.6 68.2 188.4 47.1

6 51.2 38.0 36.0 52.6 177.8 44.4

Y·j 228.5 99.2 104.5 186.4 618.6 —

Y ·j 38.1 16.5 17.4 31.1 Y ·· = 25.8

Source: Data from Graham [1977].

Table 10.17 Randomized Block Analysis of Fecal Fat Excretion of Patients with Steatorrhea

Source of Variation d.f. SS MS F -Ratio p-Value

Patients (blocks) 5 5588.38 1117.68 10.44 <0.001

Treatments 3 2008.60 669.53 6.26 <0.01

Residual 15 1605.40 107.03 — —

Total 23 9202.38 — — —

Source: Data from Graham [1977].

10.3.3 Analyses of Randomized Block Designs Using Ranks

A nonparametric analysis of randomized block data using only the ranks was developed by

Friedman [1937]. The model is that of equation (23), but the ǫ

ij

are no longer required to be

normally distributed. We assume that there are no ties in the data; for a small number of ties

the average ranks may be used. The idea of the test is simple: If there are no treatment effects

(τ
j

= 0 for all j ), the ranks of the observations within a block are randomly distributed. For

block i, let

R

ij

= rank of Y

ij

among Y

i1, Y

i2, . . . , Y

iJ

The Friedman statistic for testing the null hypothesis H0 : τ

j

= 0 (where j = 1, . . . , J ) is

TFR = 12I

J

∑

j=1

(R·j − R··)
2

J (J + 1)

(25)

Computationally, the following formula is easier:

TFR =

12

IJ (J + 1)

J

∑

j=1

R

2
·j

− 3(I )(J + 1) (26)

The null hypothesis is rejected for large values of TFR. For small randomized block designs,

the critical values of TFR are tabulated; see, for example, Table 39 in Odeh et al. [1977], which

goes up to I = J = 6. As the number of blocks becomes very large, the distribution of TFR
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approaches that of a χ

2-distribution with (J − 1) degrees of freedom. See also Notes 10.1 and

10.2.

Example 10.6. (continued ) Replacing the observations for each individual by their ranks

produces Table 10.18. For individual 4, the two tied observations are replaced by the average of

the two ranks. [As a check, the total R·· of ranks must be R·· = IJ (J + 1)/2. (Why?) For this

example I = 6, J = 4, IJ (J + 1)/2 = (6 · 4 · 5)/2 = 60, and R·· = 22 + 8.5 + 9.5 + 20 = 60.]

The Friedman statistic, using equation (26), has the value

TFR =

12

6 × 4 × 5
(222

+ 8.52
+ 9.52

+ 202
) − (3 × 6 × 5)

= 104.65 − 90 = 14.65

This quantity is compared to a χ

2 distribution with 3 d.f. (14.65/3 = 4.88); the p-value is

p = 0.0021. From exact tables such as Odeh et al. [1977], the exact p-value is p < 0.001. The

conclusion is the same as that of the analysis of variance in Section 10.3.2. Note also that the

ranking of treatments in terms of the total ranks is the same as in Table 10.11. For an alternative

rank analysis of these data, see Problem 10.20.

10.3.4 Types of anova Models

In Section 10.2.2, two examples were mentioned of one-way analyses of variance. The first

dealt with the age at which children begin to walk as a function of various training procedures;

the second example dealt with patient hospitalization costs, based on an examination of some

hospitals (treatments) selected randomly from all the hospitals in a large metropolitan area (from

each hospital selected, a specified number of patient records are selected for cost analysis). The

experimental design associated with the first example differs from the second: In a repetition

of the first study, the same set of treatments could be used; in the second study, a new set of

hospitals could presumably be selected; that is, the “treatment levels” are randomly selected

from a larger set of treatment levels.

Definition 10.9. If the levels of a classification variable in an anova situation are selected

at random from a population, the variable is said to be a random factor or random effect.

Factors with the levels fixed by those conducting the study or which are fixed classifications

(e.g., gender) are called fixed factors or fixed effects.

Table 10.18 Rank Values for Supplement Use

Treatment

Enteric-Coated

Case Control Tablet Capsule Tablet

1 4 2 1 3

2 4 1 2 3

3 3 1 2 4

4 4 1.5 1.5 3

5 4 1 2 3

6 3 2 1 4

R·j 22 8.5 9.5 20
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Definition 10.10. anova situations with all classification variables fixed are called fixed

effects models (model I). If all the classification variables are random effects, the design is a

random effects model (model II). If both random and fixed effects are present, the design is a

mixed effects model.

Historically, no distinction was made between model I and II designs, in part due to identical

analyses in simple situations and similar analyses in more complicated situations. Eisenhart

[1947] was the first to describe systematically the differences between the two models. Some

other examples of random effects models are:

1. A manufacturer of spectrophotometers randomly selects five instruments from its produc-

tion line and obtains a series of replicated readings on each machine.

2. To estimate the maximal exercise performance in a healthy adult population, 20 subjects

are selected randomly and 10 independent estimates of maximal exercise performance for

each person are obtained.

3. To determine knowledge about the effect of drugs among sixth graders, a researcher

randomly selects five sixth-grade classes from among the 100 sixth-grade classes in a

large school district. Each child selected fills out a questionnaire.

How can we determine whether a design is model I or model II? The basic criterion deals

with the population to which inferences are to be made. Another way of looking at this is to

consider the number of times randomness is introduced (ideally). In Example 10.2 there are two

sources of randomness: subjects and observations within subjects. If more than one “layer of

randomness” has to be passed through in order to reach the population of interest, we have a

random effects model.

An example of a mixed model is example 2 above with a further partitioning of subjects into

male and female. The factor, gender, is fixed.

Sometimes a set of data can be modeled by either a fixed or random effects model. Consider

example 1 again. Suppose that a cancer research center has bought the five instruments and is

now running standardization experiments. For the purpose of the research center, the effects of

machines are fixed effects.

To distinguish a random effects model from a fixed effects model, the components of the

model are written as random variables. The two-way random effects anova model with inter-

action is written as

Y

ijk

= µ + A

i

+ B

j

+ G

ij

+ e

ijk

, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , n

ij

(27)

The assumptions are:

1. e

ijk

are iid N(0, σ

2
), as before.

2. A

i

are iid N(0, σ

2
α

).

3. B

j

are iid N(0, σ

2
β

).

4. G

ij

are iid N(0, σ

2
γ

).

The total variance can now be partitioned into several components (hence another term for

these models: components of variance models). Assume that the experiment is balanced with

n

ij

= m for all i and j . The difference between the fixed effect and random effect model is in

the expected mean squares. Table 10.19 compares the EMS for both models, taking the EMS

for the fixed effect model from Table 10.12.

The test for interaction is the same in both models. However, if interaction is present, to be

valid the test for main effects in the random effects model must use MS
γ

in the denominator

rather than MS
ǫ

.
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Table 10.19 Comparison of Expected Mean Squares in the Two-Way anova, Fixed

Effect vs. Random Effect Modelsa

EMS

Source of

Variation d.f. Fixed Effect Random Effect

Row main effects I − 1 σ

2
+

Jm

∑

α

2
i

I − 1
σ

2
+ mσ

2
γ

+ mJσ

2
α

Column main effects J − 1 σ

2
+

Im

∑

β

2
j

J − 1
σ + mσ

2
γ

+ mIσ

2
β

Row × column interaction (I − 1)(J − 1) σ

2
+

IJm

∑

γ

2
ij

(I − 1)(J − 1)

σ

2
+ mσ

2
γ

Residual n·· − IJ σ

2
σ

2

aThere are m observations in each cell.

The null hypothesis

H0 : γ

ij

= 0 all i and j

in the fixed effect model has as its counterpart,

H0 : σ

2
γ

= 0

in the random effect model. In both cases the test is carried out using the ratio MS
γ

/MS
ǫ

with

(I − 1)(J − 1) and n − IJ degrees of freedom. If interaction is not present, the tests for main

effects are the same in both models. However, if H0 is not rejected, the tests for main effects

are different in the two models. In the random effects model the expected mean square for main

effects now contains a term involving σ

2
γ

. Hence the appropriate F -test involves MS
γ

in the

denominator rather than MS
ǫ

; the degrees of freedom are changed accordingly.

Several comments can be made:

1. Frequently, the degrees of freedom associated with MS
γ

are fewer than those of MS
ǫ

, so

that there is a loss of precision if MS
γ

has to be used to test main effects.

2. From a design point of view, if m, I , and J can be chosen, it may pay to choose m small

and I , J relatively large if a random effects model is appropriate. A minimum of two replicates

per treatment combination is needed to obtain an estimate of σ

2. If possible, the rest of the

observations should be allocated to the levels of the variables. This may not always be possible,

due to costs or other considerations. If the total cost of the experiment is fixed, an algorithm

can be developed for choosing the values of m, I , and J .

3. The difference between the fixed and random effects models for the two-way anova

designs is not as crucial as it seems. We have indicated caution in proceeding to the tests

of main effects if interaction is present in the fixed model (see Figure 10.3 and associated

discussion). In the random effects model, the same precaution holds. It is perhaps too strong to

say that main effects should not be tested when interaction is present, but you should certainly

be able to explain what information you hope to obtain from such tests after a full interpretation

of the (significant) interaction.

4. Expected mean squares for an unbalanced random effects model are not derivable or are

very complicated. A more useful approach is that of multiple regression, discussed in Chapter 11.

See also Section 10.5.

5. For the randomized block design the MS
ǫ

can be considered the mean square for interac-

tion. Hence, in this case the F -tests are appropriate for both models. (Does this contradict the
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statement made in comment 3?) Note also that there is little interest in the test of block effects,

except as a verification that the blocking was effective.

Good discussions about inference in the case of random effects models can be found in

Snedecor and Cochran [1988] and Winer [1991].

10.4 REPEATED MEASURES DESIGNS AND OTHER DESIGNS

10.4.1 Repeated Measures Designs

Consider a situation in which blood pressures of two populations are to be compared. One

person is selected at random from each population. The blood pressure of each of the two

subjects is measured 100 times. How would you react to data analysis that used the two-sample

t-test with two samples of size 100 and showed that the blood pressures differed in the two

populations? The idea is ridiculous, but in one form or another appears frequently in the research

literature. Where does the fallacy lie? There are two sources of variability: within individuals

and among individuals. The variability within individuals is assumed incorrectly to represent

the variability among individuals. Another way of saying this is that the 100 readings are not

independent samples from the population of interest. They are repeated measurements on the

same experimental unit. The repeated measures may be useful in this context in pinning down

more accurately the blood pressure of the two people, but they do not make up for the small

sample size. Another feature we want to consider is that the sequence of observations within

the person cannot be randomized, for example, a sequence of measurements of growth. Thus,

typically, we do not have a randomized block design.

Definition 10.11. In a repeated measures design, multiple (two or more) measurements are

made sequentially on the same observational unit.

A repeated measures design usually is an example of a mixed model with the observational

unit a random effect (e.g., persons or animals, and the treatments on the observational units

fixed effects). Frequently, data from repeated measure designs are somewhat unbalanced and

this makes the analysis more difficult. One approach is to summarize the repeated measures in

some meaningful way by single measures and then analyze the single measures in the usual

way. This is the way many computer programs analyze such data. We motivate this approach

by an example. See Chapter 18 for further discussion.

Example 10.7. Hillel and Patten [1990] were interested in the effect of accessory nerve

injury as result of neck surgery in cancer. The surgery frequently decreases the strength of

the arm on the affected side. To assess the potential recovery, the unaffected arm was to be

used as a control. But there is a question of the comparability of arms due to dominance,

age, gender, and other factors. To assess this effect, 33 normal volunteers were examined by

several measurements. The one discussed here is that of torque, or the ability to abduct (move

or pull) the shoulder using a standard machine built for that purpose. The subjects were tested

under three consecutive conditions (in order of increasing strenuousness): 90◦
, 60◦, and 30◦ per

second. The data presented in Table 10.20 are the best of three trials under each condition. For

completeness, the age and height of each of the subjects are also presented. The researchers

wanted answers to at least five questions, all dealing with differences between dominant and

nondominant sides:

1. Is there a difference between the dominant and nondominant arms?

2. Does the difference vary between men and women?
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Table 10.20 Peak Torque for 33 Subjects by Gender, Dominant Arm, and Age Group under Three

Conditions

90◦ 60◦ 30◦

Subject Age Height (in.) Weight (lb) DMa NDa DM ND DM ND

Female 1 20 64 107 17 13 20 17 23 22

2 23 68 140 25 25 28 29 31 31

3 23 67 135 27 28 30 31 32 33

4 23 67 155 23 28 27 29 27 32

5 25 65 115 15 11 15 13 17 17

6 26 68 147 27 17 25 21 32 27

7 31 62 147 25 17 25 21 29 24

8 31 66 137 19 15 17 17 21 19

9 33 66 160 28 26 31 27 31 31

10 36 66 118 23 23 26 27 27 25

11 56 67 210 23 31 37 44 49 53

12 59 67 130 15 17 17 19 20 20

13 60 63 132 17 15 19 21 24 28

14 60 64 180 15 15 17 19 19 21

15 67 62 135 13 5 15 8 15 14

16 73 62 124 11 9 13 13 19 17

Male 1 26 69 140 43 43 44 43 49 41

2 28 71 175 45 43 48 45 53 52

3 28 70 125 25 29 29 37 39 41

4 28 70 175 39 41 49 47 55 44

5 29 72 150 38 33 40 33 44 37

6 30 68 145 53 41 51 40 59 44

7 31 74 240 60 49 71 54 68 53

8 32 67 168 32 31 37 31 39 30

9 40 69 174 47 37 43 47 49 53

10 41 72 190 33 25 29 25 39 27

11 41 68 184 39 24 43 25 39 33

12 56 70 200 21 11 23 12 33 24

13 58 72 168 41 35 45 37 49 39

14 59 73 170 31 32 31 31 35 38

15 60 73 225 39 41 47 45 55 49

16 68 67 140 31 23 33 27 37 33

17 72 69 125 13 17 17 19 17 25

Source: Data from Hillel and Patten [1990].
aDM, dominant arm; ND, nondominant arm.

3. Does the difference depend on age, height, or weight?

4. Does the difference depend on treatment condition?

5. Is there interaction between any of the factors or variables mentioned in questions 1 to 4?

For purposes of this example, we only address questions 1, 2, 4, and 5, leaving question 3 for

the discussion of analysis of covariance in Chapter 11.

The second to fourth columns in Table 10.21 contain the differences between the dominant

and nondominant arms; the fifth to seventh columns are reexpressions of the three differences

as follows. Let d90, d60, and d30 be the differences between the dominant and nondominant
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Table 10.21 Differences in Torque under Three Conditions

and Associated Orthogonal Contrastsa

DM–ND Orthogonal Contrasts

90◦ 60◦ 30◦ Constant Linear Quadratic

Female 1 4 3 1 4.6 2.1 −0.4

2 0 −1 0 −0.6 0.0 0.8

3 −1 −1 −1 −1.7 0.0 0.0

4 −5 −2 −5 −6.9 0.0 −2.4

5 4 2 0 3.5 2.8 0.0

6 10 4 5 11.0 3.5 2.9

7 8 4 5 9.8 2.1 2.0

8 4 0 2 3.5 1.4 2.4

9 2 4 0 3.5 1.4 −2.4

10 0 −1 2 0.6 −1.4 1.6

11 −8 −7 −4 −11.0 −2.8 0.8

12 −2 −2 0 −2.3 −1.4 0.8

13 2 −2 −4 −2.3 4.2 0.8

14 0 −2 −2 −2.3 1.4 0.8

15 8 7 1 9.2 4.9 −2.0

16 2 0 2 2.3 0.0 1.6

Male 1 0 1 8 5.2 −5.7 2.4

2 2 3 1 3.5 0.7 −1.2

3 −4 −8 −2 −8.1 −1.4 4.1

4 −2 2 11 6.4 −9.2 2.0

5 5 7 7 11.0 −1.4 −0.8

6 12 11 15 21.9 −2.1 2.0

7 11 17 15 24.8 −2.8 −3.3

8 1 6 9 9.2 −5.7 −0.8

9 10 −4 −4 1.2 9.9 5.7

10 8 4 12 13.9 −2.8 4.9

11 15 18 6 22.5 6.4 −6.1

12 10 11 9 17.3 0.7 −1.2

13 6 8 10 13.9 −2.8 0.0

14 −1 0 −3 −2.3 1.4 −1.6

15 −2 2 6 3.5 −5.7 0.0

16 8 6 4 10.4 2.8 0.0

17 −4 −2 −8 −8.1 2.8 −3.3

Source: Data from Hillel and Patten [1990].
a See Table 10.20 for notation.

arms under each of the three conditions. Then we define

constant =

d90 + d60 + d30
√

3

linear =

d90 − d30
√

2

quadratic =

d90 − 2 · d60 + d30
√

6

For example, for the first female subject, rounding off to one decimal place yields

4 + 3 + 1
√

3
= 4.6
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4 − 1
√

2
= 9.9

4 − 2 × (3) + 1
√

6
= −0.4

The first component clearly represents an average difference of dominance over the three con-

ditions. The divisor is chosen to make the variance of this term equal to the variance of a single

difference. The second term represents a slope within an individual. If the three conditions were

considered as values of a predictor variable with values −1 (for 30◦), 0 (for 60◦), and 1 (for

90◦), the slope would be expressed as in the second, or linear, term. The linear term assesses a

possible trend in the differences over the three conditions within an individual. The last term,

the quadratic term, fits a quadratic curve through the data assessing possible curvature or non-

linearity within an individual. This partitioning of the observations within an individual has the

property that sums of squares are maintained. For example, for the first female subject,

42
+ 32

+ 12
= 26 = (4.6)

2
+ (2.1)

2
+ (−0.4)

2

except for rounding. (If you were to calculate these terms to more decimal places, you would

find that the right side is identical to the left side.) In words, the variability in response within an

individual has been partitioned into a constant component, a linear component, and a quadratic

component. The questions posed can now be answered unambiguously since the three com-

ponents have been constructed to be orthogonal, or uncorrelated. An analysis of variance is

carried out on the three terms; unlike the usual analysis of variance, a term for the mean is

included; results are summarized in Table 10.22. We start by discussing the analysis of the

quadratic component. The analysis indicates that there are no significant differences between

males and females in terms of the quadratic or nonlinear component. Nor is there an overall

effect. Next, conclusions are similar for the linear effect. We conclude that there is no linear

trend for abductions at 90◦
, 60◦, and 30◦. This leaves the constant term, which indicates (1)

Table 10.22 anova and Means of the Data in Table 10.21

Source of Variation d.f. SS MS F -Ratio

Analysis of Variance

Constant Mean 1 900.7 900.7 13.3

Gender 1 438.5 438.5 6.48

Error 1 31 2099.2 67.72

Linear Mean 1 0.33 0.33 0.02

Gender 1 33.43 33.43 2.43

Error 2 31 426.0 13.74

Quadratic Mean 1 3.09 3.09 0.50

Gender 1 0.70 0.70 0.11

Error 3 31 191.2 6.17

Means

Constant Linear Quadratic

Female (n = 16) Mean 1.306 1.138 0.456

Standard deviation 5.920 2.121 1.609

Male (n = 17) Mean 8.600 −0.876 0.165

Standard deviation 9.917 4.734 3.085
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that there is a significant gender effect of dominance (F1,31 = 6.48, p < 0.05) and an overall

dominance effect. The average of the constant term for females is 1.31, for males is 8.6. One

question that can be raised is whether the difference between female and male is a true gender

difference or can be attributed to differences is size. An analysis of covariance can answer this

question (see Problem 11.38).

Data from a repeated measures design often look like those of a randomized block design.

The major difference is the way the data are generated. In the randomized block, the treatments

are allocated randomly to a block. In the repeated measures design, this is not the case; not

being possible, as in the case of observations over time, or because of experimental constraints,

as in the example above. If the data are analyzed as a randomized block, care must be taken

that the assumptions of the randomized block design are satisfied. The key assumption is that of

compound symmetry: The sample correlations among treatments over subjects must all estimate

the same population correlation. The randomization ensures this in the randomized block design.

For example, for the data in Table 10.16, the correlations are as follows:

Control Tablet Capsule

Tablet 0.658

Capsule 0.599 0.960

Coated tablet 0.852 0.784 0.833

These correlations are reasonably comparable. If the correlations are not assumed equal, a

conservative F -test can be carried out by referring the observed value of F for treatments to

an F -table with 1 and (I − 1) [rather than (J − 1) and (I − 1)(J − 1)] degrees of freedom).

Alternatives to the foregoing two approaches include multivariate analyses. There is a huge

literature on repeated measures analysis. The psychometric literature contains many papers on

this topic. To explore this area, consult recent issues of journals such as American Statistician.

One example is a paper by Looney and Stanley [1989]. See also Chapter 18.

10.4.2 Factorial Designs

An experimental layout that is very common in agricultural and nutritional studies is the balanced

factorial design. It is less common in medical research, due to the ever-present risk of missing

observations and ethical constraints.

Definition 10.12. In a factorial design each level of a factor occurs with every level of

every other factor. Experimental units are assigned randomly to treatment combinations.

Suppose that there are three factors with levels I = 3, J = 2, and K = 4. Then there are

3 × 2 × 4 = 24 treatment combinations. If there are three observations per combination, 72

experimental units are needed. Factorial designs, if feasible, are very economical and permit

assessment of joint effects of treatments that are not possible with experiments dealing with

one treatment at a time. The two-way analysis of variance can be thought of as dealing with a

two-factor experiment. The generalization to three or more factors does not require new concepts

or strategies, just increased computational complexity.

10.4.3 Hierarchical or Nested Designs

A hierarchical or nested design is illustrated by the following example. As part of a program

to standardize measurement of the blood level of phenytoin, an antiepileptic drug, samples with

known amounts of active ingredients are sent to four commercial laboratories for analysis. Each
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laboratory employs a number of technicians who make one or more determinations of the blood

level. A possible layout is the following:

Laboratory 1 2 3 4

Technician 1 2 3 4 5 6 7 8 9

Assay
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

In this example, laboratory 2 employs three technicians who routinely do this assay; all other

laboratories use two technicians. In laboratory 3, each technician runs three assays; in the other

laboratories each technician runs two assays. There are three factors: laboratories, technicians,

and assays; the arrangement is not factorial: there is no reason to match technician 1 with any

technician from another laboratory.

Definition 10.13. In a hierarchical or nested design levels of one or more factors are

subsampled within one or more other factors. In other words, the levels of one or more factors

are not crossed with one or more other factors.

In the example above, the factors, “technicians” and “assay,” are not “crossed” with the first

factor but rather nested within that factor. For the factor “technician” to be “crossed,” its levels

would have to repeat within each level of “laboratory.” That is why we deliberately labeled

the levels of “technician” consecutively and introduced some imbalance. Determining whether

a design is factorial or hierarchical is not always easy. If the first of the two technicians within

a laboratory was the senior technician and the second (or second and third) a junior technician,

then “technician” could perhaps be thought of as having two levels, “senior” and “junior,”

which could then be crossed with “laboratory.” A second reason is that designs are sometimes

mixed, having both factorial and hierarchical components. In the example above, if “technician”

occurred at two levels, “technician” and “laboratory” could be crossed or factorial, but “assay”

would continue to be nested within “technician.”

10.4.4 Split-Plot Designs

A related experimental design is the split-plot design. We illustrate it with an example. We want

to test the effect of physiotherapy in conjunction with drug therapy on the mobility of patients

with arthritis. Patients are randomly assigned to physiotherapy, and each patient is given a

standard drug and a placebo in random order. The experimental layout is as follows:

Physiotherapy

i = 1 (Yes) i = 2 (No)

k Patient 1 2 · · · J 1 2 · · · J

1 Drug Y111 — · · · — Y211 — · · · —

2 Placebo Y112 — · · · — Y212 — · · · —

The patients form the “whole plots” and the drug administration, the “split plot.” These

designs are characterized by almost separate analyses of specified effects. To illustrate in this

example, let

D

ij

= Y

ij1 − Y

ij2 and T

ij

= Y

ij1 + Y

ij2, i = 1, 2, j = 1, . . . , J

In words, D

ij

is the difference between drug and placebo for patient j receiving physiotherapy

level i; T

ij

is the sum of readings for drug and placebo. Now carry out an analysis of variance

(or two-sample t-test) on each of these variables; see Table 10.23.



UNBALANCED OR NONORTHOGONAL DESIGNS 393

Table 10.23 anova Table for Split-Plot Design

Interpretation of Split-Plot Analyses

One-Way anova d.f. Differences Sums

Mean 1 Mean differences Mean sums

Between groups 1 Differences × physiotherapy Sums × physiotherapy

Within groups 2(J − 1) Differences within physiotherapy Sums within physiotherapy

Total 2J “Total” “Total”

An analysis of variance of the sums is, in effect, an assessment of physiotherapy (averaged

or summed over drug and placebo), that is, a comparison of T 1· and T 2·.

The analysis of differences is very interesting. The assessment of the significance of “between

groups” is a comparison of the average differences between drug and placebo with physiotherapy

and without physiotherapy; that is, D1· − D2· is a test for interaction. Additionally, the “mean

differences” term can be used to test the hypothesis that D·· comes from a population with

mean zero, that is, it is a comparison of drug and placebo. This test makes sense only if the

null hypothesis of no interaction is not rejected.

These remarks are intended to give you an appreciation for these designs. For more details,

consult a text on design of experiments, such as Winer [1971].

10.5 UNBALANCED OR NONORTHOGONAL DESIGNS

In previous sections we have discussed balanced designs. The balanced design is necessary to

obtain an additive partition of the sum of squares. If the design is not balanced, there are basically

three strategies available; the first is to try to restore balance. If only one or two observations are

“missing,” this is a possible strategy, but if more than two or three are missing, a second or third

alternative will have to be used. The second alternative is to use an unweighted means analysis. The

third strategy is to use a multiple regression approach; this is discussed in detail in Section 11.10.

10.5.1 Causes of Imbalance

Perhaps the most important thing you can do in the case of unbalanced data is to reflect on the

reason(s) for the imbalance. If the imbalance is due to some random mechanism unrelated to the

factors under study, the procedures discussed below are appropriate. If the imbalance is due to a

specific reason, perhaps related to the treatment, it will be profitable to think very carefully about

the implications. Usually, such imbalance suggests a bias in the treatment effects. For example,

if a drug has major side effects which cause patients to drop out of a study, the effect of the drug

may be estimated inappropriately if only the remaining patients are used in the analysis; if one

does the analysis only on patients for whom “all data are available,” biased estimates may result.

10.5.2 Restoring Balance

Missing Data in the Randomized Block Design

Suppose that the ij th observation is missing in a randomized block design consisting of I blocks

and J treatments. The usual procedure is to:

1. Estimate the missing data point by least squares using the formula

̂

Y

ij

=

IY

i· + JY·j − Y··

(I − 1)(J − 1)

(28)

where the row, column, and grand totals are those for the values present.
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2. Carry out the usual analysis of variance on this augmented data set.

3. Reduce the degrees of freedom for MS
ǫ

by 1.

If more than one observation is missing, say two or three, values are guessed for all but one,

the latter is estimated by equation (28), a second missing value is deleted, and the process is

repeated until convergence. The degrees of freedom for MS
ǫ

are now reduced by the number

of observations that are missing.

Example 10.6. (continued ) We return to Table 10.11. Suppose that observation Y31 = 19.1

is missing and we want to estimate it. For this example, I = 6, J = 4, Y3· = 38.8, Y·1 = 209.4,

and Y·· = 599.5. We estimate Y31 by

̂

Y31 =

6(38.8) + 4(209.4) − 599.5

(6 − 1)(4 − 1)

= 31.4

This value appears to be drastically different from 19.1; it is. It also indicates that there is no

substitute for real data. The analysis of variance is not altered a great deal (see Table 10.24).

The F -ratios have not changed much from those in Table 10.12. So in this case, the conclu-

sions are unchanged. Note that the degrees of freedom for residual are reduced by 1. This means

that the critical values of the F -statistics are increased slightly. Therefore, this experiment has

less power than the one without missing data.

Missing Data in Two-Way and Factorial Designs

If a cell in a two-way design has a missing observation, it is possible to replace the missing point

by the mean for that cell, carry out the analysis as before, and subtract one degree of freedom

for MS
ǫ

. A second approach is to carry out an unweighted means analysis. We illustrate both

procedures by means of an example.

Example 10.8. These data are part of data used in Wallace et al. [1977]. The observations

are from a patient with prostatic carcinoma. The question of interest is whether the immune

system of such a patient differs from that of noncarcinoma subjects. One way of assessing this

is to stimulate in vitro the patient’s lymphocytes with phytohemagglutinin (PHA). This causes

blastic transformation. Of interest is the amount of blastogenic generation as measured by DNA

incorporation of a radioactive compound. The data observed are the mean radioactive counts

per minute both when stimulated with PHA and when not stimulated by PHA. As a control, the

amount of PHA stimulation in a pooled sera of normal blood donors was used. To examine the

response of a subject’s lymphocytes, the quantity

subject’s mean count/minute stimulated with PHA

subject’s mean count/minute without PHA

normal sera mean count/minute stimulated with PHA

normal sera mean count/minute without PHA

=

X11/X12

X21/X22
(29)

Table 10.24 anova for Example 10.6

Source of Variable d.f. SS MS F -Ratio

Patients (blocks) 5 5341.93 1068.39 9.90

Treatments 3 2330.30 776.77 7.20

Residual 14 1510.94 107.92 —

Total 22 9183.17 — —
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Table 10.25 DNA Incorporation of Sera of Patient

with Prostatic Carcinoma Compared to Sera from

Normal Blood Donorsa

Radioactivity (counts/min)

Subject With PHA Without PHA

Patient sera 129,594 (11.772) 301 (5.707)

143,687 (11.875) 333 (5.808)

115,953 (11.661) 295 (5.687)

103,098 (11.543) 285 (5.652)

98,125 (11.494)

Blood donor sera 43,125 (10.672) 247 (5.509)

46,324 (10.743) 298 (5.697)

42,117 (10.648) 387 (5.958)

45,482 (10.725)

31,192 (10.348)

a log
e

of counts in parentheses.

was used. If the lymphocytes responded in the same way to the subject’s sera and the pooled

sera, the ratio should be approximately equal to 1. The data are displayed in Table 10.25.

There is a great deal of variability in the counts/minute values as related to level. In

Section 10.6.3 we suggest that logarithms are appropriate for stabilization of the variability.

There is a bonus involved in this case. Under the null hypothesis of no difference in patient and

blood donor sera, the ratio in equation (28) is 1; that is,

H0 :
E(X11)/E(X12)

E(X21)/E(X22)
= 1

This is equivalent to

H0 : log
e

E(X11)/E(X12)

E(X21)/E(X22)
= log

e

1 = 0

or

log
e

E(X11) − log
e

E(X12) − log
e

E(X21) + log
e

E(X22) = 0 (30)

Now define

Y

ijk

= log
e

X

ijk

, i = 1, 2, j = 1, 2, k = 1, . . . , n

ij

It can be shown that equation (30) is zero only if the true interaction term is zero. Thus, the

hypothesis that the patient’s immune system does not differ from that of noncarcinoma subjects

is translated into a null hypothesis about interaction involving the logarithms of the radioactive

counts.

We finally get to the “missing data” problem. The data are not balanced: n

ij

�= n

i·n·j /n··

[we could delete one observation from the (1,2) cell, but considering the small numbers, we

want to retain as much information as possible]. One strategy is to add an observation to cell

(2,2) equal to the mean for that cell and adjust the degrees of freedom for interaction. The mean

Y 22· is 5.721. The analysis of variance becomes as shown in Table 10.26.

Note that the MS for error has 13 degrees of freedom, not 14. The MS for error will be

the correct estimate using this procedure, but the MS for interaction (and main effects) will

not be the same as the one obtained by techniques of Chapter 11. However, it should be

close.
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Table 10.26 anova for the Missing Data Problem

Source d.f. SS MS F -Ratio p-Value

Subject 1 1.4893 1.4893 — —

PHA 1 131.0722 131.0722 — —

PHA × subject 1 1.2247 1.2247 50.0 <0.001

Error 13 0.3184 0.02449 — —

Total 16 — — — —

10.5.3 Unweighted Means Analysis

The second approach is that of unweighted mean analysis. Again, assuming that the unequal cell

frequencies are not due to treatment effects, the cell means are used and an average sample size

calculated for each cell. The appropriate average sample size is given by the harmonic mean.

In the context of our example, the harmonic mean is defined to be

ñ =

IJ

1/n11 + 1/n12 + 1/n21 + 1/n22

where n

ij

is the number of observations in cell (i, j). The harmonic mean is used because the

standard error of the mean of cell (i, j) is proportional to 1/n

ij

. All calculations for row and

column effects are now based on cell means and the harmonic mean of the cell sample sizes.

Write the cell means and marginal means as follows:

Y 11· Y 12·
̂

M1·

Y 21· Y 22·
̂

M2·

̂

M·1
̂

M·2
̂

M··

The marginal and overall means are just the arithmetic average of the cell means, that is, the

unweighted average (hence the name unweighted mean analysis). The row and column sums of

squares are calculated as follows:

SS
α

= ñJ

∑

(M

i· − M··)
2

SS
β

= ñI

∑

(M ·j − M··)
2

SS
γ

= ñ

∑

(Y

ij· − M

i· − M·j + M··)
2

SS
ǫ

is calculated in the usual way: SS
ǫ

=

∑

(Y

ijk

− Y

ij·)
2. For the example, the calculations

are

Means

11.669000 5.713500 8.691250

10.627200 5.721333 8.174266

11.148100 5.717416 8.432758

The harmonic mean ñ is

ñ =

(2)(2)

1/5 + 1/4 + 1/5 + 1/3
= 4.067797

SS
µ

= (4.067797)(2)

[

(8.691250 − 8.432758)

2
+ (8.174266 − 8.432758)

2
]

= 1.0872



VALIDITY OF ANOVA MODELS 397

Table 10.27 anova Table for Unweighted Means

Source d.f. SS MS F -Ratio p-Value

Subject 1 1.0872 1.0872

PHA 1 119.688 119.6888 1

PHA × subject 1 1.1204 1.1204 45.7 <0.001

Error 13 0.3184 0.02449

Total 16

SS
β

= (4.067797)(2)

[

(11.148100 − 8.432758)

2
+ (5.717416 − 8.432758)

2
]

= 119.6888

SS
γ

= (4.067797)

[

(4)(0.262408)

2
]

= 1.1204

making use of the fact that all the interaction deviations are equal in absolute value:

Y 11· − M1· − M·1 + M·· = 0.262408

Y 12· − M1· − M·2 + M·· = −0.262408, . . .

The ANOVA table based on the unweighted means is shown in Table 10.27.

The conclusion remains unchanged. It turns out in this case that the test for interaction is

identical to the multiple regression procedure of Chapter 11.

10.6 VALIDITY OF ANOVA MODELS

10.6.1 Assumptions in anova Models

All the models considered in this chapter have assumed at least the following:

1. Homogeneity of variance

2. Normality of the residual error

3. Statistical independence of the residual errors

4. Linearity of the model

For example, consider again the model associated with the one-way analysis of variance

(omitting the subscripts):

Y = µ + α + ǫ

We assumed that (1) the error term ǫ had constant variance for all values of µ and α, and was

normally distributed; (2) values of ǫ were randomly (independently) selected; and (3) the

response Y was related linearly to µ, α, and ǫ.

In addition, the random effects and repeated measures models made assumptions about the

covariances of the random factors and the residual error; other models assumed zero interaction

(additivity).

If one or more of the assumptions does not hold, one of the following approaches is frequently

used:

1. The data are analyzed by a method that makes fewer assumptions: for example, nonpara-

metric analysis.
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2. Part of the data is eliminated or not used, for example, extreme values (i.e., outliers) are

deleted or replaced by less extreme values. Deletion usually induces bias.

3. The measurement variables are replaced by categorical variables and some kind of analysis

of frequencies is carried out; for example, “age at first pregnancy” is replaced by “teenage

mother: yes–no,” and the number of observations in various categories is now the outcome

variable.

4. A weighted analysis is done; for example, if the variance is not constant at all levels of

response, the responses are weighted by the inverse of the variances. The log-linear models of

Chapter 7 are an example of a weighting procedure.

5. The data are “transformed” to make the assumptions valid. Typical transformations are:

logarithmic, square root, reciprocal, and arcsin
√

. These transformations are nonlinear. Linear

transformations do not alter the analysis of variance tests.

6. Finally, appeal is made to the “robustness” of the anova and the analysis is carried out

anyway. This is a little bit like riding a bicycle without holding onto the handle bars; it takes

experience and courage. If you arrive safely, everyone is impressed, if not, they told you so.

The most common approach is to transform the data. There are advantages and disadvantages

to transformations. A brief discussion is presented in the next section. In the other sections we

present specific tests of the assumptions of the anova model.

10.6.2 Transformations

Some statisticians recommend routine transformations of data before any analysis is carried

out. We recommend the contrary approach; do not carry out transformations unless necessary,

and then be very careful, particularly in estimation. We discuss this more fully below, but first

we present some common transformations. Table 10.28 lists seven of the most commonly used

transformations and one somewhat more specialized one. Each row in the table lists some of

the characteristics of the transformation and its uses. A large number of these transformations

are variance stabilizing. For example, if the variance of Y is λ

2
µ

Y

, where λ is a constant and

µ

Y

is the expected value of Y , then
√

Y tends to have a variance that is constant and equal

to λ

2
/4. Hence, this transformation is frequently associated with a Poisson random variable: in

this case λ = 1, so that
√

Y tends to have a variance of 1/4 regardless of the value of µ

Y

. This

result is approximate in that it holds for large values of µ

Y

. However, the transformation works

remarkably well even for small µ

Y

, say, equal to 10. Freeman and Tukey [1950] have proposed

a modification of the square root transformation which stabilizes the variance for even smaller

values of µ

Y

. Variance stabilizing transformations tend to be normalizing as well and can be

derived explicitly as a function of the variance of the original variable.

The logarithmic transformation is used to stabilize the variance and/or change a multiplica-

tive model into an linear model. When the standard deviation of Y is proportional to µ

Y

the

logarithmic transformation tends to stabilize the variance. The reciprocal transformation (one per

observation) is used when the variance is proportional to µ

4
Y

. These first three transformations

deal with a progression in the dependence of the variance of Y on µ

Y

: from µ

Y

to µ

4
Y

. The

transformations consist of raising Y to an exponent from Y

1/2 to Y

−1. If we define the limit of

Y

b to be log
e

Y as b approaches 0, these transformations represent a gradation in exponents. A

further logical step is to let the data determine the value of b. This transformation, Y

b, is an

example of a power transformation. (Power here does not imply “powerful” but simply that Y

is raised to the bth power.) See Note 10.4 for additional comments.

The next two transformations are used with proportions or rates. The first one of these is the

ubiquitous logistic transformation, which is not variance stabilizing but does frequently induce

linearity (cf. Section 7.5). The angle transformation is variance stabilizing but has a finite range;

it is not used much anymore because computational power is now available to use the more

complex but richer logistic transformation.
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The Fisher Z-transformation is used to transform responses whose range is between −1 and

+1. It was developed specifically for the Pearson product-moment correlation coefficient and

discussed in Chapter 9. Finally, we mention one transformation via ranks, the normal scores

transformation. This transformation is used extensively in nonparametric analyses and discussed

in Chapter 8.

There are benefits to the use of transformations. It is well to state them explicitly since we

also have some critical comments. The benefits include the following:

1. Methods using the normal distribution can be used.

2. Tables, procedures, and computer programs are available.

3. A transformation derived for one purpose tends to achieve some other purposes as well—

but not always.

4. Inferences (especially relating to hypothesis testing) can be made more easily.

5. Confidence intervals in the transformed scale can be “transformed back” (but estimates

of standard errors cannot).

Transformations are more useful for testing purposes than for estimation. The following

drawbacks of transformations should be kept in mind:

1. The order of statistics may not be preserved. Consider the following two sets of data:

sample 1 : 1, 10; sample 2 : 5, 5. The arithmetic means are 5.5 and 5.0, respectively.

The geometric means (i.e., the antilogarithms of the arithmetic mean of the logarithms of

the observations) are 3.2 and 5.0, respectively. Hence, the ordering of the means is not

preserved by the transformation (the ordering of the raw data is preserved).

2. Contrary to some, we think that there may be a “natural scale” of measurement. Some

examples of variables with a natural scale of measurement are “life expectancy” measured

in years, days, or months; cost of medical care in dollars; number of accidents attributable

to alcoholism. Administrators or legislators may not be impressed with, or willing to think

about, the cost of medical care in terms of “square root of millions of dollars expended.”

3. Closely related is the problem of bias. An obvious approach to the criticism in our discus-

sion of drawback 2 is to do the analysis in the transformed units and then transform back

to the original scale. Unfortunately, this introduces bias as mentioned in our discussion of

drawback 1. Formally, if Y is the variable of interest and W = g(Y ) its transform, then

it is usually the case that

E(W) �= g(E(Y ))

There are ways of assessing this bias and eliminating it but such methods are cumbersome

and require an additional layer of computations, something the transformation was often

designed to reduce!

4. Finally, many of the virtues of transformations are asymptotic virtues; they are approached

as the sample size becomes very large. This should be kept in mind when analyzing

relatively small data sets.

10.6.3 Testing of Homogeneity of Variance

It is often the case that the variance or standard deviation is proportional to the mean level of

response. There are two common situations where this occurs. First, where the range of response

varies over two or more orders of magnitude; second, in situations where the range of response

is bounded, on the left, the right or both. Examples of the former are Poisson random variables;

examples of the latter, responses such as proportions, rates, or random variables that cannot be

negative.
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Figure 10.6 Mean serum fluorescence level and standard deviation. (Data from Sherwin and Layfield

[1976]; see Example 10.5.)

The simplest verification of homogeneity of variance is provided by a graph, plotting the

variance or standard deviation vs. the level of response.

Example 10.5. (continued ) In Table 10.8, the means and standard deviations of serum flu-

orescence readings of mice exposed to nitrogen dioxide are given. In Figure 10.6 the standard

deviations are plotted against the means of the various treatment combinations. This example

does not demonstrate any pattern between the standard deviation and the cell means. It would

not be expected because the range of the cell means is fairly small.

Example 10.9. A more interesting example is the data of Quesenberry et al. [1976] dis-

cussed in Problem 3.14. Samples of peanut kernels were analyzed for aflatoxin levels. Each

sample was divided into 15 or 16 subsamples. There was considerable variability in mean levels

and corresponding standard deviations.

A plot of means vs. standard deviations displays an increasing pattern, suggesting a log-

arithmic transformation to stabilize the variance. This transformation as well as two other

transformations (

√

Y , Y

1/4
) are summarized in Table 10.29. Means vs. standard deviations are

Table 10.29 Aflatoxin Levels in Peanut Kernels: Means and Standard Deviations for 11 Samples

Using Transformations

Mean and Standard Deviation of Aflatoxin Level

Y W = Y

1/4
W =

√

Y W = log Y

Sample n Mean SD Mean SD Mean SD Mean SD

1 16 110 25.6 3.2 0.192 10.4 1.24 4.7 0.240

2 16 79 20.6 3.0 0.204 8.8 1.19 4.3 0.281

3 16 21 3.9 2.1 0.109 4.5 0.45 3.0 0.213

4 16 33 12.2 2.4 0.192 5.7 0.96 3.4 0.311

5 15 32 10.6 2.4 0.194 5.6 0.92 3.4 0.328

6 16 15 2.7 2.0 0.089 3.8 0.35 2.7 0.183

7 15 33 6.2 2.4 0.111 5.8 0.54 3.5 0.183

8 16 31 2.8 2.4 0.054 5.6 0.26 3.4 0.092

9 16 17 4.2 2.0 0.129 4.1 0.51 2.8 0.261

10 16 8 3.1 1.7 0.143 2.9 0.49 2.1 0.339

11 15 84 17.7 3.0 0.164 9.1 0.98 4.4 0.221

Source: Data from Quesenberry et al. [1976].
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Figure 10.7 Means vs. standard deviation, arithmetic and logarithmic scales. (Data from Wallace et al.

[1977]; see Example 10.8.)

plotted in Figure 10.7. The first pattern clearly indicates a linear trend; the plot for the data

expressed as logarithms suggests very little pattern. This does not prove that the lognormal

model is appropriate. Quesenberry et al. [1976], in fact, considered two classes of models: the

11 samples are from normal distributions with means and variances µ

i

, σ

2
i

, i = 1, . . . , 11; the

second class of models assumes that the logarithms of the aflatoxin levels for the 11 samples

come from normal distributions with means and variances γ

i

, θ

2
, i = 1, . . . , 11.

On the basis of their analysis, they conclude that the normal models are more appropriate.

The cost is, of course, that 10 more parameters have to be estimated. Graphs of means vs.

standard deviation for the
√

Y and Y

1/4 scale still suggest a relationship.

The tests of homogeneity of variance developed here are graphical. There are more formal

tests. All of the tests assume normality and are sensitive to departure from normality. In view

of the robustness of the analysis of variance to heterogeneity of variance, Box [1953] remarked

that “. . . to make the preliminary tests on variances is rather like putting to sea in a rowing boat

to find out whether conditions are sufficiently calm for an ocean liner to leave port.” There are

four common tests of homogeneity of variance, associated with the names of Hartley, Cochran,

Bartlett, and Scheffé. Only the first two are described here, they will be adequate for most

purposes. For a description of the other tests see, for example, Winer [1971]. Suppose that

there are k samples with sample size n

i

and sample variance s

2
i

, i = 1, . . . , k. For the moment,

assume that all n

i

are equal to n. Hartley’s test calculates

FMAX =

s

2
maximum

s

2
minimum

Cochran’s test calculates

C =

s

2
maximum
∑

S

2
i

In the absence of software for computing critical values, both statistics can be referred to

appropriate tables in the Web appendix. If the sample sizes are not equal, the tables can be

entered with the minimum sample size to give a conservative test and with the maximum
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Table 10.30 Calculations for Example 10.9

Scale Fmax C

Y

(

25.6

2.7

)2

= 89.9
(25.7)

2

1758.1
= 0.38

√

Y

(

1.24

0.26

)2

= 22.7
(1.24)

2

9.787
= 0.16

Y

1/4

(

0.204

0.054

)2

= 14.1
(0.204)

2

0.252
= 0.16

log
e

Y

(

0.339

0.092

)2

= 13.6
(0.339)

2

0.694
= 0.17

Critical value at 0.05 level 5.8 0.15

sample size to give a “liberal” test (i.e., the null hypothesis is rejected more frequently than the

nominal significance level).

Example 10.9. (continued ) For the transformations considered, the FMAX test and C test

statistics are as shown in Table 10.30.

The critical values have been obtained by interpolation. The FMAX test indicates that none of

the transformations achieve satisfactory homogeneity of variance, validating one of Quesenberry

et al.’s conclusions. The Cochran test suggests that there is little to choose between the three

transformations.

A question remains: How valid is the analysis of variance under heterogeneity of variance?

Box [1953] indicates that for three treatments a ratio of 3 in the maximum-to-minimum pop-

ulation variance does not alter the significance level of the test appreciably (one-way anova

model with n

i· = 5, I = 3). The analysis of variance is therefore reasonably robust with respect

to deviation from homogeneity of variance.

10.6.4 Testing of Normality in anova

Tests of normality are not as common or well developed as tests of homogeneity of variance.

There are at least two reasons: first, they are not as crucial because even if the underlying

distribution of the data is not normal, appeal can be made to the central limit theorem. Second,

it turns out that fairly large sample sizes are needed (say, n > 50) to discriminate between

distributions. Again, most tests are graphical.

Consider for simplicity the one-way analysis of variance model

Y

ij

= µ + α

i

+ ǫ

ij

, i = 1, . . . , I, j = 1, . . . , n

i

By assumption the ǫ

ij

are iid N(0, σ

2
). The ǫ

ij

are estimated by

ǫ

ij

= Y

ij

− Y

i·

The e

ij

are normally distributed with population mean zero;
∑

e

2
ij

/(n − I ) is an unbiased

estimate of σ

2 but the e

ij

are not statistically independent. They can be made statistically

independent, but it is not worthwhile for testing the normality. Some kind of normal probability

plot is usually made and a decision made based on a visual inspection. Frequently, such a plot is

used to identify outliers. Before giving an example, we give a simple procedure which is based

on the use of order statistics.



404 ANALYSIS OF VARIANCE

Definition 10.14. Given a sample of n observations, Y1, Y2, . . . , Y

n

, the order statistics

Y

(1)

, Y

(2)

, . . . , Y

(n)

are the values ranked from lowest to highest.

Now suppose that we generate samples of size n from an N(0, 1) distribution and average

the values of the order statistics.

Definition 10.15. Rankits are the expected values of the order statistics of a sample of size

n from an N(0, 1) distribution. That is, let Z

(1)

, . . . , Z

(n)

be the order statistics from an N(0, 1)

population; then the rankits are E(Z

(1)

), E(Z

(2)

), . . . , E(Z

(n)

).

Rankits have been tabulated in Table A.13. A plot of the order statistics of the residuals

against the rankits is equivalent to a normal probability plot. A reasonable approximation for

the ith rankit is given by the formula

E(Z

(i)

)

.

= 4.91[p0.14
− (1 − p)

0.14] (31)

where

p =

i − 3/8

n + 1/4

For a discussion, see Joiner and Rosenblatt [1971]. To illustrate its use we return to Example 10.1.

A one-way analysis of variance was constructed for these data and we now want to test the

normality assumption.

Example 10.1. (continued ) The distribution of ages at which infants first walked [discussed

in Section 10.2.1 (see Table 10.1)] is now analyzed for normality. The residuals Y

ij

− Y

i· for

the 23 observations are:

−1.125 −0.375 −0.208 0.900

−0.625 −1.375 0.292 −0.850

−0.375 −1.375 −2.708 −0.350

−0.125 0.375 −0.208 1.150

2.875 −0.875 1.542 −0.850

−0.625 3.625 1.292

Note that the last observation has been omitted again so that we are working with the

23 observations given in the paper. These observations are now ranked from smallest to largest

to be plotted on probability paper. To illustrate the use of rankits, we will calculate the expected

values of the 23 normal (0,1) order statistics using equation (31). The 23 order statistics for e

ij

,

e

(ij)

, and the corresponding rankits are presented in Table 10.31.

For example, the largest deviation is −2.708; the expected value of Z

(1)

associated with this

deviation is calculated as follows:

p =

1 − 3/8

23 + 1/4
= 0.02688

E(Z

(1)

) = 4.91[(0.02688)

0.14
− (1 − 0.02688)

0.14]

= −1.93

The rankits and the ordered residuals are plotted in Figure 10.8. What do we do with this

graph? Is there evidence of nonnormality?
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Table 10.31 Order Statistics for Example 10.1

e

(ij)

E(Z

(ij)

) e

(ij)

E(Z

(ij)

) e

(ij)

E(Z

(ij)

)

−2.708 −1.93 −0.625 −0.33 0.375 0.57

−1.375 −1.48 −0.375 −0.22 0.900 0.70

−1.375 −1.21 −0.375 −0.11 1.150 0.84

−1.125 −1.01 −0.350 0.0 1.292 1.01

−0.875 −0.84 −0.208 0.11 1.542 1.21

−0.850 −0.70 −0.208 0.22 2.875 1.48

−0.850 −0.57 −0.125 0.33 3.625 1.93

−0.625 −0.44 −0.292 0.44

Figure 10.8 Normal probability plot of residuals from linear model. (Data from Zelazo et al. [1972]; see

Example 10.1.)

There does seem to be some excessive deviation in the tails. The question is: How important

is it? One way to judge this would be to generate many plots for normal and nonnormal data

and compare the plots to develop a visual “feel” for the data. This has been done by Daniel

and Wood [1999] and Daniel [1976]. Comparison of this plot with the plots in Daniel and

Wood suggests that these data deviate moderately from normality. For a further discussion, see

Section 11.8.1.

More formal tests of normality can be carried out using the Kolmogorov–Smirnov test of

Chapter 8. A good test is based on the Pearson product-moment correlation of the order statistics

and corresponding rankits. If the residuals are normally distributed, there should be a very high

correlation between the order statistics and the rankits. The (null) hypothesis of normality is

rejected when the correlation is not large enough. Weisberg and Bingham [1975] show that this

is a very effective procedure. The critical values for the correlation have been tabulated; see, for

example, Ryan et al. [1980]. For n ≥ 15, the critical value is on the order of 0.95 or more. This
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is a simple number to remember. For Example 10.1, the correlation between the order statistics

of the residuals, e

(ij)

and the rankits E(Z

(ij)

) is r = 0.9128 for n = 23. This is somewhat

lower than the critical value of 0.95 again, suggesting that the residuals are “not quite” normally

distributed.

10.6.5 Independence

One of the most difficult assumptions to verify is that of statistical independence of the residuals.

There are two problems. First, tests of independence for continuous variables are difficult to

implement. Frequently, such tests are, in fact, tests of no correlation among the residuals, so

that if the errors are normally distributed and uncorrelated, they are independent. Second, the

observed residuals in the analysis of variance have a built-in dependence due to the constraints

on the linear model. For example, in the one-way analysis of variance with I treatments and,

say, n

i· = m observations per treatment, there are mI residuals but only (m − 1)I degrees of

freedom; this induces some correlation among the residuals. This is not an important dependence

and can be taken care of.

Tests for dependence usually are tests for serial correlation (i.e., correlation among adjacent

values). This assumes that the observations can be ordered in space or time. The most common

test statistic for serial correlation is the Durbin–Watson statistic. See, for example, Draper and

Smith [1998]. Computer packages frequently will print this statistic assuming that the observa-

tions are entered in the same sequence in which they were obtained. This, of course, is rarely

the case and the statistic and its value should not be used. Such “free information” is sometimes

hard to ignore; the motto for computer output is caveat lector (let the reader beware).

10.6.6 Linearity in anova

Like independence, linearity is difficult to verify. In Example 10.7 we illustrated a multiplicative

model. The model was transformed to a linear (nonadditive) model by considering the logarithm

of the original observations. Other types of nonlinear models are discussed in Chapters 11 to

15. Evidence for a nonlinear model may consist of heterogeneity of variance or interaction.

However, this need not always be the case. Scheffé [1959] gives the following example. Suppose

that there are I + J + 1 independent Poisson variables defined as follows: U1, U2, . . . , U

I

have

means α1, α2, . . . , α

I

; V1, V2, . . . , V

J

have means β1, β2, . . . , β

J

; and W has mean γ . Let

Y

ij

= W + U

i

+ V

j

; then E(Y

ij

) = γ + α

i

+ β

j

; that is, we have an additive, linear model. But

var(Y
ij

) = γ +α

i

+β

j

, so that there is heterogeneity of variance (unless all the α

i

are equal and

all the β

j

are equal). The square root transformation destroys the linearity and the additivity.

Scheffé [1959] states: “It is not obvious whether Y or
√

Y is more nearly normal . . . but in the

present context it hardly matters.” A linear model is frequently assumed to be appropriate for

a set of data without any theoretical basis. It may be a reasonable first-order approximation to

the “state of nature” but should be recognized as such.

Sometimes a nonlinear model can be derived from theoretical principles. The form of the

model may then suggest a transformation to linearity. But as the example above illustrates, the

transformation need not induce other required properties of anova models, or may even destroy

them.

Another strategy for testing linearity is to add some nonlinear terms to the model and then

test their significance. In Sections 11.7 and 11.8 we elaborate on this strategy.

10.6.7 Additivity

The term additivity is used somewhat ambiguously in the statistical literature. It is sometimes

used to describe the transformation of a multiplicative model to a linear model. The effects

of the treatment variables become “additive” rather than multiplicative. We have called such a

transformation a linearizing transformation. It is not always possible to find such a transformation
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(see Section 11.10.5). We have reserved the term additivity for the additive model illustrated by

the two-way analysis of variance model (see Definition 10.4). A test for additivity then becomes

a test for “no interaction.” Scheffé [1959] proves that transformations to additivity exists for a

very broad class of models.

The problem is that the existence of interaction may be of key concern. Consider

Example 10.8. The existence of interaction in this example is taken as evidence that the immune

system of a patient with prostatic carcinoma differed from that of normal blood donors. This

finding has important implications for a theory of carcinogenesis. These data are an example

of the importance of expressing observations in an appropriate scale. Of course, what evidence

is there that the logarithms of the radioactive count is the appropriate scale? There is some

arbitrariness, but the original model was stated in terms of percentage changes, and this implies

constant changes on a logarithmic scale.

So the problem has been pushed back one step: Why state the original problem in terms of

percentage changes? The answer must be found in the experimental situation and the nature of

the data. Ultimately, the researcher will have to provide justification for the initial model used.

This discussion has been rather philosophical. One other situation will be considered: the

randomized block design. There is no test for interaction because there is only one observation

per cell. Tukey [1949] suggested a procedure that is an example of a general class of procedures.

The validity of a model is evaluated by considering an enlarged model and testing the significance

of the terms in the enlarged model. To be specific, consider the randomized block design model

of equation (23):

Y

ij

= µ + β

i

+ τ

j

+ ε

ij

, i = 1, . . . , I, j = 1, . . . , J

Tukey [1949] embedded this model in the “richer” model

Y

ij

= µ + β

i

+ τ

j

+ λβ

i

τ

j

+ ε

ij

, i = 1, . . . , I, j = 1, . . . , J (32)

He then proposed to test the null hypothesis,

H0 : λ = 0

as a test for nonadditivity. Why this form? It is the simplest nonlinear effect involving both

blocks and treatments. The term λ is estimated and tested as follows. Let the model without

interaction be estimated by

Y

ij

= Y ·· + b

i

+ t

j

+ e

ij

where

b

i

= Y

i· − Y ··, t

j

= Y ·j − Y ·· and e

ij

= Y

ij

− Y ·· − b

i

− t

j

We have the usual constraints,
∑

b

i

=

∑

t

j

= 0

and
∑

i

e

ij

=

∑

j

e

ij

= 0 for all i and j

Now define
X

ij

= b

i

t

j

, i = 1, . . . , I, j = 1, . . . , J (33)

It can be shown that the least squares estimate, ̂λ, of λ is

̂

λ =

∑

X

ij

Y

ij

∑

X

2
ij

(34)
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Since X = 0 (why?), the quantity ̂

λ is precisely the regression of Y

ij

on X

ij

. The sum of

squares for regression is the sum of squares for nonadditivity in the anova table:

SS
λ

= SSnonadditivity =

(
∑

X

ij

Y

ij

)2

∑

X

2
ij

(35)

The anova table for the randomized block design including the test for nonadditivity is dis-

played in Table 10.32. As expected, the SS
λ

has one degree of freedom since we are estimating

a slope. But who “pays” for the one degree of freedom? A little reflection indicates that it must

come out of the error term; the number of constraints on the block and treatment effects remain

the same. A graph of Y

ij

vs. X

ij

(or equivalently, e

ij

vs. X

ij

) will indicate whether there is any

pattern.

The idea of testing models within larger models as a way of testing the validity of the model

is discussed further in Section 11.8.2.

Example 10.6. (continued ) We now apply the Tukey test for additivity to the experiment

assessing the effect of pancreatic supplements on fat absorption in patients with steatorrhea,

discussed in Section 10.3.2. We need to calculate SS
λ

from equation (35) and this involves the

regression of Y

ij

on X

ij

, where X

ij

is defined by equation (33). To save space we calculate

only a few of the X

ij

. For example,

X11 =

(

Y 1· − Y ··

) (

Y ·1 − Y ··

)

= (16.9 − 25.775)(38.083 − 25.775)

= −109.2

and

X23 =

(

Y 2· − Y ··

) (

Y ·3 − Y ··

)

= (25.625 − 25.775)(17.417 − 25.775)

= 1.3

(Note that a few more decimal places for the means are used here as compared to

Table 10.15.) A graph of Y

ij

vs. X

ij

is presented in Figure 10.9. The estimate of the slope is

̂

λ =

∑

X

ij

Y

ij

∑

X

2
ij

=

(−109.2)(44.5) + (82.0)(7.3) + · · · + (98.8)(52.6)

(−109.2)

2
+ (82.0)

2
+ · · · + (98.8)

2

=

13,807

467,702

= 0.029521

SS
λ

is

SS
λ

=

(13,807)

2

467,702
= 407.60

The analysis of variance is tabulated in Table 10.33.
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Figure 10.9 Plot of the Tukey test for additivity. See the text for an explanation.

Table 10.33 Randomized Block Analysis with Tukey Test for Additivity of Fecal Fat Excretion of

Patients with Steatorrhea

Source of Variation d.f. SS MS F -Ratio p-Value

Patients 5 5588.38 1117.68 13.1 <0.001

Treatments 3 2008.60 669.53 7.83 <0.01

Additivity 1 407.60 407.60 4.76 0.025 < p < 0.05

Residual 14 1197.80 85.557

Total 23 9202.38

Source: Data from Graham [1977].

The test for additivity indicates significance at the 0.05 level (p = 0.047); thus there is some

evidence that the data cannot be represented by an additive model. Tukey [1949] related the

constant a in Y

a (power transformation) to the degree of nonadditivity by the following formula:

â = 1 −̂

λY ··.

The quantity â is a statistic and hence a random variable. For a particular set of data, the

confidence interval on â will tend to be fairly wide; hence, a “nice” value of “a” is usually

chosen. For the example, â = 1 − (0.029521)(25.775) = 0.239. A “nice” value for “ a” is thus

0.25, or even 0.20.

10.6.8 Strategy for Analysis of Variance

It is useful to have a checklist in carrying out an anova. Not every item on the list needs to

be considered, nor necessarily in the order given, but you will find it useful to be reminded of

these items:

1. Describe how the data were generated: from what population? To what population will

inferences be made? State explicitly at what steps in the data generation randomness

entered.
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2. Specify the anova null hypotheses, alternative hypotheses; whether the model is fixed,

random, or mixed.

3. Graph the data to get some idea of treatment effects, variability, and possible outliers.

4. If necessary, test the homogeneity of variance and the normality.

5. If anova is inappropriate on the data as currently expressed, consider alternatives. If

transformations are used, repeat steps 2 and 4.

6. Carry out the anova. Calculate F -ratios. Watch out for F -ratios much less than 1; they

usually indicate an inappropriate model.

7. State conclusions and limitations.

8. If null hypotheses are not rejected, consider the power of the study and of the analysis.

9. For more detailed analyses and estimation procedures, see Chapter 12.

NOTES

10.1 Ties in Nonparametric Analysis of Variance (One-Way and Randomized Block)

As indicated, both the Kruskal–Wallis and the Friedman tests are conservative in the presence

of ties. The adjustment procedure is similar to those used in Chapter 8, equation (4). For the

Kruskal–Wallis situation, let

CKW =

∑

L

l=1

(

t

3
l

− t

l

)

n

3
− n

where L is the number of groups of tied ranks and t

l

is the number of ties in group l, l =

1, . . . , L. Then the statistic TKW [equation (13)] is adjusted to TADJ = TKW/(1 − CKW). Since

0 ≤ CKW ≤ 1, TADJ ≥ TKW. Hence, if the null hypothesis is rejected with TKW, it will certainly

be rejected with TADJ since the degrees of freedom remain unchanged. Usually, CKW will be

fairly small: Suppose that there are 10 tied observations in an anova of 20 observations; in this

case CKW(103
− 10)/(203

− 20) = 0.1241, so that TADJ = TKW/(1 − 0.1241) = 1.14TKW. The

adjusted value is only 14% larger than the value of TKW even in this extreme situation. (If the

10 ties are made up of five groups of two ties each, the adjustment is less than 0.5%).

A similar adjustment is made for the Friedman statistic, given by equations (25) and (26).

In this case,

CFR =

∑

I

i=1

∑

L

i

l=1

(

t

3
il

− t

il

)

I (J

3
− J )

where t

il

is the number of ties in group l within block i and untied values within a block are

counted as a group of size 1. (Hence
∑

L

i

l=1 t

il

= J for every i.) The adjusted Friedman statistic,

TADJ, is TADJ = TFR/(1 − CFR). Again, unless there are very many ties, the adjustment factor,

CFR will be relatively small.

10.2 Nonparametric Analyses with Ordered Alternatives

All the tests considered in this chapter have been “omnibus tests”; that is, the alternative hypothe-

ses have been general. In the one-way anova, the null hypothesis is H0 : µ1 = µ2 = · · · =

µ

I

= µ, the alternative hypothesis H1 : µ

i

�= µ

′

i

for at least one i and i

′. Since the power

of a test is determined by the alternative hypothesis, we should be able to “do better” using

more specific alternative hypotheses. One such hypothesis involves ordered alternatives. For

the one-way anova (see Section 10.2), let H1 : µ1 ≤ µ2 ≤ · · · ≤ µ

I

with at least one strict
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inequality. A regression-type parametric analysis could be carried out by coding the categories

X = 1, X = 2, . . . , X = I .

A nonparametric test of H0 against an ordered alternative H1 was developed by Terpstra and

Jonckheere (see, e.g., Hollander and Wolfe [1999]). The test is based on the Mann–Whitney

statistic (see Section 8.6). The Terpstra–Jonckheere statistic is

TTJ =

I−1
∑

i=1

I

∑

k=i+1

M

ik

=

∑

i<k

M

ik

where M

ik

is the number of pairs with the observation in group i less than that of group k(i < k)

among the n

i

n

k

pairs.

Under the null hypothesis H0 : µ1 = µ2 = · · · = µ

I

= µ, the statistic TTJ has a distribution

that approaches a normal distribution as n becomes large, with mean and variance given by

E [TTJ] =

n

2
−

∑

n

2
i

4

and

var[TTJ] =

[n2
(2n + 3) −

∑

n

2
i

(2n

i

+ 3)]

72

where n = n1 + n2 + · · · + n

I

. See Problems 10.3 and 10.11 for an application.

In Section 10.3.3, a nonparametric analysis of randomized block design was presented to test

the null hypothesis H0 : τ1 = τ2 = · · · = τ

J

= 0. Again, we consider an ordered alternative,

H1 : τ1 ≤ τ2 ≤ · · · ≤ τ

J

with at least one strict inequality. Using the notation of Section 10.3.3,

let R·j = sum of ranks for treatment j . Page [1963] developed a nonparametric test of H0

against H1. The statistic TPAGE =

∑

J

j=1 jR·j under the null hypothesis approaches a normal

distribution (as I become large) with mean and variance

E [TPAGE] =

IJ

2
(J + 1)

4

and

var [TPAGE] =

I (J

3
− J )

2

144(J − 1)

10.3 Alternative Rank Analyses

Conover and Iman [1981] in a series of papers have advocated a very simple rank analysis:

Replace observations by their ranks and then carry out the usual parametric analysis. These

procedures must be viewed with caution when models are nonadditive [Akritas, 1990] and

discussion in Chapter 8. Hettmansperger and McKean [1978] provide an illustration of another

class of rank-based analytical procedures that can be developed. There are three steps in this

type of approach:

1. Define a robust or nonparametric estimate of dispersion.

2. State an appropriate statistical model for the data.

3. Given a set of data, estimate the values of the parameters of the model to minimize the

robust estimate of dispersion.
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A drawback of such procedures is that estimates cannot be written explicitly, and more

important, the estimation procedure is nonlinear, requiring a computer to carry it out. However,

with the increasing availability of microcomputers, it will only be a matter of time until software

will be developed, making such procedures widely accessible.

It is possible to run a parametric analysis of the raw data routinely and compare it with

some alternative rank analysis. If the two analyses do not agree, the data should be examined

more carefully to determine the cause of the discrepant results; usually, it will be due to the

nonnormality of the data. The researcher then has two choices: if the nonnormality is thought to

be a characteristic of the biological system from which the data came, the rank analysis would

be preferred. On the other hand, if the nonnormality is due to outliers (see Chapter 8), there

are other options available, all the way from redoing the experiment (more carefully this time),

to removing the outliers, to sticking with the analysis of the ranks. Clearly, there are financial,

ethical, and professional costs and risks. What should not be done in the case of disagreement is

to pick the analysis that conforms, in some sense, to the researcher’s preconceptions or desires.

10.4 Power Transformation

Let Y

δ be a transformation of Y . The assumption is that Y

δ is normally distributed with mean

µ (which will depend on the experimental model) and variance σ

2. The SS
ε

will now be a

function of δ. It can be shown that the appropriate quantity to be minimized is

L(δ) =

n

2
SS

ε

−

∑

ln(δy

δ

)

and defined to be

=

n

2
SS

ǫ

−

∑

ln y

for δ = 0 (corresponding to the logarithmic transformation). Typically, this equation is solved

by trial and error. With a computer this can be done quickly. Usually, there will be a range of

values of δ over which the values of L(δ) will be close to the minimum; it is customary then to

pick a value of δ that is simple. For example, if the minimum of L(δ) occurs at δ = 0.49, the

value chosen will be δ = 0.50 to correspond to the square root transformation. For an example,

see Weisberg [1985]. Empirical evidence suggests that the value of δ derived from the data is

frequently close to some “natural” rescaling of the data. (This may just be a case of perfect

20/20 hindsight.)

PROBLEMS

For Problems 10.1 to 10.23, carry out one or more of the following tasks. Additional tasks are

indicated at each problem.

(a) State an appropriate anova model, null hypotheses, and alternative hypotheses.

State whether the model is fixed, random, or mixed. Define the population to

which inferences are to be made.

(b) Test the assumption of homogeneity of variance.

(c) Test the assumption of normality using a probability plot.

(d) Test the assumption of normality correlating residuals and rankits.

(e) Graph the data. Locate the cell means on the graph.

(f) Transform the data. Give a rationale for transformation.
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(g) Carry out the analysis of variance. State conclusions and reservations. Compare

with the conclusions of the author(s) of the paper. If possible, estimate the power

if the results are not significant.

(h) Carry out a nonparametric analysis of variance. Compare with conclusions of

parametric analysis.

(i) Partition each observation into its component parts [see, e.g., equations (4) and

(19)] and verify that the sum of squares of each component is equal to one of

the sums of squares in the anova table.

(j) Construct the anova table from means and standard deviations (or standard

errors). Do relevant parts of (g).

10.1 Olsen et al. [1975] studied “morphine and phenytoin binding to plasma proteins in

renal and hepatic failure.” Twenty-eight subjects with uremia were classified into four

groups. The percentage of morphine that was bound is the endpoint.

Chronic (n1 = 18) : 31.5, 35.1, 32.1, 34.2, 26.7, 31.9, 30.8,

27.3, 27.3, 29.0, 30.0, 36.4, 39.8, 32.0, 35.9, 29.9, 32.2, 31.8

Acute (n2 = 2) : 31.6, 28.5

Dialysis (n3 = 3) : 29.3, 32.1, 26.9

Anephric (n4 = 5) : 26.5, 22.7, 27.5, 24.9, 23.4

(a) Do tasks (a) to (e) and (g) to (i).

(b) In view of the nature of the response variable (percent of morphine bound),

explain why, strictly speaking, the assumption of homogeneity of variance cannot

hold.

10.2 Graham [1977] assayed 16 commercially available pancreatic extracts for six types

of enzyme activity. See also Example 10.6. Data for one of these enzymes, prote-

olytic activity, are presented here. The 16 products were classified by packaging form:

capsule, tablet, and enteric-coated tablets. The following data were obtained:

Proteolytic Activity (U/unit)

Tablet (n = 5) 6640 4440 240 990 410

Capsule (n = 4) 6090 5840 110 195

Coated tablet (n = 7) 1800 1420 980 1088 2200 870 690

(a) Do tasks (a) to (e) and (g) to (i).

(b) Is there a transformation that would make the variance more homogeneous? Why

is this unlikely to be the case? What is peculiar about the values for the coated

tablets?

10.3 The following data from Rifkind et al. [1976] consist of antipyrine clearance of males

suffering from β-thalassemia, a chronic type of anemia. In this disease, abnormally

thin red blood cells are produced. The treatment of the disease has undesirable side

effects, including liver damage. Antipyrine is a drug used to assess liver function with

a high clearance rate, indicating satisfactory liver function. These data deal with the

antipyrine clearance rate of 10 male subjects classified according to pubertal stage.
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The question is whether there is any significant difference in clearance rate among the

pubertal stages (I = infant; V = adult).

Pubertal Stage Clearance Rate (Half-Life in Hours)

I 7.4 5.6 3.7 6.6 6.0

IV 10.9 12.2

V 11.3 10.0 13.3

(a) Do tasks (a) to (e) and (g) to (i).

*(b) Assuming that the antipyrine clearance rate increases with age, carry out a non-

parametric test for trend (see Note 10.2). What is the alternative hypothesis in

this case?

10.4 It is known that organisms react to stress. A more recent discovery is that the immune

system’s response is altered as a function of stress. In a paper by Keller et al. [1981],

the immune response of rats as measured by the number of circulating lymphocytes

(cells per milliliter × 10−6) was related to the level of stress. The following data are

taken from this paper:

Number Mean Number

Group of Rats of Lymphocytes SE

Home-cage control 12 6.64 0.80

Apparatus control 12 4.84 0.70

Low shock 12 3.98 1.13

High shock 12 2.92 0.42

(a) Do tasks (a), (b), (e), and (j).

(b) The authors state: “a significant lymphocytopenia [F(3, 44) = 3.86, p < 0.02]

was induced by the stressful conditions.” Does your F -ratio agree with theirs?

(c) Sharpen the analysis by considering a trend in the response levels as a function

of increasing stress level.

10.5 This problem deals with the data in Table 10.8. The authors of the paper state that the

animals were matched on the basis of weight but that there was no correlation with

weight. Assume that the data are presented in the order in which the animals were

matched, that is, Y111 = 143 is matched with Y211 = 152; in general, Y1jk

is matched

with Y2jk

.

(a) Construct a table of differences D

jk

= Y2jk

− Y1jk

.

(b) Carry out a one-way anova on the differences; include SS
µ

in your table.

(c) Interpret SS
µ

for these data.

(d) State your conclusions and compare them with the conclusions of Example 10.5.

(e) Relate the MS(between groups) in the one-way anova to one of the MS terms

in Table 10.14. Can you identify the connection and the reason for it?

*(f) We want to correlate the Y1jk

observations with the Y2jk

observations, but the

problem is that the response level changes from day to day, which would induce

a correlation. So we will use the following “trick.” Calculate Y

∗

ijk

= Y

ijk

− Y

ij·;
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and correlate Y

∗

1jk

with Y

∗

2jk

. Test this correlation using a t-test with 16−1 = 15

degrees of freedom. Why 16 − 1? There are 7 − 1 = 6 independent pairs for

day 10, 5 each for day 12, and day 14, for a total of 16. Since the observations

sum to zero already, we subtract one more degree of freedom for estimating the

correlation. If matching was not effective, this correlation should be zero.

10.6 Ross and Bras [1975] investigated the relationship between diet and length of life in

121 randomly bred rats. After 21 days of age, each rat was given a choice of several

diets ad libitum for the rest of its life. The daily food intake (g/day) was categorized

into one of six intervals, so that an equal number of rats (except for the last interval)

appeared in each interval. The response variable was life span in days. The following

data were obtained:

Mean food intake (g/day) 18.3 19.8 20.7 21.6 22.4 24.1

Food intake category 1 2 3 4 5 6

Number of rats 20 20 20 20 20 21

Mean life span (days) 733 653 630 612 600 556

Standard error 117 126 111 115 113 106

(a) Carry out tasks (a), (b), (e), and (j).

(b) Can this be thought of as a regression problem? How would the residual MS

from regression be related to the MS error of the analysis of variance?

*(c) Can you relate in detail the anova procedure and the regression analysis; par-

ticularly an assessment of a nonlinear trend?

10.7 The following data from Florey et al. [1977] are the fasting serum insulin levels for

adult Jamaican females after an overnight fast:

Fasting Serum Insulin Level (µU/mL)

Age 25–34 35–44 45–54 55–64

Number 73 97 74 53

Mean 22.9 26.2 22.0 23.8

SD 10.3 13.0 7.4 10.0

(a) Do tasks (a), (b), (e), and (j).

(b) Why did the authors partition the ages of the subjects into intervals? Are there

other ways of summarizing and analyzing the data? What advantages or disad-

vantages are there to your alternatives?

10.8 The assay of insulin was one of the earliest topics in bioassay. A variety of methods

have been developed over the years. In the mid-1960s an assay was developed based

on the fact that insulin stimulates glycogen synthesis in mouse diaphragm tissue, in

vitro. A paper by Wardlaw and van Belle [1964] describes the statistical aspects of this

assay. The data in this problem deal with a qualitative test for insulin activity. A pool

of 36 hemidiaphragms was collected for each day’s work and the tissues incubated in

tubes containing medium with or without insulin. Each tube contained three randomly

selected diaphragms. For parts of this problem we ignore tube effects and assume

that each treatment was based on six hemidiaphragms. Four unknown samples were
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Table 10.34 Glycogen Content Data

Test Preparation
Medium Standard Insulin

Only (0.5 mU/mL) A B C D

280 290 460 465 470 480 430 300 510 505 310 290

240 275 400 460 440 390 385 505 610 570 350 330

225 350 470 470 425 445 380 485 520 570 250 300

Source: Data adapted from Wardlaw and van Belle [1964].

assayed. Since the diaphragms synthesize glycogen in medium, a control preparation

of medium only was added as well as a standard insulin preparation. The glycogen

content (optical density in anthrone TEST × 1000) data are given in Table 10.34.

(a) Carry out tasks (a) to (e) and (g) to (i). (To simplify the arithmetic if you are

using a calculator, divide the observations by 100.)

(b) Each column in the data layout represents one tube in which the three hemidi-

aphragms were incubated so that the design of the experiment is actually hier-

archical. To assess the effect of tubes, we partition the SS
ε

(with 30 d.f.) into

two parts: SS(between tubes within preparations) = SSBT(WP)

with six degrees

of freedom (why?) and SS(within tubes) = SSWT with 24 degrees of freedom

(why?). The latter SS can be calculated by considering each tube as a treatment.

The former can then be calculated as SSBT(WP)

= SS
ε

− SSWT. Carry out this

analysis and test the null hypothesis that the variability between tubes within

preparations is the same as the within-tube variability.

10.9 Schizophrenia is one of the psychiatric illnesses that is thought to have a definite

physiological basis. Lake et al. [1980] assayed the concentration of norepinephrine in

the cerebrospinal fluid of patients (NE in CSF) with one of three types of schizophrenia

and controls. They reported the following means and standard errors:

Schizophrenic Group
NE in CSF Control

(pg/mL) Group Paranoid Undifferentiated Schizoaffective

N 29 14 10 11

Mean 91 144 101 122

Standard error 6 20 11 21

Carry out tasks (a), (b), (e), and (j).

10.10 Corvilain et al. [1971] studied the role of the kidney in the catabolism (conver-

sion) of insulin by comparing the metabolic clearance rate in seven control subjects,

eight patients with chronic renal failure, and seven anephric (without kidneys) patients.

The data for this problem consist of the plasma insulin concentrations (ng/mL) at 45

and 90 min after the start of continuous infusion of labeled insulin. A low plasma con-

centration is associated with a high metabolic clearance rate, as shown in Table 10.35.

(a) Consider the plasma insulin concentration at 45 minutes. Carry out tasks (a) to

(e) and (g) to (i).
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Table 10.35 Plasma Concentration Data (ng/mL)

Control Renal Failure Anephric

Patient 45 90 Patient 45 90 Patient 45 90

1 3.7 3.8 1 3.0 4.2 1 6.7 9.6

2 3.4 4.2 2 3.1 3.9 2 2.6 3.4

3 2.4 3.1 3 4.4 6.1 3 3.4 —a

4 3.3 4.4 4 5.1 7.0 4 4.0 5.1

5 2.4 2.9 5 1.9 3.5 5 3.1 4.2

6 4.8 5.4 6 3.4 5.7 6 2.7 3.8

7 3.2 4.1 7 2.9 4.3 7 5.3 6.6

8 3.8 4.8

a Missing observation.

(b) Consider the plasma insulin concentration at 90 minutes. Carry out tasks (a) to

(e) and (g) to (i).

(c) Calculate the difference in concentrations between 90 and 45 minutes for each

patient. Carry out tasks (a) to (e) and (g) to (i). Omit Patient 3 in the anephric

group.

(d) Graph the means for the three groups at 45 and 90 minutes on the same graph.

What is the overall conclusion that you draw from the three analyses? Were all

three analyses necessary? Would two of three have sufficed? Why or why not?

10.11 We return to the data of Zelazo et al. [1972] one more time. Carry out the Terpstra–

Jonckheere test for ordered alternatives as discussed in Note 10.2. Justify the use of an

ordered alternative hypothesis. Discuss in terms of power the reason that this analysis

does indicate a treatment effect, in contrast to previous analyses.

10.12 One of the problems in the study of SIDS is the lack of a good animal model. Baak

and Huber [1974] studied the guinea pig as a possible model observing the effect of

lethal histamine shock on the guinea pig thymus. The purpose was to determine if

changes in the thymus of the guinea pig correspond to pathological changes observed

in SIDS victims. In the experiment 40 animals (20 male, 20 female) were randomly

assigned either to “control” or “histamine shock.” On the basis of a Wilcoxon two-

sample test—which ignored possible gender differences—the authors concluded that

the variable medullary blood vessel surface (mm2
/mm3

) did not differ significantly

between “control” and “histamine shock.” The data below have been arranged to keep

track of gender differences.

Control Histamine Shock

Female 6.4 6.2 6.9 6.9 5.4 8.4 10.2 6.2 5.4 5.5

7.5 6.1 7.3 5.9 6.8 7.3 5.2 5.1 5.7 9.8

Male 4.3 7.5 5.2 4.9 5.7 7.5 6.7 5.7 4.9 6.8

4.3 6.4 6.2 5.0 5.0 6.6 6.9 11.8 6.7 9.0

(a) Do tasks (a) to (e), (g), and (i).

(b) Replace the observations by their ranks and repeat the analysis of variance. Com-

pare your conclusions with those of part (a).
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10.13 In tumor metastasis, tumor cells spread from the original site to other organs. Usually, a

particular tumor will spread preferentially to specific organs. There are two possibilities

as to how this may occur: The tumor cells gradually adapt to the organ to which they have

spread, or tumor cells that grow well at this organ are selected preferentially. Nicolson and

Custead [1982] studied this problem by comparing the metastatic potential of melanoma

tumor cells mechanically lodged in the lungs of mice or injected intravenously and

allowed to metastasize to the lung. Each of these cell lines was then harvested and

injected subcutaneously. The numbers of pulmonary tumor colonies were recorded for

each of three treatments: original line (control), mechanical placement (adaptation), and

selection. The data in Table 10.36 were obtained in three experiments involving 84 mice.

Table 10.36 Experimental Data for Three Treatments

Number of Pulmonary Tumor Colonies

Experiment Control Adaption Selection

1 0 4 20 32 0 3 20 7 92 141

0 9 22 0 6 24 64 96 149

1 11 31 2 14 29 79 100 151

2 0 8 31 41 0 10 13 0 101 132

3 8 32 0 11 14 52 109 136

6 22 39 5 12 14 89 110 140

3 0 4 36 49 0 11 21 30 79 111

0 18 39 0 13 27 46 89 114

2 29 42 3 13 28 51 100 114

(a) Carry out tasks (a) to (g). You may want to try several transformations: for

example,
√

, Y

1/4. An appropriate transformation is logarithmic. To avoid prob-

lems with zero values, use log(Y + 1).

(b) How would you interpret a significant “experiment × treatment” interaction?

10.14 A paper by Gruber [1976] evaluated interactions between two analgesic agents: feno-

profen and propoxyphene. The design of the study was factorial with respect to drug

combinations. Propoxyphene (P ) was administered in doses of 0, 5, 100, and 150 mg.;

fenoprofen (F ) in doses of 0, 200, 400, and 600 mg. Each combination of the two

factors was studied. In addition, postepisiotomy postpartum patients were categorized

into one of four pain classes: “little,” “some,” “lot,” and “terrible” pain; for each of the

16 medication combinations, 8, 10, 10, and 2 patients in the four pain classes were used.

The layout of the number of patients could be constructed as shown in Table 10.37.

(a) One response variable was “analgesic score” for a medication combination.

Table 10.38 is a partial anova table for this variable. Fill in the lines in the

table, completing the table.

(b) The total analgesic score for the 16 sets of 30 patients classified by the two

drug levels is given in Table 10.39. Carry out a “randomized block analysis” on

these total scores dividing the sums of squares by 30 to return the analysis to a

single reading status. Link this analysis with the table in part (a). You have, in

effect, partitioned the SS for medications in that table into three parts. Test the

significance of the three mean squares.

(c) Graph the mean analgesia score (per patient) by plotting the dose on the x-axis

for fenoprofen, indicating the levels of the propoxyphene dose in the graph. State

your conclusions.
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Table 10.37 Design of Medication Combinations

Medication Combination

Pain Level (0P, 0F) (0P, 200F) · · · (0P, 600F) (50P, 0F) · · · (150P, 600F)

“Little” 8 8 · · · 8 8 · · · 8

“Some” 10 10 · · · 10 10 · · · 10

“Lot” 10 10 · · · 10 10 · · · 10

“Terrible” 2 2 · · · 2 2 · · · 2

Table 10.38 anova Table for Analgesic Score

Source d.f. SS MS F -Ratio P -Value

Pain class — 3,704 — — —

Medications — 9,076 — — —

Interaction — 3,408 — — —

Residual — — —

Total 479 41,910

Table 10.39 Total Analgesia Score

Fenoprofen Calcium Dose (mg)

Propoxyphene Dose (mg) 0 200 400 600

0 409 673 634 756

50 383 605 654 785

100 496 773 760 755

150 496 723 773 755

10.15 Although the prescription, “Take two aspirins, drink lots of fluids, and go to bed,” is

usually good advice, it is known that aspirin induces “microbleeding” in the gastroin-

testinal system, as evidenced by minute amounts of blood in the stool. Hence, there is

constant research to develop other anti-inflammatory and antipyretic (fever-combating)

agents. Arsenault et al. [1976] reported on a new agent, R-803, studying its effect in a

Latin square design, comparing it to placebo and aspirin (900 mg, q.i.d). For purposes

of this exercise the data are extracted in the form of a randomized block design. Each

subject received each of three treatments for a week. We will assume that the order

was random. The variable measured is the amount of blood lost in mL/day as measured

over a week.

Mean Blood Loss (ml/day)

Subject 1 2 3 4 5 6 7 8 9

Placebo 0.45 0.54 0.69 0.53 3.03 0.78 0.14 0.82 0.96

R-803 0.82 0.39 0.67 1.19 1.18 1.07 0.49 0.14 0.80

Aspirin 18.00 6.46 6.19 6.52 7.18 9.39 6.93 1.57 4.03

(a) Do tasks (a) to (e) and (g) to (i).

(b) Carry out the Tukey test for additivity. What are your conclusions?



PROBLEMS 421

Table 10.40 COHb Data for Problem 10.16

No. Hours Since Beginning of Exposure

Subject 0 2 4 6 8

1 4.4 4.9 5.2 5.7 5.7

2 3.3 5.3 6.9 7.0 8.8

3 5.0 6.4 7.2 7.7 9.3

4 5.3 5.3 7.4 7.0 8.3

5 4.1 6.8 9.6 11.5 12.0

6 5.0 6.0 6.8 8.3 8.1

7 4.6 5.2 6.6 7.4 7.1

10.16 Occupational exposures to toxic substances are being investigated more and more care-

fully. Ratney et al. [1974] studied the effect of daily exposure of 180 to 200 ppm of

methylene chloride on carboxyhemoglobin (COHb) measured during the workday. The

COHb data (% COHb) for seven subjects measured five times during the day is given

in Table 10.40.

(a) Carry out tasks (a), (c) to (e), and (g) to (i).

(b) Suppose that the observation for subject 3 at time 6 (Y34 = 7.7) is missing.

Estimate its value and redo the anova.

(c) Carry out the Tukey test for additivity.

(d) Carry out the Page test for trend (see Note 10.2).

(e) Why do the data not form a randomized block design?

(f) Could this problem be treated by regression methods, where X = hours since

exposure and Y = % COHb? Why or why not?

(g) Calculate all 10 pairwise correlations between the treatment combinations. Do

they look “reasonably close”?

10.17 Wang et al. [1976] studied the effects on sleep of four hypnotic agents and a placebo.

The preparations were: lorazepam 2 and 4 mg, and flurazepam 15 and 30 mg. Each

of 15 subjects received all five treatments in a random order in five-night units. The

analysis of variance of length of sleep is presented here.

Source d.f. SS MS F -Ratio p-Value

Treatments — — 12.0 — —

Patients — — 14.8 — —

Residual — — 2.2

Total 74 —

(a) Do task (a).

(b) Fill in the missing values in the ANOVA table.

(c) State your conclusions.

(d) The article does not present any raw data or means. How satisfactory is this in

terms of clinical significance?

10.18 High blood pressure is a known risk factor for cardiovascular disease, and many drugs

are now on the market that provide symptomatic as well as therapeutic relief. One of



422 ANALYSIS OF VARIANCE

Table 10.41 Blood Pressure Data (mmHg) for

Problem 10.18

Recumbent Upright

Patient Placebo Propranolol Placebo Propranolol

N.F. 96 71 73 87

A.C. 96 85 104 76

P.D. 92 89 83 90

J.L. 97 110 101 85

G.P. 104 85 112 94

A.H. 100 73 101 93

C.L. 93 81 88 85

these drugs is propranolol. Hamet et al. [1973] investigated the effect of propranolol

in labile hypertension. Among the variables studied was mean blood pressure mea-

sured in mmHg (diastolic+1/3 pulse pressure). A placebo treatment was included in a

double-blind fashion. The blood pressure was measured in the recumbent and upright

positions. The blood pressure data is given in Table 10.41.

(a) Assuming that the treatments are just four treatments, carry out tasks (a) to (e)

and (g) to (i) (i.e., assume a randomized block design).

(b) The sum of squares for treatments (3 d.f.) can be additively partitioned into

three parts: SSDRUG, SSPOSITION, and SSDRUG×POSITION, each with one degree

of freedom. To do this, construct an “interaction table” of treatment totals.

SSDRUGS =

13402

14
+

12042

14
−

25442

28
= 660.57

SSPOSITION =

12722

14
+

12722

14
−

25442

28
= 0[sic]

SSDRUGS×POSITION =

6782

7
+

5942

4
+

6622

7
+

6102

7
−

25442

28

− SSDRUGS − SSPOSITION = 36.57

Expand the anova table to include these terms. (The SSPOSITION = 0 is most

unusual; the raw data are as reported in the table.)

(c) This analysis could have been carried out as a series of three paired t-tests

as follows: for each subject, calculate the following three quantities “ + + −

−, ” “ + − + −, ” and “ + − − +.” For example, for subject N.F. “ + + − −” =

96 + 71 − 73 − 87 = 7, “ + − + −” = 96 − 71 + 73 − 87 = 11, and

“ + − − +” = 96 − 71 − 73 + 87 = 39. These quantities represent effects

of position, drug treatment, and interaction, respectively, and are called contrasts

(see Chapter 12 for more details). Each contrast can be tested against zero by

means of a one-sample t-test. Carry out these t-tests. Compare the variances for

each contrast; one assumption in the analysis of variance is that these contrast

variances all estimate the same variance. How is the sum of the contrast variances

related to the SS
ε

in the anova?

(d) Let d1 be the sum of the observations associated with the pattern + + −−, d2

the sum of the observations associated with the pattern +−+−, and d3 the sum
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of the observations associated with the pattern + − −+. How is (d

2
1 + d

2
2 + d

2
3 )

related to SSTREATMENT?

10.19 Consider the data in Example 10.5. Rank all 38 observations from lowest to highest

and carry out the usual analysis of variance on these ranks. Compare your p-values

with the p-values of Table 10.14. In view of Note 10.3, does this analysis give you

some concern?

10.20 Consider the data of Table 10.16 dealing with the effectiveness of pancreatic supple-

ments on fat absorption. Rank all of the observations from 1 to 24 (i.e., ignoring both

treatment and block categories).

(a) Carry out an analysis of variance on the ranks obtained above.

(b) Compare your analysis with the analysis using the Friedman statistic. What is a

potential drawback in the analysis of part (a)?

(c) Return to the Friedman ranks in Section 10.3.3 and carry out an analysis of vari-

ance on them. How is the Friedman statistic related to SS
τ

of the ANOVA of

the Friedman ranks?

10.21 These data are from the same source as those in Problem 10.3. We add data for females

to generate the two-way layout shown in Table 10.42.

Table 10.42 Two-Way Layout for Problem 10.21

Antipyrine Clearance (Half-Life in Hours)

Stage I Stage IV Stage V

Males 7.4 5.6 3.7 10.9 11.3 13.3

6.6 6.0 12.2 10.0

Females 9.1 6.3 7.1 11.0 8.3

11.3 9.4 7.9 4.3

(a) Do tasks (a) to (d).

(b) Graph the data. Is there any suggestion of interaction? Of main effects?

(c) Carry out a weighted means analysis.

(d) Partition each observation into its component parts and verify that the sums of

squares are not additive.

10.22 Fuertes-de la Haba et al. [1976] measured intelligence in offspring of oral and nonoral

contraceptive users in Puerto Rico. In the early 1960s, subjects were randomly assigned

to oral conceptive use or other methods of birth control. Subsequently, mothers with

voluntary pregnancies were identified and offspring between ages 5 and 7 were admin-

istered a Spanish–Puerto Rican version of the Wechsler Intelligence Scale for Children

(WISC). Table 10.43 lists the data for boys only, taken from the article.

(a) Carry out tasks (a), (b), and (e).

(b) Do an unweighted means analysis. Interpret your findings.

(c) The age categories have obviously been “collapsed.” What effect could such a

collapsing have on the analysis? (Why introduce age as a variable since IQ is

standardized for age?)

(d) Suppose that we carried out a contingency table analysis on the cell frequencies.

What could such an analysis show?
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Table 10.43 Data for Problem 10.22

Age Groups (Years)

5 6 7–8

Oral contraceptive WISC score

n 9 18 14

Mean 81.44 88.50 76.00

SD 9.42 11.63 9.29

Other birth control WISC score

n 11 28 21

Mean 82.91 87.75 83.24

SD 10.11 10.85 9.60

Table 10.44 Data for Problem 10.23

Gender

Boys Girls

Oral contraceptive WISC score

n 41 55

Mean 82.68 86.87

SD 11.78 14.66

Other birth control WISC score

n 60 54

Mean 85.28 85.83

SD 10.55 12.22

10.23 The data in Table 10.44 are also from the article by Fuertes-de la Haba [1976] but

have been “collapsed over age” and are presented by treatment (type of contraceptive)

by gender. The response variable is, again, Wechsler IQ score.

(a) Carry out tasks (a), (b), and (e).

(b) Do an unweighted means analysis.

(c) Compare your conclusions with those of Problem 10.22.

10.24 This problem considers some implications of the additive model for the two-way

ANOVA as defined by equation (18) and illustrated in Example 10.4.

(a) Graph the means of Example 10.4 by using the level of the second variable for

the abscissa. Interpret the difference in the patterns.

(b) How many degrees of freedom are left for the means assuming that the model

defined by equation (18) holds?

(c) We now want to define a nonadditive model retaining the values of the α’s, β’s,

and µ, equivalently, retaining the same marginal and overall means. You are free

to vary any of the cell means subject to the constraints above. Verify that you

can manipulate only four cell means. After changing the cell means, calculate

for each cell ij the quantity Y

ij

= µ − α

i

− β

j

. What are some characteristics

of these quantities?

(d) Graph the means derived in part (c) and compare the pattern obtained with that

of Figure 10.2.
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*10.25 This problem is designed to give you some experience with algebraic manipulation. It

is not designed to teach you algebra but to provide additional insight into the mathe-

matical structure of analysis of variance models. You will want to take this medicine

in small doses.

(a) Show that equation (5) follows from the model defined by equation (4).

(b) Prove equations (6) and (7).

(c) Prove equations (10) to (12) starting with the components of equation (5).

(d) Consider equation (17). Let µ

i

=

∑

n

ij

µ

ij

/n

i·, and so on. Relate α

i

and β

j

to

µ

i· and µ·j .

(e) For the two-way ANOVA model as defined by equation (21), show that SS
ε

=

SSERROR =

∑

(n

ij

− 1)s

2
ij

, where s

2
ij

is the variance of the observations in cell

(i, j).

(f) Derive the expected mean squares for MS
α

and MS
γ

in the fixed and random

effects models, as given in Table 10.19.
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