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CHAPTER TWELVE

Protein Structure Basics

Starting from this chapter and continuing through the next three chapters, we intro-
duce the basics of protein structural bioinformatics. Proteins perform most essential
biological and chemical functions in a cell. They play important roles in structural,
enzymatic, transport, and regulatory functions. The protein functions are strictly
determined by their structures. Therefore, protein structural bioinformatics is an
essential element of bioinformatics. This chapter covers some basics of protein struc-
tures and associated databases, preparing thereader for discussions of more advanced
topics of protein structural bioinformatics.

AMINO ACIDS

The building blocks of proteins are twenty naturally occurring amino acids, small
molecules that contain a free amino group (NH;) and a free carboxyl group (COOH).
Both of these groups are linked to a central carbon (C«), which is attached to a hydro-
gen and a side chain group (R) (Fig. 12.1). Amino acids differ only by the side chain R
group. The chemical reactivities of the R groups determine the specific properties of
the amino acids.

Amino acids can be grouped into several categories based on the chemical and
physical properties of the side chains, such as size and affinity for water. According to
these properties, the side chain groups can be divided into small, large, hydrophobic,
and hydrophilic categories. Within the hydrophobic set of amino acids, they can be
further divided into aliphatic and aromatic. Aliphatic side chains are linear hydro-
carbon chains and aromatic side chains are cyclic rings. Within the hydrophilic set,
amino acids can be subdivided into polar and charged. Charged amino acids can be
either positively charged (basic) or negatively charged (acidic). Each of the twenty
amino acids, their abbreviations, and main functional features once incorporated
into a protein are listed in Table 12.1.

Of particular interest within the twenty amino acids are glycine and proline.
Glycine, the smallest amino acid, has a hydrogen atom as the R group. It can there-
fore adopt more flexible conformations that are not possible for other amino acids.
Proline is on the other extreme of flexibility. Its side chain forms a bond with its
own backbone amino group, causing it to be cyclic. The cyclic conformation makes
it very rigid, unable to occupy many of the main chain conformations adopted by
other amino acids. In addition, certain amino acids are subject to modifications after
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TABLE 12.1. Twenty Standard Amino Acids Grouped by Their Common Side-Chain
Features

Three- and
Amino Acid One-Letter
Amino Acid Group Name Code Main Functional Features
Small and nonpolar Glycine Gly, G Nonreactive in chemical reactions;
Alanine Ala, A Pro and Gly disrupt regular
Proline Pro, P secondary structures
Small and polar Cysteine Cys, C Serving as posttranslational
Serine Ser, S modification sites and
Threonine Thr, T participating in active sites of
enzymes or binding metal
Large and polar Glutamine Gln, Q Participating in hydrogen bonding
Asparagine Asn, N or in enzyme active sites
Large and polar Arginine Arg, R Found in the surface of globular
(basic) Lysine Lys, K proteins providing salt bridges;
Histidine His, H His participates in enzyme
catalysis or metal binding
Large and polar Glutamate Glu, E Found in the surface of globular
(acidic) Aspartate Asp, D proteins providing salt bridges
Large and nonpolar  Isoleucine Ile, I Nonreactive in chemical reactions;
(aliphatic) Leucine Leu, L participating in hydrophobic
Methionine Met, M interactions
Valine Val, V
Large and nonpolar ~ Phenylalanine Phe, F Providing sites for aromatic
(aromatic) Tyrosine Tyr, Y packing interactions; Tyr and Trp
Tryptophan Trp, W are weakly polar and can serve as
sites for phosphorylation and
hydrogen bonding

Note: Each amino acid is listed with its full name, three- and one-letter abbreviations, and main
functional roles when serving as amino acid residues in a protein. Properties of some amino acid
groups overlap.

a protein is translated in a cell. This is called posttranslational modification, and is
discussed in more detail in Chapter 19.

PEPTIDE FORMATION

The peptide formation involes two amino acids covalently joined together between
the carboxyl group of one amino acid and the amino group of another (Fig. 12.2). This

H O carboxyl group
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# |
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Figure 12.1: General structure of an amino acid. The main chain atoms are highlighted. The R group
can be any of the twenty amino acid side chains.
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Figure 12.2: Condensation reaction between the carboxyl group of one amino acid and the amino group
of another. The hydroxyl group of the carboxyl group and a hydrogen of the amino group are lost to
give rise to a water molecule and a dipeptide.

reaction is a condensation reaction involving removal of elements of water from the
two molecules. The resulting product is called a dipeptide. The newly formed covalent
bond connecting the two amino acids is called a peptide bond. Once an amino acid is
incorporated into a peptide, it becomes an amino acid residue. Multiple amino acids
can be joined together to form a longer chain of amino acid polymer.

A linear polymer of more than fifty amino acid residues is referred to as a polypep-
tide. A polypeptide, also called a protein, has a well-defined three-dimensional
arrangement. On the other hand, a polymer with fewer than fifty residues is usually
called a peptide without a well-defined three-dimensional structure. The residues in
a peptide or polypeptide are numbered beginning with the residue containing the
amino group, referred to as the N-terminus, and ending with the residue containing
the carboxyl group, known as the C-terminus (see Fig. 12.2). The actual sequence of
amino acid residues in a polypeptide determines its ultimate structure and function.

The atoms involved in forming the peptide bond are referred to as the backbone
atoms. They are the nitrogen of the amino group, the « carbon to which the side chain
is attached and carbon of the carbonyl group.

DIHEDRAL ANGLES

A peptide bond is actually a partial double bond owing to shared electrons between
O=C-N atoms. The rigid double bond structure forces atoms associated with the
peptide bond to lie in the same plane, called the peptide plane. Because of the planar
nature of the peptide bond and the size of the R groups, there are considerable restric-
tions on the rotational freedom by the two bonded pairs of atoms around the peptide
bond. The angle of rotation about the bond is referred to as the dihedral angle (also
called the tortional angle).

For a peptide unit, the atoms linked to the peptide bond can be moved to a certain
extent by the rotation of two bonds flanking the peptide bond. This is measured by
two dihedral angles (Fig. 12.3). One is the dihedral angle along the N-Co bond, which
is defined as phi (¢); and the other is the angle along the Coe—C bond, which is called
psi (). Various combinations of ¢ and ¢ angles allow the proteins to fold in many
different ways.

Ramachandran Plot

As mentioned, the rotation of ¢ and v is not completely free because of the planar
nature of the peptide bond and the steric hindrance from the side chain R group.
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Figure 12.3: Definition of dihedral angles of ¢ and ). Six atoms around a peptide bond forming two
peptide planes are colored in red. The ¢ angle is the rotation about the N-Ca bond, which is measured
by the angle between a virtual plane formed by the C-N-Ca and the virtual plane by N-Ca-C (C in
green). The ¢ angle is the rotation about the Ca-C bond, which is measured by the angle between a
virtual plane formed by the N-Ca-C (N in green) and the virtual plane by Ca—C-N (N in red) (see color
plate section).
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Consequently, there is only a limited range of peptide conformation. When ¢ and
angles of amino acids of a particular protein are plotted against each other, the result-
ing diagram is called a Ramachandran plot. This plot maps the entire conformational
space of a peptide and shows sterically allowed and disallowed regions (Fig. 12.4). It
can be very useful in evaluating the quality of protein models.

HIERARCHY

Protein structures can be organized into four levels of hierarchies with increasing
complexity. These levels are primary structure, secondary structure, tertiary structure,
and quaternary structure. A linear amino acid sequence of a protein is the primary
structure. This is the simplest level with amino acid residues linked together through

+180
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helix
(very rare)
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right handed disallowed
helix (common) region
-180
-180 0 +180

¢

Figure 12.4: A Ramachandran plot with allowed values of ¢ and ) in shaded areas. Regions favored
by a-helices and 3-strands (to be explained) are indicated.
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peptide bonds. The next level up is the secondary structure, defined as the local con-
formation of a peptide chain. The secondary structure is characterized by highly reg-
ular and repeated arrangement of amino acid residues stabilized by hydrogen bonds
between main chain atoms of the C=0 group and the NH group of different residues.
The level above the secondary structure is the tertiary structure, which is the three-
dimensional arrangement of various secondary structural elements and connecting
regions. The tertiary structure can be described as the complete three-dimensional
assembly of all amino acids of a single polypeptide chain. Beyond the tertiary struc-
ture is the quaternary structure, which refers to the association of several polypeptide
chains into a protein complex, which is maintained by noncovalent interactions. In
such a complex, individual polypeptide chains are called monomersor subunits. Inter-
mediate between secondary and tertiary structures, a level of supersecondary struc-
tureis often used, which is defined as two or three secondary structural elements form-
ingaunique functional domain, arecurring structural pattern conserved in evolution.

Stabilizing Forces

Protein structures from secondary to quaternary are maintained by noncovalent
forces. These include electrostatic interactions, van der Waals forces, and hydrogen
bonding. Electrostatic interactions are a significant stabilizing force in a protein struc-
ture. They occur when excess negative charges in one region are neutralized by positive
charges in another region. The result is the formation of salt bridges between oppo-
sitely charged residues. The electrostatic interactions can function within a relatively
long range (15 A).

Hydrogen bonds are a particular type of electrostatic interactions similar to dipole—
dipole interactions involving hydrogen from one residue and oxygen from another.
Hydrogen bonds can occur between main chain atoms as well as side chain atoms.
Hydrogen from the hydrogen bond donor group such as the N-H group is slightly
positively charged, whereas oxygen from the hydrogen bond acceptor group such as
the C=0 group is slightly negatively charged. When they come within a close distance
(<3 A), a partial bond is formed between them, resulting in a hydrogen bond. Hydro-
gen bonding patterns are a dominant factor in determining different types of protein
secondary structures.

Van der Waals forces also contribute to the overall protein stability. These forces
are instantaneous interactions between atoms when they become transient dipoles.
A transient dipole can induce another transient dipole nearby. The dipoles of the two
atoms can be reversed a moment later. The oscillating dipoles result in an attractive
force. The van der Waals interactions are weaker than electrostatic and hydrogen
bonds and thus only have a secondary effect on the protein structure.

In addition to these common stabilizing forces, disulfide bridges, which are cova-
lent bonds between the sulfur atoms of the cysteine residue, are also important in
maintaining some protein structures. For certain types of proteins that contain metal
ions as prosthetic groups, noncovalent interactions between amino acid residues and
the metal ions may play an important structural role.
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Figure 12.5: A ribbon diagram of an a-helix with main chain atoms (as grey balls) shown. Hydrogen
bonds between the carbonyl oxygen (red) and the amino hydrogen (green) of two residues are shown
in yellow dashed lines (see color plate section).

SECONDARY STRUCTURES

As mentioned, local structures of a protein with regular conformations are known
as secondary structures. They are stabilized by hydrogen bonds formed between
carbonyl oxygen and amino hydrogen of different amino acids. Chief elements of
secondary structures are «-helices and B-sheets.

o-Helices

An «-helix has a main chain backbone conformation that resembles a corkscrew.
Nearly all known «-helices are right handed, exhibiting a rightward spiral form. In
such a helix, there are 3.6 amino acids per helical turn. The structure is stabilized by
hydrogen bonds formed between the main chain atoms of residues i and i + 4. The
hydrogen bonds are nearly parallel with the helical axis (Fig. 12.5). The average ¢ and
Y angles are 60° and 45°, respectively, and are distributed in a narrowly defined region
in the lower left region of a Ramachandran plot (see Fig. 12.4). Hydrophobic residues
of the helix tend to face inside and hydrophilic residues of the helix face outside. Thus,
every third residue along the helix tends to be a hydrophobic residue. Ala, GIn, Leu,
and Met are commonly found in an «-helix, but not Pro, Gly, and Tyr. These rules are
useful in guiding the prediction of protein secondary structures.
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Figure 12.6: Side view of a parallel 3-sheet. Hydrogen bonds between the carbonyl oxygen (red) and
the amino hydrogen (green) of adjacent 3-strands are shown in yellow dashed lines. R groups are
shown as big balls in cyan and are positioned alternately on opposite sides of 3-strands (see color plate
section).

B3-Sheets

A B-sheet is a fully extended configuration built up from several spatially adjacent
regions of a polypeptide chain. Each region involved in forming the g-sheet is a
B-strand. The g-strand conformation is pleated with main chain backbone zigzagging
and side chains positioned alternately on opposite sides of the sheet. 5-Strands are sta-
bilized by hydrogen bonds between residues of adjacent strands (Fig. 12.6). 8-strands
near the surface of the protein tend to show an alternating pattern of hydrophobic
and hydrophilic regions, whereas strands buried at the core of a protein are nearly all
hydrophobic.

The B-strands can run in the same direction to form a parallel sheet or can
run every other chain in reverse orientation to form an antiparallel sheet, or a
mixture of both. The hydrogen bonding patterns are different in each configura-
tions. The ¢ and ¢ angles are also widely distributed in the upper left region in
a Ramachandran plot (see Fig. 12.4). Because of the long-range nature of residues
involved in this type of conformation, it is more difficult to predict g-sheets than «-
helices.

Coils and Loops

There are also local structures that do not belong to regular secondary structures
(x-helices and gB-strands). The irregular structures are coils or loops. The loops are
often characterized by sharp turns or hairpin-like structures. If the connecting regions
are completely irregular, they belong to random coils. Residues in the loop or coil
regions tend to be charged and polar and located on the surface of the protein struc-
ture. They are often the evolutionarily variable regions where mutations, deletions,



180

PROTEIN STRUCTURE BASICS

Figure 12.7: An a-helical coiled coil found in tropomyosin showing two helices wound around to form
a helical bundle.

and insertions frequently occur. They can be functionally significant because these
locations are often the active sites of proteins.

Coiled Coils

Coiled coils are a special type of supersecondary structure characterized by a bun-
dle of two or more «-helices wrapping around each other (Fig. 12.7). The helices
forming coiled coils have a unique pattern of hydrophobicity, which repeats every
seven residues (five hydrophobic and two hydrophilic). More details on coiled coils
and their structure prediction are discussed in Chapter 14.

TERTIARY STRUCTURES

The overall packing and arrangement of secondary structures form the tertiary struc-
ture of a protein. The tertiary structure can come in various forms but is generally clas-
sified as either globular or membrane proteins. The former exists in solvents through
hydrophilic interactions with solvent molecules; the latter exists in membrane lipids
and is stabilized through hydrophobic interactions with the lipid molecules.

Globular Proteins

Globular proteins are usually soluble and surrounded by water molecules. They tend
to have an overall compact structure of spherical shape with polar or hydrophilic
residues on the surface and hydrophobic residues in the core. Such an arrangement
is energetically favorable because it minimizes contacts with water by hydropho-
bic residues in the core and maximizes interactions with water by surface polar and
charged residues. Common examples of globular proteins are enzymes, myoglobins,
cytokines, and protein hormones.

Integral Membrane Proteins

Membrane proteins exist in lipid bilayers of cell membranes. Because they are sur-
rounded by lipids, the exterior of the proteins spanning the membrane must be
very hydrophobic to be stable. Most typical transmembrane segments are «-helices.
Occasionally, for some bacterial periplasmic membrane proteins, they are composed
of B-strands. The loops connecting these segments sometimes lie in the aqueous
phase, in which they can be entirely hydrophilic. Sometimes, they lie in the interface
between the lipid and aqueous phases and are amphipathic in nature (containing
polar residues facing the aqueous side and hydrophobic residues towards the lipid
side). The amphipathic residues can also form helices which have a periodicity of
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three or four residues. Common examples of membrane proteins are rhodopsins,
cytochrome c oxidase, and ion channel proteins.

DETERMINATION OF PROTEIN THREE-DIMENSIONAL STRUCTURE

Protein three-dimensional structures are obtained using two popular experimen-
tal techniques, x-ray crystallography and nuclear magnetic resonance (NMR) spec-
troscopy. The experimental procedures and relative merits of each method are
discussed next.

X-ray Crystallography

In x-ray protein crystallography, proteins need to be grown into large crystals in which
their positions are fixed in a repeated, ordered fashion. The protein crystals are then
illuminated with anintense x-raybeam. The x-rays are deflected by the electron clouds
surrounding the atoms in the crystal producing a regular pattern of diffraction. The
diffraction pattern is composed of thousands of tiny spots recorded on a x-ray film.
The diffraction pattern can be converted into an electron density map using a math-
ematical procedure known as Fourier transform. To interpret a three-dimensional
structure from two-dimensional electron density maps requires solving the phases
in the diffraction data. The phases refer to the relative timing of different diffraction
waves hitting the detector. Knowing the phases can help to determine the relative
positions of atoms in a crystal.

Phase solving can be carried out by two methods, molecular replacement, and mul-
tiple isomorphous replacement. Molecular replacement uses a homologous protein
structure as template to derive an initial estimate of the phases. Multiple isomorphous
replacement derives phases by comparing electron intensity changes in protein crys-
tals containing heavy metal atoms and the ones without heavy metal atoms. The heavy
atoms diffract x-rays with unusual intensities, which can serve as a marker for relative
positions of atoms.

Once the phases are available, protein structures can be solved by modeling with
amino acid residues that best fit the electron density map. The quality of the final
model is measured by an R factor, which indicates how well the model reproduces the
experimental electron intensity data. The R factor is expressed as a percentage of dif-
ference between theoretically reproduced diffraction data and experimentally deter-
mined diffraction data. R values can range from 0.0, which is complete agreement, to
0.59, which is complete disagreement. A major limitation of x-ray crystallography is
whether suitable crystals of proteins of interest can be obtained.

Nuclear Magnetic Resonance Spectroscopy

NMR spectroscopy detects spinning patterns of atomic nuclei in a magnetic field.
Protein samples are labeled with radioisotopes such as '3C and '°N. A radiofrequency
radiation is used to induce transitions between nuclear spin states in a magnetic field.
Interactions between spinning isotope pairs produce radio signal peaks that correlate
with the distances between them. By interpreting the signals observed using NMR,
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proximity between atoms can be determined. Knowledge of distances between all
labeled atoms in a protein allows a protein model to be built that satisfies all the
constraints. NMR determines protein structures in solution, which has the advantage
of not requiring the crystallization process. However, the proteins in solution are
mobile and vibrating, reflecting the dynamic behavior of proteins. For that reason,
usually a number of slightly different models (twenty to forty) have to be constructed
that satisfy all the NMR distance measurements. The NMR technique obviates the
need of growing protein crystals and can solve structures relatively more quickly than
x-ray crystallography. The major problem associated with using NMR is the current
limit of protein size (<200 residues) that can be determined. Another problem is the
requirement of heavy instrumentation.

PROTEIN STRUCTURE DATABASE

Once the structure of a particular protein is solved, a table of (x, y, z) coordinates
representing the spatial position of each atom of the structure is created. The coor-
dinate information is required to be deposited in the Protein Data Bank (PDB,
www.rcsb.org/pdb/) as a condition of publication of a journal paper. PDB is a world-
wide central repository of structural information of biological macromolecules and
is currently managed by the Research Collaboratory for Structural Bioinformatics
(RCSB). In addition, the PDB website provides a number of services for structure sub-
mission and data searching and retrieval. Through its web interface, called Structure
Explorer, a user is able to read the summary information of a protein structure, view
and download structure coordinate files, search for structure neighbors of a particular
protein or access related research papers through links to the NCBI PubMed database.

There are currently more than 30,000 entries in the database with the number
increasingata dramatic rate in recent years owing to large-scale structural proteomics
projects being carried out. Most of the database entries are structures of proteins. How-
ever, a small portion of the database is composed of nucleic acids, carbohydrates, and
theoretical models. Most protein structures are determined by x-ray crystallography
and a smaller number by NMR.

Although the total number of entries in PDB is large, most of the protein structures
are redundant, namely, they are structures of the same protein determined under
different conditions, at different resolutions, or associated with different ligands or
with single residue mutations. Sometimes, structures from very closely related pro-
teins are determined and deposited in PDB. A small number of well-studied proteins
such as hemoglobins and myoglobins have hundreds of entries. Excluding the redun-
dant entries, there are approximately 3,000 unique protein structures represented in
the database. Among the unique protein structures, there are only a limited number
of protein folds available (800) compared to ~1,000,000 unique protein sequences
already known, suggesting that the protein structures are much more conserved. A
protein fold is a particular topological arrangement of helices, strands, and loops.
Protein classification by folds is discussed in Chapter 13.
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HEADER LYASE (CARBON-CARBON) 03-JUL-95 1DNP
TITLE STRUCTURE OF DEOXYRIBODIPYRIMIDINE PHOTOLYASE
structure — eer waw
annotation SOURCE 2 ORGANISM SCIENTIFIC: ESCHERICHIA COLI
KEYWDS DMA REPAIR, ELECTRON TRANSFER, EXCITATION ENERGY TRANSFER,
KEEYWDS 2 LYASE, CARBON-CARBON
ATOM 21 ND1 HIS A 3 55.365 27.866 62.971 1.00 11.07 N
ATOM 22 CD2 HIS A 3 57.200 28.354 61.894 1.00 13.12 c
ATOM 23 CEl1 HIS A 3 56.124 26.783 62.981 1.00 13.03 C
ATOM 24 NE2 HIS A 3 57.243 27.052 62.334 1.00 8.19 N
ATOM 25 N LEU A 4 55.5B80 32.694 59,656 1.00 12.61 N
ATOM 26 CA LEUA 4 54.799 33.803 59.113 1.00 11.56 C
. . ATOM 27 C LEU A 4 53.552 33.269 58.374 1.00 7.76 C
amino acid —| aqop 28 0 LEUA 4 53.650 32.363 57.532 1.00 6.99 0
field ATOM 29 CB LEU A 4 55.656 34.683 58.174 1.00 9.03 c
ATOM 30 CG LEUA 4 54.946 35.887 57.518 1.00 2.00 C
ATOM 31 CDl1 LEU A 4 54.623 36.920 58.550 1.00 6.21 C
HETATM 7641 AN7 FAD B 472 27.855 78.556 29.073 1.00 4.55 N
cofactor _| HETATM 7642 AC5 FAD B 472 28.524 78.026 27.955 1.00 2.00 C
filed HETATM 7643 AC6 FAD B 472 29.848 77.609 27.724 1.00 3.40 [
HETATM 7644 AN6 FAD B 472 30.787 77.757 28.664 1.00 6.22 N
/ / \ ~ g — | AN |
atom residue residue Xy, Z coordinates occupancy lemperature atom
number name number factor type
atom polypeptide
name chain identifier

Figure 12.8: A partial PDB file of DNA photolyase (boxed) showing the header section and the coordi-
nate section. The coordinate section is dissected based on individual fields.

PDB Format

A deposited set of protein coordinates becomes an entry in PDB. Each entry is given
a unique code, PDBid, consisting of four characters of either letters A to Z or digits 0
to 9 such as 1LYZ and 4RCR. One can search a structure in PDB using the four-letter
code or keywords related to its annotation. The identified structure can be viewed
directly online or downloaded to a local computer for analysis. The PDB website pro-
vides options for retrieval, analysis, and direct viewing of macromolecular structures.
The viewing can be still images or manipulable images through interactive viewing
tools (see Chapter 13). It also provides links to protein structural classification results
available in databases such as SCOP and CATH (see Chapter 13).

The data format in PDB was created in the early 1970s and has a rigid structure
of 80 characters per line, including spaces. This format was initially designed to be
compatible with FORTRAN programs. It consists of an explanatory header section
followed by an atomic coordinate section (Fig. 12.8).

The header section provides an overview of the protein and the quality of the struc-
ture. It contains information about the name of the molecule, source organism, bibli-
ographic reference, methods of structure determination, resolution, crystallographic
parameters, protein sequence, cofactors, and description of structure types and loca-
tions and sometimes secondary structure information. In the structure coordinates
section, there are a specified number of columns with predetermined contents. The
ATOM part refers to protein atom information whereas the HETATM (for heteroatom
group) part refers to atoms of cofactor or substrate molecules. Approximately ten
columns of text and numbers are designated. They include information for the atom
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number, atom name, residue name, polypeptide chain identifier, residue number, x,
¥, and z Cartesian coordinates, temperature factor, and occupancy factor. The last
two parameters, occupancy and temperature factors, relate to disorders of atomic
positions in crystals.

The PDB format has been in existence for more than three decades. It is fairly easy
toread and simple to use. However, the format is not designed for computer extraction
of information from the records. Certain restrictions in the format have significantly
complicated its current use. For instance, in the PDB format, only Cartesian coordi-
nates of atoms are given without bonding information. Information such as disulfide
bonds has to be interpreted by viewing programs, some of which may fail to do so. In
addition, the field width for atom number is limited to five characters, meaning that
the maximum number of atoms per model is 99,999. The field width for polypeptide
chains is only one character in width, meaning that no more than 26 chains can be
used in a multisubunit protein model. This has made many large protein complexes
such as ribosomes unable to be represented by a single PDB file. They have to be
divided into multiple PDB files.

mmCIF and MMDB Formats

Significant limitations of the PDB format have allowed the development of new for-
mats to handle increasingly complicated structure data. The most popular new for-
mats include the macromolecular crystallographic information file (mmCIF) and the
molecular modeling database (MMDB) file. Both formats are highly parsable by com-
puter software, meaning that information in each field of a record can be retrieved
separately. These new formats facilitate the retrieval and organization of information
from database structures.

The mmCIF format is similar to the format for a relational database (see Chapter 2)
in which a set of tables are used to organize database records. Each table or field of
information is explicitly assigned by a tag and linked to other fields through a special
syntax. An example of an mmCIF containing multiple fields is given below. As shown
in Figure 12.9, a single line of description in the header section of PDB is divided
into many lines or fields with each field having explicit assignment of item names
and item values. Each field starts with an underscore character followed by category
name and keyword description separated by a period. The annotation in Figure 12.9
shows that the data items belong to the category of “struct” or “database.” Following
a keyword tag, a short text string enclosed by quotation marks is used to assign values
for the keyword. Using multiple fields with tags for the same information has the
advantage of providing an explicit reference to each item in a data file and ensures a
one-to-one relationship between item names and item values. By presenting the data
item by item, the format provides much more flexibility for information storage and
retrieval.

Another new format is the MMDB format developed by the NCBI to parse and
sort pieces of information in PDB. The objective is to allow the information to be
more easily integrated with GenBank and Medline through Entrez (see Chapter 2).
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PDB  HEADER PLANT SEED PROTEIN 11-OCT-91 1CBN

mmCIF  struct.entry_id '1CBN'
_struct.title 'PLANT SEED PROTEIN'
_struct keywords.entry id '1CBN'
_struct keywords.text 'plant seed protein'
_database Z.database id 'PDB'
_database Z.database code '1CBN'
_database_PDB rev.rev_num 1

_database PDB_rev.date_original '1991-10-11"'

Figure 12.9: A comparison of PDB and mmCIF formats in two different boxes. To show the same header
information in PDB, multiple fields are required in mmCIF to establish explicit relationships of item name
and item values. The advantage of such format is easy parsing by computer software.

An MMDB file is written in the ASN.1 format (see Chapter 2), which has information
in a record structured as a nested hierarchy. This allows faster retrieval than mmCIF
and PDB. Furthermore, the MMDB format includes bond connectivity information
for each molecule, called a “chemical graph,” which is recorded in the ASN.1 file. The
inclusion of the connectivity data allows easier drawing of structures.

SUMMARY

Proteins are considered workhorses in a cell and carry out most cellular functions.
Knowledge of protein structure is essential to understand the behavior and functions
of specific proteins. Proteins are polypeptides formed by joining amino acids together
via peptide bonds. The folding of a polypeptide can be described by rotational angles
around the main chain bonds such as ¢ and v» angles. The degree of rotation depends
on the preferred protein conformation. Allowable ¢ and ¥ angles in a protein can
be specified in a Ramachandran plot. There are four levels of protein structures, pri-
mary, secondary, tertiary, and quaternary. The primary structure is the sequence of
amino acid residues. The secondary structure is the repeated main chain confor-
mation, which includes «-helices and g-sheets. The tertiary structure is the overall
three-dimensional conformation of a polypeptide chain. The quaternary structure is
the complex arrangement of multiple polypeptide chains. Protein structures are sta-
bilized by electrostatic interactions, hydrogen bonds, and van der Waals interactions.
Proteins can be classified as being soluble globular proteins or integral membrane
proteins, whose structures vary tremendously. Protein structures can be determined
by x-ray crystallography and NMR spectroscopy. Both methods have advantages and
disadvantages, but are clearly complementary. The solved structures are deposited in
PDB, which uses a PDB format to describe structural details. However, the original
PDB format has limited capacity and is difficult to be parsed by computer software.
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To overcome the limitations, new formats such as mmCIF and MMDB have been
developed.
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CHAPTER THIRTEEN

Protein Structure Visualization, Comparison,
and Classification

Once a protein structure has been solved, the structure has to be presented in a three-
dimensional view on the basis of the solved Cartesian coordinates. Before computer
visualization software was developed, molecular structures were represented by phys-
icalmodels of metal wires, rods, and spheres. With the development of computer hard-
ware and software technology, sophisticated computer graphics programs have been
developed for visualizing and manipulating complicated three-dimensional struc-
tures. The computer graphics help to analyze and compare protein structures to gain
insight to functions of the proteins.

PROTEIN STRUCTURAL VISUALIZATION

The main feature of computer visualization programs is interactivity, which allows
users to visually manipulate the structural images through a graphical user interface.
At the touch of a mouse button, a user can move, rotate, and zoom an atomic model
on a computer screen in real time, or examine any portion of the structure in great
detail, as well as draw it in various forms in different colors. Further manipulations can
include changing the conformation of a structure by protein modeling or matching a
ligand to an enzyme active site through docking exercises.

Because a Protein Data Bank (PDB) data file for a protein structure contains only
X, ¥, and z coordinates of atoms (see Chapter 12), the most basic requirement for
a visualization program is to build connectivity between atoms to make a view of
a molecule. The visualization program should also be able to produce molecular
structures in different styles, which include wire frames, balls and sticks, space-filling
spheres, and ribbons (Fig. 13.1).

A wire-frame diagram is a line drawing representing bonds between atoms. The
wire frame is the simplest form of model representation and is useful for localizing
positions of specific residues in a protein structure, or for displaying a skeletal form
of a structure when Co atoms of each residue are connected. Balls and sticks are solid
spheres and rods, representing atoms and bonds, respectively. These diagrams can
also be used to represent the backbone of a structure. In a space-filling representation
(or Corey, Pauling, and Koltan [CPK]), each atom is described usinglarge solid spheres
with radii corresponding to the van der Waals radii of the atoms. Ribbon diagrams
use cylinders or spiral ribbons to represent «-helices and broad, flat arrows to rep-
resent B-strands. This type of representation is very attractive in that it allows easy
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Figure 13.1: Examples of molecular structure visualization forms. (A) Wireframes. (B) Balls and sticks.
(C) Space-filling spheres. (D) Ribbons (see color plate section).

identification of secondary structure elements and gives a clear view of the overall
topology of the structure. The resulting images are also visually appealing.

Different representation styles can be used in combination to highlight a certain
feature of a structure while deemphasizing the structures surrounding it. For exam-
ple, a cofactor of an enzyme can be shown as space-filling spheres while the rest
of the protein structure is shown as wire frames or ribbons. Some widely used and
freely available software programs for molecular graphics are introduced next with
examples of rendering provided in Figure 13.2.

RasMol (http://rutgers.rcsb.org/pdb/help-graphics.html#rasmol download) is a
command-line-based viewing program that calculates connectivity of a coordinate
file and displays wireframe, cylinder, stick bonds, «-carbon trace, space-filling (CPK)
spheres, and ribbons. It reads both PDB and mmCIF formats and can display a
whole molecule or specific parts of it. It is available in multiple platforms: UNIX,
Windows, and Mac. RasTop (www.geneinfinity.org/rastop/) isa new version of RasMol
for Windows with a more enhanced user interface.
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Figure 13.2: Examples of molecular graphic generated by (A) Rasmol, (B) Molscript, (C) Ribbons, and
(D) Grasp (see color plate section).

Swiss-PDBViewer (www.expasy.ch/spdbv/) is a structure viewer for multiple plat-
forms. It is essentially a Swiss-Army knife for structure visualization and modeling
because it incorporates so many functions in a small shareware program. It is capa-
ble of structure visualization, analysis, and homology modeling. It allows display of
multiple structures at the same time in different styles, by charge distribution, or by
surface accessibility. It can measure distances, angles, and even mutate residues. In
addition, it can calculate molecular surface, electrostatic potential, Ramachandran
plot, and so on. The homology modeling part includes energy minimization and loop
modeling.

Molscript (www.avatar.se/molscript/) is a UNIX program capable of generating
wire-frame, space-filling, or ball-and-stick styles. In particular, secondary struc-
ture elements can be drawn with solid spirals and arrows representing «-helices
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and B-strands, respectively. Visually appealing images can be generated that are of
publication quality. The drawback is that the program is command-line-based and
not very user friendly. A modified UNIX program called Bobscript (www.strubi.ox.
ac.uk/bobscript/) is available with enhanced features.

Ribbons (http://sgce.cbse.uab.edu/ribbons/) another UNIX program similar to
Molscript, generates ribbon diagrams depicting protein secondary structures. Aesthe-
tically appealing images can be produced that are of publication quality. However, the
program, which is also command-line-based, is extremely difficult to use.

Grasp (http://trantor.bioc.columbia.edu/grasp/) is a UNIX program that gener-
ates solid molecular surface images and uses a gradated coloring scheme to display
electrostatic charges on the surface.

There are also a number of web-based visualization tools that use Java applets.
These programs tend to have limited molecular display features and low-quality
images. However, the advantage is that the user does not have to download, compile,
and install the programs locally, but simply view the structures on a web browser
using any kind of computer operating system. In fact, the PDB also attempts to
simplify the database structure display for end users. It has incorporated a num-
ber of light-weight Java-based structure viewers in the PDB web site (see Chap-
ter 12).

WebMol (www.cmpharm.ucsf.edu/cgi-bin/webmol.pl) is a web-based program
builtbased on amodified RasMol code and thus shares many similarities with RasMol.
It runs directly on a browser of any type as an applet and is able to display simple line
drawing models of protein structures. It also has a feature of interactively displaying
Ramachandran plots for structure model evaluation.

Chime (www.mdlchime.com/chime/) is a plug-in forweb browsers; itisnotastand-
alone program and has to be invoked in a web browser. The program is also derived
from RasMol and allows interactive display of graphics of protein structures inside a
web browser.

Cn3D (www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml) is a helper applica-
tion for web browsers to display structures in the MMDB format from the NCBI'’s
structural database. It can be used on- or offline as a stand-alone program. It is able
to render three-dimensional molecular models and display secondary structure car-
toons. The drawback is that it does not recognize the PDB format.

PROTEIN STRUCTURE COMPARISON

With the visualization and computer graphics tools available, it becomes easy to
observe and compare protein structures. To compare protein structures is to ana-
lyze two or more protein structures for similarity. The comparative analysis often,
but not always, involves the direct alignment and superimposition of structures in
a three-dimensional space to reveal which part of structure is conserved and which
part is different at the three-dimensional level.
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This structure comparison is one of the fundamental techniques in protein struc-
ture analysis. The comparative approach is important in finding remote protein
homologs. Because protein structures have a much higher degree of conservation
than the sequences, proteins can share common structures even without sequence
similarity. Thus, structure comparison can often reveal distant evolutionary relation-
ships between proteins, which is not feasible using the sequence-based alignment
approach alone. In addition, protein structure comparison is a prerequisite for pro-
tein structural classification into different fold classes. It is also useful in evaluat-
ing protein prediction methods by comparing theoretically predicted structures with
experimentally determined ones.

One can always compare structures manually or by eye, which is often practiced.
However, the best approach is to use computer algorithms to automate the task and
thereby get more accurate results. Structure comparison algorithms all employ scor-
ing schemes to measure structural similarities and to maximize the structural sim-
ilarities measured using various criteria. The algorithmic approaches to comparing
protein geometric properties can be divided into three categories: the first superposes
protein structures by minimizing intermolecular distances; the second relies on mea-
suring intramolecular distances of a structure; and the third includes algorithms that
combine both intermolecular and intramolecular approaches.

Intermolecular Method

The intermolecular approach is normally applied to relatively similar structures.
To compare and superpose two protein structures, one of the structures has to
be moved with respect to the other in such a way that the two structures have a
maximum overlap in a three-dimensional space. This procedure starts with identi-
fying equivalent residues or atoms. After residue-residue correspondence is estab-
lished, one of the structures is moved laterally and vertically toward the other struc-
ture, a process known as translation, to allow the two structures to be in the same
location (or same coordinate frame). The structures are further rotated relative to
each other around the three-dimensional axes, during which process the distances
between equivalent positions are constantly measured (Fig. 13.3). The rotation con-
tinues until the shortest intermolecular distance is reached. At this point, an optimal
superimposition of the two structures is reached. After superimposition, equivalent
residue pairs can be identified, which helps to quantitate the fitting between the two
structures.

Animportant measurement of the structure fit during superposition is the distance
between equivalent positions on the protein structures. This requires using a least-
square-fitting function called root mean square deviation (RMSD), which is the square
root of the averaged sum of the squared differences of the atomic distances.

RMSD = (Eq. 13.1)




192

PROTEIN STRUCTURE VISUALIZATION, COMPARISON, AND CLASSIFICATION

Figure 13.3: Simplified representation showing steps involved in the structure superposition of two
protein molecules. (A) Two protein structures are positioned in different places in a three dimensional
space. Equivalent positions are identified using a sequence based alignment approach. (B) To superim-
pose the two structures, the first step is to move one structure (left) relative to the other (right) through
lateral and vertical movement, which is called translation. (C) The left structure is then rotated relative
to the reference structure until such a point that the relative distances between equivalent positions are
minimal.
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where D is the distance between coordinate data points and N is the total number of
corresponding residue pairs.

In practice, only the distances between Ca carbons of corresponding residues are
measured. The goal of structural comparison is to achieve a minimum RMSD. How-
ever, the problem with RMSD is that it depends on the size of the proteins being com-
pared. For the same degree of sequence identity, large proteins tend to have higher
RMSD values than small proteins when an optimal alignment is reached. Recently, a
logarithmic factor has been proposed to correct this size-dependency problem. This
new measure is called RMSD; oy and is determined by the following formula:

RMSD
RMSDygp = — 22 Eq.13.2
0= 131 05mI(N) (Eq. 13.2)

where N is the total number of corresponding atoms.

Although this corrected RMSD is more reliable than the raw RMSD for structure
superposition, a low RMSD value by no means guarantees a correct alignment or
an alignment with biological meaning. Careful scrutiny of the automatic alignment
results is always recommended.

The most challenging part of using the intermolecular method is to identify equiv-
alent residues in the first place, which often resorts to sequence alignment meth-
ods. Obviously, this restricts the usefulness of structural comparison between distant
homologs.

Anumber of solutions have been proposed to compare more distantly related struc-
tures. One approach that has been proposed is to delete sequence variable regions
outside secondary structure elements to reduce the search time required to find an
optimum superposition. However, this method does not guarantee an optimal align-
ment. Another approach adopted by some researchers is to divide the proteins into
small fragments (e.g., every six to nine residues). Matching of similar regions at the
three-dimensional level is then done fragment by fragment. After finding the best fit-
ting fragments, a joint superposition for the entire structure is performed. The third
approach is termed iterative optimization, during which the two sequences are first
aligned using dynamic programming. Identified equivalent residues are used to guide
afirstround of superposition. After superposition, more residues are identified to be in
close proximity at the three-dimensional level and considered as equivalent residues.
Based on the newly identified equivalent residues, a new round of superposition is
generated to refine from the previous alignment. This procedure is repeated until the
RMSD values cannot be further improved.

Intramolecular Method

The intramolecular approach relies on structural internal statistics and therefore does
not depend on sequence similarity between the proteins to be compared. In addition,
this method does not generate a physical superposition of structures, but instead
provides a quantitative evaluation of the structural similarity between corresponding
residue pairs.
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The method works by generating a distance matrix between residues of the same
protein. In comparing two protein structures, the distance matrices from the two
structures are moved relative to each other to achieve maximum overlaps. By over-
laying two distance matrices, similar intramolecular distance patterns representing
similar structure folding regions can be identified. For the ease of comparison, each
matrix is decomposed into smaller submatrices consisting of hexapeptide fragments.
To maximize the similarity regions between two structures, a Monte Carlo procedure
is used. By reducing three-dimensional information into two-dimensional informa-
tion, this strategy identifies overall structural resemblances and common structure
cores.

Combined Method

A recent development in structure comparison involves combining both inter- and
intramolecular approaches. In the hybrid approach, corresponding residues can be
identified using the intramolecular method. Subsequent structure superposition can
be performed based on residue equivalent relationships. In addition to using RMSD
as a measure during alignment, additional structural properties such as secondary
structure types, torsion angles, accessibility, and local hydrogen bonding environment
can be used. Dynamic programming is often employed to maximize overlaps in both
inter- and intramolecular comparisons.

Multiple Structure Alignment

In addition to pairwise alignment, a number of algorithms can also perform mul-
tiple structure alignment. The alignment strategy is similar to the Clustal sequence
alignment using a progressive approach (see Chapter 5). That is, all structures are first
compared in a pairwise fashion. A distance matrix is developed based on structure
similarity scores such as RMSD. This allows construction of a phylogenetic tree, which
guides the subsequent clustering of the structures. The most similar two structures
are then realigned. The aligned structures create a median structure that allows other
structures to be progressively added for comparison based on the hierarchy described
in the guide tree. When all the structures in the set are added, this eventually creates a
multiple structure alignment. Several popular on-line structure comparison resources
are discussed next.

DALI (www2.ebi.ac.uk/dali/) is a structure comparison web server that uses the
intramolecular distance method. It works by maximizing the similarity of two distance
graphs. The matrices are based on distances between all C atoms for each individual
protein. Two distance matrices are overlaid and moved one relative to the other to
identify most similar regions. DALI uses a statistical significance value called a Z-score
to evaluate structural alignment. The Z-score is the number of standard deviations
from the average score derived from the database background distribution. The higher
the Z-score when comparing a pair of protein structures, the less likely the similarity
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observed is aresult of random chance. Empirically, a Z-score >4 indicates a significant
level of structure similarity. The web serveris at the same time a database that contains
Z-scores of all precomputed structure pairs of proteins in PDB. The user can upload a
structure to compare it with all known structures, or perform a pairwise comparison
of two uploaded structures.

CE (Combinatorial Extension; http://cl.sdsc.edu/ce.html) is a web-based program
that also uses the intramolecular distance approach. However, unlike DALI a type of
heuristics is used. In this method, every eight residues are treated as a single residue.
The Ca distance matrices are constructed at the level of octameric “residues.” In
this way, the computational time required to search for the best alignment is con-
siderably reduced, at the expense of alignment accuracy. CE also uses a Z-score
as a measure of significance of an alignment. A Z-score >3.5 indicates a similar
fold.

VAST (Vector Alignment Search Tool; www.ncbi.nlm.nih.gov:80/Structure/VAST/
vast.shtml) is a web server that performs alignment using both the inter- and
intramolecular approaches. The superposition is based on information of direction-
ality of secondary structural elements (represented as vectors). Optimal alignment
between two structures is defined by the highest degree of vector matches.

SSAP (www.biochem.ucl.ac.uk/cgi-bin/cath/GetSsapRasmol.pl) is a web server
that uses an intramolecular distance-based method in which matrices are built based
on the CB distances of all residue pairs. When comparing two different matrices, a
dynamic programming approach is used to find the path of residue positions with
optimal scores. The dynamic programming is applied at two levels, one at a lower
level in which all residue pairs between the proteins are compared and another at an
upper level in which subsequently identified equivalent residue pairs are processed
to refine the matching positions. This process is known as double dynamic program-
ming. An SSAP score is reported for structural similarity. A score above 70 indicates a
good structural similarity.

STAMP (www.compbio.dundee.ac.uk/Software/Stamp/stamp.html) isa UNIX pro-
gram that uses the intermolecular approach to generate protein structure alignment.
The main feature is the use of iterative alignment based on dynamic programming to
obtain the best superposition of two or more structures.

PROTEIN STRUCTURE CLASSIFICATION

One of the applications of protein structure comparison is structural classification.
The ability to compare protein structures allows classification of the structure data
and identification of relationships among structures. The reason to develop a pro-
tein structure classification system is to establish hierarchical relationships among
protein structures and to provide a comprehensive and evolutionary view of known
structures. Once a hierarchical classification system is established, a newly obtained
protein structure can find its place in a proper category. As a result, its functions
can be better understood based on association with other proteins. To date, several
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systems have been developed, the two most popular being Structural Classifica-
tion of Proteins (SCOP) and Class, Architecture, Topology and Homologous (CATH).
The following introduces the basic steps in establishing the systems to classify
proteins.

The first step in structure classification is to remove redundancy from databases.
As mentioned in Chapter 12, among the tens of thousands of entries in PDB, the
majority of the structures are redundant as they correspond to structures solved
at different resolutions, or associated with different ligands or with single-residue
mutations. The redundancy can be removed by selecting representatives through
a sequence alignment-based approach. The second step is to separate structurally
distinct domains within a structure. Because some proteins are composed of mul-
tiple domains, they must be subdivided before a sensible structural comparison
can be carried out. This domain identification and separation can be done either
manually or based on special algorithms for domain recognition. Once multidomain
proteins are split into separate domains, structure comparison can be conducted at
the domain level, either through manual inspection, or automated structural align-
ment, or a combination of both. The last step involves grouping proteins/domains
of similar structures and clustering them based on different levels of resemblance
in secondary structure composition and arrangement of the secondary structures in
space.

As mentioned, the two most popular classification schemes are SCOP and CATH,
both of which contain a number of hierarchical levels in their systems.

SCOP

SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) is a database for comparing and clas-
sifying protein structures. It is constructed almost entirely based on manual exam-
ination of protein structures. The proteins are grouped into hierarchies of classes,
folds, superfamilies, and families. In the latest SCOP release version (v1.65, released
December 2003), there are 7 classes, 800 folds, 1,294 superfamilies, and 2,327 families.

The SCOP families consist of proteins having high sequence identity (>30%).
Thus, the proteins within a family clearly share close evolutionary relationships and
normally have the same functionality. The protein structures at this level are also
extremely similar. Superfamilies consist of families with similar structures, but weak
sequence similarity. It is believed that members of the same superfamily share a com-
mon ancestral origin, although the relationships between families are considered
distant. Folds consist of superfamilies with a common core structure, which is deter-
mined manually. This level describes similar overall secondary structures with similar
orientation and connectivity between them. Members within the same fold do not
always have evolutionary relationships. Some of the shared core structure may be a
result of analogy. Classes consist of folds with similar core structures. This is at the
highest level of the hierarchy, which distinguishes groups of proteins by secondary
structure compositions such as all «, all 8, « and B, and so on. Some classes are cre-
ated based on general features such as membrane proteins, small proteins with few
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secondary structures and irregular proteins. Folds within the same class are essentially
randomly related in evolution.

CATH

CATH (www.biochem.ucl.ac.uk/bsm/cath_new/index.html) classifies proteins based
on the automatic structural alignment program SSAP as well as manual comparison.
Structural domain separation is carried out also as a combined effort of a human
expert and computer programs. Individual domain structures are classified at five
major levels: class, architecture, fold/topology, homologous superfamily, and homol-
ogous family. In the CATH release version 2.5.1 (January 2004), there are 4 classes,
37 architectures, 813 topologies, 1,467 homologous superfamilies, and 4,036 homol-
ogous families.

The definition for class in CATH is similar to thatin SCOP, and is based on secondary
structure content. Architecture is a unique level in CATH, intermediate between fold
and class. This level describes the overall packing and arrangement of secondary
structures independent of connectivity between the elements. The topology level is
equivalent to the fold level in SCOP, which describes overall orientation of secondary
structures and takes into account the sequence connectivity between the secondary
structure elements. The homologous superfamily and homologous family levels are
equivalent to the superfamily and family levels in SCOP with similar evolutionary
definitions, respectively.

Comparison of SCOP and CATH

SCOP is almost entirely based on manual comparison of structures by human experts
with no quantitative criteria to group proteins. It is argued that this approach offers
some flexibility in recognizing distant structural relatives, because human brains
may be more adept at recognizing slightly dissimilar structures that essentially have
the same architecture. However, this reliance on human expertise also renders the
method subjective. The exact boundaries between levels and groups are sometimes
arbitrary.

CATHisacombination of manual curation and automated procedure, which makes
the process less subjective. For example, in defining domains, CATH first relies on the
consensus of three different algorithms to recognize domains. When the computer
programs disagree, human intervention will take place. In addition, the extra Architec-
ture level in CATH makes the structure classification more continuous. The drawback
of the systems is that the fixed thresholds in structural comparison may make assign-
ment less accurate.

Due to the differences in classification criteria, one might expect that there would
be huge differences in classification results. In fact, the classification results from
both systems are quite similar. Exhaustive analysis has shown that the results from
the two systems converge at about 80% of the time. In other words, only about 20%
of the structure fold assignments are different. Figure 13.4 shows two examples of
agreement and disagreement based on classification by the two systems.
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FURTHER READING

SUMMARY

A clear and concise visual representation of protein structures is the first step towards
structural understanding. A number of visualization programs have been developed
for that purpose. They include stand-alone programs for sophisticated manipulation
of structures and light-weight web-based programs for simple structure viewing. Pro-
tein structure comparison allows recognition of distant evolutionary relationships
among proteins and is helpful for structure classification and evaluation of protein
structure prediction methods. The comparison algorithms fall into three categories:
the intermolecular method, which involves transformation of atomic coordinates of
structures to get optimal superimposition; the intramolecular method, which con-
structs an inter-residue distance matrix within a molecule and compares the matrix
against that from a second molecule; and the combined method that uses both
inter- and intramolecular approaches. Among all the structure comparison algo-
rithms developed so far, DALI is most widely used. Protein structure classification
is important for understanding protein structure, function and evolution. The most
widely used classification schemes are SCOP and CATH. The two systems largely
agree but differ somewhat. Each system has its own strengths and neither appears to
be superior. Itis thus advisable to compare the classification results from both systems
in order to put a structure in the correct context.
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Protein Secondary Structure Prediction

Protein secondary structures are stable local conformations of a polypeptide chain.
They are critically important in maintaining a protein three-dimensional structure.
The highly regular and repeated structural elements include «-helices and S-sheets.
Ithas been estimated that nearly 50% of residues of a protein fold into either «-helices
and B-strands. As a review, an «-helix is a spiral-like structure with 3.6 amino acid
residues per turn. The structure is stabilized by hydrogen bonds between residues i
and i+ 4. Prolines normally do not occur in the middle of helical segments, but can be
found at the end positions of «-helices (see Chapter 12). A -sheet consists of two or
more B-strands having an extended zigzag conformation. The structure is stabilized
by hydrogen bonding between residues of adjacent strands, which actually may be
long-range interactions at the primary structure level. 8-Strands at the protein surface
show an alternating pattern of hydrophobic and hydrophilic residues; buried strands
tend to contain mainly hydrophobic residues.

Protein secondary structure prediction refers to the prediction of the conforma-
tional state of each amino acid residue of a protein sequence as one of the three
possible states, namely, helices, strands, or coils, denoted as H, E, and C, respec-
tively. The prediction is based on the fact that secondary structures have a regular
arrangement of amino acids, stabilized by hydrogen bonding patterns. The structural
regularity serves the foundation for prediction algorithms.

Predicting protein secondary structures has a number of applications. It can be
useful for the classification of proteins and for the separation of protein domains and
functional motifs. Secondary structures are much more conserved than sequences
during evolution. As a result, correctly identifying secondary structure elements
(SSE) can help to guide sequence alignment or improve existing sequence align-
ment of distantly related sequences. In addition, secondary structure prediction
is an intermediate step in tertiary structure prediction as in threading analysis
(see Chapter 15).

Because of significant structural differences between globular proteins and trans-
membrane proteins, they necessitate very different approaches to predicting respec-
tive secondary structure elements. Prediction methods for each of two types of pro-
teins are discussed herein. In addition, prediction of supersecondary structures, such
as coiled coils, is also described.
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SECONDARY STRUCTURE PREDICTION FOR GLOBULAR PROTEINS

Protein secondary structure prediction with high accuracy is not a trivial ask. It
remained a very difficult problem for decades. This is because protein secondary
structure elements are context dependent. The formation of «-helices is determined
by short-range interactions, whereas the formation of -strands is strongly influenced
by long-range interactions. Prediction for long-range interactions is theoretically dif-
ficult. After more than three decades of effort, prediction accuracies have only been
improved from about 50% to about 75%.

The secondary structure prediction methods can be either ab initio based, which
make use of single sequence information only, or homology based, which make use
of multiple sequence alignment information. The ab initio methods, which belong
to early generation methods, predict secondary structures based on statistical cal-
culations of the residues of a single query sequence. The homology-based methods
do not rely on statistics of residues of a single sequence, but on common secondary
structural patterns conserved among multiple homologous sequences.

Ab Initio-Based Methods

This type of method predicts the secondary structure based on a single query
sequence. It measures the relative propensity of each amino acid belonging to a
certain secondary structure element. The propensity scores are derived from known
crystal structures. Examples of ab initio prediction are the Chou-Fasman and Garnier,
Osguthorpe, Robson (GOR) methods. The ab initio methods were developed in the
1970s when protein structural data were very limited. The statistics derived from the
limited data sets can therefore be rather inaccurate. However, the methods are sim-
ple enough that they are often used to illustrate the basics of secondary structure
prediction.

The Chou-Fasman algorithm (http://fasta.bioch.virginia.edu/fasta/chofas.htm)
determines the propensity or intrinsic tendency of each residue to be in the helix,
strand, and g-turn conformation using observed frequencies found in protein crys-
tal structures (conformational values for coils are not considered). For example, it is
known that alanine, glutamic acid, and methionine are commonly found in «-helices,
whereas glycine and proline are much less likely to be found in such structures.

The calculation of residue propensity scores is simple. Suppose there are n residues
in all known protein structures from which m residues are helical residues. The total
number of alanine residues is y of which x are in helices. The propensity for alanine
to be in helix is the ratio of the proportion of alanine in helices over the proportion of
alanine in overall residue population (usingthe formula [x/m]/[y/nl). If the propensity
for theresidue equals 1.0 for helices (P[a-helix]), it means that the residue has an equal
chance of being found in helices or elsewhere. If the propensity ratio is less than 1, it
indicates that the residue has less chance of being found in helices. If the propensity
is larger than 1, the residue is more favored by helices. Based on this concept, Chou
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TABLE 14.1. Relative Amino Acid Propensity Values for
Secondary Structure Elements Used in the Chou-Fasman

Method

Amino Acid (-Helix) P (B3-Strand) P (Turn)
Alanine 1.42 0.83 0.66
Arginine 0.98 0.93 0.95
Asparagine 0.67 0.89 1.56
Aspartic acid 1.01 0.54 1.46
Cysteine 0.70 1.19 1.19
Glutamic acid 1.51 0.37 0.74
Glutamine 1.11 1.11 0.98
Glycine 0.57 0.75 1.56
Histidine 1.00 0.87 0.95
Isoleucine 1.08 1.60 0.47
Leucine 1.21 1.30 0.59
Lysine 1.14 0.74 1.01
Methionine 1.45 1.05 0.60
Phenylalanine 1.13 1.38 0.60
Proline 0.57 0.55 1.52
Serine 0.77 0.75 1.43
Threonine 0.83 1.19 0.96
Tryptophan 0.83 1.19 0.96
Tyrosine 0.69 1.47 1.14
Valine 1.06 1.70 0.50

and Fasman developed a scoring table listing relative propensities of each amino acid
to be in an «-helix, a 8-strand, or a 8-turn (Table 14.1).

Prediction with the Chou-Fasman method works by scanning through a sequence
with a certain window size to find regions with a stretch of contiguous residues each
having a favored SSE score to make a prediction. For «-helices, the window size is
six residues, if a region has four contiguous residues each having P(«-helix) > 1.0, it
is predicted as an «-helix. The helical region is extended in both directions until the
P(«-helix) score becomes smaller than 1.0. That defines the boundaries of the helix.
For g-strands, scanning is done with a window size of five residues to search for a
stretch of at least three favored g-strand residues. If both types of secondary structure
predictions overlap in a certain region, a prediction is made based on the following
criterion: if XP(«¢) > XP(B), it is declared as an «-helix; otherwise, a -strand.

The GOR method (http://fasta.bioch.virginia.edu/fasta_www/garnier.htm) is also
based on the “propensity” of each residue to be in one of the four conformational
states, helix (H), strand (E), turn (T), and coil (C). However, instead of using the propen-
sity value from a single residue to predict a conformational state, it takes short-range
interactions of neighboring residues into account. It examines a window of every sev-
enteen residues and sums up propensity scores for all residues for each of the four
statesresulting in four summed values. The highest scored state defines the conforma-
tional state for the center residue in the window (ninth position). The GOR method has
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been shown to be more accurate than Chou-Fasman because it takes the neighboring
effect of residues into consideration.

Both the Chou-Fasman and GOR methods, which are the first-generation methods
developed in the 1970s, suffer from the fact that the prediction rules are somewhat
arbitrary. They are based on single sequence statistics without clear relation to known
protein-folding theories. The predictions solely rely on local sequence information
and fail to takeinto accountlongrangeinteractions. AChou-Fasman-based prediction
does not even consider the short-range environmental information. These reasons,
combined with unreliable statistics derived from a very small structural database,
limit the prediction accuracy of these methods to about 50%. This performance is
considered dismal; any random prediction can have a 40% accuracy given the fact
that, in globular proteins, the three-state distribution is 30% «-helix, 20% g-strands,
and 50% coil.

Newer algorithms have since been developed to overcome some of these short-
comings. The improvements include more refined residue statistics based on a
larger number of solved protein structures and the incorporation of more local
residue interactions. Examples of the improved algorithms are GOR II, GOR III,
GOR 1V, and SOPM. These tools can be found at http://npsa-pbil.ibcp.fr/cgi-bin/
npsa_automat.pl?page=/NPSA/npsa_server.html. These are the second-generation
prediction algorithms developed in the 1980s and early 1990s. They have improved
accuracy over the first generation by about 10%. Although it is already significantly
better than that by random prediction, the programs are still not reliable enough for
routine application. Prediction errors mainly occur through missed S-strands and
short-lengthed secondary structures for both helices and strands. Prediction of 8-
strands is still somewhat random. This may be attributed to the fact that long range
interactions are not sufficiently taken into consideration in these algorithms.

Homology-Based Methods

The third generation of algorithms were developed in the late 1990s by making use
of evolutionary information. This type of method combines the ab initio secondary
structure prediction of individual sequences and alignment information from mul-
tiple homologous sequences (>35% identity). The idea behind this approach is that
close proteinhomologs should adopt the same secondary and tertiary structure. When
each individual sequence is predicted for secondary structure using a method similar
to the GOR method, errors and variations may occur. However, evolutionary conser-
vation dictates that there should be no major variations for their secondary structure
elements. Therefore, by aligning multiple sequences, information of positional con-
servation is revealed. Because residues in the same aligned position are assumed
to have the same secondary structure, any inconsistencies or errors in prediction of
individual sequences can be corrected usinga majorityrule (Fig. 14.1). Thishomology-
based method has helped improve the prediction accuracy by another 10% over the
second-generation methods.
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Figure 14.1: Schematic representation of secondary structure prediction using multiple sequence align-
ment information. Each individual sequence in the multiple alignment is subject to secondary structure
prediction using the GOR method. If variations in predictions occur, they can be corrected by deriving
a consensus of the secondary structure elements from the alignment.

Prediction with Neural Networks

The third-generation prediction algorithms also extensively apply sophisticated neu-
ral networks (see Chapter 8) to analyze substitution patterns in multiple sequence
alignments. As a review, a neural network is a machine learning process that requires
astructure of multiple layers of interconnected variables or nodes. In secondary struc-
ture prediction, the input is an amino acid sequence and the output is the probability
of a residue to adopt a particular structure. Between input and output are many
connected hidden layers where the machine learning takes place to adjust the math-
ematical weights of internal connections. The neural network has to be first trained
by sequences with known structures so it can recognize the amino acid patterns and
their relationships with known structures. During this process, the weight functions
in hidden layers are optimized so they can relate input to output correctly. When
the sufficiently trained network processes an unknown sequence, it applies the rules
learned in training to recognize particular structural patterns.
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When multiple sequence alignments and neural networks are combined, the result
is further improved accuracy. In this situation, a neural network is trained not by a
single sequence but by a sequence profile derived from the multiple sequence align-
ment. This combined approach has been shown to improve the accuracy to above
75%, which is a breakthrough in secondary structure prediction. The improvement
mainly comes from enhanced secondary structure signals through consensus draw-
ing. The following lists several frequently used third generation prediction algorithms
available as web servers.

PHD (Profile network from Heidelberg; http://dodo.bioc.columbia.edu/predict
protein/submit_def.html) is a web-based program that combines neural network with
multiple sequence alignment. It first performs a BLASTP of the query sequence against
a nonredundant protein sequence database to find a set of homologous sequences,
which are aligned with the MAXHOM program (a weighted dynamic programming
algorithm performing global alignment). The resulting alignment in the form of a
profile is fed into a neural network that contains three hidden layers. The first hidden
layer makes raw prediction based on the multiple sequence alignment by sliding a
window of thirteen positions. As in GOR, the prediction is made for the residue in the
center of the window. The second layer refines the raw prediction by sliding a win-
dow of seventeen positions, which takes into account more flanking positions. This
step makes adjustments and corrections of unfeasible predictions from the previous
step. The third hidden layer is called the jury network, and contains networks trained
in various ways. It makes final filtering by deleting extremely short helices (one or
two residues long) and converting them into coils (Fig. 14.2). After the correction, the
highest scored state defines the conformational state of the residue.

PSIPRED (http://bioinf.cs.ucl.ac.uk/psiform.html) is a web-based program that
predicts protein secondary structures using a combination of evolutionary infor-
mation and neural networks. The multiple sequence alignment is derived from a
PSI-BLAST database search. A profile is extracted from the multiple sequence align-
ment generated from three rounds of automated PSI-BLAST. The profile is then used
as input for a neural network prediction similar to that in PHD, but without the jury
layer. To achieve higher accuracy, a unique filtering algorithm is implemented to filter
out unrelated PSI-BLAST hits during profile construction.

SSpro (http://promoter.ics.uci.edu/BRNN-PRED/) is a web-based program that
combines PSI-BLAST profiles with an advanced neural network, known as bidirec-
tional recurrent neural networks (BRNNs). Traditional neural networks are unidirec-
tional, feed-forward systems with the information flowing in one direction from input
tooutput. BRNNs are unique in that the connections oflayers are designed to be able to
go backward. In this process, known as back propagation, the weights in hidden layers
are repeatedly refined. In predicting secondary structure elements, the network uses
the sequence profile as input and finds residue correlations by iteratively recycling
the network (recursive network). The averaged output from the iterations is given as a
final residue prediction. PROTER (http://distill.ucd.ie/porter/) is arecently developed
program that uses similar BRNNs and has been shown to slightly outperform SSPRO.
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Figure 14.2: Schematic representation of secondary structure prediction in the PHD algorithm using
neural networks. Multiple sequences derived from the BLAST search are used to compile a profile. The
resulting profile is fed into a neural network, which contains three layers — two network layers and
one jury layer. The first layer scans thirteen residues per window and makes a raw prediction, which is
refined by the second layer, which scans seventeen residues per window. The third layer makes further
adjustment to make a final prediction. Adjustment of prediction scores for one amino acid residue is
shown.

PROF (Protein forecasting; www.aber.ac.uk/~phiwww/prof/) is an algorithm that
combines PSI-BLAST profiles and a multistaged neural network, similar to that in
PHD. In addition, it uses a linear discriminant function to discriminate between the
three states.

HMMSTR (Hidden Markov model [HMM] for protein STRuctures; www.bioinfo.
rpi.edu/~bystrc/hmmstr/server.php) uses a branched and cyclic HMM to predict
secondary structures. It first breaks down the query sequence into many very short
segments (three to nine residues, called I-sites) and builds profiles based on a library
of known structure motifs. It then assembles these local motifs into a supersecondary
structure. It further uses an HMM with a unique topology linking many smaller HMMs
into a highly branched multicyclic form. This is intended to better capture the recur-
rent local features of secondary structure based on multiple sequence alignment.
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Prediction with Multiple Methods

Because no individual methods can always predict secondary structures correctly, it
is desirable to combine predictions from multiple programs with the hope of further
improving the accuracy. In fact, a number of web servers have been specifically dedi-
cated to making predictions by drawing consensus from results by multiple programs.
In many cases, the consensus-based prediction method has been shown to perform
slightly better than any single method.

Jpred (www.compbio.dundee.ac.uk/~www-jpred/) combines the analysis results
from six prediction algorithms, including PHD, PREDATOR, DSC, NNSSP, Jnet, and
ZPred. The query sequence is first used to search databases with PSI-BLAST for three
iterations. Redundant sequence hits are removed. The resulting sequence homologs
are used to build a multiple alignment from which a profile is extracted. The profile
information is submitted to the six prediction programs. If there is sufficient agree-
ment among the prediction programs, the majority of the prediction is taken as the
structure. Where there is no majority agreement in the prediction outputs, the PHD
prediction is taken.

PredictProtein (www.embl-heidelberg.de/predictprotein/predictprotein.html) is
another multiple prediction server that uses Jpred, PHD, PROE and PSIPRED, among
others. The difference is that the server does not run the individual programs but
sends the query to other servers which e-mail the results to the user separately. It does
not generate a consensus. It is up to the user to combine multiple prediction results
and derive a consensus.

Comparison of Prediction Accuracy

An important issue in protein secondary structure prediction is estimation of the
prediction accuracy. The most commonly used measure for cross-validation is known
as a Q3 score, based on the three-state classification, helix (H), strand (E), and coil
(C). The score is a percentage of residues of a protein that are correctly predicted.
It is normally derived from the average result obtained from the testing with many
proteins with known structures. For secondary structure prediction, there are well-
established benchmarks for such prediction evaluation. By using these benchmarks,
accuracies for several third-generation prediction algorithms have been compiled
(Table 14.2).

As shown in Table 14.2, some of these best prediction methods have reached an
accuracy level around 79% in the three-state prediction. Common errors include the
confusion of helices and strands, incorrect start and end positions of helices and
strands, and missed or wrongly assigned secondary structure elements. If a prediction
is consistently 79% accurate, that means on average 21% of the residues could be
predicted incorrectly.

Because different secondary structure prediction programs tend to give varied
results, to maximize the accuracy of prediction, it is recommended to use several most
robust prediction methods (such as Porter, PROE and SSPRO) and draw a consensus
based on the majority rule. The aforementioned metaservers provide a convenient
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TABLE 14.2. Comparison of Accuracy of Some of
the State-of-the-Art Secondary Structure
Prediction Tools

Methods Q3 (%)
Porter 79.0
SSPro2 78.0
PROF 77.0
PSIPRED 76.6
Pred2ary 75.9
Jpred2 75.2
PHDpsi 75.1
Predator 74.8
HMMSTR 74.3

Note: The Q3 score is the three-state prediction accuracy for
helix, strand, and coil.

way of achieving this goal. By using the combination approach, it is possible to reach
an 80% accuracy. An accuracy of 80% is an important landmark because it is equiv-
alent to some low-resolution experimental methods to determine protein secondary
structures, such as circular dichroism and Fourier transform-induced spectroscopy.

SECONDARY STRUCTURE PREDICTION
FOR TRANSMEMBRANE PROTEINS

Transmembrane proteins constitute up to 30% of all cellular proteins. They are respon-
sible for performing a wide variety of important functionsin a cell, such as signal trans-
duction, cross-membrane transport, and energy conversion. The membrane proteins
are also of tremendous biomedical importance, as they often serve as drug targets for
pharmaceutical development.

There are two types of integral membrane proteins: «-helical type and g-barrel
type. Most transmembrane proteins contain solely a-helices, which are found in the
cytoplasmic membrane. A few membrane proteins consist of -strands forming a g-
barrel topology, a cylindrical structure composed of antiparallel -sheets. They are
normally found in the outer membrane of gram-negative bacteria.

The structures of this group of proteins, however, are notoriously difficult to resolve
either by x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy.
Consequently, for this group of proteins, prediction of the transmembrane secondary
structural elements and their organization is particularly important. Fortunately, the
prediction process is somewhat easier because of the hydrophobic environment of
the lipid bilayers, which restricts the transmembrane segments to be hydrophobic as
well. In principle, the secondary structure prediction programs developed for soluble
proteins can apply to membrane proteins as well. However, they normally do not work
well in reality because the extra hydrophobicity and length requirements distort the



SECONDARY STRUCTURE PREDICTION FOR TRANSMEMBRANE PROTEINS

Figure 14.3: Schematic of the positive-inside rule for the orienta-
tion of membrane helices. The cylinders represent the transmem-
brane a-helices. There are relatively more positive charges near
the helical anchor on the cytoplasmic side than on the periplasmic
side.
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statistical propensity of the residues. Thus, dedicated algorithms have to be used for
transmembrane span predictions.

Prediction of Helical Membrane Proteins

For membrane proteins consisting of transmembrane «-helices, these transmem-
brane helices are predominantly hydrophobic with a specific distribution of positively
charged residues. The «-helices generally run perpendicular to the membrane plane
with an average length between seventeen and twenty-five residues. The hydropho-
bic helices are normally separated by hydrophilic loops with average lengths of fewer
than sixty residues. The residues bordering the transmembrane spans are more pos-
itively charged. Another feature indicative of the presence of transmembrane seg-
ments is that residues at the cytosolic side near the hydrophobic anchor are more
positively charged than those at the lumenal or periplasmic side. This is known as the
positive-inside rule (Fig. 14.3), which allows the prediction of the orientation of the
secondary structure elements. These rules form the basis for transmembrane predic-
tion algorithms.

A number of algorithms for identifying transmembrane helices have been devel-
oped. The early algorithms based their prediction on hydrophobicity scales. They
typically scan a window of seventeen to twenty-five residues and assign membrane
spans based on hydrophobicity scores. Some are also able to determine the orien-
tation of the membrane helices based on the positive-inside rule. However, pre-
dictions solely based on hydrophobicity profiles have high error rates. As with the
third-generation predictions for globular proteins, applying evolutionary informa-
tion with the help of neural networks or HMMs can improve the prediction accuracy
significantly.

As mentioned, predicting transmembrane helices is relatively easy. The accuracy of
some of the best predicting programs, such as TMHMM or HMMTOP, can exceed 70%.
However, the presence of hydrophobic signal peptides can significantly compromise
the prediction accuracy because the programs tend to confuse hydrophobic signal
peptides with membrane helices. To minimize errors, the presence of signal peptides
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can be detected using a number of specialized programs (see Chapter 18) and then
manually excluded.

TMHMM (www.cbs.dtu.dk/services/ TMHMMY/) is a web-based program based on
an HMM algorithm. It is trained to recognize transmembrane helical patterns based
on a training set of 160 well-characterized helical membrane proteins. When a query
sequence is scanned, the probability of having an «-helical domain is given. The ori-
entation of the «-helices is predicted based on the positive-inside rule. The prediction
output returns the number of transmembrane helices, the boundaries of the helices,
and a graphical representation of the helices. This program can also be used to simply
distinguish between globular proteins and membrane proteins.

Phobius (http://phobius.cgb.ki.se/index.html) is a web-based program designed
to overcome false positives caused by the presence of signal peptides. The program
incorporates distinct HMM models for signal peptides as well as transmembrane
helices. After distinguishing the putative signal peptides from the rest of the query
sequence, prediction is made on the remainder of the sequence. It has been shown
that the prediction accuracy can be significantly improved compared to TMHMM
(94% by Phobius compared to 70% by TMHMM). In addition to the normal prediction
mode, the user can also define certain sequence regions as signal peptides or other
nonmembrane sequences based on external knowledge. As a further step to improve
accuracy, the user can perform the “poly prediction” with the PolyPhobius module,
which searches the NCBI database for homologs of the query sequence. Prediction for
the multiple homologous sequences help to derive a consensus prediction. However,
this option is also more time consuming.

Prediction of 3-Barrel Membrane Proteins

For membrane proteins with g-strands only, the 8-strands forming the transmem-
brane segment are amphipathic in nature. They contain ten to twenty-two residues
with every second residue being hydrophobic and facing the lipid bilayers whereas the
other residues facing the pore of the g-barrel are more hydrophilic. Obviously, scan-
ning a sequence by hydrophobicity does not reveal transmembrane g-strands. These
programs for predicting transmembrane «-helices are not applicable for this unique
type of membrane proteins. To predict the g-barrel type of membrane proteins, a
small number of algorithms have been made available based on neural networks and
related techniques.

TBBpred (www.imtech.res.in/raghava/tbbpred/) is a web server for predicting
transmembrane S-barrel proteins. It uses a neural network approach to predict
transmembrane S-barrel regions. The network is trained with the known structural
information of a limited number of transmembrane g-barrel protein structures. The
algorithm contains a single hidden layer with five nodes and a single output node.
In addition to neural networks, the server can also predict using a support vector
machine (SVM) approach, another type of statistical learning process. Similar to
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Figure 14.4: Cross-section view of a coiled coil structure. A coiled coil protein consisting of two interact-
ing helical strands is viewed from top. The bars represent covalent bonds between amino acid residues.
There is no covalent bond between residue a and g. The bar connecting the two actually means to
connect the first residue of the next heptad. The coiled coil has a repeated seven residue motif in the
form of a-b-c-d-e-f-g. The first and fourth positions (a and d) are hydrophobic, whose interactions with
corresponding residues in another helix stabilize the structure. The positions b, ¢, e, f, g are hydrophilic
and are exposed on the surface of the protein.

neural networks, in SVM the data are fed into kernels (similar to nodes), which are
separated into different classes by a “hyperplane” (an abstract linear or nonlinear
separator) according to a particular mathematical function. It has the advantage over
neural networks in that it is faster to train and more resistant to noise. For more
detailed information of SVM, see Chapter 19.

COILED COIL PREDICTION

Coiled coils are superhelical structures involving two to more interacting «-helices
from the same or different proteins. The individual «-helices twist and wind around
each other to form a coiled bundle structure. The coiled coil conformation is impor-
tant in facilitating inter- or intraprotein interactions. Proteins possessing these struc-
tural domains are often involved in transcription regulation or in the maintenance of
cytoskeletal integrity.

Coiled coils have an integral repeat of seven residues (heptads) which assume a
side-chain packing geometry at facing residues (see Chapter 12). For every seven
residues, the first and fourth are hydrophobic, facing the helical interface; the others
are hydrophilic and exposed to the solvent (Fig. 14.4). The sequence periodicity forms
the basis for designing algorithms to predict this important structural domain. As a
result of the regular structural features, if the location of coiled coils can be predicted
precisely, the three-dimensional structure for the coiled coil region can sometimes be
built. The following lists several widely used programs for the specialized prediction.

Coils (www.ch.embnet.org/software/COILS_form.html) is a web-based program
that detects coiled coil regions in proteins. It scans a window of fourteen, twenty-
one, or twenty-eight residues and compares the sequence to a probability matrix

211



PROTEIN SECONDARY STRUCTURE PREDICTION

compiled from known parallel two-stranded coiled coils. By comparing the similarity
scores, the program calculates the probability of the sequence to adopt a coiled coil
conformation. The program is accurate for solvent-exposed, left-handed coiled coils,
but less sensitive for other types of coiled coil structures, such as buried or right-
handed coiled coils.

Multicoil (http://jura.wi.mit.edu/cgi-bin/multicoil/multicoil.pl) is a web-based
program for predicting coiled coils. The scoring matrix is constructed based on a
database of known two-stranded and three-stranded coiled coils. The program is
more conservative than Coils. It has been recently used in several genome-wide
studies to screen for protein—protein interactions mediated by coiled coil domains.

Leucine zipper domains are a special type of coiled coils found in transcription reg-
ulatory proteins. They contain two antiparallel «-helices held together by hydrophobic
interactions of leucine residues. The heptad repeat pattern is L-X(6)-L-X(6)-L-X(6)-L.
This repeat pattern alone can sometimes allow the domain detection, albeit with high
rates of false positives. The reason for the high false-positive rates is that the condition
of the sequence region being a coiled coil conformation is not satisfied. To address
this problem, algorithms have been developed that take into account both leucine
repeats and coiled coil conformation to give accurate prediction.

271P (http://2zip.molgen.mpg.de/) is a web-based server that predicts leucine zip-
pers. It combines searching of the characteristic leucine repeats with coiled coil pre-
diction using an algorithm similar to Coils to yield accurate results.

SUMMARY

Protein secondary structure prediction has a long history and is defined by three
generations of development. The first generation algorithms were ab initio based,
examining residue propensities that fall in the three states: helices, strands, and coils.
The propensities were derived from a very small structural database. The growing
structural database and use of residue local environment information allowed the
development of the second-generation algorithms. A major breakthrough came from
the third-generation algorithms that make use of multiple sequence alignment infor-
mation, which implicitly takes the long-range intraprotein interactions into consid-
eration. In combination with neural networks and other sophisticated algorithms,
prediction efficiency has been improved significantly. To achieve high accuracy in pre-
diction, combining results from several top-performing third-generation algorithms
is recommended. Predicting secondary structures for membrane proteins is more
common than for globular proteins as crystal or NMR structures are extremely diffi-
cult to obtain for the former. The prediction of transmembrane segments (mainly
a-helices) involves the use of hydrophobicity, neural networks, and evolutionary
information. Coiled coils are a distinct type of supersecondary structure with reg-
ular periodicity of hydrophobic residues that can be predicted using specialized
algorithms.
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CHAPTER FIFTEEN

Protein Tertiary Structure Prediction

One of the most important scientific achievements of the twentieth century was the
discovery of the DNA double helical structure by Watson and Crick in 1953. Strictly
speaking, the work was the result of a three-dimensional modeling conducted partly
based on data obtained from x-ray diffraction of DNA and partly based on chemical
bonding information established in stereochemistry. It was clear at the time that
the x-ray data obtained by their colleague Rosalind Franklin were not sufficient to
resolve the DNA structure. Watson and Crick conducted one of the first-known ab
initio modeling of a biological macromolecule, which has subsequently been proven
to be essentially correct. Their work provided great insight into the mechanism of
geneticinheritance and paved the wayforarevolutionin modern biology. The example
demonstrates that structural prediction is a powerful tool to understand the functions
of biological macromolecules at the atomic level.

We now know that the DNA structure, a double helix, is rather invariable regardless
of sequence variations. Although there is little need today to determine or model
DNA structures of varying sequences, there is still a real need to model protein
structures individually. This is because protein structures vary depending on the
sequences. Another reason is the much slower rate of structure determination by
x-ray crystallography or NMR spectroscopy compared to gene sequence generation
from genomic studies. Consequently, the gap between protein sequence information
and protein structural information is increasing rapidly. Protein structure prediction
aims to reduce this sequence-structure gap.

In contrast to sequencing techniques, experimental methods to determine protein
structures are time consuming and limited in their approach. Currently, it takes 1 to
3 years to solve a protein structure. Certain proteins, especially membrane proteins,
are extremely difficult to solve by x-ray or NMR techniques. There are many important
proteins for which the sequence information is available, but their three-dimensional
structures remain unknown. The full understanding of the biological roles of these
proteins requires knowledge of their structures. Hence, the lack of such information
hinders many aspects of the analysis, ranging from protein function and ligand bind-
ing to mechanisms of enzyme catalysis. Therefore, it is often necessary to obtain
approximate protein structures through computer modeling.

Having a computer-generated three-dimensional model of a protein of interest
has many ramifications, assuming it is reasonably correct. It may be of use for the
rational design of biochemical experiments, such as site-directed mutagenesis, pro-
tein stability, or functional analysis. In addition to serving as a theoretical guide to
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design experiments for protein characterization, the model can help to rationalize
the experimental results obtained with the protein of interest. In short, the modeling
study helps to advance our understanding of protein functions.

METHODS

There are three computational approaches to protein three-dimensional structural
modeling and prediction. They are homology modeling, threading, and ab initio pre-
diction. The first two are knowledge-based methods; they predict protein structures
based on knowledge of existing protein structural information in databases. Homol-
ogy modeling builds an atomic model based on an experimentally determined struc-
ture that is closely related at the sequence level. Threading identifies proteins that
are structurally similar, with or without detectable sequence similarities. The ab ini-
tio approach is simulation based and predicts structures based on physicochemical
principles governing protein folding without the use of structural templates.

HOMOLOGY MODELING

As the name suggests, homology modeling predicts protein structures based on
sequence homology with known structures. It is also known as comparative mod-
eling. The principle behind it is that if two proteins share a high enough sequence
similarity, they are likely to have very similar three-dimensional structures. If one of
the protein sequences has a known structure, then the structure can be copied to the
unknown protein with a high degree of confidence. Homology modeling produces an
all-atom model based on alignment with template proteins.

The overall homology modeling procedure consists of six steps. The first step is
template selection, which involves identification of homologous sequences in the
protein structure database to be used as templates for modeling. The second step is
alignment of the target and template sequences. The third step is to build a frame-
work structure for the target protein consisting of main chain atoms. The fourth step
of model building includes the addition and optimization of side chain atoms and
loops. The fifth step is to refine and optimize the entire model according to energy
criteria. The final step involves evaluating of the overall quality of the model obtained
(Fig. 15.1). If necessary, alignment and model building are repeated until a satisfactory
result is obtained.

Template Selection

The first step in protein structural modeling is to select appropriate structural tem-
plates. This forms the foundation for rest of the modeling process. The template
selection involves searching the Protein Data Bank (PDB) for homologous proteins
with determined structures. The search can be performed using a heuristic pairwise
alignment search program such as BLAST or FASTA. However, the use of dynamic
programming based search programs such as SSEARCH or ScanPS (see Chapter 4)
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Figure 15.1: Flowchart showing steps involved in homology modeling.

can result in more sensitive search results. The relatively small size of the structural
database means that the search time using the exhaustive method is still within rea-
sonable limits, while giving a more sensitive result to ensure the best possible simi-
larity hits.

As a rule of thumb, a database protein should have at least 30% sequence identity
with the query sequence to be selected as template. Occasionally, a 20% identity level
can be used as threshold as long as the identity of the sequence pair falls within
the “safe zone” (see Chapter 3). Often, multiple database structures with significant
similarity can be found as a result of the search. In that case, it is recommended
that the structure(s) with the highest percentage identity, highest resolution, and the
mostappropriate cofactors is selected as a template. On the other hand, there maybea
situation in which no highly similar sequences can be found in the structure database.
In that instance, template selection can become difficult. Either a more sensitive
profile-based PSI-BLAST method or a fold recognition method such threading can be
used to identify distant homologs. Most likely, in such a scenario, onlylocal similarities
can be identified with distant homologs. Modeling can therefore only be done with
the aligned domains of the target protein.

Sequence Alighment

Once the structure with the highest sequence similarity is identified as a template, the
full-length sequences of the template and target proteins need to be realigned using
refined alignment algorithms to obtain optimal alignment. This realignment is the
most critical step in homology modeling, which directly affects the quality of the final
model. This is because incorrect alignment at this stage leads to incorrect designation
of homologous residues and therefore to incorrect structural models. Errors made in
the alignment step cannot be corrected in the following modeling steps. Therefore,
the best possible multiple alignment algorithms, such as Praline and T-Coffee (see
Chapter 5), should be used for this purpose. Even alignment using the best alignment
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program may not be error free and should be visually inspected to ensure that con-
served keyresidues are correctly aligned. If necessary, manual refinement of the align-
ment should be carried out to improve alignment quality.

Backbone Model Building

Once optimal alignment is achieved, residues in the aligned regions of the target
protein can assume a similar structure as the template proteins, meaning that the
coordinates of the corresponding residues of the template proteins can be simply
copied onto the target protein. If the two aligned residues are identical, coordinates of
the side chain atoms are copied along with the main chain atoms. If the two residues
differ, only the backbone atoms can be copied. The side chain atoms are rebuilt in a
subsequent procedure.

In backbone modeling, it is simplest to use only one template structure. As men-
tioned, the structure with the best quality and highest resolution is normally chosen
if multiple options are available. This structure tends to carry the fewest errors. Occa-
sionally, multiple template structures are available for modeling. In this situation,
the template structures have to be optimally aligned and superimposed before being
used as templates in model building. One can either choose to use average coordinate
values of the templates or the best parts from each of the templates to model.

Loop Modeling

In the sequence alignment for modeling, there are often regions caused by insertions
and deletions producing gaps in sequence alignment. The gaps cannot be directly
modeled, creating “holes” in the model. Closing the gaps requires loop modeling,
which is a very difficult problem in homology modeling and is also a major source of
error. Loop modeling can be considered a mini—protein modeling problem by itself.
Unfortunately, there are no mature methods available that can model loops reliably.
Currently, there are two main techniques used to approach the problem: the database
searching method and the ab initio method.

The database method involves finding “spare parts” from known protein structures
in a database that fit onto the two stem regions of the target protein. The stems are
defined as the main chain atoms that precede and follow the loop to be modeled. The
procedure begins by measuring the orientation and distance of the anchor regions
in the stems and searching PDB for segments of the same length that also match
the above endpoint conformation. Usually, many different alternative segments that
fit the endpoints of the stems are available. The best loop can be selected based on
sequence similarity as well as minimal steric clashes with the neighboring parts of
the structure. The conformation of the best matching fragments is then copied onto
the anchoring points of the stems (Fig. 15.2). The ab initio method generates many
random loops and searches for the one that does not clash with nearby side chains
and also has reasonably low energy and ¢ and ¢ angles in the allowable regions in the
Ramachandran plot.
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loop

— endpoint Figure 15.2: Schematic of loop modeling by fitting a loop struc-
ture onto the endpoints of existing stem structures represented
stem by cylinders.

If the loops are relatively short (three to five residues), reasonably correct models
can be built using either of the two methods. If the loops are longer, it is very difficult
toachieve areliable model. The following are specialized programs forloop modeling.

FREAD (www-cryst.bioc.cam.ac.uk/cgi-bin/coda/fread.cgi) is a web server that
models loops using the database approach.

PETRA (www-cryst.bioc.cam.ac.uk/cgi-bin/coda/pet.cgi) is a web server that uses
the ab initio method to model loops.

CODA (www-cryst.bioc.cam.ac.uk/~charlotte/Coda/search_coda.html) is a web
server that uses a consensus method based on the prediction results from FREAD and
PETRA. For loops of three to eight residues, it uses consensus conformation of both
methods and for nine to thirty residues, it uses FREAD prediction only.

Side Chain Refinement

Once main chain atoms are built, the positions of side chains that are not modeled
must be determined. Modeling side chain geometry is very important in evaluat-
ing protein-ligand interactions at active sites and protein—protein interactions at the
contact interface.

A side chain can be built by searching every possible conformation at every tor-
sion angle of the side chain to select the one that has the lowest interaction energy
with neighboring atoms. However, this approach is computationally prohibitive in
most cases. In fact, most current side chain prediction programs use the concept of
rotamers, which are favored side chain torsion angles extracted from known protein
crystal structures. A collection of preferred side chain conformations is a rotamer
library in which the rotamers are ranked by their frequency of occurrence. Having
a rotamer library reduces the computational time significantly because only a small
number of favored torsion angles are examined. In prediction of side chain confor-
mation, only the possible rotamers with the lowest interaction energy with nearby
atoms are selected.

In many cases, even applying the rotamer library for every residue can be com-
putationally too expensive. To reduce search time further, backbone conformation
can be taken into account. It has been observed that there is a correlation of back-
bone conformations with certain rotamers. By using such correlations, many possible
rotamers can be eliminated and the speed of conformational search can be much
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improved. After adding the most frequently occurring rotamers, the conformations
have to be further optimized to minimize steric overlaps with the rest of the model
structure.

Most modeling packages incorporate the side chain refinement function. A
specialized side chain modeling program that has reasonably good performance is
SCWRL (sidechain placement with a rotamer library; www.fccc.edu/research/labs/
dunbrack/scwrl/), a UNIX program that works by placing side chains on a back-
bone template according to preferences in the backbone-dependent rotamer library.
Itremoves rotamers that have steric clashes with main chain atoms. The final, selected
set of rotamers has minimal clashes with main chain atoms and other side chains.

Model Refinement Using Energy Function

In these loop modeling and side chain modeling steps, potential energy calculations
are applied to improve the model. However, this does not guarantee that the entire raw
homology model is free of structural irregularities such as unfavorable bond angles,
bond lengths, or close atomic contacts. These kinds of structural irregularities can be
corrected by applying the energy minimization procedure on the entire model, which
moves the atoms in such a way that the overall conformation has the lowest energy
potential. The goal of energy minimization is to relieve steric collisions and strains
without significantly altering the overall structure.

However, energy minimization has to be used with caution because excessive
energy minimization often moves residues away from their correct positions. There-
fore, only limited energy minimization is recommended (a few hundred iterations)
to remove major errors, such as short bond distances and close atomic clashes. Key
conserved residues and those involved in cofactor binding have to be restrained if
necessary during the process.

Another often used structure refinement procedure is molecular dynamic simula-
tion. This practice is derived from the concern that energy minimization only moves
atoms toward alocal minimum without searching for all possible conformations, often
resulting in a suboptimal structure. To search for a global minimum requires moving
atoms uphill as well as downhill in a rough energy landscape. This requires thermo-
dynamic calculations of the atoms. In this process, a protein molecule is “heated” or
“cooled” to simulate the uphill and downhill molecular motions. Thus, it helps over-
come energy hurdles that are inaccessible to energy minimization. It is hoped that
this simulation follows the protein folding process and has a better chance at finding
the true structure. A more realistic simulation can include water molecules surround-
ing the structure. This makes the process an even more computationally expensive
procedure than energy minimization, however. Furthermore, it shares a similar weak-
ness of energy minimization: a molecular structure can be “loosened up” such that
it becomes less realistic. Much caution is therefore needed in using these molecular
dynamic tools.

GROMOS (www.igc.ethz.ch/gromos/) is a UNIX program for molecular dynamic
simulation. It is capable of performing energy minimization and thermodynamic
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simulation of proteins, nucleic acids, and other biological macromolecules. The sim-
ulation can be done in vacuum or in solvents. A lightweight version of GROMOS has
been incorporated in SwissPDB Viewer.

Model Evaluation

The finalhomology model has to be evaluated to make sure that the structural features
of the model are consistent with the physicochemical rules. This involves checking
anomalies in ¢—y angles, bond lengths, close contacts, and so on. Another way of
checking the quality of a protein model is to implicitly take these stereochemical
properties into account. This is a method that detects errors by compiling statistical
profiles of spatial features and interaction energy from experimentally determined
structures. By comparing the statistical parameters with the constructed model, the
method reveals which regions of a sequence appear to be folded normally and which
regions do not. If structural irregularities are found, the region is considered to have
errors and has to be further refined.

Procheck (www.biochem.ucl.ac.uk/~roman/procheck/procheck.html) is a UNIX
program that is able to check general physicochemical parameters such as ¢—y
angles, chirality, bond lengths, bond angles, and so on. The parameters of the model
are used to compare with those compiled from well-defined, high-resolution struc-
tures. If the program detects unusual features, it highlights the regions that should be
checked or refined further.

WHAT IF (www.cmbi.kun.nl:1100/WIWWWI/) is a comprehensive protein analysis
server that validates a protein model for chemical correctness. It has many functions,
including checking of planarity, collisions with symmetry axes (close contacts), proline
puckering, anomalous bond angles, and bond lengths. It also allows the generation
of Ramachandran plots as an assessment of the quality of the model.

ANOLEA (Atomic Non-Local Environment Assessment; http://protein.bio.puc.cl/
cardex/servers/anolea/index.html) is a web server that uses the statistical evaluation
approach. It performs energy calculations for atomic interactions in a protein chain
and compares these interaction energy values with those compiled from a database
of protein x-ray structures. If the energy terms of certain regions deviate significantly
from those of the standard crystal structures, it defines them as unfavorable regions.
An example of the output from the verification of a homology model is shown in
Figure 15.3A. The threshold for unfavorable residues is normally set at 5.0. Residues
with scores above 5.0 are considered regions with errors.

Verify3D (www.doe-mbi.ucla.edu/Services/Verify_3D/) is another server using the
statistical approach. It uses a precomputed database containing eighteen environ-
mental profiles based on secondary structures and solvent exposure, compiled from
high-resolution protein structures. To assess the quality of a protein model, the sec-
ondary structure and solvent exposure propensity of each residue are calculated. If the
parameters of a residue fall within one of the profiles, it receives a high score, other-
wise a low score. The result is a two-dimensional graph illustrating the folding quality
of each residue of the protein structure. A verification output of the above homology
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model is shown in Figure 15.3B. The threshold value is normally set at zero. Residues
with scores below zero are considered to have an unfavorable environment.

The assessment results can be different using different verification programs. As
shownin Figure 15.2, ANOLEA appears to beless stringent than Verify3D. Although the
full-length protein chain of this model is declared favorable by ANOLEA, residues in
the C-terminus of the protein are considered to be of low quality by Verify3D. Because
no single method is clearly superior to any other, a good strategy is to use multiple
verification methods and identify the consensus between them. It is also important
to keep in mind that the evaluation tests performed by these programs only check
the stereochemical correctness, regardless of the accuracy of the model, which may
or may not have any biological meaning.

Comprehensive Modeling Programs

A number of comprehensive modeling programs are able to perform the complete
procedure of homology modeling in an automated fashion. The automation requires
assembling a pipeline that includes target selection, alignment, model generation,
and model evaluation. Some freely available protein modeling programs and servers
are listed.

Modeller (http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_mod.html) is a web server
for homology modeling. The user provides a predetermined sequence alignment of
a template(s) and a target to allow the program to calculate a model containing all
of the heavy atoms (nonhydrogen atoms). The program models the backbone using
a homology-derived restraint method, which relies on multiple sequence alignment
between target and template proteins to distinguish highly conserved residues from
less conserved ones. Conserved residues are given high restraints in copying from
the template structures. Less conserved residues, including loop residues, are given
less or no restraints, so that their conformations can be built in a more or less ab
initio fashion. The entire model is optimized by energy minimization and molecular
dynamics procedures.

Swiss-Model (www.expasy.ch/swissmod/SWISS-MODEL.html) is an automated
modeling server that allows a user to submit a sequence and to get back a structure
automatically. The server constructs a model by automatic alignment (First Approach
mode) or manual alignment (Optimize mode). In the First Approach mode, the user
provides sequence input for modeling. The server performs alignment of the query
with sequences in PDB using BLAST. After selection of suitable templates, araw model
is built. Refinement of the structure is done using GROMOS. Alternatively, the user can
specify or upload structures as templates. The final model is sent to the user by e-mail.
In the Optimize mode, the user constructs a sequence alignment in SwissPdbViewer
and submits it to the server for model construction.

3D-JIGSAW (www.bmm.icnet.uk/servers/3djigsaw/) is a modeling server that
works in either the automatic mode or the interactive mode. Its loop modeling relies
on the database method. The interactive mode allows the user to edit alignments
and select templates, loops, and side chains during modeling, whereas the automatic



THREADING AND FOLD RECOGNITION

mode allows no human intervention and models a submitted protein sequence if it
has an identity >40% with known protein structures.

Homology Model Databases

The availability of automated modeling algorithms has allowed several research
groups to use the fully automated procedure to carry out large-scale modeling
projects. Protein models for entire sequence databases or entire translated genomes
have been generated. Databases for modeled protein structures that include nearly
one third of all known proteins have been established. They provide some useful infor-
mation forunderstanding evolution of protein structures. Thelarge databases can also
aid in target selection for drug development. However, it has also been shown that
the automated procedure is unable to model moderately distant protein homologs.
Automated modeling tends to be less accurate than modeling that requires human
intervention because of inappropriate template selection, suboptimal alignment, and
difficulties in modeling loops and side chains.

ModBase (http://alto.compbio.ucsf.edu/modbase-cgi/index.cgi) is a database of
protein models generated by the Modeller program. For most sequences that have
been modeled, only partial sequences or domains that share strong similarities with
templates are actually modeled.

3Dcrunch (www.expasy.ch/swissmod/SWISS-MODEL.html) is another database
archiving results of large-scale homology modeling projects. Models of partial
sequences from the Swiss-Prot database are derived using the Swiss-Model program.

THREADING AND FOLD RECOGNITION

As discussed in Chapters 12 and 13, there are only small number of protein folds
available (<1,000), compared to millions of protein sequences. This means that pro-
tein structures tend to be more conserved than protein sequences. Consequently,
many proteins can share a similar fold even in the absence of sequence similarities.
This allowed the development of computational methods to predict protein struc-
tures beyond sequence similarities. To determine whether a protein sequence adopts
a known three-dimensional structure fold relies on threading and fold recognition
methods.

By definition, threading or structural fold recognition predicts the structural fold of
an unknown protein sequence by fitting the sequence into a structural database and
selecting the best-fitting fold. The comparison emphasizes matching of secondary
structures, which are most evolutionarily conserved. Therefore, this approach can
identify structurally similar proteins even without detectable sequence similarity.

The algorithms can be classified into two categories, pairwise energy based and
profile based. The pairwise energy-based method was originally referred to as thread-
ing and the profile-based method was originally defined as fold recognition. How-
ever, the two terms are now often used interchangeably without distinction in the
literature.
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Figure 15.4: Outline of the threading method using the pairwise energy approach to predict protein
structural folds from sequence. By fitting a structural fold library and assessing the energy terms of the
resulting raw models, the best-fit structural fold can be selected.

Pairwise Energy Method

In the pairwise energy based method, a protein sequence is searched for in a structural
fold database to find the best matching structural fold using energy-based criteria.
The detailed procedure involves aligning the query sequence with each structural
fold in a fold library. The alignment is performed essentially at the sequence profile
level using dynamic programming or heuristic approaches. Local alignment is often
adjusted to get lower energy and thus better fitting. The adjustment can be achieved
using algorithms such as double-dynamic programming (see Chapter 14). The next
step is to build a crude model for the target sequence by replacing aligned residues in
the template structure with the corresponding residues in the query. The third step
is to calculate the energy terms of the raw model, which include pairwise residue
interaction energy, solvation energy, and hydrophobic energy. Finally, the models are
ranked based on the energy terms to find the lowest energy fold that corresponds to
the structurally most compatible fold (Fig. 15.4).

Profile Method

In the profile-based method, a profile is constructed for a group of related protein
structures. The structural profile is generated by superimposition of the structures to
expose corresponding residues. Statistical information from these aligned residues is
then used to construct a profile. The profile contains scores that describe the propen-
sity of each of the twenty amino acid residues to be at each profile position. The profile
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scores contain information for secondary structural types, the degree of solvent expo-
sure, polarity, and hydrophobicity of the amino acids. To predict the structural fold of
an unknown query sequence, the query sequence is first predicted for its secondary
structure, solvent accessibility, and polarity. The predicted information is then used
for comparison with propensity profiles of known structural folds to find the fold that
best represents the predicted profile.

Because threading and fold recognition detect structural homologs without com-
pletely relying on sequence similarities, they have been shown to be far more sensitive
than PSI-BLAST in finding distant evolutionary relationships. In many cases, they can
identify more than twice as many distant homologs than PSI-BLAST. However, this
high sensitivity can also be their weakness because high sensitivity is often associated
with low specificity. The predictions resulting from threading and fold recognition
often come with very high rates of false positives. Therefore, much caution is required
in accepting the prediction results.

Threading and fold recognition assess the compatibility of an amino acid sequence
with aknown structure in a fold library. If the protein fold to be predicted does not exist
in the fold library, the method will fail. Another disadvantage compared to homology
modeling lies in the fact that threading and fold recognition do not generate fully
refined atomic models for the query sequences. This is because accurate alignment
between distant homologs is difficult to achieve. Instead, threading and fold recog-
nition procedures only provide a rough approximation of the overall topology of the
native structure.

A number of threading and fold recognition programs are available using either or
both prediction strategies. At present, no single algorithm is always able to provide
reliable fold predictions. Some algorithms work well with some types of structures,
but fail with others. It is a good practice to compare results from multiple programs
for consistency and judge the correctness by using external knowledge.

3D-PSSM (www.bmm.icnet.uk/~3dpssm/) is a web-based program that employs
the structural profile method to identify protein folds. The profiles for each protein
superfamily are constructed by combining multiple smaller profiles. First, protein
structures in a superfamily based on the SCOP classification are superimposed and
are used to construct a structural profile by incorporating secondary structures and
solvent accessibility information for corresponding residues. In addition, each mem-
ber in a protein structural superfamily has its own sequence-based PSI-BLAST profile
computed. These sequence profiles are used in combination with the structure pro-
file to form a large superfamily profile in which each position contains both sequence
and structural information. For the query sequence, PSI-BLAST is performed to gen-
erate a sequence-based profile. PSI-PRED is used to predict its secondary struc-
ture. Both the sequence profile and predicted secondary structure are compared
with the precomputed protein superfamily profiles, using a dynamic programming
approach. The matching scores are calculated in terms of secondary structure, solva-
tion energy, and sequence profiles and ranked to find the highest scored structure fold
(Fig. 15.5).
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GenThreader (http://bioinf.cs.ucl.ac.uk/psipred/index.html) is a web-based pro-
gram that uses a hybrid of the profile and pairwise energy methods. The initial step
is similar to 3D-PSSM; the query protein sequence is subject to three rounds of
PSI-BLAST. The resulting multiple sequence hits are used to generate a profile. Its
secondary structure is predicted using PSIPRED. Both are used as input for threading
computation based on a pairwise energy potential method. The threading results are
evaluated using neural networks that combine energy potentials, sequence alignment
scores, and length information to create a single score representing the relationship
between the query and template proteins.

Fugue (www-cryst.bioc.cam.ac.uk/~fugue/prfsearch.html) is a profile-based fold
recognition server. It has precomputed structural profiles compiled from multiple
alignments of homologous structures, which take into account local structural envi-
ronment such as secondary structure, solvent accessibility, and hydrogen bonding
status. The query sequence (or a multiple sequence alignment if the user prefers) is
used to scan the database of structural profiles. The comparison between the query
and the structural profiles is done using global alignment or local alignment depend-
ing on sequence variability.

AB INITIO PROTEIN STRUCTURAL PREDICTION

Both homology and fold recognition approaches rely on the availability of template
structures in the database to achieve predictions. If no correct structures exist in the
database, the methods fail. However, proteins in nature fold on their own without
checking what the structures of their homologs are in databases. Obviously, there is
some information in the sequences that provides instruction for the proteins to “find”
their native structures. Early biophysical studies have shown that most proteins fold
spontaneously into a stable structure that has near minimum energy. This structural
stateis called the native state. This folding process appears to be nonrandom; however,
its mechanism is poorly understood.

The limited knowledge of protein folding forms the basis of ab initio prediction.
As the name suggests, the ab initio prediction method attempts to produce all-atom
protein models based on sequence information alone without the aid of known pro-
tein structures. The perceived advantage of this method is that predictions are not
restricted by known folds and that novel protein folds can be identified. However,
because the physicochemical laws governing protein folding are not yet well under-
stood, the energy functions used in the ab initio prediction are at present rather inac-
curate. The folding problem remains one of the greatest challenges in bioinformatics
today.

Current ab initio algorithms are not yet able to accurately simulate the protein-
folding process. They work by using some type of heuristics. Because the native
state of a protein structure is near energy minimum, the prediction programs are
thus designed using the energy minimization principle. These algorithms search for
every possible conformation to find the one with the lowest global energy. However,
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searching for a fold with the absolute minimum energy may not be valid in reality. This
contributes to one of the fundamental flaws of this approach. In addition, searching
for all possible structural conformations is not yet computationally feasible. It has
been estimated that, by using one of the world’s fastest supercomputers (one trillion
operations per second), it takes 102° years to sample all possible conformations of
a 40-residue protein. Therefore, some type of heuristics must be used to reduce the
conformational space to be searched. Some recent ab initio methods combine frag-
ment search and threading to yield a model of an unknown protein. The following
web program is such an example using the hybrid approach.

Rosetta (www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php) is a web server that
predicts protein three-dimensional conformations using the ab initio method. This
in fact relies on a “mini-threading” method. The method first breaks down the query
sequence into many very short segments (three to nine residues) and predicts the
secondary structure of the small segments using a hidden Markov model-based pro-
gram, HMMSTR (see Chapter 14). The segments with assigned secondary structures
are subsequently assembled into a three-dimensional configuration. Through ran-
dom combinations of the fragments, a large number of models are built and their
overall energy potentials calculated. The conformation with the lowest global free
energy is chosen as the best model.

It needs to be emphasized that up to now, ab initio prediction algorithms are
far from mature. Their prediction accuracies are too low to be considered practi-
cally useful. Ab initio prediction of protein structures remains a fanciful goal for the
future. However, with the current pace of high-throughput structural determination
by the structural proteomics initiative, which aims to solve all protein folds within a
decade, the time may soon come when there is little need to use the ab initio mod-
eling approach because homology modeling and threading can provide much higher
quality predictions for all possible protein folds. Regardless of the progress made in
structural proteomics, exploration of protein structures using the ab initio prediction
approach may still yield insight into the protein-folding process.

CASP

Discussion of protein structural prediction would not be complete without men-
tioning CASP (Critical Assessment of Techniques for Protein Structure Prediction).
With so many protein structure prediction programs available, there is a need to
know the reliability of the prediction methods. For that purpose, a common bench-
mark is needed to measure the accuracies of the prediction methods. To avoid let-
ting programmers know the correct answer in the structure benchmarks in advance,
already published protein structures cannot be used for testing the efficacy of new
methodologies. Thus, a biannual international contest was initiated in 1994. It allows
developers to predict unknown protein structures through blind testing so that
the reliability of new prediction methods can be objectively evaluated. This is the
experiment of CASP.



SUMMARY

CASP contestants are given protein sequences whose structures have been solved
by x-ray crystallography and NMR, but not yet published. Each contestant predicts
the structures and submits the results to the CASP organizers before the structures are
made publicly available. The results of the predictions are compared with the newly
determined structures using structure alignment programs such as VAST, SARE, and
DALL In this way, new prediction methodologies can be evaluated without the pos-
sibility of bias. The predictions can be made at various levels of detail (secondary
or tertiary structures) and in various categories (homology modeling, threading, ab
initio). This experiment has been shown to provide valuable insight into the per-
formance of prediction methods and has become the major driving force of devel-
opment for protein structure prediction methods. For more information, the reader
is recommended to visit the web site of the Protein Structure Prediction Center at
http://predictioncenter.llnl.gov/.

SUMMARY

Protein structural prediction offers a theoretical alternative to experimental deter-
mination of structures. It is an efficient way to obtain structural information when
experimental techniques are not successful. Computational prediction of protein
structures is divided into three categories: homology modeling, threading, and ab ini-
tio prediction. Homology modeling, which is the most accurate prediction approach,
derives models from close homologs. The process is simple in principle, but is more
complicated in practice. It involves an elaborate procedure of template selection,
sequence alignment correction, backbone generation, loop building, side chain mod-
eling, model refinement, and model evaluation. Among these steps, sequence align-
ment is the most important step and loop modeling is the most difficult and error-
prone step. Algorithms have been developed to automate the entire process and have
been applied to a large-scale modeling work. However, the automated process tends
to be less accurate than detailed manual modeling.

Another way to predict protein structures is through threading or fold recognition,
which searches for a best fitting structure in a structural fold library by matching
secondary structure and energy criteria. This approach is used when no suitable tem-
plate structures can be found for homology-based modeling. The caveat is that this
approach does not generate an actual model, but provide an essentially correct fold
for the query protein. In addition, the protein fold of interest often does not exist in
the fold library, in which case the method will fail.

The third prediction method —ab initio prediction—attempts to generate a structure
without relying on templates, but by using physical rules only. It may be used when
neither homology modeling nor threading can be applied. However, the ab initio
approach so far has very limited success in getting correct structures. An objective
evaluation platform, CASBP for protein structure prediction methodologies has been
established to allow program developers to test the effectiveness of the algorithms.
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CHAPTER SIXTEEN

RNA Structure Prediction

RNA is one of the three major types of biological macromolecules. Understanding
the structures of RNA provides insights into the functions of this class of molecules.
Detailed structural information about RNA has significant impact on understand-
ing the mechanisms of a vast array of cellular processes such as gene expres-
sion, viral infection, and immunity. RNA structures can be experimentally deter-
mined using x-ray crystallography or NMR techniques (see Chapter 10). However,
these approaches are extremely time consuming and expensive. As a result, com-
putational prediction has become an attractive alternative. This chapter presents
the basics of RNA structures and current algorithms for RNA structure prediction,
with an emphasis on secondary structure prediction.

INTRODUCTION

It is known that RNA is a carrier of genetic information and exists in three main forms.
They are messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).
Their main roles are as follows: mRNA is responsible for directing protein synthesis;
rRNA provides structural scaffolding within ribosomes; and tRNA serves as a carrier
of amino acids for polypeptide synthesis.

Recentadvances in biochemistry and molecular biology have allowed the discovery
of new functions of RNA molecules. For example, RNA has been shown to possess
catalytic activity and is important for RNA splicing, processing, and editing. A class of
small, noncoding RNA molecules, termed microRNA or miRNA, have recently been
identified to regulate gene expression through interaction with mRNA molecules.

Unlike DNA, which is mainly double stranded, RNA is single stranded, although an
RNA molecule can self-hybridize at certain regions to form partial double-stranded
structures. Generally, mRNA is more or less linear and nonstructured, whereas rRNA
and tRNA can only function by forming particular secondary and tertiary structures.
Therefore, knowledge of the structures of these molecules is particularly impor-
tant for understanding their functions. Difficulties in experimental determination
of RNA structures make theoretical prediction a very desirable approach. In fact,
computational-based analysis is a main tool in RNA-based drug design in pharma-
ceutical industry. In addition, knowledge of the secondary structures of rRNA is key
for RNA-based phylogenetic analysis.
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TYPES OF RNA STRUCTURES
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Figure 16.2: Schematic diagram of a hypothetical RNA molecular containing four basic types of RNA
loops: a hairpin loop, bulge loop, interior loop, and multibranch loop. Dashed lines indicate base pairings
in the helical regions of the molecule.

TYPES OF RNA STRUCTURES

RNA structures can be described at three levels as in proteins: primary, secondary;,
and tertiary. The primary structure is the linear sequence of RNA, consisting of four
bases, adenine (A), cytosine (C), guanine (G), and uracil (U). The secondary structure
refers to the planar representation that contains base-paired regions among single-
stranded regions. The base pairing is mainly composed of traditional Watson-Crick
base pairing, which is A-U and G-C. In addition to the canonical base pairing, there
often exists noncanonical base pairing such as G and U base paring. The G-U base
pair is less stable and normally occurs within a double-strand helix surrounded
by Watson-Crick base pairs. Finally, the tertiary structure is the three-dimensional
arrangement of bases of the RNA molecule. Examples of the three levels of RNA struc-
tural organization are illustrated in Figure 16.1.

Because the RNA tertiary structure is very difficult to predict, attention has been
mainly focused on secondary structure prediction. It is therefore important to learn
in more detail about RNA secondary structures. Based on the arrangement of helical
base pairing in secondary structures, four main subtypes of secondary structures can
be identified. They are hairpin loops, bulge loops, interior loops, and multibranch
loops (Fig. 16.2).

The hairpin loop refers to a structure with two ends of a single-stranded region
(loop) connecting a base-paired region (stem). The bulge loop refers to a single
stranded region connecting two adjacent base-paired segments so that it “bubbles”
out in the middle of a double helix on one side. The interior loop refers to two single-
stranded regions on opposite strands connecting two adjacent base-paired segments.
It can be said to “bubble” out on both sides in the middle of a double helical segment.
The multibranch loop, also called helical junctions, refers to a loop that brings three
or more base-paired segments in close vicinity forming a multifurcated structure.
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Figure 16.3: A hypothetical RNA structure containing a pseudoknot, kissing hairpin, and hairpin-bulge
contact.

In addition to the traditional secondary structural elements, base pairing between
loops of different secondary structural elements can result in a higher level of struc-
tures such as pseudoknots, kissing hairpins, and hairpin-bulge contact (Fig. 16.3). A
pseudoknot loop refers to base pairing formed between loop residues within a hair-
pin loop and residues outside the hairpin loop. A kissing hairpin refers to a hydro-
gen bonded interaction formed between loop residues of two hairpin structures. The
hairpin-bulge contact refers to interactions between loop residues of a hairpin loop
and a bulge loop. This type of interaction forms supersecondary structures, which are
relatively rare in real structures and thus are ignored by most conventional prediction
algorithms.

RNA SECONDARY STRUCTURE PREDICTION METHODS

At present, there are essentially two types of method of RNA structure prediction.
One is based on the calculation of the minimum free energy of the stable structure
derived from a single RNA sequence. This can be considered an ab initio approach. The
second is a comparative approach which infers structures based on an evolutionary
comparison of multiple related RNA sequences.

AB INITIO APPROACH

This approach makes structural predictions based on a single RNA sequence. The
rationale behind this method is that the structure of an RNA molecule is solely deter-
mined by its sequence. Thus, algorithms can be designed to search for a stable RNA
structure with the lowest free energy. Generally, when a base pairing is formed, the
energy of the molecule is lowered because of attractive interactions between the two
strands. Thus, to search for a most stable structure, ab initio programs are designed
to search for a structure with the maximum number of base pairs.

Free energy can be calculated based on parameters empirically derived for small
molecules. G-C base pairs are more stable than A-U base pairs, which are more stable
than G-U base pairs. It is also known that base-pair formation is not an independent
event. The energy necessary to form individual base pairs is influenced by adjacent
base pairs through helical stacking forces. This is known as cooperativity in helix
formation. If a base pair is next to other base pairs, the base pairs tend to stabilize
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each other through attractive stacking interactions between aromatic rings of the base
pairs. The attractive interactions lead to even lower energy. Parameters for calculating
the cooperativity of the base-pair formation have been determined and can be used
for structure prediction.

However, if the base pair is adjacent to loops or bulges, the neighboring loops
and bulges tend to destabilize the base-pair formation. This is because there is a
loss of entropy when the ends of the helical structure are constrained by unpaired
loop residues. The destabilizing force to a helical structure also depends on the
types of loops nearby. Parameters for calculating different destabilizing energies
have also been determined and can be used as penalties for secondary structure
calculations.

The scoring scheme based on the combined stabilizing and destabilizing inter-
actions forms the foundation of the ab initio RNA secondary structure prediction
method. This method works by first finding all possible base-pairing patterns from a
sequence and then calculating the total energy of a potential secondary structure by
taking into account all the adjacent stabilizing and destabilizing forces. If there are
multiple alternative secondary structures, the method finds the conformation with
the lowest energy, meaning that it is energetically most favorable.

Dot Matrices

In searching for the lowest energy form, all possible base-pair patterns have to be
examined. There are several methods for finding all the possible base-paired regions
froma given nucleic acid sequence. The dot matrix method and the dynamic program-
ming method introduced in Chapter 3 can be used in detecting self-complementary
regions of a sequence. A simple dot matrix can find all possible base-paring patterns of
an RNA sequence when one sequence is compared with itself (Fig. 16.4). In this case,
dots are placed in the matrix to represent matching complementary bases instead of
identical ones.

The diagonals perpendicular to the main diagonal represent regions that can self-
hybridize to form double-stranded structure with traditional A—-U and G-C base pairs.
In reality, the pattern detection in a dot matrix is often obscured by high noise levels.
As discussed in Chapter 3, one way to reduce the noise in the matrix is to select
an appropriate window size of a minimum number of contiguous base matches.
Normally, only a window size of four consecutive base matches is used. If the dot plot
reveals more than one feasible structures, the lowest energy one is chosen.

Dynamic Programming

The use of a dot plot can be effective in finding a single secondary structure in a small
molecule (see Fig. 16.4). However, if a large molecule contains multiple secondary
structure segments, choosing a combination that is energetically most stable among
a large number of possibilities can be a daunting task. To overcome the problem,
a quantitative approach such as dynamic programming can be used to assemble a
final structure with optimal base-paired regions. In this approach, an RNA sequence

235



236

RNA STRUCTURE PREDICTION

AACUGGAUACGCCAGAA

FrarFrOoOoQOPraraQcnrEr
]
11
a0

Figure 16.4: Example of a dot plot used for RNA secondary structure prediction. In this plot, an RNA
sequence is compared with itself. Dots are placed for matching complementary bases when a window
size of four nucleotide match is used. A main diagonal, which is perpendicular to the short diagonals, is
placed for self-matching. Based on the dot plot, the predicted secondary structure for this sequence is
shown on the right.

is compared with itself. A scoring scheme is applied to fill the matrix with match
scores based on Watson-Crick base complementarity. Often, G-U base pairing and
energy terms of the base pairing are also incorporated into the scoring process. A path
with the maximal score within a scoring matrix after taking into account the entire
sequence information represents the most probable secondary structure form.

The dynamic programming method produces one structure with asingle bestscore.
However, this is potentially a drawback of this approach because in reality an RNA
may exist in multiple alternative forms with near minimum energy but not necessarily
the one with maximum base pairs.

Partition Function

The problem of dynamic programming to select one single structure can be comple-
mented by adding a probability distribution function, known as the partition function,
which calculates a mathematical distribution of probable base pairs in a thermody-
namic equilibrium. This function helps to select a number of suboptimal structures
within a certain energy range. The following lists two well-known programs using the
ab initio prediction method.

Mfold (www.bioinfo.rpi.edu/applications/mfold/) isaweb-based program for RNA
secondary structure prediction. It combines dynamic programming and thermody-
namic calculations foridentifying the most stable secondary structures with the lowest
energy. It also produces dot plots coupled with energy terms. This method is reliable
for short sequences, but becomes less accurate as the sequence length increases.

RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) is one of the web pro-
grams in the Vienna package. Unlike Mfold, which only examines the energy terms of
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Figure 16.5: Example of covariation of residues among three homologous RNA sequences to maintain
the stability of an existing secondary structure.

the optimal alignment in a dot plot, RNAfold extends the sequence alignment to the
vicinity of the optimal diagonals to calculate thermodynamic stability of alternative
structures. It further incorporates a partition function to select a number of statisti-
cally most probable structures. Based on both thermodynamic calculations and the
partition function, a number of alternative structures that may be suboptimal are
provided. The collection of the predicted structures may provide a better estimate
of plausible foldings of an RNA molecule than the predictions by Mfold. Because of
the much larger number of secondary structures to be computed, a more simplified
energy rule has to be used to increase computational speed. Thus, the prediction
results are not always guaranteed to be better than those predicted by Mfold.

COMPARATIVE APPROACH

The comparative approach uses multiple evolutionarily related RNA sequences to
infer a consensus structure. This approach is based on the assumption that RNA
sequences that deem to be homologous fold into the same secondary structure. By
comparing related RNA sequences, an evolutionarily conserved secondary structure
can be derived.

To distinguish the conserved secondary structure among multiple related RNA
sequences, a concept of “covariation” is used. It is known that RNA functional motifs
are structurally conserved. To maintain the secondary structures while the homol-
ogous sequences evolve, a mutation occurring in one position that is responsible
for base pairing should be compensated for by a mutation in the corresponding
base-pairing position so to maintain base pairing and the stability of the secondary
structure (Fig. 16.5). This is the concept of covariation. Any lack of covariation can
be deleterious to the RNA structure and functions. Based on this rule, algorithms
can be written to search for the covariation patterns after a set of homologous RNA
sequences are properly aligned. The detected correlated substitutions help to deter-
mine conserved base pairing in a secondary structure.

Another aspect of the comparative method is to select a common structure through
consensus drawing. Because predicting secondary structures for each individual
sequence may produce errors, by comparing all predicted structures of a group of
aligned RNA sequences and drawing a consensus, the commonly adopted structure
can be selected; many other possible structures can be eliminated in the process. The
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comparative-based algorithms can be further divided into two categories based on
the type of input data. One requires predefined alignment and the other does not.

Algorithms That Use Prealignment

This type of algorithm requires the user to provide a pairwise or multiple alignment as
input. The sequence alignment can be obtained using standard alignment programs
such as T-Coffee, PRRN, or Clustal (see Chapter 5). Based on the alignment input,
the prediction programs compute structurally consistent mutational patterns such
as covariation and derive a consensus structure common for all the sequences. In
practice, the consensus structure prediction is often combined with thermodynamic
calculations to improve accuracy.

This type of program is relatively successful for reasonably conserved sequences.
The requirement for using this type of program is an appropriate set of homologous
sequences that have to be similar enough to allow accurate alignment, but diver-
gent enough to allow covariations to be detected. If this condition is not met, correct
structures cannot be inferred. The method also depends on the quality of the input
alignment. If there are errors in the alignment, covariation signals will not be detected.
The selection of one single consensus structure is also a drawback because alterna-
tive and evolutionarily unconserved structures are not predicted. The following is an
example of this type of program based on predefined aligned sequences.

RNAalifold (http://rna.tbi.univie.ac.at/cgi-bin/alifold.cgi) is a program in the
Vienna package. It uses a multiple sequence alignment as input to analyze covari-
ation patterns on the sequences. A scoring matrix is created that combines minimum
free energy and covariation information. Dynamic programming is used to select the
structure that has the minimum energy for the whole set of aligned RNA sequences.

Algorithms That Do Not Use Prealighment

This type of algorithm simultaneously aligns multiple input sequences and infers a
consensus structure. The alignment is produced using dynamic programming with
a scoring scheme that incorporates sequence similarity as well as energy terms.
Because the full dynamic programming for multiple alignment is computationally
too demanding, currently available programs limit the input to two sequences.

Foldalign (http://foldalign.kvl.dk/server/index.html) is a web-based program for
RNA alignment and structure prediction. The user provides a pair of unaligned
sequences. The program uses a combination of Clustal and dynamic programming
with a scoring scheme that includes covariation information to construct the align-
ment. A commonly conserved structure for both sequences is subsequently derived
based on the alignment. To reduce computational complexity, the program ignores
multibranch loops and is only suitable for handling short RNA sequences.

Dynalign (http://rna.urmc.rochester.edu/) is a UNIX program with a free source
code for downloading. The user again provides two input sequences. The program
calculates the possible secondary structures of each using a method similar to Mfold.



SUMMARY

By comparing multiple alternative structures from each sequence, a lowest energy
structure common to both sequences is selected that serves as the basis for sequence
alignment. The unique feature of this program is that it does not require sequence
similarity and therefore can handle very divergent sequences. However, because of
the computation complexity, the program only predicts small RNA sequences such as
tRNA with reasonable accuracy.

PERFORMANCE EVALUATION

Rigorously evaluating the performance of RNA prediction programs has traditionally
been hindered by the dearth of three-dimensional structural information for RNA.
The availability of recently solved crystal structures of the entire ribosome provides
a wealth of structural details relating to diverse types of RNA molecules. The high-
resolution structural information can then be used as a benchmark for evaluating
state-of-the-art RNA structure prediction programs in all categories.

If prediction accuracy can be represented using a single parameter such as the cor-
relation coefficient, which takes into account both sensitivity and selectivity informa-
tion (see Chapter 8), the ab initio-based programs score roughly 20% to 60% depend-
ing on the length of the sequences. Generally speaking, the programs perform better
for shorter RNA sequences than for longer ones. For small RNA sequences, such as
tRNA, some programs may be able to produce 70% accuracy. The major limitation for
performance gains of this category appears to be dependence on energy parameters
alone, which may not be sufficient to distinguish different structural possibilities of
the same molecule.

Based on recent benchmark comparisons, the comparative-type algorithms can
reach an accuracy range of 20% to 80%. The results depend on whether a pro-
gram is prealignment dependent or not. Most of the superior performance comes
from prealignment-dependent programs such as RNAalifold. The prealignment-
independent programs fare much worse for predicting long sequences. For small
RNA sequences such as tRNA, both subtypes can achieve very high accuracy (up to
100%). This illustrates that the comparative approach is consistently more accurate
than the ab initio one.

SUMMARY

Detailed understanding of RNA structures is important for understanding the func-
tional role of RNA in the cell. The demand for structural information about RNA has
motivated the development of a large number of prediction algorithms. Current RNA
structure prediction is predominantly focused on secondary structures owing to the
difficulty in predicting tertiary structures. The secondary structure prediction meth-
ods can be classified as either ab initio or comparative. The ab initio method is based
on energetic calculations from a single query sequence. However, the accuracy of
the ab initio method is limited. The comparative approach, which requires multiple
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sequences, is able to achieve better accuracy. However, the obvious drawback of the
consensus approach is the requirement for a unique set of homologous sequences.
Neither type of the prediction methods currently considers pseudoknots in the RNA
structure because of the much greater computational complexity involved. To fur-
ther increase prediction performance, the research and development should focus
on alleviating some of the current drawbacks.
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