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CHAPTER EIGHT

Gene Prediction

With the rapid accumulation of genomic sequence information, there is a pressing
need to use computational approaches to accurately predict gene structure. Compu-
tational gene prediction is a prerequisite for detailed functional annotation of genes
and genomes. The process includes detection of the location of open reading frames
(ORFs) and delineation of the structures of introns as well as exons if the genes of
interest are of eukaryotic origin. The ultimate goal is to describe all the genes com-
putationally with near 100% accuracy. The ability to accurately predict genes can
significantly reduce the amount of experimental verification work required.

However, this may still be a distant goal, particularly for eukaryotes, because many
problemsin computational gene prediction are still largely unsolved. Gene prediction,
infact, represents one of the most difficult problems in the field of pattern recognition.
This is because coding regions normally do not have conserved motifs. Detecting
coding potential of a genomic region has to rely on subtle features associated with
genes that may be very difficult to detect.

Through decades of research and development, much progress has been made in
prediction of prokaryotic genes. A number of gene prediction algorithms for prokary-
otic genomes have been developed with varying degrees of success. Algorithms for
eukarytotic gene prediction, however, are still yet to reach satisfactory results. This
chapter describes a number of commonly used prediction algorithms, their theoret-
ical basis, and limitations. Because of the significant differences in gene structures
of prokaryotes and eukaryotes, gene prediction for each group of organisms is dis-
cussed separately. In addition, because of the predominance of protein coding genes
in a genome (as opposed to rRNA and tRNA genes), the discussion focuses on the
prediction of protein coding sequences.

CATEGORIES OF GENE PREDICTION PROGRAMS

The current gene prediction methods can be classified into two major categories, ab
initio-based and homology-based approaches. The ab initio—based approach predicts
genes based on the given sequence alone. It does so by relying on two major features
associated with genes. The first is the existence of gene signals, which include start and
stop codons, intron splice signals, transcription factor binding sites, ribosomal bind-
ing sites, and polyadenylation (poly-A) sites. In addition, the triplet codon structure
limits the coding frame length to multiples of three, which can be used as a condition
for gene prediction. The second feature used by ab initio algorithms is gene content,
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which is statistical description of coding regions. It has been observed that nucleotide
composition and statistical patterns of the coding regions tend to vary significantly
from those of the noncoding regions. The unique features can be detected by employ-
ing probabilistic models such as Markov models or hidden Markov models (HMMs;
see Chapter 6) to help distinguish coding from noncoding regions.

The homology-based method makes predictions based on significant matches of
the query sequence with sequences of known genes. For instance, if a translated DNA
sequence is found to be similar to a known protein or protein family from a database
search, this can be strong evidence that the region codes for a protein. Alternatively,
when possible exons of a genomic DNA region match a sequenced cDNA, this also
provides experimental evidence for the existence of a coding region.

Some algorithms make use of both gene-finding strategies. There are also a num-
ber of programs that actually combine prediction results from multiple individual
programs to derive a consensus prediction. This type of algorithms can therefore be
considered as consensus based.

GENE PREDICTION IN PROKARYOTES

Prokaryotes, which include bacteria and Archaea, have relatively small genomes with
sizes ranging from 0.5 to 10 Mbp (1 Mbp = 10° bp). The gene density in the genomes is
high, with more than 90% of a genome sequence containing coding sequence. There
are very few repetitive sequences. Each prokaryotic gene is composed of a single
contiguous stretch of ORF coding for a single protein or RNA with no interruptions
within a gene.

More detailed knowledge of the bacterial gene structure can be very useful in gene
prediction. In bacteria, the majority of genes have a start codon ATG (or AUG in mRNA;
because prediction is done at the DNA level, T is used in place of U), which codes for
methionine. Occasionally, GTG and TTG are used as alternative start codons, but
methionine is still the actual amino acid inserted at the first position. Because there
may be multiple ATG, GTG, or TGT codons in a frame, the presence of these codons at
thebeginning of the frame does not necessarily give a clearindication of the translation
initiation site. Instead, to help identify this initiation codon, other features associated
with translation are used. One such featureis the ribosomal bindingsite, also called the
Shine-Delgarno sequence, which is a stretch of purine-rich sequence complementary
to 16S rRNA in the ribosome (Fig. 8.1). It is located immediately downstream of the
transcription initiation site and slightly upstream of the translation start codon. In
many bacteria, it has a consensus motif of AGGAGGT. Identification of the ribosome
binding site can help locate the start codon.

At the end of the protein coding region is a stop codon that causes translation to
stop. There are three possible stop codons, identification of which is straightfor-
ward. Many prokaryotic genes are transcribed together as one operon. The end of the
operon is characterized by a transcription termination signal called p-independent
terminator. The terminator sequence has a distinct stem-loop secondary structure
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Figure 8.1: Structure of a typical prokaryotic gene structure. Abbreviation: RBS, ribosome binding site.

followed by a string of Ts. Identification of the terminator site, in conjunction with
promoter site identification (see Chapter 9), can sometimes help in gene prediction.

Conventional Determination of Open Reading Frames

Without the use of specialized programs, prokaryotic gene identification can rely
on manual determination of ORFs and major signals related to prokaryotic genes.
Prokaryotic DNA is first subject to conceptual translation in all six possible frames,
three frames forward and three frames reverse. Because a stop codon occurs in about
every twenty codons by chance in a noncoding region, a frame longer than thirty
codons without interruption by stop codons is suggestive of a gene coding region,
although the threshold for an ORF is normally set even higher at fifty or sixty codons.
The putative frame is further manually confirmed by the presence of other signals
such as a start codon and Shine-Delgarno sequence. Furthermore, the putative ORF
can be translated into a protein sequence, which is then used to search against a
protein database. Detection of homologs from this search is probably the strongest
indicator of a protein-coding frame.

In the early stages of development of gene prediction algorithms, genes were pre-
dicted by examining the nonrandomness of nucleotide distribution. One method is
based on the nucleotide composition of the third position of a codon. In a coding
sequence, it has been observed that this position has a preference to use G or C over
A or T. By plotting the GC composition at this position, regions with values signifi-
cantly above the random level can be identified, which are indicative of the presence
of ORFs (Fig. 8.2). In practice, because genes can be in any of the six frames, the
statistical patterns are computed for all possible frames. In addition to codon bias,
there is a similar method called TESTCODE (implemented in the commercial GCG
package) that exploits the fact that the third codon nucleotides in a coding region
tend to repeat themselves. By plotting the repeating patterns of the nucleotides at
this position, coding and noncoding regions can be differentiated (see Fig. 8.2). The
results of the two methods are often consistent. The two methods are often used in
conjunction to confirm the results of each other.

These statistical methods, which are based on empirical rules, examine the statis-
tics of a single nucleotide (either G or C). They identify only typical genes and tend
to miss atypical genes in which the rule of codon bias is not strictly followed. To
improve the prediction accuracies, the new generation of prediction algorithms use
more sophisticated statistical models.



100

GENE PREDICTION

10 GC bias
£ hw Jﬁ‘u\ \‘\ H
& " n,ln A A oy
g 10 “ﬁ U '\” Y W i
'20 I r T 1
1.5 TESTCODE e
T
2 104 “_,-’ ' I:\
m M J
0 I T 1
0 IOUU 2000 3000 4000

Nucleotide

Figure 8.2: Coding frame detection of a bacterial gene using either the GC bias or the TESTCODE
method. Both result in similar identification of a reading frame (dashed arrows).

Gene Prediction Using Markov Models and Hidden Markov Models

Markovmodelsand HMMs can be very helpful in providing finer statistical description
ofa gene (see Chapter 6). AMarkov model describes the probability of the distribution
of nucleotides in a DNA sequence, in which the conditional probability of a particular
sequence position depends on k previous positions. In this case, k is the order of a
Markov model. A zero-order Markov model assumes each base occurs independently
with a given probability. This is often the case for noncoding sequences. A first-order
Markov model assumes that the occurrence of a base depends on the base preceding
it. A second-order model looks at the preceding two bases to determine which base
follows, which is more characteristic of codons in a coding sequence.

The use of Markov models in gene finding exploits the fact that oligonucleotide
distributions in the coding regions are different from those for the noncoding regions.
These can be represented with various orders of Markov models. Since a fixed-order
Markov chain describes the probability of a particular nucleotide that depends on
previous k nucleotides, the longer the oligomer unit, the more nonrandomness can
be described for the coding region. Therefore, the higher the order of a Markov model,
the more accurately it can predict a gene.

Because a protein-encoding gene is composed of nucleotides in triplets as codons,
more effective Markov models are built in sets of three nucleotides, describing non-
random distributions of trimers or hexamers, and so on. The parameters of a Markov
model have to be trained using a set of sequences with known gene locations. Once the
parameters of the model are established, it can be used to compute the nonrandom
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Figure 8.3: A simplified second-order HMM for prokaryotic gene prediction that includes a statistical
model for start codons, stop codons, and the rest of the codons in a gene sequence represented by a
typical model and an atypical model.

distributions of trimers or hexamers in a new sequence to find regions that are com-
patible with the statistical profiles in the learning set.

Statistical analyses have shown that pairs of codons (or amino acids at the protein
level) tend to correlate. The frequency of six unique nucleotides appearing together in
acodingregionismuchhigherthan byrandom chance. Therefore, a fifth-order Markov
model, which calculates the probability of hexamer bases, can detect nucleotide cor-
relations found in coding regions more accurately and is in fact most often used.

A potential problem of using a fifth-order Markov chain is that if there are not
enough hexamers, which happens in short gene sequences, the method’s efficacy
may be limited. To cope with this limitation, a variable-length Markov model, called
an interpolated Markov model IMM), has been developed. The IMM method samples
the largest number of sequence patterns with k ranging from 1 to 8 (dimers to nine-
mers) and uses a weighting scheme, placing less weight on rare k-mers and more
weight on more frequent k-mers. The probability of the final model is the sum of
probabilities of all weighted k-mers. In other words, this method has more flexibility
in using Markov models depending on the amount of data available. Higher-order
models are used when there is a sufficient amount of data and lower-order models
are used when the amount of data is smaller.

It has been shown that the gene content and length distribution of prokaryotic
genes can be either typical or atypical. Typical genes are in the range of 100 to
500 amino acids with a nucleotide distribution typical of the organism. Atypical genes
are shorter or longer with different nucleotide statistics. These genes tend to escape
detection using the typical gene model. This means that, to make the algorithm capa-
ble of fully describing all genes in a genome, more than one Markov model is needed.
To combine different Markov models that represent typical and atypical nucleotide
distributions creates an HMM prediction algorithm. A simplified HMM for gene find-
ing is shown in Fig. 8.3.
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The following describes a number of HMM/IMM-based gene finding programs for
prokaryotic organisms.

GeneMark (http://opal.biology.gatech.edu/GeneMark/) is a suite of gene predic-
tion programs based on the fifth-order HMMs. The main program - GeneMark.hmm -
istrained on anumber of complete microbial genomes. If the sequence to be predicted
is from a nonlisted organism, the most closely related organism can be chosen as the
basis for computation. Another option for predicting genes from a new organism
is to use a self-trained program GeneMarkS as long as the user can provide at least
100 kbp of sequence on which to train the model. If the query sequence is shorter than
100 kbp, a GeneMark heuristic program can be used with some loss of accuracy. In
addition to predicting prokaryotic genes, GeneMark also has a variant for eukaryotic
gene prediction using HMM.

Glimmer (Gene Locator and Interpolated Markov Modeler, www.tigr.org/softlab/
glimmer/glimmer.html) is a UNIX program from TIGR that uses the IMM algorithm
to predict potential coding regions. The computation consists of two steps, namely
model building and gene prediction. The model building involves training by the
input sequence, which optimizes the parameters of the model. In an actual gene
prediction, the overlapping frames are “flagged” to alert the user for furtherinspection.
Glimmer also has a variant, GlimmerM, for eukaryotic gene prediction.

FGENESB (www.softberry.com/berry.phtml?topic=gfindb) is a web-based pro-
gram thatis alsobased on fifth-order HMMs for detecting coding regions. The program
is specifically trained for bacterial sequences. It uses the Vertibi algorithm (see Chap-
ter 6) to find an optimal match for the query sequence with the intrinsic model. A
linear discriminant analysis (LDA) is used to further distinguish coding signals from
noncoding signals.

These programs have been shown to be reasonably successful in finding genes in a
genome. The common problem is imprecise prediction of translation initiation sites
because of inefficient identification of ribosomal binding sites. This problem can be
remedied by identifying the ribosomal binding site associated with a start codon. A
number of algorithms have been developed solely for this purpose. RBSfinder is one
such algorithm.

RBSfinder (ftp:// ftp.tigr.org/pub/software/RBSfinder/) isa UNIX program that uses
the prediction output from Glimmer and searches for the Shine-Delgarno sequences
in the vicinity of predicted start sites. If a high-scoring site is found by the intrinsic
probabilistic model, a start codon is confirmed; otherwise the program moves to other
putative translation start sites and repeats the process.

Performance Evaluation

The accuracy of a prediction program can be evaluated using parameters such as sen-
sitivity and specificity. To describe the concept of sensitivity and specificity accurately,
four features are used: true positive (TP), which is a correctly predicted feature; false
positive (FP), which is an incorrectly predicted feature; false negative (FN), which is
a missed feature; and true negative (TN), which is the correctly predicted absence of
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Figure 8.4: Definition of four basic measures of gene prediction accuracy at the nucleotide level. Abbre-
viations: FN, false negative; TP, true positive; FP, false positive; TN, true negative.

a feature (Fig. 8.4). Using these four terms, sensitivity (Sn) and specificity (Sp) can be
described by the following formulas:

Sn = TP/(TP + EN) (Eq. 8.1)
Sp = TP/(TP + FP) (Eq. 8.2)

According to these formulas, sensitivity is the proportion of true signals predicted
among all possible true signals. It can be considered as the ability to include correct
predictions. In contrast, specificity is the proportion of true signals among all signals
that are predicted. It represents the ability to exclude incorrect predictions. A program
is considered accurate if both sensitivity and specificity are simultaneously high and
approach a value of 1. In a case in which sensitivity is high but specificity is low, the
program is said to have a tendency to overpredict. On the other hand, if the sensitivity
is low but specificity high, the program is too conservative and lacks predictive power.

Because neither sensitivity nor specificity alone can fully describe accuracy, it is
desirable to use a single value to summarize both of them. In the field of gene finding,
a single parameter known as the correlation coefficient (CC) is often used, which is

defined by the following formula:
TPeTN—-FPeFN
CC = (Eq. 8.3)
J(TP+FP)(TN+ FN)(FP+ TN)

The value of the CC provides an overall measure of accuracy, which ranges from —1

to +1, with +1 meaning always correct prediction and —1 meaning always incorrect
prediction. Table 8.1 shows a performance analysis using the Glimmer program as an
example.

GENE PREDICTION IN EUKARYOTES

Eukaryotic nuclear genomes are much larger than prokaryotic ones, with sizes ranging
from 10 Mbp to 670 Gbp (1 Gbp = 10° bp). They tend to have a very low gene density.
In humans, for instance, only 3% of the genome codes for genes, with about 1 gene per
100 kbp on average. The space between genes is often very large and rich in repetitive
sequences and transposable elements.

Most importantly, eukaryotic genomes are characterized by a mosaic organization
in which a gene is split into pieces (called exons) by intervening noncoding sequences
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TABLE 8.1. Performance Analysis of the Glimmer Program for Gene Prediction
of Three Genomes

Species GC (%) FN FP Sensitivity ~ Specificity
Campylobacter jejuni 30.5 10 19 99.3 98.7
Haemophilus influenzae 38.2 3 54 99.8 96.1
Helicobacter pylori 38.9 6 39 99.5 97.2

Note: The data sets were from three bacterial genomes (Aggarwal and Ramaswamy, 2002).
Abbreviations: FN, false negative; FP, false positive.

(called introns) (Fig. 8.5). The nascent transcript from a eukaryotic gene is modi-
fied in three different ways before becoming a mature mRNA for protein translation.
The first is capping at the 5’ end of the transcript, which involves methylation at
the initial residue of the RNA. The second event is splicing, which is the process of
removing introns and joining exons. The molecular basis of splicing is still not com-
pletely understood. What is known currently is that the splicing process involves a
large RNA-protein complex called spliceosome. The reaction requires intermolecu-
lar interactions between a pair of nucleotides at each end of an intron and the RNA
component of the spliceosome. To make the matter even more complex, some eukary-
otic genes can have their transcripts spliced and joined in different ways to generate
more than one transcript per gene. This is the phenomenon of alternative splicing. As
to be discussed in more detail in Chapter 16, alternative splicing is a major mecha-
nism for generating functional diversity in eukaryotic cells. The third modification is
polyadenylation, which is the addition of a stretch of As (~250) at the 3’ end of the RNA.
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Figure 8.5: Structure of a typical eukaryotic RNA as primary transcript from genomic DNA and as
mature RNA after posttranscriptional processing. Abbreviations: UTR, untranslated region; poly-A,
polyadenylation.
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This process is controlled by a poly-A signal, a conserved motif slightly downstream
of a coding region with a consensus CAATAAA(T/C).

The main issue in prediction of eukaryotic genes is the identification of exons,
introns, and splicing sites. From a computational point of view, it is a very complex
and challenging problem. Because of the presence of split gene structures, alternative
splicing, and very low gene densities, the difficulty of finding genes in such an envi-
ronment is likened to finding a needle in a haystack. The needle to be found actually
is broken into pieces and scattered in many different places. The job is to gather the
pieces in the haystack and reproduce the needle in the correct order.

The good news is that there are still some conserved sequence features in eukary-
otic genes that allow computational prediction. For example, the splice junctions of
introns and exons follow the GT-AG rule in which an intron at the 5’ splice junction
has a consensus motif of GTAAGT; and at the 3’ splice junction is a consensus motif of
(Py)12NCAG (see Fig. 8.5). Some statistical patterns useful for prokaryotic gene finding
can be applied to eukaryotic systems as well. For example, nucleotide compositions
and codon bias in coding regions of eukaryotes are different from those of the non-
coding regions. Hexamer frequencies in coding regions are also higher than in the
noncoding regions. Most vertebrate genes use ATG as the translation start codon and
have a uniquely conserved flanking sequence call a Kozak sequence (CCGCCATGG).
In addition, most of these genes have a high density of CG dinucleotides near the
transcription start site. This region is referred to as a CpG island (p refers to the phos-
phodiester bond connecting the two nucleotides), which helps to identify the tran-
scription initiation site of a eukaryotic gene. The poly-A signal can also help locate
the final coding sequence.

Gene Prediction Programs

To date, numerous computer programs have been developed for identifying eukary-
otic genes. They fall into all three categories of algorithms: ab initio based, homology
based, and consensus based. Most of these programs are organism specific because
training data sets for obtaining statistical parameters have to be derived from indi-
vidual organisms. Some of the algorithms are able to predict the most probable exons
as well as suboptimal exons providing information for possible alternative spliced
transcription products.

Ab Initio-Based Programs

The goal of the ab initio gene prediction programs is to discriminate exons from non-
coding sequences and subsequently join the exons together in the correct order. The
main difficulty is correct identification of exons. To predict exons, the algorithms rely
on two features, gene signals and gene content. Signals include gene start and stop
sites and putative splice sites, recognizable consensus sequences such as poly-A sites.
Gene content refers to coding statistics, which includes nonrandom nucleotide distri-
bution, amino acid distribution, synonymous codon usage, and hexamer frequencies.
Among these features, the hexamer frequencies appear to be most discriminative for
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Figure 8.6: Architecture of a neural network for eukaryotic gene prediction.

coding potentials. To derive an assessment for this feature, HMMs can be used, which
require proper training. In addition to HMMs, neural network-based algorithms are
also common in the gene prediction field. This begs the question of what is a neural
network algorithm. A brief introduction is given next.

Prediction Using Neural Networks. A neural network (or artificial neural network) is a
statistical model with a special architecture for pattern recognition and classification.
It is composed of a network of mathematical variables that resemble the biological
nervous system, with variables or nodes connected by weighted functions that are
analogous to synapses (Fig. 8.6). Another aspect of the model that makes it look like
a biological neural network is its ability to “learn” and then make predictions after
being trained. The network is able to process information and modify parameters of
the weight functions between variables during the training stage. Once it is trained, it
is able to make automatic predictions about the unknown.

In gene prediction, a neural network is constructed with multiple layers; the input,
output, and hidden layers. The input is the gene sequence with intron and exon
signals. The output is the probability of an exon structure. Between input and out-
put, there may be one or several hidden layers where the machine learning takes
place. The machine learning process starts by feeding the model with a sequence
of known gene structure. The gene structure information is separated into several
classes of features such as hexamer frequencies, splice sites, and GC composition
during training. The weight functions in the hidden layers are adjusted during this
process to recognize the nucleotide patterns and their relationship with known struc-
tures. When the algorithm predicts an unknown sequence after training, it applies
the same rules learned in training to look for patterns associated with the gene
structures.

The frequently used ab initio programs make use of neural networks, HMMs, and
discriminant analysis, which are described next.

GRAIL (Gene Recognition and Assembly Internet Link; http://compbio.ornl.gov/
public/tools/) is a web-based program that is based on a neural network algorithm.
The program is trained on several statistical features such as splice junctions, start



GENE PREDICTION IN EUKARYOTES

coding score

3" splice site

Figure 8.7: Comparison of two discriminant analysis, LDA and QDA. A coding features; ® noncoding
features.

and stop codons, poly-A sites, promoters, and CpG islands. The program scans the
query sequence with windows of variable lengths and scores for coding potentials
and finally produces an output that is the result of exon candidates. The program
is currently trained for human, mouse, Arabidopsis, Drosophila, and Escherichia coli
sequences.

Prediction Using Discriminant Analysis. Some gene prediction algorithms rely on
discriminant analysis, either LDA or quadratic discriminant analysis (QDA), to
improve accuracy. LDA works by plotting a two-dimensional graph of coding sig-
nals versus all potential 3’ splice site positions and drawing a diagonal line that best
separates coding signals from noncoding signals based on knowledge learned from
training data sets of known gene structures (Fig. 8.7). QDA draws a curved line based
on a quadratic function instead of drawing a straight line to separate coding and
noncoding features. This strategy is designed to be more flexible and provide a more
optimal separation between the data points.

FGENES (Find Genes; www.softberry.com/) is a web-based program that uses LDA
to determine whether a signal is an exon. In addition to FGENES, there are many
variants of the program. Some programs, such as FGENESH, make use of HMMs.
There are others, such as FGENESH_C, that are similarity based. Some programes,
such as FGENESH+, combine both ab initio and similarity-based approaches.

MZEF (Michael Zhang’s Exon Finder; http://argon.cshl.org/genefinder/) is a web-
based program that uses QDA for exon prediction. Despite the more complex math-
ematical functions, the expected increase in performance has not been obvious in
actual gene prediction.

Prediction Using HMMs. GENSCAN (http://genes.mit.edu/ GENSCAN.html) is aweb-
based program that makes predictions based on fifth-order HMMs. It combines
hexamer frequencies with coding signals (initiation codons, TATA box, cap site, poly-
A, etc.) in prediction. Putative exons are assigned a probability score (P) of being a
true exon. Only predictions with P > 0.5 are deemed reliable. This program is trained
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for sequences from vertebrates, Arabidopsis, and maize. It has been used extensively
in annotating the human genome (see Chapter 17).

HMMgene (www.cbs.dtu.dk/services/HMMgene) is also an HMM-based web pro-
gram. The unique feature of the program is that it uses a criterion called the conditional
maximum likelihood to discriminate coding from noncoding features. If a sequence
already has a subregion identified as coding region, which may be based on similarity
with cDNAs or proteins in a database, these regions are locked as coding regions. An
HMM prediction is subsequently made with a bias toward the locked region and is
extended from the locked region to predict the rest of the gene coding regions and
even neighboring genes. The program is in a way a hybrid algorithm that uses both
ab initio-based and homology-based criteria.

Homology-Based Programs

Homology-based programs are based on the fact that exon structures and exon
sequences of related species are highly conserved. When potential coding framesin a
query sequence are translated and used to align with closest protein homologs found
in databases, near perfectly matched regions can be used to reveal the exon bound-
aries in the query. This approach assumes that the database sequences are correct.
It is a reasonable assumption in light of the fact that many homologous sequences
to be compared with are derived from cDNA or expressed sequence tags (ESTs) of
the same species. With the support of experimental evidence, this method becomes
rather efficient in finding genes in an unknown genomic DNA.

The drawback of this approach is its reliance on the presence of homologs in
databases. If the homologs are not available in the database, the method cannot
be used. Novel genes in a new species cannot be discovered without matches in the
database. A number of publicly available programs that use this approach are dis-
cussed next.

GenomeScan (http://genes.mit.edu/genomescan.html) is a web-based server that
combines GENSCAN prediction results with BLASTX similarity searches. The user
provides genomic DNA and protein sequences from related species. The genomic
DNA is translated in all six frames to cover all possible exons. The translated exons
are then used to compare with the user-supplied protein sequences. Translated
genomic regions having high similarity at the protein level receive higher scores.
The same sequence is also predicted with a GENSCAN algorithm, which gives exons
probability scores. Final exons are assigned based on combined score information
from both analyses.

EST2Genome (http://bioweb.pasteur.fr/seqanal/interfaces/est2genome.html) is a
web-based program purely based on the sequence alignment approach to define
intron—exon boundaries. The program compares an EST (or cDNA) sequence with a
genomic DNA sequence containing the corresponding gene. The alignment is done
using a dynamic programming-based algorithm. One advantage of the approach is
the ability to find very small exons and alternatively spliced exons that are very difficult
to predict by any ab initio—type algorithms. Another advantage is that there is no need
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for model training, which provides much more flexibility for gene prediction. The
limitation is that EST or cDNA sequences often contain errors or even introns if the
transcripts are not completely spliced before reverse transcription.

SGP-1 (Syntenic Gene Prediction; http://195.37.47.237/sgp-1/) isa similarity-based
web program that aligns two genomic DNA sequences from closely related organ-
isms. The program translates all potential exons in each sequence and does pair-
wise alignment for the translated protein sequences using a dynamic programming
approach. The near-perfect matches at the protein level define coding regions. Simi-
lar to EST2Genome, there is no training needed. The limitation is the need for two
homologous sequences having similar genes with similar exon structures; if this con-
dition is not met, a gene escapes detection from one sequence when there is no
counterpart in another sequence.

TwinScan (http://genes.cs.wustl.edu/) is also a similarity-based gene-finding
server. It is similar to GenomeScan in that it uses GenScan to predict all possible
exons from the genomic sequence. The putative exons are used for BLAST searching
to find closest homologs. The putative exons and homologs from BLAST searching are
aligned to identify the best match. Only the closest match from a genome database is
used as a template for refining the previous exon selection and exon boundaries.

Consensus-Based Programs

Because different prediction programs have different levels of sensitivity and speci-
ficity, it makes sense to combine results of multiple programs based on consensus.
This idea has prompted development of consensus-based algorithms. These pro-
grams work by retaining common predictions agreed by most programs and removing
inconsistent predictions. Such an integrated approach may improve the specificity by
correcting the false positives and the problem of overprediction. However, since this
procedure punishes novel predictions, it may lead to lowered sensitivity and missed
predictions. Two examples of consensus-based programs are given next.

GeneComber (www.bioinformatics.ubc.ca/genecomber/index.php) is a web
server that combines HMMgene and GenScan prediction results. The consistency
of both prediction methods is calculated. If the two predictions match, the exon score
is reinforced. If not, exons are proposed based on separate threshold scores.

DIGIT (http://digit.gsc.riken.go.jp/cgi-bin/index.cgi) is another consensus-based
web server. It uses prediction from three ab initio programs - FGENESH, GENSCAN,
and HMMgene. It first compiles all putative exons from the three gene-finders and
assigns ORFs with associated scores. It then searches a set of exons with the highest
additive score under the reading frame constraints. During this process, a Bayesian
procedure and HMMs are used to infer scores and search the optimal exon set which
gives the final designation of gene structure.

Performance Evaluation
Because of extra layers of complexity for eukaryotic gene prediction, the sensitivity
and specificity have to be defined on the levels of nucleotides, exons, and entire genes.
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TABLE 8.2. Accuracy Comparisons for a Number of Ab Initio Gene
Prediction Programs at Nucleotide and Exon Levels

Nucleotide level Exon level

Sn Sp CC Sn Sp (Sn+Sp)/2 ME WE

FGENES 0.86  0.88 083 067 067 0.67 0.12  0.09
GeneMark 0.87 089 083 0.3 0.54 0.54 0.13 0.11
Genie 0.91 090 088 0.71 0.70  0.71 0.19 0.11
GenScan 0.95 0.90 091 0.70 070 0.70 0.08  0.09
HMMgene 0.93 0.93 0.91 076 0.77 0.76 0.12  0.07
Morgan 075 074 074 046 041 0.43 0.20 0.28
MZEF 0.70  0.73 0.66 058 0.59 0.59 032 023

Note: The data sets used were single mammalian gene sequences (performed by Sanja
Rogic, from www.cs.ubc.ca/~rogic/evaluation/tablesgen.html.

Abbreviations: Sn, sensitivity; Sp, specificity; CC, correlation coefficient; ME, missed
exons; WE, wrongly predicted exons.

The sensitivity at the exon and gene level is the proportion of correctly predicted exons
or genes amongactual exons or genes. The specificity at the twolevelsis the proportion
of correctly predicted exons or genes among all predictions made. For exons, instead
of using CC, an average of sensitivity and specificity at the exon level is used instead.
In addition, the proportion of missed exons and missed genes as well as wrongly
predicted exons and wrong genes, which have no overlaps with true exons or genes,
often have to be indicated.

By introducing these measures, the criteria for prediction accuracy evaluation
become more stringent (Table 8.2). For example, a correct exon requires all nucleotides
belonging to the exon to be predicted correctly. For a correctly predicted gene, all
nucleotides and all exons have to be predicted correctly. One single error at the
nucleotide level can negate the entire gene prediction. Consequently, the accuracy
values reported on the levels of exons and genes are much lower than those for
nucleotides.

When a new gene prediction program is published, the accuracy level is usually
reported. However, the reported performance should be treated with caution because
the accuracy is usually estimated based on particular datasets, which may have been
optimized for the program. The datasets used are also mainly composed of short
genomic sequences with simple gene structures. When the programs are used in
gene prediction for truly unknown eukaryotic genomic sequences, the accuracy can
become much lower. Because of the lack of unbiased and realistic datasets and objec-
tive comparison for eukaryotic gene prediction, it is difficult to know the true accuracy
of the current prediction tools.

At present, no single software program is able to produce consistent superior
results. Some programs may perform well on certain types of exons (e.g., internal
or single exons) but not others (e.g., initial and terminal exons). Some are sensitive to
the G-C content of the input sequences or to the lengths of introns and exons. Most
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programs make overpredictions when genes contain long introns. In sum, they all
suffer from the problem of generating a high number of false positives and false nega-
tives. This is especially true for ab initio-based algorithms. For complex genomes such
as the human genome, most popular programs can predict no more than 40% of the
genes exactly right. Drawing consensus from results by multiple prediction programs
may enhance performance to some extent.

SUMMARY

Computational prediction of genes is one of the most important steps of genome
sequence analysis. For prokaryotic genomes, which are characterized by high gene
density and noninterrupted genes, prediction of genes is easier than for eukaryotic
genomes. Current prokaryotic gene prediction algorithms, which are based on HMMs,
have achieved reasonably good accuracy. Many difficulties still persist for eukaryotic
gene prediction. The difficulty mainly results from the low gene density and split
gene structure of eukaryotic genomes. Current algorithms are either ab initio based,
homology based, or a combination of both. For ab initio-based eukaryotic gene pre-
diction, the HMM type of algorithm has overall better performance in differentiating
intron—-exon boundaries. The major limitation is the dependency on training of the
statistical models, which renders the method to be organism specific. The homology-
based algorithms in combination with HMMs may yield improved accuracy. The
method is limited by the availability of identifiable sequence homologs in databases.
The combined approach that integrates statistical and homology information may
generate further improved performance by detecting more genes and more exons
correctly. With rapid advances in computational techniques and understanding of the
splicing mechanism, it is hoped that reliable eukaryotic gene prediction can become
more feasible in the near future.
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CHAPTER NINE

Promoter and Regulatory Element Prediction

An issue related to gene prediction is promoter prediction. Promoters are DNA ele-
ments located in the vicinity of gene start sites (which should not be confused with the
translation start sites) and serve as binding sites for the gene transcription machinery,
consisting of RNA polymerases and transcription factors. Therefore, these DNA ele-
ments directly regulate gene expression. Promoters and regulatory elements are tradi-
tionally determined by experimental analysis. The process is extremely time consum-
ing and laborious. Computational prediction of promoters and regulatory elements
is especially promising because it has the potential to replace a great deal of extensive
experimental analysis.

However, computational identification of promoters and regulatory elements is
also a very difficult task, for several reasons. First, promoters and regulatory elements
are not clearly defined and are highly diverse. Each gene seems to have a unique com-
bination of sets of regulatory motifs that determine its unique temporal and spatial
expression. There is currently a lack of sufficient understanding of all the necessary
regulatory elements for transcription. Second, the promoters and regulatory elements
cannot be translated into protein sequences to increase the sensitivity for their detec-
tion. Third, promoter and regulatory sites to be predicted are normally short (six to
eight nucleotides) and can be found in essentially any sequence by random chance,
thus resulting in high rates of false positives associated with theoretical predictions.

Current solutions for providing preliminary identification of these elements are to
combine a multitude of features and use sophisticated algorithms that give either ab
initio-based predictions or predictions based on evolutionary information or experi-
mental data. These computational approaches are described in detail in this chapter
following a brief introduction to the structures of promoters and regulatory elements
in both prokaryotes and eukaryotes.

PROMOTER AND REGULATORY ELEMENTS IN PROKARYOTES

In bacteria, transcription is initiated by RNA polymerase, which is a multi-subunit
enzyme. The o subunit (e.g., 0 %) of the RNA polymerase is the protein that recognizes
specific sequences upstream of a gene and allows the rest of the enzyme complex
to bind. The upstream sequence where the o protein binds constitutes the promoter
sequence. This includes the sequence segments located 35 and 10 base pairs
(bp) upstream from the transcription start site. They are also referred to as the
—35 and —10 boxes. For the ¢° subunit in Escherichia coli, for example, the —35 box
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Figure 9.1: Schematic representation of elements involved in bacterial transcription initiation. RNA
polymerase binds to the promoter region, which initiates transcription through interaction with tran-
scription factors binding at different sites. Abbreviations: TSS, transcription start site; ORF, reading
frame; pol, polymerase; TF, transcription factor (see color plate section).

has a consensus sequence of TTGACA. The -10 box has a consensus of TATAAT.
The promoter sequence may determine the expression of one gene or a number
of linked genes downstream. In the latter case, the linked genes form an operon,
which is controlled by the promoter.

In addition to the RNA polymerase, there are also a number of DNA-binding pro-
teins that facilitate the process of transcription. These proteins are called transcription
factors. They bind to specific DNA sequences to either enhance or inhibit the func-
tion of the RNA polymerase. The specific DNA sequences to which the transcription
factors bind are referred to as regulatory elements. The regulatory elements may bind
in the vicinity of the promoter or bind to a site several hundred bases away from the
promoter. The reason that the regulatory proteins binding at long distance can still
exert their effect is because of the flexible structure of DNA, which is able to bend and
and exert its effect by bringing the transcription factors in close contact with the RNA
polymerase complex (Fig. 9.1).

PROMOTER AND REGULATORY ELEMENTS IN EUKARYOTES

In eukaryotes, gene expression is also regulated by a protein complex formed between
transcription factors and RNA polymerase. However, eukaryotic transcription has an
added layer of complexity in that there are three different types of RNA polymerase
complexes, namely RNA polymerases I, II, and III. Each polymerase transcribes dif-
ferent sets of genes. RNA polymerases I and III are responsible for the transcription of
ribosomal RNAs and tRNAs, respectively. RNA polymerase Il is exclusively responsible
for transcribing protein-encoding genes (or synthesis of mRNAs).

Unlike in prokaryotes, where genes often form an operon with a shared promoter,
each eukaryotic gene has its own promoter. The eukaryotic transcription machinery
also requires many more transcription factors than its prokaryotic counterpart to help
initiate transcription. Furthermore, eukaryotic RNA polymerase II does not directly
bind to the promoter, but relies on a dozen or more transcription factors to recog-
nize and bind to the promoter in a specific order before its own binding around the
promoter.
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TF site TATA box Inr ORF

Figure 9.2: Schematic diagram of an eukaryotic promoter with transcription factors and RNA poly-
merase bound to the promoter. Abbreviations: Inr, initiator sequence; ORF, reading frame; pol, poly-
merase; TF, transcription factor (see color plate section).

The core of many eukaryotic promoters is a so-called TATA box, located 30 bps
upstream from the transcription start site, having a consensus motif TATA(A/T)A
(A/T) (Fig. 9.2.). However, not all eukaryotic promoters contain the TATA box. Many
genes such as housekeeping genes do not have the TATA box in their promoters.
Still, the TATA box is often used as an indicator of the presence of a promoter. In
addition, many genes have a unique initiator sequence (Inr), which is a pyrimidine-
rich sequence with a consensus (C/T)(C/T)CA(C/T)(C/T). This site coincides with the
transcription start site. Most of the transcription factor binding sites are located within
500 bp upstream of the transcription start site. Some regulatory sites can be found
tens of thousands base pairs away from the gene start site. Occasionally, regulatory
elements are located downstream instead of upstream of the transcription start site.
Often, a cluster of transcription factor binding sites spread within a wide range to
work synergistically to enhance transcription initiation.

PREDICTION ALGORITHMS

Current algorithms for predicting promoters and regulatory elements can be catego-
rized as either ab initio based, which make de novo predictions by scanning individ-
ual sequences; or similarity based, which make predictions based on alignment of
homologous sequences; or expression profile based using profiles constructed from
a number of coexpressed gene sequences from the same organism. The similarity
type of prediction is also called phylogenetic footprinting. As mentioned, because
RNA polymerase II transcribes the eukaryotic mRNA genes, most algorithms are thus
focused on prediction of the RNA polymerase II promoter and associated regulatory
elements. Each of the categories is discussed in detail next.

Ab Initio-Based Algorithms

This type of algorithm predicts prokaryotic and eukaryotic promoters and regulatory
elements based on characteristic sequences patterns for promoters and regulatory
elements. Some ab initio programs are signal based, relying on characteristic promoter
sequences such as the TATA box, whereas others rely on content information such as
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hexamer frequencies. The advantage of the ab initio method is that the sequence can
be applied as such without having to obtain experimental information. The limitation
is the need for training, which makes the prediction programs species specific. In
addition, this type of method has a difficulty in discovering new, unknown motifs.

The conventional approach to detecting a promoter or regulatory site is through
matching a consensus sequence pattern represented by regular expressions (see
Chapter 7) or matching a position-specific scoring matrix (PSSM; see Chapter 6)
constructed from well-characterized binding sites. In either case, the consensus
sequences or the matrices are relatively short, covering 6 to 10 bases. As described
in Chapter 7, to determine whether a query sequence matches a weight matrix, the
sequence is scanned through the matrix. Scores of matches and mismatches at all
matrix positions are summed up to give a log odds score, which is then evaluated for
statistical significance. This simple approach, however, often has difficulty differen-
tiating true promoters from random sequence matches and generates high rates of
false positives as a result.

To better discriminate true motifs from background noise, a new generation of
algorithms has been developed that take into account the higher order correlation of
multiple subtle features by using discriminant functions, neural networks, or hidden
Markovmodels (HMMs) thatare capable ofincorporating more neighboring sequence
information. To further improve the specificity of prediction, some algorithms selec-
tively exclude coding regions and focus on the upstream regions (0.5 to 2.0 kb) only,
which are most likely to contain promoters. In that sense, promoter prediction and
gene prediction are coupled.

Prediction for Prokaryotes

One of the unique aspects in prokaryotic promoter prediction is the determination
of operon structures, because genes within an operon share a common promoter
located upstream of the first gene of the operon. Thus, operon prediction is the key
in prokaryotic promoter prediction. Once an operon structure is known, only the first
gene is predicted for the presence of a promoter and regulatory elements, whereas
other genes in the operon do not possess such DNA elements.

There are a number of methods available for prokaryotic operon prediction. The
most accurate is a set of simple rules developed by Wang et al. (2004). This method
relies on two kinds of information: gene orientation and intergenic distances of a pair
of genes of interest and conserved linkage of the genes based on comparative genomic
analysis. More about gene linkage patterns across genomes is introduced in Chapters
16 and 18. A scoring scheme is developed to assign operons with different levels of
confidence (Fig. 9.3). This method is claimed to produce accurate identification of an
operon structure, which in turn facilitates the promoter prediction.

This newly developed scoring approach is, however, notyet available as a computer
program. The prediction can be done manually using the rules, however. The few
dedicated programs for prokaryotic promoter prediction do not apply the Wang et al.
rule for historical reasons. The most frequently used program is BPROM.
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Figure 9.3: Prediction of operons in prokaryotes based on a scoring scheme developed by Wang et al.
(2004). This method states that, for two adjacent genes transcribed in the same orientation and without
a p-independent transcription termination signal in between, the score is assigned O if the intergenic dis-
tance is larger than 300 bp regardless of the gene linkage pattern or if the distance is larger than 100 bp
with the linkage not observed in other genomes. The score is assigned 1 if the intergenic distance is
larger than 60 bp with the linkage shared in less than five genomes. The score is assigned 2 if the
distance of the two genes is between 30 and 60 bp with the linkage shared in less than five genomes
or if the distance is between 50 and 300 bp with the linkage shared in between five to ten genomes.
The score is assigned 3 if the intergenic distance is less than 30 bp regardless of the conserved linkage
pattern or if the linkage is conserved in more than ten genomes regardless of the intergenic distance or
if the distance is less than 50 bp with the linkage shared in between five to ten genomes. A minimum
score of 2 is considered the threshold for assigning the two genes in one operon.

BPROM (www.softberry.com/berry.phtml?topic=bprom&group=programs &sub-
group=gfindb) is a web-based program for prediction of bacterial promoters. It uses
a linear discriminant function (see Chapter 8) combined with signal and content
information such as consensus promoter sequence and oligonucleotide composition
ofthe promoter sites. This program first predicts a given sequence for bacterial operon
structures by using an intergenic distance of 100 bp as basis for distinguishing genes
to be in an operon. This rule is more arbitrary than the Wang et al. rule, leading to high
rates of false positives. Once the operons are assigned, the program is able to predict
putative promoter sequences. Because most bacterial promoters are located within
200 bp of the protein coding region, the program is most effectively used when about

Threshold
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200 bp of upstream sequence of the first gene of an operon is supplied as input to
increase specificity.

FindTerm (http://sunl.softberry.com/berry.phtml?topic=findterm&group=pro
grams&subgroup=gfindb) is a program for searching bacterial p-independent
termination signals located at the end of operons. It is available from the same site
as FGENES and BPROM. The predictions are made based on matching of known
profiles of the termination signals combined with energy calculations for the derived
RNA secondary structures for the putative hairpin-loop structure (see Chapter 16).
The sequence region that scores best in features and energy terms is chosen as the
prediction. The information can sometimes be useful in defining an operon.

Prediction for Eukaryotes

The ab initio method for predicting eukaryotic promoters and regulatory elements
also relies on searching the input sequences for matching of consensus patterns
of known promoters and regulatory elements. The consensus patterns are derived
from experimentally determined DNA binding sites which are compiled into pro-
files and stored in a database for scanning an unknown sequence to find simi-
lar conserved patterns. However, this approach tends to generate very high rate
of false positives owing to nonspecific matches with the short sequence patterns.
Furthermore, because of the high variability of transcription factor binding sites,
the simple sequence matching often misses true promoter sites, creating false
negatives.

To increase the specificity of prediction, a unique feature of eukaryotic promoter
is employed, which is the presence of CpG islands. It is known that many vertebrate
genes are characterized by a high density of CG dinucleotides near the promoter
region overlapping the transcription start site (see Chapter 8). By identifying the CpG
islands, promoters can be traced on the immediate upstream region from the islands.
By combining CpGislands and other promoter signals, the accuracy of prediction can
be improved. Several programs have been developed based on the combined features
to predict the transcription start sites in particular.

As discussed, the eukaryotic transcription initiation requires cooperation of a large
number of transcription factors. Cooperativity means that the promoter regions tend
to contain a high density of protein-binding sites. Thus, finding a cluster of transcrip-
tion factor binding sites often enhances the probability of individual binding site
prediction.

Anumber of representatives of ab initio promoter prediction algorithms that incor-
porate the unique properties of eukaryotic promoters are introduced next.

CpGProD (http://pbil.univ-lyonl.fr/software/cpgprod.html) is a web-based pro-
gram that predicts promoters containing a high density of CpG islands in mam-
malian genomic sequences. It calculates moving averages of GC% and CpG ratios
(observed/expected) over a window of a certain size (usually 200 bp). When the val-
ues are above a certain threshold, the region is identified as a CpG island.
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Eponine (http://servlet.sanger.ac.uk:8080/eponine/) is a web-based program that
predicts transcription start sites based on a series of preconstructed PSSMs of several
regulatory sites, such as the TATA box, the CCAAT box, and CpG islands. The query
sequence from a mammalian source is scanned through the PSSMs. The sequence
stretches with high-score matchingto all the PSSMs, as well as matching of the spacing
between the elements, are declared transcription start sites. A Bayesian method is also
used in decision making.

Cluster-Buster (http://zlab.bu.edu/cluster-buster/cbust.html) is an HMM-based,
web-based program designed to find clusters of regulatory binding sites. It works by
detecting a region of high concentration of known transcription factor binding sites
and regulatory motifs. A query sequence is scanned with a window size of 1 kb for
putative regulatory motifs using motif HMMs. If multiple motifs are detected within a
window, a positive score is assigned to each motif found. The total score of the window
is the sum of each motif score subtracting a gap penalty, which is proportional to the
distances between motifs. If the score of a certain region is above a certain threshold,
it is predicted to contain a regulatory cluster.

FirstEF (First Exon Finder; http://rulai.cshl.org/tools/FirstEF/) is aweb-based pro-
gram that predicts promoters for human DNA. It integrates gene prediction with pro-
moter prediction. It uses quadratic discriminant functions (see Chapter 8) to calculate
the probabilities of the first exon of a gene and its boundary sites. A segment of DNA
(15 kb) upstream of the first exon is subsequently extracted for promoter prediction
on the basis of scores for CpG islands.

McPromoter (http://genes.mit.edu/McPromoter.html) is a web-based program
that uses a neural network to make promoter predictions. It has a unique promoter
model containing six scoring segments. The program scans a window of 300 bases for
the likelihoods of being in each of the coding, noncoding, and promoter regions. The
input for the neural network includes parameters for sequence physical properties,
such as DNA bendability, plus signals such as the TATA box, initiator box, and CpG
islands. The hidden layer combines all the features to derive an overall likelihood for
a site being a promoter. Another unique feature is that McPromoter does not require
that certain patterns must be present, but instead the combination of all features is
important. For instance, even if the TATA box score is very low, a promoter prediction
can still be made if the other features score highly. The program is currently trained
for Drosophila and human sequences.

TSSW (www.softberry.com/berry.phtml?topic=promoter) is a web program that
distinguishes promoter sequences from non-promoter sequences based on a combi-
nation of unique content information such as hexamer/trimer frequencies and sig-
nal information such the TATA box in the promoter region. The values are fed to a
linear discriminant function (see Chapter 8) to separate true motifs from background
noise.

CONPRO (http://stl.bioinformatics.med.umich.edu/conpro) is a web-based pro-
gram that uses a consensus method to identify promoter elements for human DNA.
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To use the program, a user supplies the transcript sequence of a gene (cDNA). The
program uses the information to search the human genome database for the position
of the gene. It then uses the GENSCAN program to predict 5 untranslated exons in the
upstream region. Once the 5'-most exon is located, a further upstream region (1.5 kb)
is used for promoter prediction, which relies on a combination of five promoter pre-
diction programs, TSSG, TSSW, NNPP, PROSCAN, and PromFD. For each program, the
highest score prediction is taken as the promoter in the region. If three predictions
fall within a 100-bp region, this is considered a consensus prediction. If no three-way
consensus is achieved, TSSG and PromFD predictions are taken. Because no cod-
ing sequence is used in prediction, specificity is improved relative to each individual
program.

Phylogenetic Footprinting-Based Method

It has been observed that promoter and regulatory elements from closely related
organisms such as human and mouse are highly conserved. The conservation is both
at the sequence level and at the level of organization of the elements. Therefore, it is
possible to obtain such promoter sequences for a particular gene through compar-
ative analysis. The identification of conserved noncoding DNA elements that serve
crucial functional roles is referred to as phylogenetic footprinting; the elements are
called phylogenetic footprints. This type of method can apply to both prokaryotic and
eukaryotic sequences.

The selection of organisms for comparison is an important consideration in this
type of analysis. If the pair of organisms selected are too closely related, such as
human and chimpanzee, the sequence difference between them may not be sufficient
to filter out functional elements. On the other hand, if the organisms’ evolutionary
distances are too long, such as between human and fish, long evolutionary divergence
may render promoter and other elements undetectable. One example of appropriate
selection of species is the use of human and mouse sequences, which often yields
informative results.

Another caveat of phylogenetic footprinting is to extract noncoding sequences
upstream of corresponding genes and focus the comparison to this region only, which
helps to prevent false positives. The predictive value of this method also depends on
the quality of the subsequent sequence alignments. The advanced alignment pro-
grams introduced in Chapter 5 can be used. Even more sophisticated expectation
maximization (EM) and Gibbs sampling algorithms can be used in detecting weakly
conserved motifs.

There are software programs specifically designed to take advantage of the pre-
sence of phylogenetic footprints to make comparisons among a number of related
species to identify putative transcription factor binding sites. The advantage in imple-
menting the algorithms is that no training of the probabilistic models is required;
hence, itismore broadlyapplicable. Thereis also a potential to discover newregulatory
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motifs shared among organisms. The obvious limitation is the constraint on the evo-
lutionary distances among the orthologous sequences.

ConSite (http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite) is a web server that
finds putative promoter elements by comparing two orthologous sequences. The
user provides two individual sequences which are aligned by ConSite using a global
alignment algorithm. Alternatively, the program accepts precomputed alignment.
Conserved regions are identified by calculating identity scores, which are then used
to compare against a motif database of regulatory sites (TRANSFAC). High-scoring
sequence segments upstream of genes are returned as putative regulatory elements.

rVISTA (http://rvista.dcode.org/) is a similar cross-species comparison tool for
promoter recognition. The program uses two orthologous sequences as input and first
identifies all putative regulatory motifs based on TRANSFAC matches. It then aligns
the two sequences using a local alignment strategy. The motifs that have the highest
percent identity in the pairwise comparison are presented graphically as regulatory
elements.

PromH(W) (www.softberry.com/berry.phtml?topic=promhw&group=programs
&subgroup=promoter) is a web-based program that predicts regulatory sites by pair-
wise sequence comparison. The user supplies two orthologous sequences, which are
aligned by the program to identify conserved regions. These regions are subsequently
predicted for RNA polymerase II promoter motifs in both sequences using the TSSW
program. Only the conserved regions having high scored promoter motifs are returned
as results.

Bayes aligner (www.bioinfo.rpi.edu/applications/bayesian/bayes/bayes_align12.
pl) is a web-based footprinting program. It aligns two sequences using a Bayesian
algorithm whichis a unique sequence alignment method. Instead of returning a single
best alignment, the method generates a distribution of a large number of alignments
using a full range of scoring matrices and gap penalties. Posterior probability values,
which are considered estimates of the true alignment, are calculated for each align-
ment. By studying the distribution, the alignment that has the highestlikelihood score,
which is in the extreme margin of the distribution, is chosen. Based on this unique
alignment searching algorithm, weakly conserved motifs can be identified with high
probability scores.

FootPrinter (http://abstract.cs.washington.edu/~blanchem/FootPrinterWeb/Foot
PrinterInput2.pl) isaweb-based program for phylogenetic footprinting using multiple
input sequences. The user also needs to provide a phylogenetic tree that defines the
evolutionary relationship of the input sequences. (One may obtain the tree informa-
tion from the “Tree of Life” web site [http://tolweb.org/tree/phylogeny.html], which
archives known phylogenetic trees using ribosomal RNAs as gene markers.) The
program performs multiple alignment of the input sequences to identify conserved
motifs. The motifs from organisms spanning over the widest evolutionary distances
are identified as promoter or regulatory motifs. In other words, it identifies unusually
well-conserved motifs across a set of orthologous sequences.
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Expression Profiling-Based Method

Recent advances in high throughput transcription profiling analysis, such as DNA
microarray analysis (see Chapter 18) have allowed simultaneous monitoring of ex-
pression of hundreds or thousands of genes. Genes with similar expression profiles
are considered coexpressed, which can be identified through a clustering approach
(see Chapter 18). The basis for coexpressionis thought to be due to common promoters
and regulatory elements. If this assumption is valid, the upstream sequences of the
coexpressed genes can be aligned together to reveal the common regulatory elements
recognizable by specific transcription factors.

This approach is essentially experimentally based and appears to be robust for
finding transcription factor binding sites. The problem is that the regulatory elements
of coexpressed genes are usually short and weak. Their patterns are difficult to dis-
cern using simple multiple sequence alignment approaches. Therefore, an advanced
alignment-independent profile construction method such as EM and Gibbs motif
sampling (see Chapter 7) is often used in finding the subtle sequence motifs. As a
reminder, EM is a motif extraction algorithm that finds motifs by repeatedly opti-
mizing a PSSM through comparison with single sequences. Gibbs sampling uses a
similar matrix optimization approach but samples motifs with a more flexible strat-
egy and may have a higher likelihood of finding the optimal pattern. Through matrix
optimization, subtly conserved motifs can be detected from the background noise.

One of the drawbacks of this approach is that determination of the set of coex-
pressed genes depends on the clustering approaches, which are known to be error
prone. That means that the quality of the input data may be questionable when func-
tionally unrelated genes are often clustered together. In addition, the assumption that
coexpressed genes have common regulatory elements is not always valid. Many coex-
pressed genes have been found to belong to parallel signaling pathways that are under
the control of distinct regulatory mechanisms. Therefore, caution should always be
exercised when using this method.

The followinglists a small selection of motif finders using the EM or Gibbs sampling
approach.

MEME (http://meme.sdsc.edu/meme/website/meme-intro.html) is the EM-
based program introduced in Chapter 7 for protein motif discovery but can also be
used in DNA motif finding. The use is similar to that for protein sequences.

AlignACE (http://atlas.med.harvard.edu/cgi-bin/alignace.pl) is a web-based pro-
gram using the Gibbs sampling algorithm to find common motifs. The program is
optimized for DNA sequence motif extraction. It automatically determines the opti-
mal number and lengths of motifs from the input sequences.

Melina (Motif Elucidator In Nucleotide sequence Assembly; http://melina.hgc.jp/)
is a web-based program that runs four individual motif-finding algorithms - MEME,
GIBBS sampling, CONSENSUS, and Coresearch — simultaneously. The user compares
the results to determine the consensus of motifs predicted by all four prediction
methods.



SUMMARY

INCLUSive (www.esat.kuleuven.ac.be/~dna/Biol/Software.html) is a suite of web-
based tools designed to streamline the process of microarray data collection and
sequence motif detection. The pipeline processes microarray data, automatically
clusters genes according expression patterns, retrieves upstream sequences of coreg-
ulated genes and detects motifs using a Gibbs sampling approach (Motif Sampler). To
further avoid the problem of getting stuck in a local optimum (see Chapter 7), each
sequence dataset is submitted to Motif Sampler ten times. The results may vary in
each run. The results from the ten runs are compiled to derive consensus motifs.

PhyloCon (Phylogenetic Consensus; http://ural.wustl.edu/~twang/PhyloCon/) is
a UNIX program that combines phylogenetic footprinting with gene expression profil-
ing analysis to identify regulatory motifs. This approach takes advantage of conserva-
tion among orthologous genes as well as conservation among coregulated genes. For
each individual gene in a set of coregulated genes, multiple sequence homologs are
aligned to derive profiles. Based on the gene expression data, profiles between coreg-
ulated genes are further compared to identify functionally conserved motifs among
evolutionary conserved motifs. In other words, regulatory motifs are defined from
both sets of analysis. This approach integrates the “single gene-multiple species” and
“single species—-multiple genes” methods and has been found to reduce false positives
compared to either phylogenetic footprinting or simple motif extraction approaches
alone.

SUMMARY

Identification of promoter and regulatory elements remains a great bioinformatic
challenge. The existing algorithms can be classified as ab initio based, phylogenetic
footprinting based, and expression profiling based. The true accuracy of the ab initio
programs is still difficult to assess because of the lack of common benchmarks. The
reported overall sensitivity and specificity levels are currently below 0.5 for most pro-
grams. For a prediction method to be acceptable, both accuracy indicators have to
be consistently above 0.9 to be reliable enough for routine prediction purposes. That
means that the algorithmic development in this field still has a long road ahead. To
achieve better results, combining multiple prediction programs seems to be helpful
in some circumstances. The comparative approach using phylogenetic footprinting
is able to take a completely different approach in identifying promoter elements. The
resulting prediction can be used to check against the ab initio prediction. Finally, the
experimental based approach using gene expression data offers another route to find-
ing regulatory motifs. Because the DNA motifs are often subtle, EM and Gibbs motif
sampling algorithms are necessary for this purpose. Alternatively, the EM and Gibbs
sampling programs can be used for phylogenetic footprinting if the input sequences
are from different organisms. In essence, all three approaches are interrelated. The
results from all three types of methods can be combined to further increase the relia-
bility of the predictions.
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