
PART C

ANALYSIS OF BINARY OUTCOMES

In this part of the book we describe methods that are used when the outcome is a

binary variable; a variable where for each individual in the sample the value is one of

two alternatives. For example, at the end of the study a subject may have experi-

enced the particular disease (or event) of interest, or remained healthy. Other

examples are that a patient dies or survives, or that a specimen is positive or negative.

Of particular interest is the proportion ( p) of individuals in our sample who

experience the event of interest. We use this sample proportion to estimate the

probability or risk of the event in the population as a whole. For example, we

might be interested in:

� the risk of death in the five years following diagnosis of prostate cancer;

� the risk of vertical transmission of HIV during pregnancy or childbirth in HIV-

infected mothers given antiretroviral therapy during pregnancy.

Probabilities, risks and the related concept of the odds of an event are described

in Chapter 14, together with the rules for calculating and manipulating probabil-

ities. This lays the foundations for the rest of this part of the book. In Chapter 15,

we derive the sampling distribution of a proportion, which is known as the

binomial distribution, and show how it can be approximated by the normal

distribution to give a confidence interval and z-test for a single proportion. In

Chapter 16 we describe different ways to compare the occurrence of a binary

outcome in two exposure groups; by examining the difference between the pro-

portions, the ratio of the risks, or the ratio of the odds. In Chapter 17, we cover the

use of chi-squared tests to examine associations between categorical exposure and

outcome variables.

Confounding, which was briefly introduced in Chapter 11, is explained in detail

in Chapter 18. It arises when there are differences between the exposure groups, in

addition to the exposure itself, which are related to the outcome variable. We

show how Mantel–Haenszel methods may be used to control for confounding

using stratification; failure to do this would bias the interpretation of the compari-

son of the exposure groups.

In Chapter 19 we introduce logistic regression for the analysis of binary outcome

variables, and describe how it can be used to compare two or more exposure

groups. We extend this in Chapter 20, by explaining the control of confounding

using logistic regression, and briefly describing other regression models for binary

and categorical outcome variables. Finally, Chapter 21 introduces the special

methods needed for matched data, in particular matched case–control studies.
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CHAPTER 14

Probability, risk and odds (of disease)

14.1 Introduction Multiplicative rule

14.2 Defining probability Additive rule

Frequentist definition: probability 14.4 Bayes’ rule

and risk 14.5 The independence assumption

Subjective (or Bayesian) definition 14.6 Probabilities and odds

14.3 Probability calculations

14.1 INTRODUCTION

Probability has already been used several times in preceding chapters, its meaning

being clear from the context. We now need to introduce it more formally and to

give rules for manipulating it, before we can introduce methods for the analysis of

binary outcome variables. We need to do this for two reasons:

1 There is a close link between the proportion of individuals in the sample who

experience the event of interest defined by the binary outcome variable, and the

definition of the probability or risk that an individual in the population as a

whole will experience the outcome event (see Section 14.2).

2 We need to be able to carry out calculations involving probabilities in order to

be able to derive the binomial distribution that describes the sampling distribu-

tion of a proportion. This is done in the next chapter.

14.2 DEFINING PROBABILITY

Frequentist definition: probability and risk

Although probability is a concept used in everyday life, and one with which we have

an intuitive familiarity, it is difficult to define exactly. The frequentist definition is

usually used in statistics. This states that the probability of the occurrence of a

particular event equals the proportion of times that the event would (or does) occur

in a large number of similar repeated trials. It has a value between 0 and 1, equalling

0 if the event can never occur and 1 if it is certain to occur. A probability may also be

expressed as a percentage, taking a value between 0% and 100%. For example,

suppose a coin is tossed thousands of times and in half the tosses it lands head up

and in half it lands tail up. The probability of getting a head at any one toss would be

defined as one-half, or 50%.

Similarly the probability of death in the five years following diagnosis of prostate

cancer would be defined as the proportion of times that this would occur among

a large number of men diagnosed with prostate cancer. This probability is then



said to be the risk of death in the five years following diagnosis of prostate

cancer.

Subjective (or Bayesian) definition

An alternative approach is to use a subjective definition, where the size of the

probability simply represents one’s degree of belief in the occurrence of an event,

or in an hypothesis. This definition corresponds more closely with everyday usage

and is the foundation of the Bayesian approach to statistics. In this approach, the

investigator assigns a prior probability to the event (or hypothesis) under investi-

gation. The study is then carried out, the data collected and the probability

modified in the light of the results obtained, using Bayes’ rule (see Section 14.4).

The revised probability is called the posterior probability. The Bayesian approach

to statistical inference is described in Chapter 33.

14.3 PROBABILITY CALCULATIONS

There are just two rules underlying the calculation of all probabilities. These are:

1 the multiplicative rule for the probability of the occurrence of both of two events,

A and B, and;

2 the additive rule for the occurrence of at least one of event A or event B. This is

equivalent to the occurrence of either event A or event B (or both).

We will illustrate these two rules in the context of the following example.

Example 14.1

Consider a couple who plan to have two children. There are four possible com-

binations for the sexes of these children, as shown in Table 14.1. Each combin-

ation is equally likely and so has a probability of 1/4.

Table 14.1 Possible combinations for the sexes of

two children, with their probabilities.

Second child

First child Boy Girl

1/2 1/2

Boy 1/2 1/4 1/4

(boy, boy) (boy, girl)

Girl 1/2 1/4 1/4

(girl, boy) (girl, girl)

Multiplicative rule

In fact each of these probabilities of 1/4 derives from the individual probabilities

of the sexes of each of the children. Consider in more detail the probability that

both children are girls. The probability that the first child is a girl is 1/2. There is
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then a probability of 1/2 of this (i.e. 1/2 of 1=2 ¼ 1=4) that the second child will

also be a girl. Thus:

Prob (both children are girls) ¼ prob (first child is a girl)�
prob (second child is a girl)

¼ 1=2� 1=2 ¼ 1=4

The general rule for the probability of both of two events is:

Prob (A and B) ¼ prob (A)� prob (B given that A has occurred)

Prob (B given that A has occurred) is called a conditional probability, as it is the

probability of the occurrence of event B conditional upon the occurrence of event

A. If the likelihood of event B is unaffected by the occurrence or non-occurrence

of event A, and vice versa, events A and B are said to be independent and the rule

simplifies to:

Prob (A and B) ¼ prob (A) � prob (B), if A and B are independent

The sexes of children are independent events as the probability that the next child

is a girl is uninfluenced by the sexes of the previous children. An example with

dependent events is the probability that a young girl in India is both anaemic and

malnourished, since she is much more likely to be anaemic if she is malnourished

than if she is not. We explore how Bayes’ rule can help us understand relations

between dependent events in Section 14.4.

Additive rule

We now turn to the additive rule, which is used for calculating the probability that

at least one of event A or event B occurs. This is equivalent to either (i) A alone

occurs, or (ii) B alone occurs, or (iii) both A and B occur. For example, consider the

probability that the couple will have at least one girl if they have two children. We

can see from Table 14.1 that this would happen in three of the four possible

outcomes; it would not happen if both children were boys. The probability that

the couple would have at least one girl is therefore 3=4. Note that it is not simply the

sum of the probability that the first child is a girl plus the probability that the second

child is a girl. Both these probabilities are 1=2 and would sum to 1 rather than the

correct 3=4. This is because the possibility that both children are girls is included in

each of the individual probabilities and has therefore been double-counted.
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The additive rule for the calculation of the probability of occurrence of at least

one of two events A and B is therefore:

Prob (A or B or both) ¼ prob (A)þ prob (B)� prob (both)

In Example 14.1

Prob (at least one girl) ¼ prob (1st child is girl)þ prob (2nd child is girl)

� prob (both are girls)

¼ 1=2þ 1=2� 1=4 ¼ 3=4

From our example, it is also clear that an alternative formulation is:

Prob (A or B or both) ¼ 1� prob (A doesn0t occur and B doesn0t occur)

since

Prob (at least one girl) ¼ 1� prob (1st is not a girl and 2nd is not a girl)

or equivalently, 1� prob (both children are boys) ¼ 1� 1=4 ¼ 3=4

14.4 BAYES’ RULE

We will now introduce Bayes’ rule, which is the basis of the Bayesian approach to

statistics, introduced in Section 14.2 and described in Chapter 33. We saw above

that the general rule for the probability of both of two events is

Prob (A and B) ¼ prob (A) � prob (B given A)

where we havewritten the conditional probability prob (B given that A has occurred)

more concisely as prob (B given A). We now show how this leads to Bayes’ rule for

relating conditional probabilities. Switching A and B in the above formula gives:

Prob (B and A) ¼ prob (B) � prob (A given B)

Since the left hand sides of these two equations are exactly the same, that is the

probability that both A and B occur, the right hand sides of the two equations

must be equal:

Prob (A) � prob (B given A) ¼ prob (B) � prob (A given B)
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Rearranging this by dividing both sides of this equation by prob (A) gives Bayes’

rule for relating conditional probabilities:

Prob (B given A) ¼ prob (B) � prob (A given B)

prob (A)

This allows us to derive the probability of B given that A has happened from the

probability of A given that B has happened. The importance of this will become

clear in Chapter 33 on the Bayesian approach to statistics. Here, we will just

illustrate the calculation with an example.

Example 14.2

Suppose that we know that 10% of young girls in India are malnourished, and

that 5% are anaemic, and that we are interested in the relationship between the

two. Suppose that we also know that 50% of anaemic girls are also malnourished.

This means that the two conditions are not independent, since if they were then

only 10% (not 50%) of anaemic girls would also be malnourished, the same

proportion as the population as a whole. However, we don’t know the relationship

the other way round, that is what percentage of malnourished girls are also

anaemic. We can use Bayes’ rule to deduce this. Writing out the probabilities

gives:

Probability (malnourished) ¼ 0:1

Probability (anaemic) ¼ 0:05

Probability (malnourished given anaemic) ¼ 0:5

Using Bayes rule gives:

Prob (anaemic given malnourished)

¼ prob (anaemic) � prob (manourished given anaemic)

prob (malnourished)

¼ 0:05 � 0:5

0:1
¼ 0:25

We can thus conclude that 25%, or one quarter, of malnourished girls are also

anaemic.

14.5 THE INDEPENDENCE ASSUMPTION

Standard statistical methods assume that the outcome for each individual is

independent of the outcome for other individuals. In other words, it is assumed

that the probability that the outcome occurs for a particular individual in the

sample is unrelated to whether or not it has occurred for the other individuals. An

example where this assumption is violated is when different individuals in the same
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family (for example siblings) are sampled, because the outcome for an individual is

on average more similar to that for their sibling than to the rest of the population.

The data are then clustered, and special methods that allow for the clustering must

be used. These are described in Chapter 31.

14.6 PROBABILITIES AND ODDS

In this section, we introduce the concept of odds and examine how they relate to

probability. The odds of an event are commonly used in betting circles. For

example, a bookmaker may offer odds of 10 to 1 that Arsenal Football Club

will be champions of the Premiership this season. This means that the bookmaker

considers the probability that Arsenal will not be champions is 10 times the

probability that they will be. Most people have a better intuitive understanding

of probability than odds, the only common use of odds being in gambling (see

below). However, as we will see in Chapters 16 to 21, many of the statistical

methods for the analysis of binary outcome variables are based on the odds of an

event, rather than on its probability.

More formally, the odds of event A are defined as the probability that A does

happen divided by the probability that it does not happen:

Odds (A) ¼ prob (A happens)

prob (A does not happen)
¼ prob (A)

1� prob (A)

since 1� prob (A) is the probability that A does not happen. By manipula-

ting this equation, it is also possible to express the probability in terms of the

odds:

Prob (A) ¼ Odds (A)

1þOdds (A)

Thus it is possible to derive the odds from the probability, and vice versa.

When bookmakers offer bets they do so in terms of the odds that the

event will not happen, since the probability of this is usually greater than

that of the event happening. Thus, if the odds on a horse in a race are 4

to 1, this means that the bookmaker considers the probability of the horse

losing to be four times greater than the probability of the horse winning. In

other words:

Odds (horse loses) ¼ prob (horse loses)

prob (horse wins)
¼ 4
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Table 14.2 Values of the odds, for

different values of the probability.

Probability Odds

0 0

0.001 0.001001

0.005 0.005025

0.01 0.010101

0.05 0.052632

0.1 0.111111

0.2 0.25

0.5 1

0.9 9

0.95 19

0.99 99

0.995 199

0.999 999

1 1

Using the equation above, it follows that prob (horse loses) ¼ 4=(1þ 4) ¼ 0:8,

and the probability that it wins is 0.2.

Table 14.2 shows values of the odds corresponding to different values of the

probability. It can be seen that the difference between the odds and the probability

is small unless the probability is greater than about 0.1. It can also be seen that

while probabilities must lie between 0 and 1, odds can take any value between 0

and infinity (1). This is a major reason why odds are commonly used in the

statistical analysis of binary outcomes. Properties of odds are summarized in

the box below.

BOX 14.1 PROPERTIES OF THE ODDS

� Both prob (A) and 1� prob (A) lie between 0 and 1. It follows that the

odds lie between 0 (when prob (A) ¼ 0) and 1 (when prob (A) ¼ 1)

� When the probability is 0.5, the odds are 0:5=(1� 0:5) ¼ 1

� The odds are always bigger than the probability (since 1� prob (A) is less

than one)

� Importantly: When the probability is small (about 0.1 or less), the odds are

very close to the probability. This is because for a small probability

[1� prob (A)] ffi 1 and so prob (A)=[1� prob (A)] ffi prob (A)
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15.1 INTRODUCTION

In this chapter we start by introducing the notation for binary outcome variables

that will be used throughout the book. These are outcomes where for each

individual in the sample the outcome is one of two alternatives. For example, at

the end of the study a subject may have experienced the particular disease (or

event) of interest (D), or remained healthy (H). Throughout this part, we will label

the two possible outcomes as D (disease) or H (healthy), regardless of the actual

categories. Examples of other outcome variables are that a patient dies (D) or

survives (H), or that a specimen is positive (D) or negative (H). It is not necessary

that D refers to an adverse outcome; for example, in a smoking cessation study,

our outcome may be that a participant has (D) or has not (H) successfully quit

smoking after 6months.

Of particular interest is the proportion (p) of individuals in our sample in

category D, that is the number of subjects who experience the event (denoted by

d) divided by the total number in the sample (denoted by n). The total who do not

experience the event will be denoted throughout by h ¼ n� d.

p ¼ d

n

We use this sample proportion to estimate the probability or risk (see Section

14.2) that an individual in the population as a whole will be in category D rather

than H.
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Example 15.1

Suppose that in a trial of a new vaccine, 23 of 1000 children vaccinated showed

signs of adverse reactions (such as fever or signs of irritability) within 24 hours of

vaccination. The proportion exhibiting an adverse reaction was therefore:

p ¼ 23=1000 ¼ 0:023 or 2:3%

We would then advise parents of children about to be vaccinated that the vaccine

is associated with an estimated 2.3% risk of adverse reactions. See Section 15.5 for

how to calculate a confidence interval for such a proportion.

The (unknown) probability or risk that the outcome D occurs in the population is

denoted by � (Greek letter pi; not related here to the mathematical constant

3.14159). Its estimation is, of course, subject to sampling variation, in exactly the

same way as the estimation of a population mean from a sample mean, described

in Section 4.5. In the following sections, we derive the sampling distribution of a

proportion, which is known as the binomial distribution, and then show how it

can be approximated by the normal distribution to give a confidence interval and

z-test for a single proportion. Finally, we define two types of proportion that are

of particular importance in medical research; cumulative incidence (risk) and

prevalence.

15.2 BINOMIAL DISTRIBUTION: THE SAMPLING DISTRIBUTION OF A

PROPORTION

The sampling distribution of a proportion is called the binomial distribution and can

be calculated from the sample size, n, and the population proportion, �, as shown

in Example 15.2. � is the probability that the outcome for any one individual is D.

Example 15.2

A man and woman each with sickle cell trait (AS; that is, heterozygous for the

sickle cell [S] and normal [A] haemoglobin genes) have four children. What is the

probability that none, one, two, three, or four of the children have sickle cell

disease (SS)?

For each child the probability of being SS is the probability of having inherited

the S gene from each parent, which is 0:5� 0:5 ¼ 0:25 by the multiplicative rule of

probabilities (see Section 14.3). The probability of not being SS (i.e. of being AS or

AA) is therefore 0.75. We shall call being SS category D and not being SS category

H, so � ¼ 0:25.

The probability that none of the children is SS (i.e. d ¼ 0) is 0:75�
0:75� 0:75� 0:75 ¼ 0:754 ¼ 0:3164 (0:754 means 0.75 multiplied together four

times). This is by the multiplicative rule of probabilities.

The probability that exactly one child is SS (i.e. d ¼ 1) is the probability that

(first child SS; second, third, fourth not SS) or (second child SS; first, third, fourth
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not SS) or (third child SS; first, second, fourth not SS) or (fourth child SS; first,

second, third not SS). Each of these four possibilities has probability 0:25� 0:753

(multiplicative rule) and since they cannot occur together the probability of one or

other of them occurring is 4� 0:25� 0:753 ¼ 0:4219, by the additive rule of

probabilities (see Section 14.3).

Table 15.1 Calculation of the probabilities of the possible numbers of children who have inherited sickle cell

(SS) disease, in a family of four children where both parents have the sickle cell trait. (The probability that an

individual child inherits sickle cell disease is 0.25.)

No. of children Probability

With SS

(d )

WithoutSS

(h)

No. of ways in which

combination could occur
Prob (d events) ¼ n!

d!(n� d)!
�d(1� �)n�d

0 4 1 1� 1� 0:754 ¼ 0:3164

1 3 4 4� 0:25� 0:753 ¼ 0:4219

2 2 6 6� 0:252 � 0:752 ¼ 0:2109

3 1 4 4� 0253 � 0:75 ¼ 0:0469

4 0 1 1� 0:254 � 1 ¼ 0:0039

Total ¼ 1.0000

In similar fashion, one can calculate the probability that exactly two, three, or

four children are SS by working out in each case the different possible arrange-

ments within the family and adding together their probabilities. This gives the

probabilities shown in Table 15.1. Note that the sum of these probabilities is 1,

which it has to be as one of the alternatives must occur.

The probabilities are also illustrated as a probability distribution in Figure 15.1.

This is the binomial probability distribution for � ¼ 0:25 and n ¼ 4.

Fig. 15.1 Probability distribution of the number of children in a family of four with sickle cell disease where

both parents have the sickle cell trait. The probability that a child inherits sickle cell disease is 0.25.
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General formula for binomial probabilities

The general formula for the probability of getting exactly d events in a sample of n

individuals when the probability of D for each individual is � is:

Prob (d events) ¼ n!

d!(n� d)!
�d(1� �)n�d

The first part of the formula represents the number of possible ways in which d

events could be observed in a sample of size n, and the second part equals the

probability of each of these ways.

� The exclamation mark denotes the factorial of the number and means all the

integers from the number down to 1multiplied together. (0! is defined to equal 1.)

� �d means � multiplied together d times or, in mathematical terminology, � to

the power d. Any number to the power zero is defined to equal 1.

� Note that when � equals 0.5, (1� �) also equals 0.5 and the second part of the

formula simplifies to 0:5n.

The interested reader may like to practise the application of the above formula by

checking the calculations presented in Table 15.1. For example, applying the

formula in the above example to calculate the probability that exactly two out

of the four children are SS gives:

Prob (2 SS children) ¼ 4!

2!(4� 2)!
0:252(1� 0:25)4�2

¼ 4� 3� 2� 1

2� 1� 2� 1
0:252(0:75)2

¼ 6� 0:252 � 0:752 ¼ 0:2109

The first part of the formula may be more easily calculated using the following

expression, where (n� d )! has been cancelled into n!

n!

d!(n� d)!
¼ n� (n� 1)� (n� 2) � . . .� (n� d þ 1)

d � (d � 1) � . . . 3� 2� 1

For example, if n ¼ 18 and d ¼ 5, (n� d þ 1) ¼ 18� 5 þ 1 ¼ 14 and the expres-

sion equals:

18� 17� 16� 15� 14

5� 4� 3� 2� 1
¼ 1028160

120
¼ 8568
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Shape of the binomial distribution

Figure 15.2 shows examples of the binomial distribution for various values

of � and n. These distributions have been illustrated for d, the number of

events in the sample, although they apply equally to p, the proportion of

events. For example, when the sample size, n, equals 5, the possible values

for d are 0, 1, 2, 3, 4 or 5, and the horizontal axis has been labelled accordingly.

The corresponding proportions are 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively. Relabel-

ling the horizontal axis with these values would give the binomial distribution for

p. Note that, although p is a fraction, its sampling distribution is discrete and not

continuous, since it may take only a limited number of values for any given sample

size.

Fig. 15.2 Binomial distribution for various values of � and n. The horizontal scale in each diagram shows

values of d.
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15.3 STANDARD ERROR OF A PROPORTION

Since the binomial distribution is the sampling distribution for the number (or

proportion) of D’s, its mean equals the population mean and its standard deviation

represents the standard error, which measures how closely the sample value

estimates the population value. The population means and standard errors can

be calculated from the binomial probabilities; the results are given in Table 15.2

for the number, proportion and percentage of events. The percentage is, of course,

just the proportion multiplied by 100.

Table 15.2 Population mean and standard error for the number, proportion and percentage of D’s in a sample.

Observed value Population mean Standard error

Number of events d n� [n�(1� �)]
p

Proportion of events p ¼ d=n � [�(1� �)=n]
p

Percentage of events 100p 100� 100 [�(1� �)=n]
p

15.4 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

As the sample size n increases the binomial distribution becomes very close to a

normal distribution (see Figure 15.2), and this can be used to calculate confidence

intervals and carry out hypothesis tests as described in the following sections. In

fact the normal distribution can be used as a reasonable approximation to the

binomial distribution if both n� and n� n� are 10 or more. This approximating

normal distribution has the same mean and standard error as the binomial

distribution (see Table 15.2).

15.5 CONFIDENCE INTERVAL FOR A SINGLE PROPORTION USING THE

NORMAL DISTRIBUTION

The calculation and interpretation of confidence intervals was explained in detail in

Chapters 6 and 8.Using the binomial distribution to derive a confidence interval for

a proportion is complicated. Methods that do this are known as exact methods and

are described in more detail by Altman et al. (2000), and by Clayton and Hills

(1993). The usual approach is to use the approximation to the normal distribution

with � estimated by p, the standard error estimated by [p
p

(1� p)=n] (see Table

15.2), and methods similar to those described in Chapter 6 for means. This is valid

providing that both np and n� np are 10 or more, so that the normal approx-

imation to the binomial distribution is sufficiently good. The confidence interval is:

CI ¼ p� (z0 � s:e:) to p þ (z0 � s:e:),

s:e: ¼ p
[ p(1� p)=n]
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where z0 is the appropriate percentage point of the standard normal distribution.

For example, for a 95% confidence interval, z0 ¼ 1:96.

Example 15.3

In September 2001 a survey of smoking habits was conducted in a sample of 1000

teenagers aged 15–16, selected at random from all 15–16 year-olds living in Bir-

mingham, UK. A total of 123 reported that they were current smokers. Thus the

proportion of current smokers is:

p ¼ 123=1000 ¼ 0:123 ¼ 12:3%

The standard error of p is estimated by [ p(1� p)=n]
p ¼ 0:123� 0:877=1000 ¼p

0:0104. Thus the 95% confidence interval is:

95% CI ¼ 0:123� (1:96� 0:0104) to 0:123 þ (1:96� 0:0104) ¼ 0:103 to 0:143

With 95% confidence, in September 2001 the proportion of 15–16 year-olds living

in Birmingham who smoked was between 0.103 and 0.143 (or equivalently,

between 10.3% and 14.3%).

15.6 z-TEST THAT THE POPULATION PROPORTION HAS A

PARTICULAR VALUE

The approximating normal distribution (to the binomial sampling distribution)

can also be used in a z-test of the null hypothesis that the population proportion

equals a particular value, �. This is valid provided that both n� and n� n� are

greater than or equal to 10. The z-test compares the size of the difference between

the sample proportion and the hypothesized value, with the standard error. The

formula is:

z ¼ p� �

s:e:( p)
¼ p� �

[�(1� �)=n]
p

In exactly the same way as explained in Chapter 8, we then derive a P-value, which

measures the strength of the evidence against the null hypothesis that p ¼ �.

Example 15.3 (continued)

In 1998 the UK Government announced a target of reducing smoking among

children from the national average of 13% to 9% or less by the year 2010, with a

fall to 11% by the year 2005. Is there evidence that the proportion of 15–16 year-

Au1: confirm
p correct
here
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old smokers in Birmingham at the time of our survey in 2001 was below the

national average of 13% at the time the target was set?

The null hypothesis is that the population proportion is equal to 0.13 (13%).

The sampling distribution for the number of smokers, if the null hypothesis is true,

is therefore a binomial distribution with � ¼ 0:13 and n ¼ 1000. The standard

error of p under the null hypothesis is:

s:e:(�) ¼ [0:13(1� 0:13)=1000]
p ¼ 0:0106: Therefore z ¼ 0:123� 0:13

0:0106
¼ �0:658

The corresponding P-value is 0.51. There is no evidence that the proportion of

teenage smokers in Birmingham in September 2001 was lower than the national

1998 levels.

Continuity correction

When either n� or n� n� are below 10, but both are 5 or more, the accuracy of

hypothesis tests based on the normal approximation can be improved by the

introduction of a continuity correction (see also Section 17.2). The continuity cor-

rection adjusts the numerator of the test statistic so that there is a closer fit between

the P-value based on the z-test and the P-value based on an exact calculation using

the binomial probabilities. This is illustrated in Figure 15.3 and Table 15.3, which

show that incorporating a continuity correction and calculating the area under the

normal curve above 8.5 gives a close approximation to the exact binomial probabil-

ity of observing 9 events or more. In contrast the area of the normal curve above 9
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Fig. 15.3 Comparison of the binomial distribution (n ¼ 12, � ¼ 0:5) with the approximating normal

distribution to illustrate the need for a continuity correction for small n. This shows that the area under

the normal curve above 8.5 is closer to the shaded exact probabilities than the area above 9.
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Table15.3 Comparisons of the different methods of calculating the probability of observing 9 or

more events, when n ¼ 12 and � ¼ 0:5.

Probability of observing 9 or more events, when n ¼ 12 and � ¼ 0:5

Calculated using binomial probabilities:

9 events 220� 0:512 ¼ 0:0537

10 events 66� 0:512 ¼ 0:0161

11 events 12� 0:512 ¼ 0:0029

12 events 1� 0:512 ¼ 0:0002

Total of 9þ events 0.0729

Using approximating normal distribution:

Based on area above 9 0.0418

With continuity correction, based on area above 8.5 0.0749

is not a good approximation. More details are not included here since continuity

corrections are not often used in modern medical statistics. This is because they

can’t be extended to the regression models, described in Chapter 19 and later in

the book, which are used to examine the effects of a number of exposure variables

on a binary outcome.

15.7 INCIDENCE AND PREVALENCE

We now define two particular types of proportion that are of particular relevance

in medical research. These are the cumulative incidence (or risk) of a disease event,

and the prevalence of a disease.

Cumulative incidence (risk)

The cumulative incidence or risk, r, of a disease event is the probability that

the disease event occurs during a specified period of time. It is estimated by the

number of new cases of a disease during a specified period of time divided

by the number of persons initially disease-free and therefore at risk of contracting

the disease.

Risk ¼ cumulative incidence ¼ number of new cases of disease in period

number initially disease-free

For example, we might be interested in:

� the risk of death in the five years following diagnosis with prostate cancer;

� the risk of vertical transmission of HIV during pregnancy or childbirth in HIV-

infected mothers given antiretroviral therapy during pregnancy.

Risks usually refer to adverse (undesirable) events, though this is not essential.
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Example 15.4

Suppose we study 5000 individuals aged 45 to 54, with no existing cardiovascular

disease. Ten years later, the same individuals are followed up and we find that 147

have died from or have developed coronary heart disease. Then the risk of

coronary heart disease is the proportion of individuals who developed the disease:

147=5000 ¼ 0:0294, or 2.94%.

Prevalence

In contrast, the prevalence represents the burden of disease at a particular time,

rather than the chance of future disease. It is based on the total number of existing

cases among the whole population, and represents the probability that any one

individual in the population is currently suffering from the disease.

Prevalence ¼ number of people with the disease at particular point in time

total population

For example, we might be interested in:

� the prevalence of schistosomiasis among villagers living on the shore of Lake

Malawi;

� the prevalence of chronic lower back pain among refuse collectors in Bristol,

UK.

Example 15.5

Suppose we study a sample of 2000 individuals aged 15 to 50, registered with a

particular general practice. Of these, 138 are being treated for asthma. Then the

prevalence of diagnosed asthma in the practice population is the proportion of the

sample with asthma: 138=2000 ¼ 0:069, or 6.9%.

Both cumulative incidence and prevalence are usually expressed as a percentage

or, when small, as per 1000 population or per 10 000 or 100 000 population. In

Chapter 22 we define the incidence rate, the measure used in longitudinal studies

with variable lengths of follow up.
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16.1 INTRODUCTION

In Chapter 15 we saw how the sampling distribution of a proportion can be

approximated by the normal distribution to give a confidence interval and z-test

for a single proportion. In this chapter we deal with the more common situation

where we wish to compare the occurrence of a binary outcome variable between

two exposure (or treatment) groups. We will use the same notation for these two

groups as was introduced in Chapter 7 for the comparison of two means. Group

1 denotes individuals exposed to a risk factor, and group 0 denotes those unex-

posed. In clinical trials, group 1 denotes the treatment group, and group 0 the

control, or placebo group (a placebo is a preparation made to be as similar as

possible to the treatment in all respects, but with no effective action). For example,

� In a study of the effects of bacterial infection during pregnancy, we may wish to

compare the risk of premature delivery for babies born to women infected

during the first trimester (the exposed group, 1) with that for babies born to

uninfected women (the unexposed group, 0).

� In a trial of a new influenza vaccine, the comparison of interest might be the

proportion of participants who succumbed to influenza during the winter

season in the vaccine group (the treatment group, 1), compared to the propor-

tion in the placebo group (the control group, 0).

We start by showing how the data can be displayed in a 2� 2 table, with individ-

uals in the sample classified according to whether they experienced the disease

outcome (or not), and according to whether they were exposed (or not). We then
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explain three different measures for comparing the outcome between the two

groups: the difference in the two proportions, the risk ratio and the odds ratio.

We describe how to calculate a confidence interval and carry out a hypothesis test

for each of them, and outline their relative advantages and disadvantages.

16.2 THE 2� 2 TABLE, AND MEASURES OF EXPOSURE EFFECT

In Section 3.4, we described how the relationship between two categorical vari-

ables can be examined by cross-tabulating them in a contingency table. We noted

that a useful convention is for the rows of the table to correspond to the exposure

values and the columns to the outcomes. To compare the occurrence of a binary

outcome variable between two exposure groups, we therefore display the data in a

2� 2 table. Table 16.1 shows the notation that we will use for the number of

individuals in each group. As introduced in the last chapter, we use letter d to

denote the number of subjects who experience the outcome event, h to denote the

number of subjects who do not experience the outcome event, and n for the total

number in the sample. In addition, we use the subscripts 1 and 0 to denote the

exposed and unexposed groups respectively.

As explained in Section 3.4, it is recommended that the table also shows the

proportion (or percentage) in each outcome category, within each of the exposure

groups. Thus, if the exposure is the row variable (as here) then row percent-

ages should be presented, while if it is the column variable then column percent-

ages should be presented. Following the notation introduced in Chapter 15, the

overall proportion is denoted by p ¼ d=n, and the proportions in the exposed and

unexposed groups are denoted by p1 ¼ d1=n1 and p0 ¼ d0=n0, respectively.

Example 16.1

Consider the following results from an influenza vaccine trial carried out during

an epidemic. Of 460 adults who took part, 240 received influenza vaccination and

220 placebo vaccination. Overall 100 people contracted influenza, of whom 20

were in the vaccine group and 80 in the placebo group. We start by displaying the

results of the trial in a 2� 2 table (Table 16.2). In Table 16.2 the exposure is

vaccination (the row variable) and the outcome is whether the subject contracts

influenza (the column variable). We therefore also include row percentages in the

Table 16.1 Notation to denote the number of individuals in each group for the 2� 2

table comparing a binary outcome variable between two exposure groups.

Outcome

Exposure

Experienced event:

D (Disease)

Did not experience event:

H (Healthy) Total

Group 1 (exposed) d1 h1 n1
Group 0 (unexposed) d0 h0 n0

Total d h n
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Table 16.2 2� 2 table showing results from an influenza vaccine trial.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

table. Overall, 21.7% of subjects contracted influenza. We can see that the per-

centage contracting influenza was much lower in the vaccine group (8.3%), than in

the placebo group (36.4%). We can use these data to answer the following related

questions.

1 How effective was the vaccine in preventing influenza in our trial? The size of

this effect can be measured in three different ways:

(a) The difference between the risks of contracting influenza in the vaccine

group compared to the placebo group.

(b) The ratio of the risks of contracting influenza in the vaccine group com-

pared to the placebo group. This is also known as the relative risk.

(c) The ratio of the odds of contracting (to not contracting) influenza in the

vaccine group, compared to the placebo group.

2 What does the effect of the vaccine in our trial tell us about the size of its effect

in preventing influenza more generally in the population? This is addressed by

calculating a confidence interval for the size of the effect.

3 Do the data provide evidence that the vaccine actually affects the risk of

contracting influenza, or might the observed difference between the two groups

have arisen by chance? In other words, are the data consistent with there being

no effect of the vaccine? We address this by carrying out a hypothesis (or

significance) test to give a P-value, which is the probability of a difference

between the two groups at least as large as that in our sample, if there was no

effect of the vaccine in the population.

The use of confidence intervals and P-values to interpret the results of statistical

analyses is discussed in detail in Chapter 8, and readers may wish to refer to that

chapter at this point.

The three different measures for comparing a binary outcome between two

exposure (or treatment) groups are summarized in Table 16.3, together with the

results for the influenza vaccine trial. All three measures indicate a benefit of the

vaccine. The risk difference is �0:281, meaning that the absolute risk of contract-

ing influenza was 0.281 lower in the vaccine group compared to the placebo group.

The risk ratio equals 0.228, meaning that the risk of contracting influenza in the

vaccine group was only 22.8% of the risk in the placebo group. Equivalently, we

could say the vaccine prevented 77.2% (100� 22:8%) of influenza cases. This is

called the vaccine efficacy; it is discussed in more detail in Chapter 37. The odds
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Table 16.3 Three different measures for comparing a binary outcome between two exposure (or

treatment) groups, together with the results for the vaccine trial data in Table 16.2.

Measure of comparison Formula Result for influenza vaccine trial

Risk difference p1 � p0 0:083� 0:364 ¼ �0:281

Risk ratio (relative risk) p1=p0 0:083=0:364 ¼ 0:228

Odds ratio
d1=h1
d0=h0

¼ d1 � h0
d0 � h1

20=220

80=140
¼ 20� 140

80� 220
¼ 0:159

ratio in the trial was 0.292 meaning that the odds of contracting influenza in the

vaccine group were 29.2% of the odds in the placebo group.

The following sections describe how to calculate confidence intervals and carry

out hypothesis tests for each of these three measures. They also discuss their

relative advantages and disadvantages. When to use which measure is also dis-

cussed in Chapter 37 (‘Measures of association and impact’).

16.3 RISK DIFFERENCES

We will start with the first of the three measures of effect, the difference between

the two proportions. From now on we will refer to this as a risk difference, though

the methods apply to any type of proportion. We will see how to derive a

confidence interval for the difference, and carry out a test of the null hypothesis

that there is no difference between the proportions in the population from which

the sample was drawn. As in the case of a single proportion we will use methods

based on the normal approximation to the sampling distribution of the two

proportions. These will be illustrated in the context of the influenza vaccine trial

described in Example 16.1 above.

Sampling distribution of the difference between two proportions

Before we can construct a confidence interval for the difference between two

proportions, or carry out the related hypothesis test, we need to know the sampling

distribution of the difference. The difference, p1 � p0, between the proportions in

the exposed and unexposed groups in our sample provides an estimate of the

underlying difference, �1 � �0, between the exposed and unexposed groups in the

population. It is of course subject to sampling variation, so that a different sample

from the same population would give a different value of p1 � p0. Note that:

1 The normal distribution is a reasonable approximation to the sampling distri-

bution of the difference p1 � p0, provided n1p1, n1 � n1p1, n0p0 and n0 � n0p0

are each greater than 10, and will improve as these numbers get larger.

2 The mean of this sampling distribution is simply the difference between the two

population means, �1 � �0.

3 The standard error of p1 � p0 is based on a combination of the standard errors

of the individual proportions:
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s:e:( p1 � p0) ¼ ½ p1(1� p1)=n1 þ p0(1� p0)=n0� ¼ ½s:e:( p1)2 þ s:e:( p0)
2�

pq

The confidence interval for the difference between two proportions is given by:

CI ¼ ( p1 � p0)� z0�s:e:( p1 � p0) to ( p1 � p0)þ z0�s:e:( p1 � p0)

where z0 is the appropriate percentage point of the normal distribution.

Example 16.1 (continued)

The difference in proportions between the vaccine and placebo groups is 0:083�
0:364 ¼ �0:281. Its standard error is:

s:e:( p1 � p0) ¼ 0:083(1� 0:083)=240þ 0:364(1� 0:364)=220½ �p ¼ 0:037

and so the approximate 95% confidence interval for this reduction is:

95% CI ¼ �0:281� (1:96� 0:037) to � 0:281þ (1:96� 0:037)

¼ �0:353 to � 0:208

That is, we are 95% confident that in the population the vaccine would reduce the

risk of contracting influenza by between 0.208 and 0.353.

Test that the difference between two proportions is zero

The normal test to compare two sample proportions is based on:

z ¼ p1 � p0

s:e:( p1 � p0)

The standard error used in the test is different to that used in the confidence interval

because it is calculated assuming that the null hypothesis is true (i.e. that

�1 ¼ �0 ¼ �). Under the null hypothesis that the population proportions are equal:

s:e:( p1 � p0) ¼ [�(1� �)(1=n1 þ 1=n0)]
p

� is estimated by the overall proportion in both samples, that is by:

p ¼ d0 þ d1

n0 þ n1
¼ d

n
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The formula for the z-test is therefore:

z ¼ p1 � p0

[ p(1� p)(1=n1 þ 1=n0)]
p

This test is a valid approximation provided that either n1 þ n0 is greater than 40 or

n1p, n1 � n1p, n2p and n2 � n2p are all 10 or more. If this condition is not satisfied,

but n1p, n1 � n1p, n2p and n2 � n2p are all 5 ormore, then amodified version of the

z-test incorporating a continuity correction, or the equivalent chi-squared test with a

continuity correction, can be used (see Section 17.2). If none of these conditions are

satisfied, the exact test described in Section 17.3 should be used.

Example 16.1 (continued)

The overall proportion that contracted influenza was 0.217 or 21.7%. Therefore:

z ¼ (0:083� 0:364)

0:217(1� 0:217)(1=240þ 1=220)½ �p ¼ �0:281

0:0385
¼ �7:299

The corresponding P-value is < 0:0001. Thus there is strong evidence that there

was a reduction in the risk of contracting influenza following vaccination with the

influenza vaccine.

16.4 RISK RATIOS

We now turn to the second measure of effect introduced in Section 16.2, the

ratio of the two proportions. We will refer to this as the risk ratio, although

the methods apply to ratios of any proportions, and not just those that estimate

risks. The risk ratio is often abbreviated to RR, and is also known as the relative

risk.

RR ¼ p1

p0
¼ d1=n1

d0=n0

Example 16.2

Table 16.4 shows hypothetical data from a study to investigate the association

between smoking and lung cancer. 30 000 smokers and 60 000 non-smokers

were followed for a year, during which time 39 of the smokers and 6 of the

non-smokers developed lung cancer, giving risks of 0.13% and 0.01% respectively.

Thus the risk of lung cancer was considerably higher among smokers than non-

smokers.
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Table 16.4 Hypothetical data from a cohort study to investigate the association between smoking and lung cancer.

The calculations of risk ratio (RR) and risk difference are illustrated.

Lung cancer No lung cancer Total Risk

Smokers

(exposed)

39 29 961 30 000 p1 � 39=30 000 ¼ 0:0013 (0:13%)

Non-smokers

(unexposed)

6 59 994 60 000 p0 � 6=60 000 ¼ 0:0001 (0.01%)

Total 45 89 955 90 000

Risk difference ¼ 0:13%�0:01% ¼ 0:12%

Risk ratio ¼ 0:0013=0:0001 ¼ 13

The risk ratio is:

RR ¼ p1

p0
¼ 0:0013

0:0001
¼ 13

Interpreting the risk ratio

In an epidemiological study, comparing an exposed group with an unexposed, the

risk ratio is a good indicator of the strength of the association between the

exposure and the disease outcome. It equals:

Risk ratio (RR) ¼ risk in exposed group

risk in unexposed group

In a clinical trial to assess the impact of a new treatment, procedure or preventive

intervention on disease outcome or occurrence, the risk ratio equals:

Risk ratio (RR) ¼ risk in treatment group

risk in control group

A risk ratio of 1 occurs when the risks are the same in the two groups and is

equivalent to no association between the risk factor and the disease. A risk ratio

greater than 1 occurs when the risk of the outcome is higher among those exposed

to the factor (or treatment) than among the non-exposed, as in Example 16.2

above, with exposed referring to smoking. A risk ratio less than 1 occurs when the

risk is lower among those exposed, suggesting that the factor (or treatment) may

be protective. An example is the reduced risk of infant death observed among

infants that are breast-fed compared to those that are not. The further the risk

ratio is from 1, the stronger the association between exposure (or treatment) and

outcome. Note that a risk ratio is always a positive number.

Relationship between risk ratios and risk differences

The risk ratio is more commonly used to measure of the strength of an association

than is the difference in risks. This is because the amount by which an exposure
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(risk factor) multiplies the risk of an event is interpretable regardless of the size of

the risk. For example, suppose we followed the population in Example 16.2 above

for two years instead of one, and therefore observed exactly double the number

of events in each group (here we are ignoring the small number of individuals lost

to follow-up because they died in the first year). The risks are now 0.26% in

smokers and 0.02% in non-smokers. The risk ratio is 0.26/0.02¼ 13; exactly

as before. However, the risk difference is now 0:26� 0:02% ¼ 0:24%, double

that observed when there was only one year’s follow-up. The use and interpret-

ation of ratio and difference measures of the size of exposure effects is discussed in

Chapter 37.

16.5 RISK RATIOS: CONFIDENCE INTERVALS AND HYPOTHESIS

TESTS

Standard error and confidence interval for ratio measures

Until now, we have followed exactly the same procedure whenever we wish to

calculate a confidence interval. We derive the standard error (s.e.) of the quantity,

q, in which we are interested, and determine the multiplier za corresponding to the

appropriate percentage point of the sampling distribution:

CI ¼ q� za � s:e: to qþ za � s:e

When the sampling distribution is normal, za is 1.96 for a 95% confidence interval

and:

95% CI ¼ q� 1:96� s:e: to qþ 1:96� s:e:

For ratio measures such as risk ratios, this can lead to problems when the

standard error is large and q is close to zero, because the lower limit of

the confidence interval may come out negative despite the fact that the risk ratio

is always positive. To overcome this problem, we adopt the following proced-

ure:

1 Calculate the logarithm of the risk ratio, and its standard error. The formula for

this standard error is derived using the delta method (see Box 16.1), and is:

s:e:( logRR) ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p

Note that s.e.(log RR) should be interpreted as ‘standard error of the log RR’,

and that throughout this book, all logs are to the base e (natural logarithms)

unless explicitly denoted by log10 as being logs to the base 10. See Section 13.1

for an explanation of logarithms and the exponential function.

2 Derive a confidence interval for the log risk ratio in the usual way:
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95% CI ( logRR)¼ logRR�1:96�s:e:( logRR) to logRRþ1:96�s:e:( logRR)

3 Antilog the confidence limits obtained, to convert this into a confidence interval

for the risk ratio.

95% CI (RR) ¼
exp[ logRR� 1:96� s:e:( logRR)] to exp[ logRRþ 1:96� s:e:( logRR)]

4 Use the rules of logarithms and antilogs to make this simpler. The rules are:

Rules of logarithms:

log(a)þ log(b) ¼ log(a� b)

log(a)� log(b) ¼ log(a=b)

Rules of antilogs:

exp(a) means ea; it is the antilog (exponential) function

exp[ log (a)] ¼ a

exp(aþ b) ¼ exp(a)� exp(b)

exp(a� b) ¼ exp(a)= exp(b)

Following these rules, and noting that exp(logRR)¼RR, gives:

95% CI (RR) ¼ RR=exp[1:96� s:e:( logRR)] to RR� exp[1:96� s:e:( logRR)]

The quantity exp[1.96� s.e. (logRR)] is known as an error factor (EF); it is always

greater than 1, because exp(x) is greater than 1 if x is greater than zero. The 95%

confidence interval can therefore be written more simply as:

95% CI (RR) ¼ RR=EF to RR� EF

Putting all of this together, the formula for the 95% confidence interval for the risk

ratio is:

95% CI (RR)¼ RR=EF to RR� EF,

where EF¼ exp[1:96� s:e:( logRR)]

and s:e:( logRR) ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p
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BOX 16.1 DERIVATION OF THE FORMULA FOR THE STANDARD

ERROR OF THE LOG(RISK RATIO)

This box is intended for those who wish to understand the mathematics behind the

approximate formula for the standard error of the log (risk ratio) used in step 1 of

the procedure described in Section 16.5, for calculating a confidence interval for the

risk ratio.

The formula was derived using the delta method. This is a technique for calculating

the standard error of a transformed variable from the mean and standard error of the

original untransformed variable. In this Box, we briefly outline how this method is

used to give (a) an approximate formula for the standard error of a log transformed

variable, and in particular (b) the formula for the standard error of a log transformed

proportion. We then show how this result can be used to derive (c) an approximate

formula for the standard error of the log(risk ratio).

(a) Deriving the formula for the standard error of a log transformed

variable:
The delta method uses a mathematical technique known as a Taylor series expansion

to show that:
log(X) ’ log(�)þ (X� �)( log0(�))

where log0 (�) denotes the first derivative of log(�), the slope of the graph of log(�)

against �. This approximation works provided that the variance of variable X is small

compared to its mean.

As noted in Section 4.3, adding or subtracting a constant to a variable leaves its

standard deviation (and variance) unaffected, and multiplying by a constant has the

effect of multiplying the standard deviation by that constant (or equivalently multi-

plying the variance by the square of the constant). By applying these in the formula

above, and further noting that log0(�) ¼ 1=�, we can deduce that

s:e:( log(X)) ’ s:e:(X)� log0(�) ¼ s:e:(X)=�

(b) Formula for the standard error of the log(proportion):

Recall from Section 15.3 that the mean of the sampling distribution for a proportion

is estimated by p ¼ d=n and the standard error by [p(1� p)=n]
p

. Therefore:

s:e:( log p) ’ [p(1� p)=n
p

]

d=n
¼ [1=d � 1=n]

p

(c) Formula for the standard error of the log(risk ratio):

Risk ratio (RR) ¼ p1

p0

Using the rules of logarithms given above the log risk ratio is given by:

logRR ¼ log( p1)� log ( p0)

Since the standard error of the difference between two variables is the square root of

the sum of their variances (see Section 7.2), it follows that the standard error of

logRR is given by:

s:e:( logRR) ¼ [var( log
p

( p1)þ var( log( p0)] ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p
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Example 16.2 (continued)

Consider the data presented in Table 16.4, showing a risk ratio of 13 for the

association between smoking and risk of lung cancer. The standard error of the

logRR is given by:

s:e:( logRR) ¼ [(1=39� 1=30000 þ 1=6� 1=60000)]
p ¼ 0:438

The error factor is given by:

EF ¼ exp(1:96� 0:438) ¼ 2:362

The 95% confidence interval for the risk ratio is therefore:

95% CI ¼ (13=2:362 to 13� 2:362) ¼ 5:5 to 30:7

Test of the null hypothesis

If the null hypothesis of no difference between the risks in the two groups is true,

then the RR ¼ 1 and hence logRR¼ 0. We use the logRR and its standard error

to derive a z statistic and test the null hypothesis in the usual way:

z ¼ logRR

s:e:( logRR)

Example 16.2 (continued)

In the smoking and lung cancer example,

z ¼ 2:565=0:438 ¼ 5:85

This corresponds to a P-value of < 0:0001. There is therefore strong evidence

against the null hypothesis that the RR ¼ 1.

Further analyses of risk ratios

The risk ratio is a measure that is easy to interpret, and the analyses based on risk

ratios described in this chapter are straightforward. Perhaps surprisingly, how-

ever, more complicated analyses of associations between exposures and binary

outcomes are rarely based on risk ratios. It is much more common for these to be

based on odds ratios, as discussed in the next section, and used throughout
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Chapters 17 to 21. In Section 20.4, we briefly describe how to conduct regression

analyses based on risk ratios, rather than odds ratios, and why this is not usually

the preferred method.

16.6 ODDS RATIOS

We now turn to the third and final measure of effect introduced in Section 16.2,

the ratio of the odds of the outcome event in the exposed group compared to the

odds in the unexposed group (or in the case of a clinical trial, in the treatment

group compared to the control group). Recall from Section 14.6 that the odds of

an outcome event D are defined as:

Odds ¼ prob(D happens)

prob(D does not happen)
¼ prob(D)

1� prob(D)

The odds are estimated by:

Odds ¼ p

1� p
¼ d=n

(1� d=n)
¼ d=n

h=n
¼ d

h

i.e. by the number of individuals who experience the event divided by the number

who do not experience the event. The odds ratio (often abbreviated to OR) is

estimated by:

OR ¼ odds in exposed group

odds in unexposed group
¼ d1=h1

d0=h0
¼ d1 � h0

d0 � h1

It is also known as the cross-product ratio of the 2� 2 table.

Example 16.3

Example 15.5 introduced a survey of 2000 patients aged 15 to 50 registered with a

particular general practice, which showed that 138 (6.9%) were being treated for

asthma. Table 16.5 shows the number diagnosed with asthma according to their

gender. Both the prevalence (proportion with asthma) and odds of asthma in

women and men are shown, as are their ratios.

The odds ratio of 1.238 indicates that asthma is more common among women

than men. In this example the odds ratio is close to the ratio of the prevalences;

this is because the prevalence of asthma is low (6% to 8%). Properties of odds

ratios are summarized in Box 16.2.
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Table 16.5 Hypothetical data from a survey to examine the prevalence of asthma among patients at a particular

general practice.

Asthma No asthma Total Prevalence Odds

Women 81 995 1076 0.0753 0.0814

Men 57 867 924 0.0617 0.0657

Total 138 1862 2000
RR ¼ 0:0753

0:0617
¼ 1:220 OR ¼ 0:0814

0:0657
¼ 1:238

BOX 16.2 PROPERTIES OF ODDS RATIOS

The minimum possible value is zero, and the maximum possible value is

infinity.

� An odds ratio of 1 occurs when the odds, and hence the proportions, are

the same in the two groups and is equivalent to no association between the

exposure and the disease.

� The odds ratio is always further away from 1 than the corresponding risk

(or prevalence) ratio. Thus:

if RR > 1 then OR > RR

if RR < 1 then OR < RR

� For a rare outcome (one in which the probability of the event not

occurring is close to 1) the odds ratio is approximately equal to the risk

ratio (since the odds are approximately equal to the risk, see Section 14.6).

� The odds ratio for the occurrence of disease is the reciprocal of the odds

ratio for non-occurrence.

� The odds ratio for exposure, that is the odds of disease in the exposed

compared to the odds in the unexposed group, equals the odds ratio for

disease, that is the odds of exposure in the disease compared to the odds in

the healthy group. (This equivalence is fundamental for the analysis of

case- control studies.)

Comparison of odds ratios and risk ratios

As mentioned in Section 16.2, both the risk difference and the risk ratio have

immediate intuitive interpretations. It is relatively easy to explain that, for

example, moderate smokers have twice the risk of cardiovascular disease than

non-smokers (RR ¼ 2). In contrast, interpretation of odds ratios often causes

problems; except for gamblers, who tend to be extremely familiar with the mean-

ing of odds (see Chapter 14).
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Table 16.6 Values of the risk ratio when the odds ratio¼ 2, and the odds ratio when the risk ratio¼ 2, given

different values of the risk in the unexposed group.

Odds ratio ¼ 2 Risk ratio ¼ 2

Risk in the

unexposed group

Corresponding

risk ratio

Risk in the

unexposed group

Corresponding

odds ratio

0.001 1.998 0.001 2.002

0.005 1.99 0.005 2.010

0.01 1.980 0.01 2.020

0.05 1.905 0.05 2.111

0.1 1.818 0.1 2.25

0.5 1.333 0.3 3.5

0.9 1.053 0.4 6.0

0.95 1.026 0.45 11.0

0.99 1.005 0.5* 1

*When �0 is greater than 0.5, the risk ratio must be less than 2, since �1 ¼ RR� �0, and probabilities

cannot exceed 1.

A common mistake in the literature is to interpret an odds ratio as if it

were a risk ratio. For rare outcomes, this is not a problem since the two are

numerically equal (see Box 16.2 and Table 16.6). However, for common

outcomes, this is not the case; the interpretation of odds ratios diverges

from that for risk ratios. Table 16.6 shows values of the risk ratio for an odds

ratio of 2, and conversely the values of the odds ratio for a risk ratio of 2, for

different values of the risk in the unexposed group. For example, it shows that

if the risk in the exposed group is 0.5, then an odds ratio of 2 is equivalent to a

risk ratio of 1.33. When the outcome is common, therefore, an odds ratio of

(for example) 2 or 5 must not be interpreted as meaning that the risk is multiplied

by 2 or 5.

As the risk in the unexposed group becomes larger, the maximum possible value

of the risk ratio becomes constrained, because the maximum possible value for a

risk is 1. For example, if the risk in the unexposed group is 0.33, the maximum

possible value of the RR is 3. Because there is no upper limit for the odds, the OR

is not constrained in this manner. Note that as the risk in the unexposed group

increases the odds ratio becomes much larger than the risk ratio and, as explained

above, should no longer be interpreted as the amount by which the risk factor

multiplies the risk of the disease outcome.

The constraint on the value of the risk ratio can cause problems for statistical

analyses using risk ratios when the outcome is not rare, because it can mean

that the risk ratio differs between population strata. For example, in a low-risk

stratum the risk of disease might be 0.2 (20%) in the unexposed group and 0.5

(50%) in the exposed group. The risk ratio in that stratum is therefore

0:5=0:2 ¼ 2:5. If the risk of disease in a high-risk stratum is 0.5 then the risk
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ratio can be at most 2 in that stratum, since the maximum possible risk of disease

is 1, and 1=0:5 ¼ 2.

A further difficulty with risk ratios is that the interpretation of results may

depend on whether the occurrence of an event, or its non-occurrence, is considered

as the outcome. For odds ratios this presents no problems, since:

OR(disease) ¼ 1=OR( healthy)

However no such relationship exists for risk ratios. For instance, consider

the low-risk stratum in which the risk ratio is 0:5=0:2 ¼ 2:5. If the non-

occurrence of disease (healthy) is considered as the outcome, then the

risk ratio is (1� 0:5)=(1� 0:2) ¼ 0:5=0:8 ¼ 0:625. This is not the same as

1=2:5 ¼ 0:4.

Example 16.4

Consider a study in which we monitor the risk of severe nausea during chemo-

therapy for breast cancer. A new drug is compared with standard treatment. The

hypothetical results are shown in Table 16.7.

The risk of severe nausea is 88% in the group treated with the new drug

and 71% in the group given standard treatment, so the risk ratio is

0:88=0:71 ¼ 1:239, an apparently moderate increase in the prevalence of

nausea. In contrast the odds ratio is 2.995, a much more dramatic increase.

Note, however, that the risk ratio is constrained: it cannot be greater than

1=0:71 ¼ 1:408.

Suppose now that we consider our outcome to be absence of nausea. The risk

ratio is 0:12=0:29 ¼ 0:414: the proportion of patients without severe nausea has

more than halved. The odds ratio is 0.334: exactly the inverse of the odds ratio for

nausea (1=2:995 ¼ 0:334).

Table 16.7 Risk of severe nausea following chemotherapy for breast cancer.

Number with

severe nausea

Number without

severe nausea Total

New drug 88 (88%) 12 100

Standard treatment 71 (71%) 29 100

Rationale for the use of odds ratios

In the recent medical literature, the statistical analysis of binary outcomes

is almost always based on odds ratios, even though they are less easy to

interpret than risk ratios (or risk differences). This is for the following three

reasons:
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1 When the outcome is rare, the odds ratio is the same as the risk ratio. This is

because the odds of occurrence of a rare outcome are numerically equivalent to

its risk. Analyses based on odds ratios therefore give the same results as analyses

based on risk ratios.

2 When the outcome is common, risk ratios are constrained but odds ratios are not.

Analyses based on risk ratios, particularly those examining the effects of more

than one exposure variable, can cause computational problems and are difficult

to interpret. In contrast, these problems do not occur in analyses based on odds

ratios.

3 For odds ratios, the conclusions are identical whether we consider our outcome

as the occurrence of an event, or the absence of the event.

Taken together, these mean that analyses of binary outcomes controlling for

possible confounding (see Chapter 18), or which use regression modelling (see

Chapters 19 to 21), usually report exposure effects as odds ratios, regardless of

whether the outcome is rare or common.

In addition, odds ratios are the measure of choice in case–control studies. In

fact, it is in this context that they were first developed and used. In case–control

studies we recruit a group of people with the disease of interest (cases) and a

random sample of people without the disease (the controls). The distribution of

one or more exposures in the cases is then compared with the distribution in the

controls. Because the controls usually represent an unknown fraction of the whole

population, it is not possible to estimate the risk of disease in a case–control study,

and so risk differences and risk ratios cannot be derived. The odds ratio can be

used to compare cases and controls because the ratio of the odds of exposure

(d1=d0) among the diseased group compared to the odds of exposure among the

healthy group (h1=h0), is equivalent to the ratio of the odds of disease in exposed

compared to unexposed:

OR ¼ d1=h1
d0=h0

¼ d1 � h0

d0 � h1
¼ d1=d0

h1=h0

16.7 ODDS RATIOS: CONFIDENCE INTERVALS AND HYPOTHESIS

TESTS

Confidence interval for the odds and the odds ratio

We saw in Section 16.5 how a confidence interval for the risk ratio is derived by

calculating a confidence interval for the log risk ratio and then converting this to a

confidence interval for the risk ratio. Confidence intervals for the odds, and the

odds ratio, are calculated in exactly the same way. The results are shown in Table

16.8. Note that s.e.(logOR) should be interpreted as ‘s.e. of the log OR’. The

formula for s.e.(logOR) is also known as Woolf ’s formula.
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Table 16.8 Formulae for calculation of 95% confidence intervals for the odds and the odds ratio.

Odds Odds ratio (OR)

95% CI ¼ odds=EF to odds� EF, 95% CI ¼ OR=EF to OR� EF,

where EF ¼ exp [1:96� s:e:( log odds)] where EF ¼ exp[1:96� s:e:( log OR)]

and s:e:( log odds) ¼ [1=d þ 1=h]
p

and s:e:( log OR) ¼ [1=d1 þ 1=h1 þ 1=d0 þ 1=h0]
p

Example 16.3 (continued)

Consider the data from the asthma survey presented in Table 16.5. The standard

error of the logOR is given by:

s:e:( logOR) ¼ [1=57þ 1=867þ 1=81þ 1=995]
p ¼ 0:179

The error factor is given by:

EF ¼ exp(1:96� 0:179) ¼ 1:420

The 95% confidence interval for the odds ratio is therefore:

95% CI ¼ 1:238=1:420 to 1:238� 1:420 ¼ 0:872 to 1:759

With 95% confidence, the odds ratio in the population lies between 0.872 and

1.759.

Test of the null hypothesis

We use the logOR and its standard error to derive a z statistic and test the null

hypothesis in the usual way:

z ¼ log OR

s:e:( logOR)

The results are identical to those produced by simple logistic regression models

(see Chapter 19).

Example 16.3 (continued)

The z statistic is given by z ¼ 0:214=0:179 ¼ 1:194. This corresponds to a P-value

of 0.232. There is no clear evidence against the null hypothesis that the OR ¼ 1,

i.e. that the prevalence of asthma is the same in men and women.
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17.1 INTRODUCTION

We saw in the last chapter that when both exposure and outcome variables have

only two possible values (binary variables) the data can be displayed in a 232

table. As described in Section 3.4, contingency tables can also be used to display

the association between two categorical variables, one or both of which has more

than two possible values. The categories for one variable define the rows, and the

categories for the other variable define the columns. Individuals are assigned to

the appropriate cell of the contingency table according to their values for the two

variables. A contingency table is also used for discrete numerical variables, or for

continuous numerical variables whose values have been grouped. These larger

tables are generally called r� c tables, where r denotes the number of rows in the

table and c the number of columns. If the variables displayed are an exposure and

an outcome, then it is usual to arrange the table with exposure as the row variable

and outcome as the column variable, and to display percentages corresponding to

the exposure variable.

In this chapter, we describe how to use a chi-squared (x2) test to examine

whether there is an association between the row variable and the column variable

or, in other words, whether the distribution of individuals among the categories of

one variable is independent of their distribution among the categories of the other.

We explain this for 2� 2 tables, and for larger r� c tables. When the table has

only two rows and two columns the x2 test is equivalent to the z-test for the

difference between two proportions. We also describe the exact test for a 2� 2

table when the sample size is too small for the z-test or the x2 test to be valid.

Finally, we describe the use of a x2 test for trend, for the special case where we

have a binary outcome variable and several exposure categories, which have a

natural order.
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17.2 CHI-SQUARED TEST FOR A 2���2 TABLE

Example 17.1

Table 17.1 shows the data from the influenza vaccination trial described in the last

chapter (see Example 16.1). Since the exposure is vaccination (the row variable),

the table includes row percentages. We now wish to assess the strength of the

evidence that vaccination affected the probability of contracting influenza.

Table 17.1 2� 2 table showing results from an influenza vaccine trial.

(a) Observed numbers.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

(b) Expected numbers.

Influenza

Yes No Total

Vaccine 52.2 187.8 240

Placebo 47.8 172.2 220

Total 100 360 460

The chi-squared test compares the observed numbers in each of the four categ-

ories in the contingency table with the numbers to be expected if there were no

difference in efficacy between the vaccine and placebo. Overall 100/460 people

contracted influenza and, if the vaccine and the placebo were equally effective, one

would expect this same proportion in each of the two groups; that is

100=460� 240 ¼ 52:2 in the vaccine group and 100=460� 220 ¼ 47:8 in the pla-

cebo group would have contracted influenza. Similarly 360=460� 240 ¼ 187:8

and 360=460� 220 ¼ 172:2 would have escaped influenza. These expected

numbers are shown in Table 17.1(b). They add up to the same row and column

totals as the observed numbers. The chi-squared value is obtained by calculating

(observed� expected)2=expected

for each of the four cells in the contingency table and then summing them.

�2 ¼ �
(O� E)2

E
, d:f : ¼ 1 for a 2� 2 table
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This is exactly the same formula as was given for the chi-squared goodness of fit

test, which was described in Chapter 12. The greater the differences between the

observed and expected numbers, the larger the value of x2. The percentage points

of the chi-squared distribution are given in Table A5 in the Appendix. The values

depend on the degrees of freedom, which equal 1 for a 2� 2 table (the number of

rows minus 1 multiplied by the number of columns minus 1). In this example:

�2 ¼ (20� 52:2)2

52:2
þ (80� 47:8)2

47:8
þ (220� 187:8)2

187:8
þ (140� 172:2)2

172:2

¼ 19:86þ 21:69þ 5:52þ 6:02 ¼ 53:09

53.09 is greater than 10.83, the 0.1% point for the chi-squared distribution with

1 degree of freedom so that the P-value for the test is < 0:001. This means that the

probability is less than 0.001, or 0.1%, that such a large observed difference in the

percentages contracting influenza could have arisen by chance, if there was no real

difference between the vaccine and the placebo. Thus there is strong evidence

against the null hypothesis of no effect of the vaccine on the probability of

contracting influenza. It is therefore concluded that the vaccine is effective.

Quick formula

Using our standard notation for a 2� 2 table (see Table 16.1), a quicker formula

for calculating chi-squared on a 2� 2 table is:

�2 ¼ n(d1h0 � d0h1)
2

dhn1n0
, d:f : ¼ 1

In the example,

x2 ¼ 460� (20� 140� 80� 220)2

100� 360� 240� 220
¼ 53:01

which, apart from rounding error, is the same as the value of 53.09 obtained above.

Relation with normal test for the difference between two proportions

The square of the z statistic (normal test) for the difference between two propor-

tions and the chi-squared statistic for a 2� 2 contingency table are in fact

mathematically equivalent (x2 ¼ z2), and the P-values from the two tests are

identical. In Example 16.1 (Section 16.3) the z-test gave a value of �7.281 for

the influenza vaccine data; z2 ¼ (� 7:281)2 ¼ 53:01 which, apart from rounding

error, is the same as the x2 value of 53.09 calculated above.
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We will show below that the chi-squared test can be extended to larger contin-

gency tables. Note that the percentage points given in Table A5 for a chi-squared

distribution with 1 degree of freedom correspond to the two-sided percentage

points presented in Table A2 for the standard normal distribution (see Appendix).

(The concepts of one- and two-sided tests do not extend to chi-squared tests with

larger degrees of freedom as these contain multiple comparisons.)

Continuity correction

The chi-squared test for a 2� 2 table can be improved by using a continuity

correction, often called Yates’ continuity correction. The formula becomes:

�2 ¼ �
(jO� Ej � 0:5)2

E
, d:f : ¼ 1

resulting in a smaller value for x2. jO� Ej means the absolute value of O� E or,

in other words, the value of O� E ignoring its sign.

In the example the value for x2 becomes:

�2 ¼ (32:2� 0:5)2

52:2
þ (32:2� 0:5)2

47:8
þ (32:2� 0:5)2

187:8
þ (32:2� 0:5)2

172:2

¼ 19:25þ 21:02þ 5:35þ 5:84 ¼ 51:46,P < 0:001

compared to the uncorrected value of 53.09.

The rationale of the continuity correction is explained in Figure 15.3, where the

normal and binomial distributions are superimposed. It makes little difference

unless the total sample size is less than 40, or the expected numbers are small.

However there is no analogue of the continuity correction for the Mantel–Haens-

zel and regression analyses described later in this part of the book. When the

expected numbers are very small, then the exact test described in Section 17.3

should be used; see discussion on validity below.

Validity

When the expected numbers are very small the chi-squared test (and the equivalent

z-test) is not a good enough approximation and the alternative exact test for a

2� 2 table should be used (see Section 17.3). Cochran (1954) recommended the

use of the exact test when:

1 the overall total of the table is less than 20, or

2 the overall total is between 20 and 40 and the smallest of the four expected

numbers is less than 5.
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Thus the chi-squared test is valid when the overall total is more than 40, regardless

of the expected values, and when the overall total is between 20 and 40 provided

all the expected values are at least 5.

17.3 EXACT TEST FOR 2��2 TABLES

The exact test to compare two proportions is needed when the numbers in the

2� 2 table are very small; see the discussions concerning the validity of the z-test

to compare two proportions (Section 16.3) and of the chi-squared test for a 2� 2

table (Section 17.2 above). It is most easily described in the context of a particular

example.

Example 17.2

Table 17.2 shows the results from a study to compare two treatment regimes for

controlling bleeding in haemophiliacs undergoing surgery. Only one (8%) of the 13

haemophiliacs given treatment regime A suffered bleeding complications, com-

pared to three (25%) of the 12 given regime B. These numbers are too small for the

chi-squared test to be valid; the overall total, 25, is less than 40, and the smallest

expected value, 1.9 (complications with regime B), is less than 5. The exact test is

therefore indicated.

Table 17.2 Comparison of two treatment regimes for controlling bleeding in

haemophiliacs undergoing surgery.

Bleeding complications

Treatment regime Yes No Total

A (group 1) 1 (d1) 12 (h1) 13 (n1)

B (group 0) 3 (d0) 9 (h0) 12 (n0)

Total 4 (d ) 21 (h) 25 (n)

The exact test is based on calculating the exact probabilities of the observed table

and of more ‘extreme’ tables with the same row and column totals, using the

following formula:

Exact probability of 2� 2 table ¼ d!h!n1!n0!

n!d1!d0!h1!h0!

where the notation is the same as that defined in Table 16.1. The exclamation

mark denotes the factorial of the number and means all the integers from

the number down to 1 multiplied together. (0! is defined to equal 1.) Many calcula-

tors have a key for factorial, although this expression may be easily computed by

cancelling factors in the top and bottom. The exact probability of Table 17.2 is

therefore:
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4!21!13!12!

25!1!3!12!9!
¼ 4� 13� 12� 11� 10

25� 24� 23� 22
¼ 0:2261

(21! being cancelled into 25!, for example, leaving 25� 24� 23� 22).

In order to test the null hypothesis that there is no difference between the

treatment regimes, we need to calculate not only the probability of the observed

table but also the probability that a more extreme table could occur by chance.

Altogether there are five possible tables that have the same row and column totals

as the data. These are shown in Table 17.3 together with their probabilities, which

total 1. The observed case is Table 17.3(b) with a probability of 0.2261.

Table 17.3 All possible tables with the same row and column totals as Table 17.2,

together with their probabilities.

(a) Total (b) Total

0 13 13 1 12 13

4 8 12 3 9 12

Total 4 21 25 Total 4 21 25

P ¼ 0:0391 P ¼ 0:2261

(c) Total (d) Total

2 11 13 3 10 13

2 10 12 1 11 12

Total 4 21 25 Total 4 21 25

P ¼ 0:4070 P ¼ 0:2713

(e) Total

4 9 13

0 12 12

Total 4 21 25

P ¼ 0:0565

There are two approaches to calculating the P-value. In the first approach, more

extreme is defined as less probable; more extreme tables are therefore 17.3(a) and

17.3(e) with probabilities 0.0391 and 0.0565 respectively. The total probability

needed for the P-value is therefore 0:2261þ 0:0391þ 0:0565 ¼ 0:3217, and so

there is clearly no evidence against the null hypothesis of no difference between

the regimes.

P-value (approach I) ¼ probability of observed tableþ probability of

less probable tables

P-value (approach II) ¼ 2� (probability of observed tableþ probability

of more extreme tables in the same direction)
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The alternative approach is to restrict the calculation to extreme tables showing

differences in the same direction as that observed, and then to double the resulting

probability in order to cover differences in the other direction. In this example, the

P-value thus obtained would be twice the sum of the probabilities of Tables

17.3(a) and 17.3(b), namely 2� (0:0391þ 0:2261) ¼ 0:5304. Neither method is

clearly superior to the other, but the second method is simpler to carry out.

Although the two approaches give different results, the choice is unlikely, in

practice, to affect the assessment of whether the observed difference is due to

chance or to a real effect.

17.4 LARGER CONTINGENCY TABLES

So far, we have dealt with 2� 2 tables, which are used to display data classified

according to the values of two binary variables. The chi-squared test can also be

applied to larger tables, generally called r��c tables, where r denotes the number of

rows in the table and c the number of columns.

�2 ¼ �
(O� E)2

E
, d:f : ¼ (r� 1)� (c� 1)

There is no continuity correction or exact test for contingency tables larger than

2� 2. Cochran (1954) recommends that the approximation of the chi-squared test

is valid provided that less than 20% of the expected numbers are under 5 and none

is less than 1. This restriction can sometimes be overcome by combining rows (or

columns) with low expected numbers, providing that these combinations make

biological sense.

There is no quick formula for a general r� c table. The expected numbers

must be computed for each cell. The reasoning employed is the same as that

described above for the 2� 2 table. The general rule for calculating an expected

number is:

E ¼ column total� row total

overall total

It is worth pointing out that the chi-squared test is only valid if applied to the

actual numbers in the various categories. It must never be applied to tables

showing just proportions or percentages.

AQ1
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Example 17.3

Table 17.4(a) shows the results from a survey to compare the principal

water sources in three villages in West Africa. These data were also presented

when we introduced cross-tabulations in Chapter 3. The numbers of households

using a river, a pond, or a spring are given. We will treat the water source as

outcome and village as exposure, so column percentages are displayed. For

example, in village A, 40.0% of households use mainly a river, 36.0% a pond

and 24.0% a spring. Overall, 70 of the 150 households use a river. If there were no

difference between villages one would expect this same proportion of river usage

in each village. Thus the expected numbers of households using a river in villages

A, B and C, respectively, are:

70

150
� 50 ¼ 23:3,

70

150
� 60 ¼ 28:0 and

70

150
� 40 ¼ 18:7

The expected numbers can also be found by applying the general rule. For

example, the expected number of households in village B using a river is:

row total (B)� column total (river)

overall total
¼ 60� 70

150
¼ 28:0

The expected numbers for the whole table are given in Table 17.4(b).

Table 17.4 Comparison of principal sources of water used by households in three

villages in West Africa.

(a) Observed numbers.

Water source

Village River Pond Spring Total

A 20 (40.0%) 18 (36.0%) 12 (24.0%) 50 (100.0%)

B 32 (53.3%) 20 (33.3%) 8 (13.3%) 60 (100.0%)

C 18 (45.0%) 12 (30.0%) 10 (25.0%) 40 (100.0%)

Total 70 (46.7%) 50 (33.3%) 30 (20.0%) 150 (100.0%)

(b) Expected numbers.

Water source

Village River Pond Spring Total

A 23.3 16.7 10.0 50

B 28.0 20.0 12.0 60

C 18.7 13.3 8.0 40

Total 70 50 30 150
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�2 ¼�
(O� E)2

E

¼ (20� 23:3)2=23:3þ (18� 16:7)2=16:7þ (12� 10:0)2=10:0þ
(32� 28:0)2= 28:0þ (18� 18:7)2=18:7þ (20� 20:0)2=20:0þ
(8� 12:0)2=12:0þ (12� 13:3)2=13:3þ (10� 8:0)2=8:0

¼ 3:53

d:f : ¼ (r� 1)� (c� 1) ¼ 2� 2 ¼ 4

The corresponding P-value (derived using a computer) is 0.47, so we can conclude

that there is no evidence of a difference between the villages in the proportion of

households using different water sources. Alternatively, we can see from the

fourth row of Table A5 (see Appendix) that since 3.53 lies between 3.36 and

5.39, the P-value lies between 0.25 and 0.5.

17.5 ORDERED EXPOSURES: x2 TEST FOR TREND

We now consider the special case where we have a binary outcome variable and

several exposure categories, which have a natural order. The standard chi-squared

test for such data is a general test to assess whether there are differences among the

proportions in the different exposure groups. The x2 test for trend, described now,

is a more sensitive test that assesses whether there is an increasing (or decreasing)

trend in the proportions over the exposure categories.

Example 17.4

Table 17.5 shows data from a study that examined the association between obesity

and age at menarche in women. The outcome was whether the woman was aged

< 12 years at menarche (event D) or aged > 12þ years (event H). The exposure,

obesity, is represented by triceps skinfold, categorised into three groups. Although

it is conventional that the exposure variable is the row variable, this is not an

absolute rule. For convenience, we have not followed this convention, and have

Table 17.5. Relationship between triceps skinfold and early menarche. Data from a study on obesity in women

(Beckles et al. (1985) International Journal of Obesity 9: 127–35).

Triceps skinfold group

Age at menarche Small Intermediate Large Total

< 12 years (D) 15 (8.8%) 29 (12.8%) 36 (19.4%) 80

12þ years (H) 156 (91.2%) 197 (87.2%) 150 (80.6%) 503

Total 171 (100%) 226 (100%) 186 (100%) 583

Exposure group score (x) 0 1 2

Odds of early menarche 0.10 (0.06 to 0.16) 0.15 (0.10 to 0.22) 0.24 (0.17 to 0.35)

Log odds �2.34 (�2.87 to�1.81) �1.92 (�2.31 to�1.53) �1.43 (�1.79 to�1.06)
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Fig. 17.1 Log odds of early menarche according to skinfold thickness group.

presented the exposure in the columns and the outcome in the rows. It can be seen

that the proportion of women who had experienced early menarche increased with

triceps skinfold size. This can be examined using the x2 test for trend.

The first step is to assign scores to the exposure groups. The usual choice is simply

to number the columns 0, 1, 2, etc., as shownhere (or equivalently 1, 2, 3, etc.). This is

equivalent to assuming that the log odds goes up (or down) by equal amounts

between the exposure groups, or in other words that there is a linear relation-

ship between the two. The odds and log odds of early menarche are shown below

the exposure scores, and the log odds with 95% confidence intervals are plotted in

Figure 17.1. It is clear that the assumption of a linear increase in log odds, with

exposure group is reasonable. The difference in log odds is (�1:92� �2:34) ¼ 0:42

between groups 1 and 0, and (�1:43� �1:92) ¼ 0:49 between groups 2 and 1.

Another possibility would have been to use the means or medians of the triceps

skinfold measurements in each group. The assumption here would be a linear

relationship between log odds and triceps skinfold measurement. The two ap-

proaches will give similar results if the differences between the means (or medians)

are similar between the triceps skinfold groups.

The next step is to calculate three quantities for each exposure group in the table

and to sum the results of each. These are:

1 dx, the product of the observed number, d, with outcome D, and the exposure

group score, x;

2 nx, the product of the total, n, in the exposure group and its score, x; and

3 nx2, the product of the total, n, in the exposure group and the square of its

score, x2.
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UsingN to denote the overall total and O the total observed number of events (the

total of the top row), we then calculate:

U ¼ �(dx)� O

N
�(nx) and V ¼ O(N �O)

N2(N � 1)
[N�(nx2)� (�nx)2]

The increase in log odds ratio per group is estimated by U/V, with standard error

(
p

1=V ). The formula for the chi-squared statistic is:

x2trend ¼ U2

V
, d:f : ¼ 1

This tests the null hypothesis that the linear increase in log odds per exposure

group is zero.

There are various different forms for this test, most of which are algebraically

equivalent. The only difference is that in some forms (N � 1) is replaced by N in

the calculation of V. This difference is unimportant.

Example 17.4 (continued)

The calculations for the data presented in Table 17.5 are as follows:

�(dx) ¼ 15� 0þ 29�1þ 36�2 ¼ 101

�(nx) ¼ 171�0þ 226�1þ 186�2 ¼ 598

�(nx2) ¼ 171�0þ 226�1þ 186�4 ¼ 970

O ¼ 80, N ¼ 583, N �O ¼ 503

U ¼ 101� 80

583
� 598

� �
¼ 18:9417

V ¼ 80� 503

5832 � 582

� �
� (583� 970� 5982) ¼ 42:2927

The increase in log odds ratio per group is U=V ¼ 0:445: approximately an

average of the differences between groups 1 and 0, and 2 and 1 (see above). Its

standard error is (1=V )
p ¼ 0:154 and the 95% CI (derived in the usual way) is

0.146 to 0.749. This converts to an odds ratio per exposure group of 1.565 (95% CI

1.158 to 2.115). The chi-squared statistic is:

x2trend ¼ (18:9417)2

42:2927
¼ 8:483, d:f : ¼ 1, P ¼ 0:0036:
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There is therefore strong evidence that the odds of early menarche increased with

increasing triceps skinfold.

This is a simple example of a dose–response model for the association between an

exposure and a binary outcome. We show in Chapter 19 that a logistic regression

model for this association gives very similar results. Note that the difference

between the standard x2 value and the trend test x2 value provides a chi-squared

value with (c� 2) degrees of freedom to test for departures from linear trend, where

c is the number of exposure groups. Such tests are described in more detail, in the

context of regression modelling, in Section 29.6.
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18.1 INTRODUCTION

Previous chapters in this part of the book have presented methods to examine the

association between a binary outcome and two or more exposure (or treatment)

groups. We have used confidence intervals and P-values to assess the likely size of

the association, and the evidence that it represents a real difference in disease risk

between the exposure groups. However, before attributing any difference in

outcome between the exposure groups to the exposure itself, it is important to

examine whether the exposure–outcome association has been affected by other

factors that differ between the exposure groups and which also affect the outcome.

Such factors are said to confound the association of interest. Failure to control for

them can lead to confounding bias. This fundamental problem is illustrated by an

example in the next section.

In this chapter, we describe the Mantel–Haenszel method that uses stratification

to control for confounding when both the exposure and outcome are binary

variables. In Chapter 11, on multiple regression for the analysis of numerical

outcomes, we briefly described how regression models can be used to control for

confounding. We will explain this in much more detail in Chapter 20 in the context

of logistic regression for the analysis of binary outcomes.

18.2 CONFOUNDING

Example 18.1

Table 18.1 shows hypothetical results from a survey carried out to compare the

prevalence of antibodies to leptospirosis in rural and urban areas of the West

Indies, with rural residence as the exposure of interest.

CHAPTER 18

Controlling for confounding:
stratification

18.1 Introduction

18.2 Confounding

18.3 Stratification to control for

confounding

18.4 Mantel–Haenszel method for

2� 2 tables

Mantel–Haenszel estimate of the

odds ratio controlled for confounding

Standard error and confidence

interval of the Mantel–Haenszel OR

Mantel–Haenszel x2 test

Validity of Mantel–Haenszel

methods

18.5 Effect modification

Testing for effect modification

When does effect modification

matter?

18.6 Stratification on more than one

confounding variable



Table 18.1 Results of a survey of the prevalence of leptospirosis in rural and urban areas of the

West Indies.

Leptospirosis antibodies

Type of area Yes No Total Odds

Rural 60 (30%) 140 (70%) 200 0.429

Urban 60 (30%) 140 (70%) 200 0.429

Total 120 280 400

Since the numbers of individuals with and without antibodies are identical in

urban and rural areas, the odds ratio is exactly 1 and we would conclude that

there is no association between leptospirosis antibodies and urban/rural residence.

However, Table 18.2 shows that when the same sample is subdivided according to

gender, the risk of having antibodies is higher in rural areas for both males and

females. The disappearance of this effect when the genders are combined is caused

by a combination of two factors:

1 Females in both areas are much less likely than males to have antibodies.

2 The samples from the rural and urban areas have different gender compositions.

The proportion of males is 100/200 (50%) in the urban sample but only 50/200

(25%) in the rural sample.

Table 18.2 Association between antibodies to leptospirosis (the outcome variable) and rural/

urban residence (the exposure variable), separately in males and females.

(a) Males.

Antibodies

Type of area Yes No Total Odds

Rural 36 (72%) 14 (28%) 50 2.57

Urban 50 (50%) 50 (50%) 100 1.00

Total 86 64 150

OR ¼ 2:57=1 ¼ 2:57 (95% CI ¼ 1:21 to 5.45), P ¼ 0:011

(b) Females.

Antibodies

Type of area Yes No Total Odds

Rural 24 (16%) 126 (84%) 150 0.19

Urban 10 (10%) 90 (90%) 100 0.11

Total 34 216 250

OR ¼ 0:19=0:11 ¼ 1:71 (95% CI ¼ 0:778 to 3.78), P ¼ 0:176
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Gender is said to be a confounding variable because it is related both to the

outcome variable (presence of antibodies) and to the exposure groups being

compared (rural and urban). Ignoring gender in the analysis leads to a bias in

the results. Analysing males and females separately provides evidence of a differ-

ence between the rural and urban areas for males but not for females (Table 18.2).

However, we would like to be able to combine the information in the two tables to

estimate the association between leptospirosis antibodies and urban/rural resi-

dence, having allowed for the association of each of these with gender. We describe

how to do this in the next section.

In general confounding occurs when a confounding variable, C, is associatedwith

the exposure, E, and also influences the disease outcome, D. This is illustrated in

Figure 18.1. We are interested in the E–D association, but the E–C and C–D

associations may bias our estimate of the E–D association unless we take them into

account in our analysis.

In our example, failure to allow for gender masked an association with urban/

rural residence. In other situations similar effects could suggest a difference or

association where none exists, or could even suggest a difference the opposite way

around to one that does exist. For example, in the assessment of whether persons

suffering from schistosomiasis have a higher mortality rate than uninfected per-

sons, it would be important to take age into account since both the risk of dying

and the risk of having schistosomiasis increase with age. If age were not allowed

for, schistosomiasis would appear to be associated with increased mortality, even

if it were not, as those with schistosomiasis would be on average older and

therefore more likely to die than younger uninfected persons.

Note that a variable that is part of the causal chain leading from E to D is not a

confounder. That is, if E affects C, which in turn affects D, then we should not

adjust for the effect of C in our analysis of the E–D association (unless we wish to

estimate the effect of E on D which is not caused by the E–C association). For

example, even though smoking during pregnancy is related both to socio-economic

status and the risk of having a low birth-weight baby, it would be incorrect to

control for it when examining socio-economic differences in the risk of low birth

Fig. 18.1 Situation in which C may confound the affect of the E–D association.
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weight, since it is on the causal path. Controlling for it in the analysis would lead

to an underestimate of any socio-economic differences in risk. These issues are

discussed in more detail in Section 38.5.

Note that in clinical trials (and other experimental studies), randomization is used

to allocate individuals to the different treatment groups (see Chapter 34). Provided

that such trials are large enough to ensure that chance differences between the

groups are small, the problem of confounding is thus avoided, because the treat-

ment and control groups will be similar in all respects other than those under trial.

18.3 STRATIFICATION TO CONTROL FOR CONFOUNDING

One way to solve the problem of confounding in the analysis is to restrict

comparisons to individuals who have the same value of the confounding variable

C. Among such individuals associations with C cannot bias the E–D association,

because there is no variation in C. Thus in Example 18.1 above, the association

between leptospirosis antibodies and urban/rural residence was examined separ-

ately for males and females. The subsets defined by the levels of C are called strata,

and so this process is known as stratification. It leads to separate estimates of the

odds ratio for the E–D association in each stratum. There is no reason why C

should be a binary variable: for example we might allow for the confounding

effects of age by splitting a sample of adults aged 15 to 50 years into seven five-

year age groups.

Unless it appears that the association between the exposure and outcome varies

markedly between the strata (see Section 18.5), we will usually wish to combine the

evidence from the separate strata and summarize the association, controlling for

the confounding effect of C. The simplest approach would be to calculate an

average of the estimates of the odds ratios of the E–D association from the

different strata. However, we know that, in general, strata in which there are

more individuals will tend to have a more precise estimate of the association (i.e.

one with a smaller standard error) than strata in which there are fewer individuals.

We therefore calculate a weighted average, in which greater weight is given to the

strata with more data.

Weighted average OR ¼ �(wi �ORi)

�wi

where ORi is the odds ratio in stratum i, and wi is the weight it is given in the

calculation of the weighted average odds ratio. This is also known as the summary

odds ratio. Note that in a weighted average, the weights (wi) are always positive

numbers. The larger the value of wi, the more ORi influences the weighted average

OR. Also note that if all the weights were equal to 1, then the weighted average OR

would be equal to the mean OR.

The most widely used weighting scheme is that proposed by Mantel and

Haenszel, as described in the next section.
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18.4 MANTEL–HAENSZEL METHOD FOR 2� 2 TABLES

Mantel–Haenszel methods can be used to combine the evidence from the separate

strata, and summarize the association, controlling for the confounding effect of C.

We will describe their use when both the outcome and exposure are binary

variables. In this case, the stratified data will consist of c separate 2� 2 tables,

where c is the number of different values the confounding variable can take. Table

18.3 shows the notation we will use for the 2� 2 table in stratum i. It is exactly the

same as that in Table 16.1 for a single 2� 2 table, but with the subscript i added,

to refer to the stratum i. The estimate of the odds ratio for stratum i is:

ORi ¼ d1i � h0i

d0i � h1i

In Table 18.2, gender is the confounding variable; c ¼ 2, and we have two tables of

the association between rural/urban residence and presence of leptospirosis anti-

bodies, one for males and one for females.

Table 18.3 Notation for the 2� 2 table in stratum i.

Outcome

Experienced event:

D (Disease)

Did not experience event:

H (Healthy) Total

Group 1 (exposed) d1i h1i n1i
Group 0 (unexposed) d0i h0i n0i

Total di hi ni

Mantel–Haenszel estimate of the odds ratio controlled

for confounding

The Mantel–Haenszel estimate of the summary odds ratio, which we shall denote

as ORMH , is a weighted average of the odds ratios from the separate strata, with

weights:

wi ¼ d0i � h1i

ni

Since the numerator of the weight is the same as the denominator of the odds

ratio (ORi) in stratum i, wi �ORi ¼ (d1i � h0i)=ni. Using these weights therefore

leads to the following formula for the Mantel–Haenszel estimate of the odds

ratio:
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ORMH ¼ �(wi �ORi)

�wi

¼
�
d1i � h0i

ni

�
d0i � h1i

ni

Following the notation of Clayton and Hills (1993), this can alternatively be

written as:

ORMH ¼ Q=R, where

Q ¼ �
d1i � h0i

ni
and R ¼ �

d0i � h1i

ni

Example 18.1 (continued)

Table 18.4 shows the results of the calculations required to derive the Mantel–

Haenszel odds ratio combining the data presented separately for males and females

in Table 18.2 on the association between antibodies to leptospirosis (the outcome

variable) and rural/urban residence (the exposure variable). This Mantel–Haenszel

estimate of the odds ratio controlling for gender equals:

ORMH ¼ Q

R
¼ 20:64

9:71
¼ 2:13

After controlling for the confounding effect of gender, the odds of leptospirosis

antibodies are more than doubled in rural compared to urban areas. The summary

OR (2.13) is, as expected, in between the odds ratios from the two strata, but is

marginally closer to the OR for females (1.71) than it is to the OR for males (2.57).

This is because the weight allocated to the estimate for females (5.04) is a little

higher than that for males (4.67).

Table 18.4 Calculations required for deriving the Mantel–Haenszel OR, with associated confidence interval and P-

value.

Stratum i ORi wi ¼ d0i � h1i
ni

wiORi ¼ d1i � h0i
ni

Vi d1i E1i

Males ( i ¼ 1) 2.57
50� 14

150
¼ 4:67 12.00 8.21 36 28.67

Females ( i ¼ 2) 1.71
10� 126

250
¼ 5:04 8.64 7.08 24 20.40

Total R ¼ 9:71 Q ¼ 20:64 V ¼ 15:29 O¼60 E ¼ 49:07
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Standard error and confidence interval of the Mantel–Haenszel OR

The 95% confidence interval for ORMH is derived using the standard error of

logORMH , denoted by s:e:MH , in exactly the same way as that for a single odds

ratio (see Section 16.7):

95% CI ¼ ORMH=EF to ORMH � EF,

where the error factor EF ¼ exp(1:96� s:e:MH )

The simplest formula for the standard error of log ORMH (Clayton and Hills

1993) is:

s:e:MH ¼ [V=(Q� R)]
p

,

Q ¼ �
d1i � h0i

ni
, R ¼ �

d0i � h1i

ni
, V ¼ �Vi ¼ �

di � hi � n0i � n1i

n2i � (ni � 1)

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event, i.e. the variances of the d1i’s. Note

that the formula for the varianceVi of d1i for stratum i is based solely on themarginal

totals of the table. It therefore gives the same value for each of the four cells in the

table, implying they have equal variances. This is the case because oncewe knowone

cell value, we can deduce the others from the appropriate marginal totals.

Example 18.1 (continued)

Using the results of the calculations forQ,R andV shown inTable 18.4,we find that:

s:e:MH ¼ [V=(Q� R)]
p ¼ [15:287=(20:640� 9:71)] ¼ 0:276

p

so that EF ¼ exp(1:96� 0:276) ¼ 1:72, ORMH=EF ¼ 2:13=1:72 ¼ 1:24 and

ORMH� EF ¼ 2:13� 1:72 ¼ 3:65. The 95% CI is therefore:

95% CI for ORMH ¼ 1:24 to 3:65

With 95%confidence, the odds of leptospirosis is between 1.24 and 3.65 times higher

in rural than urban areas, having controlled for the confounding effect of gender.

Mantel–Haenszel x2 test

Finally, we test the null hypothesis that ORMH ¼ 1 by calculating the Mantel–

Haenszel x2 test statistic:
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�2
MH ¼ �d1i � �E1ið Þ2

�Vi

¼ O� Eð Þ2
V

¼ U2

V
; d:f : ¼ 1

This is based on a comparison in each stratum of the number of exposed individ-

uals observed to have experienced the event (d1i), with the expected number in this

category (E1i) if there were no difference in the risks between exposed and unex-

posed. The expected numbers are calculated in exactly the same way as that

described for the standard x2 test in Chapter 17:

E1i ¼ di � n1i

ni

The formula has been simplified by writingO for the sum of the observed numbers,

E for the sum of the expected numbers and U for the difference between them:

O ¼ �d1i, E ¼ �E1i and U ¼ O� E

Note that �2
MH has just 1 degree of freedom irrespective of how many strata are

summarized.

Example 18.1 (continued)

The calculations for the data presented in Table 18.2 are laid out in Table 18.4. A

total O ¼ 60 persons in rural areas had antibodies to leptospirosis compared with

an expected total of E ¼ 49:07, based on assuming no difference in prevalence

between rural and urban areas. Thus the Mantel–Haenszel x2 statistic is:

�2
MH ¼ U2

V
¼ (60� 49:07)2

15:29
¼ 7:82, d:f : ¼ 1, P ¼ 0:0052

After controlling for gender, there is good evidence of an increase in the preva-

lence of antibodies to leptospirosis among those living in rural compared to urban

areas.

It may seem strange that this test appears to be based entirely on the observed and

expected values of d1i and not also on the other cells in the tables. This is not really

the case, however, since once the value of d1i is known the values of h1i, d0i and h0i

can be calculated from the totals of the table. If the Mantel–Haenszel test is
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applied to a single 2� 2 table, the x2 value obtained is close to, but not exactly

equal to, the standard x2 value. It is slightly smaller, equalling (n� 1)=n times the

standard value. This difference is negligible for values of n of 20 or more, as

required for the validity of the chi-squared test.

Validity of Mantel–Haenszel methods

The Mantel–Haenszel estimate of the odds ratio is valid even for small sample

sizes. However, the formula that we have given for the standard error of log

ORMH will be inaccurate if the overall sample size is small. A more accurate

estimate, which is more complicated to calculate, was given by Robins et al.

(1986).

The validity of the Mantel–Haenszel x2 test can be assessed by the following

‘rule of 5’. Two additional values are calculated for each table and summed over

the strata. These are:

1 min(di, n1i), that is the smaller of di and n1i, and

2 max(0, n1i � hi), which equals 0 if n1i is smaller than or equal to hi, and

(n1i � hi), if n1i is larger than hi.

Both sums must differ from the total of the expected values, E, by at least 5 for the

test to be valid. The details of these calculations for the leptospirosis data are

shown in Table 18.5. The two sums, 84 and 0, both differ from 70.933 by 5 or

more, validating the use of the Mantel–Haenszel x2 test.

Table 18.5 Rule of 5, to check validity.

Stratum i Min(di , n1i), Max(0, n1i � hi) Ei

Males (i ¼ 1) Min(86, 50) ¼ 50 Max(0, �14) ¼ 0 57.333

Females (i ¼ 2) Min(34, 150) ¼ 34 Max(0, �116) ¼ 0 13.600

Total 84 0 70.933

18.5 EFFECT MODIFICATION

When we use Mantel–Haenszel methods to control for confounding we

are making an important assumption; namely that the Exposure–Disease (E–D)

association is really the same in each of the strata defined by the levels of

the confounding variable, C. If this is not true, then it makes little sense

to combine the odds ratios (the estimates of the effect of E on D) from

the different strata. If the effect of E on D varies according to the level of

C then we say that C modifies the effect of E on D: in other words there

is effect modification. A number of different terms are used to describe effect

modification:
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� Effect modification: C modifies the effect of E on D.

� Interaction: there is interaction between the effects of E and C (on D).

� Heterogeneity between strata: the estimates of the E–D association differ

between the strata.

Similarly, you may see tests for effect modification described as either tests for

interaction or tests of homogeneity across strata.

Testing for effect modification

The use of regression models to examine effect modification (or equivalently

interaction) is discussed in Section 29.5. This is the most flexible

approach. When we are using Mantel–Haenszel methods to control for con-

founding, an alternative is to use a x2 test for effect modification. This is

equivalently, and more commonly, called a x2 test of heterogeneity. Under

the null hypothesis of no effect modification, all the individual stratum odds

ratios would equal the overall summary odds ratio. In other words:

ORi ¼ d1i � h0i

d0i � h1i
¼ ORMH

Multiplying both sides of the equation by d0i � h1i and rearranging shows that,

under the null hypothesis of no effect modification, the following set of differences

would be zero:

(d1i � h0i �ORMH � d0i � h1i) ¼ 0

The x2 test of heterogeneity is based on a weighted sum of the squares of these

differences:

�2 ¼ �
d1i � h0i �ORMH � d0i � h1ið Þ2

ORMH � Vi � n2i
, d:f : ¼ c� 1

where Vi is as defined in Section 18.4, and c is the number of strata. The greater

the differences between the stratum-specific odds ratios and ORMH , the larger will

be the heterogeneity statistic.

Example 18.1 (continued)

In our example, the odds ratios were 2.57 (95% CI 1.21 to 5.45) in males and 1.71

(95% CI 0.778 to 3.78) in females. Given that the confidence intervals easily

overlapped, we would not expect to find evidence of effect modification (i.e. that

the OR in males is different to the OR in females). The calculations needed to
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Table 18.6 Calculations required for the x2 test of heterogeneity.

Stratum

( i )
d1i � h0i � ORMH � d0i � h1ið Þ2 ORMH � Vi � n2i

d1i � h0i � ORMH � d0i � h1ið Þ2
ORMH � Vi � n2i

Males (36� 50� 2:13� 50� 14)2 2:13� 8:21� 1502 97056:2

392737
¼ 0:247(i ¼ 1) ¼ 97056:2 ¼ 392737

Females (24� 90� 2:13� 10� 126)2 2:13� 7:08� 1502
269601

940728
¼ 0:287(i ¼ 2) ¼ 269601 ¼ 940728

Total 0.534

apply the formula above are given in Table 18.6. The resulting value of the x2 test

of heterogeneity is:

x2 ¼ 0:534, d:f : ¼ 1, P ¼ 0:470

There is thus no evidence that gender modifies the association between rural/

urban residence and leptospirosis antibodies.

When does effect modification matter?

As discussed above, Mantel–Haenszel methods assume that the true E–

D odds ratio is the same in each stratum, and that the only reason

for differences in the observed odds ratios between strata is sampling

variation. We should therefore check this assumption, by applying the

x2 test for heterogeneity, before reporting Mantel–Haenszel odds ratios, confi-

dence intervals and P-values. This test has low power (see Chapter 35): it is

unlikely to yield evidence for effect modification unless there are large differences

between strata. A large P-value does not therefore establish the absence of

effect modification. In fact, as the true odds ratios are never likely to be

exactly the same in each stratum, effect modification is always present to

some degree. Most researchers would accept, however, that minor effect

modification should be ignored in order to simplify the presentation of the

data.

The following box summarizes a practical approach to examining for effect

modification, and recommends how analyses should be presented when evidence

for effect modification is found. These issues are also discussed in Section 29.5 and

Chapter 38, which describes strategies for data analysis.
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BOX 18.1 A PRACTICAL APPROACH TO EXAMINING FOR

EFFECT MODIFICATION

1 Always examine the pattern of odds ratios in the different strata: how

different do they look, and is there any trend across strata?

2 If there is clear evidence of effect modification, and substantial differences

in the E–D association between strata, report this and report the E–D

association separately in each stratum.

3 If there is moderate evidence of effect modification, use Mantel–Haenszel

methods but in addition report stratum-specific estimates of the E–D

association.

4 If there is no evidence of effect modification, report this and use Mantel–

Haenszel methods.

18.6 STRATIFICATION ON MORE THAN ONE CONFOUNDING

VARIABLE

It is possible to apply the Mantel–Haenszel methods to control simultaneously for

the effects of two or more confounders. For example, we can control additionally

for differences in age distribution between the urban and rural areas by grouping

our population into four age groups and forming the 2� 4 ¼ 8 strata correspond-

ing to all combinations of gender and age group. The drawback to this approach is

that the number of strata increases rapidly as we attempt to control for the effects

of more confounding variables, so that it becomes impossible to estimate

the stratum-specific odds ratios (although the Mantel-Haenszel OR can still be

derived).

The alternative is to use regression models. The use of logistic regression models

to control for confounding is considered in detail in Chapter 20.
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19.1 INTRODUCTION

In this chapter we introduce logistic regression, the method most commonly used

for the analysis of binary outcome variables. We show how it can be used to

examine the effect of a single exposure variable, and in particular, how it can be

used to:

� Compare a binary outcome variable between two exposure (or treatment)

groups.

� Compare more than two exposure groups.

� Examine the effect of an ordered or continuous exposure variable.

We will see that it gives very similar results to the methods for analysing odds ratios

described in Chapters 16, 17 and 18, and is an alternative to them. We will also see

how logistic regression provides a flexible means of analysing the association

between a binary outcome and a number of exposure variables. In the next

chapter, we will explain how it is used to control for confounding. We will also

briefly describe the regression analysis of risk ratios, and methods for the analysis

of categorical outcomes with more than two levels.

We will explain the principles of logistic regression modelling in detail in the

next section, in the simple context of comparing two exposure groups. In particu-

lar, we will show how it is based on modelling odds ratios, and explain how to

interpret the computer output from a logistic regression analysis. We will then

introduce the general form of the logistic regression equation, and explain where

the name ‘logistic’ comes from. Finally we will explain how to fit logistic regres-

sion models for categorical, ordered or continuous exposure variables.

Links between multiple regression models for the analysis of numerical out-

comes, the logistic regression models introduced here, and other types of regres-

sion model introduced later in the book, are discussed in detail in Chapter 29.
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19.2 LOGISTIC REGRESSION FOR COMPARING TWO EXPOSURE

GROUPS

Introducing the logistic regression model

We will start by showing, in the simple case of two exposure groups, how logistic

regression models the association between binary outcomes and exposure vari-

ables in terms of odds ratios. Recall from Chapter 16 that the exposure odds ratio

(OR) is defined as:

Exposure odds ratio ¼ Odds in exposed group

Odds in unexposed group

If we re-express this as:

Odds in exposed ¼ Odds in unexposed� Exposure odds ratio

then we have the basis for a simple model for the odds of the outcome, which

expresses the odds in each group in terms of two model parameters. These are:

1 The baseline odds. We use the term baseline to refer to the exposure group

against which all the other groups will be compared. When there are just two

exposure groups as here, then the baseline odds are the odds in the unexposed

group. We will use the parameter name ‘Baseline’ to refer to the odds in the

baseline group.

2 The exposure odds ratio. This expresses the effect of the exposure on the odds of

disease. We will use the parameter name ‘Exposure’ to refer to the exposure

odds ratio.

Table 19.1 shows the odds in each of the two exposure groups, in terms of the

parameters of the logistic regression model.

Table 19.1 Odds of the outcome in terms of the parameters of a logistic regression model comparing two exposure

groups.

Exposure group Odds of outcome

Odds of outcome, in terms of

the parameter names

Exposed (group 1) Baseline odds� exposure odds ratio Baseline� Exposure

Unexposed (group 0) Baseline odds Baseline

The logistic regression model defined by the two equations for the odds of the

outcome shown in Table 19.1 can be abbreviated to:

Odds ¼ Baseline� Exposure
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Since the two parameters in this model multiply together, the model is said to be

multiplicative. This is in contrast to the multiple regression models described in

Chapter 11, in which the effects of different exposures were additive. If there were

two exposures (A and B), the model would be:

Odds ¼ Baseline� Exposure(A)� Exposure(B)

Thus if, for example, exposure A doubled the odds of disease and exposure B

trebled it, a person exposed to both would have a six times greater odds of disease

than a person in the baseline group exposed to neither. We describe such models in

detail in the next chapter.

Example 19.1

All our examples of logistic regression models are based on data from a study of

onchocerciasis (‘river blindness’) in Sierra Leone (McMahon et al. 1988, Trans

Roy Soc Trop Med Hyg 82; 595–600), in which subjects were classified according

to whether they lived in villages in savannah (grassland) or rainforest areas. In

addition, subjects were classified as infected if microfilariae (mf) of Onchocerciasis

volvulus were found in skin snips taken from the iliac crest. The study included

persons aged 5 years and above. Table 19.2 shows that the prevalence of micro-

filarial infection appears to be greater for individuals living in rainforest areas

compared to those living in the savannah; the associated odds ratio is

2:540=1:052 ¼ 2:413.

We will now show how to use logistic regression to examine the association

between area of residence andmicrofilarial infection in these data. Touse a computer

package to fit a logistic regression model, it is necessary to specify just two items:

1 The name of the outcome variable, which in this case is mf. The required

convention for coding is to code the outcome event (D) as 1, and the absence

of the outcome event (H) as 0. The variable mf was therefore coded as 0 for

uninfected subjects and 1 for infected subjects.

2 The name of the exposure variable(s). In this example, we have just one exposure

variable, which is called area. The required convention for coding is that used

throughout this book; thus area was coded as 0 for subjects living in savannah

areas (the baseline or ‘unexposed’ group) and 1 for subjects living in rainforest

areas (the ‘exposed’ group).

Table 19.2 Numbers and percentages of individuals infected with onchocerciasis according to their area of

residence, in a study of 1302 individuals in Sierra Leone.

Microfilarial infection

Area of residence Yes No Total Odds of infection

Rainforest d1 ¼ 541 (71.7%) h1 ¼ 213 (28.3%) 754 541=213 ¼ 2:540

Savannah

(baseline group)

d0 ¼ 281 (51.3%) h0 ¼ 267 (48.7%) 548 281=267 ¼ 1:052

Total 822 480 1302
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Table 19.3 First ten lines of the computer dataset

from the study of onchocerciasis.

id mf Area

1 1 0

2 1 1

3 1 0

4 0 1

5 0 0

6 0 1

7 1 0

8 1 1

9 1 1

10 1 1

The first ten lines of the dataset, when entered on the computer, are shown in

Table 19.3. For example, subject number 1 lived in a savannah area and was

infected, number 2 lived in a rainforest area and was also infected, whereas subject

number 4 lived in a rainforest area but was not infected.

The logistic regression model that will be fitted is:

Odds of mf infection ¼ Baseline�Area

Its two parameters are:

1 baseline: the odds of infection in the baseline group (subjects living in savannah

areas); and

2 area: the odds ratio comparing odds of infection among subjects living in

rainforest areas with that among those living in savannah areas.

Table 19.4 shows the computer output obtained from fitting this model.

The two rows in the output correspond to the two parameters of the logistic

regression model; area is our exposure of interest, and the constant term refers

to the baseline group. The same format is used for both parameters, and is based

on what makes sense for interpretation of the effect of exposure. This means that

some of the information presented for the constant (baseline) parameter is not of

interest.

Table 19.4 Logistic regression output for the model relating odds of infection to area of

residence, in 1302 subjects participating in a study of onchocerciasis in Sierra Leone.

Odds ratio z P > jzj 95% CI

Area 2.413 7.487 0.000 1.916 to 3.039

Constant 1.052 0.598 0.550 0.890 to 1.244
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The column labelled ‘Odds ratio’ contains the parameter estimates:

1 For the first row, labelled ‘area’, this is the odds ratio (2.413) comparing

rainforest (area 1) with savannah (area 0). This is identical to the odds ratio

which was calculated directly from the raw data (see Table 19.3).

2 For the second row, labelled ‘constant’, this is the odds of infection in the

baseline group (1:052 ¼ odds of infection in the savannah area, see Table

19.3). As we will see, this apparently inconsistent labelling is because output

from regression models is labelled in a uniform way.

The remaining columns present z statistics, P-values and 95% confidence intervals

corresponding to the model parameters. The values for area are exactly the same

as those that would be obtained by following the procedures described in Section

16.7 for the calculation of a 95% confidence interval for an odds ratio, and the

associated Wald test. They will be explained in more detail in the explanation of

Table 19.5 below.

The logistic regression model on a log scale

As described inChapter 16, confidence intervals for odds ratios are derived by using

the standard error of the log odds ratio to calculate a confidence interval for the

log odds ratio. The results are then antilogged to express them in terms of the

original scale. The same is true for logistic regression models; they are fitted

on a log scale. Table 19.5 shows the two equations that define the logistic regres-

sion model for the comparison of two exposure groups. The middle column

shows the model for the odds of the outcome, as described above. Using the

rules of logarithms (see p. 156, Section 16.5), it follows that corresponding equa-

tions on the log scale for the log of the odds of the outcome are as shown in the right-

hand column. Note that as in the rest of the book all logs are to the base e (natural

logarithms) unless they are explicitly denoted as logs to the base 10 by log10 (see

Section 13.2).

Table 19.5 Equations defining the logistic regression model for the comparison of two exposure groups.

Exposure group Odds of outcome Log odds of outcome

Exposed (group 1) Baseline odds� exposure OR Log(baseline odds)þ log(exposure OR)

Unexposed (group 0) Baseline odds Log(baseline odds)

Using the parameter names introduced earlier in this section, the logistic regres-

sion model on the log scale can be written:

log(Odds) ¼ log(Baseline)þ log(Exposure odds ratio)
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In practice, we abbreviate it to:

log(Odds) ¼ Baseline þ Exposure

since it is clear from the context that output on the log scale refers to log odds and

log odds ratios. Note that whereas the exposure effect on the odds ratio scale is

multiplicative, the exposure effect on the log scale is additive.

Example 19.1 (continued)

In this example, the model on the log scale is:

log(Odds of mf infection) ¼ BaselineþArea

where

1 baseline is the log odds of infection in the savannah areas; and

2 area is the log odds ratio comparing the odds of infection in rainforest areas with

that in savannah areas.

Table 19.6 shows the results obtained on the log scale, for this model. We will

explain each item in the table, and then discuss how the results relate to those on

the odds ratio scale, shown in Table 19.4.

Table 19.6 Logistic regression output (log scale) for the association between microfilarial infection

and area of residence.

Coefficient s.e. z P > jzj 95% CI

Area 0.881 0.118 7.487 0.000 0.650 to 1.112

Constant 0.0511 0.0854 0.598 0.550 �0.116 to 0.219

1 The two rows in the output correspond to the terms in the model; area is our

exposure of interest, and as before the constant term corresponds to the baseline

group.

2 The first column gives the results for the regression coefficients (corresponding

to the parameter estimates on a log scale):

(a) For the row labelled ‘area’, this is the log odds ratio comparing rainforest

with savannah. It agrees with what would be obtained if it were calculated

directly from Table 19.3, and with the value in Table 19.4:

logOR ¼ log(2:540=1:052) ¼ log(2:413) ¼ 0:881

(b) For the row labelled ‘constant’, this is the log odds in the baseline group (the

group with exposure level 0), i.e. the log odds of microfilarial infection in

the savannah:
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log odds ¼ log(281=267) ¼ log(1:052) ¼ 0:0511:

3 The second column gives the standard error(s) of the regression coefficient(s). In

the simple example of a binary exposure variable, as we have here, the standard

errors of the regression coefficients are exactly the same as those derived using

the formulae given in Chapter 16. Thus:

(a) s.e.(logOR comparing rainforest with savannah) is:

(1=d1 þ 1=h1 þ 1=d0 þ 1=h0)
p ¼ (1=541þ 1=213þ 1=281þ 1=267)

p

¼ 0:118

(b) s.e.(log odds in savannah) is:

(1=d0 þ 1=h0)
p ¼ (1=281þ 1=267)

p ¼ 0:0854

4 The 95% confidence intervals for the regression coefficients in the last column

are derived in the usual way.

(a) For the logOR comparing rainforest with savannah, the 95% CI is:

0:881� (1:96� 0:118) to 0:881þ (1:96� 0:118) ¼ 0:650 to 1:112

(b) For the log odds in the savannah, the 95% CI is:

0:0511� (1:96� 0:0854) to 0:0511þ (1:96� 0:0854) ¼ �0:116 to 0:219

5 The z statistic in the area row of the third column is used to derive a Wald

test (see Chapter 28) of the null hypothesis that the area coefficient ¼ 0, i.e.

that the exposure has no effect (since if log OR ¼ 0, then OR must be equal to

1). This z statistic is simply the regression coefficient divided by its standard

error:

z ¼ 0:881=0:118 ¼ 7:487

6 The P-value in the fourth column is derived from the z statistic in the usual

manner (see Table A1 and Chapter 8), and can be used to assess the strength of

the evidence against the null hypothesis that the true (population) exposure

effect is zero. Thus, the P-value of 0.000 (which should be interpreted as

< 0:001) for the logOR comparing rainforest with savannah indicates that

there is strong evidence against the null hypothesis that the odds of microfilarial

infection are the same in the two areas.

7 We are usually not interested in in the third and fourth columns (the z statistic

and its P-value) for the constant row. However, for completeness, we will

explain their meanings:

19.2 Logistic regression for comparing two exposure groups 195



(a) The z statistic is the result of testing the null hypothesis that the

log odds of infection in the savannah areas are 0 (or, equivalently, that

the odds of infection are 1). This would happen if the risk of infection in

the savannah areas was 0.5; in other words if people living in the savan-

nah areas were equally likely to be infected as they were to be not

infected.

(b) The P-value of 0.550 for the log odds in savannah areas indicates that

there is no evidence against this null hypothesis.

Relation between outputs on the ratio and log scales

We will now explain the relationship between the two sets of outputs, since the

results in Table 19.4 (output on the original, or ratio, scale) are derived from

the results in Table 19.6 (output on the log scale). Once this is understood, it is

rarely necessary to refer to the output displayed on the log scale: the most useful

results are the odds ratios, confidence intervals and P-values displayed on the

original scale, as in Table 19.4.

1 In Table 19.4, the column labelled ‘Odds Ratio’ contains the exponentials

(antilogs) of the logistic regression coefficients shown in Table 19.6. Thus the

OR comparing rainforest with savannah ¼ exp (0:881) ¼ 2:413.

2 The z statistics and P-values are derived from the log odds ratio and its standard

error, and so are identical in the two tables.

3 The 95% confidence intervals in Table 19.4 are derived by antilogging

(exponentiating) the confidence intervals on the log scale presented in

Table 19.6. Thus the 95% CI for the OR comparing rainforest with savannah

is:

95% CI ¼ exp(0:650) to exp(1:112) ¼ 1:916 to 3:039

This is identical to the 95% CI calculated using the methods described in Section

16.7:

95% CI (OR) ¼ OR=EF to OR� EF, where EF ¼ exp[1:96� s:e:( log OR)]

Note that since the calculations are multiplicative:

Odds ratio

Lower confidence limit
¼ Upper confidence limit

Odds ratio

This can be a useful check on confidence limits presented in tables in published

papers.
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19.3 GENERAL FORM OF THE LOGISTIC REGRESSION EQUATION

We will now introduce the general form of the logistic regression model with

several exposure variables, and explain how it corresponds to what we used above

in the simple case when we are comparing two exposure groups, and therefore

have a single exposure variable in our model. The general form of the logistic

regression model is similar to that for multiple regression (see Chapter 11):

log odds of outcome ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp

The difference is that we are modelling a transformation of the outcome variable,

namely the log of the odds of the outcome. The quantity on the right-hand side of

the equation is known as the linear predictor of the log odds of the outcome, given

the particular value of the p exposure variables x1 to xp. The �’s are the regression

coefficients associated with the p exposure variables.

The transformation of the probability, or risk, � of the outcome into the

log odds is known as the logit function:

logit(�) ¼ log
�

1� �


 �

and the name logistic is derived from this. Recall from Section 14.6 (Table 14.2)

that while probabilities must lie between 0 and 1, odds can take any value between

0 and infinity (1). The log odds are not constrained at all; they can take any value

between �1 and 1.

We will now show how the general form of the logistic regression model

corresponds to the logistic regression model we used in Section 19.2 for comparing

two exposure groups. The general form for comparing two exposure groups is:

log odds of outcome ¼ �0 þ �1x1

where x1 (the exposure variable) equals 1 for those in the exposed group and 0 for

those in the unexposed group. Table 19.7 shows the value of the log odds predicted

Table 19.7 Log odds of the outcome according to exposure group, as calculated from the linear predictor in the

logistic regression equation.

Exposure group

Log odds of outcome,

predicted from model

Log odds of outcome, in terms of the

parameter names

Exposed (x1 ¼ 1) �0 þ �1 � 1 ¼ �0 þ �1 log(Baseline odds) þ log(Exposure odds ratio)

Unexposed (x1 ¼ 0) �0 þ �1 � 0 ¼ �0 log(Baseline odds)
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from this model in each of the two exposure groups, together with the log odds

expressed in terms of the parameter names, as in Section 19.2.

We can see that the first regression coefficient, �0, corresponds to the

log odds in the unexposed (baseline) group. We will now show how the

other regression coefficient, �1, corresponds to the log of the exposure odds

ratio. Since:

Exposure OR ¼ odds in exposed group

odds in unexposed group

it follows from the rules of logarithms (see p. 156) that:

log OR ¼ log(odds in exposed group)� log(odds in unexposed group)

Putting the values predicted from the logistic regression equation (shown in Table

19.7) into this equation gives:

log OR ¼ �0 þ �1 � �0 ¼ �1

The equivalent model on the ratio scale is:

Odds of disease ¼ exp(�0 þ �1x1) ¼ exp(�0)� exp(�1x1)

In this multiplicative model exp(�0) corresponds to the odds of disease in the

baseline group, and exp(�1) to the exposure odds ratio. Table 19.8 shows how

this model corresponds to the model shown in Table 19.1.

Table 19.8 Odds of outcome according to exposure group, as calculated from the linear predictor in the logistic

regression equation.

Exposure group

Odds of outcome, predicted from

model

Odds of outcome, in terms of the parameter

names

Exposed (x1 ¼ 1Þ exp(�0)� exp(�1) Baseline odds � Exposure odds ratio

Unexposed (x1 ¼ 0) exp(�0) Baseline odds

19.4 LOGISTIC REGRESSION FOR COMPARING MORE THAN TWO

EXPOSURE GROUPS

We now consider logistic regression models for categorical exposure variables with

more than two levels. To examine the effect of categorical variables in logistic and

other regression models, we look at the effect of each level compared to a baseline

group. When the exposure is an ordered categorical variable, it may also be useful

to examine the average change in the log odds per exposure group, as described in

Section 19.5.

Au/BSL: Complete
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Table 19.9 Association between age group and microfilarial infection in the onchocerciasis study.

Age

group

Coded

value in
Microfilarial infection

Odds of Odds ratio compared to the

(years) dataset Yes No infection baseline group

5–9 0 46 156 46=156 ¼ 0:295 1

10–19 1 99 119 99=119 ¼ 0:832 0:832=0:295 ¼ 2:821

20–39 2 299 125 299=125 ¼ 2:392 2:392=0:295 ¼ 8:112

� 40 3 378 80 378=80 ¼ 4:725 4:725=0:295 ¼ 16:02

Total 822 480

Example 19.2

In the onchocerciasis study, introduced in Example 19.1, subjects were classified

into four age groups: 5–9, 10–19, 20–39 and � 40 years. Table 19.9 shows the

association between age group and microfilarial infection. The odds of infection

increased markedly with increasing age. A chi-squared test for association in this

table gives P < 0:001, so there is clear evidence of an association between age

group and infection. We chose the 5–9 year age group as the baseline exposure

group, because its coded value in the dataset is zero, and calculated odds ratios for

each non-baseline group relative to the baseline group.

The corresponding logistic regression model uses this same approach; the effect

of each non-baseline age group is expressed in terms of the odds ratio comparing it

with the baseline. The parameters of the model, on both the odds and log odds

scales, are shown in Table 19.10.

Table 19.10 Odds and log odds of the outcome in terms of the parameters of a logistic

regression model comparing four age groups.

Age group Odds of infection Log odds of infection

0 (5–9 years) Baseline Log(Baseline)

1 (10–19 years) Baseline� Agegrp(1) Log(Baseline)þ Log(Agegrp(1))

2 (20–39 years) Baseline� Agegrp(2) Log(Baseline)þ Log(Agegrp(2))

3 (� 40 years) Baseline� Agegrp(3) Log(Baseline)þ Log(Agegrp(3))

Here, Agegrp(1) is the odds ratio (or, on the log scale, the log odds ratio)

comparing group 1 (10–19 years) with group 0 (5–9 years, the baseline group),

and so on. This regression model has four parameters:

1 the odds of infection in the 5–9 year group (the baseline group); and

2 the three odds ratios comparing the non-baseline groups with the baseline.

Using the notation introduced in Section 19.2, the four equations for the odds that

define the model in Table 19.10 can be written in abbreviated form as:

Odds ¼ Baseline�Agegrp

or on a log scale, as:
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log (Odds) ¼ BaselineþAgegrp

The effect of categorical variables is modelled in logistic and other regression

models by using indicator variables, which are created automatically by most

statistical packages when an exposure variable is defined as categorical. This is

explained further in Box 19.1. Output from this model (expressed on the odds

ratio scale, with the constant term omitted) is shown in Table 19.11.

Table 19.11 Logistic regression output (odds ratio scale) for the association

between microfilarial infection and age group.

Odds ratio z P > jzj 95% CI

agegrp(1) 2.821 4.802 0.000 1.848 to 4.308

agegrp(2) 8.112 10.534 0.000 5.495 to 11.98

agegrp(3) 16.024 13.332 0.000 10.658 to 24.09

BOX 19.1 USE OF INDICATOR VARIABLES IN REGRESSION

MODELS

To model the effect of an exposure with more than two categories, we

estimate the odds ratio for each non-baseline group compared to the base-

line. In the logistic regression equation, we represent the exposure by a set of

indicator variables (variables which take only the values 0 and 1) representing

each non-baseline value of the exposure variable. The regression coefficients

for these indicator variables are the corresponding (log) odds ratios. For

example, to estimate the odds ratios comparing the 10–19, 20–39 and

� 40 year groups with the 5–9 year group, we create three indicator variables

which we will call ageind1, ageind2 and ageind3 (the name is not important).

The table below shows the value of these indicator variables according to age

group.
Value of indicator variables for use in logistic regression of the

association between microfilarial infection and age group.

Age group ageind1 ageind2 ageind3

0 (5–9 years) 0 0 0

1 (10–19 years) 1 0 0

2 (20–29 years) 0 1 0

3 (� 40 years) 0 0 1

All three of these indicator variables (but not the original variable) are

then included in a logistic regression model. Most statistical packages create

the indicator variables automatically when the original variable is declared

as categorical.
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The P-values for the three indicator variables (corresponding to the non-baseline

age groups) can be used to test the null hypotheses that there is no difference in

odds of the outcome between the individual non-baseline exposure groups and

the baseline group. However, these are not usually of interest: we need a test,

analogous to the x2 test for a table with four rows and two columns, of the

general null hypothesis that there is no association between age group and

infection. We will see how to test such null hypotheses in regression models in

Chapter 29, and in the next section we address the special case when the

categorical variable is ordered, as is the case here. It is usually a mistake to

conclude that there is a difference between one exposure group and the rest

based on a particular (small) P-value corresponding to one of a set of indicator

variables.

19.5 LOGISTIC REGRESSION FOR ORDERED AND CONTINUOUS

EXPOSURE VARIABLES

Until now, we have considered logistic regression models for binary or categorical

exposure variables. For binary variables, logistic regression estimates the odds

ratio comparing the two exposure groups, while for categorical variables we have

seen how to estimate odds ratios for each non-baseline group compared to the

baseline. This approach does not take account of ordering of the exposure vari-

able. For example, we did not use the fact that subjects aged � 40 years are older

than those aged 20–39 years, who in turn are older than those aged 10–19 years

and so on.

Example 19.3

The odds of microfilarial infection in each age group in the onchocerciasis dataset

are shown in Table 19.9 in Section 19.4, and are displayed in Figure 19.1. We do

not have a straight line; the slope of the line increases with increasing age group. In

other words, this increase in the odds of infection with increasing age does not

appear to be constant.

However, Figure 19.2 shows that there is an approximately linear increase in the

log odds of infection with increasing age group. This log-linear increase means that

we are able to express the association between age and the log odds of microfilarial

infection by a single linear term (as described below) rather than by a series of

indicator variables representing the different groups.

Relation with linear regression models

Logistic regression models can be used to estimate the most likely value of the

increase in log odds per age group, assuming that the increase is the same in each

age group. (We will define the meaning of ‘most likely’ more precisely in Chapter
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Fig. 19.1 Odds of microfilarial infection according to age group for the onchocerciasis data.

Fig. 19.2 Log odds of microfilarial infection according to age group for the onchocerciasis data.
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28.) The model is analogous to the simple linear regression model described in

Chapter 11. If we assume that:

y ¼ �0 þ �1x

then the intercept �0 is the value of y when x ¼ 0, and the slope �1 represents the

increase in y when x increases by 1. Logistic regression models assume that:

log odds ¼ �0 þ �1x

so that the intercept �0 is the value of the log odds when x ¼ 0, and the slope

�1 represents the increase in log odds when x increases by 1. We will use the

notation

log odds ¼ Baselineþ [X]

where the square brackets indicate our assumption that variable X has a linear

effect on the log odds of the outcome. For the onchocerciasis data, our model is

log odds ¼ Baselineþ [Agegrp]

Example 19.3 (continued)

Table 19.12(a) shows logistic regression output for the model assuming a linear

effect of logistic regression on the log odds of microfilarial infection. The esti-

mated increase in log odds for every unit increase in age group is 0.930 (95%

CI ¼ 0:805 to 1.055). This corresponds to an odds ratio per group of 2.534 (95%

CI ¼ 2:236 to 2.871; see output in Table 19.12b). The constant term corresponds

to the estimated log odds of microfilarial infection in age group 0 (5–9 years,

log odds ¼ �1:115), assuming a linear relation between age group and the log odds

of infection. It does not therefore numerically equal the baseline term in the

Table 19.12 Logistic regression output for the linear association between the log odds of

microfilarial infection and age group (data in Table 19.9).

(a) Output on log scale.

Coefficient s.e. z P > jzj 95% CI

Age group 0.930 0.0638 14.587 0.000 0.805 to 1.055

Constant �1.115 0.127 �8.782 0.000 �1.364 to �0.866

(b) Output on ratio scale.

Odds ratio z P > jzj 95% CI

Age group 2.534 14.587 0.000 2.236 to 2.871
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Table 19.13 Predicted log odds in each age group, derived from a logistic regression model assuming a linear

relationship between the log odds of microfilarial infection and age group.

Age group Logistic regression equation Predicted log odds

0 log odds ¼ constantþ 0� age group �1:115þ 0:930� 0 ¼ �1:115

1 log odds ¼ constantþ 1� age group �1:115þ 0:930� 1 ¼ �0:185

2 log odds ¼ constantþ 2� age group �1:115þ 0:930� 2 ¼ 0:745

3 log odds ¼ constantþ 3� age group �1:115þ 0:930� 3 ¼ 1:674

regression equation when age is included as a categorical variable, as described in

Section 19.4.

Substitution of the estimated regression coefficients into the logistic regression

equation gives the predicted log odds in each age group. These are shown in Table

19.13. Figure 19.3 compares these predicted log odds from logistic regression with

the observed log odds in each group. This shows that the linear assumption gives a

good approximation to the observed log odds in each group. Section 29.6 des-

cribes how to test such linear assumptions.

Fig. 19.3 Observed log odds in each age group (circles) and predicted log odds from logistic regression

(triangles, connected by line).
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20.1 INTRODUCTION

In the last chapter we introduced the principles of logistic regression models, and

described how to use logistic regression to examine the effect of a single exposure

variable. We now describe how these models can be extended to control for the

confounding effects of one or more additional variables. In addition, we briefly

cover regression modelling for risk ratios, rather than odds ratios, and for out-

comes with more than two levels.

20.2 CONTROLLING FOR CONFOUNDING USING LOGISTIC

REGRESSION

In Chapter 18 we saw how to control for a confounding variable by dividing the

sample into strata defined by levels of the confounder, and examining the effect of

the exposure in each stratum. We then used the Mantel–Haenszel method to

combine the odds ratios from each stratum into an overall summary odds ratio.

We also explained how this approach assumes that effect modification (inter-

action) is not present, i.e. that the true odds ratio comparing exposed with

unexposed individuals is the same in each stratum. We now see how making the

same assumption allows us to control for confounding using logistic regression.

We will explain this in the context of the onchocerciasis dataset used throughout

Chapter 19. Recall that we found strong associations of both area of residence

and of age group with the odds of microfilarial (mf ) infection. If the age distribu-

tions differ in the two types of area, then it is possible that age is a confounding

variable for the association between area and mf infection. We will control for

this possible confounding by fitting a logistic regression model, which includes

the effects of both area and age group. We will start with hypothetical data,

constructed so that it is easy to see how this logistic regression model works.

We will then explain how to interpret the output when we apply the model to the

real data.
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Example 20.1 (hypothetical data)

Table 20.1 shows hypothetical data for the odds of mf infection according to area

of residence (exposure) and age group. You can see that:

1 Table 20.1(a) shows that the exposure effect is exactly the same in each of the

age groups; the age-specific odds ratios comparing exposed with unexposed

individuals are all equal to 3.0. (Note also that when the age groups are

combined, the crude odds ratio is 1.86/0.92¼ 2.02, which is considerably less

than the individual age-specific odds ratios of 3, confirming that age group

confounds the association between mf infection and area.)

2 Table 20.1(b) shows that the age group effect is exactly the same in each area

of residence. For example, the odds ratio comparing age group 1 with age group

0 in the savannah areas is 0.5/0.2¼ 2.5, the same as the odds ratio in the forest

areas (1.5/0.6¼ 2.5). Similarly, the odds ratio comparing age group 2 with age

group 0 are 10 in each area, and the odds ratios comparing age group 3 with

age group 0 are 15 in each area.

Table 20.1 Hypothetical data for the odds of mf infection, according to area of residence and age group.

(a) Crude data, and odds of disease in each group (d ¼ number infected and h ¼ number uninfected), plus odds

ratios for area in each age-group and overall.

Age group

Savannah areas (Unexposed) Rainforest areas (Exposed)
Odds ratio for

area effectd/h Odds d/h Odds

0 20/100 0.2 30/50 0.6 3.0

1 40/80 0.5 60/40 1.5 3.0

2 80/40 2.0 60/10 6.0 3.0

3 90/30 3.0 45/5 9.0 3.0

All age groups combined 230/250 0.92 195/105 1.86 2.02

(b) Age group odds ratios (comparing age groups 1, 2 and 3 with age group 0), in

each type of area of residence.

Odds ratios for age group effects

Age group Savannah areas Rainforest areas

0 1.0 1.0

1 2.5 (¼ 0:5=0:2) 2.5 (¼ 1:5=0:6)

2 10.0 (¼ 2:0=0:2) 10.0 (¼ 6:0=0:6)

3 15.0 (¼ 3:0=0:2) 15.0 (¼ 9:0=0:6)

These two facts mean that we can exactly express the odds of mf infection in the

eight area–age subgroups in terms of the following five parameters, as shown in

Table 20.2(a):

1 0.2: the odds of mf infection at the baseline values of both area and age group;

2 3.0: the area odds ratio comparing the odds of infection in rainforest areas

compared to savannah areas; and

206 Chapter 20: Logistic regression: controlling for confounding and other extensions



3 2.5, 10.0 and 15.0: the three age odds ratios comparing age groups 1, 2 and 3

with age group 0 (respectively).

Table 20.2(b) shows the corresponding equations in terms of the parameter names;

these follow the convention we introduced in Chapter 19. These equations define

the logistic regression model for the effects of area and age group on the odds of mf

infection. As described in Chapter 19, such a logistic regression model can be

abbreviated to:

Odds ¼ Baseline�Area�Agegrp

As explained in Section 19.2, it is a multiplicativemodel for the joint effects of area

and age group. Note that the Baseline parameter now refers to the odds of the

disease at the baseline of both variables. This model assumes that the odds ratio for

area is the same in each age group and that the odds ratios for age group are the same

in each area, i.e. that there is no interactionbetween the effects of area and age group.

Table 20.2 Odds of mf infection by area and age group, expressed in terms of the parameters of

the logistic regression model: Odds¼ Baseline �Area�Age group.

(a) Expressed in terms of the parameter values.

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 0.2¼ 0.2 0.6¼ 0.2� 3.0

1 0.5¼ 0.2� 2.5 1.5¼ 0.2� 3.0� 2.5

2 2.0¼ 0.2� 10.0 6.0¼ 0.2� 3.0� 10.0

3 3.0¼ 0.2� 15.0 9.0¼ 0.2� 3.0� 15.0

(b) Expressed in terms of the parameter names.

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 Baseline Baseline� Area

1 Baseline�Agegrp(1) Baseline� Area�Agegrp(1)

2 Baseline�Agegrp(2) Baseline� Area�Agegrp(2)

3 Baseline�Agegrp(3) Baseline� Area�Agegrp(3)

(c) Expressed on a log scale, in terms of the parameter names.

Log odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 log(Baseline) log(Baseline)þ log(Area)

1 log(Baseline)þ log(Agegrp(1) ) log(Baseline)þ log(Area)þ log(Agegrp(1) )

2 log(Baseline)þ log(Agegrp(2) ) log(Baseline)þ log(Area)þ log(Agegrp(2) )

3 log(Baseline)þ log(Agegrp(3) ) log(Baseline)þ log(Area)þ log(Agegrp(3) )
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As explained in Chapter 19, the calculations to derive confidence intervals and

P-values for the parameters of logistic regression models are done on the log scale,

in which case the baseline parameter refers to the log odds in the baseline group,

and the other parameters refer to log odds ratios. The effects of the exposure

variables are additive on the log scale (as described in Section 19.2). Table 20.2(c)

shows the equations for the log odds in each of the area–age subgroups. The

corresponding logistic regression model, defined by these eight equations, is:

log(Odds) ¼ log(Baseline)þ log(Exposure)þ log(Age)

Example 20.2 (real data)

In our hypothetical example, we were able to precisely express the odds in the eight

sub-groups in the table in terms of five parameters, because we created the data so

that the effect of area was exactly the same in each age group, and the effect of age

exactly the same in savannah and rainforest areas. Of course, sampling variation

means that real data is never this neat, even if the model proposed is correct. Table

20.3 shows the odds ofmf infection in the eight area–age subgroups, using the data

that were actually observed in the onchocerciasis study.

Table 20.3 Odds of microfilarial infection and odds ratios comparing individuals living in

forest areas with those living in savannah areas, separately for each age group.

Area of residence

Age group Savannah Rainforest Odds ratio for area

0 (5–9 years) 16/77¼ 0.208 30/79¼ 0.380 1.828

1 (10–19 years) 22/50¼ 0.440 77/69¼ 1.116 2.536

2 (20–39 years) 123/85¼ 1.447 176/40¼ 4.400 3.041

3 (� 40 years) 120/55¼ 2.182 258/25¼ 10.32 4.730

From the previous chapter (Table 19.4) we know that the crude odds ratio for

area is 2.413 (the odds ratio which does not take into account the effects of age

group, or any other variables). We can see in Table 20.3 that in three out of the

four age groups the stratum-specific odds ratios for the effect of area of residence

are larger than this. If we use Mantel–Haenszel methods (see Chapter 18) to

estimate the effect of area of residence controlling for age group, we obtain an

estimated odds ratio of 3.039 (95% CI ¼ 2.310 to 3.999). This is noticeably larger

than the crude odds ratio of 2.413.

As in the hypothetical example above, we can express the odds ofmf infection in

the rainforest areas in terms of the odds ratios for the effect of area of residence in

each age group (Table 20.4a). Alternatively, we can express the odds of mf

infection in terms of the odds ratios for each of the three age groups compared

to age group 0 (Table 20.4b). Note that (in contrast to the hypothetical example

above) these sets of odds ratios are not exactly the same in each area. This means

that we cannot calculate the parameter estimates directly from the raw data, as we
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Table 20.4 Odds of mf infection, according to area of residence and age

group, for the data observed in the onchocerciasis study.

(a) With the odds in the rainforest areas expressed in terms of the age-specific

odds ratios for the association between area and infection.

Area

Age group Savannah Rainforest

0 (5–9 years) 0.208 0.208� 1.828

1 (10–19 years) 0.440 0.440� 2.536

2 (20–39 years) 1.447 1.447� 3.041

3 ( � 40 years) 2.182 2.182� 4.730

(b) With the odds of infection in age groups 2 to 4 expressed in terms of the

area-specific odds ratios for the association between age group and infection.

Area

Age group Savannah Rainforest

0 (5–9 years) 0.208 0.380

1 (10–19 years) 0.208� 2.118 0.380� 2.939

2 (20–39 years) 0.208� 6.964 0.380� 11.59

3 (� 40 years) 0.208� 10.50 0.380� 27.18

could for the simpler examples in Chapter 19. Instead we use a computer package

to fit the model and to estimate the most likely values for the effect of area

controlling for age group, and the effect of age group controlling for area, on the

basis of the assumption that there is no interaction between the effects of

the two variables. The meaning of ‘most likely’ is explained more precisely in

Chapter 28.

The computer output from this model (on the odds ratio scale) is shown in

Table 20.5. The estimated odds ratio of 3.083 (95% CI¼ 2.354 to 4.038) for area

controlling for age group is very close to that derived using the Mantel–Haenszel

method (OR 3.039, 95% CI¼ 2.310 to 3.999), and again is noticeably larger than

Table 20.5 Logistic regression output for the model for mf infection, including both

area of residence and age group.

Odds ratio z P > jzj 95% CI

Area 3.083 8.181 0.000 2.354 to 4.038

Agegrp(1) 2.599 4.301 0.000 1.682 to 4.016

Agegrp(2) 9.765 10.944 0.000 6.493 to 14.69

Agegrp(3) 17.64 13.295 0.000 11.56 to 26.93

Constant* 0.147 �9.741 0.000 0.100 to 0.217

*Constant (baseline odds) ¼ estimated odds of mf infection for 5–9 year

olds living in the savannah areas, assuming no interaction between the effects

of area and age group.
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Fig. 20.1 Observed odds of mf infection in the eight area–age subgroups, together with lines showing the

predicted odds from the logistic regression model defined in Table 20.2(b).

the crude odds ratio of 2.413. Thus the confounding effect of age meant that the

crude odds ratio for area was too small.

We can use the parameter estimates shown in Table 20.5 to calculate the predicted

odds in each group, using the equations for the odds in this logistic regression

model, shown in Table 20.2(b). These calculations are shown in Table 20.6.

Figure 20.1 compares the observed odds of mf infection in the eight area–

age subgroups (shown in Table 20.3) with the predicted odds from the logistic

regression model (shown by separate lines for the savannah and rainforest). The

odds are plotted on a log scale; this means that, since the model assumes that the

area odds ratios are the same in each age group, the two lines showing the predicted

odds are parallel.

Table 20.6 Odds of mf infection by area and age group, as estimated from the logistic

regression model.

Odds of mf infection

Age group Savannah areas Rainforest areas

0 (5–9 years) 0.147 0:147� 3:083 ¼ 0:453

1 (10–19 years) 0:147� 2:599 ¼ 0:382 0:147� 3:083� 2:599 ¼ 1:178

2 (20–39 years) 0:147� 9:765 ¼ 1:435 0:147� 3:083� 9:765 ¼ 4:426

3 (� 40 years) 0:147� 17:64 ¼ 2:593 0:147� 3:083� 17:64 ¼ 7:993
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20.3 TESTING FOR INTERACTION, AND MORE COMPLEX LOGISTIC

REGRESSION MODELS

We have explained the interpretation of logistic regression models for one and two

variables in great detail. The extension to models for more than two variables is

straightforward, and the interpretation of results follows the same principles.

Regression modelling, including hypothesis testing, examining interaction be-

tween variables and modelling dose–response relationships, is described in more

detail in Chapter 29. For now we note two important points:

1 In the logistic regression model for two variables (area and age group) described

above, we assumed that the effect of each was the same regardless of the level of

the other. In other words, we assumed that there was no interaction between the

effects of the two variables. Interaction (also known as effect modification) was

described in Chapter 18. It is straightforward to use regression modelling to

examine this; see Section 29.5 for details.

2 Similarly, when we include three or more variables in a logistic regression model,

we assume that there is no interaction between any of them. On the basis of this

assumption, we estimate the effect of each, controlling for the effect of all the

others.

More information about logistic regression models may be found in Hosmer and

Lemeshow (2000).

20.4 REGRESSION ANALYSIS OF RISK RATIOS

Most regression analyses of binary outcomes are conducted using odds ratios:

partly because of the mathematical advantages of analyses based on odds ratios

(see Section 16.6) and partly because computer software to do logistic regression

analyses is so widely available. However, it is straightforward to do regression

analyses of risk ratios, if it is considered important to express exposure effects in

that way.

This is carried out by relating the effect of the exposure variable(s) to the log of the

risk of the outcome rather than the log of the odds, using a statistical software

package that allows the user to fit generalized linear models (see Chapter 29) for a

range of outcome distributions and a range of what are known as link functions. For

logistic regression the outcome variable is assumed to have a binomial distribution

(see Chapter 15) and the link function is the logit function logit(�) ¼ log[�=(1� �)]

(see Section 19.3). Tomodel exposure effects as risk ratios instead of odds ratios, we

simply specify a log link function (log �) instead of a logit link function. The

outcome distribution is still binomial. The model is:

log (risk of outcome) ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp
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If the outcome is rare then odds ratios are approximately the same as risk ratios

(see Section 16.6) and so the choice of odds ratio or risk ratio as the measure of

exposure effect is unimportant. When the outcome is common, the two measures

are different, and as stated in Section 16.6, it is important that odds ratios are not

misinterpreted as risk ratios. The problem with the regression analysis of risk

ratios is that when the outcome is common, it can prove difficult to fit models

based on risk ratios, because they are constrained (see Section 16.6); this means

that computer model-fitting routines often fail to produce results. Furthermore,

exposure effects will differ depending on whether the presence or absence of the

outcome event is considered as the outcome. For these reasons, it is likely that

logistic regression will continue to be the method of choice for the regression

analysis of binary outcome variables.

20.5 OUTCOMES WITH MORE THAN TWO LEVELS

Finally, we briefly describe extensions to logistic regression that may be used for

categorical outcomes with more than two categories. In Chapter 2 we distin-

guished between categorical variables such as ethnic group, for which there is no

natural ordering of the categories, and ordered categorical variables such as social

class, in which the different categories, though non-numerical, have a natural

ordering. We will briefly introduce the regression models appropriate for each of

these types of outcome variable. We will denote the outcome variable by y, and

assume that y has k possible categories.

Multinomial logistic regression

Multinomial logistic regression, also known as polychotomous logistic regression,

extends logistic regression by estimating the effect of one or more exposure

variables on the probability that the outcome is in a particular category. For

example, in a study of risk factors for asthma the outcome might be defined as no

asthma, allergic asthma and non-allergic asthma. One of the outcome levels is

chosen as the comparison level, and (k� 1) regression coefficients, corresponding

to each other outcome level, are estimated for each exposure variable in the

regression model. If there are only two outcome levels the model is identical to

standard logistic regression. However, when the outcome hasmore than two levels,

interpretation of the regression coefficients is less straightforward than for logistic

regression, because the estimated effect of an exposure variable is measured by the

combined effects of (k� 1) regression coefficients.

Ordinal logistic regression

Ordinal logistic regression is an extension of logistic regression which is appropri-

ate when the outcome variable is ordered categorical. For example, in a study of

risk factors for malnutrition the outcome might be classified as severe, moderate,
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mild, or no malnutrition. The most commonly used type of model is the propor-

tional odds model, whose parameters represent the exposure odds ratios for being

in the highest j categories compared to the lowest (k� j) categories. For example,

if there were four outcome categories and a single exposure variable, then the

exposure odds ratio would represent the combined comparison of outcome:

category 4 with categories 3, 2 and 1, categories 4 and 3 with categories 2 and 1,

and categories 4, 3 and 2 with category 1. It is assumed that the effect of exposure

is the same for all such splits of the categories of the outcome variable. Some

statistical software packages provide tests of this assumption, others do not.

Other, less commonly used models for ordered categorical outcome variables

include the continuation ratio model and the stereotype model.

Further reading

Regression models for categorical variables with more than two levels are de-

scribed by Agresti (1996). Models for ordered categorical outcome variables have

been reviewed by Armstrong and Sloan (1989), and Ananth and Kleinbaum

(1997).
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21.1 INTRODUCTION

In this chapter we introduce methods for studies in which we have binary outcome

observations that are matched or paired in some way. The two main reasons why

matching occurs are:

1 When the outcome is observed on the same individual on two separate occa-

sions, under different exposure (or treatment) circumstances, or using two

different methods.

2 The study has used a matched design in selecting individuals. This mainly occurs

with case–control studies; each case (subjects with the disease) is matched with

one or more controls (subjects without the disease), deliberately chosen to have

the same values for major confounding variables. For example, controls might

be selected because they are of similar age to a case, or because they live in the

same neighbourhood as the case. We will discuss case–control studies in more

detail in Chapter 34, where we will see that matched designs often have few

advantages, and may have serious disadvantages, compared to unmatched

designs. It is also very occasionally used in clinical trials, for example in a trial

comparing two treatments for an eye condition, the two treatments may be

randomly assigned to the left and right eyes of each patient.

It is essential that the matching be allowed for in the analysis of such studies.

21.2 COMPARISON OF TWO PROPORTIONS: PAIRED CASE

Example 21.1

Consider the results of an experiment to compare the Bell and Kato–Katz methods

for detectingSchistosomamansoni eggs in faeces inwhich two subsamples from each

of 315 specimens were analysed, one by each method. Here, the exposure is the type

ofmethod, and the outcome is the test result. The correct way to analyse such data is

to consider the results of each pair of subsamples. For any pair there are four
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Table 21.1 Possible results when a pair of subsamples is tested using two

methods for detecting Schistosoma mansoni eggs.

Notation Description

Both tests positive

Both tests negative Concordant pairs

Bell positive, Kato–Katz negative r Discordant pairs
Kato–Katz positive, Bell negative s

possible outcomes, as shown in Table 21.1. The results for each of the 315 specimens

(pairs of subsamples) are shown in Table 21.2(a). Note that it would be incorrect to

arrange the data as in Table 21.2(b) and to apply the standard chi-squared test, as

this would take no account of the paired nature of the data, namely that it was the

same 315 specimens examined with each method, and not 630 different ones.

One hundred and eighty-four specimens were positive with both methods and 63

were negative with both. These 247 specimens (the concordant pairs; see Table 21.1)

therefore give us no information about which of the two methods is better at

detecting S. mansoni eggs. The information we require is entirely contained in the

68 specimens for which themethods did not agree (the discordant pairs). Of these, 54

were positive with the Bell method only, compared to 14 positive with the Kato–

Katz method only.

Table 21.2 Comparison of Bell and Kato–Katz methods for detecting Schistosoma mansoni eggs in faeces. The

same 315 specimens were examined using each method. Data from Sleigh et al. (1982) Transactions of the Royal

Society of Tropical Medicine and Hygiene 76: 403–6 (with permission).

(a) Correct layout. (b) Incorrect layout.

Kato–Katz Results

þ � Total þ � Total

Bell
þ 184 54(r) 238 Bell 238 77 315

� 14(s) 63 77 Kato–Katz 198 117 315

Total 198 117 315 Total 436 194 630

The proportions of specimens found positive with the two methods were 238/315

(0.756) using the Bell method and 198/315 (0.629) using the Kato–Katz method.

The difference between the proportions was therefore 0.1270. This difference can

also be calculated from the numbers of discordant pairs, r and s, and the total

number of pairs, n:

Difference between paired proportions ¼ r� s

n
,

s:e:(difference) ¼ (rþ s)
p

n
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In this example, the difference between the paired proportions is (r� s)=n ¼
(54� 14)=315 ¼ 0:1270, the same as calculated above. Its standard error equals

[ (
p

rþ s)]=n ¼ 6
p

8=315 ¼ 0:0262. An approximate 95% confidence interval can be

derived in the usual way:

95% CI ¼ 0:1270� (1:96� 0:0262) to 0:1270þ (1:96� 0:0262)

¼ 0:0756 to 0:1784

With 95% confidence, the positivity rate is between 7.6% and 17.8% higher if

the Bell method is used to detect S. mansoni eggs than if the Kato–Katz method is

used.

z-test for difference between proportions

If there was no difference in the abilities of the methods to detect S. mansoni eggs,

we would not of course expect complete agreement since different subsamples

were examined, but we would expect on average half the disagreements to be

positive with the Bell method only and half to be positive with the Kato–Katz

method only. Thus an appropriate test of the null hypothesis that there is no

difference between the methods is to compare the proportion found positive with

the Bell method only, namely 54/68, with the hypothetical value of 0.5. This may

be done using the z test, as described in Section 15.6. As usual, we construct the

test by dividing the difference by its standard error assuming the null hypothesis to

be true, which gives:

z ¼ 54=68� 0:5

(
p

0:5� 0:5=68)
¼ 4:85, P < 0:001

There is strong evidence that the Bell method is more likely to detect S. mansoni

eggs than the Kato–Katz method. (Note that other than for the sign of the z

statistic exactly the same result would have been obtained had the proportion

positive with the Kato–Katz method only, namely 14/68, been compared with 0.5.)

21.3 USING ODDS RATIOS FOR PAIRED DATA

An alternative approach to the analysis of matched pairs is to estimate the odds

ratio comparing the Bell and Kato–Katz methods. Again, our analysis must take

the pairing into account. This can be done using Mantel–Haenszel methods (see

Section 18.4), with the data stratified into the individual pairs. Using the same

notation as in Chapter 18, the notation for the ith pair is shown in Table 21.3. The

Mantel–Haenszel estimate of the odds ratio (see Chapter 18) is given by:

ORMH ¼
�
d1i � h0i

ni

�
d0i � h1i

ni
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Table 21.3 Notation for the ‘stratified’ 2� 2 table giving the results for pair i.

Outcome

þ � Total

Bell method d1i h1i 1

Kato–Katz method d0i h0i 1

Total di hi 2

As in the last section, the analysis can be simplified if we note that there are only

four possible outcomes for each pair, and therefore only four possible types of

2� 2 table. These are shown in Table 21.4, together with their contributions to the

numerator and denominator in the formula for the Mantel–Haenszel OR. This

shows that, again, only the discordant pairs contribute to the Mantel–Haenszel

estimate of the odds ratio. The total for the numerator is r/2, while the total for the

denominator is s/2. The estimated odds ratio is therefore:

ORMH ¼ r=2

s=2
¼ r

s
, the ratio of the numbers of discordant pairs

Table 21.4 Possible outcomes for each pair, together with their contributions to the numerator and

denominator in the formula for the Mantel–Haenszel estimate of the odds ratio.

Concordant pairs Discordant pairs

þ � þ � þ � þ �

Bell 1 0 0 1 1 0 0 1

Kato–Katz 1 0 0 1 0 1 1 0

Number of pairs r s

d1i � h0i
ni

0 0 ½ 0

d0i � h1i
ni

0 0 0 ½

An approximate 95% error factor for the odds ratio is given by:

EF ¼ exp[1:96� (
p

1=rþ 1=s)]

In the example, the estimated odds ratio is given by 54=14 ¼ 3:857, while the error

factor is exp [1:96� (
p

1=54þ 1=14)] ¼ 1:800. The approximate 95% confidence

interval is therefore given by:
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95% CI ¼ OR=EF to OR� EF ¼ 3:857=1:800 to 3:857� 1:800 ¼ 2:143 to 6:943

McNemar’s chi-squared test

A chi-squared test, based on the numbers of discordant pairs, can also be derived

from the formula for the Mantel–Haenszel statistic presented in Chapter 18 and is

given by:

�2
paired ¼ (r� s)2

rþ s
, d:f : ¼ 1

This is known as McNemar’s chi-squared test. In the example x2 ¼ (54� 14)2

=(54þ 14) ¼ 402=68 ¼ 23:53, d:f : ¼ 1,P < 0:001. Apart from rounding error,

this x2 value is the same as the square of the z value obtained above

(4:852 ¼ 23:52), the two tests being mathematically equivalent.

Validity

The use of McNemar’s chi-squared test or the equivalent z test is valid provided

that the total number of discordant pairs is at least 10. The approximate error

factor for the 95% CI for the odds ratio is valid providing that the total number of

pairs is greater than 50. If these conditions are not met then methods based on

exact binomial probabilities should be used (these are described by Alman et al.

2000).

21.4 ANALYSING MATCHED CASE–CONTROL STUDIES

The methods described above can also be used for the analysis of case–control

studies and clinical trials which have employed a matched design, as described in

the introduction. The rationale for this and the design issues are discussed in more

detail in Chapter 34.

Example 21.2

Table 21.5 shows data from a study to investigate the association between use of

oral contraceptives and thromboembolism. The cases were 175 women aged 15–44

discharged alive from 43 hospitals after initial attacks of thromboembolism. For

each case a female patient suffering from some other disease (thought to be

unrelated to the use of oral contraceptives) was selected from the same hospital

to act as a control. She was chosen to have the same residence, time of hospital-

isation, race, age, marital status, parity, and income status as the case. Participants

were questioned about their past contraceptive history, and in particular
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Table 21.5 Results of a matched case–control study, showing the association between

use of oral contraceptives (OC) and thromboembolism. With permission from Sartwell et al.

(1969) American Journal of Epidemiology 90: 365–80.

Controls

OC used OC not used Total

Cases
OC used 10 57 67

OC not used 13 95 108

Total 23 152 175

OR ¼ 57=13 ¼ 4:38

about whether they had used oral contraceptives during the month before they

were admitted to hospital.

The pairing of the cases and controls is preserved in the analysis by comparing

oral contraceptive use of each case against oral contraceptive use of their matched

control. There were ten case–control pairs in which both case and control had

used oral contraceptives and 95 pairs in which neither had. These 105 concordant

pairs give no information about the association. This information is entirely

contained in the 70 discordant pairs in which the case and control differed.

There were 57 case–control pairs in which only the case had used oral contracep-

tives within the previous month compared to 13 in which only the control had

done so. The odds ratio is measured by the ratio of these discordant pairs and

equals 4.38, which suggests oral contraceptive use leads to a substantial increase in

the risk of thromboembolism.

OR¼ ratio of discordant pairs

¼ no: of pairs in which case exposed, control not exposed

no: of pairs in which control exposed, case not exposed

The error factor is exp[1:96� (1=57þ 1=13)
p

] ¼ 1:827. The 95% CI for the odds

ratio is therefore 4.38/1.827 to 4:38� 1:827, which is 2.40 to 8.01. McNemar’s �2

test gives: �2 ¼ (57� 13)2=(57þ 13) ¼ 27:7,P < 0:001, corresponding to strong

evidence against the null hypothesis that there is no association.

If several controls rather than a single matched control are selected for each

case, the odds ratio can still be estimated by using Mantel–Haenszel methods.

However, these methods are severely limited because they do not allow for further

stratification on confounding variables which were not also matching variables.

The solution to this problem is to use conditional logistic regression, which we

describe next.
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21.5 CONDITIONAL LOGISTIC REGRESSION

In general when analysing individually matched case–control studies we may wish

to control for confounding variables, additional to those matched for in the

design. This is done using conditional logistic regression, a variant of logistic

regression in which cases are only compared to controls in the same matched

set. In the simple case of individually-matched case–control studies with one

control per case and no further confounders, conditional logistic regression will

give identical results to the methods for paired data described earlier in the

chapter. However, additional confounders may be included in the model, and

there is no restriction on the numbers of cases and controls in each matched set.

Once the reader is familiar with the use of logistic regression, then conditional

logistic regression should present no additional difficulties. The only difference is

that in addition to the outcome and exposure variables, the computer software

requires a variable that specifies which case (or cases) matches which control (or

controls). Exposure effects are estimated by considering possible combinations of

exposures, conditional on the observed exposures within each matched set. For

example, if the set consists of one case and two controls, with only one of the set

exposed and the other two unexposed, then the three possible combinations are:

Case Control 1 Control 2

1 Exposed Unexposed Unexposed

2 Unexposed Exposed Unexposed

3 Unexposed Unexposed Exposed

It is because the possible combinations are conditional on the total number of

exposed and unexposed individuals in each matched set that the method is called

conditional logistic regression. This argument extends in a straightforward manner

to numeric exposure variables and to more than one exposure variable.

Example 21.3

Table 21.6 shows data from a matched case–control study of risk factors for

infant death from diarrhoea in Brazil [Victora et al. (1987) Lancet ii: 319–322],

in which an attempt was made to ascertain all infant deaths from diarrhoea

occurring over a one-year period in two cities in southern Brazil, by means of

weekly visits to all hospitals, coroners’ services and death registries in the cities.

Whenever the underlying cause of death was considered to be diarrhoea, a

physician visited the parents or guardians to collect further information about

the terminal illness, and data on possible risk factors. The same data were

collected for two ‘control’ infants. Those chosen were the nearest neighbour

aged less than 1 year, and the next nearest neighbour aged less than 6months.

This procedure was designed to provide a control group with a similar socio-

economic distribution to that of the cases. The selection also ensures

220 Chapter 21: Matched studies



Table 21.6 First 24 lines (eight case–control sets) of the dataset for the matched case–control

study of risk factors for infant death from diarrhoea in southern Brazil. Reproduced with kind

permission of C.G. Victora.

Observation

number case set water agegp bwtgp social income

1 1 1 0 2 3 1 3

2 0 1 1 3 4 2 2

3 0 1 1 2 3 1 3

4 1 2 1 1 2 1 2

5 0 2 1 3 4 2 3

6 0 2 1 2 4 1 2

7 1 3 1 2 3 2 2

8 0 3 1 5 3 2 4

9 0 3 1 1 3 2 4

10 1 4 1 3 3 1 2

11 0 4 1 4 3 1 3

12 0 4 1 2 4 1 2

13 1 5 1 2 2 2 2

14 0 5 1 4 2 2 2

15 0 5 1 1 2 2 3

16 1 6 1 2 3 2 2

17 0 6 1 4 4 1 2

18 0 6 1 2 3 1 2

19 1 7 1 2 1 1 2

20 0 7 1 4 3 1 2

21 0 7 1 2 4 1 2

22 1 8 1 3 3 1 3

23 0 8 1 5 2 1 2

24 0 8 1 2 4 1 1

that there are approximately twice as many controls less than 6months old, as

between 6–11months; this matches what was known concerning the age distribu-

tion of the cases. During the one-year study period, data were collected on 170

cases together with their 340 controls. In addition to variable case (1 ¼ case,

0 ¼ control), the dataset contains a variable set which gives the number (from

1 to 170) of the set to which each case and its two matched controls belong. Table

21.6 contains the first 24 lines (eight case–control sets) of this dataset.

Variable water denotes whether the child’s household had access to water in

their house or plot (water ¼ 1) or not (water ¼ 0). Variable agegp (age group) is

coded as 1 ¼ 0�1months, 2 ¼ 2�3months, 3 ¼ 4�5months, 4 ¼ 6�8months

and 5 ¼ 9�11months. Variable bwtgp (birth weight group, kg) has values

1 ¼ 1:50�2:49, 2 ¼ 2:50�2:99, 3 ¼ 3:00�3:49, 4 ¼� 3:50 kg. The final two vari-

ables are social (household social group) from 1 (most deprived) to 3 (least

deprived), and income (household income group) from 1 (least monthly income)

to 4 (most monthly income).
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Examining the effect of a single exposure variable

A total of 111 (65.3%) cases and 259 (76.2%) controls had access to water,

suggesting that access to water might be protective against infant death from

diarrhoea. Since this is a matched case–control study, the calculation of the odds

ratio for this exposure and all other analyses must take into account the matching.

Using Mantel–Haenszel methods stratified by set (170 strata, each containing

1 case and 2 controls) gives an estimated odds ratio of 0.275 (95% CI¼ 0.136 to

0.555). Access to water thus appears to be strongly protective against infant

diarrhoea death. Table 21.7 shows corresponding output from a conditional

logistic regression model (also stratifying on set for the effect of household

water supply). The estimated odds ratio is similar to that derived using Mantel–

Haenszel methods.

Table 21.7 Conditional logistic regression output (odds ratio scale) for the association

between household water supply and infant diarrhoea death in southern Brazil.

Odds ratio z P > jzj 95% CI

Water 0.2887 �3.67 0.000 0.1487 to 0.5606

A possible alternative approach to the analysis of such data is to fit a standard

logistic regression model, incorporating an indicator variable in the model corres-

ponding to each case–control set, as a way of controlling for the matching. It is

important to note, however, that for finely matched data this will give the wrong

answer, and that the odds ratios obtained will be further away from the null value

of 1 than they should be. For data in which the sets consist of exactly one case and

one control, the estimated odds ratio from such a model will be exactly the square

of the odds ratio estimated using Mantel–Haenszel methods stratified by set, or

using conditional logistic regression.

Controlling for confounders, additional to those used for matching

Since access to water may be associated with a household’s social status, we may

wish to control additionally for the effects of variables such as social and income.

Because there are only three subjects in each stratum, further stratification using

Mantel–Haenszel methods is not feasible. However, conditional logistic regression

allows us to control for the effects of confounding variables in addition to those

used in the matching. Table 21.8 shows output from a conditional logistic regres-

sion model, controlling for the effects of all the variables in Table 21.6. Here,

agegp(2) is an indicator variable (see Section 19.4) which takes the value 1 for

infants in age group 2 and 0 for infants in other age groups. However, the

corresponding odds ratio of 2.6766 cannot be interpreted as the odds of death in

age group 2 compared to age group 1, because age was used in the matching of

cases to controls. The odds ratio for the effect of water is only slightly increased

(closer to the null value of 1), so we would conclude that the additional variables
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Table 21.8 Conditional logistic regression output (odds ratio scale) for the association between

household water supply and infant diarrhoea death in southern Brazil, controlling for the effects

of potentially confounding variables.

Odds Ratio z P > jzj 95% CI

water 0.2991 �3.20 0.001 0.1427 to 0.6269

agegp(2) 2.6766 2.89 0.004 1.3719 to 5.2222

agegp(3) 2.4420 2.50 0.012 1.2121 to 4.9199

agegp(4) 3.2060 3.27 0.001 1.5940 to 6.4482

agegp(5) 0.8250 �0.43 0.666 0.3444 to 1.9758

bwtgp(2) 0.4814 �2.00 0.045 0.2354 to 0.9844

bwtgp(3) 0.4111 �2.52 0.012 0.2061 to 0.8199

bwtgp(4) 0.3031 �3.12 0.002 0.1431 to 0.6422

social(2) 0.9517 �0.21 0.830 0.6058 to 1.4951

social(3) 0.1527 �1.78 0.075 0.0192 to 1.2128

income(2) 0.7648 �0.85 0.394 0.4128 to 1.4170

income(3) 0.6970 �1.01 0.312 0.3459 to 1.4043

income(4) 0.6991 �0.86 0.389 0.3098 to 1.5774

included in the model had only a slight confounding effect, and that there is still a

clear protective effect of having a water supply in a household.
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