
PART A

BASICS

Statistics is the science of collecting, summarizing, presenting and interpreting

data, and of using them to estimate the magnitude of associations and test

hypotheses. It has a central role in medical investigations. Not only does it provide

a way of organizing information on a wider and more formal basis than relying on

the exchange of anecdotes and personal experience, it takes into account the

intrinsic variation inherent in most biological processes. For example, not only

does blood pressure differ from person to person, but in the same person it also

varies from day to day and from hour to hour. It is the interpretation of data in

the presence of such variability that lies at the heart of statistics. Thus, in investi-

gating morbidity associated with a particular stressful occupation, statistical

methods would be needed to assess whether an observed average blood pressure

above that of the general population could simply be due to chance variations or

whether it represents a real indication of an occupational health risk.

Variability can also arise unpredictably (randomly) within a population. Indi-

viduals do not all react in the same way to a given stimulus. Thus, although

smoking and heavy drinking are in general bad for the health, we may hear of a

heavy smoker and drinker living to healthy old age, whereas a non-smoking

teetotaller may die young. As another example, consider the evaluation of a new

vaccine. Individuals vary both in their responsiveness to vaccines and in their

susceptibility and exposure to disease. Not only will some people who are unvac-

cinated escape infection, but also a number of those who are vaccinated may

contract the disease. What can be concluded if the proportion of people free from

the disease is greater among the vaccinated group than among the unvaccinated?

How effective is the vaccine? Could the apparent effect just be due to chance? Or,

was there some bias in the way people were selected for vaccination, for example

were they of different ages or social class, such that their baseline risk of contract-

ing the disease was already lower than those selected into the non-vaccinated

group? The methods of statistical analysis are used to address the first two of

these questions, while the choice of an appropriate design should exclude the third.

This example illustrates that the usefulness of statistics is not confined to the

analysis of results. It also has a role to play in the design and conduct of a study.

In this first part of the book we cover the basics needed to understand data and

commence formal statistical analysis. In Chapter 1 we describe how to use the

book to locate the statistical methods needed in different situations, and to

progress from basic techniques and concepts to more sophisticated analyses.



Before commencing an analysis it is essential to gain an understanding of the data.

Therefore, in Chapter 2 we focus on defining the data, explaining the concepts of

populations and samples, the structure of a dataset and the different types of

variables that it may contain, while in Chapter 3 we outline techniques for

displaying and tabulating data.
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CHAPTER 1

Using this book

1.1 Introduction 1.5 Understanding the links between study

1.2 Getting started (Part A) design, analysis and interpretation (Part F)

1.3 Finding the right statistical 1.6 Trying out our examples

method (Parts B–D) 1.7 This book and evidence-based

1.4 Going further (Part E) medicine

1.1 INTRODUCTION

People usually pick up a statistics book when they have data to analyse, or when

they are doing a course. This has determined the structure of this book. The

ordering of topics is based on a logical progression of both methods and practical

concepts, rather than a formal mathematical development. Because different

statistical methods are needed for different types of data, we start by describing

how to define and explore a dataset (rest of Part A). The next three parts (B, C

and D) then outline the standard statistical approaches for the three main types of

outcome variables (see Section 1.3). Statistical ideas are introduced as needed,

methods are described in the context of relevant examples drawn from real

situations, and the data we have used are available for you to reproduce the

examples and try further analyses (see Section 1.6). In Part E, we introduce a

collection of more advanced topics, which build on common themes in Parts B to

D. These are beyond the scope of most introductory texts. The final part of

the book (Part F) is devoted to issues involved in the design and conduct of a

study, and how to develop an analysis strategy to get the best out of the data

collected.

This book is intended to appeal to a wide audience, and to meet several needs.

It is a concise and straightforward introduction to the basic methods and ideas of

medical statistics, and as such is suitable for self-instruction, or as a companion to

lecture courses. It does not require a mathematical background. However, it is

not just an introductory text. It extends well beyond this and aims to be a

comprehensive reference text for anyone seriously involved in statistical analysis.

Thus it covers the major topics a medical research worker, epidemiologist or

medical statistician is likely to encounter when analysing data, or when reading

a scientific paper. When dealing with the more advanced methods, the focus is on

the principles involved, the context in which they are required and the interpret-

ation of computer outputs and results, rather than on the statistical theory behind

them.



1.2 GETTING STARTED (PART A)

The other chapters in Part A deal with the basics of getting to know your data. In

Chapter 2 (‘Defining the data’) we explain the link between populations and

samples, and describe the different types of variables, while in Chapter 3 we

outline simple techniques for tabulating and displaying them.

In particular, we introduce the distinction between exposure variables or risk

factors (that is variables which influence disease outcomes, including medical

treatments) and outcome variables (the variables whose variation or occurrence

we are seeking to understand). Assessing the size and strength of the influence of

one or more exposure variables on the outcome variable of interest is the core issue

that runs throughout this book, and is at the heart of the majority of statistical

investigations.

1.3 FINDING THE RIGHT STATISTICAL METHOD (PARTS B–D)

The appropriate statistical methods to use depend on the nature of the outcome

variable of interest. Types of outcome variables are described in detail in Chapter

2; they may be essentially one of three types:

1 Numerical outcomes, such as birthweight or cholesterol level.

2 Binary outcomes, summarized as proportions, risks or odds, such as the pro-

portion of children diagnosed with asthma, the proportion of patients in each

treatment group who are no longer hypertensive, or the risk of dying in the first

year of life.

3 Rates of mortality, morbidity or survival measured longitudinally over time,

such as the survival rates following different treatments for breast cancer, or the

number of episodes of diarrhoea per person per year among AIDS patients.

Parts B, C and D comprehensively cover the full range of standard methods for

these three types of outcome respectively, and will be sufficient for the majority of

analysis requirements. The emphasis throughout is on how to choose the right

method for the required analysis, how to execute the method and how to interpret

the results from the computer output. A quick guide to the appropriate statistical

methods for the analysis of the different types of outcome variable is included on

the inside covers.

The key concepts underlying statisticalmethods are all introduced in Part B in the

context of analysing numerical outcomes, but they apply equally to all the statistical

methods in the book. Statistics is used to evaluate the association between an

exposure variable and the outcome of interest. More specifically, it is used to

measure this association in the data collected from the particular sample of individ-

uals in our study and to make inferences about its likely size and strength in the

population from which the sample was derived. In Chapter 6, we introduce the use

of a confidence interval, to give a range of values within which the size of the

association in the population is likely to lie, taking into account sampling variation

and standard error, which reflect the inherent variation between individuals.

BPL : Check
Correct
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Hypothesis tests (also known as significance tests) and P-values, introduced in

Chapter 7, are used to assess the strength of the evidence against the null hypothesis

that there is no true association in the population fromwhich the samplewas drawn.

The methods in these three core parts of the book range from simple techniques

such as t-tests or chi-squared tests for comparing two exposure groups, to the use

of regression models for examining the effect of several exposure variables.

Throughout we aim to show how these regression models arise as natural exten-

sions to the simpler methods. These more sophisticated analyses are no longer the

preserve of the trained statistician. They are widely available in statistical software

packages and can be used by anyone with a desktop or notebook/laptop com-

puter, and a moderate level of computer expertise. The more advanced sections can

be omitted at a first reading, as indicated at the relevant points in the text. It is

recommended, however, that the introductions of all chapters be read, as these put

the different methods into context.

1.4 GOING FURTHER (PART E)

Parts B, C and D comprehensively cover the full range of standard methods for the

three types of outcome variables. This range of methods will be sufficient for the

majority of analysis requirements. Part E is for those who wish to go further, and to

understand general issues in statistical modelling. It can be omitted until needed.

In Part E we explain the idea of likelihood, upon which most statistical methods

are based, discuss generic issues in regression modelling, so that skills learned in

applying one type of regression model can be applied directly to the others, and

describemethods that allow us to relax the assumptionsmade in standard statistical

methods. We also include chapters for two specialised areas of analysis. The first is

the analysis of clustered data, which arise, for example, in cluster-randomized trials

where communities, rather than individuals, are randomized to receive the inter-

vention or to act as control. The second is on systematic reviews andmeta-analyses,

which synthesize findings from several independent studies. Finally, we include a

brief overview of the Bayesian approach to statistical inference.

In these more advanced chapters our emphasis is on a practical approach,

focussing on what the reader needs to know to conduct such analyses, and what

is needed to critically appraise their reporting in scientific papers. However, we

recommend that only the introductions of the chapters be attempted at first

reading. The detail can be omitted and used only when the necessity arises, and/

or the reader has acquired experience of basic regression modelling.

1.5 UNDERSTANDING THE LINKS BETWEEN STUDY DESIGN,

ANALYSIS AND INTERPRETATION (PART F)

The results of a study are only as good as the data on which they are based. Part F

addresses the links between study design, analysis and interpretation. It starts by

explaining how to choose the right analysis for each of the main types of study
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Fig. 1.1 Organization of this book.

design. It then describes how to choose an appropriate sample size, the effects of

measurement error and misclassification, and the different ways in which associ-

ations can be measured and interpreted.

Finally, it is essential to plan and conduct statistical analyses in a way that

maximizes the quality and interpretability of the findings. In a typical study, data

are collected on a large number of variables, and it can be difficult to decide which

methods to use and in what order. In Part F we aim to navigate you through this,

by describing how to plan and conduct an analysis. Time invested here before you

start pays off. Millions of trees must have been sacrificed to unplanned data

analyses, where the data were looked at in every way imaginable. Equally often,

gaps in analyses are discovered when the analyst tries to present the results. In fact

it is not uncommon for people to find themselves going back to the drawing board

at this stage. Careful planning of analyses should avoid these frustrations.

Of course, the issues discussed in Part F will affect all stages of the analysis of a

study. This is illustrated in Figure 1.1, which shows how this book is organized.

1.6 TRYING OUT OUR EXAMPLES

Almost all statistical analyses are now done using computers, and all but very large

datasets (those with measurements made on hundreds of thousands of individuals)

can now be analysed using standard (desktop or laptop) office or home computers.

Although simple analyses can be done with a hand-held calculator, even for these

the use of a computer is recommended because results will be produced more

quickly and be more accurate. For more complex analyses it is essential to use

computers. Computers also allow production of high quality graphical displays.
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For these reasons, we have conducted all analyses in this book using a computer.

We have done these using the statistical package Stata (Stata Corporation, College

Station, TX, USA; see www.stata.com). For simple analyses, we have included raw

data where possible to enable readers to try out our examples for themselves. Most

regression analyses presented in this book are based on datasets that are available

for downloading from the book’s web site, at www.blackwellpublishing.com/

EssentialMedStats. Readers may wish to use these datasets either to check that they

can reproduce the analyses presented in the book, or to practice further analyses.

In general, hand-held calculators do not provide facilities to perform a large

enough range of statistical analyses for most purposes. In particular, they do not

allow the storage of data or analysis commands that are needed to make sure that

an analysis can be reproduced (see Chapter 38). However, calculators are useful

for quick calculations and checking of results (both one’s own and those in

scientific papers). The minimum requirements are keys for scientific functions

(such as square root and logarithm) and at least one memory. The new generation

of handheld computers and personal organizers is blurring the distinction between

calculators and computers, and it is likely that statistical software for such devices

will become available in the future.

1.7 THIS BOOK AND EVIDENCE-BASED MEDICINE

As discussed above, statistics is the science of collecting, summarizing, presenting

and interpreting data, and of using them to estimate the size and strengths of

associations between variables. The core issue in medical statistics is how to assess

the size and strength of the influence of one or more exposure variables (risk

factors or treatments) on the outcome variable of interest (such as occurrence of

disease or survival). In particular it aims to make inferences about this influence

by studying a selected sample of individuals and using the results to make more

general inferences about the wider population from which the sample was drawn.

The approach of evidence-based medicine is like a mirror to this. Inferences are

made the other way around; by appraising the evidence based on the average effect

of a treatment (or exposure) assessed on a large number of people, and judging its

relevance to the management of a particular patient. More specifically, practition-

ers need to ask themselves what to consider before they can assume that the general

finding will apply to a particular patient. For example, does the patient share

the same characteristics as the group from which the evidence was gathered, such

as age, sex, ethnic group, social class and the profile of related risk factors, such as

smoking or obesity?

The evidence that the practitioner needs to appraise may come from a single

study or, increasingly, from a systematic review of many. There has been an

explosion in research evidence in recent decades: over two million articles are

published annually in the biomedical literature and it is common for important

issues to be addressed in several studies. Indeed, we might be reluctant to introduce

a new treatment based on the result of one trial alone. A systematic review, or
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overview, of the literature is a ‘systematic assembly, critical appraisal and synthesis

of all relevant studies on a specific topic’. The statistical methods for combining the

results of a number of studies are known asmeta-analysis. It should be emphasized

that not all systematic reviews will contain a meta-analysis: this depends on the

systematic review having located studies which are sufficiently similar that it is

reasonable to consider combining their results. The increase in interest in meta-

analysis is illustrated by the fact that while in 1987 there were 25 MEDLINE

citations using the term ‘meta-analysis’; this had increased to around 380 by 1991

and around 580 by 2001.

The majority of practitioners are concerned with using and appraising this

evidence base, whereas the main focus of this book is on how to conduct the

statistical analyses of studies that contribute to the evidence base. There are

several excellent specialized evidence-based medicine books that lay out the issues

in critically appraising a scientific paper or systematic review. We have therefore

decided to refer the reader to these, rather than including a detailed discussion of

critical appraisal in this book. We recommend Crombie (1996), Clarke and Croft

(1998), Silagy and Haines (1998), Greenhalgh (2000) and Sackett et al. (2000).

The parts of this book that are particularly relevant to those practising evi-

dence-based medicine are Chapters 32, 34 and 37. Thus in Chapter 32 on ‘System-

atic reviews and meta-analysis’, we include a discussion of the sources of bias in

meta-analysis and how these may be detected. In Chapter 34 we briefly review the

most important aspects of the quality of randomized controlled trials. In Chapter

37 we describe the various different ‘Measures of association and impact’ and how

to interpret them. These include numbers needed to treat or harm as well as risk

ratios, odds ratios, attributable risks and absolute risk reductions. In addition, this

book will be a useful companion for any practitioner who, as well as appraising

the quality and relevance of the evidence base, wishes to understand more about

the statistics behind the evidence generated.

AQ4
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CHAPTER 2

Defining the data

2.1 Populations and samples Variables based on threshold values

2.2 Types of variable Variables derived from reference curves,

Numerical variables based on standard population values

Binary and other categorical values Transformed variables

Rates 2.4 Distinguishing between outcome

2.3 Derived variables and exposure variables

Calculated or categorized from

recorded variables

2.1 POPULATIONS AND SAMPLES

Except when a full census is taken, we collect data on a sample from a much larger

group called the population. The sample is of interest not in its own right, but for

what it tells the investigator about the population. Statistics allows us to use the

sample to make inferences about the population from which it was derived, as

illustrated in Figure 2.1. Because of chance, different samples from the population

will give different results and thismust be taken into account when using a sample to

make inferences about the population. This phenomenon, called sampling variation,

lies at the heart of statistics. It is described in detail in Chapter 4.

The word ‘population’ is used in statistics in a wider sense than usual. It is not

limited to a population of people but can refer to any collection of objects. For

Fig. 2.1 Diagram to show the role of statistics in using information from a sample to make inferences about

the population from which the sample was derived.



example, the data may relate to a sample of 20 hospitals from the population of

all hospitals in the country. In such a case it is easy to imagine that the entire

population can be listed and the sample selected directly from it. In many

instances, however, the population and its boundaries are less precisely specified,

and care must be taken to ensure that the sample truly represents the population

about which information is required. This population is sometimes referred to as

the target population. For example, consider a vaccine trial carried out using

student volunteers. If it is reasonable to assume that in their response to

the vaccine and exposure to disease students are typical of the community at

large, the results will have general applicability. If, on the other hand, students

differ in any respect which may materially affect their response to the vaccine

or exposure to disease, the conclusions from the trial are restricted to the popula-

tion of students and do not have general applicability. Deciding whether or

not ‘students are typical’ is not a statistical issue, but depends on an informed

judgement taking into account relevant biological and epidemiological

knowledge.

Note that the target population often includes not only all persons living at

present but also those that may be alive at some time in the future. This is the case

in this last example evaluating the efficacy of the vaccine. It is obvious that the

complete enumeration of such a population is not possible.

2.2 TYPES OF VARIABLE

The raw data of an investigation consist of observations made on individuals. In

many situations the individuals are people, but they need not be. For instance,

they might be red blood cells, urine specimens, rats, or hospitals. The number of

individuals is called the sample size. Any aspect of an individual that is measured,

like blood pressure, or recorded, like age or sex, is called a variable. There may be

only one variable in a study or there may be many. For example, Table 2.1 shows

the first six lines of data recorded in a study of outcome of treatment in tubercu-

losis patients treated in three hospitals. Each row of the table shows the data

collected on a particular individual, while the columns of the table show the

different variables which have been collected.

Table 2.1 First six lines of data from a study of outcome after diagnosis of tuberculosis.

Id Hospital Date of birth Sex

Date of

diagnosis

Weight

(kg)

Smear

result

Culture

result

Skin test

diameter

(mm)

Alive after

6 months?

001 1 03/12/1929 M 23/08/1998 56.3 Positive Negative 18 Y

002 1 13/04/1936 M 12/09/1998 73.5 Positive Negative 15 Y

003 1 31/10/1931 F 17/06/1999 57.6 Positive Positive 21 N

004 2 11/11/1922 F 05/07/1999 65.6 Uncertain Positive 28 Y

005 2 01/05/1946 M 20/08/1999 81.1 Negative Positive 6 Y

006 3 18/02/1954 M 17/09/1999 56.8 Positive Negative 12 Y
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A first step in choosing how best to display and analyse data is to classify the

variables into their different types, as different methods pertain to each. The main

division is between numerical (or quantitative) variables, categorical (or qualita-

tive) variables and rates.

Numerical variables

A numerical variable is either continuous or discrete. A continuous variable, as the

name implies, is a measurement on a continuous scale. In Table 2.1, weight is a

continuous variable. In contrast, a discrete variable can only take a limited

number of discrete values, which are usually whole numbers, such as the number

of episodes of diarrhoea a child has had in a year.

Binary and other categorical variables

A categorical variable is non-numerical, for instance place of birth, ethnic group,

or type of drug. A particularly common sort is a binary variable (also known as a

dichotomous variable), which has only two possible values. For example, sex is

male or female, or the patient may survive or die. We should also distinguish

ordered categorical variables, whose categories, although non-numerical, can be

considered to have a natural ordering. A common example of an ordered categor-

ical variable is social class, which has a natural ordering from most deprived to

most affluent. Table 2.2 shows the possible categories and sub-types of variable

for each of the categorical variables in the data displayed in Table 2.1. Note that it

could be debated whether smear result should be classified as ordered categorical

or simply as categorical, depending on whether we can assume that ‘‘uncertain’’ is

intermediate between ‘negative’ and ‘positive’.

Rates

Rates of disease are measured in follow-up studies, and are the fundamental

measure of the frequency of occurrence of disease over time. Their analysis

forms the basis for Part D, and their exact definition can be found there. Examples

include the survival rates following different treatments for breast cancer, or the

number of episodes of diarrhoea/person/year among AIDS patients.

Table 2.2 Categorical (qualitative) variables recorded in the study of outcome after

diagnosis of tuberculosis.

Variable Categories Type of variable

Hospital 1, 2, 3 Categorical

Sex Male, female Binary

Smear result Negative, uncertain, positive Ordered categorical

Culture result Negative, positive Binary

Alive at 6 months? No, yes Binary

2.2 Types of variable 11



2.3 DERIVED VARIABLES

Often, the variables included in a statistical analysis will be derived from those

originally recorded. This may occur in a variety of different ways, and for a variety

of reasons.

Calculated or categorized from recorded variables

We commonly derive a patient’s age at diagnosis (in years) by calculating the

number of days between their date of birth and date of diagnosis, and dividing this

by 365.25 (the average number of days in a year, including leap years). We will

often proceed to categorize age into age groups, for example we might define ten-

year age groups as 30 to 39, 40 to 49, and so on. Age group is then an ordered

categorical variable.

Another example is where the range of values observed for average monthly

income is used to divide the sample into five equally-sized income groups (quintiles,

see Section 3.3), and a new variable ‘income group’ created with ‘1’ corresponding

to the least affluent group in the population and ‘5’ to the most affluent group.

Similarly, body mass index (BMI), which is calculated by dividing a person’s

weight (in kg) by the square of their height (in m), may be categorized into a

5-point scale going from <16 kg=m2 being malnourished to �30 kg=m2 defining

obese. In contrast to the income group variable where the categorization is specific

to the particular set of data, the categorization of the BMI scale has been carried

out using conventionally agreed cut-off points to define the different groups. This

type of variable, where the categorizing is based on pre-defined threshold values, is

described in the next paragraph.

Variables based on threshold values

A particular group of derived variables are those based on threshold values of a

measured variable. Two examples are given in Table 2.3. LBW is a binary variable

for low birthweight (‘yes’ if the baby’s birthweight was below 2500 g, and ‘no’ if

Table 2.3 Examples of derived variables based on

threshold values.

Derived variable Original variable

LBW (Low birthweight): Birthweight:

Yes < 2500 g

No � 2500 g

Vitamin A status: Serum retinol level:

Severe deficiency < 0:35mmol=l

Mild/moderate deficiency 0:35�0:69mmol=l
Normal � 0:70mmol=l
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the birthweight was 2500 g or above). Vitamin A status is an ordered categorical

variable, derived from the serum retinol level.

Variables derived from reference curves, based on standard population

values

A more refined comparison is based on comparing the value of a variable for the

individual with reference curves based on the average and range of values for

the whole population. For example, a child’s growth can be monitored by plotting

his/her weight (and height) against standard growth curves. This allows not only an

assessment of where the child’s weight (or height) lays compared to the average

child at this age, but also allows growth faltering to be detected, if their growth

curve appears to be dropping below what is usually expected for a child with their

birthweight. How to calculate variables derived from a comparison with reference

curves is postponed until Chapter 13 (‘Transformations’) at the end of Part B,

since it requires an understanding of means, the normal distribution and z-scores,

all of which are covered in Part B.

Transformed variables

In some cases it may be necessary to transform a numerical variable onto another

scale in order to make it satisfy the assumptions needed for the relevant statistical

methods. The logarithmic transformation, in which the value of the variable is

replaced by its logarithm, is by far the most frequently applied. Its use is appro-

priate for a great variety of variables including incubation periods, parasite

counts, titres, dose levels, concentrations of substances, and ratios. The reasons

why a variable should be transformed, the different types of transformation,

and how to choose between them are covered in detail in Chapter 13 at the end

of part B.

2.4 DISTINGUISHING BETWEEN OUTCOME AND EXPOSURE

VARIABLES

In order to choose appropriate data displays and statistical methods, it is very

important to distinguish between outcome and exposure variables, in addition to

identifying the types of each of the variables in the data set. The outcome variable

is the variable that is the focus of our attention, whose variation or occurrence we

are seeking to understand. In particular we are interested in identifying factors, or

exposures, that may influence the size or the occurrence of the outcome variable.

Some examples are given in Table 2.4. The purpose of a statistical analysis is to

quantify the magnitude of the association between one or more exposure variables

and the outcome variable.

A number of different terms are used to describe exposure and outcome vari-

ables, depending on the context. These are listed in Table 2.5. In particular, in a
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Table 2.4 Examples of outcome and exposure variables.

Outcome variable Exposure variable

Baby born with low birth weight (yes, no) Mother smoked during pregnancy (yes, no)

Anthropometric status at 1 year of age (weight-for-age

z-score)

Duration of exclusive breastfeeding (weeks)

Number of diarrhoea episodes experienced in a year Access to clean water supply (yes, no)

Child develops leukaemia (yes, no) Proximity to nuclear power station (miles)

Survival time (months) following diagnosis of lung

cancer

Socio-economic status (6 groups)

Table 2.5 Commonly used alternatives for describing

exposure and outcome variables.

Outcome variable Exposure variable

Response variable Explanatory variable

Dependent variable Independent variable

y-variable x-variable

Case–control group Risk factor

Treatment group

clinical trial (see Chapter 34) the exposure is the treatment group, and in a case–

control study, the outcome is the case–control status, and the exposure variables

are often called risk factors.

The type of outcome variable is particularly important in determining the most

appropriate statistical method. Part B of this book describes statistical methods

for numerical outcome variables. Part C describes methods for binary outcome

variables, with a brief description (Section 20.5) of methods for categorical out-

comes with more than two types of response. Part D describes methods to be used

for rates, arising in studies with binary outcomes in which individuals are followed

over time.
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CHAPTER 3

Displaying the data

3.1 Introduction 3.3 Cumulative frequency distributions,

3.2 Frequencies, frequency quantiles and percentiles

distributions and histograms Cumulative frequency distributions

Frequencies (categorical variables) Median and quartiles

Frequency distributions Quantiles and percentiles

(numerical variables) 3.4 Displaying the association between

Histograms two variables

Frequency polygon Cross tabulations

Frequency distribution of the Scatter plots

population 3.5 Displaying time trends

Shapes of frequency distributions

3.1 INTRODUCTION

With ready access to statistical software, there is a temptation to jump straight

into complex analyses. This should be avoided. An essential first step of an

analysis is to summarize and display the data. The familiarity with the data gained

through doing this is invaluable in developing an appropriate analysis plan (see

Chapter 38). These initial displays are also valuable in identifying outliers (unusual

values of a variable) and revealing possible errors in the data, which should be

checked and, if necessary, corrected.

This chapter describes simple tabular and graphical techniques for displaying the

distribution of values taken by a single variable, and for displaying the association

between the values of two variables. Diagrams and tables should always be clearly

labelled and self-explanatory; it should not be necessary to refer to the text to

understand them. At the same time they should not be cluttered with too much

detail, and they must not be misleading.

3.2 FREQUENCIES, FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

Frequencies (categorical variables)

Summarizing categorical variables is straightforward, the main task being to

count the number of observations in each category. These counts are called

frequencies. They are often also presented as relative frequencies; that is as propor-

tions or percentages of the total number of individuals. For example, Table 3.1

summarizes the method of delivery recorded for 600 births in a hospital. The



Table 3.1 Method of delivery of 600 babies born in a hospital.

Method of delivery No. of births Percentage

Normal 478 79.7

Forceps 65 10.8

Caesarean section 57 9.5

Total 600 100.0

variable of interest is the method of delivery, a categorical variable with three

categories: normal delivery, forceps delivery, and caesarean section.

Frequencies and relative frequencies are commonly illustrated by a bar chart

(also known as a bar diagram) or by a pie chart. In a bar chart the lengths of the

bars are drawn proportional to the frequencies, as shown in Figure 3.1. Alterna-

tively the bars may be drawn proportional to the percentages in each category; the

shape is not changed, only the labelling of the scale. In either case, for ease of

reading it is helpful to write the actual frequency and/or percentage to the right of

the bar. In a pie chart (see Figure 3.2), the circle is divided so that the areas of the

sectors are proportional to the frequencies, or equivalently to the percentages.

Frequency distributions (numerical variables)

If there are more than about 20 observations, a useful first step in summarizing a

numerical (quantitative) variable is to form a frequency distribution. This is a table

showing the number of observations at different values or within certain ranges.

For a discrete variable the frequencies may be tabulated either for each value of

the variable or for groups of values. With continuous variables, groups have to be

formed. An example is given in Table 3.2, where haemoglobin has been measured

Fig. 3.1 Bar chart showing method of delivery of 600 babies born in a hospital.
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Fig. 3.2 Pie chart showing method of delivery of 600 babies born in a hospital.

to the nearest 0.1 g/100ml and the group 11–, for example, contains all measure-

ments between 11.0 and 11.9 g/100ml inclusive.

When forming a frequency distribution, the first things to do are to count the

number of observations and to identify the lowest and highest values. Then decide

Table 3.2 Haemoglobin levels in g/100ml for 70 women.

(a) Raw data with the highest and lowest values underlined.

10.2 13.7 10.4 14.9 11.5 12.0 11.0

13.3 12.9 12.1 9.4 13.2 10.8 11.7

10.6 10.5 13.7 11.8 14.1 10.3 13.6

12.1 12.9 11.4 12.7 10.6 11.4 11.9

9.3 13.5 14.6 11.2 11.7 10.9 10.4

12.0 12.9 11.1 8.8 10.2 11.6 12.5

13.4 12.1 10.9 11.3 14.7 10.8 13.3

11.9 11.4 12.5 13.0 11.6 13.1 9.7

11.2 15.1 10.7 12.9 13.4 12.3 11.0

14.6 11.1 13.5 10.9 13.1 11.8 12.2

(b) Frequency distribution.

Haemoglobin (g/100ml) No. of women Percentage

8– 1 1.4

9– 3 4.3

10– 14 20.0

11– 19 27.1

12– 14 20.0

13– 13 18.6

14– 5 7.1

15–15.9 1 1.4

Total 70 100.0
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whether the data should be grouped and, if so, what grouping interval should be

used. As a rough guide one should aim for 5–20 groups, depending on the number

of observations. If the interval chosen for grouping the data is too wide, too much

detail will be lost, while if it is too narrow the table will be unwieldy. The starting

points of the groups should be round numbers and, whenever possible, all the

intervals should be of the same width. There should be no gaps between groups.

The table should be labelled so that it is clear what happens to observations that

fall on the boundaries.

For example, in Table 3.2 there are 70 haemoglobin measurements. The lowest

value is 8.8 and the highest 15.1 g/100ml. Intervals of width 1 g/100ml were

chosen, leading to eight groups in the frequency distribution. Labelling the groups

8–, 9–, . . . is clear. An acceptable alternative would have been 8.0–8.9, 9.0–9.9 and

so on. Note that labelling them 8–9, 9–10 and so on would have been confusing,

since it would not then be clear to which group a measurement of 9.0 g/100ml, for

example, belonged.

Once the format of the table is decided, the numbers of observations in

each group are counted. If this is done by hand, mistakes are most easily avoided

by going through the data in order. For each value, a mark is put against

the appropriate group. To facilitate the counting, these marks are arranged

in groups of five by putting each fifth mark horizontally through the previous

four (1111); these groups are called five-bar gates. The process is called tally-

ing.

As well as the number of women, it is useful to show the percentage of women in

each of the groups.

Histograms

Frequency distributions are usually illustrated by histograms, as shown in Figure

3.3 for the haemoglobin data. Either the frequencies or the percentages may be

used; the shape of the histogram will be the same.

The construction of a histogram is straightforward when the grouping intervals

of the frequency distribution are all equal, as is the case in Figure 3.3. If the

intervals are of different widths, it is important to take this into account when

drawing the histogram, otherwise a distorted picture will be obtained. For

example, suppose the two highest haemoglobin groups had been combined in

compiling Table 3.2(b). The frequency for this combined group (14.0–

15.9 g/100ml) would be six, but clearly it would be misleading to draw a rectangle

of height six from 14 to 16 g/100ml. Since this interval would be twice the width of

all the others, the correct height of the line would be three, half the total frequency

for this group. This is illustrated by the dotted line in Figure 3.3. The general

rule for drawing a histogram when the intervals are not all the same width is to

make the heights of the rectangles proportional to the frequencies divided by the

widths, that is to make the areas of the histogram bars proportional to

the frequencies.
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Fig. 3.3 Histogram of haemoglobin levels of 70 women.

Frequency polygon

An alternative but less common way of illustrating a frequency distribution is a

frequency polygon, as shown in Figure 3.4. This is particularly useful when compar-

ing two ormore frequency distributions by drawing them on the same diagram. The

polygon is drawn by imagining (or lightly pencilling) the histogram and joining

Fig. 3.4 Frequency polygon of haemoglobin levels of 70 women.
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the midpoints of the tops of its rectangles. The endpoints of the resulting line are

then joined to the horizontal axis at the midpoints of the groups immediately

below and above the lowest and highest non-zero frequencies respectively. For the

haemoglobin data, these are the groups 7.0–7.9 and 16.0–16.9 g/100ml. The

frequency polygon in Figure 3.4 is therefore joined to the axis at 7.5 and

16.5 g/100ml.

Frequency distribution of the population

Figures 3.3 and 3.4 illustrate the frequency distribution of the haemoglobin levels

of a sample of 70 women. We use these data to give us information about the

distribution of haemoglobin levels among women in general. For example, it

seems uncommon for a woman to have a level below 9.0 g/100ml or above

15.0 g/100ml. Our confidence in drawing general conclusions from the data

depends on how many individuals were measured. The larger the sample, the

finer the grouping interval that can be chosen, so that the histogram (or frequency

polygon) becomes smoother and more closely resembles the distribution of the

total population. At the limit, if it were possible to ascertain the haemoglobin

levels of the whole population of women, the resulting diagram would be a smooth

curve.

Shapes of frequency distributions

Figure 3.5 shows three of the most common shapes of frequency distributions.

They all have high frequencies in the centre of the distribution and low frequencies

at the two extremes, which are called the upper and lower tails of the distribution.

The distribution in Figure 3.5(a) is also symmetrical about the centre; this shape of

curve is often described as ‘bell-shaped’. The two other distributions are asym-

metrical or skewed. The upper tail of the distribution in Figure 3.5(b) is longer

than the lower tail; this is called positively skewed or skewed to the right. The

distribution in Figure 3.5(c) is negatively skewed or skewed to the left.

All three distributions in Figure 3.5 are unimodal, that is they have just one peak.

Figure 3.6(a) shows a bimodal frequency distribution, that is a distribution with two

peaks. This is occasionally seen and usually indicates that the data are a mixture of

Fig. 3.5 Three common shapes of frequency distributions with an example of each.
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Fig. 3.6 Three less-common shapes of frequency distributions with an example of each.

two separate distributions. Also shown in Figure 3.6 are two other distributions

that are sometimes found, the reverse J-shaped and the uniform distributions.

3.3 CUMULATIVE FREQUENCY DISTRIBUTIONS, QUANTILES

AND PERCENTILES

Cumulative frequency distributions

Frequency distributions (and histograms) indicate the way data are distributed

over a range of values, by showing the number or percentage of individuals within

each group of values. Cumulative distributions start from the lowest value and

show how the number and percentage of individuals accumulate as the values

increase. For example, the cumulative frequency distribution for the first five

observations of haemoglobin levels is shown in Table 3.3. There were 70 observa-

tions, so each represents 100/70¼ 1.43% of the total distribution. Rounding to one

decimal place, the first observation (8.8 g/100ml) corresponds to 1.4% of the

distribution, the first and second observations to 2.9% of the distribution, and

so on. Table 3.3 shows the values of these cumulative percentages, for different

observations in the range of observed haemoglobin levels in the 70 women. A total

of four women (5.7%) had levels below 10 g/100ml. Similarly, 18 women (25.7%)

had haemoglobin levels below 11 g/100ml.

The cumulative frequency distribution is illustrated in Figure 3.7. This is drawn

as a step function: the vertical jumps correspond to the increases in the cumulative

percentages at each observed haemoglobin level. (Another example of plots that

use step functions is Kaplan–Meier plots of cumulative survival probabilities over

time; see Section 26.3.) Cumulative frequency curves are steep where there is a

concentration of values, and shallow where values are sparse. In this example,

where the majority of haemoglobin values are concentrated in the centre of the

distribution, the curve is steep in the centre, and shallow at low and high values. If

the haemoglobin levels were evenly distributed across the range, then the cumula-

tive frequency curve would increase at a constant rate; all the steps would be the

same width as well as the same height. An advantage of cumulative frequency

distributions is that they display the shape of the distribution without the need for

grouping, as required in plotting histograms (see Section 3.2). However the shape

of a distribution is usually more clearly seen in a histogram.
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Table 3.3 Cumulative percentages for different ranges of haemoglobin levels of 70 women.

Observation

Cumulative

percentage

Haemoglobin level

(g/100ml) Quartile

1 1.4 8.8 Minimum ¼ 8.8 1

2 2.9 9.3 1

3 4.3 9.4 1

4 5.7 9.7 1

5 7.1 10.2
..
. ..

. ..
.

15 21.4 10.8 1

16 22.9 10.9 1

17 24.3 10.9 1

18 25.7 10.9
Lower quartile ¼ 10.9

1

19 27.1 11.0 2

20 28.6 11.0 2
..
. ..

. ..
.

33 47.1 11.7 2

34 48.6 11.8 2

35 50.0 11.8
Median ¼ 11.85

2

36 51.4 11.9 3

37 52.9 11.9 3

38 54.3 12.0 3
..
. ..

. ..
.

50 71.4 12.9 3

51 72.9 12.9 3

52 74.3 13.0 3

53 75.7 13.1 Upper quartile ¼ 13.1 4

54 77.1 13.1 4

55 78.6 13.2 4
..
. ..

. ..
.

66 94.3 14.6 4

67 95.7 14.6 4

68 97.1 14.7 4

69 98.6 14.9 4

70 100 15.1 Maximum ¼ 15.1 4

Median and quartiles

Cumulative frequency distributions are useful in recoding a numerical variable

into a categorical variable. The median is the midway value; half of the distribu-

tion lies below the median and half above it.

Median ¼ (nþ 1)th

2
value of the ordered observations

(n ¼ number of observations)
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Fig. 3.7 Cumulative frequency distribution of haemoglobin levels of 70 women, with the median marked by

a circle, and lower and upper quartiles marked by squares.

For the haemoglobin data, the median is the 71=2 ¼ 35:5th observation and so

we take the average of the 35th and 36th observations. Thus the median is (11:8þ
11:9)=2 ¼ 11:85, as shown in Table 3.3. Calculation of the median is also described

in Section 4.2.When the sample size is reasonably large, themedian can be estimated

from the cumulative frequency distribution; it is the haemoglobin value correspond-

ing to the point where the 50% line crosses the curve, as shown in Figure 3.7.

Also marked on Figure 3.7 are the two points where the 25% and 75% lines

cross the curve. These are called the lower and upper quartiles of the distribution,

respectively, and together with the median they divide the distribution into four

equally-sized groups.

Lower quartile ¼ (nþ 1)th

4
value of the ordered observations

Upper quartile ¼ 3� (nþ 1)th

4
value of the ordered observations

In the haemoglobin data, the lower quartile is the 71=4 ¼ 17:75th observation.

This is calculated by taking three quarters of the difference between the 17th and

18th observations and adding it to the 17th observation. Since both the 17th

and 18th observations equal 10.9 g/100ml, so does the lower quartile, as shown
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in Table 3.3. Similarly, 3� 71=4 ¼ 53:25, and since both the 53rd and 54th

observations equal 13.1 g/100ml, so does the upper quartile.

The range of the distribution is the difference between the minimum and

maximum values. From Table 3.3, the minimum and maximum values for the

haemoglobin data are 8.8 and 15.1 g/100ml, so the range is 15:1� 8:8 ¼ 6:3 g/

100ml. The difference between the lower and upper quartiles of the haemoglobin

data is 2.2 g/100ml. This is known as the interquartile range.

Range ¼ highest value� lowest value

Interquartile range ¼ upper quartile� lower quartile

A useful plot, based on these values, is a box and whiskers plot, as shown in

Figure 3.8. The box is drawn from the lower quartile to the upper quartile; its

length gives the interquartile range. The horizontal line in the middle of the box

represents the median. Just as a cat’s whiskers mark the full width of its body, the

‘whiskers’ in this plot mark the full extent of the data. They are drawn on either

end of the box to the minimum and maximum values.

The right hand column of Table 3.3 shows how the median and lower and upper

quartiles may be used to divide the data into equally sized groups called quartiles.

Fig. 3.8 Box and whiskers plot of the distribution of the haemoglobin levels of 70 women.
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Values between 8.8 and 10.9 g/100ml are in the first quartile, those between 11 and

11.8 g/100ml are in the second quartile and so on. Note that equal values should

always be placed in the same group, even if the groups are then of slightly different

sizes.

Quantiles and percentiles

Equal-sized divisions of a distribution are called quantiles. For example, we may

define tertiles, which divide the data into three equally-sized groups, and quintiles,

which divide them into five. An example was described in Section 2.3, where the

range of values observed for average monthly income was used to divide the

sample into five equally-sized income groups, and a new variable ‘income group’

created with ‘1’ corresponding to the least affluent group in the population and ‘5’

to the most affluent group. Quintiles are estimated from the intersections with the

cumulative frequency curve of lines at 20%, 40%, 60% and 80%. Divisions into ten

equally sized groups are called deciles.

More generally, the kth percentile (or centile as it is also called) is the point

below which k% of the values of the distribution lie. For a distribution with n

observations, it is defined as:

kth percentile ¼ k� (nþ 1)th

100
value of ordered observations

It can also be estimated from the cumulative frequency curve; it is the x value

corresponding to the point where a line drawn at k% intersects the curve. For

example, the 5% point of the haemoglobin values is estimated to be 9.6 g/100ml.

3.4 DISPLAYING THE ASSOCIATION BETWEEN TWO VARIABLES

Having examined the distribution of a single variable, we will often wish to display

the way in which the distribution of one variable relates to the distribution of

another.Appropriatemethods todo thiswill dependon the typeof the twovariables.

Cross tabulations

When both variables are categorical, we can examine their relationship informally

by cross-tabulating them in a contingency table. A useful convention is for the rows

of the table to correspond to the exposure values and the columns to the out-

comes. For example, Table 3.4 shows the results from a survey to compare the

principal water sources in 150 households in three villages in West Africa. In this

example, it would be natural to ask whether the household’s village affects their

likely water source, so that water source is the outcome and village is the exposure.
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Table 3.4 Comparison of principal sources of water

used by household in three villages in West Africa.

Water source

Village River Pond Spring

A 20 18 12

B 32 20 8

C 18 12 10

The interpretability of contingency tables can be improved by including

marginal totals and percentages:

� The marginal row totals show the total number of households in each village,

and the marginal columns show the total numbers using each water source.

� Percentages (or proportions) can be calculated with respect to the row variable,

the column variable, or the total number of individuals. A useful guide is that

the percentages should correspond to the exposure variable. If the exposure is

the row variable, as here, then row percentages should be presented, whereas if

it is the column variable then column percentages should be presented.

In Table 3.4, the exposure variable, village, is the row variable, and Table 3.5

therefore shows row percentages together with marginal (row and column) totals.

We can now see that, for example, the proportion of households mainly using a

river was highest in Village B, while village A had the highest proportion of

households mainly using a pond. By examining the column totals we can see that

overall, rivers were the principal water source for 70 (47%) of the 150 households.

Table 3.5 Comparison of principal sources of water used by households in three

villages in West Africa, including marginal totals and row percentages.

Water source

Village River Pond Spring Total

A 20 (40%) 18 (36%) 12 (24%) 50 (100%)

B 32 (53%) 20 (33%) 8 (13%) 60 (100%)

C 18 (45%) 12 (30%) 10 (25%) 40 (100%)

Total 70 (47%) 50 (33%) 30 (20%) 150 (100%)

Scatter plots

When we wish to examine the relationship between two numerical variables, we

should start by drawing a scatter plot. This is a simple graph where each pair of

values is represented by a symbol whose horizontal position is determined by

the value of the first variable and vertical position is determined by the value of the

second variable. By convention, the outcome variable determines vertical position

and the exposure variable determines horizontal position.
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For example, Figure 3.9 shows data from a study of lung function among

636 children aged 7 to 10 years living in a deprived suburb of Lima, Peru. The

maximum volume of air which the children could breath out in 1 second (Forced

Expiratory Volume in 1 second, denoted as FEV1) was measured using a spiro-

meter. We are interested in how FEV1 changes with age, so that age is the

exposure variable (horizontal axis) and FEV1 is the outcome variable (vertical

axis). The plot gives the clear impression that FEV1 increases in an approximately

linear manner with age.

Scatter plots may also be used to display the relationship between a categorical

variable and a continuous variable. For example, in the study of lung function we

are also interested in the relationship between FEV1 and respiratory symptoms

experienced by the child over the previous 12 months. Figure 3.10 shows a scatter

plot that displays this relationship.

This figure is difficult to interpret, because many of the points overlap, particu-

larly in the group of children who did not report respiratory symptoms. One

solution to this is to scatter the points randomly along the horizontal axis, a

process known as ‘jittering’. This produces a clearer picture, as shown in Figure

3.11. We can now see that FEV1 tended to be higher in children who did not report

respiratory symptoms in the previous 12 months than in those who did.

An alternative way to display the relationship between a numerical variable and

a discrete variable is to draw box and whiskers plots, as described in Section 3.3.

Table 3.6 shows the data needed to do this for the two groups of children: those who

didandthosewhodidnotreportrespiratorysymptoms.Allthestatisticsdisplayedare

Fig. 3.9 Scatter plot showing the relationship between FEV1 and age in 636 children living in a deprived

suburb of Lima, Peru.
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Fig. 3.10 Scatter plot showing the relationship between FEV1 and respiratory symptoms in 636 children

living in a deprived suburb of Lima, Peru.

Fig. 3.11 Scatter plot showing the relationship between FEV1 and respiratory symptoms in 636 children

living in a deprived suburb of Lima, Peru. The position of the points on the horizontal axis was moved

randomly (‘jittered’) in order to separate them.
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Table 3.6 Median, interquartile range, and range of FEV1 measurements on 636 children living in a deprived

suburb of Lima, Peru, according to whether the child reported respiratory symptoms in the previous 12 months.

Respiratory symptoms

in the previous 12

months n

Lowest

FEV1
value

Lower

quartile

(25th centile) Median

Upper

quartile

(75th centile)

Highest

FEV1
value

No 491 0.81 1.44 1.61 1.82 2.69

Yes 145 0.64 1.28 1.46 1.65 2.39

Totals 636 0.64 1.40 1.58 1.79 2.69

lower in children who reported symptoms. This is reflected in Figure 3.12, where

all the points in the box and whiskers plot of FEV1 values for children who

reported respiratory symptoms are lower than the corresponding points in the

box and whiskers plot for children who did not report symptoms.

Fig. 3.12 Box and whiskers plots of the distribution of FEV1 in 636 children living in a deprived suburb of

Lima, Peru, according to whether they reported respiratory symptoms in the previous 12 months.

3.5 DISPLAYING TIME TRENDS

Graphs are also useful for displaying trends over time, such as the declines in child

mortality rates that have taken place in all regions of the world in the latter half of

the twentieth century, as shown in Figure 3.13. The graph also indicates the

enormous differentials between regions that still remain. Note that the graph

shows absolute changes in mortality rates over time. An alternative would be to
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Fig. 3.13 Trends in under-five mortality rates by region of the world.

plot the logarithms of the death rates (see Chapter 13). The slopes of the lines

would then show proportional declines, enabling rates of progress between regions

to be readily compared.

Breaks and discontinuities in the scale(s) should be clearly marked, and avoided

whenever possible. Figure 3.14(a) shows a common form of misrepresentation due

to an inappropriate use of scale. The decline in infant mortality rate (IMR) has

been made to look dramatic by expanding the vertical scale, while in reality the

decrease over the 10 years displayed is only slight (from 22.7 to 22.1 deaths/

1000 live births/year). A more realistic representation is shown in Figure 3.14(b),

with the vertical scale starting at zero.

Fig. 3.14 Decline in infant mortality rate (IMR) between 1970 and 1980. (a) Inappropriate choice of scale

has misleadingly exaggerated the decline. (b) Correct use of scale.
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