SECTION THREE

Gene and Promoter Prediction

CHAPTER EIGHT

Gene Prediction

With the rapid accumulation of genomic sequence information, there is a pressing need to use computational approaches to accurately predict gene structure. Computational gene prediction is a prerequisite for detailed functional annotation of genes and genomes. The process includes detection of the location of open reading frames (ORFs) and delineation of the structures of introns as well as exons if the genes of interest are of eukaryotic origin. The ultimate goal is to describe all the genes computationally with near 100% accuracy. The ability to accurately predict genes can significantly reduce the amount of experimental verification work required.

However, this may still be a distant goal, particularly for eukaryotes, because many problems in computational gene prediction are still largely unsolved. Gene prediction, in fact, represents one of the most difficult problems in the field of pattern recognition. This is because coding regions normally do not have conserved motifs. Detecting coding potential of a genomic region has to rely on subtle features associated with genes that may be very difficult to detect.

Through decades of research and development, much progress has been made in prediction of prokaryotic genes. A number of gene prediction algorithms for prokaryotic genomes have been developed with varying degrees of success. Algorithms for eukarytotic gene prediction, however, are still yet to reach satisfactory results. This chapter describes a number of commonly used prediction algorithms, their theoretical basis, and limitations. Because of the significant differences in gene structures of prokaryotes and eukaryotes, gene prediction for each group of organisms is discussed separately. In addition, because of the predominance of protein coding genes in a genome (as opposed to rRNA and tRNA genes), the discussion focuses on the prediction of protein coding sequences.

CATEGORIES OF GENE PREDICTION PROGRAMS

The current gene prediction methods can be classified into two major categories, ab initio–based and homology-based approaches. The ab initio–based approach predicts genes based on the given sequence alone. It does so by relying on two major features associated with genes. The first is the existence of gene signals, which include start and stop codons, intron splice signals, transcription factor binding sites, ribosomal binding sites, and polyadenylation (poly-A) sites. In addition, the triplet codon structure limits the coding frame length to multiples of three, which can be used as a condition for gene prediction. The second feature used by ab initio algorithms is gene content,

GENE PREDICTION

which is statistical description of coding regions. It has been observed that nucleotide composition and statistical patterns of the coding regions tend to vary significantly from those of the noncoding regions. The unique features can be detected by employing probabilistic models such as Markov models or hidden Markov models (HMMs; see Chapter 6) to help distinguish coding from noncoding regions.

The homology-based method makes predictions based on significant matches of the query sequence with sequences of known genes. For instance, if a translated DNA sequence is found to be similar to a known protein or protein family from a database search, this can be strong evidence that the region codes for a protein. Alternatively, when possible exons of a genomic DNA region match a sequenced cDNA, this also provides experimental evidence for the existence of a coding region.

Some algorithms make use of both gene-finding strategies. There are also a number of programs that actually combine prediction results from multiple individual programs to derive a consensus prediction. This type of algorithms can therefore be considered as consensus based.

GENE PREDICTION IN PROKARYOTES

Prokaryotes, which include bacteria and Archaea, have relatively small genomes with sizes ranging from 0.5 to 10 Mbp ($1 \text{ Mbp} = 10^6 \text{ bp}$). The gene density in the genomes is high, with more than 90% of a genome sequence containing coding sequence. There are very few repetitive sequences. Each prokaryotic gene is composed of a single contiguous stretch of ORF coding for a single protein or RNA with no interruptions within a gene.

More detailed knowledge of the bacterial gene structure can be very useful in gene prediction. In bacteria, the majority of genes have a start codon ATG (or AUG in mRNA; because prediction is done at the DNA level, T is used in place of U), which codes for methionine. Occasionally, GTG and TTG are used as alternative start codons, but methionine is still the actual amino acid inserted at the first position. Because there may be multiple ATG, GTG, or TGT codons in a frame, the presence of these codons at the beginning of the frame does not necessarily give a clear indication of the translation initiation site. Instead, to help identify this initiation codon, other features associated with translation are used. One such feature is the ribosomal binding site, also called the *Shine-Delgarno sequence*, which is a stretch of purine-rich sequence complementary to 16S rRNA in the ribosome (Fig. 8.1). It is located immediately downstream of the transcription initiation site and slightly upstream of the translation start codon. In many bacteria, it has a consensus motif of AGGAGGT. Identification of the ribosome binding site can help locate the start codon.

At the end of the protein coding region is a stop codon that causes translation to stop. There are three possible stop codons, identification of which is straightforward. Many prokaryotic genes are transcribed together as one operon. The end of the operon is characterized by a transcription termination signal called ρ -independent terminator. The terminator sequence has a distinct stem-loop secondary structure

Figure 8.1: Structure of a typical prokaryotic gene structure. Abbreviation: RBS, ribosome binding site.

followed by a string of Ts. Identification of the terminator site, in conjunction with promoter site identification (see Chapter 9), can sometimes help in gene prediction.

Conventional Determination of Open Reading Frames

Without the use of specialized programs, prokaryotic gene identification can rely on manual determination of ORFs and major signals related to prokaryotic genes. Prokaryotic DNA is first subject to conceptual translation in all six possible frames, three frames forward and three frames reverse. Because a stop codon occurs in about every twenty codons by chance in a noncoding region, a frame longer than thirty codons without interruption by stop codons is suggestive of a gene coding region, although the threshold for an ORF is normally set even higher at fifty or sixty codons. The putative frame is further manually confirmed by the presence of other signals such as a start codon and Shine–Delgarno sequence. Furthermore, the putative ORF can be translated into a protein sequence, which is then used to search against a protein database. Detection of homologs from this search is probably the strongest indicator of a protein-coding frame.

In the early stages of development of gene prediction algorithms, genes were predicted by examining the nonrandomness of nucleotide distribution. One method is based on the nucleotide composition of the third position of a codon. In a coding sequence, it has been observed that this position has a preference to use G or C over A or T. By plotting the GC composition at this position, regions with values significantly above the random level can be identified, which are indicative of the presence of ORFs (Fig. 8.2). In practice, because genes can be in any of the six frames, the statistical patterns are computed for all possible frames. In addition to codon bias, there is a similar method called TESTCODE (implemented in the commercial GCG package) that exploits the fact that the third codon nucleotides in a coding region tend to repeat themselves. By plotting the repeating patterns of the nucleotides at this position, coding and noncoding regions can be differentiated (see Fig. 8.2). The results of the two methods are often consistent. The two methods are often used in conjunction to confirm the results of each other.

These statistical methods, which are based on empirical rules, examine the statistics of a single nucleotide (either G or C). They identify only typical genes and tend to miss atypical genes in which the rule of codon bias is not strictly followed. To improve the prediction accuracies, the new generation of prediction algorithms use more sophisticated statistical models.

Figure 8.2: Coding frame detection of a bacterial gene using either the GC bias or the TESTCODE method. Both result in similar identification of a reading frame (*dashed arrows*).

Gene Prediction Using Markov Models and Hidden Markov Models

Markov models and HMMs can be very helpful in providing finer statistical description of a gene (see Chapter 6). A Markov model describes the probability of the distribution of nucleotides in a DNA sequence, in which the conditional probability of a particular sequence position depends on *k* previous positions. In this case, *k* is the order of a Markov model. A zero-order Markov model assumes each base occurs independently with a given probability. This is often the case for noncoding sequences. A first-order Markov model assumes that the occurrence of a base depends on the base preceding it. A second-order model looks at the preceding two bases to determine which base follows, which is more characteristic of codons in a coding sequence.

The use of Markov models in gene finding exploits the fact that oligonucleotide distributions in the coding regions are different from those for the noncoding regions. These can be represented with various orders of Markov models. Since a fixed-order Markov chain describes the probability of a particular nucleotide that depends on previous k nucleotides, the longer the oligomer unit, the more nonrandomness can be described for the coding region. Therefore, the higher the order of a Markov model, the more accurately it can predict a gene.

Because a protein-encoding gene is composed of nucleotides in triplets as codons, more effective Markov models are built in sets of three nucleotides, describing nonrandom distributions of trimers or hexamers, and so on. The parameters of a Markov model have to be trained using a set of sequences with known gene locations. Once the parameters of the model are established, it can be used to compute the nonrandom

Coding region

Figure 8.3: A simplified second-order HMM for prokaryotic gene prediction that includes a statistical model for start codons, stop codons, and the rest of the codons in a gene sequence represented by a typical model and an atypical model.

distributions of trimers or hexamers in a new sequence to find regions that are compatible with the statistical profiles in the learning set.

Statistical analyses have shown that pairs of codons (or amino acids at the protein level) tend to correlate. The frequency of six unique nucleotides appearing together in a coding region is much higher than by random chance. Therefore, a fifth-order Markov model, which calculates the probability of hexamer bases, can detect nucleotide correlations found in coding regions more accurately and is in fact most often used.

A potential problem of using a fifth-order Markov chain is that if there are not enough hexamers, which happens in short gene sequences, the method's efficacy may be limited. To cope with this limitation, a variable-length Markov model, called an *interpolated Markov model* (IMM), has been developed. The IMM method samples the largest number of sequence patterns with *k* ranging from 1 to 8 (dimers to ninemers) and uses a weighting scheme, placing less weight on rare *k*-mers and more weight on more frequent *k*-mers. The probability of the final model is the sum of probabilities of all weighted *k*-mers. In other words, this method has more flexibility in using Markov models depending on the amount of data available. Higher-order models are used when there is a sufficient amount of data and lower-order models are used when the amount of data is smaller.

It has been shown that the gene content and length distribution of prokaryotic genes can be either typical or atypical. Typical genes are in the range of 100 to 500 amino acids with a nucleotide distribution typical of the organism. Atypical genes are shorter or longer with different nucleotide statistics. These genes tend to escape detection using the typical gene model. This means that, to make the algorithm capable of fully describing all genes in a genome, more than one Markov model is needed. To combine different Markov models that represent typical and atypical nucleotide distributions creates an HMM prediction algorithm. A simplified HMM for gene finding is shown in Fig. 8.3.

The following describes a number of HMM/IMM-based gene finding programs for prokaryotic organisms.

GeneMark (http://opal.biology.gatech.edu/GeneMark/) is a suite of gene prediction programs based on the fifth-order HMMs. The main program – GeneMark.hmm – is trained on a number of complete microbial genomes. If the sequence to be predicted is from a nonlisted organism, the most closely related organism can be chosen as the basis for computation. Another option for predicting genes from a new organism is to use a self-trained program GeneMarkS as long as the user can provide at least 100 kbp of sequence on which to train the model. If the query sequence is shorter than 100 kbp, a GeneMark heuristic program can be used with some loss of accuracy. In addition to predicting prokaryotic genes, GeneMark also has a variant for eukaryotic gene prediction using HMM.

Glimmer (Gene Locator and Interpolated Markov Modeler, www.tigr.org/softlab/ glimmer/glimmer.html) is a UNIX program from TIGR that uses the IMM algorithm to predict potential coding regions. The computation consists of two steps, namely model building and gene prediction. The model building involves training by the input sequence, which optimizes the parameters of the model. In an actual gene prediction, the overlapping frames are "flagged" to alert the user for further inspection. Glimmer also has a variant, GlimmerM, for eukaryotic gene prediction.

FGENESB (www.softberry.com/berry.phtml?topic=gfindb) is a web-based program that is also based on fifth-order HMMs for detecting coding regions. The program is specifically trained for bacterial sequences. It uses the Vertibi algorithm (see Chapter 6) to find an optimal match for the query sequence with the intrinsic model. A linear discriminant analysis (LDA) is used to further distinguish coding signals from noncoding signals.

These programs have been shown to be reasonably successful in finding genes in a genome. The common problem is imprecise prediction of translation initiation sites because of inefficient identification of ribosomal binding sites. This problem can be remedied by identifying the ribosomal binding site associated with a start codon. A number of algorithms have been developed solely for this purpose. RBSfinder is one such algorithm.

RBSfinder (ftp://ftp.tigr.org/pub/software/RBSfinder/) is a UNIX program that uses the prediction output from Glimmer and searches for the Shine–Delgarno sequences in the vicinity of predicted start sites. If a high-scoring site is found by the intrinsic probabilistic model, a start codon is confirmed; otherwise the program moves to other putative translation start sites and repeats the process.

Performance Evaluation

The accuracy of a prediction program can be evaluated using parameters such as sensitivity and specificity. To describe the concept of sensitivity and specificity accurately, four features are used: true positive (TP), which is a correctly predicted feature; false positive (FP), which is an incorrectly predicted feature; false negative (FN), which is a missed feature; and true negative (TN), which is the correctly predicted absence of

Figure 8.4: Definition of four basic measures of gene prediction accuracy at the nucleotide level. *Abbreviations:* FN, false negative; TP, true positive; FP, false positive; TN, true negative.

a feature (Fig. 8.4). Using these four terms, sensitivity (Sn) and specificity (Sp) can be described by the following formulas:

$$Sn = TP/(TP + FN)$$
(Eq. 8.1)

$$Sp = TP/(TP + FP)$$
(Eq. 8.2)

According to these formulas, *sensitivity* is the proportion of true signals predicted among all possible true signals. It can be considered as the ability to include correct predictions. In contrast, *specificity* is the proportion of true signals among all signals that are predicted. It represents the ability to exclude incorrect predictions. A program is considered accurate if both sensitivity and specificity are simultaneously high and approach a value of 1. In a case in which sensitivity is high but specificity is low, the program is said to have a tendency to overpredict. On the other hand, if the sensitivity is low but specificity high, the program is too conservative and lacks predictive power.

Because neither sensitivity nor specificity alone can fully describe accuracy, it is desirable to use a single value to summarize both of them. In the field of gene finding, a single parameter known as the correlation coefficient (CC) is often used, which is defined by the following formula:

$$CC = \frac{TP \bullet TN - FP \bullet FN}{\sqrt{(TP + FP)(TN + FN)(FP + TN)}}$$
(Eq. 8.3)

The value of the CC provides an overall measure of accuracy, which ranges from -1 to +1, with +1 meaning always correct prediction and -1 meaning always incorrect prediction. Table 8.1 shows a performance analysis using the Glimmer program as an example.

GENE PREDICTION IN EUKARYOTES

Eukaryotic nuclear genomes are much larger than prokaryotic ones, with sizes ranging from 10 Mbp to 670 Gbp (1 Gbp $= 10^9$ bp). They tend to have a very low gene density. In humans, for instance, only 3% of the genome codes for genes, with about 1 gene per 100 kbp on average. The space between genes is often very large and rich in repetitive sequences and transposable elements.

Most importantly, eukaryotic genomes are characterized by a mosaic organization in which a gene is split into pieces (called *exons*) by intervening noncoding sequences

Species	GC (%)	FN	FP	Sensitivity	Specificity
Campylobacter jejuni	30.5	10	19	99.3	98.7
Haemophilus influenzae	38.2	3	54	99.8	96.1
Helicobacter pylori	38.9	6	39	99.5	97.2

TABLE 8.1. Performance Analysis of the Glimmer Program for Gene Prediction of Three Genomes

Note: The data sets were from three bacterial genomes (Aggarwal and Ramaswamy, 2002). *Abbreviations:* FN, false negative; FP, false positive.

(called *introns*) (Fig. 8.5). The nascent transcript from a eukaryotic gene is modified in three different ways before becoming a mature mRNA for protein translation. The first is capping at the 5' end of the transcript, which involves methylation at the initial residue of the RNA. The second event is splicing, which is the process of removing introns and joining exons. The molecular basis of splicing is still not completely understood. What is known currently is that the splicing process involves a large RNA-protein complex called spliceosome. The reaction requires intermolecular interactions between a pair of nucleotides at each end of an intron and the RNA component of the spliceosome. To make the matter even more complex, some eukaryotic genes can have their transcripts spliced and joined in different ways to generate more than one transcript per gene. This is the phenomenon of alternative splicing. As to be discussed in more detail in Chapter 16, alternative splicing is a major mechanism for generating functional diversity in eukaryotic cells. The third modification is polyadenylation, which is the addition of a stretch of As (~250) at the 3' end of the RNA.

Figure 8.5: Structure of a typical eukaryotic RNA as primary transcript from genomic DNA and as mature RNA after posttranscriptional processing. *Abbreviations:* UTR, untranslated region; poly-A, polyadenylation.

GENE PREDICTION IN EUKARYOTES

This process is controlled by a poly-A signal, a conserved motif slightly downstream of a coding region with a consensus CAATAAA(T/C).

The main issue in prediction of eukaryotic genes is the identification of exons, introns, and splicing sites. From a computational point of view, it is a very complex and challenging problem. Because of the presence of split gene structures, alternative splicing, and very low gene densities, the difficulty of finding genes in such an environment is likened to finding a needle in a haystack. The needle to be found actually is broken into pieces and scattered in many different places. The job is to gather the pieces in the haystack and reproduce the needle in the correct order.

The good news is that there are still some conserved sequence features in eukaryotic genes that allow computational prediction. For example, the splice junctions of introns and exons follow the GT–AG rule in which an intron at the 5' splice junction has a consensus motif of <u>GT</u>AAGT; and at the 3' splice junction is a consensus motif of (Py)₁₂NC<u>AG</u> (see Fig. 8.5). Some statistical patterns useful for prokaryotic gene finding can be applied to eukaryotic systems as well. For example, nucleotide compositions and codon bias in coding regions of eukaryotes are different from those of the noncoding regions. Hexamer frequencies in coding regions are also higher than in the noncoding regions. Most vertebrate genes use ATG as the translation start codon and have a uniquely conserved flanking sequence call a *Kozak sequence* (CCGCC<u>ATGG</u>). In addition, most of these genes have a high density of CG dinucleotides near the transcription start site. This region is referred to as a CpG island (*p* refers to the phosphodiester bond connecting the two nucleotides), which helps to identify the transcription initiation site of a eukaryotic gene. The poly-A signal can also help locate the final coding sequence.

Gene Prediction Programs

To date, numerous computer programs have been developed for identifying eukaryotic genes. They fall into all three categories of algorithms: ab initio based, homology based, and consensus based. Most of these programs are organism specific because training data sets for obtaining statistical parameters have to be derived from individual organisms. Some of the algorithms are able to predict the most probable exons as well as suboptimal exons providing information for possible alternative spliced transcription products.

Ab Initio-Based Programs

The goal of the ab initio gene prediction programs is to discriminate exons from noncoding sequences and subsequently join the exons together in the correct order. The main difficulty is correct identification of exons. To predict exons, the algorithms rely on two features, gene signals and gene content. Signals include gene start and stop sites and putative splice sites, recognizable consensus sequences such as poly-A sites. *Gene content* refers to coding statistics, which includes nonrandom nucleotide distribution, amino acid distribution, synonymous codon usage, and hexamer frequencies. Among these features, the hexamer frequencies appear to be most discriminative for

Figure 8.6: Architecture of a neural network for eukaryotic gene prediction.

coding potentials. To derive an assessment for this feature, HMMs can be used, which require proper training. In addition to HMMs, neural network-based algorithms are also common in the gene prediction field. This begs the question of what is a neural network algorithm. A brief introduction is given next.

Prediction Using Neural Networks. A *neural network* (or *artificial neural network*) is a statistical model with a special architecture for pattern recognition and classification. It is composed of a network of mathematical variables that resemble the biological nervous system, with variables or nodes connected by weighted functions that are analogous to synapses (Fig. 8.6). Another aspect of the model that makes it look like a biological neural network is its ability to "learn" and then make predictions after being trained. The network is able to process information and modify parameters of the weight functions between variables during the training stage. Once it is trained, it is able to make automatic predictions about the unknown.

In gene prediction, a neural network is constructed with multiple layers; the input, output, and hidden layers. The input is the gene sequence with intron and exon signals. The output is the probability of an exon structure. Between input and output, there may be one or several hidden layers where the machine learning takes place. The machine learning process starts by feeding the model with a sequence of known gene structure. The gene structure information is separated into several classes of features such as hexamer frequencies, splice sites, and GC composition during training. The weight functions in the hidden layers are adjusted during this process to recognize the nucleotide patterns and their relationship with known structures. When the algorithm predicts an unknown sequence after training, it applies the same rules learned in training to look for patterns associated with the gene structures.

The frequently used ab initio programs make use of neural networks, HMMs, and discriminant analysis, which are described next.

GRAIL (Gene Recognition and Assembly Internet Link; http://compbio.ornl.gov/ public/tools/) is a web-based program that is based on a neural network algorithm. The program is trained on several statistical features such as splice junctions, start

3' splice site

Figure 8.7: Comparison of two discriminant analysis, LDA and QDA. \blacktriangle coding features; \otimes noncoding features.

and stop codons, poly-A sites, promoters, and CpG islands. The program scans the query sequence with windows of variable lengths and scores for coding potentials and finally produces an output that is the result of exon candidates. The program is currently trained for human, mouse, *Arabidopsis, Drosophila,* and *Escherichia coli* sequences.

Prediction Using Discriminant Analysis. Some gene prediction algorithms rely on discriminant analysis, either LDA or quadratic discriminant analysis (QDA), to improve accuracy. LDA works by plotting a two-dimensional graph of coding signals versus all potential 3' splice site positions and drawing a diagonal line that best separates coding signals from noncoding signals based on knowledge learned from training data sets of known gene structures (Fig. 8.7). QDA draws a curved line based on a quadratic function instead of drawing a straight line to separate coding and noncoding features. This strategy is designed to be more flexible and provide a more optimal separation between the data points.

FGENES (Find Genes; www.softberry.com/) is a web-based program that uses LDA to determine whether a signal is an exon. In addition to FGENES, there are many variants of the program. Some programs, such as FGENESH, make use of HMMs. There are others, such as FGENESH_C, that are similarity based. Some programs, such as FGENESH+, combine both ab initio and similarity-based approaches.

MZEF (Michael Zhang's Exon Finder; http://argon.cshl.org/genefinder/) is a webbased program that uses QDA for exon prediction. Despite the more complex mathematical functions, the expected increase in performance has not been obvious in actual gene prediction.

Prediction Using HMMs. GENSCAN (http://genes.mit.edu/GENSCAN.html) is a webbased program that makes predictions based on fifth-order HMMs. It combines hexamer frequencies with coding signals (initiation codons, TATA box, cap site, poly-A, etc.) in prediction. Putative exons are assigned a probability score (*P*) of being a true exon. Only predictions with P > 0.5 are deemed reliable. This program is trained for sequences from vertebrates, *Arabidopsis*, and maize. It has been used extensively in annotating the human genome (see Chapter 17).

HMMgene (www.cbs.dtu.dk/services/HMMgene) is also an HMM-based web program. The unique feature of the program is that it uses a criterion called the *conditional maximum likelihood* to discriminate coding from noncoding features. If a sequence already has a subregion identified as coding region, which may be based on similarity with cDNAs or proteins in a database, these regions are locked as coding regions. An HMM prediction is subsequently made with a bias toward the locked region and is extended from the locked region to predict the rest of the gene coding regions and even neighboring genes. The program is in a way a hybrid algorithm that uses both ab initio-based and homology-based criteria.

Homology-Based Programs

Homology-based programs are based on the fact that exon structures and exon sequences of related species are highly conserved. When potential coding frames in a query sequence are translated and used to align with closest protein homologs found in databases, near perfectly matched regions can be used to reveal the exon boundaries in the query. This approach assumes that the database sequences are correct. It is a reasonable assumption in light of the fact that many homologous sequences to be compared with are derived from cDNA or expressed sequence tags (ESTs) of the same species. With the support of experimental evidence, this method becomes rather efficient in finding genes in an unknown genomic DNA.

The drawback of this approach is its reliance on the presence of homologs in databases. If the homologs are not available in the database, the method cannot be used. Novel genes in a new species cannot be discovered without matches in the database. A number of publicly available programs that use this approach are discussed next.

GenomeScan (http://genes.mit.edu/genomescan.html) is a web-based server that combines GENSCAN prediction results with BLASTX similarity searches. The user provides genomic DNA and protein sequences from related species. The genomic DNA is translated in all six frames to cover all possible exons. The translated exons are then used to compare with the user-supplied protein sequences. Translated genomic regions having high similarity at the protein level receive higher scores. The same sequence is also predicted with a GENSCAN algorithm, which gives exons probability scores. Final exons are assigned based on combined score information from both analyses.

EST2Genome (http://bioweb.pasteur.fr/seqanal/interfaces/est2genome.html) is a web-based program purely based on the sequence alignment approach to define intron–exon boundaries. The program compares an EST (or cDNA) sequence with a genomic DNA sequence containing the corresponding gene. The alignment is done using a dynamic programming–based algorithm. One advantage of the approach is the ability to find very small exons and alternatively spliced exons that are very difficult to predict by any ab initio–type algorithms. Another advantage is that there is no need

GENE PREDICTION IN EUKARYOTES

for model training, which provides much more flexibility for gene prediction. The limitation is that EST or cDNA sequences often contain errors or even introns if the transcripts are not completely spliced before reverse transcription.

SGP-1 (Syntenic Gene Prediction; http://195.37.47.237/sgp-1/) is a similarity-based web program that aligns two genomic DNA sequences from closely related organisms. The program translates all potential exons in each sequence and does pairwise alignment for the translated protein sequences using a dynamic programming approach. The near-perfect matches at the protein level define coding regions. Similar to EST2Genome, there is no training needed. The limitation is the need for two homologous sequences having similar genes with similar exon structures; if this condition is not met, a gene escapes detection from one sequence when there is no counterpart in another sequence.

TwinScan (http://genes.cs.wustl.edu/) is also a similarity-based gene-finding server. It is similar to GenomeScan in that it uses GenScan to predict all possible exons from the genomic sequence. The putative exons are used for BLAST searching to find closest homologs. The putative exons and homologs from BLAST searching are aligned to identify the best match. Only the closest match from a genome database is used as a template for refining the previous exon selection and exon boundaries.

Consensus-Based Programs

Because different prediction programs have different levels of sensitivity and specificity, it makes sense to combine results of multiple programs based on consensus. This idea has prompted development of consensus-based algorithms. These programs work by retaining common predictions agreed by most programs and removing inconsistent predictions. Such an integrated approach may improve the specificity by correcting the false positives and the problem of overprediction. However, since this procedure punishes novel predictions, it may lead to lowered sensitivity and missed predictions. Two examples of consensus-based programs are given next.

GeneComber (www.bioinformatics.ubc.ca/genecomber/index.php) is a web server that combines HMMgene and GenScan prediction results. The consistency of both prediction methods is calculated. If the two predictions match, the exon score is reinforced. If not, exons are proposed based on separate threshold scores.

DIGIT (http://digit.gsc.riken.go.jp/cgi-bin/index.cgi) is another consensus-based web server. It uses prediction from three ab initio programs – FGENESH, GENSCAN, and HMMgene. It first compiles all putative exons from the three gene-finders and assigns ORFs with associated scores. It then searches a set of exons with the highest additive score under the reading frame constraints. During this process, a Bayesian procedure and HMMs are used to infer scores and search the optimal exon set which gives the final designation of gene structure.

Performance Evaluation

Because of extra layers of complexity for eukaryotic gene prediction, the sensitivity and specificity have to be defined on the levels of nucleotides, exons, and entire genes.

	Nucleotide level			Exon level				
	Sn	Sp	CC	Sn	Sp	(Sn + Sp)/2	ME	WE
FGENES	0.86	0.88	0.83	0.67	0.67	0.67	0.12	0.09
GeneMark	0.87	0.89	0.83	0.53	0.54	0.54	0.13	0.11
Genie	0.91	0.90	0.88	0.71	0.70	0.71	0.19	0.11
GenScan	0.95	0.90	0.91	0.70	0.70	0.70	0.08	0.09
HMMgene	0.93	0.93	0.91	0.76	0.77	0.76	0.12	0.07
Morgan	0.75	0.74	0.74	0.46	0.41	0.43	0.20	0.28
MZEF	0.70	0.73	0.66	0.58	0.59	0.59	0.32	0.23

TABLE 8.2. Accuracy Comparisons for a Number of Ab Initio Gene Prediction Programs at Nucleotide and Exon Levels

Note: The data sets used were single mammalian gene sequences (performed by Sanja Rogic, from www.cs.ubc.ca/ \sim rogic/evaluation/tablesgen.html.

Abbreviations: Sn, sensitivity; Sp, specificity; CC, correlation coefficient; ME, missed exons; WE, wrongly predicted exons.

The sensitivity at the exon and gene level is the proportion of correctly predicted exons or genes among actual exons or genes. The specificity at the two levels is the proportion of correctly predicted exons or genes among all predictions made. For exons, instead of using CC, an average of sensitivity and specificity at the exon level is used instead. In addition, the proportion of missed exons and missed genes as well as wrongly predicted exons and wrong genes, which have no overlaps with true exons or genes, often have to be indicated.

By introducing these measures, the criteria for prediction accuracy evaluation become more stringent (Table 8.2). For example, a correct exon requires all nucleotides belonging to the exon to be predicted correctly. For a correctly predicted gene, all nucleotides and all exons have to be predicted correctly. One single error at the nucleotide level can negate the entire gene prediction. Consequently, the accuracy values reported on the levels of exons and genes are much lower than those for nucleotides.

When a new gene prediction program is published, the accuracy level is usually reported. However, the reported performance should be treated with caution because the accuracy is usually estimated based on particular datasets, which may have been optimized for the program. The datasets used are also mainly composed of short genomic sequences with simple gene structures. When the programs are used in gene prediction for truly unknown eukaryotic genomic sequences, the accuracy can become much lower. Because of the lack of unbiased and realistic datasets and objective comparison for eukaryotic gene prediction, it is difficult to know the true accuracy of the current prediction tools.

At present, no single software program is able to produce consistent superior results. Some programs may perform well on certain types of exons (e.g., internal or single exons) but not others (e.g., initial and terminal exons). Some are sensitive to the G-C content of the input sequences or to the lengths of introns and exons. Most

programs make overpredictions when genes contain long introns. In sum, they all suffer from the problem of generating a high number of false positives and false negatives. This is especially true for ab initio–based algorithms. For complex genomes such as the human genome, most popular programs can predict no more than 40% of the genes exactly right. Drawing consensus from results by multiple prediction programs may enhance performance to some extent.

SUMMARY

Computational prediction of genes is one of the most important steps of genome sequence analysis. For prokaryotic genomes, which are characterized by high gene density and noninterrupted genes, prediction of genes is easier than for eukaryotic genomes. Current prokaryotic gene prediction algorithms, which are based on HMMs, have achieved reasonably good accuracy. Many difficulties still persist for eukaryotic gene prediction. The difficulty mainly results from the low gene density and split gene structure of eukaryotic genomes. Current algorithms are either ab initio based, homology based, or a combination of both. For ab initio-based eukaryotic gene prediction, the HMM type of algorithm has overall better performance in differentiating intron-exon boundaries. The major limitation is the dependency on training of the statistical models, which renders the method to be organism specific. The homologybased algorithms in combination with HMMs may yield improved accuracy. The method is limited by the availability of identifiable sequence homologs in databases. The combined approach that integrates statistical and homology information may generate further improved performance by detecting more genes and more exons correctly. With rapid advances in computational techniques and understanding of the splicing mechanism, it is hoped that reliable eukaryotic gene prediction can become more feasible in the near future.

FURTHER READING

- Aggarwal, G., and Ramaswamy, R. 2002. Ab initio gene identification: Prokaryote genome annotation with GeneScan and GLIMMER. *J. Biosci.* 27:7–14.
- Ashurst, J. L., and Collins, J. E. 2003. Gene annotation: Prediction and testing. *Annu. Rev. Genomics Hum. Genet.* 4:69–88.
- Azad, R. K., and Borodovsky, M. 2004. Probabilistic methods of identifying genes in prokaryotic genomes: Connections to the HMM theory. *Brief. Bioinform.* 5:118–30.
- Cruveiller, S., Jabbari, K., Clay, O., and Bemardi, G. 2003. Compositional features of eukaryotic genomes for checking predicted genes. *Brief. Bioinform*. 4:43–52.
- Davuluri, R. V., and Zhang, M. Q. 2003. "Computer software to find genes in plant genomic DNA." In *Plant Functional Genomics*, edited by E. Grotewold, 87–108. Totowa, NJ: Human Press.
- Guigo, R., and Wiehe, T. 2003. "Gene prediction accuracy in large DNA sequences." In *Frontiers in Computational Genomics*, edited by M. Y. Galperin and E. V. Koonin, 1–33. Norfolk, UK: Caister Academic Press.

- Guigo, R., Dermitzakis, E. T., Agarwal, P., Ponting, C. P., Parra, G., Reymond, A., Abril, J. F., et al R. 2003. Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes. *Proc. Natl. Acad. Sci. USA* 100:1140–5.
- Li, W., and Godzik, A. 2002. Discovering new genes with advanced homology detection. *Trends Biotechnol.* 20:315–16.

Makarov, V. 2002. Computer programs for eukaryotic gene prediction. Brief. Bioinform. 3:195-9.

- Mathe, C., Sagot, M. F., Schiex, T., and Rouze, P. 2002. Current methods of gene prediction, their strengths and weaknesses. *Nucleic Acids Res.* 30:4103–17.
- Parra, G., Agarwal, P., Abril, J. F., Wiehe, T., Fickett, J. W., and Guigo, R. 2003. Comparative gene prediction in human and mouse. *Genome Res.* 13:108–17.
- Wang, J., Li, S., Zhang, Y., Zheng, H., Xu, Z., Ye, J., Yu, J., and Wong, G. K. 2003. Vertebrate gene predictions and the problem of large genes. *Nat. Rev. Genet.* 4:741–9.
- Wang, Z., Chen, Y., and Li, Y. 2004. A brief review of computational gene prediction methods. *Geno. Prot. Bioinfo.* 4:216–21.
- Zhang, M. Q. 2002. Computational prediction of eukaryotic protein coding genes. *Nat. Rev. Genetics*. 3:698–709.

CHAPTER NINE

Promoter and Regulatory Element Prediction

An issue related to gene prediction is promoter prediction. Promoters are DNA elements located in the vicinity of gene start sites (which should not be confused with the translation start sites) and serve as binding sites for the gene transcription machinery, consisting of RNA polymerases and transcription factors. Therefore, these DNA elements directly regulate gene expression. Promoters and regulatory elements are traditionally determined by experimental analysis. The process is extremely time consuming and laborious. Computational prediction of promoters and regulatory elements is especially promising because it has the potential to replace a great deal of extensive experimental analysis.

However, computational identification of promoters and regulatory elements is also a very difficult task, for several reasons. First, promoters and regulatory elements are not clearly defined and are highly diverse. Each gene seems to have a unique combination of sets of regulatory motifs that determine its unique temporal and spatial expression. There is currently a lack of sufficient understanding of all the necessary regulatory elements for transcription. Second, the promoters and regulatory elements cannot be translated into protein sequences to increase the sensitivity for their detection. Third, promoter and regulatory sites to be predicted are normally short (six to eight nucleotides) and can be found in essentially any sequence by random chance, thus resulting in high rates of false positives associated with theoretical predictions.

Current solutions for providing preliminary identification of these elements are to combine a multitude of features and use sophisticated algorithms that give either ab initio–based predictions or predictions based on evolutionary information or experimental data. These computational approaches are described in detail in this chapter following a brief introduction to the structures of promoters and regulatory elements in both prokaryotes and eukaryotes.

PROMOTER AND REGULATORY ELEMENTS IN PROKARYOTES

In bacteria, transcription is initiated by RNA polymerase, which is a multi-subunit enzyme. The σ subunit (e.g., σ^{70}) of the RNA polymerase is the protein that recognizes specific sequences upstream of a gene and allows the rest of the enzyme complex to bind. The upstream sequence where the σ protein binds constitutes the promoter sequence. This includes the sequence segments located 35 and 10 base pairs (bp) upstream from the transcription start site. They are also referred to as the -35 and -10 boxes. For the σ^{70} subunit in *Escherichia coli*, for example, the -35 box

Figure 9.1: Schematic representation of elements involved in bacterial transcription initiation. RNA polymerase binds to the promoter region, which initiates transcription through interaction with transcription factors binding at different sites. *Abbreviations:* TSS, transcription start site; ORF, reading frame; pol, polymerase; TF, transcription factor (see color plate section).

has a consensus sequence of TTGACA. The -10 box has a consensus of TATAAT. The promoter sequence may determine the expression of one gene or a number of linked genes downstream. In the latter case, the linked genes form an operon, which is controlled by the promoter.

In addition to the RNA polymerase, there are also a number of DNA-binding proteins that facilitate the process of transcription. These proteins are called *transcription factors*. They bind to specific DNA sequences to either enhance or inhibit the function of the RNA polymerase. The specific DNA sequences to which the transcription factors bind are referred to as *regulatory elements*. The regulatory elements may bind in the vicinity of the promoter or bind to a site several hundred bases away from the promoter. The reason that the regulatory proteins binding at long distance can still exert their effect is because of the flexible structure of DNA, which is able to bend and and exert its effect by bringing the transcription factors in close contact with the RNA polymerase complex (Fig. 9.1).

PROMOTER AND REGULATORY ELEMENTS IN EUKARYOTES

In eukaryotes, gene expression is also regulated by a protein complex formed between transcription factors and RNA polymerase. However, eukaryotic transcription has an added layer of complexity in that there are three different types of RNA polymerase complexes, namely RNA polymerases I, II, and III. Each polymerase transcribes different sets of genes. RNA polymerases I and III are responsible for the transcription of ribosomal RNAs and tRNAs, respectively. RNA polymerase II is exclusively responsible for transcribing protein-encoding genes (or synthesis of mRNAs).

Unlike in prokaryotes, where genes often form an operon with a shared promoter, each eukaryotic gene has its own promoter. The eukaryotic transcription machinery also requires many more transcription factors than its prokaryotic counterpart to help initiate transcription. Furthermore, eukaryotic RNA polymerase II does not directly bind to the promoter, but relies on a dozen or more transcription factors to recognize and bind to the promoter in a specific order before its own binding around the promoter.

Figure 9.2: Schematic diagram of an eukaryotic promoter with transcription factors and RNA polymerase bound to the promoter. *Abbreviations:* Inr, initiator sequence; ORF, reading frame; pol, polymerase; TF, transcription factor (see color plate section).

The core of many eukaryotic promoters is a so-called TATA box, located 30 bps upstream from the transcription start site, having a consensus motif TATA(A/T)A (A/T) (Fig. 9.2.). However, not all eukaryotic promoters contain the TATA box. Many genes such as housekeeping genes do not have the TATA box in their promoters. Still, the TATA box is often used as an indicator of the presence of a promoter. In addition, many genes have a unique initiator sequence (Inr), which is a pyrimidine-rich sequence with a consensus (C/T)(C/T)CA(C/T)(C/T). This site coincides with the transcription start site. Most of the transcription factor binding sites are located within 500 bp upstream of the transcription start site. Some regulatory sites can be found tens of thousands base pairs away from the gene start site. Occasionally, regulatory elements are located downstream instead of upstream of the transcription start site. Often, a cluster of transcription factor binding sites spread within a wide range to work synergistically to enhance transcription initiation.

PREDICTION ALGORITHMS

Current algorithms for predicting promoters and regulatory elements can be categorized as either ab initio based, which make de novo predictions by scanning individual sequences; or similarity based, which make predictions based on alignment of homologous sequences; or expression profile based using profiles constructed from a number of coexpressed gene sequences from the same organism. The similarity type of prediction is also called phylogenetic footprinting. As mentioned, because RNA polymerase II transcribes the eukaryotic mRNA genes, most algorithms are thus focused on prediction of the RNA polymerase II promoter and associated regulatory elements. Each of the categories is discussed in detail next.

Ab Initio-Based Algorithms

This type of algorithm predicts prokaryotic and eukaryotic promoters and regulatory elements based on characteristic sequences patterns for promoters and regulatory elements. Some ab initio programs are signal based, relying on characteristic promoter sequences such as the TATA box, whereas others rely on content information such as

hexamer frequencies. The advantage of the ab initio method is that the sequence can be applied as such without having to obtain experimental information. The limitation is the need for training, which makes the prediction programs species specific. In addition, this type of method has a difficulty in discovering new, unknown motifs.

The conventional approach to detecting a promoter or regulatory site is through matching a consensus sequence pattern represented by regular expressions (see Chapter 7) or matching a position-specific scoring matrix (PSSM; see Chapter 6) constructed from well-characterized binding sites. In either case, the consensus sequences or the matrices are relatively short, covering 6 to 10 bases. As described in Chapter 7, to determine whether a query sequence matches a weight matrix, the sequence is scanned through the matrix. Scores of matches and mismatches at all matrix positions are summed up to give a log odds score, which is then evaluated for statistical significance. This simple approach, however, often has difficulty differentiating true promoters from random sequence matches and generates high rates of false positives as a result.

To better discriminate true motifs from background noise, a new generation of algorithms has been developed that take into account the higher order correlation of multiple subtle features by using discriminant functions, neural networks, or hidden Markov models (HMMs) that are capable of incorporating more neighboring sequence information. To further improve the specificity of prediction, some algorithms selectively exclude coding regions and focus on the upstream regions (0.5 to 2.0 kb) only, which are most likely to contain promoters. In that sense, promoter prediction and gene prediction are coupled.

Prediction for Prokaryotes

One of the unique aspects in prokaryotic promoter prediction is the determination of operon structures, because genes within an operon share a common promoter located upstream of the first gene of the operon. Thus, operon prediction is the key in prokaryotic promoter prediction. Once an operon structure is known, only the first gene is predicted for the presence of a promoter and regulatory elements, whereas other genes in the operon do not possess such DNA elements.

There are a number of methods available for prokaryotic operon prediction. The most accurate is a set of simple rules developed by Wang et al. (2004). This method relies on two kinds of information: gene orientation and intergenic distances of a pair of genes of interest and conserved linkage of the genes based on comparative genomic analysis. More about gene linkage patterns across genomes is introduced in Chapters 16 and 18. A scoring scheme is developed to assign operons with different levels of confidence (Fig. 9.3). This method is claimed to produce accurate identification of an operon structure, which in turn facilitates the promoter prediction.

This newly developed scoring approach is, however, not yet available as a computer program. The prediction can be done manually using the rules, however. The few dedicated programs for prokaryotic promoter prediction do not apply the Wang et al. rule for historical reasons. The most frequently used program is BPROM.

Scoring criteria for operon prediction

Figure 9.3: Prediction of operons in prokaryotes based on a scoring scheme developed by Wang et al. (2004). This method states that, for two adjacent genes transcribed in the same orientation and without a ρ -independent transcription termination signal in between, the score is assigned 0 if the intergenic distance is larger than 300 bp regardless of the gene linkage pattern or if the distance is larger than 100 bp with the linkage not observed in other genomes. The score is assigned 1 if the intergenic distance is larger than 60 bp with the linkage shared in less than five genomes. The score is assigned 2 if the distance is between 50 and 60 bp with the linkage shared in between five to ten genomes. The score is assigned 3 if the intergenic distance is less than 30 bp regardless of the intergenic distance or if the distance is between 50 and 300 bp with the linkage shared in between five to ten genomes. The score is assigned 3 if the intergenic distance is less than 30 bp regardless of the conserved linkage pattern or if the linkage is conserved in more than ten genomes regardless of the intergenic distance or if the distance is less than 50 bp with the linkage shared in between five to ten genomes. The score is assigned 2 if the intergenic distance is less than 50 bp regardless of the conserved linkage shared or if the linkage is conserved in more than ten genomes regardless of the intergenic distance or if the distance is less than 50 bp with the linkage shared in between five to ten genomes. A minimum score of 2 is considered the threshold for assigning the two genes in one operon.

BPROM (www.softberry.com/berry.phtml?topic=bprom&group=programs &subgroup=gfindb) is a web-based program for prediction of bacterial promoters. It uses a linear discriminant function (see Chapter 8) combined with signal and content information such as consensus promoter sequence and oligonucleotide composition of the promoter sites. This program first predicts a given sequence for bacterial operon structures by using an intergenic distance of 100 bp as basis for distinguishing genes to be in an operon. This rule is more arbitrary than the Wang et al. rule, leading to high rates of false positives. Once the operons are assigned, the program is able to predict putative promoter sequences. Because most bacterial promoters are located within 200 bp of the protein coding region, the program is most effectively used when about

118 **PROMOTER AND REGULATORY ELEMENT PREDICTION**

200 bp of upstream sequence of the first gene of an operon is supplied as input to increase specificity.

FindTerm (http://sun1.softberry.com/berry.phtml?topic=findterm&group=pro grams&subgroup=gfindb) is a program for searching bacterial ρ -independent termination signals located at the end of operons. It is available from the same site as FGENES and BPROM. The predictions are made based on matching of known profiles of the termination signals combined with energy calculations for the derived RNA secondary structures for the putative hairpin-loop structure (see Chapter 16). The sequence region that scores best in features and energy terms is chosen as the prediction. The information can sometimes be useful in defining an operon.

Prediction for Eukaryotes

The ab initio method for predicting eukaryotic promoters and regulatory elements also relies on searching the input sequences for matching of consensus patterns of known promoters and regulatory elements. The consensus patterns are derived from experimentally determined DNA binding sites which are compiled into profiles and stored in a database for scanning an unknown sequence to find similar conserved patterns. However, this approach tends to generate very high rate of false positives owing to nonspecific matches with the short sequence patterns. Furthermore, because of the high variability of transcription factor binding sites, the simple sequence matching often misses true promoter sites, creating false negatives.

To increase the specificity of prediction, a unique feature of eukaryotic promoter is employed, which is the presence of CpG islands. It is known that many vertebrate genes are characterized by a high density of CG dinucleotides near the promoter region overlapping the transcription start site (see Chapter 8). By identifying the CpG islands, promoters can be traced on the immediate upstream region from the islands. By combining CpG islands and other promoter signals, the accuracy of prediction can be improved. Several programs have been developed based on the combined features to predict the transcription start sites in particular.

As discussed, the eukaryotic transcription initiation requires cooperation of a large number of transcription factors. *Cooperativity* means that the promoter regions tend to contain a high density of protein-binding sites. Thus, finding a cluster of transcription factor binding sites often enhances the probability of individual binding site prediction.

A number of representatives of ab initio promoter prediction algorithms that incorporate the unique properties of eukaryotic promoters are introduced next.

CpGProD (http://pbil.univ-lyon1.fr/software/cpgprod.html) is a web-based program that predicts promoters containing a high density of CpG islands in mammalian genomic sequences. It calculates moving averages of GC% and CpG ratios (observed/expected) over a window of a certain size (usually 200 bp). When the values are above a certain threshold, the region is identified as a CpG island.

PREDICTION ALGORITHMS

Eponine (http://servlet.sanger.ac.uk:8080/eponine/) is a web-based program that predicts transcription start sites based on a series of preconstructed PSSMs of several regulatory sites, such as the TATA box, the CCAAT box, and CpG islands. The query sequence from a mammalian source is scanned through the PSSMs. The sequence stretches with high-score matching to all the PSSMs, as well as matching of the spacing between the elements, are declared transcription start sites. A Bayesian method is also used in decision making.

Cluster-Buster (http://zlab.bu.edu/cluster-buster/cbust.html) is an HMM-based, web-based program designed to find clusters of regulatory binding sites. It works by detecting a region of high concentration of known transcription factor binding sites and regulatory motifs. A query sequence is scanned with a window size of 1 kb for putative regulatory motifs using motif HMMs. If multiple motifs are detected within a window, a positive score is assigned to each motif found. The total score of the window is the sum of each motif score subtracting a gap penalty, which is proportional to the distances between motifs. If the score of a certain region is above a certain threshold, it is predicted to contain a regulatory cluster.

FirstEF (First Exon Finder; http://rulai.cshl.org/tools/FirstEF/) is a web-based program that predicts promoters for human DNA. It integrates gene prediction with promoter prediction. It uses quadratic discriminant functions (see Chapter 8) to calculate the probabilities of the first exon of a gene and its boundary sites. A segment of DNA (15 kb) upstream of the first exon is subsequently extracted for promoter prediction on the basis of scores for CpG islands.

McPromoter (http://genes.mit.edu/McPromoter.html) is a web-based program that uses a neural network to make promoter predictions. It has a unique promoter model containing six scoring segments. The program scans a window of 300 bases for the likelihoods of being in each of the coding, noncoding, and promoter regions. The input for the neural network includes parameters for sequence physical properties, such as DNA bendability, plus signals such as the TATA box, initiator box, and CpG islands. The hidden layer combines all the features to derive an overall likelihood for a site being a promoter. Another unique feature is that McPromoter does not require that certain patterns must be present, but instead the combination of all features is important. For instance, even if the TATA box score is very low, a promoter prediction can still be made if the other features score highly. The program is currently trained for *Drosophila* and human sequences.

TSSW (www.softberry.com/berry.phtml?topic=promoter) is a web program that distinguishes promoter sequences from non-promoter sequences based on a combination of unique content information such as hexamer/trimer frequencies and signal information such the TATA box in the promoter region. The values are fed to a linear discriminant function (see Chapter 8) to separate true motifs from background noise.

CONPRO (http://stl.bioinformatics.med.umich.edu/conpro) is a web-based program that uses a consensus method to identify promoter elements for human DNA.

PROMOTER AND REGULATORY ELEMENT PREDICTION

To use the program, a user supplies the transcript sequence of a gene (cDNA). The program uses the information to search the human genome database for the position of the gene. It then uses the GENSCAN program to predict 5' untranslated exons in the upstream region. Once the 5'-most exon is located, a further upstream region (1.5 kb) is used for promoter prediction, which relies on a combination of five promoter prediction programs, TSSG, TSSW, NNPP, PROSCAN, and PromFD. For each program, the highest score prediction is taken as the promoter in the region. If three predictions fall within a 100-bp region, this is considered a consensus prediction. If no three-way consensus is achieved, TSSG and PromFD predictions are taken. Because no coding sequence is used in prediction, specificity is improved relative to each individual program.

Phylogenetic Footprinting–Based Method

It has been observed that promoter and regulatory elements from closely related organisms such as human and mouse are highly conserved. The conservation is both at the sequence level and at the level of organization of the elements. Therefore, it is possible to obtain such promoter sequences for a particular gene through comparative analysis. The identification of conserved noncoding DNA elements that serve crucial functional roles is referred to as *phylogenetic footprinting*; the elements are called *phylogenetic footprints*. This type of method can apply to both prokaryotic and eukaryotic sequences.

The selection of organisms for comparison is an important consideration in this type of analysis. If the pair of organisms selected are too closely related, such as human and chimpanzee, the sequence difference between them may not be sufficient to filter out functional elements. On the other hand, if the organisms' evolutionary distances are too long, such as between human and fish, long evolutionary divergence may render promoter and other elements undetectable. One example of appropriate selection of species is the use of human and mouse sequences, which often yields informative results.

Another caveat of phylogenetic footprinting is to extract noncoding sequences upstream of corresponding genes and focus the comparison to this region only, which helps to prevent false positives. The predictive value of this method also depends on the quality of the subsequent sequence alignments. The advanced alignment programs introduced in Chapter 5 can be used. Even more sophisticated expectation maximization (EM) and Gibbs sampling algorithms can be used in detecting weakly conserved motifs.

There are software programs specifically designed to take advantage of the presence of phylogenetic footprints to make comparisons among a number of related species to identify putative transcription factor binding sites. The advantage in implementing the algorithms is that no training of the probabilistic models is required; hence, it is more broadly applicable. There is also a potential to discover new regulatory

PREDICTION ALGORITHMS

motifs shared among organisms. The obvious limitation is the constraint on the evolutionary distances among the orthologous sequences.

ConSite (http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite) is a web server that finds putative promoter elements by comparing two orthologous sequences. The user provides two individual sequences which are aligned by ConSite using a global alignment algorithm. Alternatively, the program accepts precomputed alignment. Conserved regions are identified by calculating identity scores, which are then used to compare against a motif database of regulatory sites (TRANSFAC). High-scoring sequence segments upstream of genes are returned as putative regulatory elements.

rVISTA (http://rvista.dcode.org/) is a similar cross-species comparison tool for promoter recognition. The program uses two orthologous sequences as input and first identifies all putative regulatory motifs based on TRANSFAC matches. It then aligns the two sequences using a local alignment strategy. The motifs that have the highest percent identity in the pairwise comparison are presented graphically as regulatory elements.

PromH(W) (www.softberry.com/berry.phtml?topic=promhw&group=programs &subgroup=promoter) is a web-based program that predicts regulatory sites by pairwise sequence comparison. The user supplies two orthologous sequences, which are aligned by the program to identify conserved regions. These regions are subsequently predicted for RNA polymerase II promoter motifs in both sequences using the TSSW program. Only the conserved regions having high scored promoter motifs are returned as results.

Bayes aligner (www.bioinfo.rpi.edu/applications/bayesian/bayes/bayes_align12. pl) is a web-based footprinting program. It aligns two sequences using a Bayesian algorithm which is a unique sequence alignment method. Instead of returning a single best alignment, the method generates a distribution of a large number of alignments using a full range of scoring matrices and gap penalties. Posterior probability values, which are considered estimates of the true alignment, are calculated for each alignment. By studying the distribution, the alignment that has the highest likelihood score, which is in the extreme margin of the distribution, is chosen. Based on this unique alignment searching algorithm, weakly conserved motifs can be identified with high probability scores.

FootPrinter (http://abstract.cs.washington.edu/~blanchem/FootPrinterWeb/Foot PrinterInput2.pl) is a web-based program for phylogenetic footprinting using multiple input sequences. The user also needs to provide a phylogenetic tree that defines the evolutionary relationship of the input sequences. (One may obtain the tree information from the "Tree of Life" web site [http://tolweb.org/tree/phylogeny.html], which archives known phylogenetic trees using ribosomal RNAs as gene markers.) The program performs multiple alignment of the input sequences to identify conserved motifs. The motifs from organisms spanning over the widest evolutionary distances are identified as promoter or regulatory motifs. In other words, it identifies unusually well-conserved motifs across a set of orthologous sequences.

Expression Profiling-Based Method

Recent advances in high throughput transcription profiling analysis, such as DNA microarray analysis (see Chapter 18) have allowed simultaneous monitoring of expression of hundreds or thousands of genes. Genes with similar expression profiles are considered coexpressed, which can be identified through a clustering approach (see Chapter 18). The basis for coexpression is thought to be due to common promoters and regulatory elements. If this assumption is valid, the upstream sequences of the coexpressed genes can be aligned together to reveal the common regulatory elements recognizable by specific transcription factors.

This approach is essentially experimentally based and appears to be robust for finding transcription factor binding sites. The problem is that the regulatory elements of coexpressed genes are usually short and weak. Their patterns are difficult to discern using simple multiple sequence alignment approaches. Therefore, an advanced alignment-independent profile construction method such as EM and Gibbs motif sampling (see Chapter 7) is often used in finding the subtle sequence motifs. As a reminder, EM is a motif extraction algorithm that finds motifs by repeatedly optimizing a PSSM through comparison with single sequences. Gibbs sampling uses a similar matrix optimization approach but samples motifs with a more flexible strategy and may have a higher likelihood of finding the optimal pattern. Through matrix optimization, subtly conserved motifs can be detected from the background noise.

One of the drawbacks of this approach is that determination of the set of coexpressed genes depends on the clustering approaches, which are known to be error prone. That means that the quality of the input data may be questionable when functionally unrelated genes are often clustered together. In addition, the assumption that coexpressed genes have common regulatory elements is not always valid. Many coexpressed genes have been found to belong to parallel signaling pathways that are under the control of distinct regulatory mechanisms. Therefore, caution should always be exercised when using this method.

The following lists a small selection of motif finders using the EM or Gibbs sampling approach.

MEME (http://meme.sdsc.edu/meme/website/meme-intro.html) is the EMbased program introduced in Chapter 7 for protein motif discovery but can also be used in DNA motif finding. The use is similar to that for protein sequences.

AlignACE (http://atlas.med.harvard.edu/cgi-bin/alignace.pl) is a web-based program using the Gibbs sampling algorithm to find common motifs. The program is optimized for DNA sequence motif extraction. It automatically determines the optimal number and lengths of motifs from the input sequences.

Melina (Motif Elucidator In Nucleotide sequence Assembly; http://melina.hgc.jp/) is a web-based program that runs four individual motif-finding algorithms – MEME, GIBBS sampling, CONSENSUS, and Coresearch – simultaneously. The user compares the results to determine the consensus of motifs predicted by all four prediction methods.

INCLUSive (www.esat.kuleuven.ac.be/~dna/BioI/Software.html) is a suite of webbased tools designed to streamline the process of microarray data collection and sequence motif detection. The pipeline processes microarray data, automatically clusters genes according expression patterns, retrieves upstream sequences of coregulated genes and detects motifs using a Gibbs sampling approach (Motif Sampler). To further avoid the problem of getting stuck in a local optimum (see Chapter 7), each sequence dataset is submitted to Motif Sampler ten times. The results may vary in each run. The results from the ten runs are compiled to derive consensus motifs.

PhyloCon (Phylogenetic Consensus; http://ural.wustl.edu/~twang/PhyloCon/) is a UNIX program that combines phylogenetic footprinting with gene expression profiling analysis to identify regulatory motifs. This approach takes advantage of conservation among orthologous genes as well as conservation among coregulated genes. For each individual gene in a set of coregulated genes, multiple sequence homologs are aligned to derive profiles. Based on the gene expression data, profiles between coregulated genes are further compared to identify functionally conserved motifs among evolutionary conserved motifs. In other words, regulatory motifs are defined from both sets of analysis. This approach integrates the "single gene–multiple species" and "single species–multiple genes" methods and has been found to reduce false positives compared to either phylogenetic footprinting or simple motif extraction approaches alone.

SUMMARY

Identification of promoter and regulatory elements remains a great bioinformatic challenge. The existing algorithms can be classified as ab initio based, phylogenetic footprinting based, and expression profiling based. The true accuracy of the ab initio programs is still difficult to assess because of the lack of common benchmarks. The reported overall sensitivity and specificity levels are currently below 0.5 for most programs. For a prediction method to be acceptable, both accuracy indicators have to be consistently above 0.9 to be reliable enough for routine prediction purposes. That means that the algorithmic development in this field still has a long road ahead. To achieve better results, combining multiple prediction programs seems to be helpful in some circumstances. The comparative approach using phylogenetic footprinting is able to take a completely different approach in identifying promoter elements. The resulting prediction can be used to check against the ab initio prediction. Finally, the experimental based approach using gene expression data offers another route to finding regulatory motifs. Because the DNA motifs are often subtle, EM and Gibbs motif sampling algorithms are necessary for this purpose. Alternatively, the EM and Gibbs sampling programs can be used for phylogenetic footprinting if the input sequences are from different organisms. In essence, all three approaches are interrelated. The results from all three types of methods can be combined to further increase the reliability of the predictions.

FURTHER READING

- Dubchak, I., and Pachter, L. 2002. The computational challenges of applying comparative-based computational methods to whole genomes. *Brief. Bioinform.* 3:18–22.
- Hannenhalli, S., and Levy, S. 2001. Promoter prediction in the human genome. *Bioinformatics* 17(Suppl):S90–6.
- Hehl, R., and Wingender, E. 2001. Database-assisted promoter analysis. Trends Plant Sci. 6:251–5.
- Ohler, U., and Niemann, H. 2001. Identification and analysis of eukaryotic promoters: Recent computational approaches. *Trends Genet*. 17:56–60.
- Ovcharenko, I., and Loots, G. G. 2003. Finding the needle in the haystack: Computational strategies for discovering regulatory sequences in genomes. *Curr. Genomics* 4:557–68.
- Qiu, P. 2003. Recent advances in computational promoter analysis in understanding the transcriptional regulatory network. *Biochem. Biophys. Res. Commun.* 309:495–501.
- Rombauts S., Florquin K., Lescot M., Marchal K., Rouze P., and van de Peer Y. 2003. Computational approaches to identify promoters and *cis*-regulatory elements in plant genomes. *Plant Physiol*. 132:1162–76.
- Salgado, H., Moreno-Hagelsieb, G., Smith, T. F., and Collado-Vides, J. 2000. Operons in *Escherichia coli*: Genomic analyses and predictions. *Proc. Natl. Acad. Sci. U S A* 97:6652–7.
- Wang, L., Trawick, J. D., Yamamoto, R., and Zamudio, C. 2004. Genome-wide operon prediction in *Staphylococcus aureus*. *Nucleic Acids Res.* 32:3689–702.
- Werner, T. 2003. The state of the art of mammalian promoter recognition. *Brief. Bioinform*. 4:22–30.