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Sequence Alignment
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CHAPTER THREE

Pairwise Sequence Alignment

Sequence comparison lies at the heart of bioinformatics analysis. It is an important
first step toward structural and functional analysis of newly determined sequences. As
new biological sequences are being generated at exponential rates, sequence compari-
son is becoming increasingly important to draw functional and evolutionary inference
of a new protein with proteins already existing in the database. The most fundamental
process in this type of comparison is sequence alignment. This is the process by which
sequences are compared by searching for common character patterns and establish-
ing residue–residue correspondence among related sequences. Pairwise sequence
alignment is the process of aligning two sequences and is the basis of database sim-
ilarity searching (see Chapter 4) and multiple sequence alignment (see Chapter 5).
This chapter introduces the basics of pairwise alignment.

EVOLUTIONARY BASIS

DNA and proteins are products of evolution. The building blocks of these biologi-
cal macromolecules, nucleotide bases, and amino acids form linear sequences that
determine the primary structure of the molecules. These molecules can be consid-
ered molecular fossils that encode the history of millions of years of evolution. During
this time period, the molecular sequences undergo random changes, some of which
are selected during the process of evolution. As the selected sequences gradually
accumulate mutations and diverge over time, traces of evolution may still remain in
certain portions of the sequences to allow identification of the common ancestry. The
presence of evolutionary traces is because some of the residues that perform key func-
tional and structural roles tend to be preserved by natural selection; other residues
that may be less crucial for structure and function tend to mutate more frequently.
For example, active site residues of an enzyme family tend to be conserved because
they are responsible for catalytic functions. Therefore, by comparing sequences
through alignment, patterns of conservation and variation can be identified. The
degree of sequence conservation in the alignment reveals evolutionary relatedness of
different sequences, whereas the variation between sequences reflects the changes
that have occurred during evolution in the form of substitutions, insertions, and
deletions.

Identifying the evolutionary relationships between sequences helps to characterize
the function of unknown sequences. When a sequence alignment reveals significant
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similarity among a group of sequences, they can be considered as belonging to the
same family (protein families will be further described in Chapter 7). If one member
within the family has a known structure and function, then that information can be
transferred to those that have not yet been experimentally characterized. Therefore,
sequence alignment can be used as basis for prediction of structure and function of
uncharacterized sequences.

Sequence alignment provides inference for the relatedness of two sequences under
study. If the two sequences share significant similarity, it is extremely unlikely that
the extensive similarity between the two sequences has been acquired randomly,
meaning that the two sequences must have derived from a common evolutionary
origin. When a sequence alignment is generated correctly, it reflects the evolutionary
relationship of the two sequences: regions that are aligned but not identical repre-
sent residue substitutions; regions where residues from one sequence correspond to
nothing in the other represent insertions or deletions that have taken place on one of
the sequences during evolution. It is also possible that two sequences have derived
from a common ancestor, but may have diverged to such an extent that the com-
mon ancestral relationships are not recognizable at the sequence level. In that case,
the distant evolutionary relationships have to be detected using other methods (see
Chapter 15).

SEQUENCE HOMOLOGY VERSUS SEQUENCE SIMILARITY

An important concept in sequence analysis is sequence homology. When two
sequences are descended from a common evolutionary origin, they are said to have a
homologous relationship or share homology. A related but different term is sequence
similarity, which is the percentage of aligned residues that are similar in physiochem-
ical properties such as size, charge, and hydrophobicity.

It is important to distinguish sequence homology from the related term sequence
similarity because the two terms are often confused by some researchers who use them
interchangeably in scientific literature. To be clear, sequence homology is an inference
or a conclusion about a common ancestral relationship drawn from sequence simi-
larity comparison when the two sequences share a high enough degree of similarity.
On the other hand, similarity is a direct result of observation from the sequence
alignment. Sequence similarity can be quantified using percentages; homology is a
qualitative statement. For example, one may say that two sequences share 40% simi-
larity. It is incorrect to say that the two sequences share 40% homology. They are either
homologous or nonhomologous.

Generally, if the sequence similarity level is high enough, a common evolutionary
relationship can be inferred. In dealing with real research problems, the issue of at what
similarity level can one infer homologous relationships is not always clear. The answer
depends on the type of sequences being examined and sequence lengths. Nucleotide
sequences consist of only four characters, and therefore, unrelated sequences have
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Figure 3.1: The three zones of protein sequence alignments. Two protein sequences can be regarded
as homologous if the percentage sequence identity falls in the safe zone. Sequence identity values below
the zone boundary, but above 20%, are considered to be in the twilight zone, where homologous rela-
tionships are less certain. The region below 20% is the midnight zone, where homologous relationships
cannot be reliably determined. (Source: Modified from Rost 1999).

at least a 25% chance of being identical. For protein sequences, there are twenty
possible amino acid residues, and so two unrelated sequences can match up 5% of
the residues by random chance. If gaps are allowed, the percentage could increase to
10–20%. Sequence length is also a crucial factor. The shorter the sequence, the higher
the chance that some alignment is attributable to random chance. The longer the
sequence, the less likely the matching at the same level of similarity is attributable to
random chance.

This suggests that shorter sequences require higher cutoffs for inferring homolo-
gous relationships than longer sequences. For determining a homology relationship
of two protein sequences, for example, if both sequences are aligned at full length,
which is 100 residues long, an identity of 30% or higher can be safely regarded as
having close homology. They are sometimes referred to as being in the “safe zone”
(Fig. 3.1). If their identity level falls between 20% and 30%, determination of homolo-
gous relationships in this range becomes less certain. This is the area often regarded
as the “twilight zone,” where remote homologs mix with randomly related sequences.
Below 20% identity, where high proportions of nonrelated sequences are present,
homologous relationships cannot be reliably determined and thus fall into the “mid-
night zone.” It needs to be stressed that the percentage identity values only provide a
tentative guidance for homology identification. This is not a precise rule for determin-
ing sequence relationships, especially for sequences in the twilight zone. A statistically
more rigorous approach to determine homologous relationships is introduced in the
section on the Statistical Significance of Sequence Alignment.

SEQUENCE SIMILARITY VERSUS SEQUENCE IDENTITY

Another set of related terms for sequence comparison are sequence similarity and
sequence identity. Sequence similarity and sequence identity are synonymous for
nucleotide sequences. For protein sequences, however, the two concepts are very
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different. In a protein sequence alignment, sequence identity refers to the percent-
age of matches of the same amino acid residues between two aligned sequences.
Similarity refers to the percentage of aligned residues that have similar physicochem-
ical characteristics and can be more readily substituted for each other.

There are two ways to calculate the sequence similarity/identity. One involves the
use of the overall sequence lengths of both sequences; the other normalizes by the
size of the shorter sequence. The first method uses the following formula:

S = [(Ls × 2)/(La + Lb)] × 100 (Eq. 3.1)

where S is the percentage sequence similarity, L s is the number of aligned residues
with similar characteristics, and L a and L b are the total lengths of each individual
sequence. The sequence identity (I%) can be calculated in a similar fashion:

I = [(L i × 2)/(La + Lb)] × 100 (Eq. 3.2)

where L i is the number of aligned identical residues.
The second method of calculation is to derive the percentage of identical/similar

residues over the full length of the smaller sequence using the formula:

I(S)% = L i(s)/La % (Eq. 3.3)

where L a is the length of the shorter of the two sequences.

METHODS

The overall goal of pairwise sequence alignment is to find the best pairing of two
sequences, such that there is maximum correspondence among residues. To achieve
this goal, one sequence needs to be shifted relative to the other to find the position
where maximum matches are found. There are two different alignment strategies that
are often used: global alignment and local alignment.

Global Alignment and Local Alignment

In global alignment, two sequences to be aligned are assumed to be generally simi-
lar over their entire length. Alignment is carried out from beginning to end of both
sequences to find the best possible alignment across the entire length between the two
sequences. This method is more applicable for aligning two closely related sequences
of roughly the same length. For divergent sequences and sequences of variable
lengths, this method may not be able to generate optimal results because it fails
to recognize highly similar local regions between the two sequences.

Local alignment, on the other hand, does not assume that the two sequences in
question have similarity over the entire length. It only finds local regions with the
highest level of similarity between the two sequences and aligns these regions with-
out regard for the alignment of the rest of the sequence regions. This approach can be
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Figure 3.2: An example of pairwise sequence com-
parison showing the distinction between global and
local alignment. The global alignment (top) includes
all residues of both sequences. The region with the
highest similarity is highlighted in a box. The local
alignment only includes portions of the two sequences
that have the highest regional similarity. In the line
between the two sequences, “:” indicates identical
residue matches and “.” indicates similar residue
matches.

used for aligning more divergent sequences with the goal of searching for conserved
patterns in DNA or protein sequences. The two sequences to be aligned can be of
different lengths. This approach is more appropriate for aligning divergent biological
sequences containing only modules that are similar, which are referred to as domains
or motifs. Figure 3.2 illustrates the differences between global and local pairwise
alignment.

Alignment Algorithms

Alignment algorithms, both global and local, are fundamentally similar and only differ
in the optimization strategy used in aligning similar residues. Both types of algorithms
can be based on one of the three methods: the dot matrix method, the dynamic pro-
gramming method, and the word method. The dot matrix and dynamic programming
methods are discussed herein. The word method, which is used in fast database sim-
ilarity searching, is introduced in Chapter 4.

Dot Matrix Method
The most basic sequence alignment method is the dot matrix method, also known
as the dot plot method. It is a graphical way of comparing two sequences in a two-
dimensional matrix. In a dot matrix, two sequences to be compared are written in
the horizontal and vertical axes of the matrix. The comparison is done by scanning
each residue of one sequence for similarity with all residues in the other sequence.
If a residue match is found, a dot is placed within the graph. Otherwise, the matrix
positions are left blank. When the two sequences have substantial regions of similarity,
many dots line up to form contiguous diagonal lines, which reveal the sequence
alignment. If there are interruptions in the middle of a diagonal line, they indicate
insertions or deletions. Parallel diagonal lines within the matrix represent repetitive
regions of the sequences (Fig. 3.3).

A problem exists when comparing large sequences using the dot matrix method,
namely, the high noise level. In most dot plots, dots are plotted all over the graph,
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Figure 3.3: Example of comparing two sequences
using dot plots. Lines linking the dots in diago-
nals indicate sequence alignment. Diagonal lines
above or below the main diagonal represent inter-
nal repeats of either sequence.

obscuring identification of the true alignment. For DNA sequences, the problem is
particularly acute because there are only four possible characters in DNA and each
residue therefore has a one-in-four chance of matching a residue in another sequence.
To reduce noise, instead of using a single residue to scan for similarity, a filtering
technique has to be applied, which uses a “window” of fixed length covering a stretch
of residue pairs. When applying filtering, windows slide across the two sequences to
compare all possible stretches. Dots are only placed when a stretch of residues equal
to the window size from one sequence matches completely with a stretch of another
sequence. This method has been shown to be effective in reducing the noise level.
The window is also called a tuple, the size of which can be manipulated so that a clear
pattern of sequence match can be plotted. However, if the selected window size is too
long, sensitivity of the alignment is lost.

There are many variations of using the dot plot method. For example, a
sequence can be aligned with itself to identify internal repeat elements. In the self-
comparison, there is a main diagonal for perfect matching of each residue. If repeats
are present, short parallel lines are observed above and below the main diagonal. Self-
complementarity of DNA sequences (also called inverted repeats) – for example, those
that form the stems of a hairpin structure – can also be identified using a dot plot.
In this case, a DNA sequence is compared with its reverse-complemented sequence.
Parallel diagonals represent the inverted repeats. For comparing protein sequences,
a weighting scheme has to be used to account for similarities of physicochemical
properties of amino acid residues.

The dot matrix method gives a direct visual statement of the relationship between
two sequences and helps easy identification of the regions of greatest similarities. One
particular advantage of this method is in identification of sequence repeat regions
based on the presence of parallel diagonals of the same size vertically or horizontally
in the matrix. The method thus has some applications in genomics. It is useful in
identifying chromosomal repeats and in comparing gene order conservation between
two closely related genomes (see Chapter 17). It can also be used in identifying nucleic
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acid secondary structures through detecting self-complementarity of a sequence (see
Chapter 16).

The dot matrix method displays all possible sequence matches. However, it is often
up to the user to construct a full alignment with insertions and deletions by linking
nearby diagonals. Another limitation of this visual analysis method is that it lacks
statistical rigor in assessing the quality of the alignment. The method is also restricted
to pairwise alignment. It is difficult for the method to scale up to multiple alignment.
The following are examples of web servers that provide pairwise sequence comparison
using dot plots.

Dotmatcher (bioweb.pasteur.fr/seqanal/interfaces/dotmatcher.html) and Dottup
(bioweb.pasteur.fr/seqanal/interfaces/dottup.html) are two programs of the EMBOSS
package, which have been made available online. Dotmatcher aligns and displays dot
plots of two input sequences (DNA or proteins) in FASTA format. A window of specified
length and a scoring scheme are used. Diagonal lines are only plotted over the position
of the windows if the similarity is above a certain threshold. Dottup aligns sequences
using the word method (to be described in Chapter 4) and is capable of handling
genome-length sequences. Diagonal lines are only drawn if exact matches of words
of specified length are found.

Dothelix (www.genebee.msu.su/services/dhm/advanced.html) is a dot matrix
program for DNA or protein sequences. The program has a number of options for
length threshold (similar to window size) and implements scoring matrices for pro-
tein sequences. In addition to drawing diagonal lines with similarity scores above a
certain threshold, the program displays actual pairwise alignment.

MatrixPlot (www.cbs.dtu.dk/services/MatrixPlot/) is a more sophisticated matrix
plot program for alignment of protein and nucleic acid sequences. The user has the
option of adding information such as sequence logo profiles (see Chapter 7) and
distance matrices from known three-dimensional structures of proteins or nucleic
acids. Instead of using dots and lines, the program uses colored grids to indicate
alignment or other user-defined information.

Dynamic Programming Method
Dynamic programming is a method that determines optimal alignment by match-
ing two sequences for all possible pairs of characters between the two sequences.
It is fundamentally similar to the dot matrix method in that it also creates a two-
dimensional alignment grid. However, it finds alignment in a more quantitative way by
converting a dot matrix into a scoring matrix to account for matches and mismatches
between sequences. By searching for the set of highest scores in this matrix, the best
alignment can be accurately obtained.

Dynamic programming works by first constructing a two-dimensional matrix
whose axes are the two sequences to be compared. The residue matching is according
to a particular scoring matrix. The scores are calculated one row at a time. This starts
with the first row of one sequence, which is used to scan through the entire length
of the other sequence, followed by scanning of the second row. The matching scores
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are calculated. The scanning of the second row takes into account the scores already
obtained in the first round. The best score is put into the bottom right corner of an
intermediate matrix (Fig. 3.4). This process is iterated until values for all the cells are
filled. Thus, the scores are accumulated along the diagonal going from the upper left
corner to the lower right corner. Once the scores have been accumulated in matrix,
the next step is to find the path that represents the optimal alignment. This is done
by tracing back through the matrix in reverse order from the lower right-hand corner
of the matrix toward the origin of the matrix in the upper left-hand corner. The best
matching path is the one that has the maximum total score (see Fig. 3.4). If two or
more paths reach the same highest score, one is chosen arbitrarily to represent the
best alignment. The path can also move horizontally or vertically at a certain point,
which corresponds to introduction of a gap or an insertion or deletion for one of the
two sequences.

Gap Penalties. Performing optimal alignment between sequences often involves
applying gaps that represent insertions and deletions. Because in natural evolu-
tionary processes insertion and deletions are relatively rare in comparison to sub-
stitutions, introducing gaps should be made more difficult computationally, reflect-
ing the rarity of insertional and deletional events in evolution. However, assigning
penalty values can be more or less arbitrary because there is no evolutionary theory
to determine a precise cost for introducing insertions and deletions. If the penalty
values are set too low, gaps can become too numerous to allow even nonrelated
sequences to be matched up with high similarity scores. If the penalty values are
set too high, gaps may become too difficult to appear, and reasonable alignment
cannot be achieved, which is also unrealistic. Through empirical studies for globular
proteins, a set of penalty values have been developed that appear to suit most align-
ment purposes. They are normally implemented as default values in most alignment
programs.

Another factor to consider is the cost difference between opening a gap and extend-
ing an existing gap. It is known that it is easier to extend a gap that has already been
started. Thus, gap opening should have a much higher penalty than gap extension.
This is based on the rationale that if insertions and deletions ever occur, several adja-
cent residues are likely to have been inserted or deleted together. These differential
gap penalties are also referred to as affine gap penalties. The normal strategy is to use
preset gap penalty values for introducing and extending gaps. For example, one may
use a −12/ − 1 scheme in which the gap opening penalty is −12 and the gap exten-
sion penalty −1. The total gap penalty (W ) is a linear function of gap length, which is
calculated using the formula:

W = γ + δ × (k − 1) (Eq. 3.4)

where γ is the gap opening penalty, δ is the gap extension penalty, and k is the length
of the gap. Besides the affine gap penalty, a constant gap penalty is sometimes also
used, which assigns the same score for each gap position regardless whether it is
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Figure 3.4: Example of pairwise alignment of two sequences using dynamic programming. The score
for the lower right square (A) of a 2 × 2 matrix is the maximum score from the one of other three
neighboring squares (X, Y, and Z) plus and minus the exact single residue match score (a) for the lower
right corner and the gap penalty (g.p.), respectively. A matrix is set up for the two short sequences.
A simple scoring system is applied in which an identical match is assigned a score of 1, a mismatch a
score 0, and gap penalty (see below) is −1. The scores in the matrix are filled one row at a time and
one cell at a time beginning from top to bottom. The best scores are filled to the lower right corner of a
submatrix (grey boxes) according to this rule. When all the cells are filled with scores, a best alignment
is determined through a trace-back procedure to search for the path with the best total score. When a
path moves horizontally or vertically, a penalty is applied.
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opening or extending. However, this penalty scheme has been found to be less realistic
than the affine penalty.

Gaps at the terminal regions are often treated with no penalty because in reality
many true homologous sequences are of different lengths. Consequently, end gaps
can be allowed to be free to avoid getting unrealistic alignments.

Dynamic Programming for Global Alignment. The classical global pairwise align-
ment algorithm using dynamic programming is the Needleman–Wunsch algorithm.
In this algorithm, an optimal alignment is obtained over the entire lengths of the
two sequences. It must extend from the beginning to the end of both sequences to
achieve the highest total score. In other words, the alignment path has to go from the
bottom right corner of the matrix to the top left corner. The drawback of focusing on
getting a maximum score for the full-length sequence alignment is the risk of missing
the best local similarity. This strategy is only suitable for aligning two closely related
sequences that are of the same length. For divergent sequences or sequences with
different domain structures, the approach does not produce optimal alignment. One
of the few web servers dedicated to global pairwise alignment is GAP.

GAP (http://bioinformatics.iastate.edu/aat/align/align.html) is a web-based pair-
wise global alignment program. It aligns two sequences without penalizing terminal
gaps so similar sequences of unequal lengths can be aligned. To be able to insert long
gaps in the alignment, such gaps are treated with a constant penalty. This feature is
useful in aligning cDNA to exons in genomic DNA containing the same gene.

Dynamic Programming for Local Alignment. In regular sequence alignment, the
divergence level between the two sequences to be aligned is not easily known. The
sequence lengths of the two sequences may also be unequal. In such cases, identi-
fication of regional sequence similarity may be of greater significance than finding
a match that includes all residues. The first application of dynamic programming in
local alignment is the Smith–Waterman algorithm. In this algorithm, positive scores
are assigned for matching residues and zeros for mismatches. No negative scores are
used. A similar tracing-back procedure is used in dynamic programming. However,
the alignment path may begin and end internally along the main diagonal. It starts
with the highest scoring position and proceeds diagonally up to the left until reaching
a cell with a zero. Gaps are inserted if necessary. In this case, affine gap penalty is often
used. Occasionally, several optimally aligned segments with best scores are obtained.
As in the global alignment, the final result is influenced by the choice of scoring sys-
tems (to be described next) used. The goal of local alignment is to get the highest
alignment score locally, which may be at the expense of the highest possible overall
score for a full-length alignment. This approach may be suitable for aligning divergent
sequences or sequences with multiple domains that may be of different origins. Most
commonly used pairwise alignment web servers apply the local alignment strategy,
which include SIM, SSEARCH, and LALIGN.
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SIM (http://bioinformatics.iastate.edu/aat/align/align.html) is a web-based pro-
gram for pairwise alignment using the Smith–Waterman algorithm that finds the best
scored nonoverlapping local alignments between two sequences. It is able to han-
dle tens of kilobases of genomic sequence. The user has the option to set a scoring
matrix and gap penalty scores. A specified number of best scored alignments are
produced.

SSEARCH (http://pir.georgetown.edu/pirwww/search/pairwise.html) is a simple
web-based programs that uses the Smith–Waterman algorithm for pairwise alignment
of sequences. Only one best scored alignment is given. There is no option for scoring
matrices or gap penalty scores.

LALIGN (www.ch.embnet.org/software/LALIGN form.html) is a web-based pro-
gram that uses a variant of the Smith–Waterman algorithm to align two sequences.
Unlike SSEARCH, which returns the single best scored alignment, LALIGN gives a
specified number of best scored alignments. The user has the option to set the scor-
ing matrix and gap penalty scores. The same web interface also provides an option
for global alignment performed by the ALIGN program.

SCORING MATRICES

In the dynamic programming algorithm presented, the alignment procedure has to
make use of a scoring system, which is a set of values for quantifying the likelihood of
one residue being substituted by another in an alignment. The scoring systems is called
a substitution matrix and is derived from statistical analysis of residue substitution
data from sets of reliable alignments of highly related sequences.

Scoring matrices for nucleotide sequences are relatively simple. A positive value
or high score is given for a match and a negative value or low score for a mismatch.
This assignment is based on the assumption that the frequencies of mutation are
equal for all bases. However, this assumption may not be realistic; observations show
that transitions (substitutions between purines and purines or between pyrimidines
and pyrimidines) occur more frequently than transversions (substitutions between
purines and pyrimidines). Therefore, a more sophisticated statistical model with dif-
ferent probability values to reflect the two types of mutations is needed (see the Kimura
model in Chapter 10).

Scoring matrices for amino acids are more complicated because scoring has to
reflect the physicochemical properties of amino acid residues, as well as the likelihood
of certain residues being substituted among true homologous sequences. Certain
amino acids with similar physicochemical properties can be more easily substituted
than those without similar characteristics. Substitutions among similar residues are
likely to preserve the essential functional and structural features. However, substi-
tutions between residues of different physicochemical properties are more likely to
cause disruptions to the structure and function. This type of disruptive substitution
is less likely to be selected in evolution because it renders nonfunctional proteins.
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For example, phenylalanine, tyrosine, and tryptophan all share aromatic ring struc-
tures. Because of their chemical similarities, they are easily substituted for each other
without perturbing the regular function and structure of the protein. Similarly, argi-
nine, lysine, and histidine are all large basic residues and there is a high probability
of them being substituted for each other. Aspartic acid, glutamic acid, asparagine,
and glutamine belong to the acid and acid amide groups and can be associated with
relatively high frequencies of substitution. The hydrophobic residue group includes
methionine, isoleucine, leucine, and valine. Small and polar residues include serine,
threonine, and cysteine. Residues within these groups have high likelihoods of being
substituted for each other. However, cysteine contains a sulfhydryl group that plays
a role in metal binding, active site, and disulfide bond formation. Substitution of
cysteine with other residues therefore often abolishes the enzymatic activity or desta-
bilizes the protein structure. It is thus a very infrequently substituted residue. The
small and nonpolar residues such as glycine and proline are also unique in that their
presence often disrupts regular protein secondary structures (see Chapter 12). Thus,
substitutions with these residues do not frequently occur. For more information on
grouping amino acids based on physicochemical properties, see Table 12.1.

Amino Acid Scoring Matrices

Amino acid substitution matrices, which are 20 × 20 matrices, have been devised to
reflect the likelihood of residue substitutions. There are essentially two types of amino
acid substitution matrices. One type is based on interchangeability of the genetic
code or amino acid properties, and the other is derived from empirical studies of
amino acid substitutions. Although the two different approaches coincide to a certain
extent, the first approach, which is based on the genetic code or the physicochemical
features of amino acids, has been shown to be less accurate than the second approach,
which is based on surveys of actual amino acid substitutions among related proteins.
Thus, the empirical approach has gained the most popularity in sequence alignment
applications and is the focus of our next discussion.

The empirical matrices, which include PAM and BLOSUM matrices, are derived
from actual alignments of highly similar sequences. By analyzing the probabilities
of amino acid substitutions in these alignments, a scoring system can be devel-
oped by giving a high score for a more likely substitution and a low score for a rare
substitution.

For a given substitution matrix, a positive score means that the frequency of amino
acid substitutions found in a data set of homologous sequences is greater than would
have occurred by random chance. They represent substitutions of very similar residues
or identical residues. A zero score means that the frequency of amino acid substitutions
found in the homologous sequence data set is equal to that expected by chance. In
this case, the relationship between the amino acids is weakly similar at best in terms
of physicochemical properties. A negative score means that the frequency of amino
acid substitutions found in the homologous sequence data set is less than would
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have occurred by random chance. This normally occurs with substitutions between
dissimilar residues.

The substitution matrices apply logarithmic conversions to describe the probabil-
ity of amino acid substitutions. The converted values are the so-called log-odds scores
(or log-odds ratios), which are logarithmic ratios of the observed mutation frequency
divided by the probability of substitution expected by random chance. The conversion
can be either to the base of 10 or to the base of 2. For example, in an alignment that
involves ten sequences, each having only one aligned position, nine of the sequences
are F (phenylalanine) and the remaining one I (isoleucine). The observed frequency
of I being substituted by F is one in ten (0.1), whereas the probability of I being sub-
stituted by F by random chance is one in twenty (0.05). Thus, the ratio of the two
probabilities is 2 (0.1/0.05). After taking this ratio to the logarithm to the base of 2, this
makes the log odds equal to 1. This value can then be interpreted as the likelihood of
substitution between the two residues being 2 1, which is two times more frequently
than by random chance.

PAM Matrices
The PAM matrices (also called Dayhoff PAM matrices) were first constructed by
Margaret Dayhoff, who compiled alignments of seventy-one groups of very closely
related protein sequences. PAM stands for “point accepted mutation” (although
“accepted point mutation” or APM may be a more appropriate term, PAM is easier to
pronounce). Because of the use of very closely related homologs, the observed muta-
tions were not expected to significantly change the common function of the proteins.
Thus, the observed amino acid mutations are considered to be accepted by natural
selection.

These protein sequences were clustered based on phylogenetic reconstruction
using maximum parsimony (see Chapter 11). The PAM matrices were subsequently
derived based on the evolutionary divergence between sequences of the same cluster.
One PAM unit is defined as 1% of the amino acid positions that have been changed.
To construct a PAM1 substitution table, a group of closely related sequences with
mutation frequencies corresponding to one PAM unit is chosen. Based on the col-
lected mutational data from this group of sequences, a substitution matrix can be
derived.

Construction of the PAM1 matrix involves alignment of full-length sequences and
subsequent construction of phylogenetic trees using the parsimony principle. This
allows computation of ancestral sequences for each internal node of the trees (see
Chapter 11). Ancestral sequence information is used to count the number of sub-
stitutions along each branch of a tree. The PAM score for a particular residue pair
is derived from a multistep procedure involving calculations of relative mutability
(which is the number of mutational changes from a common ancestor for a particular
amino acid residue divided by the total number of such residues occurring in an
alignment), normalization of the expected residue substitution frequencies by ran-
dom chance, and logarithmic transformation to the base of 10 of the normalized
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TABLE 3.1. Correspondence of PAM Numbers with Observed Amino
Acid Mutational Rates

PAM Number Observed Mutation Rate (%) Sequence Identity (%)

0 0 100
1 1 99

30 25 75
80 50 50

110 40 60
200 75 25
250 80 20

mutability value divided by the frequency of a particular residue. The resulting value is
rounded to the nearest integer and entered into the substitution matrix, which reflects
the likelihood of amino acid substitutions. This completes the log-odds score com-
putation. After compiling all substitution probabilities of possible amino acid muta-
tions, a 20 × 20 PAM matrix is established. Positive scores in the matrix denote sub-
stitutions occurring more frequently than expected among evolutionarily conserved
replacements. Negative scores correspond to substitutions that occur less frequently
than expected.

Other PAM matrices with increasing numbers for more divergent sequences are
extrapolated from PAM1 through matrix multiplication. For example, PAM80 is pro-
duced by values of the PAM1 matrix multiplied by itself eighty times. The mathe-
matical transformation accounts for multiple substitutions having occurred in an
amino acid position during evolution. For example, when a mutation is observed as
F replaced by I, the evolutionary changes may have actually undergone a number
of intermediate steps before becoming I, such as in a scenario of F → M → L → I.
For that reason, a PAM80 matrix only corresponds to 50% of observed mutational
rates.

A PAM unit is defined as 1% amino acid change or one mutation per 100 residues.
The increasing PAM numbers correlate with increasing PAM units and thus evolution-
ary distances of protein sequences (Table 3.1). For example, PAM250, which corre-
sponds to 20% amino acid identity, represents 250 mutations per 100 residues. In the-
ory, the number of evolutionary changes approximately corresponds to an expected
evolutionary span of 2,500 million years. Thus, the PAM250 matrix is normally used
for divergent sequences. Accordingly, PAM matrices with lower serial numbers are
more suitable for aligning more closely related sequences. The extrapolated values of
the PAM250 amino acid substitution matrix are shown in Figure 3.5.

BLOSUM Matrices
In the PAM matrix construction, the only direct observation of residue substitutions
is in PAM1, based on a relatively small set of extremely closely related sequences.
Sequence alignment statistics for more divergent sequences are not available. To fill
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Figure 3.5: PAM250 amino acid substitution matrix. Residues are grouped according to physicochem-
ical similarities.

in the gap, a new set of substitution matrices have been developed. This is the
series of blocks amino acid substitution matrices (BLOSUM), all of which are derived
based on direct observation for every possible amino acid substitution in multiple
sequence alignments. These were constructed based on more than 2,000 conserved
amino acid patterns representing 500 groups of protein sequences. The sequence
patterns, also called blocks, are ungapped alignments of less than sixty amino acid
residues in length. The frequencies of amino acid substitutions of the residues in
these blocks are calculated to produce a numerical table, or block substitution
matrix.

Instead of using the extrapolation function, the BLOSUM matrices are actual per-
centage identity values of sequences selected for construction of the matrices. For
example, BLOSUM62 indicates that the sequences selected for constructing the matrix
share an average identity value of 62%. Other BLOSUM matrices based on sequence
groups of various identity levels have also been constructed. In the reversing order
as the PAM numbering system, the lower the BLOSUM number, the more divergent
sequences they represent.

The BLOSUM score for a particular residue pair is derived from the log ratio of
observed residue substitution frequency versus the expected probability of a particu-
lar residue. The log odds is taken to the base of 2 instead of 10 as in the PAM matrices.
The resulting value is rounded to the nearest integer and entered into the substi-
tution matrix. As in the PAM matrices, positive and negative values correspond to
substitutions that occur more or less frequently than expected among evolutionarily
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Figure 3.6: BLOSUM62 amino acid substitution matrix.

conserved replacements. The values of the BLOSUM62 matrix are shown in Fig-
ure 3.6.

Comparison between PAM and BLOSUM
There are a number of differences between PAM and BLOSUM. The principal dif-
ference is that the PAM matrices, except PAM1, are derived from an evolutionary
model whereas the BLOSUM matrices consist of entirely direct observations. Thus,
the BLOSUM matrices may have less evolutionary meaning than the PAM matri-
ces. This is why the PAM matrices are used most often for reconstructing phyloge-
netic trees. However, because of the mathematical extrapolation procedure used, the
PAM values may be less realistic for divergent sequences. The BLOSUM matrices
are entirely derived from local sequence alignments of conserved sequence blocks,
whereas the PAM1 matrix is based on the global alignment of full-length sequences
composed of both conserved and variable regions. This is why the BLOSUM matrices
may be more advantageous in searching databases and finding conserved domains in
proteins.

Several empirical tests have shown that the BLOSUM matrices outperform the PAM
matrices in terms of accuracy of local alignment. This could be largely because the
BLOSUM matrices are derived from a much larger and more representative dataset
than the one used to derive the PAM matrices. This renders the values for the BLOSUM
matrices more reliable. To compensate for the deficiencies in the PAM system, newer
matrices using the same approach have been devised based on much larger data sets.
These include the Gonnet matrices and the Jones–Taylor–Thornton matrices, which
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Figure 3.7: Gumble extreme value distribution for alignment scores. The distribution can be expressed
as P = 1− e − Kmne-λx, where m and n are the sequence lengths, λ is a scaling factor for the scoring
matrix used, and K is a constant that depends on the scoring matrix and gap penalty combination that
is used. The x-axis of the curve indicates the standard deviation of the distribution; the y-axis indicates
the alignment scores in arbitrary units.

have been shown to have equivalent performance to BLOSUM in regular alignment,
but are particularly robust in phylogenetic tree construction.

STATISTICAL SIGNIFICANCE OF SEQUENCE ALIGNMENT

When given a sequence alignment showing a certain degree of similarity, it is often
important to ask whether the observed sequence alignment can occur by random
chance or the alignment is indeed statistically sound. The truly statistically signifi-
cant sequence alignment will be able to provide evidence of homology between the
sequences involved.

Solving this problem requires a statistical test of the alignment scores of two unre-
lated sequences of the same length. By calculating alignment scores of a large number
of unrelated sequence pairs, a distribution model of the randomized sequence scores
can be derived. From the distribution, a statistical test can be performed based on the
number of standard deviations from the average score. Many studies have demon-
strated that the distribution of similarity scores assumes a peculiar shape that resem-
bles a highly skewed normal distribution with a long tail on one side (Fig. 3.7). The
distribution matches the “Gumble extreme value distribution” for which a mathemati-
cal expression is available. This means that, given a sequence similarity value, by using
the mathematical formula for the extreme distribution, the statistical significance can
be accurately estimated.

The statistical test for the relatedness of two sequences can be performed using
the following procedure. An optimal alignment between two given sequences is first
obtained. Unrelated sequences of the same length are then generated through a ran-
domization process in which one of the two sequences is randomly shuffled. A new
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alignment score is then computed for the shuffled sequence pair. More such scores
are similarly obtained through repeated shuffling. The pool of alignment scores from
the shuffled sequences is used to generate parameters for the extreme distribution.
The original alignment score is then compared against the distribution of random
alignments to determine whether the score is beyond random chance. If the score
is located in the extreme margin of the distribution, that means that the alignment
between the two sequences is unlikely due to random chance and is thus considered
significant. A P-value is given to indicate the probability that the original alignment
is due to random chance.

A P-value resulting from the test provides a much more reliable indicator of pos-
sible homologous relationships than using percent identity values. It is thus impor-
tant to know how to interpret the P-values. It has been shown that if a P-value is
smaller than 10−100, it indicates an exact match between the two sequences. If the
P-value is in the range of 10−50 to 10−100, it is considered to be a nearly identical
match. A P-value in the range of 10−5 to 10−50 is interpreted as sequences having clear
homology. A P-value in the range of 10−1 to 10−5 indicates possible distant homologs.
If P is larger than 10−1, the two sequence may be randomly related. However, the
caveat is that sometimes truly related protein sequences may lack the statistical sig-
nificance at the sequence level owing to fast divergence rates. Their evolutionary rela-
tionships can nonetheless be revealed at the three-dimensional structural level (see
Chapter 15).

These statistics were derived from ungapped local sequence alignments. It is not
known whether the Gumble distribution applies equally well to gapped alignments.
However, for all practical purposes, it is reasonable to assume that scores for gapped
alignments essentially fit the same distribution. A frequently used software program
for assessing statistical significance of a pairwise alignment is the PRSS program.

PRSS (Probability of Random Shuffles; www.ch.embnet.org/software/PRSS form.
html) is a web-based program that can be used to evaluate the statistical signifi-
cance of DNA or protein sequence alignment. It first aligns two sequences using the
Smith–Waterman algorithm and calculates the score. It then holds one sequence in its
original form and randomizes the order of residues in the other sequence. The shuffled
sequence is realigned with the unshuffled sequence. The resulting alignment score is
recorded. This process is iterated many (normally 1,000) times to help generate data
for fitting the Gumble distribution. The original alignment score is then compared
against the overall score distribution to derive a P-value. The major feature of the
program is that it allows partial shuffling. For example, shuffling can be restricted to
residues within a local window of 25–40, whereas the residues outside the window
remain unchanged.

SUMMARY

Pairwise sequence alignment is the fundamental component of many bioinformatics
applications. It is extremely useful in structural, functional, and evolutionary analyses
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of sequences. Pairwise sequence alignment provides inference for the relatedness of
two sequences. Strongly similar sequences are often homologous. However, a dis-
tinction needs to be made between sequence homology and similarity. The former
is inference drawn from sequence comparison, whereas the latter relates to actual
observation after sequence alignment. For protein sequences, identity values from
pairwise alignment are often used to infer homology, although this approach can be
rather imprecise.

There are two sequence alignment strategies, local alignment and global align-
ment, and three types of algorithm that perform both local and global alignments.
They are the dot matrix method, dynamic programming method, and word method.
The dot matrix method is useful in visually identifying similar regions, but lacks the
sophistication of the other two methods. Dynamic programming is an exhaustive and
quantitative method to find optimal alignments. This method effectively works in
three steps. It first produces a sequence versus sequence matrix. The second step is
to accumulate scores in the matrix. The last step is to trace back through the matrix in
reverse order to identify the highest scoring path. This scoring step involves the use
of scoring matrices and gap penalties.

Scoring matrices describe the statistical probabilities of one residue being sub-
stituted by another. PAM and BLOSUM are the two most commonly used matrices
for aligning protein sequences. The PAM matrices involve the use of evolutionary
models and extrapolation of probability values from alignment of close homologs to
more divergent ones. In contrast, the BLOSUM matrices are derived from actual align-
ment. The PAM and BLOSUM serial numbers also have opposite meanings. Matrices
of high PAM numbers are used to align divergent sequences and low PAM numbers
for aligning closely related sequences. In practice, if one is uncertain about which
matrix to use, it is advisable to test several matrices and choose the one that gives the
best alignment result. Statistical significance of pairwise sequence similarity can be
tested using a randomization test where score distribution follows an extreme value
distribution.
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CHAPTER FOUR

Database Similarity Searching

A main application of pairwise alignment is retrieving biological sequences in
databases based on similarity. This process involves submission of a query sequence
and performing a pairwise comparison of the query sequence with all individual
sequences in a database. Thus, database similarity searching is pairwise alignment
on a large scale. This type of searching is one of the most effective ways to assign puta-
tive functions to newly determined sequences. However, the dynamic programming
method described in Chapter 3 is slow and impractical to use in most cases. Special
search methods are needed to speed up the computational process of sequence com-
parison. The theory and applications of the database searching methods are discussed
in this chapter.

UNIQUE REQUIREMENTS OF DATABASE SEARCHING

There are unique requirements for implementing algorithms for sequence database
searching. The first criterion is sensitivity, which refers to the ability to find as many
correct hits as possible. It is measured by the extent of inclusion of correctly identified
sequence members of the same family. These correct hits are considered “true posi-
tives” in the database searching exercise. The second criterion is selectivity, also called
specificity, which refers to the ability to exclude incorrect hits. These incorrect hits are
unrelated sequences mistakenly identified in database searching and are considered
“false positives.” The third criterion is speed, which is the time it takes to get results
from database searches. Depending on the size of the database, speed sometimes can
be a primary concern.

Ideally, one wants to have the greatest sensitivity, selectivity, and speed in database
searches. However, satisfying all three requirements is difficult in reality. What gener-
ally happens is that an increase in sensitivity is associated with decrease in selectivity. A
very inclusive search tends to include many false positives. Similarly, an improvement
in speed often comes at the cost of lowered sensitivity and selectivity. A compromise
between the three criteria often has to be made.

In database searching, as well as in many other areas in bioinformatics, are two
fundamental types of algorithms. One is the exhaustive type, which uses a rigorous
algorithm to find the best or exact solution for a particular problem by examining all
mathematical combinations. Dynamic programming is an example of the exhaustive
method and is computationally very intensive. Another is the heuristic type, which is a
computational strategy to find an empirical or near optimal solution by using rules of

51
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thumb. Essentially, this type of algorithms take shortcuts by reducing the search space
according to some criteria. However, the shortcut strategy is not guaranteed to find
the best or most accurate solution. It is often used because of the need for obtaining
results within a realistic time frame without significantly sacrificing the accuracy of
the computational output.

HEURISTIC DATABASE SEARCHING

Searching a large database using the dynamic programming methods, such as the
Smith–Waterman algorithm, although accurate and reliable, is too slow and impracti-
cal when computational resources are limited. An estimate conducted nearly a decade
ago had shown that querying a database of 300,000 sequences using a query sequence
of 100 residues took 2–3 hours to complete with a regular computer system at the time.
Thus, speed of searching became an important issue. To speed up the comparison,
heuristic methods have to be used. The heuristic algorithms perform faster searches
because they examine only a fraction of the possible alignments examined in regular
dynamic programming.

Currently, there are two major heuristic algorithms for performing database
searches: BLAST and FASTA. These methods are not guaranteed to find the optimal
alignment or true homologs, but are 50–100 times faster than dynamic programming.
The increased computational speed comes at a moderate expense of sensitivity and
specificity of the search, which is easily tolerated by working molecular biologists.
Both programs can provide a reasonably good indication of sequence similarity by
identifying similar sequence segments.

Both BLAST and FASTA use a heuristic word method for fast pairwise sequence
alignment. This is the third method of pairwise sequence alignment. It works by find-
ing short stretches of identical or nearly identical letters in two sequences. These
short strings of characters are called words, which are similar to the windows used
in the dot matrix method (see Chapter 3). The basic assumption is that two related
sequences must have at least one word in common. By first identifying word matches,
a longer alignment can be obtained by extending similarity regions from the words.
Once regions of high sequence similarity are found, adjacent high-scoring regions can
be joined into a full alignment.

BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST)

The BLAST program was developed by Stephen Altschul of NCBI in 1990 and has
since become one of the most popular programs for sequence analysis. BLAST uses
heuristics to align a query sequence with all sequences in a database. The objective is
to find high-scoring ungapped segments among related sequences. The existence of
such segments above a given threshold indicates pairwise similarity beyond random
chance, which helps to discriminate related sequences from unrelated sequences in
a database.
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Figure 4.1: Illustration of the BLAST procedure using a hypothetical query sequence matching with
a hypothetical database sequence. The alignment scoring is based on the BLOSUM62 matrix (see
Chapter 3). The example of the word match is highlighted in the box.

BLAST performs sequence alignment through the following steps. The first step is
to create a list of words from the query sequence. Each word is typically three residues
for protein sequences and eleven residues for DNA sequences. The list includes every
possible word extracted from the query sequence. This step is also called seeding. The
second step is to search a sequence database for the occurrence of these words. This
step is to identify database sequences containing the matching words. The matching
of the words is scored by a given substitution matrix. A word is considered a match
if it is above a threshold. The fourth step involves pairwise alignment by extending
from the words in both directions while counting the alignment score using the same
substitution matrix. The extension continues until the score of the alignment drops
below a threshold due to mismatches (the drop threshold is twenty-two for proteins
and twenty for DNA). The resulting contiguous aligned segment pair without gaps is
called high-scoring segment pair (HSP; see working example in Fig. 4.1). In the original
version of BLAST, the highest scored HSPs are presented as the final report. They are
also called maximum scoring pairs.

A recent improvement in the implementation of BLAST is the ability to provide
gapped alignment. In gapped BLAST, the highest scored segment is chosen to be
extended in both directions using dynamic programming where gaps may be intro-
duced. The extension continues if the alignment score is above a certain threshold;
otherwise it is terminated. However, the overall score is allowed to drop below the
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threshold only if it is temporary and rises again to attain above threshold values.
Final trimming of terminal regions is needed before producing a report of the final
alignment.

Variants

BLAST is a family of programs that includes BLASTN, BLASTP, BLASTX TBLASTN,
and TBLASTX. BLASTN queries nucleotide sequences with a nucleotide sequence
database. BLASTP uses protein sequences as queries to search against a protein
sequence database. BLASTX uses nucleotide sequences as queries and translates
them in all six reading frames to produce translated protein sequences, which are
used to query a protein sequence database. TBLASTN queries protein sequences to a
nucleotide sequence database with the sequences translated in all six reading frames.
TBLASTX uses nucleotide sequences, which are translated in all six frames, to search
against a nucleotide sequence database that has all the sequences translated in six
frames. In addition, there is also a bl2seq program that performs local alignment of
two user-provided input sequences. The graphical output includes horizontal bars
and a diagonal in a two-dimensional diagram showing the overall extent of matching
between the two sequences.

The BLAST web server (www.ncbi.nlm.nih.gov/BLAST/) has been designed in such
a way as to simplify the task of program selection. The programs are organized based on
the type of query sequences, protein sequences, nucleotide sequences, or nucleotide
sequence to be translated. In addition, programs for special purposes are grouped
separately; for example, bl2seq, immunoglobulin BLAST, and VecScreen, a program for
removing contaminating vector sequences. The BLAST programs specially designed
for searching individual genome databases are also listed in a separate category.

The choice of the type of sequences also influences the sensitivity of the search.
Generally speaking, there is a clear advantage of using protein sequences in detecting
homologs. This is because DNA sequences only comprise four nucleotides, whereas
protein sequences contain twenty amino acids. This means that there is at least a five-
fold increase in statistical complexity for protein sequences. More importantly, amino
acid substitution matrices incorporate subtle differences in physicochemical proper-
ties between amino acids, meaning that protein sequences are far more informative
and sensitive in detection of homologs. This is why searches using protein sequences
can yield more significant matches than using DNA sequences. For that reason, if the
input sequence is a protein-encoding DNA sequence, it is preferable to use BLASTX,
which translates it in six open reading frames before sequence comparisons are
carried out.

If one is looking for protein homologs encoded in newly sequenced genomes, one
may use TBLASTN, which translates nucleotide database sequences in all six open
reading frames. This may help to identify protein coding genes that have not yet been
annotated. If a DNA sequence is to be used as the query, a protein-level comparison can
be done with TBLASTX. However, both programs are very computationally intensive
and the search process can be very slow.
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Statistical Significance

The BLAST output provides a list of pairwise sequence matches ranked by statis-
tical significance. The significance scores help to distinguish evolutionarily related
sequences from unrelated ones. Generally, only hits above a certain threshold are
displayed.

Deriving the statistical measure is slightly different from that for single pairwise
sequence alignment; the larger the database, the more unrelated sequence alignments
there are. This necessitates a new parameter that takes into account the total number
of sequence alignments conducted, which is proportional to the size of the database. In
BLAST searches, this statistical indicator is known as the E-value (expectation value),
and it indicates the probability that the resulting alignments from a database search
are caused by random chance. The E-value is related to the P-value used to assess
significance of single pairwise alignment (see Chapter 3). BLAST compares a query
sequence against all database sequences, and so the E-value is determined by the
following formula:

E = m × n × P (Eq. 4.1)

where m is the total number of residues in a database, n is the number of residues
in the query sequence, and P is the probability that an HSP alignment is a result of
random chance. For example, aligning a query sequence of 100 residues to a database
containing a total of 1012 residues results in a P-value for the ungapped HSP region
in one of the database matches of 1 × 1−20. The E-value, which is the product of
the three values, is 100 × 1012 × 10−20, which equals 10−6. It is expressed as 1e − 6 in
BLAST output. This indicates that the probability of this database sequence match
occurring due to random chance is 10−6.

The E-value provides information about the likelihood that a given sequence match
is purely by chance. The lower the E-value, the less likely the database match is a
result of random chance and therefore the more significant the match is. Empirical
interpretation of the E-value is as follows. If E < 1e − 50 (or 1 × 10−50), there should
be an extremely high confidence that the database match is a result of homologous
relationships. If E is between 0.01 and 1e − 50, the match can be considered a result
of homology. If E is between 0.01 and 10, the match is considered not significant, but
may hint at a tentative remote homology relationship. Additional evidence is needed
to confirm the tentative relationship. If E > 10, the sequences under consideration
are either unrelated or related by extremely distant relationships that fall below the
limit of detection with the current method.

Because the E-value is proportionally affected by the database size, an obvious
problem is that as the database grows, the E-value for a given sequence match also
increases. Because the genuine evolutionary relationship between the two sequences
remains constant, the decrease in credibility of the sequence match as the database
grows means that one may “lose” previously detected homologs as the database
enlarges. Thus, an alternative to E-value calculations is needed.
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A bit score is another prominent statistical indicator used in addition to the E-
value in a BLAST output. The bit score measures sequence similarity independent of
query sequence length and database size and is normalized based on the raw pairwise
alignment score. The bit score (S ′) is determined by the following formula:

S ′ = (λ × S − lnK )/ ln2 (Eq. 4.2)

where λ is the Gumble distribution constant, S is the raw alignment score, and K
is a constant associated with the scoring matrix used. Clearly, the bit score (S ′) is
linearly related to the raw alignment score (S). Thus, the higher the bit score, the more
highly significant the match is. The bit score provides a constant statistical indicator
for searching different databases of different sizes or for searching the same database
at different times as the database enlarges.

Low Complexity Regions

For both protein and DNA sequences, there may be regions that contain highly repeti-
tive residues, such as short segments of repeats, or segments that are overrepresented
by a small number of residues. These sequence regions are referred to as low complex-
ity regions (LCRs). LCRs are rather prevalent in database sequences; estimates indicate
that LCRs account for about 15% of the total protein sequences in public databases.
These elements in query sequences can cause spurious database matches and lead
to artificially high alignment scores with unrelated sequences.

To avoid the problem of high similarity scores owing to matching of LCRs that
obscure the real similarities, it is important to filter out the problematic regions in
both the query and database sequences to improve the signal-to-noise ratio, a pro-
cess known as masking. There are two types of masking: hard and soft. Hard masking
involves replacing LCR sequences with an ambiguity character such as N for
nucleotide residues or X for amino acid residues. The ambiguity characters are then
ignored by the BLAST program, preventing the use of such regions in alignments and
thus avoiding false positives. However, the drawback is that matching scores with true
homologs may be lowered because of shortened alignments. Soft masking involves
converting the problematic sequences to lower case letters, which are ignored in con-
structing the word dictionary, but are used in word extension and optimization of
alignments.

SEG is a program that is able to detect and mask repetitive elements before execut-
ing database searches. It identifies LCRs by comparing residue frequencies of a certain
region with average residue frequencies in the database. If the residue frequencies of
a sequence region of the query sequence are significantly higher than the database
average, the region is declared an LCR. SEG has been integrated into the BLAST web-
based program. An option box for this low complexity filter needs to be selected to
mask LCRs (either hard or soft masking).

RepeatMasker (http://woody.embl-heidelberg.de/repeatmask/) is an indepen-
dent masking program that detects repetitive elements by comparing the query
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sequence with a built-in library of repetitive elements using the Smith–Waterman
algorithm. If the alignment score for a sequence region is above a certain threshold,
the region is declared an LCR. The corresponding residues are then masked with N ’s
or X ’s.

BLAST Output Format

The BLAST output includes a graphical overview box, a matching list and a text descrip-
tion of the alignment (Fig. 4.2). The graphical overview box contains colored horizontal
bars that allow quick identification of the number of database hits and the degrees of
similarity of the hits. The color coding of the horizontal bars corresponds to the rank-
ing of similarities of the sequence hits (red: most related; green and blue: moderately
related; black: unrelated). The length of the bars represents the spans of sequence
alignments relative to the query sequence. Each bar is hyperlinked to the actual pair-
wise alignment in the text portion of the report. Below the graphical box is a list of
matching hits ranked by the E-values in ascending order. Each hit includes the acces-
sion number, title (usually partial) of the database record, bit score, and E-value.

This list is followed by the text description, which may be divided into three sections:
the header, statistics, and alignment. The header section contains the gene index
number or the reference number of the database hit plus a one-line description of
the database sequence. This is followed by the summary of the statistics of the search
output, which includes the bit score, E-value, percentages of identity, similarity (“Pos-
itives”), and gaps. In the actual alignment section, the query sequence is on the top
of the pair and the database sequence is at the bottom of the pair labeled as Subject.
In between the two sequences, matching identical residues are written out at their
corresponding positions, whereas nonidentical but similar residues are labeled with
“+”. Any residues identified as LCRs in the query sequence are masked with Xs or Ns
so that no alignment is represented in those regions.

FASTA

FASTA (FAST ALL, www.ebi.ac.uk/fasta33/) was in fact the first database similarity
search tool developed, preceding the development of BLAST. FASTA uses a “hashing”
strategy to find matches for a short stretch of identical residues with a length of k.
The string of residues is known as ktuples or ktups, which are equivalent to words in
BLAST, but are normally shorter than the words. Typically, a ktup is composed of two
residues for protein sequences and six residues for DNA sequences.

The first step in FASTA alignment is to identify ktups between two sequences by
using the hashing strategy. This strategy works by constructing a lookup table that
shows the position of each ktup for the two sequences under consideration. The posi-
tional difference for each word between the two sequences is obtained by subtracting
the position of the first sequence from that of the second sequence and is expressed
as the offset. The ktups that have the same offset values are then linked to reveal a
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Figure 4.2: An example of a BLAST output showing three portions: the graphical overview box, the list
of matching hits, and the text portion containing header, statistics, and the actual alignment.
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Figure 4.3: The procedure of ktup identification using the hashing strategy by FASTA. Identical offset
values between residues of the two sequences allow the formation of ktups.

contiguous identical sequence region that corresponds to a stretch of diagonal in a
two-dimensional matrix (Fig. 4.3).

The second step is to narrow down the high similarity regions between the two
sequences. Normally, many diagonals between the two sequences can be identified
in the hashing step. The top ten regions with the highest density of diagonals are
identified as high similarity regions. The diagonals in these regions are scored using
a substitution matrix. Neighboring high-scoring segments along the same diagonal
are selected and joined to form a single alignment. This step allows introducing gaps
between the diagonals while applying gap penalties. The score of the gapped align-
ment is calculated again. In step 3, the gapped alignment is refined further using the
Smith–Waterman algorithm to produce a final alignment (Fig. 4.4). The last step is to
perform a statistical evaluation of the final alignment as in BLAST, which produces
the E-value.

Similar to BLAST, FASTA has a number of subprograms. The web-based FASTA
program offered by the European Bioinformatics Institute (www.ebi.ac.uk/) allows
the use of either DNA or protein sequences as the query to search against a protein
database or nucleotide database. Some available variants of the program are FASTX,
which translates a DNA sequence and uses the translated protein sequence to query a
protein database, and TFASTX, which compares a protein query sequence to a trans-
lated DNA database.
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Figure 4.4: Steps of the FASTA alignment procedure. In step 1 (left ), all possible ungapped alignments
are found between two sequences with the hashing method. In step 2 (middle), the alignments are
scored according to a particular scoring matrix. Only the ten best alignments are selected. In step 3
(right ), the alignments in the same diagonal are selected and joined to form a single gapped alignment,
which is optimized using the dynamic programming approach.

Statistical Significance

FASTA also uses E-values and bit scores. Estimation of the two parameters in FASTA
is essentially the same as in BLAST. However, the FASTA output provides one more
statistical parameter, the Z-score. This describes the number of standard deviations
from the mean score for the database search. Because most of the alignments with the
query sequence are with unrelated sequences, the higher the Z-score for a reported
match, the further away from the mean of the score distribution, hence, the more
significant the match. For a Z-score > 15, the match can be considered extremely
significant, with certainty of a homologous relationship. If Z is in the range of 5 to
15, the sequence pair can be described as highly probable homologs. If Z < 5, their
relationships is described as less certain.

COMPARISON OF FASTA AND BLAST

BLAST and FASTA have been shown to perform almost equally well in regular database
searching. However, there are some notable differences between the two approaches.
The major difference is in the seeding step; BLAST uses a substitution matrix to find
matching words, whereas FASTA identifies identical matching words using the hashing
procedure. By default, FASTA scans smaller window sizes. Thus, it gives more sensitive
results than BLAST, with a better coverage rate for homologs. However, it is usually
slower than BLAST. The use of low-complexity masking in the BLAST procedure means
that it may have higher specificity than FASTA because potential false positives are
reduced. BLAST sometimes gives multiple best-scoring alignments from the same
sequence; FASTA returns only one final alignment.
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DATABASE SEARCHING WITH THE SMITH–WATERMAN METHOD

As mentioned, the rigorous dynamic programming method is normally not used for
database searching, because it is slow and computationally expensive. Heuristics such
as BLAST and FASTA are developed for faster speed. However, the heuristic methods
are limited in sensitivity and are not guaranteed to find the optimal alignment. They
often fail to find alignment for distantly related sequences. It has been estimated
that for some families of protein sequences, BLAST can miss 30% of truly significant
hits. Recent developments in computation technologies, such as parallel processing
supercomputers, have made dynamic programming a feasible approach to database
searches to fill the performance gap.

For this purpose, the computer codes for the Needleman–Wunsch and Smith–
Waterman algorithms have to be modified to run in a parallel processing environment
so that searches can be completed within reasonable time periods. Currently, the
search speed is still slower than the popular heuristic programs. Therefore, the method
is not intended for routine use. Nevertheless, the availability of dynamic programming
allows the maximum sensitivity for finding homologs at the sequence level. Empirical
tests have indeed shown that the exhaustive method produces superior results over
the heuristic methods. Below is a list of dynamic programming-based web servers for
sequence database searches.

ScanPS (Scan Protein Sequence, www.ebi.ac.uk/scanps/) is a web-based program
that implements a modified version of the Smith–Waterman algorithm optimized for
parallel processing. The major feature is that the program allows iterative searching
similar to PSI-BLAST (see Chapter 5), which builds profiles from one round of search
results and uses them for the second round of database searching. Full dynamic pro-
gramming is used in each cycle for added sensitivity.

ParAlign (www.paralign.org/) is a web-based server that uses parallel processors
to perform exhaustive sequence comparisons using either a parallelized version of
the Smith–Waterman algorithm or a heuristic program for further speed gains. The
heuristic subprogram first finds exact ungapped alignments and uses them as anchors
for extension into gapped alignments by combining the scores of several diagonals in
the alignment matrix. The search speed of ParAlign approaches to that of BLAST, but
with higher sensitivity.

SUMMARY

Database similarity searching is an essential first step in the functional characteri-
zation of novel gene or protein sequences. The major issues in database searching
are sensitivity, selectivity, and speed. Speed is a particular concern in searching large
databases. Thus, heuristic methods have been developed for efficient database sim-
ilarity searches. The major heuristic database searching algorithms are BLAST and
FASTA. They both use a word method for pairwise alignment. BLAST looks for HSPs
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in a database. FASTA uses a hashing scheme to identify words. The major statistical
measures for significance of database matches are E-values and bit scores. A caveat for
sequence database searching is to filter the LCRs using masking programs. Another
caveat is to use protein sequences as the query in database searching, because they
produce much more sensitive matches. In addition, it is important to keep in mind
that both BLAST and FASTA are heuristic programs and are not guaranteed to find
all the homologous sequences. For significant matches automatically generated by
these programs, it is recommended to follow up the leads by checking the alignment
using more rigorous and independent alignment programs. Advances in computa-
tional technology have also made it possible to use full dynamic programming in
database searching with increased sensitivity and selectivity.
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CHAPTER FIVE

Multiple Sequence Alignment

A natural extension of pairwise alignment is multiple sequence alignment, which is
to align multiple related sequences to achieve optimal matching of the sequences.
Related sequences are identified through the database similarity searching described
in Chapter 4. As the process generates multiple matching sequence pairs, it is often
necessary to convert the numerous pairwise alignments into a single alignment, which
arranges sequences in such a way that evolutionarily equivalent positions across all
sequences are matched.

There is a unique advantage of multiple sequence alignment because it reveals
more biological information than many pairwise alignments can. For example, it
allows the identification of conserved sequence patterns and motifs in the whole
sequence family, which are not obvious to detect by comparing only two sequences.
Many conserved and functionally critical amino acid residues can be identified in
a protein multiple alignment. Multiple sequence alignment is also an essential pre-
requisite to carrying out phylogenetic analysis of sequence families and prediction
of protein secondary and tertiary structures. Multiple sequence alignment also has
applications in designing degenerate polymerase chain reaction (PCR) primers based
on multiple related sequences.

It is theoretically possible to use dynamic programming to align any number of
sequences as for pairwise alignment. However, the amount of computing time and
memory it requires increases exponentially as the number of sequences increases.
As a consequence, full dynamic programming cannot be applied for datasets of
more than ten sequences. In practice, heuristic approaches are most often used. In
this chapter, methodologies and applications of multiple sequence alignment are
discussed.

SCORING FUNCTION

Multiple sequence alignment is to arrange sequences in such a way that a maximum
number of residues from each sequence are matched up according to a particular
scoring function. The scoring function for multiple sequence alignment is based on
the concept of sum of pairs (SP). As the name suggests, it is the sum of the scores of
all possible pairs of sequences in a multiple alignment based on a particular scoring
matrix. In calculating the SP scores, each column is scored by summing the scores
for all possible pairwise matches, mismatches and gap costs. The score of the entire

63
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Figure 5.1: Given a multiple alignment of three sequences,
the sum of scores is calculated as the sum of the similarity
scores of every pair of sequences at each position. The scor-
ing is based on the BLOSUM62 matrix (see Chapter 3). The
total score for the alignment is 5, which means that the align-
ment is 25 = 32 times more likely to occur among homologous
sequences than by random chance.

alignment is the sum of all of the column scores (Fig. 5.1). The purpose of most multiple
sequence alignment algorithms is to achieve maximum SP scores.

EXHAUSTIVE ALGORITHMS

As mentioned, there are exhaustive and heuristic approaches used in multiple
sequence alignment. The exhaustive alignment method involves examining all pos-
sible aligned positions simultaneously. Similar to dynamic programming in pairwise
alignment, which involves the use of a two-dimensional matrix to search for an opti-
mal alignment, to use dynamic programming for multiple sequence alignment, extra
dimensions are needed to take all possible ways of sequence matching into consid-
eration. This means to establish a multidimensional search matrix. For instance, for
three sequences, a three-dimensional matrix is required to account for all possible
alignment scores. Back-tracking is applied through the three-dimensional matrix to
find the highest scored path that represents the optimal alignment. For aligning N
sequences, an N-dimensional matrix is needed to be filled with alignment scores. As
the amount of computational time and memory space required increases exponen-
tially with the number of sequences, it makes the method computationally prohibitive
to use for a large data set. For this reason, full dynamic programming is limited to
small datasets of less than ten short sequences. For the same reason, few multiple
alignment programs employing this “brute force” approach are publicly available. A
program called DCA, which uses some exhaustive components, is described below.

DCA (Divide-and-Conquer Alignment, http://bibiserv.techfak.uni-bielefeld.de/
dca/) is a web-based program that is in fact semiexhaustive because certain steps
of computation are reduced to heuristics. It works by breaking each of the sequences
into two smaller sections. The breaking points are determined based on regional
similarity of the sequences. If the sections are not short enough, further divisions
are carried out. When the lengths of the sequences reach a predefined threshold,
dynamic programming is applied for aligning each set of subsequences. The result-
ing short alignments are joined together head to tail to yield a multiple alignment of
the entire length of all sequences. This algorithm provides an option of using a more
heuristic procedure (fastDCA) to choose optimal cutting points so it can more rapidly
handle a greater number of sequences. It performs global alignment and requires the
input sequences to be of similar lengths and domain structures. Despite the use of
heuristics, the program is still extremely computationally intensive and can handle
only datasets of a very limited number of sequences.
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HEURISTIC ALGORITHMS

Because the use of dynamic programming is not feasible for routine multiple sequence
alignment, faster and heuristic algorithms have been developed. The heuristic algo-
rithms fall into three categories: progressive alignment type, iterative alignment type,
and block-based alignment type. Each type of algorithm is described in turn.

Progressive Alignment Method

Progressive alignment depends on the stepwise assembly of multiple alignment and is
heuristic in nature. It speeds up the alignment of multiple sequences through a multi-
step process. It first conducts pairwise alignments for each possible pair of sequences
using the Needleman–Wunsch global alignment method and records these similarity
scores from the pairwise comparisons. The scores can either be percent identity or
similarity scores based on a particular substitution matrix. Both scores correlate with
the evolutionary distances between sequences. The scores are then converted into
evolutionary distances to generate a distance matrix for all the sequences involved.
A simple phylogenetic analysis is then performed based on the distance matrix to
group sequences based on pairwise distance scores. As a result, a phylogenetic tree
is generated using the neighbor-joining method (see Chapter 11). The tree reflects
evolutionary proximity among all the sequences.

It needs to be emphasized that the resulting tree is an approximate tree and does not
have the rigor of a formally constructed phylogenetic tree (see Chapter 11). Nonethe-
less, the tree can be used as a guide for directing realignment of the sequences. For
that reason, it is often referred to as a guide tree. According to the guide tree, the
two most closely related sequences are first re-aligned using the Needleman–Wunsch
algorithm. To align additional sequences, the two already aligned sequences are con-
verted to a consensus sequence with gap positions fixed. The consensus is then treated
as a single sequence in the subsequent step.

In the next step, the next closest sequence based on the guide tree is aligned with
the consensus sequence using dynamic programming. More distant sequences or
sequence profiles are subsequently added one at a time in accordance with their
relative positions on the guide tree. After realignment with a new sequence using
dynamic programming, a new consensus is derived, which is then used for the next
round of alignment. The process is repeated until all the sequences are aligned
(Fig. 5.2).

Probably the most well-known progressive alignment program is Clustal. Some of
its important features are introduced next.

Clustal (www.ebi.ac.uk/clustalw/) is a progressive multiple alignment program
available either as a stand-alone or on-line program. The stand-alone program, which
runs on UNIX and Macintosh, has two variants, ClustalW and ClustalX. The W version
provides a simple text-based interface and the X version provides a more user-friendly
graphical interface.
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Figure 5.2: Schematic of a typical progressive alignment procedure (e.g., Clustal). Angled wavy lines
represent consensus sequences for sequence pairs A/B and C/D. Curved wavy lines represent a consen-
sus for A/B/C/D.
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One of the most important features of this program is the flexibility of using sub-
stitution matrices. Clustal does not rely on a single substitution matrix. Instead, it
applies different scoring matrices when aligning sequences, depending on degrees of
similarity. The choice of a matrix depends on the evolutionary distances measured
from the guide tree. For example, for closely related sequences that are aligned in
the initial steps, Clustal automatically uses the BLOSUM62 or PAM120 matrix. When
more divergent sequences are aligned in later steps of the progressive alignment, the
BLOSUM45 or PAM250 matrices may be used instead.

Another feature of Clustal is the use of adjustable gap penalties that allow more
insertions and deletions in regions that are outside the conserved domains, but fewer
in conserved regions. For example, a gap near a series of hydrophobic residues carries
more penalties than the one next to a series of hydrophilic or glycine residues, which
are common in loop regions. In addition, gaps that are too close to one another can
be penalized more than gaps occurring in isolated loci.

The program also applies a weighting scheme to increase the reliability of aligning
divergent sequences (sequences with less than 25% identity). This is done by down-
weighting redundant and closely related groups of sequences in the alignment by a
certain factor. This scheme is useful in preventing similar sequences from dominating
the alignment. The weight factor for each sequence is determined by its branch length
on the guide tree. The branch lengths are normalized by how many times sequences
share a basal branch from the root of the tree. The obtained value for each sequence is
subsequently used to multiply the raw alignment scores of residues from that sequence
so to achieve the goal of decreasing the matching scores of frequent characters in a
multiple alignment and thereby increasing the ones of infrequent characters.

Drawbacks and Solutions
The progressive alignment method is not suitable for comparing sequences of differ-
ent lengths because it is a global alignment–based method. As a result of the use of
affine gap penalties (see Chapter 3), long gaps are not allowed, and, in some cases, this
may limit the accuracy of the method. The final alignment result is also influenced
by the order of sequence addition. Another major limitation is the “greedy” nature
of the algorithm: it depends on initial pairwise alignment. Once gaps introduced in
the early steps of alignment, they are fixed. Any errors made in these steps cannot be
corrected. This problem of “once an error, always an error” can propagate throughout
the entire alignment. In other words, the final alignment could be far from optimal.
The problem can be more glaring when dealing with divergent sequences. To alleviate
some of the limitations, a new generation of algorithms have been developed, which
specifically target some of the problems of the Clustal program.

T-Coffee (Tree-based Consistency Objective Function for alignment Evaluation;
www.ch.embnet.org/software/TCoffee.html) performs progressive sequence align-
ments as in Clustal. The main difference is that, in processing a query, T-Coffee per-
forms both global and local pairwise alignment for all possible pairs involved. The
global pairwise alignment is performed using the Clustal program. The local pairwise
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alignment is generated by the Lalign program, from which the top ten scored align-
ments are selected. The collection of local and global sequence alignments are pooled
to form a library. The consistency of the alignments is evaluated. For every pair of
residues in a pair of sequences, a consistency score is calculated for both global and
local alignments. Each pairwise alignment is further aligned with a possible third
sequence. The result is used to refine the original pairwise alignment based on a
consistency criterion in a process known as library extension. Based on the refined
pairwise alignments, a distance matrix is built to derive a guide tree, which is then
used to direct a full multiple alignment using the progressive approach.

Because an optimal initial alignment is chosen from many alternative alignments,
T-Coffee avoids the problem of getting stuck in the suboptimal alignment regions,
which minimizes errors in the early stages of alignment assembly. Benchmark assess-
ment has shown that T-Coffee indeed outperforms Clustal when aligning moderately
divergent sequences. However, it is also slower than Clustal because of the extra com-
puting time necessary for the calculation of consistency scores. T-Coffee provides
a graphical output of the alignment results, with colored boxes to display degree of
agreement in the alignment library for various sequence regions.

DbClustal (http://igbmc.u-strasbg.fr:8080/DbClustal/dbclustal.html) is a Clustal-
based database search algorithm for protein sequences that combines local and global
alignment features. It first performs a BLASTP search for a query sequence. The result-
ing sequence alignment pairs above a certain threshold are analyzed to obtain anchor
points, which are common conserved regions, by using a program called Ballast. A
global alignment is subsequently generated by Clustal, which is weighted toward the
anchor points. Since the anchor points are derived from local alignments, this strategy
minimizes errors caused by the global alignment. The resulting multiple alignment
is further evaluated by NorMD, which removes unrelated or badly aligned sequences
from the multiple alignment. Thus, the final alignment should be more accurate than
using Clustal alone. It also allows the incorporation of very long gaps for insertions
and terminal extensions.

Poa (Partial order alignments, www.bioinformatics.ucla.edu/poa/) is a progressive
alignment program that does not rely on guide trees. Instead, the multiple alignment
is assembled by adding sequences in the order they are given. Instead of using regular
sequence consensus, a partial order graph is used to represent a growing multiple
alignment, in which identical residues in a column are condensed to a node resem-
bling a knot on a rope and divergent residues are allowed to remain as such, allowing
the rope to “bubble” (Fig. 5.3). The graph profile preserves all the information from
the original alignment. Each time a new sequence is added, it is aligned with every
sequence within the partial order graph individually using the Smith–Waterman algo-
rithm. This allows the formation of a modified graph model, which is then used for
the next cycle of pairwise alignment. By building such a graph profile, the algorithm
maintains the information of the original sequences and eliminates the problem of
error fixation as in the Clustal alignment. Poa is local alignment-based and has been
shown to produce more accurate alignments than Clustal. Another advantage of this
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Figure 5.3: Conversion of a sequence alignment into a graphical profile in the Poa algorithm. Identical
residues in the alignment are condensed as nodes in the partial order graph.

algorithm is its speed. It is reported to be able to align 5,000 sequences in 4 hours
using a regular PC workstation. It is available both as an online program and as a
stand-alone UNIX program.

PRALINE (http://ibivu.cs.vu.nl/programs/pralinewww/) is a web-based progres-
sive alignment program. It first performs preprocessing of the input sequences by
building profiles for each sequence. Profiles (see Chapter 6) can be interpreted as
probability description of a multiple alignment. By default, the profiles are automat-
ically generated using PSI-BLAST database searching (see Chapter 6). Each prepro-
cessed profile is then used for multiple alignment using the progressive approach.
However, this method does not use a guide tree in the successive enlargement of the
alignment, but rather considers the closest neighbor to be joined to a larger alignment
by comparing the profile scores. Because the profiles already incorporate information
of distant relatives of each input sequence, this approach allows more accurate align-
ment of distantly related sequences in the original dataset. In addition, the program
also has the feature to incorporate protein secondary structure information which is
derived from state-of-the-art secondary structure prediction programs, such as PROF
or SSPRO (see Chapter 14). The secondary structure information is used to modify
the profile scores to help constrain sequence matching to the structured regions.
PRALINE is perhaps the most sophisticated and accurate alignment program avail-
able. Because of the high complexity of the algorithm, its obvious drawback is the
extremely slow computation.

Iterative Alignment

The iterative approach is based on the idea that an optimal solution can be found
by repeatedly modifying existing suboptimal solutions. The procedure starts by pro-
ducing a low-quality alignment and gradually improves it by iterative realignment
through well-defined procedures until no more improvements in the alignment scores
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Figure 5.4: Schematic of iterative alignment procedure for PRRN, which involves two sets of iterations.

can be achieved. Because the order of the sequences used for alignment is different
in each iteration, this method may alleviate the “greedy” problem of the progressive
strategy. However, this method is also heuristic in nature and does not have guar-
antees for finding the optimal alignment. An example of iterative alignment is given
below.

PRRN (http://prrn.ims.u-tokyo.ac.jp/) is a web-based program that uses a double-
nested iterative strategy for multiple alignment. It performs multiple alignment
through two sets of iterations: inner iteration and outer iteration. In the outer iteration,
an initial random alignment is generated that is used to derive a UPGMA tree (see
Chapter 11). Weights are subsequently applied to optimize the alignment. In the
inner iteration, the sequences are randomly divided into two groups. Randomized
alignment is used for each group in the initial cycle, after which the alignment posi-
tions in each group are fixed. The two groups, each treated as a single sequence,
are then aligned to each other using global dynamic programming. The process
is repeated through many cycles until the total SP score no longer increases. At
this point, the resulting alignment is used to construct a new UPGMA tree. New
weights are applied to optimize alignment scores. The newly optimized alignment
is subject to further realignment in the inner iteration. This process is repeated over
many cycles until there is no further improvement in the overall alignment scores
(Fig. 5.4).
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Block-Based Alignment

The progressive and iterative alignment strategies are largely global alignment based
and may therefore fail to recognize conserved domains and motifs (see Chapter 7)
among highly divergent sequences of varying lengths. For such divergent sequences
that share only regional similarities, a local alignment based approach has to be used.
The strategy identifies a block of ungapped alignment shared by all the sequences,
hence, the block-based local alignment strategy. Two block-based alignment pro-
grams are introduced below.

DIALIGN2 (http://bioweb.pasteur.fr/seqanal/interfaces/dialign2.html) is a web-
based program designed to detect local similarities. It does not apply gap penalties
and thus is not sensitive to long gaps. The method breaks each of the sequences down
to smaller segments and performs all possible pairwise alignments between the seg-
ments. High-scoring segments, called blocks, among different sequences are then
compiled in a progressive manner to assemble a full multiple alignment. It places
emphasis on block-to-block comparison rather than residue-to-residue compari-
son. The sequence regions between the blocks are left unaligned. The program has
been shown to be especially suitable for aligning divergent sequences with only local
similarity.

Match-Box (www.sciences.fundp.ac.be/biologie/bms/matchbox submit.shtml) is
a web-based server that also aims to identify conserved blocks (or boxes) among
sequences. The program compares segments of every nine residues of all possible
pairwise alignments. If the similarity of particular segments is above a certain thresh-
old across all sequences, they are used as an anchor to assemble multiple alignments;
residues between blocks are unaligned. The server requires the user to submit a set of
sequences in the FASTA format and the results are returned by e-mail.

PRACTICAL ISSUES

Protein-Coding DNA Sequences

As mentioned in the Chapter 4, alignment at the protein level is more sensitive than
at the DNA level. Sequence alignment directly at the DNA level can often result in
frameshift errors because in DNA alignment gaps are introduced irrespective of codon
boundaries. Therefore, in the process of achieving maximum sequence similarity at
the DNA level, mismatches of genetic codons occur that violate the accepted evolu-
tionary scenario that insertions or deletions occur in units of codons. The resulting
alignment can thus be biologically unrealistic. The example in Figure 5.5 shows how
such errors can occur when two sequences are being compared at the protein and
DNA levels.

For that reason, sequence alignment at the protein level is much more informative
for functional and evolutionary analysis. However, there are occasions when sequence
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Figure 5.5: Comparison of alignment at the protein
level and DNA level. The DNA alignment on the left
is the correct one and consistent with amino acid
sequence alignment, whereas the DNA alignment on
the right, albeit more optimal in matching similar
residues, is incorrect because it disregards the codon
boundaries.

alignment at the DNA level is often necessary, for example, in designing PCR primers
and in constructing DNA-based molecular phylogenetic trees.

Because conducting alignment directly at the DNA level often leads to errors, DNA
can be translated into an amino acid sequence before carrying out alignment to avoid
the errors of inserting gaps within codon boundaries. After alignment of the protein
sequences, the alignment can be converted back to DNA alignment while ensuring
that codons of the DNA sequences line up based on corresponding amino acids.
The following are two web-based programs that allow easy conversion from protein
alignment to DNA alignment.

RevTrans (www.cbs.dtu.dk/services/RevTrans/) takes a set of DNA sequences,
translates them, aligns the resulting protein sequences, and uses the protein align-
ment as a scaffold for constructing the corresponding DNA multiple alignment. It
also allows the user to provide multiple protein alignment for greater control of
the alignment process. PROTA2DNA (http://bioweb.pasteur.fr/seqanal/interfaces/
protal2dna.html) aligns DNA sequences corresponding to a protein multiple align-
ment.

Editing

No matter how good an alignment program seems, the automated alignment often
contains misaligned regions. It is imperative that the user check the alignment care-
fully for biological relevance and edit the alignment if necessary. This involves intro-
ducing or removing gaps to maximize biologically meaningful matches. Sometimes,
portions that are ambiguously aligned and deemed to be incorrect have to deleted.
In manual editing, empirical evidence or mere experience is needed to make correc-
tions on an alignment. One can simply use a word processor to edit the text-based
alignment. There are also dedicated software programs that assist in the process.

BioEdit (www.mbio.ncsu.edu/BioEdit/bioedit.html) is a multifunctional sequence
alignment editor for Windows. It has a coloring scheme for nucleotide or amino acid
residues that facilitates manual editing. In addition, it is able to do BLAST searches,
plasmid drawing, and restriction mapping.
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Rascal (http://igbmc.u-strasbg.fr/PipeAlign/Rascal/rascal.html) is a web-based
program that automatically refines a multiple sequence alignment. It is part of the
PipeAlign package. It is able to identify misaligned regions and realign them to improve
the quality of the alignment. It works by dividing the input alignment into several
regions horizontally and vertically to identify well-aligned and poorly aligned regions
using an internal scoring scheme. Regions below certain thresholds are considered
misaligned and are subsequently realigned using the progressive approach. The over-
all quality of the alignment is then reassessed. If necessary, certain regions are further
realigned. The program also works in conjunction with NorMD, which validates the
refined alignment and identifies potentially unrelated sequences for removal.

Format Conversion

In many bioinformatics analyses, in particular, phylogenetic analysis, it is often nec-
essary to convert various formats of sequence alignments to the one acceptable by
an application program. The task of format conversion requires a program to be
able to read a multiple alignment in one format and rewrite it into another while
maintaining the original alignment. This is a different task from simply converting
the format of individual unaligned sequences. The BioEdit program mentioned is
able to save an alignment in a variety of different formats. In addition, the Readseq
program mentioned in Chapter 2 is able to perform format conversion of multiple
alignment.

Readseq (http://iubio.bio.indiana.edu/cgi-bin/readseq.cgi/) is a web-based pro-
gram that is able to do both simple sequence format conversion as well as alignment
format conversions. The program can handle formats such as MSF, Phylip, Clustal,
PAUP, and Pretty.

SUMMARY

Multiple sequence alignment is an essential technique in many bioinformatics appli-
cations. Many algorithms have been developed to achieve optimal alignment. Some
programs are exhaustive in nature; some are heuristic. Because exhaustive programs
are not feasible in most cases, heuristic programs are commonly used. These include
progressive, iterative, and block-based approaches. The progressive method is a step-
wise assembly of multiple alignment according to pairwise similarity. A prominent
example is Clustal, which is characterized by adjustable scoring matrices and gap
penalties as well as by the application of weighting schemes. The major shortcoming
of the program is its “greediness,” which relates to error fixation in the early steps of
computation. To remedy the problem, T-Coffee and DbClustal have been developed
that combine both global and local alignment to generate more sensitive alignment.
Another improvement on the traditional progressive approach is to use graphic pro-
files, as in Poa, which eliminate the problem of error fixation. Praline is profile based
and has the capacity to restrict alignment based on protein structure information and
is thus much more accurate than Clustal. The iterative approach works by repetitive
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refinement of suboptimal alignments. The block-based method focuses on identify-
ing regional similarities. It is important to keep in mind that no alignment program
is absolutely guaranteed to find correct alignment, especially when the number of
sequences is large and the divergence level is high. The alignment resulting from
automated alignment programs often contains errors. The best approach is to perform
alignment using a combination of multiple alignment programs. The alignment result
can be further refined manually or using Rascal. Protein-encoding DNA sequences
should preferably be aligned at the protein level first, after which the alignment can
be converted back to DNA alignment.
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CHAPTER SIX

Profiles and Hidden Markov Models

One of the applications of multiple sequence alignments in identifying related
sequences in databases is by construction of position-specific scoring matrices
(PSSMs), profiles, and hidden Markov models (HMMs). These are statistical mod-
els that reflect the frequency information of amino acid or nucleotide residues in
a multiple alignment. Thus, they can be treated as consensus for a given sequence
family. However, the “consensus” is not exactly a single sequence, but rather a model
that captures not only the observed frequencies but also predicted frequencies of
unobserved characters. The purpose of establishing the mathematical models is to
allow partial matches with a query sequence so they can be used to detect more dis-
tant members of the same sequence family, resulting in an increased sensitivity of
database searches. This chapter covers the basics of these statistical models followed
by discussion of their applications.

POSITION-SPECIFIC SCORING MATRICES

A PSSM is defined as a table that contains probability information of amino acids or
nucleotides at each position of an ungapped multiple sequence alignment. The matrix
resembles the substitution matrices discussed in Chapter 3, but is more complex in
that it contains positional information of the alignment. In such a table, the rows rep-
resent residue positions of a particular multiple alignment and the columns represent
the names of residues or vice versa (Fig. 6.1). The values in the table represent log odds
scores of the residues calculated from the multiple alignment.

To construct a matrix, raw frequencies of each residue at each column position from
a multiple alignment are first counted. The frequencies are normalized by dividing
positional frequencies of each residue by overall frequencies so that the scores are
length and composition independent. The values are converted to the probability
values by taking to the logarithm (normally to the base of 2). In this way, the matrix
values become log odds scores of residues occurring at each alignment position. In
this matrix, a positive score represents identical residue or similar residue match; a
negative score represents a nonconserved sequence match.

This constructed matrix can be considered a distilled representation for the entire
group of related sequences, providing a quantitative description of the degree of
sequence conservation at each position of a multiple alignment. The probabilistic
model can then be used like a single sequence for database searching and alignment

75
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Figure 6.1: Example of construction of a PSSM from a multiple alignment of nucleotide sequences.
The process involves counting raw frequencies of each nucleotide at each column position, normaliza-
tion of the frequencies by dividing positional frequencies of each nucleotide by overall frequencies and
converting the values to log odds scores.

or can be used to test how well a particular target sequence fits into the sequence
group.

For example, given the matrix shown in Figure 6.1, which is derived from a DNA mul-
tiple alignment, one can ask the question, how well does the new sequence AACTCG
fit into the matrix? To answer the question, the probability values of the sequence at
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Figure 6.2: Example of calculation of how well a new sequence fits into the PSSM produced in Fig-
ure 6.1. The matching positions for the new sequence AACTCG are circled in the matrix.

respective positions of the matrix can be added up to produce the sum of the scores
(Fig. 6.2). In this case, the total match score for the sequence is 6.33. Because the matrix
values have been taken to the logarithm to the base of 2, the score can be interpreted as
the probability of the sequence fitting the matrix as 26.33, or 80 times more likely than
by random chance. Consequently, the new sequence can be confidently classified as
a member of the sequence family.

The probability values in a PSSM depend on the number of sequences used to
compile the matrix. Because the matrix is often constructed from the alignment of an
insufficient number of closely related sequences, to increase the predictive power of
the model, a weighting scheme similar to the one used in the Clustal algorithm (see
Chapter 5) is used that downweights overrepresented, closely related sequences and
upweights underrepresented and divergent ones, so that more divergent sequences
can be included. Application of such a weighting scheme makes the matrix less biased
and able to detect more distantly related sequences.

PROFILES

Actual multiple sequence alignments often contain gaps of varying lengths. When gap
penalty information is included in the matrix construction, a profile is created. In other
words, a profile is a PSSM with penalty information regarding insertions and deletions
for a sequence family. However, in the literature, profile is often used interchangeably
with PSSM, even though the two terms in fact have subtle but significant differences.

As in sequence alignment, gap penalty scores in a profile matrix are often arbitrarily
set. Thus, to achieve an optimal alignment between a query sequence and a profile, a
series of gap parameters have to be tested.
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Figure 6.3: Schematic diagram of PSI-BLAST, an iterative process used to identify distant homologs.

PSI-BLAST

Profiles can be used in database searching to find remote sequence homologs. How-
ever, to manually construct a profile from a multiple alignment and calculate scores for
matching sequences from a large database is tedious and involves significant exper-
tise. It is desirable to have a program to establish profiles and use them to search against
sequence databases in an automated way. Such a program is fortunately available as
PSI-BLAST, a variant of BLAST, provided by the National Center for Biotechnology
Information.

Position-specific iterated BLAST (PSI-BLAST) builds profiles and performs data-
base searches in an iterative fashion. It first uses a single query protein sequence to
perform a normal BLASTP search to generate initial similarity hits. The high-scoring
hits are used to build a multiple sequence alignment, from which a profile is created.
The profile is then used in the second round of searching to identify more members
of the same family that may match with the profile. When new sequence hits are
identified, they are combined with the previous multiple alignment to generate a new
profile, which is in turn used in subsequent cycles of database searching. The process
is repeated until no new sequence hits are found (Fig. 6.3).

The main feature of PSI-BLAST is that profiles are constructed automatically and
are fine-tuned in each successive cycle. The program also employs a weighting scheme
in the profile construction in each iteration to increase sensitivity. Another measure
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Figure 6.4: A simple representation of a Markov chain, which consists of a linear chain of events or
states (numbered) linked by transition probability values between events (states).

of PSI-BLAST to increase sensitivity is the use of pseudocounts (to be discussed next)
to provide extra weight to unobserved residues to make the profile more inclusive.

The optimization of profile parameters makes PSI-BLAST a very sensitive search
strategy to detect weak but biologically significant similarities between sequences.
It has been estimated that the profile-based approach is able to identify three times
more homologs than regular BLAST, which mainly fall within the range of less than
30% sequence identity.

However, the high sensitivity of PSI-BLAST is also its pitfall; it is associated with low
selectivity caused by the false-positives generated in the automated profile construc-
tion process. If unrelated sequences are erroneously included, profiles become biased.
This allows further errors to be incorporated in subsequent cycles. This problem is
known as profile drift. A partial solution to this problem is to let the user visually inspect
results in each iteration and reject certain sequences that are known to be unrelated
based on external knowledge. In addition, it is also prudent to conduct only a limited
number of cycles instead of reaching full convergence. Typically, three to five iterations
of PSI-BLAST are sufficient to find most distant homologs at the sequence level.

MARKOV MODEL AND HIDDEN MARKOV MODEL

Markov Model

A more efficient way of computing matching scores between a sequence and a
sequence profile is through the use of HMMs, which are statistical models originally
developed for use in speech recognition. This statistical tool was subsequently found
to be ideal for describing sequence alignments. To understand HMMs, it is important
to have some general knowledge of Markov models.

A Markov model, also known as Markov chain, describes a sequence of events
that occur one after another in a chain. Each event determines the probability of the
next event (Fig. 6.4). A Markov chain can be considered as a process that moves in
one direction from one state to the next with a certain probability, which is known as
transition probability. A good example of a Markov model is the signal change of traffic
lights in which the state of the current signal depends on the state of the previous signal
(e.g., green light switches on after red light, which switches on after yellow light).

Biological sequences written as strings of letters can be described by Markov chains
as well; each letter representing a state is linked together with transitional probability
values. The description of biological sequences using Markov chains allows the cal-
culation of probability values for a given residue according to the unique distribution
frequencies of nucleotides or amino acids.
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There are several different types of Markov models used to describe datasets of
different complexities. In each type of Markov model, different mathematical solu-
tions are derived. A zero-order Markov model describes the probability of the cur-
rent state independent of the previous state. This is typical for a random sequence,
in which every residue occurs with an equal frequency. A first-order Markov model
describes the probability of the current state being determined by the previous state.
This corresponds to the unique frequencies of two linked residues (dimer) occur-
ring simultaneously. Similarly, a second-order Markov model describes the situation
in which the probability of the current state is determined by the previous two states.
This corresponds to the unique trimer frequencies (three linked residues occurring
simultaneously as in the case of a codon) in biological sequences. For example, in a
protein-coding sequence, the frequency of unique trimers should be different from
that in a noncoding or random sequence. This discrepancy can be described by the
second-order Markov model. In addition, even higher orders of Markov models are
available for biological sequence analysis (see Chapter 8).

Hidden Markov Model

In a Markov model, all states in a linear sequence are directly observable. In some sit-
uations, some nonobserved factors influence state transition calculations. To include
such factors in calculations requires the use of more sophisticated models: HMMs.
An HMM combines two or more Markov chains with only one chain consisting of
observed states and the other chains made up of unobserved (or “hidden”) states that
influence the outcome of the observed states (Fig. 6.5). For example, in a gapped align-
ment, gaps do not correspond to any residues and are considered as unobservable
states. However, gaps indirectly influence the transition probability of the observed
states.

In an HMM, as in a Markov chain, the probability going from one state to another
state is the transition probability. Each state may be composed of a number elements
or symbols. For nucleotide sequences, there are four possible symbols – A, T, G, and C –
in each state. For amino acid sequences, there twenty symbols. The probability value
associated with each symbol in each state is called emission probability. To calculate
the total probability of a particular path of the model, both transition and emission
probabilities linking all the “hidden” as well as observed states need to be taken into
account. Figure 6.6 provides a simple example of how to use two states of a partial
HMM to represent (or generate) a sequence.

To develop a functional HMM that can be used to best represent a sequence align-
ment, the statistical model has to be “trained,” which is a process to obtain the optimal
statistical parameters in the HMM. The training process involves calculation of the
frequencies of residues in each column in the multiple alignment built from a set of
related sequences. The frequency values are used to fill the emission and transition
probability values in the model. Similar to the construction of a PSSM, once an HMM
is established based on the training sequences, it can be used to determine how well
an unknown sequence matches the model.
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Figure 6.5: A simplified HMM involving two interconnected Markov chains with observed states and
common “begin” and “end” states. The observed states are colored in black and unobserved states
in grey. The transition probability values between observed states or between unobserved states are
labeled. The probability values between the observed and hidden states are unlabeled.

To use an HMM to describe gapped multiple sequence alignment, a character
in the alignment can be in one of three states, match (a mismatch can be quan-
titatively expressed as low probability of a match), insertion, and deletion. “Match”
states are observed states, whereas the insertions and deletions, designated as “insert”
and “delete” states, are “hidden” as far as transitions between match states are
concerned.

To represent the three states in an HMM, a special graphical representation has
been traditionally used. In this representation, transitions from state to state proceed
from left to right via various paths through the model representing all possible com-
binations of matches, mismatches, and gaps to generate an alignment. Each path is
associated with a unique probability value (Fig. 6.7).

The circles on top of the insert state indicate self-looping, which allows insertions
of any number of residues to fit into the model. In addition, there is a beginning state
and an end state. There are many possible combinations of states or paths to travel
through the model, from the beginning state to the end state. Each path generates a
unique sequence, which includes insertions or deletions, with a probability value. For
a given HMM, there may be only one optimal path that generates the most probable
sequence representing an optimal sequence family alignment.

Figure 6.6: Graphic illustration of a simplified partial HMM for DNA sequences with emission and
transition probability values. Both probability values are used to calculate the total probability of a
particular path of the model. For example, to generate the sequence AG, the model has to progress
from A from STATE 1 to G in STATE 2, the probability of this path is 0.80 × 0.40 × 0.32 = 0.102.
Obviously, there are 4 × 4 = 16 different sequences this simple model can generate. The one that has
the highest probability is AT.
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Figure 6.7: A typical architecture of a hidden Markov model representing a multiple sequence align-
ment. Squares indicate match states (M), diamonds insert states (I), and circles delete states (D). The
beginning and end of the match states are indicated by B and E, respectively. The states are connected
by arrowed lines with transition probability values.

Score Computation
To find an optimal path within an HMM that matches a query sequence with the high-
est probability, a matrix of probability values for every state at every residue position
needs to be constructed (Fig. 6.8). Several algorithms are available to determine the
most probable path for this matrix. One such algorithm is the Viterbi algorithm, which
works in a similar fashion as in dynamic programming for sequence alignment (see
Chapter 3). It constructs a matrix with the maximum emission probability values of
all the symbols in a state multiplied by the transition probability for that state. It then
uses a trace-back procedure going from the lower right corner to the upper left corner
to find the path with the highest values in the matrix. Another frequently used algo-
rithm is the forward algorithm, which constructs a matrix using the sum of multiple
emission states instead of the maximum, and calculates the most likely path from the
upper left corner of the matrix to the lower right corner. In other words, it proceeds in
an opposite direction to the Viterbi algorithm. In practice, both methods have equal
performance in finding an optimal alignment.

Figure 6.8: Score matrix constructed from a simple HMM with the optimal score path chosen by the
Vertibi algorithm. M, I, and D represent match, insert, and delete states. State 0 (S0) is the beginning
state; S3 is the end state. The probability value for each state (S) is the maximum emission probability of
each state multiplied by the transition probability to that state. The Viterbi algorithm works in a trace-
back procedure by traveling from the lower right corner to the upper left corner to find the highest
scored path.
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In HMM construction, as in profile construction, there is always an issue of limited
sampling size, which causes overrepresentation of observed characters while ignoring
the unobserved characters. This problem is known as overfitting. To make sure that the
HMM model generated from the training set is representative of not only the training
set sequences, but also of other members of the family not yet sampled, some level
of “smoothing” is needed, but not to the extent that it distorts the observed sequence
patterns in the training set. This smoothing method is called regularization.

One of the regularization methods involves adding an extra amino acid called
a pseudocount, which is an artificial value for an amino acid that is not observed
in the training set. When probabilities are computed, pseudocounts are treated
like real counts. The modified profile enhances the predictive power of the profile
and HMM.

To automate the process of regularization, various mathematical models have
been developed to simulate the amino acid distribution in a sequence alignment.
These preconstructed models aim to correct the observed amino acid distribution
derived from a limited sequence alignment. A well-known statistical model for this
purpose is the Dirichlet mixture, derived from prior distributions of amino acids
found in a large number of conserved protein domains. This is essentially a weighting
scheme that gives pseudocounts to amino acids and makes the distribution more
reasonable.

Applications
An advantage of HMMs over profiles is that the probability modeling in HMMs has
more predictive power. This is because an HMM is able to differentiate between inser-
tion and deletion states, whereas in profile calculation, a single gap penalty score that
is often subjectively determined represents either an insertion or deletion. Because
the handling of insertions and deletions is a major problem in recognizing highly
divergent sequences, HMMs are therefore more robust in describing subtle patterns
of a sequence family than standard profile analysis.

HMMs are very useful in many aspects of bioinformatics. Although an HMM has to
be trained based on multiple sequence alignment, once it is trained, it can in turn be
used for the construction of multiple alignment of related sequences. HMMs can be
used for database searching to detect distant sequence homologs. As to be discussed
in Chapter 7, HMMs are also used in protein family classification through motif and
pattern identification. Advanced gene and promoter prediction (see Chapters 8 and 9),
transmembrane protein prediction (see Chapter 14), as well as protein fold recognition
(see Chapter 15), also employ HMMs.

HMMer (http://hmmer.wustl.edu/) is an HMM package for sequence analysis
available in the public domain. It is a suite of UNIX programs that work in con-
junction to perform an HMM analysis. It creates profile HMMs from a sequence
alignment using the subprogram hmmbuild. Another subprogram, hmmcalibrate,
calibrates search statistics for the newly generated HMMs by fitting the scores to
the Gumble extreme value distribution (see Chapter 3). The subprogram hmmemit
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generates probability distribution based on profile HMMs. The program hmmsearch
searches a sequence database for matching sequences with a profile HMM.

SUMMARY

PSSMs, profiles, and HMMs are statistical models that represent the consensus of
a sequence family. Because they allow partial matches, they are more sensitive in
detecting remote homologs than regular sequence alignment methods. A PSSM by
definition is a scoring table derived from ungapped multiple sequence alignment. A
profile is similar to PSSM, but also includes probability information for gaps derived
from gapped multiple alignment. An HMM is similar to profiles but differentiates
insertions from deletions in handling gaps.

The probability calculation in HMMs is more complex than in profiles. It involves
traveling through a special architecture of various observed and hidden states to
describe a gapped multiple sequence alignment. As a result of flexible handling of
gaps, HMM is more sensitive than profiles in detecting remote sequence homologs.
All three types of models require training because the statistical parameters have to be
determined according to alignment of sequence families. PSI-BLAST is an example of
the practical application of profiles in database searches to detect remote homologs
in a database. The automated nature of PSI-BLAST has stimulated a widespread use
of profile-based homolog detection.
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CHAPTER SEVEN

Protein Motif and Domain Prediction

An important aspect of biological sequence characterization is identification of
motifs and domains. It is an important way to characterize unknown protein func-
tions because a newly obtained protein sequence often lacks significant similar-
ity with database sequences of known functions over their entire length, which
makes functional assignment difficult. In this case, biologists can gain insight of
the protein function based on identification of short consensus sequences related
to known functions. These consensus sequence patterns are termed motifs and
domains.

A motif is a short conserved sequence pattern associated with distinct functions
of a protein or DNA. It is often associated with a distinct structural site perform-
ing a particular function. A typical motif, such as a Zn-finger motif, is ten to twenty
amino acids long. A domain is also a conserved sequence pattern, defined as an inde-
pendent functional and structural unit. Domains are normally longer than motifs. A
domain consists of more than 40 residues and up to 700 residues, with an average
length of 100 residues. A domain may or may not include motifs within its bound-
aries. Examples of domains include transmembrane domains and ligand-binding
domains.

Motifs and domains are evolutionarily more conserved than other regions of a pro-
tein and tend to evolve as units, which are gained, lost, or shuffled as one module. The
identification of motifs and domains in proteins is an important aspect of the clas-
sification of protein sequences and functional annotation. Because of evolutionary
divergence, functional relationships between proteins often cannot be distinguished
through simple BLAST or FASTA database searches. In addition, proteins or enzymes
often perform multiple functions that cannot be fully described using a single anno-
tation through sequence database searching. To resolve these issues, identification of
the motifs and domains becomes very useful.

Identification of motifs and domains heavily relies on multiple sequence align-
ment as well as profile and hidden Markov model (HMM) construction (see Chap-
ters 5 and 6). This chapter focuses on some fundamental issues relating to protein
motif and domain databases as well as classification of protein sequences using full
length sequences. In addition, computational tools for discovering subtle motifs from
divergent sequences are also introduced.
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IDENTIFICATION OF MOTIFS AND DOMAINS
IN MULTIPLE SEQUENCE ALIGNMENT

Motifs and domains are first constructed from multiple alignment of related sequ-
ences. Based on the multiple sequence alignment, commonly conserved regions can
be identified. The regions considered motifs and domains then serve as diagnos-
tic features for a protein family. The consensus sequence information of motifs and
domains can be stored in a database for later searches of the presence of similar
sequence patterns from unknown sequences. By scanning the presence of known
motifs or domains in a query sequence, associated functional features in a query
sequence can be revealed rapidly, which is often not possible by simply matching
full-length sequences in the primary databases.

There are generally two approaches to representing the consensus information
of motifs and domains. The first is to reduce the multiple sequence alignment from
which motifs or domains are derived to a consensus sequence pattern, known as a
regular expression. For example, the protein phosphorylation motif can be expressed
as [ST]-X-[RK]. The second approach is to use a statistical model such as a pro-
file or HMM to include probability information derived from the multiple sequence
alignment.

MOTIF AND DOMAIN DATABASES USING REGULAR EXPRESSIONS

A regular expression is a concise way of representing a sequence family by a string of
characters. When domains and motifs are written as regular expressions, the following
basic rules to describe a sequence pattern are used: When a position is restricted to a
single conserved amino acid residue, it is indicated as such using the standard, one-
letter code. When a position represents multiple alternative conserved residues, the
residues to be included are placed within brackets. If the position excludes certain
residues, residues to be excluded are placed in curly braces; nonspecific residues
present in a given position in the pattern are indicated by an X; if a sequence element
within the pattern is repetitive, the number of pattern repetitions is indicated within
parentheses; and each position is linked by a hyphen. For example, a motif written
as E-X(2)-[FHM]-X(4)-{P}-L can be interpreted as an E followed by two unspecific
residues which are followed by an F, or H or M residue which is followed by another
four unspecific residues followed by a non-P residue and a final L.

There are two mechanisms of matching regular expressions with a query sequence.
One is exact matching and the other is fuzzy matching. In exact matching, there must
be a strict match of sequence patterns. Any variations in the query sequence from the
predefined patterns are not allowed. Searching a motif database using this approach
results in either a match or nonmatch. This way of searching has a good chance of
missing truly relevant motifs that have slight variations, thus generating false-negative
results. Another limitation with using exact matching is that, as new sequences of a
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motif are being accumulated, the rigid regular expression tends to become obsolete
if not updated regularly to reflect the changes.

Fuzzy matches, also called approximate matches, provide more permissive match-
ing by allowing more flexible matching of residues of similar biochemical properties.
For example, if an original alignment only contains phenylalanine at a particular posi-
tion, fuzzy matching allows other aromatic residues (including unobserved tyrosine
and tryptophan) in a sequence to match with the expression. This method is able to
include more variant forms of a motif with a conserved function. However, associated
with the more relaxed matching is the inevitable increase of the noise level and false
positives. This is especially the case for short motifs. This is partly because the rule of
matching is based on assumptions not actual observations.

Motif databases have commonly been used to classify proteins, provide functional
assignment, and identify structural and evolutionary relationships. Two databases
that mainly employ regular expressions for the purpose of searching sequence pat-
terns are described next.

PROSITE (www.expasy.ch/prosite/) is the first established sequence pattern data-
base and is still widely used. It primarily uses a single consensus pattern or “sequence
signature” to characterize a protein function and a sequence family. The consensus
sequence patterns are derived from conserved regions of protein sequence alignments
and are represented with regular expressions. The functional information of these
patterns is primarily based on published literature. To search the database with a
query sequence, PROSITE uses exact matches to the sequence patterns. In addition
to regular expressions, the database also constructs profiles to complement some of
the sequence patterns. The major pitfall with the PROSITE patterns is that some of the
sequence patterns are too short to be specific. The problem with these short sequence
patterns is that the resulting match is very likely to be a result of random events.
Another problem is that the database is relatively small and motif searches often yield
no results when there are in fact true motif matches present (false negatives). Overall,
PROSITE has a greater than 20% error rate. Thus, either a match or nonmatch in
PROSITE should be treated with caution.

Emotif (http://motif.stanford.edu/emotif/emotif-search.html) is a motif database
that uses multiple sequence alignments from both the BLOCKS and PRINTS databases
with an alignment collection much larger than PROSITE. It identifies patterns by
allowing fuzzy matching of regular expressions. Therefore, it produces fewer false
negatives than PROSITE.

MOTIF AND DOMAIN DATABASES USING STATISTICAL MODELS

The major limitation of regular expressions is that this method does not take into
account sequence probability information about the multiple alignment from which
it is modeled. If a regular expression is derived from an incomplete sequence set, it
has less predictive power because many more sequences with the same type of motifs
are not represented.
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Unlike regular expressions, position-specific scoring matrices (PSSMs), profiles,
and HMMs (see Chapter 6) preserve the sequence information from a multiple
sequence alignment and express it with probabilistic models. In addition, these sta-
tistical models allow partial matches and compensate for unobserved sequence pat-
terns using pseudocounts. Thus, these statistical models have stronger predictive
power than the regular expression based approach, even when they are derived from
a limited set of sequences. Using such a powerful scoring system can enhance the
sensitivity of motif discovery and detect more divergent but truly related sequences.

The following programs mainly use the profile/HMM method extensively for
sequence pattern construction.

PRINTS (http://bioinf.man.ac.uk/dbbrowser/PRINTS/) is a protein fingerprint
database containing ungapped, manually curated alignments corresponding to the
most conserved regions among related sequences. This program breaks down a motif
into even smaller nonoverlapping units called fingerprints, which are represented by
unweighted PSSMs. To define a motif, at least a majority of fingerprints are required
to match with a query sequence. A query that has simultaneous high-scoring matches
to a majority of fingerprints belonging to a motif is a good indication of containing
the functional motif. The drawbacks of PRINTS are 1) the difficulty to recognize short
motifs when they reach the size of single fingerprints and 2) a relatively small database,
which restricts detection of many motifs.

BLOCKS (http://blocks.fhcrc.org/blocks) is a database that uses multiple align-
ments derived from the most conserved, ungapped regions of homologous protein
sequences. The alignments are automatically generated using the same data sets used
for deriving the BLOSUM matrices (see Chapter 3). The derived ungapped alignments
are called blocks. The blocks, which are usually longer than motifs, are subsequently
converted to PSSMs. A weighting scheme and pseudocounts are subsequently applied
to the PSSMs to account for underrepresented and unobserved residues in align-
ments. Because blocks often encompass motifs, the functional annotation of blocks
is thus consistent with that for the motifs. A query sequence can be used to align with
precomputed profiles in the database to select the highest scored matches. Because
of the use of the weighting scheme, the signal-to-noise ratio is improved relative to
PRINTS.

ProDom (http://prodes.toulouse.inra.fr/prodom/2002.1/html/form.php) is a do-
main database generated from sequences in the SWISSPROT and TrEMBL databases
(see Chapter 2). The domains are built using recursive iterations of PSI-BLAST. The
automatically generated sequence pattern database is designed to be an exhaustive
collection of domains without their functions necessarily being known.

Pfam (http://pfam.wustl.edu/hmmsearch.shtml) is a database with protein
domain alignments derived from sequences in SWISSPROT and TrEMBL. Each motif
or domain is represented by an HMM profile generated from the seed alignment of
a number of conserved homologous proteins. Since the probability scoring mecha-
nism is more complex in HMM than in a profile-based approach (see Chapter 6), the
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use of HMM yields further increases in sensitivity of the database matches. The Pfam
database is composed of two parts, Pfam-A and Pfam-B. Pfam-A involves manual
alignments and Pfam-B, automatic alignment in a way similar to ProDom. The func-
tional annotation of motifs in Pfam-A is often related to that in PROSITE. Pfam-B only
contains sequence families not covered in Pfam-A. Because of the automatic nature,
Pfam-B has a much larger coverage but is also more error prone because some HMMs
are generated from unrelated sequences.

SMART (Simple Modular Architecture Research Tool; http://smart.embl-heidel
berg.de/) contains HMM profiles constructed from manually refined protein domain
alignments. Alignments in the database are built based on tertiary structures when-
ever available or based on PSI-BLAST profiles. Alignments are further checked and
refined by human annotators before HMM profile construction. Protein functions are
also manually curated. Thus, the database may be of better quality than Pfam with
more extensive functional annotations. Compared to Pfam, the SMART database con-
tains an independent collection of HMMs, with emphasis on signaling, extracellular,
and chromatin-associated motifs and domains. Sequence searching in this database
produces a graphical output of domains with well-annotated information with respect
to cellular localization, functional sites, superfamily, and tertiary structure.

InterPro (www.ebi.ac.uk/interpro/) is an integrated pattern database designed to
unify multiple databases for protein domains and functional sites. The database inte-
grates information from PROSITE, Pfam, PRINTS, ProDom, and SMART databases.
The sequence patterns from the five databases are further processed. Only overlapping
motifs and domains in a protein sequence derived by all five databases are included.
The InterPro entries use a combination of regular expressions, fingerprints, profiles,
and HMMs in pattern matching. However, an InterPro search does not obviate the
need to search other databases because of its unique criteria of motif inclusion and
thus may have lower sensitivity than exhaustive searches in individual databases. A
popular feature of this database is a graphical output that summarizes motif matches
and has links to more detailed information.

Reverse PSI-BLAST (RPS-BLAST; www.ncbi.nlm.nih.gov/BLAST/) is a web-based
server that uses a query sequence to search against a pre-computed profile database
generated by PSI-BLAST. This is opposite of PSI-BLAST that builds profiles from
matched database sequences, hence a “reverse” process. It performs only one itera-
tion of regular BLAST searching against a database of PSI-BLAST profiles to find the
high-scoring gapped matches.

CDART (Conserved Domain Architecture; www.ncbi.nlm.nih.gov/BLAST/) is a do-
main search program that combines the results from RPS-BLAST, SMART, and Pfam.
The resulting domain architecture of a query sequence can be graphically presented
along with related sequences. The program is now an integral part of the regular BLAST
search function. As with InterPro, CDART is not a substitute for individual database
searches because it often misses certain features that can be found in SMART and
Pfam.
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Caveats

Because of underlying differences in database construction and patten matching
methods, each pattern database has its strengths and weaknesses. The coverage of
these databases overlaps only to a certain extent. If a particular motif search returns
nothing from a particular database search, it does not mean that the sequence con-
tains no patterns. It may be a result of the limited coverage of a particular database
or an error in the database. Also keep in mind that there are many misannotated
sequences in databases, which hinder the detection of true motifs. Alternatively, the
nonmatch may be a result of insensitive sequence matching methods. Therefore, it
is advisable to use a combination of multiple databases in motif searching to get the
greatest coverage and consensus functional information. In cases of inconsistency of
results when using several different databases, a majority rule can be a good way to
discriminate between the matches.

PROTEIN FAMILY DATABASES

The databases mentioned classify proteins based on the presence of motifs and
domains. Another way of classifying proteins is based on near full-length sequence
comparison. The latter classification scheme requires clustering of proteins based
on overall sequence similarities. The clustering criteria include statistical scores in
sequence alignments or orthologous relationships. Protein family databases derived
from this approach do not depend on the presence of particular sequence sig-
natures and thus can be more comprehensive. However, the disadvantage is that
there are more ambiguity and artifacts in protein classification. Two examples of
protein family databases based on clustering and phylogenetic classification are
presented.

COG (Cluster of Orthologous Groups; www.ncbi.nlm.nih.gov/COG/) is a protein
family database based on phylogenetic classification. It is constructed by comparing
protein sequences encoded in forty-three completely sequenced genomes, which are
mainly from prokaryotes, representing thirty major phylogenetic lineages. Through
all-against-all sequence comparisons among the genomes, orthologous proteins
shared by three or more lineages are identified and clustered together as orthologous
groups. Each group should have at least one representative from Archea, Bacteria,
and Eukarya. Orthologs are included in a cluster as long as they satisfy the criterion
of being the mutual best hits in BLAST searches among the genomes.

Because orthologous proteins shared by three or more lineages are considered to
have descended through a vertical evolutionary scenario, if the function of one of
the members is known, functionality of other members can be assigned. Similarly,
a query sequence can be assigned function if it has significant similarity matches
with any member of the cluster. Currently, there are 4,873 clusters in the COG
databases derived from unicellular organisms. The interface for sequence search-
ing in the COG database is the COGnitor program, which is based on gapped



P1: JZP
0521840988c07 CB1022/Xiong 0 521 84098 8 January 10, 2006 15:11

MOTIF DISCOVERY IN UNALIGNED SEQUENCES 91

BLAST. An eukaryotic version of the program is now available, known as KOG
(www.ncbi.nlm.nih.gov/COG/new/kognitor.html).

ProtoNet (www.protonet.cs.huji.ac.il/) is a database of clusters of homologous pro-
teins similar to COG. Orthologous protein sequences in the SWISSPROT database
are clustered based on pairwise sequence comparisons between all possible protein
pairs using BLAST. Protein relatedness is defined by the E-values from the BLAST
alignments. This produces different levels of protein similarity, yielding a hierarchical
organization of protein groups. The most closely related sequences are grouped into
the lowest level clusters. More distant protein groups are merged into higher levels
of clusters. The outcome of this cluster merging is a tree-like structure of functional
categories. A query protein sequence can be submitted to the server for cluster iden-
tification and functional annotation. The database further provides gene ontology
information (see Chapter 16) for protein cluster at each level as well as keywords from
InterPro domains for functional prediction.

MOTIF DISCOVERY IN UNALIGNED SEQUENCES

For a set of closely related sequences, commonly shared motifs can be discovered
by using the multiple sequence alignment–based methods. Often, however, distantly
related sequences that share common motifs cannot be readily aligned. For exam-
ple, the sequences for the helix-turn-helix motif in transcription factors can be sub-
tly different enough that traditional multiple sequence alignment approaches fail to
generate a satisfactory answer. For detecting such subtle motifs, more sophisticated
algorithms such as expectation maximization (EM) and Gibbs sampling are used.

Expectation Maximization

The EM procedure can be used to find hidden motifs using a method that is some-
what different from profiles and PSSMs. The method works by first making a random
or guessed alignment of the sequences to generate a trial PSSM. The trial PSSM is
then used to compare with each sequence individually. The log odds scores of the
PSSM are modified in each iteration to maximize the alignment of the matrix to each
sequence. During the iterations, the sequence pattern for the conserved motifs is
gradually “recruited” to the PSSM (Fig. 7.1). The drawback of the EM method is that
the procedure stops prematurely if the scores reach convergence, a problem known
as a local optimum. In addition, the final result is sensitive to the initial alignment.

Gibbs Motif Sampling

Another way to find conserved patterns from unaligned sequences is to use the Gibbs
sampling method. Similar to the EM method, the Gibbs sampling algorithm makes an
initial guessed alignment of all but one sequence. A trial PSSM is built to represent the
alignment. The matrix is then aligned to the left-out sequence. The matrix scores are
subsequently adjusted to achieve the best alignment with the left-out sequence. This
process is repeated many times until there is no further improvement on the matrix
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Figure 7.1: Schematic diagram of the EM algorithm.

scores. The end result is that after a number of iterations, the most probable patterns
can be incorporated into a final PSSM. This procedure is less susceptible to premature
termination due to the local optimum problem.

MEME (Multiple EM for motif elicitation, http://meme.sdsc.edu/meme/website/
meme-intro.html) is a web-based program that uses the EM algorithm to find motifs
either for DNA or protein sequences. It uses a modified EM algorithm to avoid the local
minimum problem. In constructing a probability matrix, it allows multiple starting
alignments and does not assume that there are motifs in every sequence. The com-
putation is a two-step procedure. In the first step, the user provides approximately 20
unaligned sequences. The program applies EM to generate a sequence motif, which is
an ungapped local sequence alignment. In the second step, segments from the query
sequences with the same length as the motif are reapplied with the EM procedure to
optimize the alignment between the subsequences and the motif. A segment with the
highest score from the second iteration is selected as the optimum motif.

Gibbs sampler (http://bayesweb.wadsworth.org/gibbs/gibbs.html) is a web-based
program that uses the Gibbs sampling approach to look for short, partially conserved
gap-free segments for either DNA or protein sequences. To ensure accuracy, more
than twenty sequences of the exact same length should be used.

SEQUENCE LOGOS

A multiple sequence alignment or a motif is often represented by a graphic represen-
tation called a logo. In a logo, each position consists of stacked letters representing the
residues appearing in a particular column of a multiple alignment (Fig. 7.2). The over-
all height of a logo position reflects how conserved the position is, and the height of
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Figure 7.2: Example of multiple alignment representation using a logo (produced using the WebLogo
program).

each letter in a position reflects the relative frequency of the residue in the alignment.
Conserved positions have fewer residues and bigger symbols, whereas less conserved
positions have a more heterogeneous mixture of smaller symbols stacked together. In
general, a sequence logo provides a clearer description of a consensus sequence.

WebLogo (http://weblogo.berkeley.edu/) is an interactive program for generating
sequence logos. A user needs to enter the sequence alignment in FASTA format to
allow the program to compute the logos. A graphic file is returned to the user as a
result.

SUMMARY

Sequence motifs and domains represent conserved, functionally important portions
of proteins. Identifying domains and motifs is a crucial step in protein functional
assignment. Domains correspond to contiguous regions in protein three-dimensional
structures and serve as units of evolution. Motifs are highly conserved segments
in multiple protein alignments that may be associated with particular biological
functions. Databases for motifs and domains can be constructed based on multiple
sequence alignment of related sequences. The derived motifs can be represented as
regular expressions or profiles or HMMs. The mechanism of matching regular expres-
sions with query sequences can be either exact matches or fuzzy matches. There
are many databases constructed based on profiles or HMMs. Examples include Pfam,
ProDom, and SMART. However, differences between databases render different sensi-
tivities in detecting sequence motifs from unknown sequences. Thus, searching using
multiple database tools is recommended.

In addition to motifs and domains, proteins can be classified based on overall
sequence similarities. This type of classification makes use of either clustering or
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phylogenetic algorithms. Some examples are COG and ProtoNet. They are powerful
tools in functional annotation of new protein sequences. Subtle motifs from divergent
sequences can be discovered using the EM and Gibbs sampling approaches. Sequence
logos are an effective way to represent motifs.
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