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CHAPTER SEVENTEEN

Genome Mapping, Assembly, and Comparison

Genomics is the study of genomes. Genomic studies are characterized by simultane-
ous analysis of a large number of genes using automated data gathering tools. The
topics of genomics range from genome mapping, sequencing, and functional genomic
analysis to comparative genomic analysis. The advent of genomics and the ensuing
explosion of sequence information are the main driving force behind the rapid devel-
opment of bioinformatics today.

Genomic study can be tentatively divided into structural genomics and functional
genomics. Structural genomics refers to the initial phase of genome analysis, which
includes construction of genetic and physical maps of a genome, identification of
genes, annotation of gene features, and comparison of genome structures. This is the
major theme of discussion of this chapter. However, it should to be mentioned that
the term structural genomics has already been used by a structural biology group for
an initiative to determine three-dimensional structures of all proteins in a cell. Strictly
speaking, the initiative of structural determination of proteins falls within the realm
of structural proteomics and should not be confused as a subdiscipline of genomics.
The structure genomics discussed herein mainly deals with structures of genome
sequences. Functional genomics refers to the analysis of global gene expression and
gene functions in a genome, which is discussed in Chapter 18.

GENOME MAPPING

The first step to understanding a genome structure is through genome mapping,
which is a process of identifying relative locations of genes, mutations or traits on
a chromosome. A low-resolution approach to mapping genomes is to describe the
order and relative distances of genetic markers on a chromosome. Genetic markers are
identifiable portions of a chromosome whose inheritance patterns can be followed.
For many eukaryotes, genetic markers represent morphologic phenotypes. In addition
to genetic linkage maps, there are also other types of genome maps such as physical
maps and cytologic maps, which describe genomes at different levels of resolution.
Their relations relative to the DNA sequence on a chromosome are illustrated in
Figure 17.1. More details of each type of genome maps are discussed next.

Genetic linkage maps, also called genetic maps, identify the relative positions of
genetic markers on a chromosome and are based on how frequent the markers are
inherited together. The rationale behind genetic mapping is that the closer the two
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Figure 17.1: Overview of various genome maps relative to the genomic DNA sequence. The maps
represent different levels of resolution to describe a genome using genetic markers. Cytologic maps are
obtained microscopically. Genetic maps (grey bar) are obtained through genetic crossing experiments in
which chromosome recombinations are analyzed. Physical maps are obtained from overlapping clones
identified by hybridizing the clone fragments (grey bars) with common probes (grey asterisks).

genetic markers are, the more likely it is that they are inherited together and are not
separated in a genetic crossing event. The distance between the two genetic markers
ismeasured in centiMorgans (cM), which is the frequency of recombination of genetic
markers. One centiMorgan is defined as one percentage of the total recombination
events when separation of the two genetic markers is observed in a genetic cross-
ing experiment. One centiMorgan is approximately 1 Mb in humans and 0.5 Mb in
Drosophila.

Physical maps are maps of locations of identifiable landmarks on a genomic DNA
regardless of inheritance patterns. The distance between genetic markers is measured
directly as kilobases (Kb) or megabases (Mb). Because the distance is expressed in
physical units, it is more accurate and reliable than centiMorgans used in genetic
maps. Physical maps are constructed by using a chromosome walking technique,
which uses a number of radiolabeled probes to hybridize to a library of DNA clone
fragments. By identifying overlapping clones probed by common probes, a relative
order of the cloned fragments can be established.

Cytologic maps refer to banding patterns seen on stained chromosomes, which
can be directly observed under a microscope. The observable light and dark bands
are the visually distinct markers on a chromosome. A genetic marker can be asso-
ciated with a specific chromosomal band or region. The banding patterns, how-
ever, are not always constant and are subject to change depending on the extent
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of chromosomal contraction. Thus, cytologic maps can be considered to be of very
low resolution and hence somewhat inaccurate physical maps. The distance between
two bands is expressed in relative units (Dustin units).

GENOME SEQUENCING

The highest resolution genome map is the genomic DNA sequence that can be con-
sidered as a type of physical map describing a genome at the single base-pair level.
DNA sequencing is now routinely carried out using the Sanger method. This involves
the use of DNA polymerases to synthesize DNA chains of varying lengths. The
DNA synthesis is stopped by adding dideoxynucleotides. The dideoxynucleotides are
labeled with fluorescent dyes, which terminate the DNA synthesis at positions con-
taining all four bases, resulting in nested fragments that vary in length by a single
base. When the labeled DNA is subjected to electrophoresis, the banding patterns in
the gel reveal the DNA sequence.

The fluorescent traces of the DNA sequences are read by a computer program that
assigns bases for each peak in a chromatogram. This process is called base calling.
Automated base calling may generate errors and human intervention is often required
to correct the sequence calls.

There are two major strategies for whole genome sequencing: the shotgun
approach and the hierarchical approach. The shotgun approach randomly sequences
clones from both ends of cloned DNA. This approach generates a large number of
sequenced DNA fragments. The number of random fragments has to be very large,
so large that the DNA fragments overlap sufficiently to cover the entire genome.
This approach does not require knowledge of physical mapping of the clone frag-
ments, but rather a robust computer assembly program to join the pieces of random
fragments into a single, whole-genome sequence. Generally, the genome has to be
redundantly sequenced in such a way that the overall length of the fragments covers
the entire genome multiple times. This is designed to minimize sequencing errors
and ensure correct assembly of a contiguous sequence. Overlapping sequences with
an overall length of six to ten times the genome size are normally obtained for this
purpose.

Despite the multiple coverage, sometimes certain genomic regions remain
unsequenced, mainly owing to cloning difficulties. In such cases, the remain-
der gap sequences can be obtained through extending sequences from regions of
known genomic sequences using a more traditional PCR technique, which requires
the use of custom primers and performs genome walking in a stepwise fash-
ion. This step of genome sequencing is also known as finishing, which is fol-
lowed by computational assembly of all the sequence data into a final complete
genome.

The hierarchical genome sequencing approach is similar to the shotgun approach,
but on a smaller scale. The chromosomes are initially mapped using the physical
mapping strategy. Longer fragments of genomic DNA (100 to 300 kB) are obtained
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and cloned into a high-capacity bacterial vector called bacterial artificial chromo-
some (BAC). Based on the results of physical mapping, the locations and orders of the
BAC clones on a chromosome can be determined. By successively sequencing adja-
cent BAC clone fragments, the entire genome can be covered. The complete sequence
of each individual BAC clone can be obtained using the shotgun approach. Overlap-
ping BAC clones are subsequently assembled into an entire genome sequence. Major
differences between the hierarchical and the full shotgun approaches are shown in
Figure 17.2.

During the era of human genome sequencing, there was a heated debate on the
merits of each of the two strategies. In fact, there are advantages and disadvantages
in either. The hierarchical approach is slower and more costly than the shotgun
approach because it involves an initial clone-based physical mapping step. However,
once the map is generated, assembly of the whole genome becomes relatively easy
and less error prone. In contrast, the whole genome shotgun approach can produce
a draft sequence very rapidly because it is based on the direct sequencing approach.
However, it is computationally very demanding to assemble the short random frag-
ments. Although the approach has been successfully employed in sequencing small
microbial genomes, for a complex eukaryotic genome that contains high levels of
repetitive sequences, such as the human genome, the full shotgun approach becomes
less accurate and tends to leave more “holes” in the final assembled sequence than
the hierarchical approach. Current genome sequencing of large organisms often uses
a combination of both approaches.

GENOME SEQUENCE ASSEMBLY

As described, initial DNA sequencing reactions generate short sequence reads from
DNA clones. The average length of the reads is about 500 bases. To assemble a whole
genome sequence, these short fragments are joined to form larger fragments after
removing overlaps. These longer, merged sequences are termed contigs, which are
usually 5,000 to 10,000 bases long. A number of overlapping contigs can be further
merged to form scaffolds (30,000-50,000 bases, also called supercontigs), which are
unidirectionally oriented along a physical map of a chromosome (Fig. 17.3). Overlap-
ping scaffolds are then connected to create the final highest resolution map of the
genome.

Correct identification of overlaps and assembly of the sequence reads into contigs
are like joining jigsaw puzzles, which can be very computationally intensive when
dealing with data at the whole-genome level. The major challenges in genome assem-
bly are sequence errors, contamination by bacterial vectors, and repetitive sequence
regions. Sequence errors can often be corrected by drawing a consensus from an align-
ment of multiple overlapped sequences. Bacterial vector sequences can be removed
using filtering programs prior to assembly. To overcome the problem of sequence
repeats, programs such as RepeatMasker (see Chapter 4) can be used to detect and
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Figure 17.3: Schematic diagram showing three different levels of sequence assembly. Contigs are
formed by combining raw sequence reads of various orientations after removing overlaps. Scaffolds
are assembled from contigs and oriented unidirectionally on a chromosome. Because sequence frag-
ments generated can be in either of the DNA strands, arrows are used to represent directionality of the
sequences written in 5" — 3’ orientation.

mask repeats. Additional constraints on the sequence reads can be applied to avoid
misasembly caused by repeat sequences.

A commonly used constraint to avoid errors caused by sequence repeats is the so-
called forward-reverse constraint. When a sequence is generated from both ends of a
single clone, the distance between the two opposing fragments of a clone is fixed to
a certain range, meaning that they are always separated by a distance defined by a
clone length (normally 1,000 to 9,000 bases). When the constraint is applied, even
when one of the fragments has a perfect match with a repetitive element outside the
range, it is not able to be moved to that location to cause missassembly. An example
of assembly with or without applying the forward-reverse constraints is shown in
Figure 17.4.

Correct assembly > repeat €

with forward- e s

reverse constraint e . P S—
forward I fixed dist.  reverse

Mis-assembly ’ repeat €
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Figure 17.4: Example of sequence assembly with or without applying forward-reverse constraint, which
fixes the sequence distance from both ends of a subclone. Without the restraint, the red fragment is
misassembled due to matches of repetitive element in the middle of a fragment (see color plate section).
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Base Calling and Assembly Programs

The first step toward genome assembly is to derive base calls and assign associated
quality scores. The next step is to assemble the sequence reads into contiguous
sequences. This step includes identifying overlaps between sequence fragments,
assigning the order of the fragments and deriving a consensus of an overall sequence.
Assembling all shotgun fragments into a full genome is a computationally very chal-
lenging step. There are a variety of programs available for processing the raw sequence
data. The following is a selection of base calling and assembly programs commonly
used in genome sequencing projects.

Phred (www.phrap.org/) is a UNIX program for base calling. It uses a Fourier anal-
ysis to resolve fluorescence traces and predict actual peak locations of bases. It also
gives a probability score for each base call that may be attributable to error. The com-
monly accepted score threshold is twenty, which corresponds to a 1% chance of error.
The higher the score, the better the quality of the sequence reads. If the score value
falls below the threshold, human intervention is required.

Phrap (www.phrap.org/) is a UNIX program for sequence assembly. It takes Phred
base-call files with quality scores as input and aligns individual fragments in a
pairwise fashion using the Smith-Waterman algorithm. The base quality informa-
tion is taken into account during the pairwise alignment. After all the pairwise
sequence similarity is identified, the program performs assembly by progressively
merging sequence pairs with decreasing similarity scores while removing over-
lapped regions. Consensus contigs are derived after joining all possible overlapped
reads.

VecScreen (www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) is a web-based
program that helps detect contaminating bacterial vector sequences. It scans an input
nucleotide sequence and compares it with a database of known vector sequences by
using the BLAST program.

TIGR Assembler (www.tigr.org/) is a UNIX program from TIGR for assembly of
large shotgun sequence fragments. It treats the sequence input as clean reads without
consideration of the sequence quality. A main feature of the program is the appli-
cation of the forward-reverse constraints to avoid misassembly caused by sequence
repeats. The sequence alignment in the assembly stage is performed using the Smith-
Waterman algorithm.

ARACHNE (www-genome.wi.mit.edu/wga/) is a free UNIX program for the assem-
bly of whole-genome shotgun reads. Its unique features include using a heuristic
approach similar to FASTA to align overlapping fragments, evaluating alignments
using statistical scores, correcting sequencing errors based on multiple sequence
alignment, and using forward-reverse constraints. It accepts base calls with asso-
ciated quality scores assigned by Phred as input and produces scaffolds or a fully
assembled genome.

EULER (http://nbcr.sdsc.edu/euler/) is an assembly algorithm that uses a Eulerian
Superpath approach, which is a polynomial algorithm for solving puzzles such as the
famous “traveling salesman problem”: finding the shortest path of visiting a given
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number of cities exactly once and returning to the starting point. In this approach,
a sequence fragment is broken down to tuples of twenty nucleotides. The tuples
are distributed in a diagram with numerous nodes that are all interconnected. The
tuples are converted to binary vectors in the nodes. By using a Viterbi algorithm (see
Chapter 6), the shortest path among the vectors can be found, which is the best way to
connect the tuples into a full sequence. Because this approach does not directly rely
on detecting overlaps, it may be advantageous in assembling sequences with repeat
motifs.

GENOME ANNOTATION

Before the assembled sequence is deposited into a database, it has to be analyzed
for useful biological features. The genome annotation process provides comments
for the features. This involves two steps: gene prediction and functional assignment.
Some examples of finished gene annotations in GenBank have been described in the
Biological Database section (see Chapter 2). The following example illustrates the
overall process employed in annotating the human genome.

As a real-world example, gene annotation of the human genome employs a com-
bination of theoretical prediction and experimental verification. Gene structures are
first predicted by ab initio exon prediction programs such as GenScan or FgenesH
(see Chapter 8). The predictions are verified by BLAST searches against a sequence
database. The predicted genes are further compared with experimentally determined
cDNA and EST sequences using the pairwise alignment programs such as GeneWise,
Spidey, SIM4, and EST2Genome. All predictions are manually checked by human
curators. Once open reading frames are determined, functional assignment of the
encoded proteins is carried out by homology searching using BLAST searches against
a protein database. Further functional descriptions are added by searching protein
motif and domain databases such as Pfam and InterPro (see Chapter 7) as well as by
relying on published literature.

Gene Ontology

Aproblem arises when using existingliterature because the description of a gene func-
tion uses natural language, which is often ambiguous and imprecise. Researchers
working on different organisms tend to apply different terms to the same type of
genes or proteins. Alternatively, the same terminology used in different organisms
may actually refer to different genes or proteins. Therefore, there is a need to stan-
dardize protein functional descriptions. This demand has spurred the development
of the gene ontology (GO) project, which uses a limited vocabulary to describe
molecular functions, biological processes, and cellular components. The controlled
vocabulary is organized such that a protein function is linked to the cellular func-
tion through a hierarchy of descriptions with increasing specificity. The top of the
hierarchy provides an overall picture of the functional class, whereas the lower level
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Figure 17.5: Example of GO annotation for cytochrome c oxidase. The functional and structural terms
are arranged in three categories with a number of hierarchies indicating the levels of conceptual asso-
ciations of protein functions.

in the hierarchy specifies more precisely the functional role. This way, protein func-
tionality can be defined in a standardized and unambiguous way.

A GO description of a protein provides three sets of information: biological pro-
cess, cellular component, and molecular function, each of which uses a unique set
of nonoverlapping vocabularies. The standardization of the names, activities, and
associated pathways provides consistency in describing overall protein functions and
facilitates grouping of proteins of related functions. A database searching using GO for
aparticular protein can easily bring up other proteins of related functions in much the
same way as using a thesaurus. Using GO, a genome annotator can assign functional
properties of a gene product at different hierarchical levels, depending on how much
is known about the gene product.

At present, the GO databases have been developed for a number of model organ-
isms by aninternational consortium, in which each gene is associated with a hierarchy
of GO terms. These have greatly facilitated genome annotation efforts. A good intro-
duction of gene ontology can be found at www.geneontology.org. An example of GO
annotation for cytochrome c oxidase is shown in Figure 17.5.

Automated Genome Annotation

With the genome sequence data being generated at an exponential rate, there is a
need to develop fast and automated methods to annotate the genomic sequences.
The automated approach relies on homology detection, which is essentially heuristic
sequence similarity searching. If a newly sequenced gene or its gene product has
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significant matches with a database sequence beyond a certain threshold, a transfer
of functional assignment is taking place. In addition to sequence matching at the full
length, detection of conserved motifs often offers additional functional clues.

Because using a single database searching method is often incomplete and error
prone, automated methods have to mimic the manual process, which takes into
consideration multiple lines of evidence in assigning a gene function, to minimize
errors. The following algorithm is an example that goes a step beyond examining
sequence similarity and provides functional annotations based on multiple protein
characteristics.

GeneQuiz (http://jura.ebi.ac.uk:8765/ext-genequiz/) is a web server for protein
sequence annotation. The program compares a query sequence against databases
using BLAST and FASTA to identify homologs with high similarities. In addition, it
performs domain analysis using the PROSITE and Blocks databases (see Chapter 7) as
well as analysis of secondary structures and supersecondary structures that includes
prediction of coiled coils and transmembrane helices. Multiple search and analysis
results are compiled to produce a summary of protein function with an assigned
confidence level (clear, tentative, marginal, and negligible).

Annotation of Hypothetical Proteins

Although a large number of genes and proteins can be assigned functions by the
sequence similarity based approach, about 40% of the genes from newly sequenced
genomes have no known functions and can only be annotated as genes encoding
“hypothetical proteins.” Experimental discovery of the functions of these genes and
proteins is often time consuming and difficult because of lack of hypotheses to design
experiments. In this situation, more advanced tools can be used for functional pre-
dictions by searching for remote homologs.

One way to obtain functional hints of genes encoding hypothetical proteins is by
searching for remote homologs in databases. Detecting remote homologs typically
involves combined searches of protein motifs and domains and prediction for sec-
ondary and tertiary structures. Conserved functional sites can be identified by profile
and hidden Markov model-based motif and domain search tools such as SMART and
InterPro (see Chapter 7). The prediction can also be performed using structure-based
approaches such as threading and fold recognition (see Chapter 15). If the distant
homologs detected using the structural approach are linked with well-defined func-
tions, a broad functional class of the query protein if not the precise function of the
protein can be inferred. In addition, prediction results for subcellular localization,
protein—protein interactions can provide further functional hints (see Chapter 19).

These suggestions do not guarantee to provide correct annotations for the “hypo-
thetical proteins,” but they may provide critical hypotheses of the protein function
that can be tested in the laboratory. The remote homology detection helps to shed
light on the possible functions of the proteins that previously have no functional
information at all. Thus, the bioinformatic analysis can spur an important advance
in knowledge in many cases. Some hypothetical proteins, because of their novel
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Figure 17.6: Gene numbers estimated from several sequenced eukaryotic genomes. (Data from Inte-
grated Genomics Online Database http://ergo.integratedgenomics.com/GOLD/.)

structural folds, still cannot be predicted even with the advanced bioinformatics
approaches and remain challenges for both experimental and computational work.

How Many Genes in a Genome?

One of the main tasks of genome annotation is to try to give a precise account of
the total number of genes in a genome. This may be more feasible for prokaryotes as
their gene structures are relatively simple. However, the number of genes in eukaryotic
genomes, in particular the human genome, has been a subject of debate. This is mainly
because of the complex structures of these genomes, which obscure gene prediction.
Before the human genome sequencing was completed, the estimated gene numbers
ranged from 20,000 to 120,000. Since the completion of the sequencing of the human
genome, with the use of more sophisticated gene finding programs, the total number
of human genes now dropped to close to 25,000 to 30,000. Although no exact number
is agreed upon by all researchers, it is now widely believed that the total number of
human genes will be no more than 30,000. This compares to estimates of 50,000 in
rice, 30,000 in mouse, 26,000 in Arabidopsis, 18,400 in C. elegans, and 6,200 in yeast
(Fig. 17.6).

The discovery of the low gene count in humans may be ego defeating to some as
they realize that humans are only five times more complex than baker’s yeast and
apparently equally as complex as the mouse. What is worse, the food in their rice
bowls has twice as many genes. The finding seriously challenges the view that humans
are a superior species on Earth. As in many discoveries in scientific history, such
as Darwin’s evolutionary theory suggesting that humans arose from a “subhuman”
ancestor, recent genomic discoveries have moved humans further away from this
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exalted status. However, before we are overwhelmed by the humble realization, we
should also realize that the complexity of an organism simply cannot be represented
by gene numbers. As will soon become clear, gene expression and regulation, protein
expression, modification, and interactions all contribute to the overall complexity of
an organism.

Genome Economy

One level of genetic complexity is manifested at the protein expression level in which
there are often more expressed proteins than genes available to code for them. For
example, in humans, there are more than 100,000 proteins expressed based on EST
analysis (see Chapter 18) compared to no more than 30,000 genes. If the “one gene,
one protein” paradigm holds true, how could this discrepancy exist? Where does the
extra coding power come from?

The answer lies in “genome economy,” a phenomenon of synthesizing more pro-
teins from fewer genes. This is a major strategy that eukaryotic organisms use to
achieve a myriad of phenotypic diversities. There are many underlying genetic mech-
anisms to help account for genome economy. A major mechanism responsible for the
protein diversity is alternative splicing, which refers to the splicing event that joins
different exons from a single gene to form different transcripts. A related mechanism,
known as exon shuffling, which joins exons from different genes to generate more tran-
scripts, is also common in eukaryotes. It is known that, in humans, about two thirds
of the genes exhibit alternative splicing and exon shuffling during expression, gener-
ating 90% of the total proteins. In Drosophila, the DSCAM gene contains 115 exons
that can be alternatively spliced to produce 38,000 different proteins. This remarkable
ability to generate protein diversity and new functions highlights the true complexity
of a genome. It also illustrates the evolutionary significance of introns in eukaryotic
genes, which serve as spacers that make the molecular recombination possible.

There are more surprising mechanisms responsible for genome economy. For
example, trans-splicing can occur between RNAs produced from both DNA strands.
In the Drosophila mdg4 mutant, RNA transcribed from four exons in the sense strand
and two exons in the antisense strand are joined to form a single mRNA. With dif-
ferent exon combinations, four different proteins can be produced. In some circum-
stances, one mRNA transcript can lead to the translation of more than one protein.
For example, human dentin phosphoprotein and dentin sialoprotein are proteins
involved in tooth formation. An mRNA transcript that includes coding regions from
both proteins is translated into a precursor protein that is cleaved to produce two dif-
ferent mature proteins. Another situation, called “gene within gene,” can be found in
a gene for human prostate-specific antigen (PSA). In addition to regular PSA, humans
can produce a similar protein, called PSA-LM, that functions antagonistically to PSA
and is important for prostate cancer diagnosis. PSA-LM turns out to be encoded by
the fourth intron of the PSA gene.

These are just a few known mechanisms of condensing the coding potential of
genomic DNA to achieve increased protein diversity. From a bioinformatics point of
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view, this makes gene prediction based on computational approaches all the more
complicated. It also highlights one of the challenges that faces software program
developers today. A number of databases have recently been established to archive
alternatively spliced forms of eukaryotic genes. The following is one such example for
human genes.

ProSplicer (http://prosplicer.mbc.nctu.edu.tw/) isaweb-based database of human
alternative spliced transcripts. The spliced variants are identified by aligning each
known human protein, mRNA, and EST sequence against the genomic sequence
using the SIM4 and TBLASTN program. The three sets of alignment are compiled
to derive alternative splice forms. The database organizes data by tissue types and
can be searched using keywords.

COMPARATIVE GENOMICS

Comparison of whole genomes from different organisms is comparative genomics,
which includes comparison of gene number, gene location, and gene content from
these genomes. The comparison helps to reveal the extent of conservation among
genomes, which will provide insights into the mechanism of genome evolution and
gene transfer among genomes. It helps to understand the pattern of acquisition of
foreign genes through lateral gene transfer. It also helps to reveal the core set of genes
common among different genomes, which should correspond to the genes that are
crucial for survival. This knowledge can be potentially useful in future metabolic
pathway engineering.

As alluded to previously, the main themes of comparative genomics include whole
genome alignment, comparing gene order between genomes, constructing minimal
genomes, and lateral gene transfer among genomes, each of which is discussed in
more detail.

Whole Genome Alignment

With an ever-increasing number of genome sequences available, it becomes impera-
tive to understand sequence conservation between genomes, which often helps to
reveal the presence of conserved functional elements. This can be accomplished
through direct genome comparison or genome alignment. The alignment at the
genome level is fundamentally no different from the basic sequence alignment
described in Chapters 3, 4, and 5. However, alignment of extremely large sequences
presents new complexities owing to the sheer size of the sequences. Regular alignment
programs tend to be error prone and inefficient when dealing with long stretches of
DNA containing hundreds or thousands of genes. Another challenge of genome align-
ment is effective visualization of alignment results. Because it is obviously difficult to
sift through and make sense of the extremely large alignments, a graphical representa-
tion is a must for interpretation of the result. Therefore, specific alignment algorithms
are needed to deal with the unique challenges of whole genome alignment. A number
of alignment programs for “super-long” DNA sequences are described next.
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MUMmer (Maximal Unique Match, www.tigr.org/tigr-scripts/CMR2/webmum/
mumplot) is a free UNIX program from TIGR for alignment of two entire genome
sequences and comparison of the locations of orthologs. The program is essentially a
modified BLAST, which, in the seeding step (see Chapter 4), finds the longest approx-
imate matches that include mismatches instead of finding exact k-mer matches as
in regular BLAST. The result of the alignment of whole genomes is shown as a dot
plot with lines of connected dots to indicate collinearity of genes. It is optimized for
pairwise comparison of closely related microbial genomes.

BLASTZ (http://bio.cse.psu.edu/) is a UNIX program modified from BLAST to do
pairwise alignment of very large genomic DNA sequences. The modified BLAST pro-
gram first masks repetitive sequences and searches for closely matched “words,”
which are defined as twelveidentical matches within a stretch of nineteen nucleotides.
The words serve as seeds for extension of alignment in both directions until the scores
drop below a certain threshold. Nearby aligned regions are joined by using a weighted
scheme that employs a unique gap penalty scheme that tolerates minor variations
such as transitions in the seeding step of the alignment construction to increase its
sensitivity.

LAGAN (Limited Area Global Alignment of Nucleotides; http://lagan.stanford.
edu/) is a web-based program designed for pairwise alignment of large genomes. It
first finds anchors between two genomic sequences using an algorithm that identifies
short, exactly matching words. Regions that have high density of words are selected as
anchors. The alignments around the anchors are built using the Needleman-Wunsch
global alignment algorithm. Nearby aligned regions are further connected using the
same algorithm. The unique feature of this program is thatitis able to take into account
degeneracy of the genetic codes and is therefore able to handle more distantly related
genomes. Multi-LAGAN, an extension of LAGAN, available from the same website,
performs multiple alignment of genomes using a progressive approach similar to that
used in Clustal (see Chapter 5).

PipMaker (http://bio.cse.psu.edu/cgi-bin/pipmaker?basic) is a web server using
the BLASTZ heuristic method to find similar regions in two DNA sequences. It pro-
duces a textual output of the alignment result and also a graphical output that presents
the alignment as a percent identity plot as well as a dot plot. For comparing multiple
genomes, MultiPipMaker is available from the same site.

MAVID (http://baboon.math.berkeley.edu/mavid/) is a web-based program for
aligning multiple large DNA sequences. MAVID is based on a progressive alignment
algorithm similar to Clustal. It produces an NJ tree as a guide tree. The sequences are
aligned recursively using a heuristic pairwise alignhment program called AVID. AVID
works by first selecting anchors using the Smith-Waterman algorithm and then build-
ing alignments for the sequences between nearby anchors. Connected alignments are
treated as new anchors for building longer alignments. The process is repeated itera-
tively until the entire sequence pair including weakly conserved regions are aligned.

GenomeVista (http://pipeline.lbl.gov/cgi-bin/ GenomeVista) is a database search-
ing program that searches against the human, mouse, rat, or Drosophila genomes
using a large piece of DNA as query. It uses a program called BLAT to find anchors and
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extends the alignment from the anchors using AVID. (BLAT is a fast local alignment
algorithm that aligns short sequences of forty bases with more than 95% similarity.)
It produces a graphical output that shows the sequence percent identity.

Finding a Minimal Genome

One of the goals of genome comparison is to understand what constitutes a minimal
genome, which is a minimal set of genes required for maintaining a free-living cellular
organism. Finding minimal genomes helps provide an understanding of genes con-
stituting key metabolic pathways, which are critical for a cell’s survival. This analysis
involves identification of orthologous genes shared between a number of divergent
genomes.

Coregenes (http://pasteur.atcc.org:8050/CoreGenes1.0//) isaweb-based program
that determines a core set of genes based on comparison of four small genomes. The
user supplies NCBI accession numbers for the genomes of interest. The program
performs an iterative BLAST comparison to find orthologous genes by using one
genome as a reference and another as a query. This pairwise comparison is performed
for all four genomes. As aresult, the common genes are compiled as a core set of genes
from the genomes.

Lateral Gene Transfer

Lateral gene transfer (or horizontal gene transfer) is defined as the exchange of genetic
materials between species in a way that is incongruent with commonly accepted ver-
tical evolutionary pathway. Lateral gene transfer mainly occurs among prokaryotic
organisms when foreign genes are acquired through mechanisms such as transfor-
mation (direct uptake of foreign DNA from environment), conjugation (gene uptake
through mating behavior), and transduction (gene uptake mediated by infecting
viruses). The transmission of genes between organisms can occur relatively recently
or as a more ancient event.

If lateral transfer events occurred relatively recently, one would expect to discover
traces of the transfer by detecting regions of genomic sequence with unusual prop-
erties compared to surrounding regions. The unusual characteristics to be examined
include nucleotide composition, codon usage, and amino acid composition. This
can be considered a “within-genome” approach. Another way to discern lateral gene
transfer is through phylogenetic analysis (see Chapters 10 and 11), referred to as an
“among-genome” approach, which can be used to discover both recent and ancient
lateral gene transfer events. Abnormal groupings in phylogenetic trees are often inter-
preted as the possibility of lateral gene transfer events. Because phylogenetic analyses
havebeen described in detail in previous chapters, the following introduces basic tools
foridentifying genomicregionsthatmaybearesultoflateral gene transfer events using
the within-genome approach.

Within-Genome Approach
This approach is to identify regions within a genome with unusual compositions.
Single or oligonucleotide statistics, such as G-C composition, codon bias, and
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Figure 17.7: Schematic diagram showing a conserved linkage pattern of photosynthesis genes among
four divergent photosynthetic bacterial groups. The synteny reveals potential physical interactions of
encoded proteins, some of which have been experimentally verified. All the genes shown (bch) are
involved in the pathway of bacteriochlorophyll biosynthesis. Intergenic regions of unspecified lengths
are indicated by forward slashes (/). (Source: from Xiong et al., 2000; reproduced with permission from
Science).

oligonucleotide frequencies are used. Unusual nucleotide statistics in certain genomic
regions versus the rest of the genome may help to identify “foreign” genes in a genome.
A commonly used parameter is GC skew ((G — C)/(G + C)), which is compositional
bias for G in a DNA sequence and is a commonly used indicator for newly acquired
genetic elements.

ACT (Artemis Comparison Tool; www.sanger.ac.uk/Software/ACT) is a pairwise
genomic DNA sequence comparison program (written in Java and run on UNIX,
Macintosh, and Windows) for detecting gene insertions and deletions among related
genomes. The pairwise sequence alignment is conducted using BLAST. The display
feature includes showing collinear as well as noncollinear (rearrangement) regions
between two genomes. It also calculates GC biases to indicate nucleotide patterns.
However, it is up to the genome annotators to determine whether the observations
constitute evidence for lateral gene transfer, as this requires combining evidence from
multiple approaches.

Swaap (http://www.bacteriamuseum.org/ SWAAP/SwaapPage.htm) is a Windows
program that is able to distinguish coding versus noncoding regions and measure GC
skews, oligonucleotide frequencies in a genomic sequence.

Gene Order Comparison

Another aspect of comparative genomics is the comparison of gene order. When
the order of a number of linked genes is conserved between genomes, it is called
synteny. Generally speaking, gene order is much less conserved compared with
gene sequences. Gene order conservation is in fact rarely observed among diver-
gent species. Therefore, comparison of syntenic relationships is normally carried out
between relatively close lineages. However, if syntenic relationships for certain genes
areindeed observed among divergent prokaryotes, they often provide important clues
to functional relationships of the genes of interest. For example, genes involved in the
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same metabolic pathway tend to be clustered among phylogenetically diverse organ-
isms. The preservation of the gene order is a result of the selective pressure to allow the
genes to be coregulated and function as an operon. Furthermore, the synteny of genes
from divergent groups often associates with physical interactions of the encoded gene
products. The use of conserved gene neighbors as predictors of protein interactions
is discussed in Chapter 18. An example of synteny of bacterial photosynthesis genes
coupled with protein interactions is illustrated in Figure 17.7.

GeneOrder (http://pumpkins.ib3.gmu.edu:8080/geneorder/) is a web-based pro-
gram that allows direct comparison of a pair of genomic sequences of less than 2 Mb.
It displays a dot plot with diagonal lines denoting collinearity of genes and lines off
the diagonal indicating inversions or rearrangements in the genomes.

SUMMARY

Genome mapping using relative positions of genetic markers without knowledge
of sequence data is a low-resolution approach to describing genome structures. A
genome can be described at the highest resolution by a complete genome sequence.
Whole-genome sequencing can be carried out using full shotgun or hierarchical
approaches. The former requires more extensive computational power in the assem-
bly step, and the latter is inefficient because of the physical mapping process required.
Among the genome sequence assembly programs, ARACHNE and EULER are the best
performers. Genome annotation includes gene finding and assignment of function to
these genes. Functional assignment depends on homology searching and literature
information. GO projects aim to facilitate automated annotation by standardizing
the descriptions used for gene functions. The exact number of genes in the human
genome is unknown, but is likely to be in the same range as most other eukaryotes.
The gene number, however, does not dictate complexities of a genome. One example
is exhibited in protein expression in which a larger number of proteins are produced
than genes available to code for them. Thisis the so-called genome economy. The main
mechanisms responsible for genome economy are alternative splicing and exon shuf-
fling. Genomes can be compared on the basis of their gene content and gene order.
Many specialized genome comparison programs for cross-genome alignment have
been developed. Among them, BLASTZ and LAGAN may be the best in terms of speed
and accuracy. Gene order comparison across genomes often helps to discover poten-
tial operons and assign putative functions. Conserved gene order among prokaryotes
is often indicative of protein physical interactions.
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CHAPTER EIGHTEEN

Functional Genomics

The field of genomics encompasses two main areas, structural genomics and func-
tional genomics (see Chapter 17). The former mainly deals with genome structures
with a focus on the study of genome mapping and assembly as well as genome anno-
tation and comparison; the latter is largely experiment based with a focus on gene
functions at the whole genome level using high throughput approaches. The emphasis
here is on “high throughput,” which is simultaneous analysis of all genes in a genome.
This feature is in fact what separates genomics from traditional molecular biology,
which studies only one gene at a time.

The high throughput analysis of all expressed genes is also termed transcriptome
analysis, which is the expression analysis of the full set of RNA molecules produced
by a cell under a given set of conditions. In practice, messenger RNA (mRNA) is the
only RNA species being studied. Transcriptome analysis facilitates our understand-
ing of how sets of genes work together to form metabolic, regulatory, and signaling
pathways within the cell. It reveals patterns of coexpressed and coregulated genes
and allows determination of the functions of genes that were previously uncharac-
terized. In short, functional genomics provides insight into the biological functions
of the whole genome through automated high throughput expression analysis. This
chapter mainly discusses the bioinformatics aspect of the transcriptome analysis that
can be conducted using either sequence- or microarray-based approaches.

SEQUENCE-BASED APPROACHES

Expressed Sequence Tags

One of the high throughput approaches to genome-wide profiling of gene expression
issequencingexpressed sequence tags (ESTs). ESTs are short sequences obtained from
cDNA clones and serve as short identifiers of full-length genes. ESTs are typically in
the range of 200 to 400 nucleotides in length obtained from either the 5 end or 3’ end
of cDNA inserts. Libraries of cDNA clones are prepared through reverse transcription
of isolated mRNA populations by using oligo(dT) primers that hybridize with the
poly(A) tail of mRNAs and ligation of the cDNAs to cloning vectors. To generate EST
data, clones in the cDNA library are randomly selected for sequencing from either
end of the inserts.

The EST data are able to provide a rough estimate of genes that are actively
expressed in a genome under a particular physiological condition. This is because
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the frequencies for particular ESTs reflect the abundance of the corresponding mRNA
in a cell, which corresponds to the levels of gene expression at that condition. Another
potential benefit of EST sampling is that, by randomly sequencing cDNA clones, it is
possible to discover new genes.

However, there are also many drawbacks of using ESTs for expression profile anal-
ysis. EST sequences are often of low quality because they are automatically generated
without verification and thus contain high error rates. Many bases are ambiguously
determined, represented by N’s. Common errors also include frameshift errors and
artifactual stop codons, resulting in failures of translating the sequences. In addition,
there is often contamination by vector sequence, introns (from unspliced RNAs), ribo-
somal RNA (rRNA), mitochondrial RNA, among others. ESTs represent only partial
sequences of genes. Gene sequences at the 3’ end tend to be more heavily repre-
sented than those at the 5’ end because reverse transcription is primed with oligo(dT)
primers. Unfortunately, the sequences from the 3’ end are also most error prone
because of the low base-call quality at the start of sequence reads. Another prob-
lem of ESTs is the presence of chimeric clones owing to cloning artifacts in library
construction, in which more than one transcript is ligated in a clone resulting in
the 5’ end of a sequence representing one gene and the 3’ end another gene. It has
been estimated that up to 11% of cDNA clones may be chimeric. Another fundamen-
tal problem with EST profiling is that it predominantly represents highly expressed,
abundant transcripts. Weakly expressed genes are hardly found in a EST sequencing
survey.

Despite these limitations, EST technology is still widely used. This is because EST
libraries can be easily generated from various cell lines, tissues, organs, and at vari-
ous developmental stages. ESTs can also facilitate the unique identification of a gene
from a cDNA library; a short tag can lead to a cDNA clone. Although individual ESTs
are prone to error, an entire collection of ESTs contains valuable information. Often,
after consolidation of multiple EST sequences, a full-length cDNA can be derived.
By searching a nonredundant EST collection, one can identify potential genes of
interest.

The rapid accumulation of EST sequences has prompted the establishment of
public and private databases to archive the data. For example, GenBank has a special
EST database, dbEST (www.ncbi.nlm.nih.gov/dbEST/) that contains EST collections
for a large number of organisms (>250). The database is regularly updated to reflect
the progress of various EST sequencing projects. Each newly submitted EST sequence
is subject to a database search. If a strong similarity to a known gene is found, it is
annotated accordingly.

EST Index Construction

One of the goals of the EST databases is to organize and consolidate the largely
redundant EST data to improve the quality of the sequence information so the
data can be used to extract full-length cDNAs. The process includes a preprocessing
step that removes vector contaminants and masks repeats. Vecscreen, introduced in
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Chapter 17, can be used to screen out bacterial vector sequences. This is followed
by a clustering step that associates EST sequences with unique genes. The next step
is to derive consensus sequences by fusing redundant, overlapping ESTs and to cor-
rect errors, especially frameshift errors. This step results in longer EST contigs. The
procedure is somewhat similar to the genome assembly of shotgun sequence reads
(see Chapter 17) . Finally, the coding regions are defined through the use of HMM-
based gene-finding algorithms (see Chapter 8). This helps to exclude the potential
intron and 3'-untranslated sequences. Once the coding sequence is identified, it can
be annotated by translating it into protein sequences for database similarity search-
ing. To go another step further, compiled ESTs can be used to align with the genomic
sequence if available to identify the genome locus of the expressed gene as well as
intron—-exon boundaries of the gene. This is usually performed using the program
SIM4 (http://pbil.univ-lyon1.fr/sim4.php).

The clustering process that reduces the EST redundancy and produces a collection
of nonredundant and annotated EST sequences is known as gene index construction.
The following lists a couple of major databases that index EST sequences.

UniGene (www.ncbi.nlm.nih.gov/UniGene/) is an NCBI EST cluster database.
Each clusteris a set of overlapping EST sequences that are computationally processed
to represent a single expressed gene. The database is constructed based on com-
bined information from dbEST, GenBank mRNA database, and “electronically spliced”
genomic DNA. Only ESTs with 3’ poly-A ends are clustered to minimize the the prob-
lem of chimerism. The resulting 3" EST sequences provide more unique representa-
tion of the transcripts. The next step is to remove contaminant sequences that include
bacterial vectors and linker sequences. The cleaned ESTs are used to search against a
database of known unique genes (EGAD database) with the BLAST program. The com-
piling step identifies sequence overlaps and derives sequence consensus using the
CAP3 program. During this step, errors in individual ESTs are corrected; the sequences
are then partitioned into clusters and assembled into contigs. The final result is
a set of nonredundant, gene-oriented clusters known as UniGene clusters. Each
UniGene cluster represents a unique gene and is further annotated for putative func-
tion and its gene locus information, as well as information related to the tissue type
where the gene has been expressed. The entire clustering procedure is outlined in
Figure 18.1.

TIGR Gene Indices (www.tigr.org/tdb/tgi.shtml) is an EST database that uses a
different clustering method from UniGene (Fig. 18.2). It compiles data from dbEST,
GenBank mRNA and genomic DNA data, and TIGR’s own sequence database.
Sequences are only clustered if they are more than 95% identical for over a forty-
nucleotide region in pairwise comparisons. BLAST and FASTA are used to identify
sequence overlaps. In the sequence assembly stage, both TIGR Assembler (see Chap-
ter 17) and CAP3 are used to construct contigs, producing a so-called tentative consen-
sus (TC). To prevent chimerism, transcripts are clustered only if they match fully with
known genes. Functional assignment is then given to the TC that relies most heav-
ily on BLAST searches against protein databases. The TIGR gene indices serve as an
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Figure 18.1: Outline of steps to process EST sequences for construction of the UniGene database.

alternative to the UniGene clusters with the resulting gene indices showing compiled
EST sequences, functional annotation, and database similarity search results.

SAGE

Serial analysis of gene expression (SAGE) is another high throughput, sequence-based
approach for global gene expression profile analysis. Unlike EST sampling, SAGE is
more quantitative in determining mRNA expression in a cell. In this method, short
fragments of DNA (usually 15 base pairs [bp]) are excised from cDNA sequences
and used as unique markers of the gene transcripts. The sequence fragments are
termed fags. They are subsequently concatenated (linked together), cloned, and
sequenced. The transcript analysis is carried out computationally in a serial man-
ner. Once gene tags are unambiguously identified, their frequency indicates the level
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Figure 18.2: Outline of construction for TIGR gene indices.
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of gene expression. This approach is much more efficient than the EST analysis in
that it uses a short nucleotide tag to define a gene transcript and allows sequencing
of multiple tags in a single clone. If an average clone has a size of 700 bp, it can con-
tain up to 50 sequence tags (15 bp each), which means that the SAGE method can
be at least fifty times more efficient than the brute force EST sequencing and count-
ing. Therefore, the SAGE analysis has a better chance of detecting weakly expressed
genes.

The detailed SAGE procedure (Fig. 18.3) involves the generation of short unique
sequence tags (15 bp in length) by cleaving cDNA with a restriction enzyme (e.g., Nla
I1I with a restriction site TCATG) that has a relatively high cutting frequency (Nla I11
cuts every 256 bp on average (4*)). The Nla I1I restriction digestion produces a 4-bp
overhang, which is complementary to that of a premade linker. The cleaved cDNA is
divided into two pools that are ligated to different linkers, which have complementary
4-bp overhangs. The unique linker contains a restriction site for a “reach and grab”
type of enzyme that cuts outside its recognition site by a specific number of base pairs
downstream. For example, BsmF I has a restriction site GGGAC(Ny,)*1 for the forward
strand and 1(N4)GTCCC for the reverse strand. When the linker with Nla I1I sticky
ends is allowed to ligate with Nla IlI-treated cDNA, this creates the fusion product of
linker and cDNA. This is then subject to BsmF I digestion, which generates a digested
product with a staggered end. The product is “blunt ended” by T4 DNA polymerase,
which fills in the overhang to produce the 11-bp sequence downstream of the Nla III
site (labeled with Xs or Ys in Fig. 18.3). This sample is then allowed to ligate to the
other pool of cDNA ligated to a different linker to produce a linked sequence “ditag.”
The linkers and the ditag are amplified using polymerase chain reaction (PCR) with
primers specific to each linker. The linker sequences are then removed using Nla I11.
The ditag with sticky ends is then allowed to be concatenated with more ditags to
form long serial molecules that can be cloned and sequenced. When a large number
of clones with linked tags are sequenced, the frequency of occurrence of each tag is
counted to obtain an accurate picture of gene expression patterns.

In a SAGE experiment, sequencing is the most costly and time-consuming step. It
is difficult to know how many tags need to be sequenced to get a good coverage of
the entire transcriptome. It is generally determined on a case-by-case basis. As a rule
of thumb, 10,000 clones representing approximately 500,000 tags from each sample
are sequenced. The scale and cost of the sequencing required for SAGE analysis are
prohibitive for most laboratories. Only large sequencing centers can afford to carry
out SAGE analysis routinely.

Another obvious drawback with this approach is the sensitivity to sequencing errors
owing to the small size of oligonucleotide tags for transcript representation. One or
two sequencing errors in the tag sequence can lead to ambiguous or erroneous tag
identification. Another fundamental problem with SAGE is that a correctly sequenced
SAGE tag sometimes may correspond to several genes or no gene at all. To improve
the sensitivity and specificity of SAGE detection, the lengths of the tags need to be
increased for the technique. The followinglist contains some comprehensive software
tools for SAGE analysis.
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SAGEmap (www.ncbi.nlm.nih.gov/SAGE/) is a SAGE database created by NCBI.
Given a cDNA sequence, one can search SAGE libraries for possible SAGE tags and
perform “virtual” Northern blots that indicate the relative abundance of a tag in a
SAGE library. Each outputis hyperlinked to a particular UniGene entry with sequence
annotation.

SAGE xProfiler (www.ncbi.nlm.nih.gov/SAGE/sagexpsetup.cgi) isaweb-based pro-
gram that allows a “virtual subtraction” of an expression profile of one library (e.g.,
normal tissue) from another (e.g., diseased tissue). Comparison of the two libraries
can provide information about overexpressed or silenced genes in normal versus dis-
eased tissues.

SAGE Genie (http://cgap.nci.nih.gov/SAGE) is another NCBI web-based program
that allows matching of experimentally obtained SAGE tags to known genes. It pro-
vides an interface for visualizing human gene expression. It has a filtering function
that filters out linker sequences from experimentally obtained SAGE tags and allows
expression pattern comparison between normal and diseased human tissues. The
data output can be presented using subprograms such as the Anatomic Viewer, Digi-
tal Northern, and Digital Gene Expression Display.

MICROARRAY-BASED APPROACHES

The most commonly used global gene expression profiling method in current
genomics research is the DNA microarray-based approach. A microarray (or gene
chip) is a slide attached with a high-density array of immobilized DNA oligomers
(sometimes cDNAs) representing the entire genome of the species under study. Each
oligomer is spotted on the slide and serves as a probe for binding to a unique, com-
plementary cDNA. The entire cDNA population, labeled with fluorescent dyes or
radioisotopes, is allowed to hybridize with the oligo probes on the chip. The amount
of fluorescent or radiolabels at each spot position reflects the amount of correspond-
ing mRNA in the cell. Using this analysis, patterns of global gene expression in a cell
can be examined. Sets of genes involved in the same regulatory or metabolic pathways
can potentially be identified.

Atypical DNA microarray experiment involves amultistep procedure: fabrication of
microarrays by fixing properly designed oligonucleotides representing specific genes;
hybridization of cDNA populations onto the microarray; scanning hybridization sig-
nalsandimage analysis; transformation and normalization of data; and analyzing data
to identify differentially expressed genes as well as sets of genes that are coregulated
(Fig. 18.4).

Oligonucleotide Design

DNA microarrays are generated by fixing oligonucleotides onto a solid support such
as a glass slide using a robotic device. The oligonucleotide array slide represents
thousands of preselected genes from an organism. The length of oligonucleotides is
typically in the range of twenty-five to seventy bases long. The oligonucleotides are
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Figure 18.4: Schematic of a multistep procedure of a DNA microarray assay experiment and subse-
quent data analysis (see color plate section).

called probes that hybridize to labeled cDNA samples. Shorter oligo probes tend to
be more specific in hybridization because they are better at discriminating perfect
complementary sequences from sequences containing mismatches. However, longer
oligos can be more sensitive in binding cDNAs. Sometimes, multiple distinct oligonu-
cleotide probes hybridizing different regions of the same transcript can be used to
increase the signal-to-noise ratio. To design optimal oligonucleotide sequences for
microarrays, the following criteria are used.
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The probes should be specific enough to minimize cross-hybridization with non-
specific genes. This requires BLAST searches against genome databases to find
sequence regions with least sequence similarity with nontarget genes. The probes
should be sensitive and devoid of low-complexity regions (a string of identical
nucleotides; see Chapter 4). The filtering program RepeatMasker (see Chapter 4) is
oftenused in the BLAST search. The oligonucleotide sequences should not form stable
internal secondary structures, such as a hairpin structure, which could interfere with
the hybridization reaction. DNA/RNA folding programs such as Mfold can help to
detect secondary structures. The oligo design should be close to the 3’ end of the gene
because the cDNA collection is often biased to the 3’ end. In addition, for operational
convenience, all the probes should have an approximately equal melting temperature
(Tm) and a GC content of 45% to 65%. A number of programs have been developed
that use these rules in designing probe sequences for microarrays spotting.

OligoWiz (www.cbs.dtu.dk/services/OligoWiz/) is a Java program that runs locally
but allows the user to connect to the server to perform analysis via a graphic user inter-
face. It designs oligonucleotides by incorporating multiple criteria including homol-
ogy, T, low complexity, and relative position within a transcript.

OligoArray (http://berry.engin.umich.edu/oligoarray2/) is also a Java client-server
program that computes oligonucleotides for microarray construction. It uses the
normal criteria with an emphasis on gene specificity and secondary structure for
oligonucleotides. The secondary structures and related thermodynamic parameters
are calculated using Mfold.

Data Collection

The expression of genes is measured via the signals from cDNAs hybridizing with the
specific oligonucleotide probes on the microarray. The cDNAs are obtained by extract-
ing total RNA or mRNA from tissues or cells and incorporating fluorescent dyes in the
DNA strands during the cDNA biosynthesis. The most common type of microarray
protocol is the two-color microarray, which involves labeling one set of cDNA from
an experimental condition with one dye (Cy5, red fluorescence) and another set of
cDNA from a reference condition (the controls) with another dye (Cy3, green fluores-
cence). When the two differently labeled cDNA samples are mixed in equal quantity
and allowed to hybridize with the DNA probes on the chips, gene expression patterns
of both samples can be measured simultaneously.

The image of the hybridized array is captured using a laser scanner that scans
every spot on the microarray. Two wavelengths of the laser beam are used to excite
the red and green fluorescent dyes to produce red and green fluorescence, which is
detected using a photomultiplier tube. Thus, for each spot on the microarray, red
and green fluorescence signals are recorded. The two fluorescence images from the
scanner are then overlaid to create a composite image, which indicates the relative
expression levels of each gene. Thus, the measurement from the composite image
reflects the ratio of the two color intensities. If a gene is expressed at a higher level
in the experimental condition (red) than in the control (green), the spot displays
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a reddish color. If the gene is expressed at a lower level than the control, the spot
appears greenish. Unchanged gene expression, having equal amount of green and
red fluorescence, results in a yellow spot. The colored image is stored as a computer
file (in TIFF format) for further processing.

Image Processing

Image processing is to locate and quantitate hybridization spots and to separate true
hybridization signals from background noise. The background noise and artifacts pro-
duced in this step include nonspecific hybridization, unevenness of the slide surface,
and the presence of contaminants such as dust on the surface of the slide. In addi-
tion, there are also geometric variations of hybridization spots resulting in some spots
being of irregular shapes. Computer programs are used to correctly locate the bound-
aries of the spots and measure the intensities of the spot images after subtracting the
background pixels.

After subtracting the background noise, the array signals are converted into num-
bers and reported as ratios between Cy5 and Cy3 for each spot. This ratio represents
relative expression changes and reflects the fold change in mRNA quantity in experi-
mental versus control conditions. The data are often presented as false colors of dif-
ferent intensities of red and green colors depending on whether the ratios are above 1
or below 1, respectively. Where there is an equal quantity of experimental and control
mRNA (yellow in raw data), black is shown. The false color images are presented in
squares in a matrix of genes versus conditions so that differentially expressed genes
can be more easily analyzed (Box 18.1).

Manufacturers of microarray scanners normally provide software programs to
specifically perform microarray image analysis. There are, however, also a small num-
ber of free image-processing software programs available on the Internet.

ArrayDB (http://genome.nhgri.nih.gov/arraydb/) is a web interface program that
allows the user to upload data for graphical viewing. The user can present histograms,
select actual microarray slide images, and display detailed information of each spot
which is linked to functional annotation of the corresponding gene in the UniGene,
Entrez, dbEST, and KEGG databases. This can help to provide a synopsis of gene
function when interpreting the microarray data.

ScanAlyze (http://rana.lbl.gov/EisenSoftware.htm) is a Windows program for
microarray fluorescent image analysis. It features semiautomatic spot definition and
multichannel pixel and spot analyses.

TIGR Spotfinder (http://www.tigr.org/softlab/) is another Windows program for
microarray image processing using the TIFF image format. It uses an adaptive thresh-
old algorithm, which resolves the boundaries of spots according to their shapes. The
algorithm determines the intensity of irregular spots more accurately than most other
similar programs. It also interfaces with a gene expression database.

Data Transformation and Normalization

Following image processing, the digitized gene expression data need to be further
processed before differentially expressed genes can be identified. This processing is
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Box 18.1 Outline of the Procedure for Microarray Data Analysis
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Ohr|1hr|2hr|3hr{4hr|5hr
Gene A | 1 4 | B 8 6| 6
GeneB| 1 | 06|03 | 01(03|04
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GeneD| 1 [ 15 3 2|1
GeneE| 1 1 |105(02|01]02
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GeneA| -0.82 | 0.96 065 | -068 | -0.79
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Gene C 070 | -0.65 | -0.87
Gene D -0.41 | -0.72
Gene E 0.26
@ conversion of coefficients
to positive distance values
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Gene D 1.41 1.72
Gene E 0.74
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produces a tree showing the relationships of coexpressed genes (see color plate

section).

referred to as data normalization and is designed to correct bias owing to variations

in microarray data collection rather than intrinsic biological differences.

When the raw fluorescence intensity Cy5 is plotted against Cy3, most of the data are
clustered near the bottom left of the plot, showing a non-normal distribution of the
raw data (Fig. 18.5A). This is thought to be a result of the imbalance of red and green
intensities during spot sampling, resulting in ineffective discrimination of differen-

tially expressed genes. One way to improve the data discrimination is to transform
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Figure 18.5: Scatter plot of gene expression analysis showing the process of data normalization. The
solid line indicates linear regression of the data points; dashed lines show the cutoff for a twofold change
in expression. (A) Plot of raw fluorescence signal intensities of Cy5 versus Cy3. (B) Plot of the same
data after log transformation to the base of 2. (C) Plot of mean log intensity versus log ratio of the two
fluorescence intensities, which shifts the data points to around the horizontal axis, making them easier
to visualize.

raw Cy5 and Cy3 values by taking the logarithm to the base of 2. The transformation
produces a more uniform distribution of data and has the advantage to display
upregulated and downregulated genes more symetrically. As shown in Figure 18.5B,
the databecome more evenly distributed within a certain range, and assume a normal
distribution pattern. By taking this transformation, the data for up-regulation and
down-regulation can be more comparable.

There are many ways to further normalize the data. One way is to plot the data
points horizontally. This requires plotting the log ratios (Cy5/Cy3) against the average
log intensities (Fig. 18.5C). In this representation, the data are roughly symmetrically
distributed about the horizontal axis. The differentially expressed genes can then be
more easily visualized. This form of representation is also called intensity-ratio plot.
In all these instances, linear regression is used.

Sometimes, the data do not conform to a linear relationship owing to systematic
sampling errors. In this case, a nonlinear regression may produce a better fitting and
help to eliminate the bias. The most frequently used regression type is known as
Lowess (locally weighted scatter plot smoother) regression. This method performs a
locally weighted linear fitting of the intensity-ratio data and calculates the differ-
ences between the curve-fitted values and experimental values. The algorithm fur-
ther “corrects” the experimental data points by depressing large difference values
more than small ones with respect to a reference. As a result, a new distribution of
intensity-ratio data that conforms a linear relationship can be produced. After nor-
malization of the data, the true outliers, which represent genes that are significantly
up-regulated or down-regulated, can be more easily identified. The following two
software programs that are freely available are specialized in image analysis and data
normalization.

Arrayplot (www.biologie.ens.fr/fr/genetiqu/puces/publications/arrayplot/index.
html) is a Windows program that allows visualization, filtering, and normalization
of raw microarray data. It has an interface to view significantly up-regulated or
down-regulated genes. It calculates normalization factors based on the overall median
signal intensity.
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SNOMAD (http://pevsnerlab.kennedykrieger.org/snomadinput.html) is a web
server for microarray data normalization. It provides scatter plots based on raw signal
intensities and performs log-transformation and linear regression as well as Lowess
regression analysis of the data.

Statistical Analysis to Identify Differentially Expressed Genes

To separate genes that are differentially expressed, many published studies use a nor-
malization cutoff of twofold as a criterion. However, this is an arbitrary cutoff value,
which could be considered to be either too high or too low depending on the data
variability. In addition, the inherent data variability is not taken into account. A data
point above or below the cutoff line could simply be there by chance or because of
error. The only way to ensure that a gene that appears to be differentially expressed
is truly differentially expressed is to perform multiple replicate experiments and to
perform statistical testing. The repeat experiments provide replicate data points that
offer information about the variability of the expression data at a particular condition.
The information on the distribution for the data points under particular conditions
can help answer the question whether a given fold difference is significant. The main
hindrance to obtaining multiple replicate datasets is often the cost: microarray exper-
iments are extremely expensive for regular research laboratories.

Ifreplicated datasets are available, rigorous statistical tests such as #-test and anal-
ysis of variance (ANOVA) can be performed to test the null hypothesis that a given
data point is not significantly different from the mean of the data distribution. For
such tests, it is common to use a P-value cutoff of .05, which means a confidence level
of 95% to distinguish the data groups. This level also corresponds to a gene expres-
sion level with two standard deviations from the mean of distribution. It is noticeable
that the number of standard deviations is only meaningful if the data are approx-
imately normally distributed, which makes the previous normalization step more
valuable.

MA-ANOVA (www.jax.org/staff/churchill/labsite/software/anova/) is a statistical
program for Windows and UNIX that uses ANOVA to analyze microarray data. It cal-
culates log ratios, displays ratio-intensity plots, and performs permutation tests and
bootstrapping of confidence values.

Cyber-T (http://visitor.ics.uci.edu/genex/cybert/) is a web server that performs
t-tests on observed changes of replicate gene expression measurements to identify
significantly differentially expressed genes. It also contains a computational method
for estimating false-positive and false-negative levels in experimental data based on
modeling of P-value distributions.

Microarray Data Classification

One of the key features of DNA microarray analysis is to study the expression of many
genes in parallel and identify groups of genes that exhibit similar expression patterns.
The similar expression patterns are often a result of the fact that the genes involved
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are in the same metabolic pathway and have similar functions. The genetic basis of
the coregulation could be the result of common promoters and regulatory regions.

To discover genes with similar gene expression patterns based on the microarray
datarequires partitioning the data into subsets according to similarity. To achieve this
goal, hybridization signals from microarray images are organized into matrices where
rows represent genes and columns represent experimental sampling conditions (such
as time points or drug concentrations). Each matrix value is the Cy5/Cy3 intensity ratio
representing the relative expression of a gene under a specific condition (see Box 18.1).
Various classification tools are subsequently used to classify the values in the matrices
for gene expression comparison.

Distance Measure

The first step towards gene classification is to define a measure of the distance or
dissimilarity between genes. This requires converting a gene expression matrix in
a distance matrix. The distance can be expressed as Euclidean distance or Pearson
correlation coefficient. Euclidean distance is the square root of the sum of squared
distances between expression data points. When comparing X gene expression with Y
gene expression at time point i (assuming there are n time points in total), the distance
score (d) can be calculated by the following formula:

(Eq. 18.1)

Euclidean distances are widely used but suffer from the problem that when variations
between genes are very small, the gene profiles can be very difficult to differentiate.

Alternatively, a Pearson correlation coefficient between two groups of data points
can be used. This measures the overall similarity between the trends or shapes of the
two sets of data. In this measure, a perfect positive correlation is +1 and a perfect
negative correlation is —1. The distance score (d) between gene X and gene Y can be
calculated using the following formula:

I (X (h-T
d_nz< sd; )( sd ) (Eq. 18.2)

i=1

where n is the total number of time points; X and y are average values for the X gene
and Y gene data, respectively; and sd are standard deviation values.

The choice of the distance measures can sometimes make a big difference in the
final result. Sometimes, a small change in expression data can cause a significant
change in an Euclidean distance matrix. Pearson correlation coefficients are more
robust than Euclidean distances in guarding against small variations and noise in
the experimental data. One notable feature of the Pearson correlation coefficients
is that, when the genes to be compared have exactly the same expression patterns,
their gene expression profiles have identical shapes. The correlation coefficient of the
gene profiles equals to +1, in which case, the relative distance between the genes
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is zero. When the concerned genes have absolute opposite expression patterns, the
correlation coefficient becomes —1. That means that, when one gene is up-regulated,
the other is down-regulated, and vice versa. In such case, the distance is converted to
+2 (the absolute value of |(—1) — 1]), the maximum distance value in the matrix (see
Box 18.1). The conversion to a positive distance value makes data classification more
convenient.

Supervised and Unsupervised Classification

Based on the computed distances between genes in an expression profile, genes with
similar expression patterns can be grouped. The classification analysis can be either
supervised or unsupervised. A supervised analysis refers to classification of data into
a set of predefined categories. For example, depending on the purpose of the exper-
iment, the data can be classified into predefined “diseased” or “normal” categories.
An unsupervised analysis does not assume predefined categories, but identifies data
categories according to actual similarity patterns. The unsupervised analysis is also
called clustering, which is to group patterns into clusters of genes with correlated
profiles.

For microarray data, clustering analysis identifies coexpressed and coregulated
genes. Genes within a category have more similarity in expression than genes from
different categories. When genes are coregulated, they normally reflect related func-
tionality. Through gene clustering, functions of previously uncharacterized genes may
be discovered. Clustering methods include hierarchical clustering and partitioning
clustering (e.g., k-means, self-organizing maps [SOMs]). The following discussion
focuses on several of the most frequently used clustering methods.

The clustering algorithms can be further divided into two types, agglomerative and
divisive (Fig. 18.6). An agglomerative method begins by clustering the two most similar
data points and repeats the process to successively merge groups of data according
to similarity until all groups of data are merged. This is also known as the bottom-up
approach. A divisive method works the other way around by lumping all data points
in a single cluster and successively dividing the data into smaller groups according
to dissimilarity until all the hierarchical levels are resolved. This is also called the
top-down approach.

Hierarchical Clustering. Ahierarchical clustering method isin principle similar to the
distance phylogenetic tree-building method (see Chapter 11). It produces a treelike
structure that represents a hierarchy or relative relatedness of data groups. In the tree
leaves, similar gene expression profiles are placed more closely together than dissim-
ilar gene expression profiles. The tree-branching pattern illustrates a higher degree of
relationship between related gene groups. When genes with similar expression pro-
files are grouped in such a way, functions for unknown genes can often be inferred.
Hierarchical clustering uses the agglomerative approach that works in much the
same way as the UPGMA method (see Chapter 11), in which the most similar data
pairs are joined first to form a cluster. The new cluster is treated as a single entity
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Figure 18.6: Schematic representation showing differences between agglomerative and divisive clus-
tering methods.

creating a reduced matrix. The reduced matrix allows the next closest data point to be
added to the previous cluster leading to the formation of a new cluster. By repeating
the process, a dendrogram showing the clustering pattern of all data points is built.

The hierarchical clustering algorithms can be further divided in three subtypes
known as single linkage, complete linkage, and average linkage. The single linkage
method chooses the minimum value of a pair of distances as the cluster distance.
The complete linkage method chooses the maximum value of a pair of distances, and
the average linkage method chooses the mean of the two distances, which is the same
as the UPGMA tree building approach. The UPGMA-based method is considered to
be the most robust in discriminating expression clusters. It is important to point out
that although a tree structure is produced as the final result, the resulting tree has no
evolutionary meaning, but merely represents groupings of similarity patterns in gene
expression.

In a tree produced by hierarchical clustering, the user has the flexibility to define a
threshold for determining the boundaries of data clusters. The flexibility, however,
sometimes can be a disadvantage in that it lacks objective criteria to distinguish
clusters. Another potential drawback is that the hierarchical relationships of gene
expression represented by the tree may not in fact exist. Some of the drawbacks can
be alleviated by using alternative clustering approaches such as the k-means or self-
organizing maps.

k-Means Clustering. In contrast to hierarchical clustering algorithms, k-means clus-
tering does not produce a dendrogram, but instead classifies data through a single
step partition. Thus, it is a divisive approach. In this method, data are partitioned into
k-clusters, which are prespecified at the outset. The value of k is normally randomly
set but can be adjusted if results are found to be unsatisfactory. In the first step, data
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Figure 18.7: Example of k-means clustering using four partitions. Closeness of data points is indicated
by resemblance of colors (see color plate section).

points are randomly assigned to each cluster. The average of the data in a group
(centroid value) is calculated. The distance of each data point to the centroid is also
calculated. The second step is to have all the data points randomly reassigned among
the k-clusters. The centroid of each cluster and distances of data points to the cen-
troid are recomputed. Then each data point is reassigned to a different cluster. If a
data point is found to be closer to the centroid of a particular cluster than to any other
cluster, that data point is retained in the partition. Otherwise, it is subject to reassign-
ment in the next iteration. This process is repeated many times, until the distances
between the data points and the new centroids no longer decrease. At this point, a
final clustering pattern is reached (Fig. 18.7).

As described, the number of k-clusters is specified by the user at the outset, which is
either chosen randomly or determined using external information. The cluster num-
ber can be adjustable, increased or decreased to get finer or coarser data distinctions.
The k-means method may not be as accurate as hierarchical clustering because it has
an inherent problem of being sensitive to the selection of the initial arbitrary number
of clusters. Depending on the initial position of centroids, this may lead to a different
partitioning solution each time when k-means is run for the same datasets. With-
out searching all possible initial partitions, a suboptimal solution may be reached.
However, computationally speaking, it is faster than hierarchical clustering and is still
widely used.

Self-Organizing Maps. Clustering by SOMs is in principle similar to the k-means
method. This pattern recognition algorithm employs neural networks. It starts by
defining a number of nodes. The data points are initially assigned to the nodes at
random. The distance between the input data points and the centroids are calculated.
The data points are successively adjusted among the nodes, and their distances to the
centroids are recalculated. After many iterations, a stabilized clustering pattern are
reached with the minimum distances of the data points to the centroids.

The differences between SOM and k-means are that, in SOM, the nodes are not
treated as isolated entities, but as connected to other nodes. The calculation of the
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centroid values in SOM takes into account not only information from within each
cluster, but also information from adjacent clusters. This allows the analysis to be
better at handling noisy data. Another difference is that, in SOM, some nodes are
allowed to contain no data at all. Thus, at the completion of the clustering, the final
number of clusters may be smaller than the initial nodes. This feature renders SOM
less subjective than k-means. However, this type of algorithm is also much slower than
the k-means method.

Clustering Programs. Cluster (http://rana.lbl.gov/EisenSoftware.htm) is a Windows
program capable of hierarchical clustering, SOM, and k-means clustering. Outputs
from hierarchical clustering are visualized with the Treeview program.

EPCLUST (www.ebi.ac.uk/EP/EPCLIST) is aweb-based server that allows data to be
uploaded and clustered with hierarchical clustering or k-means methods. In addition,
the user can perform data selection, normalization, and database similarity searches
with this program.

TIGR TM4 (www.tigr.org/tm4) is a suite of multiplatform programs for analyzing
microarray data. This comprehensive package includes four interlinked programs,
TIGR spot finder (for image analysis), MIDAS (for data normalization), MeV (for clus-
tering analysis and visualization), and MADAM (for data management). The package
provides different data normalization schemes and clustering options.

SOTA (Self-Organizing Tree Algorithm; www.almabioinfo.com/sota/) is a web
server that uses a hybrid approach of SOM and hierarchical clustering. It builds a
tree based on the divisive approach starting from the root node containing all data
patterns. Instead of using the distance-based criteria to resolve a tree, the algorithm
using the neural network based SOM algorithm to separate clusters of genes at each
node. The homogeneity of gene clusters at each node is analyzed using SOM. The tree
building stops at any point if desired homogeneity level is reached.

COMPARISON OF SAGE AND DNA MICROARRAYS

SAGE and DNA microarrays are both high throughput techniques that determine
global mRNA expression levels. A number of comparative studies have indicated
that the gene expression measurements from these methods are largely consistent
with each other. However, the two techniques have important differences. First, SAGE
does not require prior knowledge of the transcript sequence, whereas DNA micro-
array experiments can only detect the genes spotted on the microarray. Because SAGE
is able to measure all the mRNA expressed in a sample, it has the potential to allow
discovery of new, yet unknown gene transcripts. Second, SAGE measures “absolute”
mRNA expression levels without arbitrary reference standards, whereas DNA microar-
rays indicate the relative expression levels. Therefore, SAGE expression data are more
comparable across experimental conditions and platforms. This makes public SAGE
databases more informative by allowing comparison of data from reference conditions
with various experimental treatments. Third, the PCR amplification step involved in
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the SAGE procedure means that it requires only a minute quantity of sample mRNA.
This compares favorably to the requirement for a much larger quantity of mRNA
for microarray experiments, which may be impossible to obtain under certain cir-
cumstances. Fourth, collecting a SAGE library is very labor intensive and expensive
compared with carrying out a DNA microarray experiment, however. Therefore, SAGE
is not suitable for rapid screening of cells whereas the microarray analysis is. Fifth,
Gene identification from SAGE data is also more cumbersome because the mRNA
tags have to be extracted, compiled, and identified computationally, whereas in DNA
microarrays, the identities of the probes are already known. In SAGE, comparison of
gene expression profiles to discover differentially expressed genes and coexpressed
genes is performed manually, whereas for microarrays, there are a large number of
software algorithms to automate the process.

SUMMARY

Transcriptome analysis using ESTs, SAGE, and DNA microarrays forms the core of
functional genomics and is key to understanding the interactions of genes and their
regulation at the whole-genome level. EST sampling, although widely used, has a
number of drawbacks in terms of error rates, efficiency, and cost. The high through-
put SAGE and DNA microarray approaches provide a more quantitative measure
of global gene expression. SAGE measures the “absolute” mRNA expression levels,
whereas microarrays indicate relative mRNA expression levels. DNA microarrays cur-
rently enjoy greater popularity because of the relative ease of experimentation. Itis also
amore suitable method to probe differential gene expression between different tissue
and cell samples. This requires comparing gene profiles using statistical approaches.
Another goal of microarray analysis is to identify coordinated gene expression pat-
terns, which requires clustering analysis of microarray data.

The most popular microarray data clustering techniques include hierarchical clus-
tering, SOM, and k-means. The hierarchical approach is very similar to the phylo-
genetic distance tree building method. SOM and k-means normally do not generate
a treelike structure as a result of clustering. Once coregulated genes are identified,
upstream sequences belonging to a cluster can be retrieved and analyzed for com-
mon regulatory sequences.

In conclusion, among the three techniques for studying global gene expression, the
most popular one is DNA microarrays, which has the capability to provide information
that is not possible with traditional techniques. However, one should also be aware of
its limitations. This technique is a multistep procedure in which errors and biases can
beintroduced in each step (scanning, image processing, normalization, and choice of
classification method). Thus, it is a rather crude assay and may contain considerable
levels of false positives and false negatives. The results from microarray analysis only
provide hypotheses for gene functions based on classification of expression data.
To verify the hypotheses, one has to rely on traditional biochemical and molecular
biological approaches. The fundamental limitation of this method lies in the use of
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transcription as the sole indicator of gene expression, which may or may not correlate
with expression at the protein level. The expression of proteins is what dictates the
phenotypes. The last limitation is addressed in Chapter 19.
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CHAPTER NINETEEN

Proteomics

Proteome refers to the entire set of expressed proteins in a cell. In other words, it is the
full complement of translated product of a genome. Proteomics is simply the study
of the proteome. More specifically, it involves simultaneous analyses of all trans-
lated proteins in a cell. It encompasses a range of activities including large-scale
identification and quantification of proteins and determination of their localization,
modifications, interactions, and functions. This chapter covers the major topics in
proteomics such as analysis of protein expression, posttranslational modifications,
protein sorting, and protein—protein interaction with an emphasis on bioinformatics
applications.

Compared to transcriptional profilingin functional genomics, proteomics has clear
advantagesin elucidating gene functions. It provides a more direct approach to under-
standing cellular functions because most of the gene functions are realized by proteins.
Transcriptome analysis alone does not provide clear answers to cellular functions
because there is generally not a one-to-one correlation between messenger RNAs
(mRNAs) and proteins in the cells. In addition, a gene in an eukaryotic genome may
produce more varied translational products owing to alternative splicing, RNA edit-
ing, and so on. This means that multiple and distinct proteins may be produced from
one single gene. Further complexities of protein functions can be found in posttrans-
lational modifications, protein targeting, and protein—protein interactions. Therefore,
the noncorrelation of mRNA with proteins means that studying protein expression
can provide more insight on understanding of gene functions.

TECHNOLOGY OF PROTEIN EXPRESSION ANALYSIS

Characterization of protein expression at the whole proteome level involves quanti-
tative measurement of proteins in a cell at a particular metabolic state. Unlike in DNA
microarray analysis, in which the identities of the probes are known beforehand, the
identities of the expressed proteins in a proteome have to determined by perform-
ing protein separation, identification, quantification, and identification procedures.
The classic protein separation methods involve two-dimensional gel electrophoresis
followed by gel image analysis. Further characterization involves determination of
amino acid composition, peptide mass fingerprints, and sequences using mass spec-
trometry (MS). Finally, database searching is needed for protein identification. The
outline of the procedure is shown in Figure 19.1.
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2D-Page

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is a high-resolution
technique that separates proteins by charge and mass. The gel is run in one direction
in a pH gradient under a nondenaturing condition to separate proteins by isoelectric
points (pI) and then in an orthogonal dimension under a denaturing condition to sep-
arate proteins by molecular weights (MW). This is followed by staining, usually silver
staining, which is very sensitive, to reveal the position of all proteins. The result is a
two-dimensional gel map; each spot on the map corresponds to a single protein being
expressed. The stained gel can be further scanned and digitized for image analysis.

However, not all proteins can be separated by this method or stained properly. One
of the challenges of this technique is the separation of membrane proteins, which
are largely hydrophobic and not readily solublized. They tend to aggregate in the
aqueous medium of a two-dimensional gel. To overcome this problem, membrane
proteins can be fractionated using specialized protocols and then electrophoresed
using optimized buffers containing zwitterionic detergents. Subfractionation can be
carried out to separate nuclear, cytosol, cytoskeletal, and other subcellular fractions
to boost the concentrations of rare proteins and to reveal subcellular localizations of
the proteins.

Gel image analysis is the next step that helps to reveal differential global protein
expression patterns. This analysis includes spot determination, quantitation, and nor-
malization. Image analysis software is used to measure the center, edges, and densities
of the spots. Comparing two-dimensional gel images from various experiments can
sometimes pose a challenge because the gels, unlike DNA microarrays, may shrink or
warp. This requires the software programs to be able to stretch or maneuver one of
the gels relative to the other to find a common geometry. When the reference spots are
aligned properly, the rest of the spots can be subsequently compared automatically.
There are a number of web-based tools available for this type of image analysis.

Melanie (http://us.expasy.org/melanie/) is a commercially available comprehen-
sive software package for Windows. It carries out background subtraction, spot detec-
tion, quantitation, annotation, image manipulation and merging, and linking to
2D-PAGE databases as well as image comparison through statistical tests.

CAROL (http://gelmatching.inf.fu-berlin.de/Carol.html) is a free Java program for
two-dimensional gel matching, which takes into account geometrical distortions of
gel spots.

Comp2Dgel (www2.imtech.res.in/raghava/comp2dgel/) is aweb server that allows
the user to compare two-dimensional gel images with a two-dimensional gel database
orwith other gels that the user inputs. A percentage deviation of the images is obtained
through superimposition of the images.

SWISS-2DPAGE (www.expasy.ch/) is a database of two-dimensional gel maps of
cells of many organisms at metabolic resting conditions (control conditions), which
can be used for comparison with experimental or diseased conditions. It can be
searched by a spot identifier or keyword.
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Mass Spectrometry Protein Identification

Once the proteins are separated on a two-dimensional gel, they can be further identi-
fied and characterized using MS. In this procedure, the proteins from a two-
dimensional gel system are first digested in situ with a protease (e.g., trypsin). Protein
spots of interest are excised from the two-dimensional gel. The proteolysis generates a
unique pattern of peptide fragments of various MWs, which is termed a peptide finger-
print. The fragments can be analyzed with MS, a high-resolution technique for deter-
mining molecular masses. Currently, electrospray ionization MS and matrix-assisted
laser desorption ionization (MALDI) MS are commonly used. These two approaches
only differ in the ionization procedure used. In MALDI-MS, for example, the peptides
are charged with positive ions and forced through an analyzing tube with a magnetic
field. Peptides are analyzed in the gas phase. Because smaller peptides are deflected
more than larger ones in a magnetic field, the peptide fragments can be separated
according to molecular mass and charges. A detector generates a spectrum that dis-
plays ion intensity as a function of the mass-to-charge ratio.

As a step toward further identification, the peptides can be sequenced with suc-
cessive phases of fragmentation and mass analysis. This is the technique of tandem
mass spectrometry (MS/MS), in which a peptide has to pass through two analyzers for
sequence determination. In the first analyzer, the peptide is fragmented by physical
means generating fragments with nested sizes differing by only one amino acid. The
molecular masses of these fragments are more precisely determined in the second
analyzer yielding the sequence of the fragment.

Protein Identification through Database Searching

MS characterization of proteins is highly dependent on bioinformatic analysis. Once
the peptide mass fingerprints or peptide sequences are determined, bioinformatics
programs can be used to search for the identity of a protein in a database of the-
oretically digested proteins. The purpose of the database search is to find exact or
nearly exact matches. However, in reality, protease digestion is rarely perfect, often
generating partially digested products as a result of missed cuts at expected cutting
sites. Peptides resulting from MALDI-MS are also charged, which increases their mass
slightly. Toincrease the discriminatory ability of the database search, the search engine
must allow some leeway in matching molecular masses of peptides in the cases of
missed cuts and charge modifications. The user is required to provide as much infor-
mation as possible as input. For example, molecular masses of peptide fingerprints,
peptide sequence, MW, and pl of the intact protein, even the species names are impor-
tant in obtaining unique identification of a particular protein. A basic requirement for
peptide identification through database matching is the availability of all the protein
sequences from an organism. Thus, this method only works well with model organ-
isms that have completely sequenced and well-annotated genomes, but has much
limitation to be applied in nonmodel organisms.
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ExPASY (www.expasy.ch/tools/) is a comprehensive proteomics web server with
a suite of programs for searching peptide information from the SWISS-PROT and
TrEMBL databases. There are twelve database search tools in this server dedicated
to protein identification based on MS data. For example, the AACompldent program
identifies proteins based on pI, MW, and amino acid composition and compares
these values with theoretical compositions of all proteins in SWISS-PROT/TrEMBL.
The number of candidate proteins can be further narrowed down by using species
names and keywords. The Tagldent program can narrow down the candidate list by
peptide sequences because of the high specificity of short sequence matches. The
Peptldent program incorporates mass fingerprinting information with information
such as pI, MW, and species name. Candidate proteins are ranked by the number of
matching peptides. The CombSearch tool takes advantage of the strength of multiple
parameters by using combined composition, sequence tags, and peptide fingerprint-
ing information to perform combined searches against the databases.

ProFound (http://prowl.rockefeller.edu/profound_bin/WebProFound.exe) is a
web server with a set of interconnected programs. It searches a protein sequence
database using MS fingerprinting information. A Bayesian algorithm ranks the
database matches according to the probability of database sequences producing the
peptide mass fingerprints.

Mascot (www.matrixscience.com/search_form_select.html) is another web server
that identifies proteins based on peptide mass fingerprints, sequence entries, or raw
MS/MS data from one or more peptides.

Differential In-Gel Electrophoresis

Differences in protein expression patterns can be detected in a similar way as in
fluorescent-labeled DNA microarrays, using a technique called differential in-gel
electrophoresis (DIGE) (Fig. 19.2). Proteins from experimental and control samples
are labeled with differently colored fluorescent dyes. They are mixed together before
electrophoresis on a two-dimensional gel. Differentially expressed proteins in both
conditions can be coseparated and visualized in the same gel. Compared to regular
2D-PAGE, the process reduces the noise and improves the reproducibility and sensi-
tivity of detection. In principle, it resembles the two-color DNA microarray analysis.
The drawbacks of this approach are that different proteins take up fluorescent tags to
different extents and that some proteins labeled with the fluorophores may become
less soluble and precipitate before electrophoresis.

Protein Microarrays

Protein microarray chips are conceptually similar to DNA microarray chips (see chap-
ter 17) and can be built to contain high-density grids with immobilized proteins for
high throughput analysis. The chips contain entire immobilized proteome. However,
they are not meant to be used to bind and quantitate complementary molecules
as in DNA microarrays. Instead, they are used for studying protein function by
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- @B
Protein sample 1 Protein sample 2
labeled with Cy5 labeled with Cy3

Mixed protein sample

Figure 19.2: Schematic diagram showing protein differential detection using DIGE. Protein sample 1
(representing the experimental condition) is labeled with a red fluorescent dye (Cy5). Protein sample 2
(representing the control condition) is labeled with a green fluorescent dye (Cy3). The two samples are
mixed together before running on a two-dimensional gel to obtain a total protein differential display
map (see color plate section).

providingasolid support for assaying enzyme activity, or protein—protein interactions,
protein—-DNA/RNA interactions or protein-ligand interactions in an all-against-all
format.

To make protein chips truly analogous to DNA chips, the solid support has to
contain specific proteins or ligands that capture protein molecules by complemen-
tarity. A classical approach to this problem is to perform an immunoassay by using
a spectrum of antibodies against the whole proteome. The antibodies can be fixed
on a solid support for assaying thousands of proteins simultaneously. However, a
major drawback of this approach is that natural antibodies are easily denatured
and have a high tendency to cross-react with nonspecific antigens. In addition,
producing antibodies for every single protein from an organism is prohibitively
expensive.

To overcome this hurdle, a new technique is being developed that uses “protein
scaffolds” to capture target molecules. The scaffolds are similar to antibodies but
smaller, more stable and more specific in their binding of target proteins. They can
be made in a cell-free system and attached with two fluorescence tags. This tech-
nique uses the principle of fluorescence resonance energy transfer, which is an exci-
tation energy transfer between two fluorescent dye molecules whose excitation and
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absorption spectra overlap. The efficiency of the energy transfer depends on the dis-
tance of the two dyes. If one portion of the tagged protein is involved in binding to
a target protein, the protein conformational changes cause the two fluorescent tags
to move apart, disrupting the excitation energy transfer between the dyes such that it
can be monitored on fluorescence spectra.

A technology called Protein-Print is in early development, which is essentially a
molecular imprinting method. Chemical monomers are used to coat target proteins,
which are then allow to polymerize. When polymerization is complete and the target
molecules removed, a mould is formed that resembles the shape of the target protein.
The moulds can then be used to capture like molecules with high specificity.

These are some of the promising technologies currently under development. Their
high throughputnature means that they may eventually succeed the two-dimensional
gel-based method. When the proteome chips become available, data analysis for
identifying coregulated proteins should be relatively easy because it will be similar to
that used for DNA microarrays. Similar image analysis and clustering algorithms can
be applied to identify coregulated proteins.

POSTTRANSLATIONAL MODIFICATIONS

Another important aspect of the proteome analysis concerns posttranslational mod-
ifications. To assume biological activity, many nascent polypeptides have to be cova-
lently modified before or after the folding process. This is especially true in eukary-
otic cells where most modifications take place in the endoplasmic reticulum and
the Golgi apparatus. The modifications include proteolytic cleavage; formation of
disulfide bonds; addition of phosphoryl, methyl, acetyl, or other groups onto certain
amino acid residues; or attachment of oligosaccharides or prosthetic groups to create
mature proteins. Posttranslational modifications have a great impact on protein func-
tion by altering the size, hydrophobicity and overall conformation of the proteins. The
modifications can directly influence protein—protein interactions and distribution of
proteins to different subcellular locations.

It is therefore important to use bioinformatics tools to predict sites for posttransla-
tional modifications based on specific protein sequences. However, prediction of such
modifications can often be difficult because the short lengths of the sequence motifs
associated with certain modifications. This often leads to many false-positive identifi-
cations. One such example is the known consensus motif for protein phosphorylation,
[ST]-x-[RK]. Such a short motif can be found multiple times in almost every protein
sequence. Most of the predictions based on this sequence motif alone are likely to be
wrong, producing very high rates of false-positives. Similar situations can be found in
other predicted modification sites. One of the reasons for the false predictions is that
neighboring environment of the modification sites is not considered.

To minimize false-positive results, a statistical learning process called support
vector machine (SVM) can be used to increase the specificity of prediction. This is
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a data classification method similar to the linear or quadratic discriminant analysis
(see Chapter 8). In this method, the data are projected in a three-dimensional space
or even a multidimensional space. A hyperplane — alinear or nonlinear mathematical
function - is used to best separate true signals from noise. The algorithm has more
environmental variables included that may be required for the enzyme modification.
After training the algorithm with sufficient structural features, it is able to correctly
recognize many posttranslational modification patterns.

AutoMotif (http://automotif.bioinfo.pl/) is a web server predicting protein
sequence motifs using the SVM approach. In this process, the query sequence is chop-
ped up into a number of overlapping fragments, which are fed into different kernels
(similar to nodes). A hyperplane, which has been trained to recognize known pro-
tein sequence motifs, separates the kernels into different classes. Each separation is
compared with known motif classes, most of which are related to posttranslational
modification. The best match with a known class defines the functional motif.

Prediction of Disulfide Bridges

A disulfide bridge is a unique type of posttranslational modification in which cova-
lent bonds are formed between cysteine residues. Disulfide bonds are important for
maintaining the stability of certain types of proteins.

The disulfide prediction is the prediction of paring potential or bonding states of
cysteines in a protein. Accurate prediction of disulfide bonds may also help to predict
the three-dimensional structure of the protein of interest. This problem can be tack-
led by using either profiles constructed from multiple sequence alignment or residue
contact potentials calculated based on the local sequence environment. Advanced
neural networks or SVM or hidden Markov model (HMM) algorithms are often used
to discern long-distance pairwise interactions among cysteine residues. The fol-
lowing program is one of the publicly available programs specialized in disulfide
prediction.

Cysteine (http://cassandra.dsi.unifi.it/cysteines/) is a web server that predicts the
disulfide bonding states of cysteine residues in a protein sequence by building profiles
based on multiple sequence alignment information. A recursive neural network (see
Chapter 14) ranks the candidate residues for disulfide formation.

Identification of Posttranslational Modifications in Proteomic Analysis

Posttranslational modifications can be experimentally identified based on MS fin-
gerprinting data. Certain peptide identification tools are able to search for known
posttranslational modification sites in a sequence and incorporate extra mass based
on the type of modifications during database fragment matching. There are two sub-
programs in the ExXPASY proteomics server and an independent RESID database that
are related to predicting posttranslational modifications.

ExPASY (www.expasy.ch/tools) contains a number of programs to determine post-
translational modifications based on MS molecular mass data. FindMod is a sub-
program that uses experimentally determined peptide fingerprint information to
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compare the masses of the peptide fragments with those of theoretical peptides. If a
differenceisfound, it predicts a particular type of modification based on a set of prede-
fined rules. It can predict twenty-eight types of modifications, including methylation,
phosphorylation, lipidation, and sulfation. GlyMod is a subprogram that specializes in
glycosylation determination based on the difference in mass between experimentally
determined peptides and theoretical ones.

RESID (http://pir.georgetown.edu/pirwww/search/textresid.html) is an indepen-
dent posttranslational modification database listing 283 types of known modifica-
tions. It can search by text or MWs.

PROTEIN SORTING

Subcellular localization is an integral part of protein functionality. Many proteins
exhibit functions only after being transported to certain compartments of the cell.
The study of the mechanism of protein trafficking and subcellular localization is the
field of protein sorting (also known as protein targeting), which has become one of the
central themesin modern cell biology. Identifying protein subcellularlocalizationis an
important aspect of functional annotation, because knowing the cellular localization
of a protein often helps to narrow down its putative functions.

For many eukaryotic proteins, newly synthesized protein precursors have to be
transported to specific membrane-bound compartments and be proteolytically pro-
cessed to become functional. These compartments include chloroplasts, mitochon-
dria, the nucleus, and peroxisomes. To carry out protein translocation, unique peptide
signals have to be present in the nascent proteins, which function as “zip codes” that
direct the proteins to each of these compartments. Once the proteins are translocated
within the organelles, protease cleavage takes place to remove the signal sequences
and generate mature proteins (another example of posttranslational modification).
Even in prokaryotes, proteins can be targeted to the inner or outer membranes, the
periplasmic space between these membranes, or the extracellular space. The sorting
of these proteins is similar to that in eukaryotes and relies on the presence of signal
peptides.

The signal sequences have a weak consensus but contain some specific features.
They all have a hydrophobic core region preceded by one or more positively charged
residues. However, the length and sequence of the signal sequences vary tremen-
dously. Peptides targeting mitochondria, for example, are located in the N-terminal
region. The sequences are typically twenty to eighty residues long, rich in positively
charged residues such as arginines as well as hydroxyl residues such as serines and
threonines, but devoid of negatively charged residues, and have the tendency to form
amphiphilic e-helices. These targeting sequences are cleaved once the precursor pro-
teins are inside the mitochondria. Chloroplast localization signals (also called transit
peptides) are also located in the N-terminus and are about 25 to 100 residues in length,
containing very few negatively charged residues but many hydroxylated residues such
as serine. An interesting feature of the proteins targeted for the chloroplasts is that the
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transit signals are bipartite. That is, they consist of two adjacent signal peptides, one
for targeting the proteins to the stroma portion of the chloroplast before being cleaved
and the other for targeting the remaining portion of the proteins to the thylakoids.
Localization signals targeting to the nucleus are variable in length (seven to forty-one
residues) and are found in the internal region of the proteins. They typically consist of
one or two stretches of basic residues with a consensus motif K(K/R)X(K/R). Nuclear
signal sequences are not cleaved after protein transport.

Considerable variations in length and sequence make accurate prediction of signal
peptides using computational approaches difficult. Nonetheless, various computa-
tional methods have been developed to predict the subcellular localization signals. In
general, they fall within three categories. Some algorithms are signal based, depending
on the knowledge of charge, hydrophobicity, or consensus motifs. Some are content
based, depending on the sequence statistics such as amino acid composition. The
third group of algorithm combines the virtue of both signals and content and appears
to be more successful in prediction. Neural network- and HMM-based algorithms are
examples of the combined approach. Here are some of the most frequently used pro-
grams for the prediction of subcellular localization and protein sorting signals with
reasonable accuracy (65% to 70%).

SignalP (www.cbs.dtu.dk/services/SignalP-2.0/#submission) is a web-based pro-
gram that predicts subcellular localization signals by using both neural networks and
HMMs. The neural network algorithm combines two different scores, one forrecogniz-
ing signal peptides and the other for protease cleavage sites. The HMM-based analysis
discriminates between signal peptides and the N-terminal transmembrane anchor
segments required for insertion of the protein into the membrane. The program is
trained by three different training sets, namely, eukaryotes, Gram-negative bacteria
and Gram-positive bacteria. This distinction is necessary because there are signifi-
cant differences in the characteristics of the signal peptides from these organisms.
Therefore, appropriate datasets need to be selected before analyzing the sequence.
The program predicts both the signal peptides and the protease cleavage sites of the
query sequence.

TargetP (www.cbs.dtu.dk/services/TargetP/) is a neural network-based program,
similar to SignalP. It predicts the subcellular locations of eukaryotic proteins based
on their N-terminal amino acid sequence only. It uses analysis output from SignalP
and feeds it into a decision neural network, which makes a final choice regarding the
target compartment.

PSORT (http://psort.nibb.ac.jp/) is a web server that uses a nearest neighbor
method to make predictions of subcellular localizations. It compares the query
sequence to a library of signal peptides for different cellular localizations. If the
majority of the closest signal peptide matches (nearest neighbors) are for a partic-
ular cellular location, the sequence is predicted as signal peptide for thatlocation. It is
functionally similar to TargetP, but may have lower sensitivity. An iPSORT is available
in the same website that predicts N-terminal sorting signals and is an equivalent to
SignalP.
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PROTEIN-PROTEIN INTERACTIONS

In general, proteins have to interact with each other to carry out biochemical func-
tions. Thus, mapping out protein—protein interactions is another important aspect of
proteomics. Interprotein interactions include strong interactions that allow forma-
tion of stable complexes and weaker ones that exist transiently. Proteins involved in
forming complexes are generally more tightly coregulated in expression than those
involved in transient interactions. Protein—protein interaction analysis at the pro-
teome level helps reveal the function of previously uncharacterized proteins on the
basis of the “guilt by-association” rule.

Experimental Determination

Protein interactions are commonly detected by using the classic yeast two-hybrid
method that relies on the interaction of “bait” and “prey” proteins in molecular con-
structs in yeast. In this strategy, a two-domain transcriptional activator is employed
as a helper for determining protein—protein interactions. The two domains which
are a DNA-binding domain and a trans-activation domain normally interact to acti-
vate transcription. However, molecular constructs are made such that each of the
two domains is covalently attached to each of the two candidate proteins (bait and
prey). If the bait and prey proteins physically interact, they bring the DNA-binding and
trans-activation domains in such close proximity that they reconstitute the function
of the transcription activator, turning on the expression of a reporter gene as a result.
If the two candidate proteins do not interact, the reporter gene expression remains
switched off.

This technique is essentially alow throughput approach because each bait and prey
construct has to be prepared individually to map interactions between all proteins.
Nonetheless, it has been systematically applied to study interactions at the whole
proteome level. Protein—protein interaction networks of yeast and a small number of
other species have been subsequently determined using this method. A major flaw in
this method is that it is an indirect approach to probe protein—protein interaction and
has a tendency to generate false positives (spurious interactions) and false negatives
(undetected interactions). It has been estimated from proteome-wide characteriza-
tions that the rate of false positives can be as high as 50%. Another weakness is that
only pairwise interactions are measured, and therefore interactions that only take
place when multiple proteins come together are omitted.

There are many alternative approaches to determining protein—protein interac-
tions. One of them is to use a large-scale affinity purification technique that involves
attaching fusion tags to proteins and purifying the associated protein complexes
in an affinity chromatography column. The purified proteins are then analyzed by
gel electrophoresis followed by MS for identification of the interacting components.
The protein microarray systems mentioned above also provide a high throughput
alternative for studying protein—protein interactions. Although none of the methods
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Figure 19.3: Rosetta stone method for prediction of genes encoding interacting proteins based on
domain fusion patterns in different genomes. In genome A, two different domains exist in separate
open reading frames. In genome B, they are fused together in one protein-encoding frame. Conversely,
the two domains of the same protein encoded in genome B may become separate in genome A, but still
perform the same function through physical interactions.

are guaranteed to eliminate false positives and false negatives, combining multiple
approaches in theory compensates for the potential weaknesses of each technique
and minimizes the artifacts.

Prediction of Protein-Protein Interactions

Decades of research on protein biochemistry and molecular biology has accumulated
tremendous amount of data related to protein—protein interactions, which allow the
extraction of some general rules governing these interactions. These rules have facil-
itated the development of algorithms for automated prediction of protein—protein
interactions. The currently available tools are generally based on evolutionary stud-
ies of gene sequences, gene linkage patterns, and gene fusion patterns, which are
described in detail next.

Predicting Interactions Based on Domain Fusion

One of the prediction methods is based on gene fusion events. The rationale goes like
this: if A and B exist as interacting domains in a fusion protein in one proteome, the
gene encoding the protein is a fusion gene. Their homologous gene sequences A’ and
B’ existing separately in another genome most likely encode proteins interacting to
perform a common function. Conversely, ifancestral genes A and B encode interacting
proteins, they may have a tendency to be fused together in other genomes during
evolution to enhance their effectiveness. This method of predicting protein—protein
interactions is called the “Rosetta stone” method (Fig. 19.3) because a fused protein
often reveals relationships between its domain components.

The further justification behind this method is that when two domains are fused
in a single protein, they have to be in extremely close proximity to perform a common
function. When the two domains are located in two different proteins, to preserve
the same functionality, their close proximity and interaction have to be preserved
as well. Therefore, by studying gene/protein fusion events, protein—-protein interac-
tions can be predicted. This prediction rule has been proven to be rather reliable and
since successfully applied to a large number of proteins from both prokaryote and
eukaryotes.
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Predicting Interactions Based on Gene Neighbors

Gene orders, generally speaking, are poorly conserved among divergent prokaryotic
genomes (see Chapter 16). However, if a certain gene linkage is found to be indeed
conserved across divergent genomes, it can be used as a strong indicator of formation
of an operon that encodes proteins that are functionally and even physically coupled.
This rule of predicting protein—protein interactions holds up for most prokaryotic
genomes. For eukaryotic genomes, gene order maybe aless potent predictor of protein
interactions than a tight coregulation for gene expression.

Predicting Interactions Based on Sequence Homology

If a pair of proteins from one proteome are known to interact, their conserved
homologs in another proteome are likely to have similar interactions. The homolo-
gous pairs are referred to as interologs. This method relies on the correct identification
of orthologs and the use of existing protein interaction databases. The method has
potential to model protein quaternary structure if one pair of proteins have known
structures.

InterPreTS (www.russell.embl-heidelberg.de/people/patrick/interprets/interprets.

html) is a web server that has a built-in database for interacting domains based
on known three-dimensional protein structures. Two protein sequences are used
as query to search against the database for homologs. The alignment of the query
sequences and database domains is carried out using HMMer (see Chapter 6). If
the alignment scores for both sequences are above the threshold and the contact
residues are found to be conserved, the two proteins are considered to be interacting
proteins.

IPPRED (http://cbi.labri.fr/outils/ippred/IS_part_simple.php) is a similar web-
based program that allows the user to submit multiple protein sequences. The
program searches homologous sequences using BLAST in a database of known inter-
acting protein pairs (BIND). If any two query sequences have strong enough simi-
larity with known interacting protein pairs, they are inferred as interacting partners.

Predicting Interactions Based on Phylogenetic Information

Proteininteractions can be predicted using phylogenetic profiles, which are defined as
patterns of gene pairs that are concurrently present or absent across genomes. In other
words, thismethod detects the copresence or co-absence of orthologs across anumber
of genomes. Genes having the same pattern of presence or absence across genomes
are predicted as encoding interacting proteins. The logic behind the cooccurrence
approach is that proteins normally operate as a complex. If one of the components of
the complex is lost, it results in the failure of the entire complex. Under the selective
pressure, the rest of the nonfunctional interacting partners in the complex are also
lost during evolution because they have become functionally unnecessary. The rule
based on concurrent gene loss or gene gain has proven to be less accurate than the
rules based on gene fusion and gene neighbors. An example of using the phylogenetic
profile method to predict interacting proteins is shown in Figure 19.4.
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Figure 19.4: Phylogenetic profile method for predicting interacting proteins based on copresence and
co-absence of the encoding genes across genomes. The presence is indicated by checks and absence
by dashed lines. The protein pairs encoded by genes one and three as well as genes two and four are
predicted as interacting partners.

A more quantitative phylogenetic method to predict protein interactions is the
“mirror tree” method, which examines the resemblance between phylogenetic trees
of two sequence families (Fig. 19.5). The rationale is that if two protein trees are nearly
identical in topology and are highly correlated in terms of evolutionary rate, they
are highly likely to interact with each other. This is because if mutations occur at
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Figure 19.5: Mirror tree method for prediction of interacting proteins based on strong statistical corre-
lation of evolutionary distance matrices used to build two phylogenetic trees for the two protein families
of interest. The two trees have a near identical topology resulting in a near mirror image. The distance
matrices used to construct the trees are compared using correlation analysis.
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the interaction surface for one of the proteins, corresponding mutations are likely
to occur in the interacting partner to sustain the interaction. As a result, the two
interacting proteins should have very similar phylogenetic trees reflecting very similar
evolutionary history. To analyze the extent of coevolution, correlation coefficients (r)
of evolutionary distance matrices for the two groups of protein homologs used in
constructing the trees are examined. It has been shown that if r > 0.8, there is a strong
indication for protein interactions.

Matrix (http://orion.icmb.utexas.edu/cgi-bin/matrix/matrix-index.pl) is a web
server that predicts interaction between two protein families. The server aligns two
individual protein data sets (assuming each representing a protein family) using
Clustal. It then derives distance matrices from the two alignment files and aligns
the matrices to discover similar portions that may indicate interacting partners from
the two protein families.

ADVICE (Automated Detection and Validation of Interaction based on the Co-
Evolutions, http://advice.i2r.a-star.edu.sg/) is a similar web server providing predic-
tion of interacting proteins using the mirror-tree approach. It performs automated
BLAST searches for a given protein sequence pair to derive two sets of homologous
sequences. The sequences are multiply aligned using CLUSTAL. A distance matrix for
each set of alignment is then derived. The Pearson’s correlation coefficient is subse-
quently calculated for detecting similarities between the two distance matrices. If the
coefficient r > 0.8, the two query sequences are predicted to be a interacting pair.

Predicting Interactions Using Hybrid Methods

It needs to be emphasized that each of these prediction methods is based on a partic-
ular hypothesis and may exhibit a certain degree of bias associated with the hypoth-
esis. Because it is difficult to evaluate the performance of each individual prediction
method, the user of these prediction algorithms is recommended to use a combined
approach that uses multiple methods to reduce bias and error rates and to yield a
higher level of confidence in the protein interaction prediction. The following inter-
net program is a good example of combining multiple lines of evidence in predicting
protein-protein interactions.

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins, http://
www.bork.embl-heidelberg.de/STRING/) is a web server that predicts gene and pro-
tein functional associations based on combined evidence of gene linkage, gene
fusion and phylogenetic profiles. The current version also includes experimental co-
expression data as well as documented interactions resulted from literature mining.
Functional associations include both direct and indirect protein-protein interactions.
Indirect interactions can mean enzymes in the same pathway sharing a common sub-
strate or proteins regulating each other in the genetic pathway. The server contains
information for orthologous groups from 110 completely sequenced genomes. The
query sequence is first classified into an orthologous group based on the COG classi-
fication (see Chapter 7) and is then used to search the database for known conserved
linkage pattern, gene fusions, and phylogenetic profiles. The server uses a weighted
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scoring system that evaluates the significance of all three types of protein associations
among the genomes. Toreduce false positives and increase reliability of the prediction,
the three types of genomic associations are checked against an internal reference set.
A single score of pairwise interactions is given as the final output which also contains
all three types of evidence plus a summary of combined protein interaction network
involving multiple partners. The server returns a list of predicted protein-protein
associations and a graphic representation of the association network.

SUMMARY

Protein expression analysis at the proteome level promises more accurate elucida-
tion of cellular functions. This is an advantage over genomic analysis, which does
not necessarily lead to prediction of protein functions. Traditional experimental
approaches to proteomics include large-scale protein identification using 2D-PAGE
and MS. The identification process requires the integration of bioinformatics tools
to search databases for matching peptides. Newer protein expression profiling tech-
niques include DIGE and protein microarrays. Protein functions can be modulated as
a result of posttranslational modifications. Sequence based prediction often results
in high rates of false-positives owing to limited understanding of the structural fea-
tures required for the modifications. A step toward minimizing the false-positive rates
in prediction is the use of SVM. Another area of proteomics is defining protein sub-
cellular localization signals. Several web tools such as TargetP, SignalP, and PSORT are
available to give reasonably successful prediction of signal peptides. Protein—protein
interactions are normally determined using yeast two-hybrid experiments or other
experimental methods. However, theoretical prediction of such interactions is pro-
viding a promising alternative. The current prediction methods are based on domain
fusion, gene linkage pattern, sequence homology, and phylogenetic information. The
ability to predict protein interactions is of tremendous value in genome annotation
and in understanding the function of genes and their encoded proteins. The compu-
tational approach helps to generate hypotheses to be tested by experiments.
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