
PART B

ANALYSIS OF NUMERICAL
OUTCOMES

In this part of the book we describe methods for the analysis of studies where the

outcome variable is numerical. Examples of such variables include blood pressure,

antibody levels, birth weight and so on. We begin, in Chapter 4, by describing how

to summarize characteristics of the distribution of a numerical variable; having

defined the mean and standard deviation of a distribution, we introduce the

important concept of sampling error. Chapter 5 describes the normal distribution,

which occupies a central role in statistical analysis. We explain that the normal

distribution is important not only because it is a good empirical description of the

distribution of many variables, but also because the sampling distribution of a

mean is normal, even when the individual observations are not normally distrib-

uted. We build on this in the next three chapters, introducing the two fundamental

ways of reporting the results of a statistical analysis, confidence intervals (Chapters

6 and 7) and P-values (Chapters 7 and 8).

Chapter 6 deals with the analysis of a single variable. The remainder of this part

of the book deals with ways of analysing the relationship between a numerical

outcome (response) variable and one or more exposure (explanatory) variables.

We describe how to compare means between two exposure groups (Chapters 7 and

8), and extend these methods to comparison of means in several groups using

analysis of variance (Chapter 9) and the use of linear regression to examine the

association between numerical outcome and exposure variables (Chapter 10). All

these methods are shown to be special cases of multiple regression, which is

described in Chapter 11.

We conclude by describing how we can examine the assumptions underlying

these methods (Chapter 12), and the use of transformations of continuous vari-

ables to facilitate data analysis when these assumptions are violated (Chapter 13).
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CHAPTER 4

Means, standard deviations and
standard errors

4.1 Introduction Change of units

4.2 Mean, median and mode Coefficient of variation

4.3 Measures of variation 4.4 Calculating the mean and standard

Range and interquartile range deviation from a frequency

Variance distribution

Degrees of freedom 4.5 Sampling variation and

Standard deviation standard error

Interpretation of the standard Understanding standard deviations

deviation and standard errors

4.1 INTRODUCTION

A frequency distribution (see Section 3.2) gives a general picture of the distribu-

tion of a variable. It is often convenient, however, to summarize a numerical

variable still further by giving just two measurements, one indicating the average

value and the other the spread of the values.

4.2 MEAN, MEDIAN AND MODE

The average value is usually represented by the arithmetic mean, customarily just

called themean. This is simply the sumof the values divided by the number of values.

Mean, �xx¼ �x

n

where x denotes the values of the variable, � (the Greek capital letter sigma)

means ‘the sum of’ and n is the number of observations. The mean is denoted by �xx

(spoken ‘x bar’).

Othermeasures of the average value are themedian and themode. Themedianwas

defined in Section 3.3 as the value that divides the distribution in half. If the

observations are arranged in increasing order, themedian is themiddle observation.

Median ¼ (nþ 1)

2
th value of ordered observations



If there is an even number of observations, there is nomiddle one and the average of

the two ‘middle’ ones is taken. The mode is the value which occurs most often.

Example 4.1

The following are the plasma volumes of eight healthy adult males:

2:75, 2:86, 3:37, 2:76, 2:62, 3:49, 3:05, 3:12 litres

(a) n ¼ 8

�x ¼ 2:75þ 2:86þ 3:37þ 2:76þ 2:62þ 3:49þ 3:05þ 3:12 ¼ 24:02 litres

Mean, �xx¼ �x=n ¼ 24:02=8 ¼ 3:00 litres

(b) Rearranging the measurements in increasing order gives:

2:62, 2:75, 2:76, 2:86, 3:05, 3:12, 3:37, 3:49 litres

Median ¼ (nþ 1)=2 ¼ 9=2 ¼ 43th value

¼ average of 4th and 5th values

¼ (2:86þ 3:05)=2 ¼ 2:96 litres

(c) There is no estimate of the mode, since all the values are different.

The mean is usually the preferred measure since it takes into account each individ-

ual observation and is most amenable to statistical analysis. The median is a useful

descriptive measure if there are one or two extremely high or low values, which

would make the mean unrepresentative of the majority of the data. The mode is

seldom used. If the sample is small, either it may not be possible to estimate the

mode (as in Example 4.1c), or the estimate obtained may be misleading. The mean,

median and mode are, on average, equal when the distribution is symmetrical and

unimodal. When the distribution is positively skewed, a geometric mean may be

more appropriate than the arithmetic mean. This is discussed in Chapter 13.

4.3 MEASURES OF VARIATION

Range and interquartile range

Two measures of the amount of variation in a data set, the range and the

interquartile range, were introduced in Section 3.3. The range is the simplest

measure, and is the difference between the largest and smallest values. Its disad-

vantage is that it is based on only two of the observations and gives no idea of how

the other observations are arranged between these two. Also, it tends to be larger,

the larger the size of the sample. The interquartile range indicates the spread of the

middle 50% of the distribution, and together with the median is a useful adjunct to

the range. It is less sensitive to the size of the sample, providing that this is not too
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small; the lower and upper quartiles tend to be more stable than the extreme

values that determine the range. These two ranges form the basis of the box and

whiskers plot, described in Sections 3.3 and 3.4.

Range ¼ highest value� lowest value

Interquartile range ¼ upper quartile� lower quartile

Variance

For most statistical analyses the preferred measure of variation is the variance (or

the standard deviation, which is derived from the variance, see below). This uses all

the observations, and is defined in terms of the deviations (x��xx) of the observations
from the mean, since the variation is small if the observations are bunched closely

about their mean, and large if they are scattered over considerable distances. It is

not possible simply to average the deviations, as this average will always be zero;

the positive deviations corresponding to values above the mean will balance out

the negative deviations from values below the mean. An obvious way of overcom-

ing this difficulty would be simply to average the sizes of the deviations, ignoring

their sign. However, this measure is not mathematically very tractable, and so

instead we average the squares of the deviations, since the square of a number is

always positive.

Variance, s2 ¼ �(x� �xx)2

(n� 1)

Degrees of freedom

Note that the sum of squared deviations is divided by (n� 1) rather than n,

because it can be shown mathematically that this gives a better estimate of the

variance of the underlying population. The denominator (n� 1) is called the

number of degrees of freedom of the variance. This number is (n� 1) rather than

n, since only (n� 1) of the deviations (x� �xx) are independent from each other.

The last one can always be calculated from the others because all n of them must

add up to zero.

Standard deviation

A disadvantage of the variance is that it is measured in the square of the units used

for the observations. For example, if the observations are weights in grams, the
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variance is in grams squared. For many purposes it is more convenient to express

the variation in the original units by taking the square root of the variance. This is

called the standard deviation (s.d.).

s:d:, s ¼ �(x� �xx)2

(n� 1)

s

or equivalently

s ¼ �x2 � (�x)2=n

(n� 1)

s

When using a calculator, the second formula is more convenient for calculation,

since the mean does not have to be calculated first and then subtracted from each

of the observations. The equivalence of the two formulae is demonstrated in

Example 4.2. (Note: Many calculators have built-in functions for the mean and

standard deviation. The keys are commonly labelled �xxand �n�1, respectively,

where � is the lower case Greek letter sigma.)

Example 4.2

Table 4.1 shows the steps for the calculation of the standard deviation of the eight

plasma volume measurements of Example 4.1.

�x2 � (�x)2=n ¼ 72:7980� (24:02)2=8 ¼ 0:6780

gives the same answer as �(x� �xx)2, and

s ¼ (
p

0:6780=7) ¼ 0:31 litres

Table 4.1 Calculation of the standard deviation of the plasma volumes (in litres) of eight healthy adult males

(same data as in Example 4.1). Mean, �xx¼ 3:00 litres.

Plasma volume

x

Deviation from the mean

x � �xx

Squared deviation

(x � �xx)2
Squared observation

x2

2.75 �0.25 0.0625 7.5625

2.86 �0.14 0.0196 8.1796

3.37 0.37 0.1369 11.3569

2.76 �0.24 0.0576 7.6176

2.62 �0.38 0.1444 6.8644

3.49 0.49 0.2401 12.1801

3.05 0.05 0.0025 9.3025

3.12 0.12 0.0144 9.7344

Totals 24.02 0.00 0.6780 72.7980
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Interpretation of the standard deviation

Usually about 70% of the observations lie within one standard deviation of their

mean, and about 95% lie within two standard deviations. These figures are based

on a theoretical frequency distribution, called the normal distribution, which is

described in Chapter 5. They may be used to derive reference ranges for the

distribution of values in the population (see Chapter 5).

Change of units

Adding or subtracting a constant from the observations alters themean by the same

amount but leaves the standard deviation unaffected. Multiplying or dividing by a

constant changes both the mean and the standard deviation in the same way.

For example, suppose a set of temperatures is converted from Fahrenheit to

centigrade. This is done by subtracting 32, multiplying by 5, and dividing by 9.

The new mean may be calculated from the old one in exactly the same way, that is

by subtracting 32, multiplying by 5, and dividing by 9. The new standard devi-

ation, however, is simply the old one multiplied by 5 and divided by 9, since the

subtraction does not affect it.

Coefficient of variation

cv ¼ s

�xx
� 100%

The coefficient of variation expresses the standard deviation as a percentage of the

sample mean. This is useful when interest is in the size of the variation relative to

the size of the observation, and it has the advantage that the coefficient of

variation is independent of the units of observation. For example, the value

of the standard deviation of a set of weights will be different depending on

whether they are measured in kilograms or pounds. The coefficient of variation,

however, will be the same in both cases as it does not depend on the unit of

measurement.

4.4 CALCULATING THE MEAN AND STANDARD DEVIATION FROM A

FREQUENCY DISTRIBUTION

Table 4.2 shows the distribution of the number of previous pregnancies of a group

of women attending an antenatal clinic. Eighteen of the 100 women had

no previous pregnancies, 27 had one, 31 had two, 19 had three, and five had

four previous pregnancies. As, for example, adding 2 thirty-one times is
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Table 4.2 Distribution of the number of previous pregnancies of a group of women

aged 30–34 attending an antenatal clinic.

No. of previous pregnancies

0 1 2 3 4 Total

No. of women 18 27 31 19 5 100

equivalent to adding the product (2� 31), the total number of previous pregnan-

cies is calculated by:

�x ¼ (0� 18)þ (1� 27)þ (2� 31)þ (3� 19)þ (4� 5)

¼ 0þ 27þ 62þ 57þ 20 ¼ 166

The average number of previous pregnancies is, therefore:

�xx¼ 166=100 ¼ 1:66

In the same way:

�x2 ¼ (02 � 18)þ (12 � 27)þ (22 � 31)þ (32 � 19)þ (42 � 5)

¼ 0þ 27þ 124þ 171þ 80 ¼ 402

The standard deviation is, therefore:

s ¼ (402� 1662=100)

99

r
¼ 126:44

99

r
¼ 1:13

If a variable has been grouped when constructing a frequency distribution, its

mean and standard deviation should be calculated using the original values, not

the frequency distribution. There are occasions, however, when only the frequency

distribution is available. In such a case, approximate values for the mean and

standard deviation can be calculated by using the values of the mid-points of the

groups and proceeding as above.

4.5 SAMPLING VARIATION AND STANDARD ERROR

As discussed in Chapter 2, the sample is of interest not in its own right, but for

what it tells the investigator about the population which it represents. The sample

mean, �xx, and standard deviation, s, are used to estimate the mean and standard

deviation of the population, denoted by the Greek letters � (mu) and � (sigma)

respectively.

The sample mean is unlikely to be exactly equal to the population mean. A

different sample would give a different estimate, the difference being due to
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sampling variation. Imagine collecting many independent samples of the same size

from the same population, and calculating the sample mean of each of them. A

frequency distribution of these means (called the sampling distribution) could then

be formed. It can be shown that:

1 the mean of this frequency distribution would be the population mean, and

2 the standard deviation would equal �= n
p

. This is called the standard error of

the sample mean, and it measures how precisely the population mean is

estimated by the sample mean. The size of the standard error depends

both on how much variation there is in the population and on the size of the

sample. The larger the sample size n, the smaller is the standard error.

We seldom know the population standard deviation, �, however, and so

we use the sample standard deviation, s, in its place to estimate the standard

error.

s:e: ¼ s

n
p

Example 4.3

The mean of the eight plasma volumes shown in Table 4.1 is 3.00 litres (Example

4.1) and the standard deviation is 0.31 litres (Example 4.2). The standard error of

the mean is therefore estimated as:

s= n
p ¼ 0:31= 8

p ¼ 0:11 litres

Understanding standard deviations and standard errors

Example 4.4

Figure 4.1 shows the results of a game played with a class of 30 students to

illustrate the concepts of sampling variation, the sampling distribution, and stand-

ard error. Blood pressure measurements for 250 airline pilots were used, and

served as the population in the game. The distribution of these measurements is

shown in Figure 4.1(a). The population mean, �, was 78.2mmHg, and the popu-

lation standard deviation, �, was 9.4mmHg. Each value was written on a small

disc and the 250 discs put into a bag.

Each student was asked to shake the bag, select ten discs, write down the ten

diastolic blood pressures, work out their mean, �xx, and return the discs to the bag.

In this way 30 different samples were obtained, with 30 different sample means,

each estimating the same population mean. The mean of these sample means was

78.23mmHg, close to the population mean. Their distribution is shown in Figure

4.1(b). The standard deviation of the sample means was 3.01mmHg, which agreed

well with the theoretical value, �= n
p ¼ 9:4= 10

p ¼ 2:97mmHg, for the standard

error of the mean of a sample of size ten.
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Fig. 4.1 Results of a game played to illustrate the concepts of sampling variation, the sampling distribution,

and the standard error.

The exercise was repeated taking samples of size 20. The results are shown

in Figure 4.1(c). The reduced variation in the sample means resulting from increas-

ing the sample size from 10 to 20 can be clearly seen. The mean of the sample means

was 78.14mmHg, again close to the population mean. The standard deviation was

2.07mmHg, again in good agreement with the theoretical value, 9:4= 20
p ¼

2:10 mmHg, for the standard error of the mean of a sample of size 20.
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In this game, we had the luxury of results from several different samples, and

could draw the sampling distribution. Usually we are not in this position: we have

just one sample that we wish to use to estimate the mean of a larger population,

which it represents. We can draw the frequency distribution of the values in our

sample (see, for example, Figure 3.3 of the histogram of haemoglobin levels of 70

women). Providing the sample size is not too small, this frequency distribution will

be similar in appearance to the frequency distribution of the underlying popula-

tion, with a similar spread of values. In particular, the sample standard deviation

will be a fairly accurate estimate of the population standard deviation. As stated in

Section 4.2, approximately, 95% of the sample values will lie within two standard

deviations of the sample mean. Similarly, approximately 95% of all the values in

the population will lie within this same amount of the population mean.

The sample mean will not be exactly equal to the population mean. The

theoretical distribution called the sampling distribution gives us the spread of

values we would get if we took a large number of additional samples; this spread

depends on the amount of variation in the underlying population and on our

sample size. The standard deviation of the sampling distribution is called the

standard error and is equal to the standard deviation of the population, divided

by the square root of n. This means that approximately 95% of the values in this

theoretical sampling distribution of sample means lie within two standard errors

of the population mean. This fact can be used to construct a range of likely values

for the (unknown) population mean, based on the observed sample mean and its

standard error. Such a range is called a confidence interval. Its method of con-

struction is not described until Chapter 6 since it depends on using the normal

distribution, described in Chapter 5. In summary:

� The standard deviation measures the amount of variability in the population.

� The standard error (¼ standard deviation / n
p

) measures the amount of vari-

ability in the sample mean; it indicates how closely the population mean is

likely to be estimated by the sample mean.

� Because standard deviations and standard errors are often confused it is very

important that they are clearly labelled when presented in tables of results.
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CHAPTER 5

The normal distribution

5.1 Introduction Area in lower tail of distribution

5.2 Why the normal distribution Area of distribution between two values

is important Value corresponding to specified tail area

5.3 The equation of the normal curve 5.6 Percentage points of the normal

5.4 The standard normal distribution distribution, and reference ranges

5.5 Area under the curve of the 5.7 Using z-scores to compare data with

normal distribution reference curves

Area in upper tail of distribution

5.1 INTRODUCTION

Frequency distributions and their various shapes were discussed in Chapter 3. In

practice it is found that a reasonable description of many variables is provided by

the normal distribution, sometimes called the Gaussian distribution after its discov-

erer, Gauss. Its frequency distribution (defined by the normal curve) is symmetrical

about the mean and bell-shaped; the bell is tall and narrow for small standard

deviations and short and wide for large ones. Figure 5.1 illustrates the normal

curve describing the distribution of heights of adult men in the United Kingdom.

Other examples of variables that are approximately normally distributed are

blood pressure, body temperature, and haemoglobin level. Examples of variables

that are not normally distributed are triceps skinfold thickness and income, both

of which are positively skewed. Sometimes transforming a variable, for example by

Fig. 5.1 Diagram showing the approximate normal curve describing the distribution of heights of adult men.



taking logarithms, will make its distribution more normal. This is described in

Chapter 13, and methods to assess whether a variable is normally distributed are

discussed in Chapter 12.

5.2 WHY THE NORMAL DISTRIBUTION IS IMPORTANT

The normal distribution is important not only because it is a good empirical

description of the distribution of many variables, but because it occupies a central

role in statistical analysis. This is because it can be shown that the sampling

distribution of a mean is normal, even when the individual observations are not

normally distributed, provided that the sample size is not too small. In other

words, sample means will be normally distributed around the true population

mean. A practical demonstration of this property can easily be had by carrying out

a sampling game like Example 4.4, but with the 250 blood pressures replaced by a

non-normally distributed variable, such as triceps skinfold thickness. The larger

the sample selected in the game, the closer the sample mean will be to being

normally distributed. The number needed to give a close approximation to nor-

mality depends on how non-normal the variable is, but in most circumstances a

sample size of 15 or more is enough.

This finding is based on a remarkable and very useful result known as the

central limit theorem. It means that calculations based on the normal distribution

are used to derive confidence intervals, which were mentioned in Chapter 4, are

defined fully in Chapter 6 and used throughout subsequent chapters. The normal

distribution also underlies the calculation of P-values, which are used to test

hypotheses and which are introduced in Chapter 7. The normal distribution is

not only important in the analysis of numerical outcomes; we will see in parts C

and D that statistical methods for proportions and rates are also based on

approximations to the normal distribution.

For these reasons it is important to describe the principles of how to use the

normal distribution in some detail before proceeding further. The precise math-

ematical equation which defines the normal distribution is included in the next

section for reference only; this section can be skipped by the majority of readers.

In practical terms, calculations are carried out either by a statistical package, or by

using standard tables.

5.3 THE EQUATION OF THE NORMAL CURVE

The value of the normal curve with mean � and standard deviation � is:

y ¼ 1

2��2
p exp

�(x� �)2

2�2

 !
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where y gives the height of the curve, x is any value on the horizontal axis, exp( )

is the exponential function (see Section 13.2 for an explanation of the exponential

function) and � ¼ 3:14159. The normal curve value y is expressed as a proportion

and the total area under the curve sums to 1, corresponding to the whole

population.

The vertical axis can be expressed as a percentage, as in Figure 5.1, by multi-

plying y by 100. The area under the curve then sums to 100%.

Example 5.1

The following give two examples of calculating the height of the curve in Figure

5.1, where � ¼ 171:5 and � ¼ 6:5 cm.

1 When height x ¼ 171:5 cm (the mean value) then (x� m) ¼ 0. This means that

the expression inside the bracket is zero. As exp(0)¼ 1, the height of the curve is

given by

y ¼ 1

2�� 6:52
p ¼ 0:0614, or 6:14%

2 When height x ¼ 180 cm, the exponential part of the equation is

exp � (180� 171:5)2

2� 6:52

 !
¼ 0:4253

and the height of the curve is given by

y ¼ 0:4253

2�� 6:52
p ¼ 0:0261, or 2:61%

These values are indicated by the horizontal dashed lines on the normal curve in

Figure 5.1.

5.4 THE STANDARD NORMAL DISTRIBUTION

If a variable is normally distributed then a change of units does not affect this.

Thus, for example, whether height is measured in centimetres or inches it is

normally distributed. Changing the mean simply moves the curve along the

horizontal axis, while changing the standard deviation alters the height and

width of the curve.

In particular, by a suitable change of units any normally distributed variable

can be related to the standard normal distribution whose mean is zero and whose

standard deviation is 1. This is done by subtracting the mean from each observa-

tion and dividing by the standard deviation. The relationship is:
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Fig. 5.2 Relationship between normal distribution in original units of measurement and in standard normal

deviates. SND ¼ (height� 171:5)=6:5: Height ¼ 171:5þ (6:5� SND).

SND, z ¼ x� �

�

where x is the original variable with mean � and standard deviation �, and z is the

corresponding standard normal deviate (SND), alternatively called the z-score.

This is illustrated for the distribution of adult male heights in Figure 5.2. The

equation of the standard normal distribution is:

y ¼ exp(� z2=2)

2�
p

The possibility of converting any normally distributed variable into an SNDmeans

that calculations based on the standard normal distribution may be converted to

corresponding calculations for any values of the mean and standard deviation.

These calculations may be done either by using a computer, or by consulting tables

of probability values for the normal distribution. The two most commonly pro-

vided sets of tables are (i) the area under the frequency distribution curve, and (ii)

the so-called percentage points.

5.5 AREA UNDER THE CURVE OF THE NORMAL DISTRIBUTION

The standard normal distribution can be used to determine the proportion of the

population that has values in some specified range or, equivalently, the probability

that an individual observation from the distribution will lie in the specified range.
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This is done by calculating the area under the curve. Calculation of areas under the

normal curve requires a computer. It can be shown that the area under the whole

of the normal curve is exactly 1; in other words the probability that an observation

lies somewhere in the whole of the range is 1, or 100%.

Calculation of the proportion of the population in different ranges will be

illustrated for the distribution shown in Figure 5.1 of the heights of adult men in

the United Kingdom, which is approximately normal with mean � ¼ 171:5 cm and

standard deviation � ¼ 6:5 cm.

Area in upper tail of distribution

The proportion of men who are taller than 180 cm may be derived from the

proportion of the area under the normal frequency distribution curve that is

above 180 cm. The corresponding SND is:

z ¼ 180� 171:5

6:5
¼ 1:31

so that the proportion may be derived from the proportion of the area of the

standard normal distribution that is above 1.31. This area is illustrated in Figure

5.3(a) and can be found from a computer or from Table A1 in the Appendix. The

rows of the table refer to z to one decimal place and the columns to the second

decimal place. Thus the area above 1.31 is given in row 1.3 and column 0.01 and is

0.0951. We conclude that a fraction 0.0951, or equivalently 9.51%, of adult men

are taller than 180 cm.

Area in lower tail of distribution

The proportion ofmen shorter than 160 cm, for example, can be similarly estimated:

z ¼ 160� 171:5

6:5
¼ �1:77

The required area is illustrated in Figure 5.3(b). As the standard normal distribu-

tion is symmetrical about zero the area below z ¼ �1:77 is equal to

Fig. 5.3 Examples of the calculation of areas of the standard normal distribution.
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the area above z ¼ 1:77 and is 0.0384. Thus 3.84% of men are shorter than

160 cm.

Area of distribution between two values

The proportion of men with a height between, for example, 165 cm and 175 cm is

estimated by finding the proportions of men shorter than 165 cm and taller than

175 cm and subtracting these from 1. This is illustrated in Figure 5.3(c).

1 SND corresponding to 165 cm is:

z ¼ 165� 171:5

6:5
¼ �1

Proportion below this height is 0.1587.

2 SND corresponding to 175 cm is:

z ¼ 175� 171:5

6:5
¼ 0:54

Proportion above this height is 0.2946.

3 Proportion of men with heights between 165 cm and 175 cm

¼ 1� proportion below 165 cm� proportion above 175 cm

¼ 1� 0:1587� 0:2946 ¼ 0:5467 or 54:67%

Value corresponding to specified tail area

Table A1 can also be used the other way round, that is starting with an area and

finding the corresponding z value. For example, what height is exceeded by 5% or

0.05 of the population? Looking through the table the closest value to 0.05 is

found in row 1.6 and column 0.04 and so the required z value is 1.64. The

corresponding height is found by inverting the definition of SND to give:

x ¼ �þ z�

and is 171:5þ 1:64� 6:5 ¼ 182:2 cm.

5.6 PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION, AND

REFERENCE RANGES

The SND expresses the value of a variable in terms of the number of standard

deviations it is away from the mean. This is shown on the scale of the original

variable in Figure 5.4. Thus, for example, z ¼ 1 corresponds to a value which is
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one standard deviation above the mean and z ¼ �1 to one standard deviation

below the mean. The areas above z ¼ 1 and below z ¼ �1 are both 0.1587 or

15.87%. Therefore 31.74% (2� 15:87%) of the distribution is further than one

standard deviation from the mean, or equivalently 68.26% of the distribution lies

within one standard deviation of the mean. Similarly, 4.55% of the distribution is

further than two standard deviations from the mean, or equivalently 95.45% of

the distribution lies within two standard deviations of the mean. This is the

justification for the practical interpretation of the standard deviation given in

Section 4.3.

Exactly 95% of the distribution lies between �1:96 and 1.96 (Fig 5.5a). There-

fore the z value 1.96 is said to be the 5% percentage point of the normal distribu-

tion, as 5% of the distribution is further than 1.96 standard deviations from the

mean (2.5% in each tail). Similarly, 2.58 is the 1% percentage point. The com-

monly used percentage points are tabulated in Table A2. Note that they could also

be found from Table A1 in the way described above.

The percentage points described here are known as two-sided percentage points,

as they cover extreme observations in both the upper and lower tails of the

distribution. Some tables give one-sided percentage points, referring to just one

tail of the distribution. The one-sided a% point is the same as the two-sided 2a%

Fig. 5.4 Interpretation of SND in terms of a scale showing the number of standard deviations from the

mean.

Fig. 5.5 Percentage points of the normal distribution.
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point (Figure 5.5b). For example, 1.96 is the one-sided 2.5% point, as 2.5% of the

standard normal distribution is above 1.96 (or equivalently 2.5% is below �1:96)

and it is the two-sided 5% point. This difference is discussed again in Section 7.3 in

the context of hypothesis tests.

These properties mean that, for a normally distributed population, we can

derive the range of values within which a given proportion of the population

will lie. The 95% reference range is given by the mean�1:96 s.d. to mean

þ 1:96 s.d., since 95% of the values in a population lie in this range. We can also

define the 90% reference range and the 99% reference range in the same way, as

mean�1:64 s.d. to meanþ1:64 s.d. and mean�2:58 s.d. to meanþ2:58 s.d., re-

spectively.

5.7 USING Z -SCORES TO COMPARE DATA WITH REFERENCE CURVES

SNDs and z-scores are also used as a way of comparing the values of a variable

with those of reference curves. The analysis is then carried out using the z-scores

rather than the original values. For example, this is commonly carried out for

anthropometric data, where growth charts are used to assess where an individual’s

weight (or height) lies compared to standard values for their age and sex, and the

analysis is in terms of weight-for-age, height-for-age or weight-for-height z-scores.

This use of z-scores is described in Section 13.4, in the chapter on transformations.
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CHAPTER 6

Confidence interval for a mean

6.1 Introduction Confidence interval using t

6.2 Large sample case distribution

(normal distribution) Severe non-normality

6.3 Interpretation of confidence 6.5 Summary of alternatives

intervals 6.6 Confidence intervals and

6.4 Smaller samples reference ranges

6.1 INTRODUCTION

In Chapter 4 we explained the idea of sampling variation and the sampling distribu-

tion of the mean. We showed that the mean of this sampling distribution equals the

population mean, �, and its standard deviation equals �= n
p

, where � is the

population standard deviation, and n is the sample size. We introduced the concept

that this standard deviation, which is called the standard error of the sample mean,

measures how precisely the population mean is estimated by the sample mean. We

now describe how we can use the sample mean and its standard error to give us a

range of likely values for the population mean, which we wish to estimate.

6.2 LARGE SAMPLE CASE (NORMAL DISTRIBUTION)

In Chapter 4, we stated that approximately 95% of the sample means in the

distribution obtained by repeated sampling would lie within two standard errors

above or below the population mean. By drawing on the finding presented in

Chapter 5, that provided that the sample size is not too small, this sampling

distribution is a normal distribution, whether or not the underlying population

distribution is normal, we can now be more precise. We can state that 95% of

the sample means would lie within 1.96 standard errors above or below the

population mean, since 1.96 is the two-sided 5% point of the standard normal

distribution. This means that there is a 95% probability that a particular sample

mean (�xx) lies within 1.96 standard errors above or below the population mean (�),

which we wish to estimate:

Prob(�xxis in the range �� 1:96� s:e: to �þ 1:96� s:e:) ¼ 95%

In practice, this result is used to estimate from the observed sample mean (�xx) and

its standard error (s.e.) a range within which the population mean is likely to lie.

The statement:



‘�xxis in the range �� 1:96� s:e: to �þ 1:96� s:e:’

is equivalent to the statement:

‘� is in the range �xx� 1:96� s:e: to �xxþ 1:96� s:e:’

Therefore there is a 95% probability that the interval between �xx� 1:96� s:e. and

�xxþ 1:96� s:e: contains the (unknown) population mean. This interval is called a

95% confidence interval (CI) for the population mean, and �xx� 1:96� s:e: and

�xxþ 1:96� s:e: are called upper and lower 95% confidence limits for the population

mean, respectively.

When the sample is large, say n greater than 60, not only is the sampling

distribution of sample means well approximated by the normal distribution, but

the sample standard deviation, s, is a reliable estimate of the population standard

deviation, �, which is usually also not known. The standard error of the sample

mean, �= n
p

, can therefore be estimated by s= n
p

.

Large-sample 95% CI ¼ �xx� (1:96� s= n
p

) to �xxþ (1:96� s= n
p

)

Confidence intervals for percentages other than 95% are calculated in the same

way using the appropriate percentage point, z0, of the standard normal distribu-

tion in place of 1.96 (see Chapter 5). For example:

Large-sample 90% CI ¼ �xx� (1:64� s= n
p

) to �xxþ (1:64� s= n
p

)

Large-sample 99% CI ¼ �xx� (2:58� s= n
p

) to �xxþ (2:58� s= n
p

)

Example 6.1

As part of a malaria control programme it was planned to spray all the 10 000

houses in a rural area with insecticide and it was necessary to estimate the amount

that would be required. Since it was not feasible to measure all 10 000 houses, a

random sample of 100 houses was chosen and the sprayable surface of each of

these was measured.

The mean sprayable surface area for these 100 houses was 24:2 m2 and the

standard deviation was 5:9 m2. It is unlikely that the mean surface area of this

sample of 100 houses (�xx) exactly equals the mean surface area of all 10 000 houses

(�). Its precision is measured by the standard error �= n
p

, estimated by s= n
p ¼

5:9= 1
p

00 ¼ 0:6 m2. There is a 95% probability that the sample mean of 24:2 m2

differs from the population mean by less than 1:96 s:e: ¼ 1:96� 0:6 ¼ 1:2 m2. The

95% confidence interval is:
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95% CI ¼ �xx� 1:96� s:e: to �xxþ 1:96� s:e:

¼ 24:2� 1:2 to 24:2þ 1:2 ¼ 23:0 to 25:4 m2

It was decided to use the upper 95% confidence limit in budgeting for the

amount of insecticide required as it was preferable to overestimate rather than

underestimate the amount. One litre of insecticide is sufficient to spray 50m2 and

so the amount budgeted for was:

10 000� 25:4=50 ¼ 5080 litres

There is still a possibility, however, that this is too little insecticide. The interval

23:0 to 25:4 m2 gives the likely range of values for the mean surface area of all

10 000 houses. There is a 95% probability that this interval contains the popula-

tion mean but a 5% probability that it does not, with a 2.5% probability

(0:5� 5%) that the estimate based on the upper confidence limit is too small. A

more cautious estimate for the amount of insecticide required would be based on a

wider confidence interval, such as 99%, giving a smaller probability (0.5%) that

too little would be estimated.

6.3 INTERPRETATION OF CONFIDENCE INTERVALS

We stated in Chapter 2 that our aim in many statistical analyses is to use the

sample to make inferences about the population from which it was drawn. Confi-

dence intervals provide us with a means of doing this (see Fig. 6.1).

It is tempting to interpret a 95% CI by saying that ‘there is a 95% probability

that the population mean lies within the CI’. Formally, this is not quite correct

because the population mean (�) is a fixed unknown number: it is the confidence

Fig. 6.1 Use of confidence intervals to make inferences about the population from which the sample was

drawn.
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Fig. 6.2 Mean sprayable areas, with 95% confidence intervals, from 20 samples of 100 houses in a rural

area. The star indicates that the CI does not contain the population mean.

interval that will vary between samples. In other words, if we were to draw several

independent, random samples from the same population and calculate 95% confi-

dence intervals from each of them, then on average 19 of every 20 (95%) such

confidence intervals would contain the true population mean, and one of every 20

(5%) would not.

Example 6.2

A further 19 samples, each of 100 houses, were taken from the 10 000

houses described in Example 6.1. The mean sprayable surface and its standard

error were calculated from each sample, and these were used to derive 95%

confidence intervals. The means and 95% CIs from all 20 samples are shown in

Figure 6.2. The mean in the whole population (� ¼ 24:2m2) is shown by a

horizontal dashed line. The sample means vary around the population mean �,

and one of the twenty 95% confidence intervals (indicated by a star) does not

contain �.

6.4 SMALLER SAMPLES

In the calculation of confidence intervals so far described the sample size (n) has

been assumed to be large (greater than 60). When the sample size is not large, two

aspects may alter:

1 the sample standard deviation, s, which is itself subject to sampling variation,

may not be a reliable estimate for �;
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2 when the distribution in the population is not normal, the distribution of the

sample mean may also be non-normal.

The second of these effects is of practical importance only when the sample size is

very small (less than, say, 15) and when the distribution in the population is

extremely non-normal. Because of the central limit theorem (see Chapter 5), it is

usually only the first point, the sampling variation in s, which invalidates the use

of the normal distribution in the calculation of confidence intervals. Instead, a

distribution called the t distribution is used. Strictly speaking, this is valid only if

the population is normally distributed, but the use of the t distribution has been

shown to be justified, except where the population is extremely non-normal. (This

property is called robustness.) What to do in cases of severe non-normality is

described later in this chapter.

Confidence interval using t distribution

The earlier calculation of a confidence interval using the normal distribution was

based on the fact that (�xx� �)=(�= n
p

) is a value from the standard normal

distribution, and that for large samples we could use s in place of �. In fact,

(�xx� �)=(s= n
p

) is a value not from the standard normal distribution but from a

distribution called the t distribution with (n� 1) degrees of freedom. This distribu-

tion was introduced by W. S. Gossett, who used the pen-name ‘Student’, and is

often called Student’s t distribution. Like the normal distribution, the t distribu-

tion is a symmetrical bell-shaped distribution, but it is more spread out, having

longer tails (Figure 6.3).

The exact shape of the t distribution depends on the degrees of freedom (d.f.),

n� 1, of the sample standard deviation s; the fewer the degrees of freedom, the

more the t distribution is spread out. The percentage points are tabulated for

various degrees of freedom in Table A3 in the Appendix. For example, if

the sample size is 8, the degrees of freedom are 7 and the two-sided 5% point is

2.36. In this case the 95% confidence interval using the sample standard deviation

s would be

95% CI ¼ x� 2:36 s= n
p

to xþ 2:36 s= n
p

Fig. 6.3 t distribution with 5 degrees of freedom compared to the normal distribution.
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In general a confidence interval is calculated using t0, the appropriate percentage
point of the t distribution with (n� 1) degrees of freedom.

Small-sample CI ¼ �xx� (t0 � s= n
p

) to �xxþ (t0 � s= n
p

)

For small degrees of freedom the percentage points of the t distribution are

appreciably larger in value than the corresponding percentage points of the normal

distribution. This is because the sample standard deviation s may be a poor

estimate of the population value �, and when this uncertainty is taken into account

the resulting confidence interval is considerably wider than if � were reliably

known. For large degrees of freedom the t distribution is almost the same as the

standard normal distribution, since s is a good estimate of �. The bottom row of

Table A3 in the Appendix gives the percentage points for the t distribution with an

infinite number (1) of degrees of freedom and it may be seen by comparison with

Table A2 that these are the same as for the normal distribution.

Example 6.3

The following are the numbers of hours of relief obtained by six arthritic patients

after receiving a new drug:

2:2, 2:4, 4:9, 2:5, 3:7, 4:3 hours

�xx¼ 3:3 hours, s ¼ 1:13 hours, n ¼ 6, d:f : ¼ n� 1 ¼ 5

s= n
p ¼ 0:46 hours

The 5% point of the t distribution with 5 degrees of freedom is 2.57, and so the

95% confidence interval for the average number of hours of relief for arthritic

patients in general is:

3:3� 2:57� 0:46 to 3:3þ 2:57� 0:46 ¼ 3:3� 1:2 to 3:3þ 1:2 ¼ 2:1 to 4:5 hours

Severe non-normality

When the distribution in the population is markedly non-normal (see Section

12.2), it may be desirable to transform the scale on which the variable x is

measured so as to make its distribution on the new scale more normal (see Chapter

13). An alternative is to calculate a non-parametric confidence interval or to use

bootstrap methods (see Chapter 30).

6.5 SUMMARY OF ALTERNATIVES

Table 6.1 summarizes which procedure should be used in constructing a confi-

dence interval. There is no precise boundary between approximate normality and

non-normality but, for example, a reverse J-shaped distribution (Fig. 3.6b) is
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Table 6.1 Recommended procedures for constructing a confidence interval. (z0 is the percentage point from the

normal distribution, and t0 the percentage point from the t distribution with (n� 1) degrees of freedom.)

(a) Population standard deviation s unknown.

Population distribution

Sample size Approximately normal Severely non-normal*

60 or more �xx� (z0 � s= n
p

) to �xxþ (z0 � s= n
p

) �xx� (z0 � s= n
p

) to �xxþ (z0 � s= n
p

)

Less than 60 �xx� (t0 � s= n
p

) to �xxþ (t0 � s= n
p

) see Chapter 30

(b) Population standard deviation s known.

Population distribution

Sample size Approximately normal Severely non-normal*

15 or more �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

) �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

)

Less than 15 �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

) see Chapter 30

*It may be preferable to transform the scale of measurement to make the distribution more normal (see

Chapter 13).

severely non-normal, and a skewed distribution (Fig. 3.5b or c) is moderately non-

normal.

In rare instances the population standard deviation, �, is known and therefore

not estimated from the sample. When this occurs the standard normal distribution

percentage points are used to give the confidence interval regardless of sample size,

provided the population distribution is not severely non-normal (in which case see

the preceding paragraph).

6.6 CONFIDENCE INTERVALS AND REFERENCE RANGES

It is important to understand the distinction between the reference range (which

was defined in Section 5.6) and confidence intervals, defined in this chapter.

Although they are often confused, each has a different use and a different defini-

tion.

A 95% reference range is given by:

95% reference range ¼ m� 1:96� s:d: to mþ 1:96� s:d:

where m is the mean of the distribution and s.d. is its standard deviation. A large

sample 95% confidence interval is given by:

95% CI ¼ �xx� 1:96� s:e: to �xxþ 1:96� s:e:

where s.e. is the standard error of the distribution: s:e: ¼ s:d:= n
p

.

The reference range tells us about the variability between individual observa-

tions in the population: providing that the distribution is approximately normal
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95% of individual observations will lie within the reference range. In contrast, as

explained earlier in this chapter, the 95% CI tells us a range of plausible values for

the population mean, given the sample mean. Since the sample size n must be > 1,

the confidence interval will always be narrower than the reference range.

6.6 Confidence intervals and reference ranges 57



CHAPTER 7

Comparison of two means: confidence
intervals, hypothesis tests and P-values

7.1 Introduction Confidence interval

7.2 Sampling distribution of the t test

difference between two means 7.5 Small samples, unequal standard

7.3 Methods based on the normal deviations

distribution (large samples 7.6 Paired measurements

or known standard deviations) Confidence interval

Confidence interval Hypothesis test

z-test

7.4 Methods based on the

t distribution (small samples,

equal standard deviations)

7.1 INTRODUCTION

InChapter 6we described how to use a samplemean and its standard error to give us

a range of likely values, called a confidence interval, for the corresponding popula-

tion mean. We now extend these ideas to situations where we wish to compare the

mean outcomes in two exposure (or treatment) groups. We will label the two groups

0 and 1, and the twomeans �xx0 and �xx1, with group 1 denoting individuals exposed to a

risk factor, and group 0 denoting those unexposed. In clinical trials, group 1 will

denote the treatment group and group 0 the control group. For example:

� In a study of the determinants of birthweight, we may wish to compare the

mean birthweight of children born to smokers (the exposed group, 1) with that

for children born to non-smokers (the unexposed group, 0).

� In a clinical trial of a new anti-hypertensive drug, the comparison of interest

might be mean systolic blood pressure after 6months of treatment, between

patients allocated to receive the new drug (the treatment group, 1) and those

allocated to receive standard therapy (the control group, 0).

The two group means, �xx1 and �xx0, are of interest not in their own right, but for

what they tell us more generally about the effect of the exposure on the outcome of

interest (or in the case of a clinical trial, of the treatment), in the population from

which the groups are drawn. More specifically, we wish to answer the following

related questions.

1 What does the difference between the two group means in our sample (�xx1 and

�xx0) tell us about the difference between the two group means in the population?

In other words, what can we say about how much better (or worse) off are

exposed individuals compared to unexposed? This is addressed by calculating a



confidence interval for the range of likely values for the difference, following a

similar approach to that used for a single mean (see Chapter 6).

2 Do the data provide evidence that the exposure actually affects the outcome, or

might the observed difference between the sample means have arisen by chance?

In other words, are the data consistent with there being zero difference between

the means in the two groups in the population? We address this by carrying out

a hypothesis (or significance) test to give a P-value, which is the probability of

recording a difference between the two groups at least as large as that in our

sample, if there was no effect of the exposure in the population.

In this chapter we define the sampling distribution of the difference in means

comparing the two groups, and then describe how to use this to calculate a

confidence interval for the true difference, and how to calculate the test

statistic and P-value for the related hypothesis test. The methods used are based

on either the normal or t distributions. The rules for which distribution to use are

similar to those for the one-sample case. For large samples, or known standard

deviations, we use the normal distribution, and for small samples we use the

t distribution.

The majority of this chapter is concerned with comparing mean outcomes

measured in two separate groups of individuals. In some circumstances, however,

our data consist instead of pairs of outcome measurements. How to compare

paired measurements is covered in Section 7.6. For example:

� We might wish to carry out a study where the assessment of an anti-

hypertensive drug is based on comparing blood pressure measurements in a

group of hypertensive men, before and after they received treatment. For each

man, we therefore have a pair of outcome measures, blood pressure after

treatment and blood pressure before treatment. It is important to take this

pairing in the data into account when assessing how much on average the

treatment has affected blood pressure.

� Another example would be data from a matched case–control study (see

Section 21.4), in which the data consist of case–control pairs rather than of

two independent groups of cases and controls, with a control specifically

selected to match each case on key variables such as age and sex.

7.2 SAMPLING DISTRIBUTION OF THE DIFFERENCE BETWEEN

TWO MEANS

Before we can construct a confidence interval for the difference between two

means, or carry out the related hypothesis test, we need to know the sampling

distribution of the difference. The difference, �xx1 � �xx0, between the mean outcomes

in the exposed and unexposed groups in our sample provides an estimate of the

underlying difference, �1 � �0, between the mean outcomes in the exposed and

unexposed groups in the population. Just as discussed for a single mean (see

Chapter 6), this sample difference will not be exactly equal to the population

difference. It is subject to sampling variation, so that a different sample from the
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same population would give a different value of �xx1 � �xx0. Providing that each of the

means, �xx1 and �xx0, is normally distributed, then:

1 the sampling distribution of the difference (�xx1 � �xx0) is normally distrib-

uted;

2 the mean of this sampling distribution is simply the difference between the two

population means, �1 � �0;

3 the standard error of (�xx1 � �xx0) is based on a combination of the standard errors

of the individual means:

s:e: ¼ (s:e:21 þ s:e:20)
p ¼ �2

1

n1
þ �2

0

n0

� �s

This is estimated using the sample standard deviations, s1 and s0. Note that when

we calculate the difference between the means in the two groups we combine the

uncertainty in �xx1 with the uncertainty in �xx0.

7.3 METHODS BASED ON THE NORMAL DISTRIBUTION (LARGE

SAMPLES OR KNOWN STANDARD DEVIATIONS)

Confidence interval

When both groups are large (say, greater than 30), or in the rare instances when

the population standard deviations are known, then methods for comparing

means are based on the normal distribution. We calculate 95% confidence inter-

vals for the difference in the population as:

Large samples

CI ¼ (�xx1 � �xx0)� (z0 � s:e:) to (�xx1 � �xx0)þ (z0 � s:e:)

s:e: ¼ s21=n1 þ s20=n0
� �p

or

Known s0s
CI ¼ (�xx1 � �xx0)� (z0 � s:e:) to (�xx1 � �xx0)þ (z0 � s:e:)

s:e: ¼ �2
1=n1 þ �2

0=n0
� �p
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In these formulae z0 is the appropriate percentage point of the normal distribution.

For example, when calculating a 95% confidence interval we use z0 ¼ 1:96.

Example 7.1

To investigate whether smoking reduces lung function, forced vital capacity (FVC,

a test of lung function) was measured in 100 men aged 25–29, of whom 36 were

smokers and 64 non-smokers. Results of the study are shown in Table 7.1.

Table 7.1 Results of a study to investigate the association between smoking and lung function.

Group Number of men Mean FVC (litres) s s.e. of mean FVC

Smokers (1) n1 ¼ 36 �xx1 ¼ 4:7 s1 ¼ 0:6 s:e:1 ¼ 0:6= 36
p ¼ 0:100

Non-smokers (0) n0 ¼ 64 �xx0 ¼ 5:0 s0 ¼ 0:6 s:e:0 ¼ 0:6= 64
p ¼ 0:075

The mean FVC in smokers was 4.7 litres compared with 5.0 litres in non-

smokers. The difference in mean FVC, �xx1 � �xx0, is therefore 4:7� 5:0, that is

�0.3 litres. The s.d. in both groups was 0.6 litres. The standard error of the

difference in mean FVC is calculated from the individual standard errors, which

are shown in the right hand column of the table, as follows:

s:e: ¼ s:e:21 þ s:e:20
� �p ¼ 0:12 þ 0:0752ð Þp ¼ 0:125 litres

The 95% confidence interval for the population difference in mean FVC is there-

fore:

95% CI ¼ �0:3� (1:96� 0:125) to�0:3þ (1:96� 0:125)

¼ �0:545 litres to�0:055 litres

Both the lower and upper confidence limits are negative, and both therefore

correspond to a reduced FVC among smokers compared to non-smokers. With

95% confidence, the reduction in mean FVC in smokers, compared to non-

smokers, lies between 0.055 litres (a relatively small reduction) and 0.545 litres (a

reduction likely to have obvious effects).

z-test

The confidence interval gives a range of likely values for the difference in mean

outcome between exposed and unexposed groups in the population.With reference

to Example 7.1, we now address the related issue of whether the data provide

evidence that the exposure (smoking) actually affects the mean outcome (FVC),

or whether they are consistent with smoking having no effect. In other words, might

the population difference between the two groups be zero? We address this issue by

carrying out a hypothesis (or significance) test.
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A hypothesis test begins by postulating that, in the population, mean FVC is

the same in smokers and non-smokers, so that any observed difference between

the sample means is due to sampling variation. This is called the null hypothesis.

The next step is to calculate the probability, if the null hypothesis were true, of

getting a difference between the two group means as large or larger than the

difference than that was observed. This probability is called a P-value. The idea

is that the smaller the P-value, the stronger is the evidence against the null

hypothesis.

We use the fact that the sampling distribution of (�xx1 � �xx0) is normal to

derive the P-value. If the null hypothesis is true, then the mean of the sampling

distribution, m1 � m0, is zero. Our test statistic is the z-score, or standard normal

deviate (see Chapter 5) corresponding to the observed difference between the

means:

z ¼ difference in means

standard error of difference in means
¼ �xx1 � �xx0

s:e:

The formulae for the z-test are as follows:

Large samples

z ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

(s21=n1 þ s20=n0)
p

or

Known s0s

z ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

(�2
1=n1 þ �2

0=n0)
p

The test statistic z measures by how many standard errors the mean difference

(�xx1 � �xx0) differs from the null value of 0. In this example,

z ¼ �0:3

0:125
¼ �2:4
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The difference between the means is therefore 2.4 standard errors below 0, as

illustrated in Figure 7.1. The probability of getting a difference of �2.4 standard

errors or less (the area under the curve to the left of �2.4) is found using a

computer or using Table A1; it is 0.0082. This probability is known as the one-

sided P-value. By convention, we usually use two-sided P-values; our assessment of

the probability that the result is due to chance is based on how extreme the size of

the departure is from the null hypothesis, and not its direction. We therefore

include the probability that the difference might (by chance) have been in the

opposite direction: mean FVC might have been greater in smokers than non-

smokers. Because the normal distribution is symmetrical, this probability is also

0.0082. The ‘two-sided’ P-value is thus found to be 0.0164 (¼ 0:0082þ 0:0082), as

shown in Figure 7.1.

This means that the probability of observing a difference at least as extreme as

2.4, if the null hypothesis of no difference is correct, is 0.0164, or 1.64%. In other

words, if the null hypothesis were true, then sampling variation would yield such a

large difference in the mean FVC between smokers and non-smokers in only about

16 in every 1000 similar-sized studies that might be carried out. Such a P-value

provides evidence against the null hypothesis, and suggests that smoking affects

FVC.

At this point, you may wish to skip forward to Chapter 8, which gives a fuller

description of how to interpret P-values, and how to use P-values and confidence

intervals to interpret the results of statistical analyses.

0.4

0.3

0.2

0.1

0
–4 –3 –2.4 –2 –1 0 1 2 2.4 3 4

Standard errors

P (<–2.4) = 0.0082 P (>2.4) = 0.0082

P-value = 0.0164

Fig. 7.1 Probability that the size of a standard normal deviate (z) is 2.4 standard errors or larger.
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7.4 METHODS BASED ON THE t DISTRIBUTION (SMALL

SAMPLES, EQUAL STANDARD DEVIATIONS)

We saw in Chapter 6 that for small samples we must also allow for the sampling

variation in the standard deviation, s, when deriving a confidence interval for a

mean. Similar considerations arise when we wish to compare means between small

samples. Methods based on the t distribution rather than the normal distribution

are used. These require that the population distributions are normal but, as with

confidence intervals for a single mean, they are robust against departures from this

assumption. When comparing two means, the validity of these methods

also depends on the equality of the two population standard deviations. In

many situations it is reasonable to assume this equality. If the sample standard

deviations are very different in size, however, say if one is more than twice as

large as the other, then an alternative must be used. This is discussed below in

Section 7.5.

Confidence interval

The formula for the standard error of the difference between the means is simpli-

fied to:

s:e: ¼ (�2=n1 þ �2=n0)
p

or � (1=n1 þ 1=n0)
p

where � is the common standard deviation. There are two sample estimates of �

from the two samples, s1 and s0 and these are combined to give a common

estimate, s, of the population standard deviation, with degrees of freedom equal

to (n1 � 1)þ (n0 � 1) ¼ n1 þ n0 � 2.

s ¼ (n1 � 1)s21 þ (n0 � 1)s20
(n1 þ n0 � 2)

� �s

This formula gives greater weight to the estimate from the larger sample as this

will be more reliable. The standard error of the difference between the two means

is estimated by:

s:e: ¼ s (1=n1 þ 1=n0)
p

The confidence interval is calculated using t0, the appropriate percentage point of
the t distribution with (n1 þ n0 � 2) degrees of freedom:
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CI ¼ (�xx1 � �xx0)� (t0 � s:e:) to (�xx1 � �xx0)þ (t0 � s:e:),

d:f :¼ (n1 þ n0 � 2)

Example 7.2

Table 7.2 shows the birth weights of children born to 14 heavy smokers (group 1)

and to 15 non-smokers (group 0), sampled from live births at a large teaching

hospital. The calculations needed to derive the confidence interval are:

difference between the means, �xx1 � �xx0 ¼ 3:1743� 3:6267 ¼ �0:4524

standard deviation, s ¼ 13� 0:46312 þ 14� 0:35842

15þ 14� 2

� �
¼ 0:4121 kg

s

standard error of the difference, s:e: ¼ 0:4121� (1=14þ 1=15
p

) ¼ 0:1531 kg

degrees of freedom, d:f : ¼ 14þ 15� 2 ¼ 27; t 0 ¼ 2:05

The 5% percentage point of the t distribution with 27 degrees of freedom is 2.05,

and so the 95% confidence interval for the difference between the mean birth

weights is:

�0:4524� (2:05� 0:1531) to�0:4524þ (2:05� 0:1531) ¼ �0:77 to�0:14 kg

Table 7.2 Comparison of birth weights (kg) of children born to

14 heavy smokers with those of children born to 15 non-smokers.

Heavy smokers (group 1) Non-smokers (group 0)

3.18 3.99

2.74 3.89

2.90 3.60

3.27 3.73

3.65 3.31

3.42 3.70

3.23 4.08

2.86 3.61

3.60 3.83

3.65 3.41

3.69 4.13

3.53 3.36

2.38 3.54

2.34 3.51

2.71

�xx1 ¼ 3:1743 �xx0 ¼ 3:6267

s1 ¼ 0:4631 s0 ¼ 0:3584

n1 ¼ 14 n0 ¼ 15
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With 95% confidence, mean birth weight is between 0.14 and 0.77 kg lower for

children born to heavy smokers than for those born to non-smokers.

t test

In small samples we allow for the sampling variation in the standard deviations

by using the t distribution for our test of the null hypothesis. This is called a t

test, sometimes also known as an unpaired t test, to distinguish it from the paired

t test for paired measurements, described in Section 7.6. The t value is calculated

as:

t ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

s (1=n1 þ 1=n0)
p , d:f : ¼ n1 þ n0 � 2

where, as before

s ¼ (n1 � 1)s21 þ (n0 � 1)s20
(n1 þ n0 � 2)

� �s

The corresponding P-value is derived in exactly the same way as for the z

distribution. This is best done using a computer, rather than tables, as it is

impractical to have sets of tables for all the different possible degrees of freedom.

However, an approximate P-value corresponding to different values of the test

statistic t may be derived from Table A4 (see Appendix), which tabulates this for

a selection of degrees of freedom. It can be seen that unless the number of degrees

of freedom is small the P-value based on the normal distribution (right hand

column) does not differ greatly from that based on the t distribution (main part of

table).

Example 7.2 (continued)

The calculations for the t-test to compare the birth weights of children born to 14

heavy smokers with those of children born to 15 non-smokers, as shown in Table

7.2, are as follows:

t ¼ (3:1743� 3:6267)

0:4121 (1=14þ 1=15)
p ¼ � 0:4524

0:1531
¼ �2:95,

d:f : ¼ 14þ 15� 2 ¼ 27, P ¼ 0:0064
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As the test is two-sided, the P-value corresponding to minus 2.95 is the same as

that corresponding to plus 2.95. Table A4 shows that the P-value corresponding to

t ¼ 3.0 with 25 degrees of freedom is 0.006. The precise P-value of 0.0064 was

derived using a computer. As explained in more detail in Chapter 8, a P-value of

0.0064 provides fairly strong evidence against the null hypothesis. These data

therefore suggest that smoking during pregnancy reduces the birthweight of the

baby.

7.5 SMALL SAMPLES, UNEQUAL STANDARD DEVIATIONS

When the population standard deviations of the two groups are different, and the

sample size is not large, the main possibilities are:

1 seek a suitable change of scale (a transformation, see Chapter 13) which

makes the standard deviations similar so that methods based on the t distribu-

tion can be used. For example, if the standard deviations seem to be propor-

tional in size to the means, then taking logarithms of the individual values may

be appropriate;

2 use non-parametric methods based on ranks (see Section 30.2);

3 use either the Fisher–Behrens or the Welch tests, which allow for unequal

standard deviations (consult Armitage & Berry 2002);

4 estimate the difference between the means using the original measure-

ments, but use bootstrap methods to derive confidence intervals (see Section

30.3).

7.6 PAIRED MEASUREMENTS

In some circumstances our data consist of pairs of measurements, as described in

the introduction to the chapter. These pairs may be two outcomes measured

on the same individual under different exposure (or treatment) circumstances.

Alternatively, the pairs may be two individuals matched during sample selection

to share certain key characteristics such as age and sex, for example in a matched

case–control study or in a clinical trial with matched controls (see Chapter 21).

Our analysis needs to take this pairing in the data into account: this is done

by considering the differences between each pair of outcome observations. In

other words we turn our data of pairs of outcomes into a single sample of

differences.

Confidence interval

The confidence interval for the mean of these differences is calculated using the

methods explained for a single mean in Chapter 6, and depending on the sample

size uses either the normal or the t distribution. In brief, the confidence interval for

the difference between the means is:

AQ1
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Large samples ð60 or more pairsÞ
CI ¼ �xx� (z0 � s:e:) to �xxþ (z0 � s:e:)

or

Small samples ðless than 60 pairsÞ
CI ¼ �xx� (t0 � s:e:) to �xxþ (t0 � s:e:)

where for large samples z0 is the chosen percentage point of the normal distribu-

tion and for small samples t0 is the chosen percentage point of the t distribution

with n� 1 degrees of freedom. (See Table 6.1 for more details.)

Example 7.3

Consider the results of a clinical trial to test the effectiveness of a sleeping drug in

which the sleep of ten patients was observed during one night with the drug and

one night with a placebo. The results obtained are shown in Table 7.3. For each

patient a pair of sleep times, namely those with the drug and with the placebo, was

recorded and the difference between these calculated. The average number of

additional hours slept with the drug compared with the placebo was �xx¼ 1:08,

and the standard deviation of the differences was s ¼ 2:31 hours. The standard

error of the differences is s= n
p ¼ 2:31= 10

p ¼ 0:73 hours.

Table 7.3 Results of a placebo-controlled clinical trial to test the

effectiveness of a sleeping drug.

Hours of sleep

Patient Drug Placebo Difference

1 6.1 5.2 0.9

2 6.0 7.9 �1.9

3 8.2 3.9 4.3

4 7.6 4.7 2.9

5 6.5 5.3 1.2

6 5.4 7.4 �2.0

7 6.9 4.2 2.7

8 6.7 6.1 0.6

9 7.4 3.8 3.6

10 5.8 7.3 �1.5

Mean �xx1 ¼ 6:66 �xx0 ¼ 5:58 �xx¼ 1:08
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Since we have only ten pairs we use the t distribution with 9 degrees of freedom.

The 5% point is 2.26, and so the 95% confidence interval is:

95% CI ¼ 1:08� (2:26� 0:73) to 1:08þ (2:26� 0:73) ¼ �0:57 to 2:73 hours:

With 95% confidence, we therefore estimate the drug to increase average sleeping

times by between �0:51 and 2.73 hours. This small study is thus consistent with an

effect of the drug which ranges from a small reduction in mean sleep time to a

substantial increase in mean sleep time.

Note that the mean of the differences (�xx) is the same as the difference between

the means (�xx1 � �xx0). However, the standard error of �xxwill be smaller than the

standard error of (�xx1 � �xx0) because we have cancelled out the variation between

individuals in their underlying sleep times by calculating within-person differences.

In other words, we have accounted for the between-person variation (see Section

31.4), and so our confidence interval is narrower than if we had used an unpaired

design of a similar size.

Hypothesis test

Hypothesis testing of paired means is carried out using either a paired

z test or paired t test, depending on the same criteria as laid out for

confidence intervals. We calculate the mean of the paired differences, and the

test statistic is:

Large sample

z ¼ �xx

s:e:
¼ �xx

s= n
p or

Small sample

t ¼ �xx

s:e:
¼ �xx

s= n
p , d:f : ¼ n� 1

where �xxis the mean of the paired differences, and n is the number of pairs.

Example 7.3 (continued)

In the above example in Table 7.3 the mean difference in sleep time is 1.08 hours

and the standard error is 0.73 hours. A paired t test gives:

t ¼ 1:08=0:73 ¼ 1:48, d:f : ¼ 9

The probability of getting a t value as large as this in a t distribution with 9 degrees

of freedom is 0.17, so there is no evidence against the null hypothesis that the

drug does not affect sleep time. This is consistent with the interpretation of
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the 95% CI given earlier. An approximate P-value can be found from Table A4

(see Appendix), which shows that if the test statistic is 1.5 with 9 degrees of

freedom then the P-value is 0.168. Further examples of the use of confidence

intervals and P-values to interpret the results of statistical analyses are given in the

next chapter.
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CHAPTER 8

Using P-values and confidence
intervals to interpret the results of

statistical analyses

8.1 Introduction 8.4 Interpretation of P-values

8.2 Testing hypotheses 8.5 Using P-values and confidence

8.3 General form of confidence intervals to interpret the results

intervals and test statistics of a statistical analysis

8.1 INTRODUCTION

In Chapter 7 we described how statistical methods may be used to examine the

difference between the mean outcome in two exposure groups We saw that we

present the results of analyses in two related ways, by reporting a confidence

interval which gives a range of likely values for the difference in the population,

and a P-value which addresses whether the observed difference in the sample could

arise because of chance alone, if there were no difference in the population.

Throughout this book, we will repeat this process. That is, we will:

1 estimate the magnitude of the difference in disease outcome between exposure

groups;

2 derive a confidence interval for the difference; and

3 derive a P-value to test the null hypothesis that there is no association between

exposure and disease in the population.

In this chapter, we consider how to use P-values and confidence intervals to

interpret the results of statistical analyses. We discuss hypothesis tests in more

detail, explain how to interpret P-values and describe some common errors in their

interpretation. We conclude by giving examples of the interpretation of the results

of different studies.

8.2 TESTING HYPOTHESES

Suppose we believe that everybody who lives to age 90 or more is a non-smoker.

We could investigate this hypothesis in two ways:

1 Prove the hypothesis by finding every single person aged 90 or over and checking

that they are all non-smokers.

2 Disprove the hypothesis by finding just one person aged 90 or over who is a

smoker.

In general, it is much easier to find evidence against a hypothesis than to be able to

prove that it is correct. In fact, one view of science (put forward by the philosopher



Karl Popper) is that it is a process of disproving hypotheses. For example, New-

ton’s laws of mechanics were accepted until Einstein showed that there were

circumstances in which they did not work.

Statistical methods formalize this idea by looking for evidence against a very

specific form of hypothesis, called a null hypothesis: that there is no difference

between groups or no association between variables. Relevant data are then col-

lected and assessed for their consistency with the null hypothesis. Links between

exposures and outcomes, or between treatments and outcomes, are assessed by

examining the strength of the evidence against the null hypothesis, as measured by a

P-value (see Section 8.3).

Examples of null hypotheses might be:

� Treatment with beta-interferon has no effect on mean quality of life in patients

with multiple sclerosis.

� Performing radical surgery on men aged 55 to 75 diagnosed with prostate

cancer does not improve their subsequent mortality.

� Living close to power lines does not affect a child’s risk of developing leuk-

aemia.

In some circumstances, statistical methods are not required in order to reject the

null hypothesis. For example, before 1990 themost common treatment for stomach

ulcers was surgery. A pathologist noticed a particular organism (now known as

Helicobacter pylori) was often present in biopsy samples taken from stomach ulcers,

and grew the organism in culture. He then swallowed a glassful, following which he

experienced acute gastritis, and found that the organism progressed to a chronic

infection. No statistical analysis of this experiment was necessary to confidently

deduce this causal link and reject the null hypothesis of no association (B.J.Marshall

et al. 1985, Med J Australia 142; 436–9), although this was confirmed through

antibiotic trials showing that eradicating H. pylori cured stomach ulcers.

Similarly, when penicillin was first used as a treatment for pneumonia in the

1940s the results were so dramatic that no formal trial was necessary. Unfortu-

nately such examples, where the results ‘hit you straight between the eyes’, are rare

in medical research. This is because there is rarely such a one-to-one link between

exposures and outcomes; there is usually much more inherent variability from

person to person. Thus although we know that smoking causes lung cancer, we are

aware that some heavy smokers will live to an old age, and also that some non-

smokers will die prematurely. In other words, smoking increases the risk, but it

does not by itself determine death; the outcome is unpredictable and is influenced

by many other factors.

Statistical methods are used to assess the strength of evidence against a null

hypothesis, taking into account this person-to-person variability. Suppose that we

want to evaluate whether a new drug reduces cholesterol levels. We might study a

group of patients treated with the new drug (the treatment group) and a compar-

able group treated with a placebo (the control group), and discover that cholesterol

levels were on average 5mg per decilitre lower among patients in the treatment

group compared to those in the control group. Before concluding that the drug is
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effective, we would need to consider whether this could be a chance finding. We

address this question by calculating a test statistic and its corresponding P-value

(also known as a significance level). This is the probability of getting a difference of

at least 5mg between the mean cholesterol levels of patients in the treatment and

control groups if the drug really has no effect. The smaller the P-value, the

stronger the evidence against the null hypothesis that the drug has no effect on

cholesterol levels.

8.3 GENERAL FORM OF CONFIDENCE INTERVALS AND TEST

STATISTICS

Note that in all cases the confidence interval is constructed as the sample estimate

(be it a mean, a difference between means or any of the other measures of exposure

effect introduced later in the book), plus or minus its standard error multiplied by

the appropriate percentage point. Unless the sample size is small, this percentage

point is based on the normal distribution (e.g. 1.96 for 95% confidence intervals).

The test statistic is simply the sample estimate divided by its standard error.

95% CI ¼ estimate� (1:96� s:e:) to estimateþ (1:96� s:e:)

Test statistic ¼ estimate

s:e:

The standard error is inversely related to the sample size. Thus the larger the

sample size, the smaller will be the standard error. Since the standard error

determines the width of the confidence interval and the size of the test statistic,

this also implies the following: for any particular size of difference between the two

groups, the larger the sample size, the smaller will be the confidence interval and

the larger the test statistic.

The test statistic measures by how many standard errors the estimate differs

from the null value of zero. As illustrated in Figure 7.1, the test statistic is used to

derive a P-value, which is defined as the probability of getting a difference at least

as big as that observed if the null hypothesis is true. By convention, we usually use

two-sided P-values; we include the possibility that the difference could have been of

the same size but in the opposite direction. Figure 8.1 gives some examples of

how the P-value decreases as the test statistic z gets further away from zero. The

larger the test statistic, the smaller is the P-value. This can also be seen by

examining the one-sided P-values (the areas in the upper tail of the standard

normal distribution), which are tabulated for different values of z in Table A1 in

the Appendix.

Note that we will meet other ways of deriving test statistics later in the book.

For example, we introduce chi-squared tests for association in contingency tables
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Fig. 8.1 Different P-values corresponding to the distance from the null value to the sample mean (expressed

as standard errors). Adapted from original by Dr K. Tilling, with thanks.

in Chapter 17, and likelihood ratio tests for testing hypotheses in regression

models in Chapters 28 and 29. The interpretation of P-values is the same, no

matter how they are derived.

8.4 INTERPRETATION OF P-VALUES

The smaller the P-value, the lower the chance of getting a difference as big as

the one observed if the null hypothesis were true. In other words, the smaller

the P-value, the stronger the evidence against the null hypothesis, as illustrated in

Figure 8.2. If the P-value is large (more than 0.1, say) then the data do not provide

evidence against the null hypothesis, since there is a reasonable chance that the

observed difference could simply be the result of sampling variation. If the P-value

is small (less than 0.001, say) then a difference as big as that observed would be

very unlikely to occur if the null hypothesis were true; there is therefore strong

evidence against the null hypothesis.

It has been common practice to interpret a P-value by examining whether it is

smaller than particular threshold values. In particular P-values less than 0.05 are

often reported as ‘statistically significant’ and interpreted as being small enough to

justify rejection of the null hypothesis. This is why hypothesis tests have often been

called significance tests. The 0.05 threshold is an arbitrary one that became

commonly used in medical and psychological research, largely because P-values
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Fig. 8.2 Interpretation of P-values.

were determined by comparing the test statistic against tabulations of specific

percentage points of distributions such as the z and t distributions, as for example

in Table A3 (see Appendix). These days most statistical computer packages

will report the precise P-value rather than simply whether it is less than 0.05,

0.01, etc. In reporting the results of a study, we recommend this precise P-value

should be reported together with the 95% confidence interval, and the results

of the analyses should be interpreted in the light of both. This is illustrated in

Section 8.5.

It should be acknowledged that the 95% confidence level is based on the same

arbitrary value as the 0.05 threshold: a z value of 1.96 corresponds to a P-value of

0.05. This means that if P< 0.05 then the 95% confidence interval will not contain

the null value. However, interpretation of a confidence interval should not focus

on whether or not it contains the null value, but on the range and potential

importance of the different values in the interval.

It is also important to appreciate that the size of the P-value depends on the size

of the sample, as discussed in more detail in Section 8.5. Three common and

serious mistakes in the interpretation of P-values are:

1 Potentially medically important differences observed in small studies, for which

the P-value is more than 0.05, are denoted as non-significant and ignored. To
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protectourselvesagainst thiserror,weshouldalwaysconsider therangeofpossible

values for the difference shown by the confidence interval, as well as the P-value.

2 All statistically significant (P < 0:05) findings are assumed to result from real

treatment effects, whereas by definition an average of one in 20 comparisons in

which the null hypothesis is true will result in P < 0:05.

3 All statistically significant (P < 0:05) findings are assumed to be of medical

importance whereas, given a sufficiently large sample size, even an extremely

small difference in the population will be detected as different from the null

hypothesis value of zero.

These issues are discussed in the context of examples in the following section and

in the context of sample size and power in Chapter 35.

8.5 USING P-VALUES AND CONFIDENCE INTERVALS TO INTERPRET

THE RESULTS OF A STATISTICAL ANALYSIS

We have now described two different ways of making inferences about differences

in mean outcomes between two exposure (or treatment) groups in the target

population from the sample results.

1 A confidence interval gives us the range of values within which we are reason-

ably confident that the population difference lies.

2 The P-value tells us the strength of the evidence against the null hypothesis that

the true difference in the population is zero.

Since both confidence intervals and P-values are derived from the size of the

difference and its standard error, they are of course closely related. For example,

if the 95% confidence interval does not contain the null value, then we know the P-

value must be smaller than 0.05. And vice versa; if the 95% confidence interval does

include the null value, then the P-value will be greater than 0.05. Similarly if the

99% confidence interval does not contain the null value, then the P-value is less

than 0.01. Because the standard error decreases with increasing sample size,

the width of the confidence interval and the size of the P-value are as dependent

on the sample size as on the underlying population difference. For a particular

size of difference in the population, the larger the sample size the narrower will

be the confidence interval, the larger the test statistic and the smaller the P-value.

Both confidence intervals and P-values are helpful in interpreting the results of

medical research, as shown in Figure 8.3.

Example 8.1

Table 8.1 shows the results of five controlled trials of three different drugs to lower

cholesterol levels in middle-aged men and women considered to be at high risk of

a heart attack. In each trial patients were randomly assigned to receive either the

drug (drug group) or an identical placebo (control group). The number of patients

was the same in the treatment and control groups. Drugs A and B are relatively

cheap, while drug C is an expensive treatment. In each case cholesterol levels

were measured after 1 year, and the mean cholesterol in the control group was
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Fig. 8.3 Statistical methods to make inferences about the population from the sample.

Table 8.1 Results of five trials of drugs to lower serum cholesterol.

Trial Drug Cost

No. of patients

per group

Mean cholesterol

(mg/decilitre) in

drug group

Mean cholesterol

(mg/decilitre) in

control group

Reduction

(mg/decilitre)

1 A Cheap 30 140 180 40

2 A Cheap 3000 140 180 40

3 B Cheap 40 160 180 20

4 B Cheap 4000 178 180 2

5 C Expensive 5000 175 180 5

180mg/decilitre. The effect of treatment, measured by the difference in the mean

cholesterol levels in the drug and control groups, varied markedly between the

trials. We will assume that a mean reduction of 40mg/decilitre confers substantial

protection against subsequent heart disease, while a reduction of 20mg/decilitre

confers moderate protection.

What can we infer from these five trials about the effects of the drugs in the

population? Table 8.2 shows the effects (measured by the difference in mean

Table 8.2 Results of five trials of drugs to lower serum cholesterol, presented as mean difference (drug group

minus control group), s.e. of the difference, 95% confidence interval and P-value.

Trial Drug Cost

No. of

patients

per group

Difference in

mean cholesterol

(mg/decilitre)

s.e. of

difference

95% CI for

difference P-value

1 A Cheap 30 �40 40 �118.4 to 38.4 0.32

2 A Cheap 3000 �40 4 �47.8 to �32.2 < 0.001

3 B Cheap 40 �20 33 �84.7 to 44.7 0.54

4 B Cheap 4000 �2 3.3 �8.5 to 4.5 0.54

5 C Expensive 5000 �5 2 �8.9 to �1.1 0.012
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cholesterol between the drug and control groups), together with the standard error

of the difference, the 95% confidence interval and the P-value.

Note that it is sufficient to display P-values accurate to two significant figures

(e.g. 0.32 or 0.012). It is common practice to display P-values less than 1 in 1000 as

‘P < 0:001’ (although other lower limits such as <0:0001 would be equally ac-

ceptable).

� In trial 1 (drug A), mean cholesterol was reduced by 40mg/decilitre. However,

there were only 30 patients in each group. The 95% confidence interval shows

us that the results of the trial are consistent with a difference ranging from an

increase of 38.4mg/decilitre (corresponding to an adverse effect of the drug) to

a very large decrease of 118.4mg/decilitre. The P-value shows that there is no

evidence against the null hypothesis of no effect of drug A.

� In trial 2 (also drug A), mean cholesterol was also reduced by 40mg/decilitre.

This trial was much larger, and the P-value shows that there was strong

evidence against the null hypothesis of no treatment effect. The 95% confidence

interval suggests that the effect of drug A in the population is a reduction in

mean cholesterol of between 32.2 and 47.8mg/decilitre. Given that drug A is

cheap, this trial strongly suggests that it should be used routinely.

Note that the estimated effect of drug A was the same (a mean reduction of

40mg/decilitre) in trials 1 and 2. However because trial 1 was small it

provided no evidence against the null hypothesis of no treatment effect.

This illustrates an extremely important point: in small studies a large

P-value does not mean that the null hypothesis is true. This is summed up in

the phrase ‘Absence of evidence is not evidence of absence’.

Because large studies have a better chance of detecting a given treatment

effect than small studies, we say that they are more powerful. The concept of

power is discussed in more detail in Chapter 35, on choice of sample size.

� In trial 3 (drug B), the reduction in mean cholesterol was 20mg/decilitre, but

because the trialwas small the95%confidence interval iswide (fromareductionof

84.7mg/decilitre to an increase of 44.7mg/decilitre). The P-value is 0.54: there is

no evidence against the null hypothesis that drug B has no effect on cholesterol

levels.

� In trial 4 (also drug B), mean cholesterol was reduced by only 2mg/decilitre.

Because the trial was large the 95% confidence interval is narrow (from a reduc-

tion of 8.5mg/decilitre to an increase of 4.5mg/decilitre). This trial therefore

excludes any important effect of drug B. The P-value is 0.54: there is no evidence

against the null hypothesis that drug B has no effect on cholesterol levels.

Note that there was no effect of drug B in either trial 3 or trial 4, and the

P-values for the two trials were the same. However, examining the confidence
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intervals reveals that they provide very different information about the effect

of drug B. Trial 3 (the small trial) is consistent with either a substantial

benefit or a substantial harmful effect of drug B while trial 4 (the large trial)

excludes any substantial effect of drug B (because the lower limit of the

confidence interval corresponds to a reduction of only 8.5mg per decilitre).

� Finally, trial 5 (drug C), was a very large trial in which there was a 5mg/decilitre

reduction in mean cholesterol in the drug group, compared to the control

group. The P-value shows that there was evidence against the null hypothesis

of no effect of drug C. However, the 95% confidence interval suggests that the

reduction in mean cholesterol in the population is at most 8.9mg/decilitre, and

may be as little as 1.1mg/decilitre. Even though we are fairly sure that drug C

would reduce cholesterol levels, it is very unlikely that it would be used

routinely since it is expensive and the reduction is not of the size required

clinically.

Even when the P-value shows strong evidence against the null hypothesis, it

is vital to examine the confidence interval to ascertain the range of values for

the difference between the groups that is consistent with our data. The

medical importance of the estimated effect should always be considered,

even when there is good statistical evidence against the null hypothesis.

For further discussion of these issues see Sterne and Davey Smith (2001), and

Chapter 35 on choice of appropriate sample size.
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CHAPTER 9

Comparison of means from several
groups: analysis of variance

9.1 Introduction Balanced design with replication

9.2 One-way analysis of variance Balanced design without replication

Assumptions Unbalanced design

Relationship with the unpaired t test 9.4 Fixed and random effects

9.3 Two-way analysis of variance

9.1 INTRODUCTION

When our exposure variable has more than two categories, we often wish to

compare the mean outcomes from each of the groups defined by these categories.

For example, we may wish to examine how haemoglobin measurements collected

as part of a community survey vary with age and sex, and to see whether any sex

difference is the same for all age groups. We can do this using analysis of variance.

In general this will be done using a computer package, but we include details of the

calculations for the simplest case, that of one-way analysis of variance, as these are

helpful in understanding the basis of the methods. Analysis of variance may be

seen as a generalization of the methods introduced in Chapters 6 to 8, and is in

turn a special case of multiple regression, which is described in Chapter 11.

We start with one-way analysis of variance, which is appropriate when the

subgroups to be compared are defined by just one exposure, for example in the

comparison of means between different socioeconomic or ethnic groups. Two-way

analysis of variance is also described and is appropriate when the subdivision is

based on two factors such as age and sex. The methods can be extended to the

comparison of subgroups cross-classified by more than two factors.

An exposure variable may be chosen for inclusion in an analysis of variance

either in order to examine its effect on the outcome, or because it represents a

source of variation that it is important to take into account. This is discussed in

more detail in the context of multiple regression (Chapter 11).

This chapter may be omitted at a first reading.

9.2 ONE-WAY ANALYSIS OF VARIANCE

One-way analysis of variance is used to compare the mean of a numerical outcome

variable in the groups defined by an exposure level with two or more categories.

It is called one-way as the exposure groups are classified by just one variable.

The method is based on assessing how much of the overall variation in

the outcome is attributable to differences between the exposure group means:



hence the name analysis of variance. We will explain this in the context of a

specific example.

Example 9.1

Table 9.1(a) shows the mean haemoglobin levels of patients according to type of

sickle cell disease. We start by considering the variance of all the observations,

ignoring their subdivision into groups. Recall from Chapter 4 that the variance is

the square of the standard deviation, and equals the sum of squared deviations of

the observations about the overall mean divided by the degrees of freedom:

Variance, s2 ¼ �(x� �xx)2

(n� 1)

One-way analysis of variance partitions this sum of squares (SS ¼ �(x� �xx)2) into

two distinct components.

1 The sum of squares due to differences between the group means.

2 The sum of squares due to differences between the observations within each

group. This is also called the residual sum of squares.

The total degrees of freedom (n� 1) are similarly divided. The between-groups SS

has (k� 1) d:f :, and the residual SS has (n� k) d:f :, where k is the number of

groups. The calculations for the sickle cell data are shown in Table 9.1(b) and the

results laid out in an analysis of variance table in Table 9.1(c). Note that the

subscript i refers to the group number so that n1, n2 and n3 are the number of

observations in each of the three groups, �xx1, �xx2 and �xx3 are their mean haemo-

globin levels and s1, s2, and s3 their standard deviations. Of the total sum of

squares (¼ 137.85), 99.89 (72.5%) is attributable to between-group variation.

The fourth column of the table gives the amount of variation per degree of

freedom, and this is called the mean square (MS). The test of the null hypothesis

that the mean outcome does not differ between exposure groups is based on a

comparison of the between-groups andwithin-groupsmean squares. If the observed

differences in mean haemoglobin levels for the different types of sickle cell disease

were simply due to chance, the variation between these group means would be

about the same size as the variation between individuals with the same type, while

if they were real differences the between-groups variation would be larger. The

mean squares are compared using the F test, sometimes called the variance-ratio

test.

F ¼ Between-groups MS

Within-groups MS
, d:f : ¼ d:f :Between-groups, d:f :Within-groups

¼ k� 1, n� k

where n is the total number of observations and k is the number of groups.
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Table 9.1 One-way analysis of variance: differences in steady-state haemoglobin levels between patients with

different types of sickle cell disease. Data from Anionwu et al. (1981) British Medical Journal 282: 283–6.

(a) Data.

Type of sickle cell No. of

Haemoglobin (g/decilitre)

disease patients (ni) Mean (�xxi) s.d. (si ) Individual values (x)

Hb SS 16 8.7125 0.8445 7.2, 7.7, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.6, 8.7,

9.1, 9.1, 9.1, 9.8, 10.1, 10.3

Hb S/b-thalassaemia 10 10.6300 1.2841 8.1, 9.2, 10.0, 10.4, 10.6, 10.9, 11.1, 11.9,

12.0, 12.1

Hb SC 15 12.3000 0.9419 10.7, 11.3, 11.5, 11.6, 11.7, 11.8, 12.0, 12.1,

12.3, 12.6, 12.6, 13.3, 13.3, 13.8, 13.9

(b) Calculations.

n ¼ �ni ¼ 16þ 10þ 15 ¼ 41, no. of groups (k) = 3

� x ¼ 7:2þ 7:7þ . . .þ 13:8þ 13:9 ¼ 430:2

� x2 ¼ 7:22 þ 7:72 þ . . .þ 13:82 þ 13:92 ¼ 4651:80

Total: SS ¼ �(x � �xx)2 ¼ � x2 � (� x)2=n ¼ 4651:80�430:22=41 ¼ 137:85

d:f: ¼ n� 1 ¼ 40

Between groups: SS ¼ �ni(�xxi � �xx)2, more easily calculated as �ni�xx
2
i � (�x)2=n

¼ 16 � 8:71252 þ 10 � 10:63002 þ 15 � 12:30002 � 430:22=41 ¼ 99:89

d:f: ¼ k� 1 ¼ 2

Within groups: SS ¼ �(ni � 1)s2i

¼ 15 � 0:84452 þ 9 � 1:28412 þ 14 � 0:94192 ¼ 37:96

d:f: ¼ n� k ¼ 41�3 ¼ 38

(c) Analysis of variance.

Source of variation SS d.f. MS ¼ SS/d.f.
F ¼ Between-groups MS

Within-groups MS

Between groups 99.89 2 49.94 49.9, P < 0:001

Within groups 37.96 38 1.00

Total 137.85 40

F should be about 1 if there are no real differences between the groups and

larger than 1 if there are differences. Under the null hypothesis that the between-

group differences are simply due to chance, this ratio follows an F distribution

which, in contrast to most distributions, is specified by a pair of degrees of

freedom: (k� 1) degrees of freedom in the numerator and (n� k) in the denomin-

ator. P-values for the corresponding test of the null hypothesis (that mean haemo-

globin levels do not differ according to type of sickle-cell disease) are reported by

statistical computer packages.

In Table 9.1(c), F ¼ 49:94=1:00 ¼ 49:9 with degrees of freedom (2,38): the

corresponding P-value is < 0.001. There is thus strong evidence that mean steady-
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state haemoglobin levels differ between patients with different types of sickle

cell disease, the mean being lowest for patients with Hb SS disease, intermediate

for patients with Hb S/b-thalassaemia, and highest for patients with Hb SC disease.

Assumptions

There are two assumptions underlying the analysis of variance and corresponding

F test. The first is that the outcome is normally distributed. The second is that the

population value for the standard deviation between individuals is the same in

each exposure group. This is estimated by the square root of the within-groups

mean square. Moderate departures from normality may be safely ignored, but the

effect of unequal standard deviations may be serious. In the latter case, transform-

ing the data may help (see Chapter 13).

Relationship with the unpaired t test

When there are only two groups, the one-way analysis of variance gives exactly the

same results as the t test. The F statistic (with 1, n� 2 degrees of freedom) exactly

equals the square of the corresponding t statistic (with n� 2 degrees of freedom),

and the corresponding P-values are identical.

9.3 TWO-WAY ANALYSIS OF VARIANCE

Two-way analysis of variance is used when the data are classified in two ways, for

example by age-group and sex. The data are said to have a balanced design if there

are equal numbers of observations in each group and an unbalanced design if

there are not. Balanced designs are of two types, with replication if there is more

than one observation in each group and without replication if there is only one.

Balanced designs were of great importance before the widespread availability of

statistical computer packages, because they can be analysed using simple and

elegant mathematical formulae. They also allow a division of the sum of squares

into different components. However, they are of less importance now that calcu-

lations for analysis of variance are done using a computer.

Balanced design with replication

Example 9.2

Table 9.2 shows the results from an experiment in which five male and five female

rats of each of three strains were treated with growth hormone. The aims were to

find out whether the strains responded to the treatment to the same extent, and

whether there was any sex difference. The measure of response was weight gain

after seven days.

These data are classified in two ways, by strain and by sex. The design is

balanced with replication because there are five observations in each strain–sex
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Table 9.2 Differences in response to growth hormone for five male and five female rats from three different

strains.

(a) Mean weight gains in grams with standard deviations in parentheses (n ¼ 5 for each group).

Strain

Sex A B C

Male 11.9 (0.9) 12.1 (0.7) 12.2 (0.7)

Female 12.3 (1.1) 11.8 (0.6) 13.1 (0.9)

(b) Two-way analysis of variance: balanced design with replication.

Source of variation SS d.f. MS
F ¼ MS effect

MS residual

Main effects

Strain 2.63 2 1.32 1.9, P ¼ 0:17

Sex 1.16 1 1.16 1.7, P ¼ 0:20

Interaction

Strain � sex 1.65 2 0.83 1.2, P ¼ 0:32

Residual 16.86 24 0.70

Total 22.30 29

group. Two-way analysis of variance divides the total sum of squares into four

components:

1 The sum of squares due to differences between the strains. This is said to be the

main effect of the factor, strain. Its associated degrees of freedom are one less

than the number of strains and equal 2.

2 The sum of squares due to differences between the sexes, that is the main effect

of sex. Its degrees of freedom equal 1, one less than the number of sexes.

3 The sum of squares due to the interaction between strain and sex. An interaction

means that the strain differences are not the same for both sexes and, equiva-

lently, that the sex difference is not the same for the three strains. The degrees of

freedom equal the product of the degrees of freedom of the two main effects,

which is 2 � 1 ¼ 2. The use of regression models to examine interaction be-

tween the effects of exposure variables is discussed in Section 29.5.

4 The residual sum of squares due to differences between the rats within each

strain–sex group. Its degrees of freedom equal 24, the product of the number of

strains (3), the number of sexes (2) and one less than the number of observations

in each group (4).

The null hypotheses of no main effect of the two exposures and of no interaction

are examined by using the F test to compare their mean squares with the residual

mean square, as described for one-way analysis of variance. No evidence of any

association was obtained in this experiment.
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Balanced design without replication

In a balanced design without replication there is no residual sum of squares in the

analysis of variance, since there is only one observation in each cell of the table

showing the cross-classification of the two exposures. In such a case, it is assumed

that there is no interaction between the effects of the two exposures, and the

interaction mean square is used as an estimate of the residual mean square for

calculating F statistics for the main effects. The two-way analysis of variance for a

balanced design without replication is an extension of the paired t test, comparing

the values of more than two variables measured on each individual. The two

approaches give the same results when just two variables are measured, and the

F value equals the square of the t value.

Unbalanced design

When the numbers of observations in each cell are not equal the design is said to

be unbalanced. The main consequence, apart from the additional complexity of the

calculations, is that it is not possible to disentangle the effects of the two exposures

on the outcome. Instead, the additional sum of squares due to the effect of one

variable, allowing for the effect of the other, may be calculated. These issues are

explained in more detail in Chapter 11, which describes multiple linear regression.

Unbalanced data are common, and unavoidable, in survey investigations. The

interpretation of clinical trials and laboratory experiments will be simplified if they

have a balanced design, but even when a balanced design is planned this will not

always succeed as, for example, people may withdraw or move out of the area

half-way through a trial, or animals may die during the course of an experiment.

9.4 FIXED AND RANDOM EFFECTS

The effect of exposures can be defined in two ways, as fixed effects or as random

effects. Factors such as sex, age-group and type of sickle cell disease are all fixed

effects since their individual levels have specific values; sex is always male or

female. In contrast, the individual levels of a random effect are not of intrinsic

interest but are a sample of levels representative of a source of variation. For

example, consider a study to investigate the variation in sodium and sucrose

concentrations of home-prepared oral rehydration solutions, in which ten persons

were each asked to prepare eight solutions. In this case, the ten persons are of

interest only as representatives of the variation between solutions prepared by

different persons. Persons is then a random effect. The method of analysis is the

same for fixed and random effects in one-way designs and in two-way designs

without replication, but not in two-way designs with replication (or in higher level

designs). In the latter, if both effects are fixed, their mean squares are compared

with the residual mean square as described above. If, on the other hand, both
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effects are random, their mean squares are compared with the interaction rather

than the residual mean square. If one effect is random and the other fixed, it is the

other way round; the random effect mean square is compared with the residual

mean square, and the fixed effect mean square with the interaction. Analyses with

random effects are described in more detail in Chapter 31.
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CHAPTER 10

Linear regression and correlation

10.1 Introduction 10.3 Correlation

10.2 Linear regression 10.4 Analysis of variance approach to

Estimation of the regression simple linear regression

parameters 10.5 Relationship between correlation

Computer output coefficient and analysis of

Assumptions variance table

Prediction

10.1 INTRODUCTION

Previous chapters have concentrated on the association between a numerical

outcome variable and a categorical exposure variable with two or more levels.

We now turn to the relationship between a numerical outcome and a numerical

exposure. The method of linear regression is used to estimate the best-fitting

straight line to describe the association. The method also provides an estimate

of the correlation coefficient, which measures the closeness (strength) of the linear

association. In this chapter we consider simple linear regression in which only one

exposure variable is considered. In the next chapter we introduce multiple regres-

sion models for the effect of more than one exposure on a numerical outcome.

10.2 LINEAR REGRESSION

Example 10.1

Table 10.1 shows the body weight and plasma volume of eight healthy men. A

scatter plot of these data (Figure 10.1) shows that high plasma volume tends to be

Table 10.1 Plasma volume, and body weight in eight healthy men.

Sample size n ¼ 8, mean body weight �xx¼ 66:875,

mean plasma volume �yy¼ 3:0025.

Subject Body weight (kg) Plasma volume (litres)

1 58.0 2.75

2 70.0 2.86

3 74.0 3.37

4 63.5 2.76

5 62.0 2.62

6 70.5 3.49

7 71.0 3.05

8 66.0 3.12



Fig. 10.1 Scatter diagram of plasma volume and body weight showing the best-fitting linear regression line.

associated with high weight and vice versa. Note that it is conventional to

plot the exposure on the horizontal axis and the outcome on the vertical axis.

In this example, it is obviously the dependence of plasma volume on body weight

that is of interest, so plasma volume is the outcome variable and body weight is the

exposure variable. Linear regression gives the equation of the straight line that

best describes how the outcome y increases (or decreases) with an increase in the

exposure variable x. The equation of the regression line is:

y ¼ �0 þ �1x

where � is the Greek letter beta. We say that �0 and �1 are the parameters or

regression coefficients of the linear regression: �0 is the intercept (the value of y

when x ¼ 0), and �1 the slope of the line (the increase in y for every unit increase in

x; see Figure 10.2).

Estimation of the regression parameters

The best-fitting line is derived using the method of least squares: by finding the

values for the parameters �0 and �1 that minimize the sum of the squared vertical

distances of the points from the line (Figure 10.3). The parameters �0 and �1 are

are estimated using the following formulae:
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Fig. 10.2 The intercept and slope of the regression equation, y ¼ �0 þ �1x. The intercept, �0, is the point

where the line crosses the y axis and gives the value of y for x ¼ 0. The slope, �1, is the increase in y

corresponding to a unit increase in x.

Fig. 10.3 Linear regression line, y ¼ �0 þ �1x, fitted by least squares. �0 and �1 are calculated to

minimize the sum of squares of the vertical deviations (shown by the dashed lines) of the points about

the line; each deviation equals the difference between the observed value of y and the corresponding point

on the line, �0 þ �1x.
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�1 ¼
�(x� �xx)(y� �yy)

�(x� �xx)2
and �0 ¼ �yy� �1�xx

Regression coefficients are sometimes known as ‘beta-coefficients’, and are

labelled in this way by some statistical software packages. When the slope

�1 ¼ 0 this corresponds to a horizontal line at a height of �yyand means that

there is no association between x and y.

In this example:

�(x� �xx)(y� �yy) ¼ 8:96 and �(x� �xx)2 ¼ 205:38

So:

�1 ¼ 8:96=205:38 ¼ 0:043615

and:

�0 ¼ 3:0025� 0:043615� 66:875 ¼ 0:0857

Thus the best-fitting straight line describing the association of plasma volume with

body weight is:

Plasma volume ¼ 0:0857þ 0:0436� weight

which is shown in Figures 10.1 and 10.3.

The regression line is drawn by calculating the co-ordinates of two points which

lie on it. For example:

x ¼ 60, y ¼ 0:0857þ 0:0436� 60 ¼ 2:7

and

x ¼ 70, y ¼ 0:0857þ 0:0436� 70 ¼ 3:1

As a check, the line should pass through the point (�xx, �yy) ¼ (66:9, 3:0). Statistical

software packages will usually allow the user to include the regression line in

scatter plots.

The calculated values for �0 and �1 are estimates of the population values of the

intercept and slope and are, therefore, subject to sampling variation. As with

estimated differences between exposure group means (see Chapter 7) their preci-

sion is measured by their standard errors.
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s:e:(�0) ¼ s
1

n
þ �xx2

�(x� �xx)2

� �s
and s:e:(�1) ¼

s

�(x� �xx)2
p

s ¼ �(y� �yy)2 � �2
1�(x� �xx)2

(n� 2)

" #s

s is the standard deviation of the points about the line. It has (n� 2) degrees of

freedom (the sample size minus the number of regression coefficients). In this

example �(y� �yy)2 ¼ 0:6780 and so:

s ¼ 0:6780� 0:04362 � 205:38

6

r
¼ 0:2189

s:e:(�0) ¼ 0:2189
1

8
þ 66:92

205:38

� �s
¼ 1:0237

and

s:e:(�1) ¼
0:2189

205:38
p ¼ 0:0153

Computer output

Linear regression models are usually estimated using a statistical computer pack-

age. Table 10.2 shows typical output; for our example, plasvol and weight were the

names of the outcome and exposure variables respectively in the computer file. The

output should be interpreted as follows.

1 The regression coefficient for weight is the same as the estimate of �1 calculated

earlier while the regression coefficient labelled ‘Constant’ corresponds to the

estimate of the intercept (�0).

Note that in this example the intercept is not a meaningful number: its literal

interpretation is as the estimated mean plasma volume when weight ¼ 0. The

intercept can be made meaningful by centring the exposure variable: subtracting

its mean so that the new exposure variable hasmean ¼ 0. The intercept in a linear

regression with a centred exposure variable is equal to the mean outcome.

2 The standard errors also agree with those calculated above.

3 The t statistics in the fourth column are the values of each regression coefficient

divided by its standard error. Each t statistic may be used to test the null hypo-

thesis that the corresponding regression coefficient is equal to zero. The degrees
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Table 10.2 Computer output for the linear regression of plasma volume on body weight (data in Table 10.1).

Plasvol Coefficient Std err t P > jtj 95% CI

Weight 0.0436 0.0153 2.857 0.029 0.0063 to 0.0810

Constant 0.0857 1.024 0.084 0.936 �2.420 to 2.591

of freedom are the sample size minus the number of regression coefficients,

n� 2. The corresponding P-values are in the fifth column. In this example, the

P-value for weight is 0.029: there is some evidence against the null hypothesis

that there is no association between body weight and plasma volume. The P-

value for the intercept tests the null hypothesis that the intercept is equal to

zero: this is not usually an interesting null hypothesis but is reported because

computer packages tend to present their output in a uniform manner.

4 The 95% confidence intervals are calculated as:

CI ¼ regression coefficient� t0 � s:e: to regression coefficientþ t0 � s:e:

where t0 is the relevant percentage point of the t distribution with n� 2 degrees

of freedom. In this example the 5% point of the t distribution with 6 d.f. is 2.45,

and so (for example) the lower limit of the 95% CI for �1 is 0:0436� 2:45�
0:0153 ¼ 0:0063. In large samples the 5% point of the normal distribution (1.96)

is used (d:f : ¼ 1 in Table A3, Appendix).

Assumptions

There are two assumptions underlying linear regression. The first is that, for any

value of x, y is normally distributed. The second is that the magnitude of the

scatter of the points about the line is the same throughout the length of the line.

This scatter is measured by the standard deviation, s, of the points about the line

as defined above. More formally, we assume that:

y ¼ �0 þ �1xþ e

where the error, e, is normally distributed with mean zero and standard deviation

�, which is estimated by s (the standard deviation of the points about the line). The

vertical deviations (shown by the dotted lines) in Figure 10.3 are the estimated

errors, known as residuals, for each pair of observations.

A change of scale may be appropriate if either of the two assumptions does not

hold, or if the relationship seems non-linear (see Sections 11.5 and 29.6). It is

important to examine the scatter plot to check that the association is approximately
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linear before proceeding to fit a linear regression. Ways to check the assumptions

made in a linear regression are discussed in more detail in Section 12.3.

Prediction

In some situations it may be useful to use the regression equation to predict the

value of y for a particular value of x, say x0. The predicted value is:

y0 ¼ �0 þ �1x
0

and its standard error is:

s:e:(y0) ¼ s 1þ 1

n
þ (x0 � �xx)2

�(x� �xx)2

" #s

This standard error is least when x0 is close to the mean, �xx. In general, one should

be reluctant to use the regression line for predicting values outside the range of x

in the original data, as the linear relationship will not necessarily hold true beyond

the range over which it has been fitted.

Example 10.1 (continued)

In this example, the measurement of plasma volume is time-consuming and so, in

some circumstances, it may be convenient to predict it from the body weight. For

instance, the predicted plasma volume for a man weighing 66 kg is:

0:0832þ 0:0436� 66 ¼ 2:96 litres

and its standard error equals:

0:2189 1þ 1

8
þ (66� 66:9)2

205:38

" #
¼ 0:23 litres

s

10.3 CORRELATION

As well as estimating the best-fitting straight line we may wish to examine the

strength of the linear association between the outcome and exposure variables.

This is measured by the correlation coefficient, r, which is estimated as:

r ¼ �(x� �xx)(y� �yy)

�(x� �xx)2�(y� �yy)2
� 	q
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where x denotes the exposure, y denotes the outcome, and �xxand �yyare the

corresponding means. Scatter plots illustrating different values of the correlation

coefficient are shown in Figure 10.4. The correlation coefficient is always a

number between �1 and þ1, and equals zero if the variables are not associated.

It is positive if x and y tend to be high or low together, and the larger its value the

closer the association. The maximum value of 1 is obtained if the points in the

scatter plot lie exactly on a straight line. Conversely, the correlation coefficient is

negative if high values of y tend to go with low values of x, and vice versa. The

correlation coefficient has the same sign as the regression coefficient �1. When

there is no correlation �1 equals zero, corresponding to a horizontal regression line

at height �yy(no association between x and y).

Fig. 10.4 Scatter plots illustrating different values of the correlation coefficient. Also shown are the

regression lines.

Example 10.1 (continued)

In this example:

r ¼ 8:96

(205:38� 0:6780)
p ¼ 0:7591
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Table 10.3 Computer output for the linear regression of the derived variable stdplasvol on stdweight (plasma

volume and body weight divided by their standard deviations).

stdplasvol Coefficient Std err t P > t 95% CI

stdweight 0.7591 0.2657 2.86 0.029 0.1089 to 1.4094

Constant 0.2755 3.2904 0.08 0.936 �7.7759 to 8.3268

A useful interpretation of the correlation coefficient is that it is the number of

standard deviations that the outcome y changes for a standard deviation change in

the exposure x. In larger studies (sample size more than about 100), this provides a

simple way to derive a confidence interval for the correlation coefficient, using

standard linear regression. In this example, the standard deviation of body weight

was 5.42 kg, and the standard deviation of plasma volume was 0.31 litres. If we

divide each variable by its standard deviation we can create new variables, each of

which has a standard deviation of 1. We will call these variables stdplasvol and

stdweight: a change of 1 in these variables therefore corresponds to a change of one

standard deviation in the original variables. Table 10.3 shows computer output

from the regression of stdplasvol on stdweight. The regression coefficient for

stdweight is precisely the same as the correlation coefficient calculated earlier.

Note also that the P-values are identical to those in Table 10.2: the null hypothesis

that the correlation r ¼ 0 is identical to the null hypothesis that the regression

coefficient �1 ¼ 0.

For large samples the confidence interval corresponding to the regression coef-

ficient for the modified exposure variable (stdweight in Table 10.3) may be inter-

preted as a confidence interval for the correlation coefficient. In this very small

study, however, the upper limit of the 95% CI is 1.4094, whereas the maximum

possible value of the correlation is 1. For studies whose sample size is less than

about 100, confidence intervals for the correlation coefficient can be derived using

Fisher’s transformation:

zr ¼ 1

2
loge

1þ r

1� r

� �

See Section 13.2 for an explanation of logarithms and the exponential function.

The standard error of the transformed correlation zr is approximately 1= (n� 3)
p

,

and so a 95% confidence interval for zr is:

95% CI ¼ zr � 1:96= (n� 3)
p

to zr þ 1:96= (n� 3)
p

This can then be transformed back to give a confidence interval for r using the

inverse of Fisher’s transformation:
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r ¼ exp(2zr)� 1

exp(2zr)þ 1

In this example, the transformed correlation between weight and plasma volume is

zr ¼ 0:5 loge (1:7591=0:2409) ¼ 0:9941. The standard error of zr is 1= (8�3)p ¼
0:4472. The 95% CI for zr is:

95% CI for zr ¼ 0:9941� 1:96� 0:4472 to 0:9941þ 1:96� 0:4472

¼ 0:1176 to 1:8706

Applying the inverse of Fisher’s transformation to the upper and lower confidence

limits gives a 95% CI for the correlation:

95% CI for r ¼ 0:1171 to 0:9536

10.4 ANALYSIS OF VARIANCE APPROACH TO SIMPLE LINEAR

REGRESSION

We stated earlier that the regression coefficients �0 and �1 are calculated so as to

minimize the sum of squared deviations of the points about the regression line.

This can be compared to the overall variation in the outcome variable, measured

by the total sum of squares

SSTotal ¼ �(y� �yy)2

This is illustrated in Figure 10.5 where the deviations about the line are shown by

the dashed vertical lines and the deviations about the mean, (y� �yy), are shown

by the solid vertical lines. The sum of squared deviations about the best-fitting

regression line is called the residual sum of squares (SSResidual). This is less than

SSTotal by an amount which is called the sum of squares explained by the regression

of plasma volume on body weight, or simply the regression sum of squares

SSRegression ¼ SSTotal � SSResidual

This splitting of the overall variation into two parts can be laid out in an analysis

of variance table (see Chapter 9).

Example 10.1 (continued)

The analysis of variance results for the linear regression of plasma volume on body

weight are presented in Table 10.4. There is 1 degree of freedom for the regression

and n� 2 ¼ 6 degrees of freedom for the residual.

If therewerenoassociationbetween thevariables, then the regressionmeansquare

would be about the same size as the residual mean square, while if the variables

were associated it would be larger. This is tested using an F test, with degrees
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Fig. 10.5 Deviations in the outcome y about the regression line (dashed vertical lines) and about the mean

�yy(solid vertical lines).

Table 10.4 Analysis of variance for the linear regression of plasma volume on body weight (n ¼ 8).

Source of variation

Sum of squares

(SS)

Degrees of

freedom (d.f.)

Mean square

(MS ¼ SS/d.f.)
F ¼ MS regression

MS residual

Regression 0.3907 1 0.3907 8.16, P ¼ 0:029

Residual 0.2873 6 0.0479

Total 0.6780 7 0.0969

of freedom (1, n� 2), as described in Chapter 9. The resulting P-value is identical

to that from the t statistic in the linear regression output presented in Table 10.2.

10.5 RELATIONSHIP BETWEEN CORRELATION COEFFICIENT AND

ANALYSIS OF VARIANCE TABLE

The analysis of variance table gives an alternative interpretation of the correlation

coefficient. The square of the correlation coefficient, r2, equals the regression sum

of squares divided by the total sum of squares (0:762 ¼ 0:5763 ¼ 0:3907=0:6780).

It is thus the proportion of the total variation in plasma volume that has been

explained by the regression. In Example 10.1, we can say that body weight ac-

counts for 57.63% of the total variation in plasma volume.
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CHAPTER 11

Multiple regression

11.1 Introduction variables with more than

11.2 Multiple regression with two two categories

exposure variables 11.4 General form of the multiple

Analysis of variance for regression model

multiple regression 11.5 Multiple regression with non-linear

11.3 Multiple regression with exposure variables

categorical exposure variables 11.6 Relationship between multiple

Regression with binary exposure regression and analysis of variance

variables 11.7 Multivariate analysis

Regression with exposure

11.1 INTRODUCTION

Situations frequently occur in which we wish to examine the dependency of a

numerical outcome variable on several exposure variables, not just one. This is

done using multiple linear regression, a generalization of the methods for linear

regression that were introduced in Chapter 10.

In general, there are two reasons for including extra exposure variables in a

multiple regression analysis. The first is to estimate an exposure effect after

allowing for the effects of other variables. For example, if two exposure groups

differed in respect to other factors, such as age, sex, socioeconomic status, which

were known to affect the outcome of interest, then it would be important to adjust

for these differences before attributing any difference in outcome between the

exposure groups to the exposure. This is described in Section 11.2 below, and is

an example of the control of confounding factors, explained in more detail in

Chapter 18. The second reason is that inclusion of exposure variables that are

strongly associated with the outcome variable will reduce the residual variation and

hence decrease the standard error of the regression coefficients for other exposure

variables. This means that it will increase both the accuracy of the estimation of the

other regression coefficients, and the likelihood that the related hypothesis tests

will detect any real effects that exist. This latter attribute is called the power of the

test and is described in detail in Chapter 35 (‘Calculation of required sample size’).

This second reason applies only when the outcome variable is numerical (and not,

for example, when we use logistic regression to analyse the association of one or

more exposure variables with a binary outcome variable, see Chapters 19 and 20).

Multiple regression can be carried out with any number of variables, although it

is recommended that the number be kept reasonably small, as with larger numbers
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the interpretation becomes increasingly more complex. These issues are discussed

in more detail in the chapters on regression modelling (Chapter 29) and strategies

for analysis (Chapter 38).

11.2 MULTIPLE REGRESSION WITH TWO EXPOSURE VARIABLES

Example 11.1

All the methods will be illustrated using a study of lung function among 636

children aged 7 to 10 years living in a deprived suburb of Lima, Peru. The

maximum volume of air that the children could breathe out in 1 second (Forced

Expiratory Volume in 1 second, denoted as FEV1) was measured using a spirom-

eter. The age and height of the children were recorded, and their carers were asked

about respiratory symptoms that the children had experienced in the last year.

Consider first the relationship of lung function (FEV1) with the two exposure

variables: age and height of the child. It seems likely that FEV1 will increase with

both height and age, and this is confirmed by scatter plots, which suggest that the

relationship of FEV1 with each of these is linear (Figure 11.1). The output from

separate linear regression models for the association between FEV1 and each of

these two exposure variables is shown in Table 11.1.

As is apparent from the scatter plots, there is a strong association between FEV1

and both age and height. The regression coefficients tell us that FEV1 increases by

0.2185 litres for every year of age, and by 0.0311 litres for every centimetre of height.

The regression lines are shown on the scatter plots in Figure 11.1. The correlations

of FEV1 with age and height are 0.5161 and 0.6376, respectively.

As might be expected, there is also a strong association between age and height

(correlation¼ 0.5946). We may therefore ask the following questions:

� what is the association between age and FEV1, having taken the association

between height and FEV1 into account?

� what is the association between height and FEV1, having taken the association

between age and FEV1 into account?

Table 11.1 Computer output for two separate linear regression models for FEV1.

(a) FEV1 and age.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.2185 0.0144 15.174 0.000 0.1902 to 0.2467

Constant �0.3679 0.1298 �2.835 0.005 �0.6227 to �0.1131

(b) FEV1 and height.

FEV1 Coefficient Std err t P > jtj 95% CI

Height 0.0311 0.00149 20.840 0.000 0.0282 to 0.0341

Constant �2.2658 0.1855 �12.216 0.000 �2.6300 to �1.9016
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Fig. 11.1 Scatter plots showing the relationship of FEV1 with (a) age and (b) height in 636 Peruvian

children. Analyses and displays by kind permission of Dr M.E. Penny.
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Often, we talk of the effect of a variable having adjusted or controlled for the

effects of the other variable(s) in the model.

These questions may be answered by fitting a multiple regression model for the

effects of height and age on FEV1. The general form of a multiple regression

model for the effects of two exposure variables (x1 and x2) on an outcome variable

(y) is:

y ¼ �0 þ �1x1 þ �2x2

The intercept �0 is the value of the outcome y when both exposure variables x1 and

x2 are zero. In this example:

FEV1 ¼ �0 þ �1 � ageþ �2 � height

This model assumes that for any age, FEV1 is linearly related to height,

and correspondingly that for any height, FEV1 is linearly related to age. Note that

�1 and �2 will be different to the regression coefficients from the simple linear

regressions on age and height separately, unless the two exposure variables are

unrelated.

The way in which the regression coefficients are estimated is the same as for

linear regression with a single exposure variable: the values of �0, �1 and �2 are

chosen to minimize the sum of squares of the differences [ y� (�0 þ �1x1 þ �2x2)]

or, in other words, the variation about the regression. In this example each

observed FEV1 is compared with (�0 þ �1 � ageþ �2 � height). The estimated

regression coefficients are shown in Table 11.2.

The regression output tells us that the best-fitting model is:

FEV1 ¼ �2:3087þ 0:0897� ageþ 0:0250� height

After controlling for the association between FEV1 and height, the regression

coefficient for age is much reduced (from 0.2185 litres/year to 0.0897 litres/year).

There is a smaller reduction in the regression coefficient for height: from

0.0311 litres/cm to 0.0250 litres/cm. The t statistics and corresponding P-values for

age and height test the null hypotheses that, respectively, there is no association of

Table 11.2 Computer output showing the estimated regression coefficients from the multiple regression relating

FEV1 to age and height.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.0897 0.0157 5.708 0.000 0.0588 to 0.1206

Height 0.0250 0.0018 13.77 0.000 0.0214 to 0.0285

Constant �2.3087 0.1812 �12.743 0.000 �2.6645 to �1.9529
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FEV1 with age having controlled for its association with height, and no associ-

ation of FEV1 with height having controlled for its association with age.

Note that the P-values in this analysis are not really zero; they are simply too

small to be displayed using the precision chosen by the software package. In this

case the P-values should be interpreted and reported as < 0:001. There is thus

strong evidence that age and height are each associated with FEV1 after control-

ling for one another.

Analysis of variance for multiple regression

Example 11.1 (continued)

We can examine the extent to which the joint effects of age and height explain the

variation in FEV1 in an analysis of variance table (Table 11.3). There are now

2degrees of freedom for the regression as there are two exposure variables. The F

test for this regression is 244.3 with (2,633) degrees of freedom (P < 0:0001).

The regression accounts for 43.56% (25.6383/58.8584) of the total variation in

FEV1. This proportion equals R2, where R ¼ 0:4356
p ¼ 0:66 is defined as the

multiple correlation coefficient. R is always positive as no direction can be attached

to a correlation based on more than one variable.

The sum of squares due to the regression of FEV1 on both age and height

comprises the sum of squares explained by age (¼ 15.6802, derived from the simple

linear regression FEV1 ¼ �0 þ �1 � age) plus the extra sum of squares explained

by height after controlling for age (Table 11.4). This provides an alternative means

of testing the null hypothesis that there is no association of FEV1 with height

having controlled for its association with age. We derive an F statistic using the

residual mean square from the multiple regression:

F ¼ 9:9581=0:05248 ¼ 189:75, d:f ¼ (1,633), P < 0:0001

Again, there is clear evidence of an association of FEV1 with height having

controlled for its association with age. Note that the t statistic for height presented

in the computer output shown in Table 11.2 is exactly the square root of the F

statistic: 189:75
p ¼ 13:77.

Reversing the order in which the variables are entered into the model allows us

to test the null hypothesis that there is no association with age having controlled

for height: this gives an F statistic 32.58, d:f ¼ (1,633), P < 0:0001. Again this

corresponds to the t statistic in Table 11.2: 32:58
p ¼ 5:708.

Table 11.3 Analysis of variance for the multiple regression relating FEV1 to age and height.

Source of variation SS d.f. MS
F ¼ MS regression

MS residual

Regression on age and height of child 25.6383 2 12.8192 244.3, P < 0:0001

Residual 33.2201 633 0.05248

Total 58.8584 635 0.09269

AQ2
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Table 11.4 Individual contributions of age and height of the child to the multiple regression including both

variables, when age is entered into multiple regression first.

Source of variation SS d.f. MS
F ¼ MS regression

MS residual

Age 15.6802 1 15.6082

Height adjusting for age 9.9581 1 9.9581 189.75, P < 0:0001

Age and height 25.6383 2

Note that these two orders of breaking down the combined regression sum of

squares from Table 11.3 into the separate sums of squares do not give the same

component sums of squares because the exposure variables (age and height) are

themselves correlated. However, the regression coefficients and their correspond-

ing standard errors in Table 11.2 are unaffected by the order in which the exposure

variables are listed.

11.3 MULTIPLE REGRESSION WITH CATEGORICAL

EXPOSURE VARIABLES

Until now, we have included only continuous exposure variables in regression

models. In fact, it is straightforward to estimate the effects of binary or other

categorical exposure variables in regression models. We now show how to do this,

and how the results relate to methods introduced in previous chapters.

Regression with binary exposure variables

We start by considering a binary exposure variable, coded as 0 (unexposed) or

1 (exposed) in the dataset.

Example 11.1 (continued)

A variable that takes only the values 0 and 1 is known as an indicator variable

because it indicates whether the individual possesses the characteristic or not.

Computer output from the linear regression of FEV1 on variable male in the

data on lung function in Peruvian children is shown in Table 11.5. The interpret-

ation of such output is straightforward.

1 The regression coefficient for the indicator variable is the difference between the

mean in boys (variablemale coded as 1) and themean in girls (variablemale coded

as 0). The value of the t statistic (and correspondingP-value) for this coefficient is

identical to that derived from the t test of the null hypothesis that themean in girls

is the same as in boys (see Chapter 7), and the confidence interval is identical to

the confidence interval for the difference in means, also presented in Chapter 7.

2 The regression coefficient for the constant term is the mean in girls (the group

for which the indicator variable is coded as 0).

To see why this is the case, consider the equation for this regression model. This

states that on average:
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Table 11.5 Computer output for the linear regression of FEV1 on gender of the child.

FEV1 Coefficient Std err t P > jtj 95% CI

Male 0.1189 0.0237 5.01 0.000 0.0723 to 0.1655

Constant 1.5384 0.0163 94.22 0.000 1.5063 to 1.5705

FEV1 ¼ �0 þ �1 �male

Thus in girls, mean FEV1 ¼ �0 þ �1 � 0 ¼ �0 and so the estimated value of the

intercept �0 (the regression coefficient for the constant term) is the mean FEV1 in

girls. In boys, mean FEV1 ¼ �0 þ �1 � 1 ¼ �0 þ �1. Therefore:

�1 ¼ mean FEV1 in boys�mean FEV1 in girls

We may wish to ask whether the difference in mean FEV1 between boys and girls

is accounted for by differences in their age or height. This is done by including the

three exposure variables together in a multiple regression model. The regression

equation is:

FEV1 ¼ �0 þ �1 � ageþ �2 � heightþ �3 �male

Output for this model is shown in Table 11.6. The regression coefficient for variable

male (�3) estimates the difference in mean FEV1 in boys compared to girls, having

allowed for the effects of age and height. This is slightly increased compared to the

mean difference before the effects of age and height were taken into account.

Table 11.6 Computer output for the multiple regression of FEV1 on age, height and gender of the child.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.0946 0.0152 6.23 0.000 0.0648 to 0.1244

Height 0.0246 0.0018 14.04 0.000 0.0211 to 0.0280

Male 0.1213 0.0176 6.90 0.000 0.0868 to 0.1559

Constant �2.360 0.1750 �13.49 0.000 �2.704 to �2.0166

Regression with exposure variables with more than two categories

The effects of categorical exposures with more than two levels (for example age-

group or extent of exposure to cigarette smoke) are estimated by introducing a

series of indicator variables to describe the differences. First we choose a baseline

group to which the other groups are to be compared: often this is the lowest coded

value of the variable or the group representing the unexposed category. If the

variable has k levels, k� 1 indicator variables are then included, corresponding to

each non-baseline group. This is explained in more detail in the context of logistic

regression, in the box in Section 19.3. The regression coefficients for the indicator
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variables then equal the differences in mean outcome, comparing each non-

baseline group with the baseline.

11.4 GENERAL FORM OF THE MULTIPLE REGRESSION MODEL

The general form of a multiple regression model for the effects of p exposure

variables is:

y ¼ �0 þ �1x1 þ �2x2 þ �3x3 þ . . .þ �pxp þ e

The quantity, �0 þ �1x1 þ �2x2 þ �3x3 þ . . .þ �pxp, on the right-hand side of the

equation is known as the linear predictor of the outcome y, given particular values of

the exposure variables x1 to xp. The error, e, is normally distributed with mean zero

and standard deviation �, which is estimated by the square root of the residualmean

square.

11.5 MULTIPLE REGRESSION WITH NON-LINEAR EXPOSURE

VARIABLES

It is often found that the relationship between the outcome variable and an

exposure variable is non-linear. There are three possible ways of incorporating

such an exposure variable in the multiple regression equation. The first method is

to redefine the variable into distinct subgroups and include it as a categorical

variable using indicator variables, as described in Section 11.3, rather than as a

numerical variable. For example, age could be divided into five-year age-groups.

The relationship with age would then be based on a comparison of the means of the

outcome variable in each age-group (assuming thatmean outcome is approximately

constant in each age group) but would make no other assumption about the form

of the relationship of mean outcome with age. At the initial stages of an analysis, it

is often useful to include an exposure variable in both forms, as a numerical

variable and grouped as a categorical variable. The difference between the two

associated sums of squares can then be used to assess whether there is an important

non-linear component to the relationship. For most purposes, a subdivision into 3–

5 groups, depending on the sample size, is adequate to investigate non-linearity of

the relationship. See Section 29.6 for more detail.

A second possibility is to find a suitable transformation for the exposure

variable. For example, in a study of women attending an antenatal clinic con-

ducted to identify variables associated with the birth weight of their baby, it was

found that birth weight was linearly related to the logarithm of family income

rather than to family income itself. The use of transformations is discussed more

fully in Chapter 13. The third possibility is to find an algebraic description of the

relationship. For example, it may be quadratic, in which case both the variable (x)

and its square (x2) would be included in the model. This is described in more detail

in Section 29.6.
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11.6 RELATIONSHIP BETWEEN MULTIPLE REGRESSION AND

ANALYSIS OF VARIANCE

Analysis of variance is simply a special case of multiple regression. The two

approaches give identical results. A regression model test of the null hypothesis

that there is no difference in mean response between k exposure groups uses an F

test with (k� 1, n� k) degrees of freedom. This is identical to the F statistic

derived using a one-way analysis of variance (see Chapter 9). Similarly, inclusion

of two categorical variables (using indicator variables) in a multiple regression

model will give identical results to a two-way analysis of variance. Analysis of

variance can also be extended to examine differences between groups adjusted for

the effects of numerical exposure variables, as described for multiple regression

above, when the difference in FEV1 between males and females was adjusted for

age and height (Table 11.6). In this context it is sometimes called analysis of

covariance (Armitage and Berry 2002), and the numerical exposure variables are

called covariates.

11.7 MULTIVARIATE ANALYSIS

Multiple regression, andother regressionmodels (seeChapters 19–21, 24 and27) are

often referred to as multivariate methods, since they investigate how an outcome

variable is related tomore than one exposure variable. Abetter term for suchmodels

is to call them multivariable regression models. In the strict statistical sense, multi-

variate analysismeans the studyof howseveral outcomevariables vary together. The

three methods most relevant to medical research will briefly be described. For more

detail see Armitage and Berry (2002) and Everitt and Dunn (2001).

Principal component analysis is a method used to find a few combinations of

variables, called components, that adequately explain the overall observed vari-

ation, and thus to reduce the complexity of the data. Factor analysis is a related

method commonly used in the analysis of psychological tests. It seeks to explain

how the responses to the various test items may be influenced by a number of

underlying factors, such as emotion, rational thinking, etc. Finally, cluster analysis

is a method that examines a collection of variables to see if individuals can be

formed into any natural system of groups. Techniques used include those of

numerical taxonomy, principal components and correspondence analysis.
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CHAPTER 12

Goodness of fit and regression
diagnostics

12.1 Introduction Plots of residuals against fitted values

12.2 Goodness of fit to a normal Influence

distribution What to do if the regression

Inverse normal plots assumptions appear to be violated

Skewness and kurtosis 12.4 Chi-squared goodness of fit test

Shapiro–Wilk test Calculation of expected numbers

12.3 Regression diagnostics Validity

Examining residuals

12.1 INTRODUCTION

In this chapter we discuss how to assess whether the distribution of an observed set

of data agrees with that expected under a particular theoretical model. We start by

considering how to assess whether the distribution of a variable conforms with the

normal distribution, as assumed in the statistical methods described in this part of

the book. We then consider how to check the assumptions made in fitting linear

and multiple regression models. The final part of the chapter is more general. It

describes the chi-squared goodness of fit test for testing whether an observed

frequency distribution differs from the distribution predicted by a theoretical

model.

12.2 GOODNESS OF FIT TO A NORMAL DISTRIBUTION

The assumption of normality underlies the linear regression, multiple regression

and analysis of variance methods introduced earlier in this section. It can be

checked by comparing the shape of the observed frequency distribution with

that of the normal distribution. Formal significance testing is rarely necessary,

as in general we are only interested in detecting marked departures from

normality; the methods are robust against moderate departures so that param-

eter estimates, confidence intervals and hypothesis tests remain valid. If the

sample size is large, visual assessment of the frequency distribution is often

adequate.

The main problem with departures from normality is that the standard errors of

parameter estimates may be wrong. In Chapter 13 we describe how to transform

variables to make them more normally distributed, and in Chapter 30 we see how

to check for this problem by deriving alternative standard errors (for example

using bootstrapping or robust standard errors).



Fig. 12.1 Frequency distributions with inverse normal plots to assess the normality of the data. (a) and (c)

Haemoglobin levels of 70 women (normally distributed, inverse normal plot linear). (b) and (d) Triceps

skinfold measurements of 440 men (positively skewed, inverse normal plot non-linear).

Example 12.1

In Table 3.2 we presented measurements of haemoglobin (g/100ml) in 70 women.

The distribution of these measurements will be compared with that of triceps

skinfold measurements made in 440 men. Histograms of these variables, together

with the corresponding normal distribution curves with the same means and

standard deviations, are shown in Figure 12.1(a) and (b). For haemoglobin the

shape seems reasonably similar to that of the normal distribution, while that for

triceps skinfold is clearly positively (right-) skewed.

Inverse normal plots

The precise shape of the histogram depends on the choice of groups, and it can be

difficult to tell whether or not the bars at the extreme of the distribution are

consistent with the normal distribution. A graphical technique that avoids these

problems is the inverse normal plot. This is a scatter plot comparing the values of

the observed distribution with the corresponding points of the normal distribu-

tion. The inverse normal plot is linear if the data are normally distributed and

curved if they are not. The plot is constructed as follows:

1 The measurements are arranged in order, and the corresponding quantiles of

the distribution are calculated as 1=(nþ 1), 2=(nþ 1), . . . n=(nþ 1). Table

12.1 illustrates the calculations for the haemoglobin data. It shows the
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Table 12.1 Calculations of points for inverse normal plot of 70 haemoglobin measurements.

Observation

no.

Haemoglobin

(g/100ml) Quantile Probit

Inverse normal

¼ 11:98þ probit� 1:41

1 8.8 1/71 ¼ 1.4% �2.195 8.88

34 11.8 34/71 ¼ 49.3% �0.018 11.96

35 11.9 35/71 ¼ 50.7% 0.018 12.01

70 15.1 70/71 ¼ 98.6% 2.195 15.09

minimum (1st), median (34th and 35th) and maximum (70th) haemoglobin

measurements, together with their corresponding quantiles.

2 For each measurement, the probit (the value of the standard normal distribution

corresponding to its quantile) is derived using Table A6 in the Appendix or

(more commonly) using a computer. For example, the value of the standard

normal distribution corresponding to a quantile of 1.4% is�2.195, since 1.4% of

the standard normal distribution lies below this value.

3 The corresponding points of the normal distribution with the same standard

deviation and mean as the data are found by multiplying the probit by

the standard deviation, then adding the mean. This is called the inverse

normal:

Inverse normal ¼ meanþ probit� s:d:

For the haemoglobin data, the mean is 11.98, and the standard deviation is

1.41 g/100ml.

4 Finally, the original values are plotted against their corresponding inverse

normal points. Figure 12.1(c) shows the haemoglobin levels plotted against

their corresponding inverse normal points. If haemoglobin levels are normally

distributed then they should lie along the line of identity (the line where y ¼ x)

shown on the plot. The plot is indeed linear, confirming the visual impression

from the histogram that the haemoglobin data are normally distributed.

In contrast, Figure 12.1(d) shows the non-linear inverse normal plot corres-

ponding to the positively skewed distribution of triceps skinfold measurements

shown in Figure 12.1(b). The line is clearly curved, and illustrates the deficit of

observations on the left and corresponding excess on the right.

Skewness and kurtosis

We now introduce two measures that can be used to assess departures from

normality. In Chapter 4 we saw that the variance is defined as the average of the

squared differences between each observation and the mean:
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Variance s2 ¼ �(x� �xx)2

(n� 1)

Because the variance is based on the sum of the squared (power 2) differences

between each observation and the sample mean, it is sometimes called the

second moment, m2 ¼ s2. The third and fourth moments of a distribution are

defined in a similar way, based on the third and fourth powers of the differ-

ences:

Third moment m3 ¼ �(x� �xx)3

n
and Fourth moment m4 ¼ �(x� �xx)4

n

The coefficients of skewness and kurtosis of a distribution are defined as:

skewness ¼ m3m2
�3

2 and kurtosis ¼ m4m2
�2

For any symmetrical distribution, the coefficient of skewness is zero: positive

values of the coefficient of skewness correspond to a right-skewed distribution

while negative values correspond to a left-skewed distribution.

The coefficient of kurtosis measures how spread out are the values of a

distribution. For the normal distribution the coefficient of kurtosis is 3. If

the distribution is more spread out than the normal distribution then the

coefficient of kurtosis will be greater than 3. For example, Figure 6.3 shows

that compared to the normal distribution, the t distribution with 5 degrees of

freedom is more spread out. The kurtosis of the t distribution with 5 d.f. is

approximately 7.6.

Example 12.1 (continued)

For the 70 measurements of haemoglobin (g/100ml) the coefficients of skewness

and kurtosis were 0.170 and 2.51 respectively. This distribution shows little

evidence of asymmetry, since the coefficient of skewness is close to zero. The

coefficient of kurtosis shows that the spread of the observations was slightly less

than would have been expected under the normal distribution. For the 440

measurements of triceps skinfold (mm) the coefficients of skewness and kurtosis

were 1.15 and 4.68 respectively. This distribution is right-skewed and more spread

out than the normal distribution.
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Shapiro–Wilk test

We stated at the start of this section that although the assumption of normality

underlies most of the statistical methods presented in this part of the book, formal

tests of this assumption are rarely necessary. However, the assumption of a normal

distribution may be of great importance if we wish to predict ranges within which a

given proportion of the population should lie. For example, growth charts for

babies and infants include lines within which it is expected that 90%, 99% and

even 99.9% of the population will lie. Departures from normality may be very

important if we wish to use the data to construct such charts.

The Shapiro–Wilk test (Shapiro and Wilk 1965, Royston 1993) is a general

test of the assumption of normality, based on comparing the ordered sample

values with those which would be expected if the distribution was normal (as

done in the inverse normal plots introduced earlier). The mathematics of the

test are a little complicated, but it is available in many statistical computer

packages.

Example 12.1 (continued)

The P-values from the Shapiro–Wilk test were 0.612 for the haemoglobin meas-

urements and < 0.0001 for the triceps measurements. As suggested by the quantile

plots and coefficients of skewness and kurtosis, there is strong evidence against the

assumption of normality for the triceps measurements, but no evidence against

this assumption for the haemoglobin measurements.

12.3 REGRESSION DIAGNOSTICS

Examining residuals

In Chapters 10 and 11 we saw that linear and multiple regression models are fitted

by minimizing the residual sum of squares:

SSresidual ¼ �[ y� (�0 þ �1x1 þ �2x2 þ . . . )]2

The differences [ y� (�0 þ �1x1 þ �2x2 þ . . . )] between the observed outcome

values and those predicted by the regression model (the dashed vertical lines in

Figures 10.3 and 10.5) are called the residuals. As explained in Chapter 10, it is

assumed that the residuals are normally distributed. This assumption can be

examined using the methods introduced in the first part of this chapter.

Example 12.2

Figure 12.2(a) shows a histogram of the residuals from the multiple linear regres-

sion of FEV1 on age, height and sex from the data on lung function in schoolchil-

dren from Peru which were introduced in Chapter 11, while Figure 12.2(b) shows

the corresponding inverse normal plot. The distribution appears reasonably close

12.3 Regression diagnostics 111



80

60

40

20

0

1

0.5

0

–0.5

–1
–1 –0.5 0 0.5 1

Residuals

–1 –0.5 0 0.5 1

Inverse normal

R
es

id
u

al
s

Fr
eq

u
en

cy

(a) (b)

Fig. 12.2 (a) Histogram and (b) inverse normal plot of the residuals from the multiple linear regression of

FEV1 on age, height and sex.

to normal except at the extreme left. The coefficients of skewness and kurtosis are

�0.52 and 4.68 respectively, confirming this impression.

The P-value from the Shapiro–Wilk test is less than 0.0001 so there is clear

evidence that the distribution is not normal. However, Figure 12.2 shows that the

departure from normality is fairly modest and is unlikely to undermine the results

of the analysis. For fairly large datasets such as this one the Shapiro–Wilk test is

extremely sensitive to departures from normality, while the central limit theorem

(see Chapter 5) means that the parameter estimates are likely to be normally

distributed even though the residuals are not.

A particular use of the residual plot is to detect unusual observations (outliers):

those for which the observed value of the outcome is a long way from that

predicted by the model. For example, we might check the data corresponding to

the extreme left of the distribution to make sure that these observations have not

resulted from coding errors in either the outcome or exposure variables. In

general, however, outliers should not be omitted simply because they are at the

extreme of the distribution. Unless we know they have resulted from errors they

should be included in our analyses. We discuss how to identify observations with a

substantial influence on the regression line later in this section.

Plots of residuals against fitted values

Having estimated the parameters of a regression model we can calculate the fitted

values (also called predicted values) for each observation in the data. For example,

the fitted values for the regression of FEV1 on age, height and gender (see Table

11.6) are calculated using the regression equation:

FEV1 ¼ �2:360þ 0:0946� ageþ 0:0246� heightþ 0:1213�male

where the indicator variable male takes the value 0 in girls and 1 in boys. These

values can be calculated for every child in the dataset. If the model fits the data well
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Fig. 12.3 Scatter plot of residuals against fitted values, for the regression of FEV1 on age, height and

gender.

then there should be no association between the fitted values and the residuals.

This assumption can be examined in a scatter plot, as shown in Figure 12.3.

There is no strong pattern in Figure 12.3, but it does seem that the variability in

the residuals increases a little with increasing fitted values, and that there may be a

U-shaped relationship between the residuals and the fitted values. We might

investigate this further by examining models which allow for quadratic or other

non-linear associations between FEV1 and age or height (see Section 29.6).

A common problem is that the variability (spread) of the residuals increases

with increasing fitted values. This may indicate the need for a log transformation of

the outcome variable (see Section 13.2).

Influence

A final consideration is whether individual observations have a large influence on

the estimated regression line. In other words, would the omission of a particular

observation make a large difference to the regression?

Example 12.3

Figure 12.4 is a scatter plot of a hypothetical outcome variable y against an

exposure x. There appears to be clear evidence of an association between x and

y: the slope of the regression line is 0.76, 95% CI ¼ 0.32 to 1.19, P ¼ 0:004.

However, inspection of the scatter plot leads to the suspicion that the association
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Fig. 12.4 Scatter plot of a hypothetical outcome variable y against an exposure x, in which there is a highly

influential observation at the top right of the graph.

is mainly because of the point at the top right of the graph. The point is close to

the regression line, so examining the residuals will not reveal a problem.

To assess the dependence of the regression on individual observations we calcu-

late influence statistics. The most commonly used measure of influence isCook’s D.

These statistics are listed, together with the residuals, in Table 12.2. It can be seen

that observation 10 (the point on the top right of the graph) has much greater

influence than the other observations. It would be appropriate to check whether

this point arose because of an error in coding or data entry, or if there is some

Table 12.2 Data plotted in Figure 12.4, together with the influence statistic and

residual for each observation.

Observation y x Influence (Cook’s D) Residual

1 2.94 3.39 0.01 �0.43

2 3.32 3.83 0.01 �0.38

3 1.44 1.63 0.04 �0.61

4 2.05 3.80 0.15 �1.63

5 2.90 1.94 0.03 0.63

6 2.38 1.30 0.05 0.59

7 2.67 3.07 0.01 �0.45

8 3.85 1.53 0.39 1.89

9 2.60 3.38 0.03 �0.76

10 8.00 8.00 8.25 1.15

114 Chapter 12: Goodness of fit and regression diagnostics



clear explanation for it being different from the rest of the population. As

discussed earlier, observations should not be omitted from the regression purely

because they have large residuals or have a large influence on the results. How-

ever, we might check whether similar conclusions are reached if an observation is

omitted: and perhaps present results both including and excluding a highly influ-

ential observation.

Another useful plot is a scatter plot of influence against residuals (or squared

residual) for each observation. Observations with large influence, large residuals

or both may lead to further checks on the data, or attempts to fit different

regression models. Standardized residuals, which are the residual divided by its

standard error, are also of use in checking the assumptions made in regression

models. These are discussed in more detail in Draper and Smith (1998) and

Weisberg (1985).

What to do if the regression assumptions appear to be violated

The more checks we make, the more likely we are to find possible problems with

our regression model. Evidence that assumptions are violated in one of the ways

discussed here is not a reason to reject the whole analysis. It is very important to

remember that provided that the sample size is reasonably large the results may

well be robust to violation of assumptions. However, possible actions that might

be taken include:

� checks for mistakes in data coding or data entry which have led to outlying or

influential observations;

� exploration of non-linear relationships between the outcome and exposure

variables;

� sensitivity analyses which examine whether conclusions change if influential

observations are omitted;

� use of transformations as described in the next chapter;

� use of methods such as bootstrapping to derive confidence intervals independ-

ently of the assumptions made in the model about the distribution of the

outcome variable. These are discussed in Chapter 30.

12.4 CHI-SQUARED GOODNESS OF FIT TEST

It is sometimes useful to test whether an observed frequency distribution differs

significantly from a postulated theoretical one. This may be done by comparing the

observed and expected frequencies using a chi-squared test. The form of the test is:

�2 ¼ �
(O� E)2

E
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This is exactly the same as that for contingency tables, which is introduced in

Chapter 17. Like the t distribution, the shape of the chi-squared distribution

depends on the degrees of freedom. Here, these equal the number of groups in

the frequency distribution minus 1, minus the number of parameters estimated

from the data. In fitting a normal distribution, two parameters are needed, its

mean, m, and its standard deviation, s. In some cases no parameters are estimated

from the data, either because the theoretical model requires no parameters, as in

Example 12.4 below, or because the parameters are specified as part of the model.

d:f : ¼
number of groups

in frequency

distribution

�
number of

parameters

estimated

� 1

Calculation of expected numbers

The first step in carrying out a chi-squared goodness of fit test is to estimate the

parameters needed for the theoretical distribution from the data. The next step is

to calculate the expected numbers in each category of the frequency distribution,

by multiplying the total frequency by the probability that an individual value falls

within the category.

Expected

frequency
¼ total

frequency
� probability individual falls

within category

For discrete data, the probability is calculated by a straightforward application of

the distributional formula. This is illustrated later in the book for the Poisson

distribution (see Example 28.3).

Validity

The chi-squared goodness of fit test should not be used if more than a small

proportion of the expected frequencies are less than 5 or if any are less than 2. This

can be avoided by combining adjacent groups in the distribution.

Example 12.4

Table 12.3 examines the distribution of the final digit of the weights recorded in a

survey, as a check on their accuracy. Ninety-six adults were weighed and their

weights recorded to the nearest tenth of a kilogram. If there were no biases in

recording, such as a tendency to record only whole or half kilograms, one would

expect an equal number of 0s, 1s, 2s . . . and 9s for the final digit, that is 9.6 of each.
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Table 12.3 Check on the accuracy in a survey of recording weight.

Final digit of weight Observed frequency Expected frequency

(O� E)2

E

0 13 9.6 1.20

1 8 9.6 0.27

2 10 9.6 0.02

3 9 9.6 0.04

4 10 9.6 0.02

5 14 9.6 2.02

6 5 9.6 2.20

7 12 9.6 0.60

8 11 9.6 0.20

9 4 9.6 3.27

Total 96 96.0 9.84

The agreement of the observed distribution with this can be tested using the chi-

squared goodness of fit test. There are ten frequencies and no parameters have

been estimated.

�2 ¼ �
(O� E)2

E
¼ 9:84, d:f : ¼ 10� 0� 1 ¼ 9, P ¼ 0:36

The observed frequencies therefore agree well with the theoretical ones, suggesting

no recording bias.
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CHAPTER 13

Transformations

13.1 Introduction Non-linear relationship

13.2 Logarithmic transformation Analysis of titres

Positively skewed distributions 13.3 Choice of transformation

Unequal standard deviations 13.4 z-scores and reference curves

Geometric mean and confidence interval

13.1 INTRODUCTION

The assumption of normality will not always be satisfied by a particular set of data.

For example, a distribution may be positively skewed and this will often mean that

the standard deviations in different groups will be very different. Or a relationship

between the outcome and exposure variable(s) may not be linear, violating the

assumptions of the linear andmultiple regressionmethods introduced in this part of

the book. We will now describe how such problems can often be overcome simply

by transforming the data to a different scale of measurement. By far the most

common choice is the logarithmic transformation, which will be described in detail.

A summary of the use of other transformations will then be presented.

Finally, in the last section of the chapter, we describe the use of z-scores to

compare data against reference curves in order to improve their interpretability. In

particular, we explain why this is the standard approach for the analysis of

anthropometric data.

13.2 LOGARITHMIC TRANSFORMATION

When a logarithmic transformation is applied to a variable, each individual value

is replaced by its logarithm.

u ¼ log x

where x is the original value and u the transformed value. The meaning of

logarithms is easiest to understand in reverse. We will start by explaining this

for logarithms to the base 10.

If x ¼ 10u, then by definition ‘u is the logarithm (base 10) of x’



Fig. 13.1 The logarithmic transformation, using base 10 (lower line) and base e (upper line).

Thus, for example, since 100 ¼ 102, 2 ¼ log10(100), and since 0:1 ¼ 10�1,

�1 ¼ log10(0.1). Different values of x and log10(x) are shown in the lower part

of Figure 13.1. The logarithmic transformation has the effect of stretching out the

lower part of the original scale, and compressing the upper part. For example, on

a logarithmic scale, the distance between 1 and 10 is the same as that between 10

and 100 and as that between 100 and 1000; they are all ten-fold differences.

Although logarithms to base 10 are most easily understood, statistical packages

generally use logarithms to base e, where e is the ‘natural constant’:

e ¼ 2:7182818

The function ex is called the exponential function and is often written as exp(x).

If x ¼ eu, then by definition ‘u is the logarithm (base e) of x’

Logarithms to base e are also known as natural logarithms. For example,

7:389 ¼ e2 so 2 ¼ loge(7.389), 20:086 ¼ e3 so 3 ¼ loge(20.086), and 0:3679 ¼ e�1

so�1 ¼ loge(0.3679). Different values of x and loge(x) are shown in the upper part

of Figure 13.1. Note that logarithms to base 10 are simply logarithms to base e

multiplied by a constant amount:

log10(x) ¼ log10(e)� loge(x) ¼ 0:4343� loge(x)

Throughout this book, we will use logarithms to base e (natural logarithms).

We will omit the subscript, and refer simply to log(x). The notation ln(x) is

also used to refer to natural logarithms. For more on the laws of logarithms

see Section 16.5, where we show how logarithmic transformations are used

to derive confidence intervals for ratio measures such as risk ratios and odds

ratios.
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Logarithmic transformations can only be usedwith positive values, since logarithms

of negative numbers do not exist, and the logarithm of zero is minus infinity. There

are sometimes instances, however, when a logarithmic transformation is indicated,

as in the case of parasite counts, but the data contain some zeros as well as positive

numbers. This problem can be solved by adding a constant to each value before

transforming, although it must be remembered that the choice of the constant does

affect the results obtained. One is a common choice. Note also that 1 must then also

be subtracted after the final results have been converted back to the original scale.

Positively skewed distributions

Example 13.1

The logarithmic transformation will tend to normalize positively skewed distribu-

tions, as illustrated by Figure 13.2, which is the result of applying a logarithmic

transformation to the triceps skinfold data presented in Figure 12.1(b). The

histogram is now symmetrical and the inverse normal plot linear, showing that

the transformation has removed the skewness and normalized the data. Triceps

skinfold is said to have a lognormal distribution.

Fig. 13.2 Lognormal distribution of triceps skinfold measurements of 440 men. Compare with Figure 12.1

(b) and (d).

Unequal standard deviations

Example 13.2

The mechanics of using a logarithmic transformation will be described by con-

sidering the data of Table 13.1(a), which show a higher mean urinary b-thrombo-

globulin (b-TG) excretion in 12 diabetic patients than in 12 normal subjects. These

means cannot be compared using a t test since the standard deviations of the two

groups are very different. The right-hand columns of the table show the observa-

tions after a logarithmic transformation. For example, loge(4:1) ¼ 1:41.

The transformation has had the effects both of equalizing the standard devi-

ations (they are 0.595 and 0.637 on the logarithmic scale) and of removing

skewness in each group (see Figure 13.3). The t test may now be used to examine
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Table 13.1 Comparison of urinary b-thromboglobulin (b-TG) excretion in 12 normal subjects and in 12 diabetic

patients. Adapted from results by van Oost, B.A., Veldhuyzen, B., Timmermans, A.P.M. & Sixma, J.J. (1983)

Increased urinary b-thromboglobulin excretion in diabetes assayed with a modified RIA, Kit-Technique. Thrombosis

and Haemostasis (Stuttgart) 49 (1): 18–20, with permission.

(a) Original and logged data.

b-TG Logb-TG

(ng/day/100ml creatinine) (log ng/day/100ml creatinine)

Normals Diabetics Normals Diabetics

4.1 11.5 1.41 2.44

6.3 12.1 1.84 2.49

7.8 16.1 2.05 2.78

8.5 17.8 2.14 2.88

8.9 24.0 2.19 3.18

10.4 28.8 2.34 3.36

11.5 33.9 2.44 3.52

12.0 40.7 2.48 3.71

13.8 51.3 2.62 3.94

17.6 56.2 2.87 4.03

24.3 61.7 3.19 4.12

37.2 69.2 3.62 4.24

Mean 13.53 35.28 2.433 3.391

s.d. 9.194 20.27 0.595 0.637

n 12 12 12 12

(b) Calculation of t test on logged data.

s ¼ [(11� 0:5952 þ 11� 0:6372)=22] ¼ 0:616
p

t ¼ 2:433� 3:391

0:616 1=12
p þ 1=12

¼ �3:81, d:f: ¼ 22, P ¼ 0:001

(c) Results reported in original scale.

Geometric mean b-TG 95% CI

Normals exp(2.433) ¼ 11.40 7.81 to 16.63

Diabetics exp(3.391) ¼ 29.68 19.81 to 44.49

differences in mean log b-TG between diabetic patients and normal subjects. The

details of the calculations are presented in Table 13.1(b).

Geometric mean and confidence interval

Example 13.2 (continued)

When using a transformation, all analyses are carried out on the transformed

values, u. It is important to note that this includes the calculation of any
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Fig. 13.3 b-Thromboglobulin data (Table 13.1) drawn using (a) a linear scale and (b) a logarithmic scale.

Note that the logarithmic scale has been labelled in the original units.

confidence intervals. For example, the mean log b-TG of the normals was

2.433 log ng/day/100ml. Its 95% confidence interval is:

95% CI ¼ 2:433� 2:20� 0:595= 12
p

to 2:433� 2:20� 0:595= 12
p

¼ 2:055 to 2:811 ng=day=100 ml

Note that 2.20 is the 5% point of the t distribution with 11 degrees of freedom.

When reporting the final results, however, it is sometimes clearer to transform

them back into the original units by taking antilogs (also known as exponentiat-

ing), as done in Table 13.1(c). The antilog of the mean of the transformed values is

called the geometric mean.

Geometric mean (GM) ¼ antilog(�uu) ¼ exp(�uu) ¼ e�uu

For example, the geometric mean b-GT of the normal subjects is:

Antilog(2:433) ¼ e2:433 ¼ 11:39 ng=day=100 ml

The geometric mean is always smaller than the corresponding arithmetic mean

(unless all the observations have the same value, in which case the two measures

are equal). Unlike the arithmetic mean, it is not overly influenced by the very large
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values in a skewed distribution, and so gives a better representation of the average

in this situation.

Its confidence interval is calculated by exponentiating the confidence limits

calculated on the log scale. For the normal subjects, the 95% confidence interval

for the geometric mean therefore equals:

95% CI ¼ exp(2:055) to exp(2:811) ¼ 7:81 to 16:63 ng=day=100 ml

Note that the confidence interval is not symmetric about the geometric mean.

Instead the ratio of the upper limit to the geometric mean, 16:63=11:39 ¼ 1:46, is

the same as the ratio of the geometric mean to the lower limit, 11:39=7:81 ¼ 1:46.

This reflects the fact that a standard deviation on a log scale corresponds to a

multiplicative rather than an additive error on the original scale. For the same

reason, the antilog of the standard deviation is not readily interpretable, and is

therefore not commonly used.

Non-linear relationship

Example 13.3

Figure 13.4(a) shows how the frequency of 6-thioguanine (6TG) resistant lympho-

cytes increases with age. The relationship curves upwards and there is greater scatter

of the points at older ages. Figure 13.4(b) shows how using a log transformation for

the frequency has both linearized the relationship and stabilized the variation.

In this example, the relationship curved upwards and the y variable (frequency)

was transformed. The equivalent procedure for a relationship that curves down-

wards is to take the logarithm of the x value.

Fig. 13.4 Relationship between frequency of 6TG-resistant lymphocytes and age for 37 individuals drawn

using (a) a linear scale, and (b) a logarithmic scale for frequency. Reprinted from Morley et al.Mechanisms of

Ageing and Development 19: 21–6, copyright (1982), with permission from Elsevier Science.
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Analysis of titres

Many serological tests, such as the haemagglutination test for rubella antibody,

are based on a series of doubling dilutions, and the strength of the most dilute

solution that provides a reaction is recorded. The results are called titres, and are

expressed in terms of the strengths of the dilutions: 1/2, 1/4, 1/8, 1/16, 1/32, etc. For

convenience, we will use the terminology more loosely, and refer instead to the

reciprocals of these numbers, namely 2, 4, 8, 16, 32, etc., as titres. Titres tend to be

positively skewed, and are therefore best analysed using a logarithmic transform-

ation. This is accomplished most easily by replacing the titres with their corres-

ponding dilution numbers. Thus titre 2 is replaced by dilution number 1, titre 4 by

2, titre 8 by 3, titre 16 by 4, titre 32 by 5, and so on. This is equivalent to taking

logarithms to the base 2 since, for example, 8 ¼ 23 and 16 ¼ 24.

u ¼ dilution number ¼ log2 titre

All analyses are carried out using the dilution numbers. The results are then

transformed back into the original units by calculating 2 to the corresponding

power.

Example 13.4

Table 13.2 shows the measles antibody levels of ten children one month

after vaccination for measles. The results are expressed as titres with their cor-

responding dilution numbers. The mean dilution number is �uu¼ 4:4. We antilog

this by calculating 24:4 ¼ 21:1. The result is the geometric mean titre and

equals 21.1.

Geometric mean titre ¼ 2mean dilution number

Table 13.2 Measles antibody levels one month after vaccination.

Child no. Antibody titre Dilution no.

1 8 3

2 16 4

3 16 4

4 32 5

5 8 3

6 128 7

7 16 4

8 32 5

9 32 5

10 16 4
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13.3 CHOICE OF TRANSFORMATION

As previously mentioned, the logarithmic transformation is by far the most fre-

quently applied. It is appropriate for removing positive skewness and is used on a

great variety of variables including incubation periods, parasite counts, titres,

dose levels, concentrations of substances, and ratios. There are, however, alter-

native transformations for skewed data as summarized in Table 13.3. For

example, the reciprocal transformation is stronger than the logarithmic, and

would be appropriate if the distribution were considerably more positively

skewed than lognormal, while the square root transformation is weaker. Negative

skewness, on the other hand, can be removed by using a power transformation, such

as a square or a cubic transformation, the strength increasing with the order of the

power.

Table 13.3 Summary of different choices of transformations. Those removing positive skewness are called

group A transformations, and those removing negative skewness group B.

Situation Transformation

Positively skewed distribution (group A)

Lognormal Logarithmic (u ¼ log x)

More skewed than lognormal Reciprocal (u ¼ 1=x)

Less skewed than lognormal Square root (u ¼ x
p

)

Negatively skewed distribution (group B)

Moderately skewed Square (u ¼ x2)

More skewed Cubic (u ¼ x3)

Unequal variation

s.d. proportional to mean Logarithmic (u ¼ log x)

s.d. proportional to mean2 Reciprocal (u ¼ 1=x)

s.d. proportional to mean
p

Square root (u ¼ x
p

)

Non-linear relationship Transform: y variable and/or x variable

Group A ( y ) Group B (x)

Group B ( y ) Group A ( x )

Group A ( y ) Group A ( x )

Group B ( y ) Group B ( x )
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There is a similar choice of transformation for making standard deviations

more similar, depending on how much the size of the standard error increases

with increasing mean. (It rarely decreases.) Thus, the logarithmic transformation

is appropriate if the standard deviation increases approximately in proportion to

the mean, while the reciprocal is appropriate if the increase is steeper, and the

square root if it is less steep.

Table 13.3 also summarizes the different sorts of simple non-linear relationships

that might occur. The choice of transformation depends on the shape of the curve

and whether the y variable or the x variable is to be transformed.

13.4 z -SCORES AND REFERENCE CURVES

In this section we consider a different type of transformation; namely the use of z-

scores to compare data against reference curves in order to improve their interpret-

ability. Their most common use is for the analysis of anthropometric data.

For example, an individual’s weight and height cannot be interpreted unless they

are related to the individual’s age and sex. More specifically they need to be

compared to the distribution of weights (or heights) for individuals of the same

age and sex in an appropriate reference population, such as the NCHS/WHO*

growth reference data.

Recall from Section 5.4 that a z-score expresses how far a value is from the

population mean, and expresses this difference in terms of the number of standard

deviations by which it differs. In the context here, a z-score is used to compare a

particular value with the mean and standard deviation for the corresponding

reference data:

z-score ¼ x� �

�

where x is the observed value, � is the mean reference valuey and � the standard

deviation of the corresponding reference data. A z-score is therefore a value from

the standard normal distribution.

*NCHS/WHO growth reference data for height and weight of US children collected by the National

Center for Health Statistics and recommended by the World Health Organization for international use.

yThe NCHS/WHO reference curves were developed by fitting two separate half normal distributions

to the data for each group. Both distributions were centred on the median value for that age. One

distribution was fitted so that its upper half matched the spread of values above the median, and the

other so that its lower half matched the spread of values below the median. The upper half of the first

curve was then joined together at the median with the lower half of the second curve. This means that

the z-score calculations use the median value for that age, and the standard deviation corresponding to

either the upper or the lower half of the distribution for that age, depending on whether the observed

value is respectively above or below the median.
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The analysis can then be carried out with the calculated z-scores as the

outcome variable. Such a z-score value will have the same interpretation regard-

less of the age or sex of the individual. Thus, for example, individuals with weight-

for-age z-scores of �2 or below compare approximately with the bottom 2% of

the reference population, since 2.3% of the standard normal curve lies below

�2 (see Appendix A1). This interpretation is true whatever the ages of the

individuals.

Example 13.5

An example of an analysis based on z-scores is given in Figure 13.5, which

shows the mean weight-for-age z-scores (based on the NCHS/WHO growth

curves) during the first 5 years of life for children in the Africa, Asia and

Latin America/Caribbean regions. A mean z-score of zero would imply that the

average weight of children in the region is exactly comparable to the average

weight of American children of the same age in the NCHS/WHO reference

population. A mean z-score above zero would imply that children in the region

were on average heavier than their reference counterparts, while a mean

z-score below zero implies that on average they are lighter. The curves in

Figure 13.5 illustrate how in all three regions there is rapid growth faltering that

starts between 3 and 6months of age, and that by one year of age in all

three regions the average child is very considerably underweight compared to
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Fig. 13.5 Comparison of weight for age by region for children aged less than 5 years. Reprinted with

permission from Shrimpton R, Victora CG, de Onis M, Lima RC, Bloessner M, Clugston G, Worldwide timing

of growth faltering. Pediatrics 2001; 107: E75
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their counterparts in the reference population. It further shows that the level of

disadvantage is most pronounced in Asia and least so in Latin America/Carib-

bean, with Africa in between.

See the report by the WHO Expert Committee on Physical Status (1995) for a

detailed guide to the analysis and interpretation of anthropometric data.

AQ1
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