
PART D

LONGITUDINAL STUDIES: ANALYSIS
OF RATES AND SURVIVAL TIMES

In this part of the book we describe methods for the analysis of longitudinal

studies, that is studies in which subjects are followed over time. These may be

subdivided into three main types:

� cohort studies in which a group of individuals is followed over time, and the

incidence of one or more outcomes is recorded, together with exposure to one or

more factors

� survival studies in which individuals are followed from the time they experience a

particular event such as the diagnosis of disease, and the time to recurrence of

the disease or death is recorded

� intervention studies in which subjects are randomized to two or more interven-

tion or treatment groups (one of which is often a control group with no active

intervention or treatment or with standard care); the occurrence of pre-specified

outcomes is recorded

These different types of study are described in more detail in Chapter 34. Our

focus is on methods for their analysis, where the outcome of interest is binary, and

where:

1 individuals in the study are followed over different lengths of time, and=or

2 we are interested not only in whether or not the outcome occurs, but also the

time at which it occurs.

Note that for longitudinal studies in which everyone is followed for exactly the

same length of time, the methods described in Part C can be used if the outcome is

defined as the risk or odds of the event of interest. The exception is studies when

most subjects will experience the event of interest by the end of the follow-up. For

example, in a trial of a new treatment approach for lung cancer, even if every

patient were followed for 10 years, the focus would be on assessing whether the

new treatment had extended the survival time, rather than comparing the propor-

tion who survived in each group. This is because lung cancer has a very poor

prognosis; the probability of anyone surviving for more than 10 years is close to

zero.

In Chapter 22 we explain why variable follow-up times are common and the

special issues that arise in their analysis, and we define rates of disease and

mortality as the appropriate outcome measure. We then introduce the Poisson

distribution for the sampling distribution of a rate and derive a standard error of a

rate from it. In Chapter 23 we describe how to compare two rates, and how to

control for the effects of confounding using stratification methods, and in Chapter



24 the use of Poisson regression methods. In Chapter 25 we describe the use of

standardized rates to enable ready comparison between several groups. This part

of the book concludes with the group of methods known as survival analysis;

Chapter 26 covers the use of life tables, Kaplan–Meier estimates of survival curves

and log rank tests, and Chapter 27 describes Cox (proportional hazards) regres-

sion for the analysis of survival data. In contrast to the other methods for the

analysis of longitudinal studies presented earlier in this part, survival analysis

methods do not require the rate(s) to be constant during specified time periods.

We will assume throughout this part of the book that individuals can only

experience one occurrence of the outcome of interest. This is not the case where

the outcome of interest is a disease or condition that can recur. Examples are

episodes of diarrhoea, acute respiratory infection, malaria, asthma and myocar-

dial infarction, which individuals may experience more than once during the

course of the study. Although we can apply the methods described in this part

of the book by defining the outcome as the occurrence of one or more events, and

using the time until the first occurrence of the event, a more appropriate approach

is to use the methods presented in Chapter 31, which describes the analysis of

clustered data. The methods in Chapter 31 also apply to the analysis of longitu-

dinal studies in which we take repeated measures of a quantitative outcome variable,

such as blood pressure or lung function, on the same individual.
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22.1 INTRODUCTION

In this chapter we introduce the rate of event occurrence, as the outcome measure

for the analysis of longitudinal studies. We explain why variable follow-up times

happen, show how rates are estimated and discuss what they mean and how they

relate to the measure of event occurrence described in Part C. We then describe the

Poisson distribution for the sampling distribution of a rate, and use its properties to

derive confidence intervals for rates. In the next chapter we introduce two meas-

ures used to compare rates in different exposure groups; the rate ratio and the rate

difference.

22.2 CALCULATING PERIODS OF OBSERVATION (FOLLOW-UP TIMES)

In the majority of longitudinal studies, individuals are followed for different

lengths of time. Methods that take this into account are the focus of this part of

the book. Variable follow-up times occur for a variety of reasons:

� for logistic reasons, individuals may be recruited over a period of time but

followed to the same end date

� in an intervention or cohort study, new individuals may be enrolled during the

study because they have moved into the study area

� in a survival study, there may be a delay between the diagnosis of the event and

recruitment into the study

� some individuals may be lost to follow up, for example because of emigration

out of the study area or because they choose to withdraw from the study

� some individuals may die from causes other than the one that is the focus of

interest

� in studies where the population of interest is defined by their age, for example

women of child bearing age (ie. 15–44 years), individuals may move into or out

of the group during the study as they age.
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Fig. 22.1 Follow-up histories for 5 subjects in a study of mortality after a diagnosis of prostate cancer

(D¼ died, E¼ emigrated, W¼withdrew, � ¼ reached the end of follow-up without experiencing the

disease event).

Figure 22.1 depicts an example from a study of prostate cancer, which shows that

subjects were recruited to the study at varying times after diagnosis and exited at

different points in time. Only subject 3 was followed for the full 5 years: subjects 2

and 5 died, subject 1 emigrated and subject 4 withdrew from the study. Survival

times for subjects who are known to have survived up to a certain point in time,

such as subjects 1 and 4, but whose survival status past that point is not known,

are said to be censored.

An individual’s period of observation (or follow-up time) starts when they join

the study and stops when they experience the outcome, are lost to follow-up, or

the follow-up period ends, whichever happens first. This is the time during which,

were they to experience an event, the event would be recorded in the study. This

period is also called the period at risk. It is often measured in years, when it is

called person-years-at-risk or pyar.

The occurrence and timings of outcome events, losses to follow-up, and recruit-

ment of new participants are most accurately determined through regular surveil-

lance of the study population. In some countries this may be possible using

national databases, for example of deaths or cancer events, by ‘flagging’ the

subjects under surveillance in the study so that the occurrence of events of interest

can be routinely detected. In other settings it may be necessary to carry out

community-based surveillance. For logistic simplicity, and cost considerations,

this is sometimes carried out by conducting just two cross-sectional surveys, one at

the beginning and one at the end of the study period, and enquiring about changes

in the intervening period. If the exact date of an outcome event, loss to follow-up,
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or new recruitment cannot be determined through questioning, it is usually

assumed to have occurred half-way through the interval between the surveys.

Using statistical computer packages to calculate periods of follow-up

When analysing longitudinal studies, it is important to choose a statistical com-

puter package that allows easy manipulation of dates. Many packages provide a

facility for automatic recoding of dates as the total number of days that have

elapsed since the start of the Julian calendar, or from a chosen reference date such

as 1=Jan=1960. Thus, for example, 15=Jan=1960 would be coded as 14,

2=Feb=1960 as 32, 1=Jan=1959 as �365 and so on. It is then easy to calculate

the time that has elapsed between two dates. If the recoded variables are startdate

and exitdate, and since (taking leap years into account) there are on average

365.25 days in a year, the follow-up time in years is given by:

Follow-up time in years ¼ (exitdate� startdate)=365:25

22.3 RATES

The rate of occurrence of an outcome event measures the number of new events

that occur per person per unit time, and is denoted by the Greek letter l (lambda).

Some examples of rates are:

� In the UK, the incidence rate of prostate cancer is 74.3=100 000 men=year. In

other words, 74.3 new cases of prostate cancer are detected among every 100 000

men each year

� In the UK, the mortality rate from prostate cancer is 32.5=100 000 men=year. In

other words 32.5 out of every 100 000 men die from prostate cancer each year

� In the UK, the incidence rate of abortions among teenage girls aged 16–19 years

rose from 6.1=1000 girls=year in 1969 to 26.0=1000 girls=year in 1999

The rate is estimated from study data by dividing the total number (d ) of events

observed by the total (T ) of the individual person-years of observation.

Rate, l ¼ number of events

total person-years of observation
¼ d

T

Note that the sum, T, of the individual person-years is equivalent to the average

number of persons under observation multiplied by the length of the study.

The rate is also known as the incidence rate (or incidence density) of the outcome

event, except when the outcome of interest is death, in which case it is called the

mortality rate. For rare events, the rate is often multiplied by 1000 (or even 10 000
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or 100 000) and expressed per 1000 (or 10 000 or 100 000) person-years-at-risk.

For a common disease such as diarrhoea or asthma, which may occur more than

once in the same person, the incidence rate measures the average number of

attacks per person per year (at risk). However, the standard methods for the

analysis of rates (described in this part of the book) are not valid when individuals

may experience multiple episodes of disease. We explain how to deal with this

situation in Chapter 31.

Example 22.1

Five hundred children aged less than 5 years living in a community in

rural Guatemala were enrolled in a study of acute lower respiratory infections.

Fifty-seven were hospitalized for an acute lower respiratory infection, after

which they were no longer followed in the study. The study lasted for 2 years,

but because of migration, the occurrence of infections, passing the age of 5,

and losses to follow-up, the number under surveillance declined with time and

the total child-years at risk was T ¼ 873 (i.e. an average population size of 436

over the 2 years). The rate of acute lower respiratory infections was therefore

estimated to be:

l ¼ 57=873 ¼ 0:0653 per child-year

This can also be expressed per 1000 child-years at risk, as:

l ¼ 57=873� 1000 ¼ 65:3 per 1000 child-years

Note that the estimated rate will be the same whether the child-years of follow-up

arise from following (for example) 1000 children for 1 year, 500 children for

2 years or 250 children for 4 years (and so on).

Understanding rates and their relationship with risks

The rate relates the number of new events to total observation time. This is in

contrast to the risk, or cumulative incidence (see Chapter 15), in which the number

of new events is related to the number at risk at the beginning of the observation

period; the longer the period of observation the greater the risk will be, since there

will be more time for events to occur. Measures of risk therefore contain an

implicit but not explicit time element.

Figure 22.2 illustrates the accumulation of new cases of a disease over a 5 year

period in a population initially disease free, for two somewhat different incidence

rates: (a) l ¼ 0:3=person=year, and (b) l ¼ 0:03/person=year. For ease of under-

standing, we are illustrating this assuming that the population remains constant

over the 5 years, and that there is complete surveillance; that is that there are no

losses to follow-up, and no migration either in or out.
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Fig. 22.2 A graphical representation of two follow-up studies which lasted for 5 years. In the top graph (a)

the rate of disease is 0.3=person=year, and the disease-free population declines exponentially with time. In

the bottom graph (b) the rate is 0.03=person=year, and the decline in the disease-free population is

approximately linear over the period of the study.
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The disease rate applies to the number of people disease-free at a particular

point in time. Understanding the effect of this is a bit like understanding the

calculation of compound interest rates. In Figure 22.2(a), the incidence rate is

high, and so the proportion of the population remaining disease free is changing

rapidly over time. The disease rate is therefore operating on an ever-diminishing

proportion of the population as time goes on. This means that the number of new

cases per unit time will be steadily decreasing.

In other words, although the disease rate is constant over time, the cumulative

incidence and risk do not increase at a constant pace; their increase slows down

over time. This is reflected by a steadily decreasing gradient of the graph showing

how the disease-free population is diminishing over time (or equivalently how the

number who have experienced the disease, that is the cumulative incidence, is

accumulating). It can be shown mathematically that when the rate is constant over

time, this graph is described by an exponential function, and that:

Proportion disease free at time t ¼ e�lt

Risk up to time t ¼ 1� e�lt

Average time to contracting the disease ¼ 1=l

In Figure 22.2(b), the incidence rate is low and so the proportion of the population

remaining disease-free decreases slowly over time. It remains sufficiently close to

one over the 5 years that the exponential curve is approximately linear, corres-

ponding to a constant increase of new cases (and therefore of risk) over time. In

fact when the value of l is very small, the risk is approximately equal to the rate

multiplied by the time:

When l is very small, risk up to time t � lt, so that

l � risk

t

Table 22.1 shows the values of the risks (up to 1, 2 and 5 years) that result from

these two very different rates. This confirms what we can see visually in Figure

22.2. For the high rate (l ¼ 0:3=person=year), the number of new cases per unit

time is steadily decreasing; the increase is always less than the rate because the size

of the ‘at risk’ population is decreasing rapidly. Thus at 1 year, the cumulative risk

is a bit less than the rate (0.26 compared to 0.3), at 2 years it is considerably less

than twice the rate (0.45 compared to 0.6), and so on. In contrast, for the low rate

(l ¼ 0:03=person=year), the number of new cases is increasing steadily, and the

risk increases by approximately 0.03=year.
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Table 22.1 Risks of disease up to 1, 2 and 5 years corresponding to rates of l ¼ 0:3/person/year, and

l ¼ 0:03=person=year.

Risk of disease

Rate of disease Over 1 year Over 2 years Over 5 years

0.3=person=year 1� e�0:3 ¼ 0:26 1� e�0:3�2 ¼ 0:45 1� e�0:3�5 ¼ 0:78

0.03=person=year 1� e�0:03 ¼ 0:03 1� e�0:03�2 ¼ 0:06 1� e�0:03�5 ¼ 0:14

We have demonstrated that when l is very small, the risk up to time t approxi-

mately equals lt. This is equivalent to the rate, l, being approximately equal to the

value of the risk per unit time (risk=t). We will now show that the value of risk=t

also gets close to the rate as the length of the time interval gets very small. This is

true whatever the size of the rate, and is the basis of the formal definition of a rate,

as the value of risk=t when t is very small.

l ¼ risk

t
, when t is very small

Table 22.2 illustrates this for the fairly high rate of l ¼ 0:3=person=year. Over

5 years, the risk per year equals 0.1554, just over half the value of the rate. If the

length of time is decreased to 1 year, the risk per year is considerably higher at

0.2592, but still somewhat less than the rate of 0.3 per year. As the length of time

decreases further, the risk per year increases; by one month it is very close to the

rate, and by one day almost equal to it.

Table 22.2 Risk of disease, and risk=t, for different lengths of time interval t, when the rate,

l ¼ 0:3=person=year.

Length of time interval, t

5 years 1 year

1month

(30 days) 1week 1 day 1 hour 1minute

t (years) 5 1 0.08219 0.01918 0.002740 0.0001142 0.000001900

risk ¼ 1� e�0:3t 0.7769 0.2592 0.02436 0.005737 0.0008216 0.00003420 0.0000005710

risk=t 0.1554 0.2592 0.2963 0.2992 0.2999 0.3000 0.3000

22.4 THE POISSON DISTRIBUTION

We have already met the normal distribution for means and the binomial distri-

bution for proportions. We now introduce the Poisson distribution, named after

the French mathematician, which is appropriate for describing the number of

occurrences of an event during a period of time, provided that these events
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occur independently of each other and at random. An example would be the

number of congenital malformations of a given type occurring in a particular

district each year, provided that that there are no epidemics or specific environ-

mental hazards and that the population is constant from year to year (also see

Example 22.2).

The Poisson distribution is also appropriate for the number of particles found

in a unit of space, such as the number of malaria parasites seen in a microscope

field of a blood slide, provided that the particles are distributed randomly

and independently over the total space. The two properties of randomness and

independence must both be fulfilled for the Poisson distribution to hold. For

example, the number of Schistosoma mansoni eggs in a stool slide will not be

Poisson, since the eggs tend to cluster in clumps rather than to be distributed

independently.

After introducing the Poisson distribution in general for the number of events,

we will explain its application to the analysis of rates.

Definition of the Poisson distribution

The Poisson distribution describes the sampling distribution of the number of

occurrences, d, of an event during a period of time (or region of space). It depends

upon just one parameter, which is the mean number of occurrences, �, in periods

of the same length (or in equal regions of space).

Probability (d occurrences) ¼ e�� �d

d!

Note that, by definition, both 0! and �0 equal 1. The probability of zero occur-

rences is therefore e�� (e is the mathematical constant 2.71828 . . .).

Mean number of occurrences ¼ �

s:e: of number of occurrences ¼ �
p

The standard error for the number of occurrences equals the square root of

the mean, which is estimated by the square root of the observed number of events,

d
p

.

Example 22.2

A district health authority which plans to close the smaller of two maternity units

is assessing the extra demand this will place on the remaining unit. One factor

being considered is the risk that on any given day the demand for admissions will
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exceed the unit’s capacity. At present the larger unit averages 4.2 admissions per

day and can cope with a maximum of 10 admissions per day. This results in the

unit’s capacity being exceeded only on about one day per year. After the closure of

the smaller unit the average number of admissions is expected to increase to 6.1

per day. The Poisson distribution can be used to estimate the proportion of days

on which the unit’s capacity is then likely to be exceeded. For this we need to

determine the probability of getting 11 or more admissions on any given day. This

is most easily calculated by working out the probabilities of 0, 1, 2 . . . or 10 admis-

sions and subtracting the total of these from 1, as shown in Table 22.3. For

example:

Probability (three admissions) ¼ e�6:1 6:13

3!

The calculation shows that the probability of 11 or more admissions in a day is

0.0470. The unit’s capacity is therefore likely to be exceeded 4.7% of the time, or

on about 17 days per year.

Table 22.3 The probabilities of the number of admissions made

during a day in a maternity unit, based on a Poisson distribution

with a mean of 6.1 admissions per day.

No. of admissions Probability

0 0.0022

1 0.0137

2 0.0417

3 0.0848

4 0.1294

5 0.1579

6 0.1605

7 0.1399

8 0.1066

9 0.0723

10 0.0440

Total (0� 10) 0.9530

11þ (by subtraction, 1� 0:9530) 0.0470

Shape of the Poisson distribution

Figure 22.3 shows the shape of the Poisson distribution for various values of its

mean, �. The distribution is very skewed for small means, when there is a sizeable

probability that zero events will be observed. It is symmetrical for large means and

is adequately approximated by the normal distribution for values of � ¼ 10 or

more.
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Fig. 22.3 Poisson distribution for various values of �. The horizontal scale in each diagram shows values of

the number of events, d.

Use of the Poisson distribution

The Poisson distribution (and its normal approximation) can be used whenever it

is reasonable to assume that the outcome events are occurring independently of

each other and randomly in time. This assumption is, of course, less likely to be
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true for infectious than for non-communicable diseases but, provided there is no

strong evidence of disease clustering, the use is still justified. Specific techniques

exist to detect disease clustering in time and=or space (see Elliott et al., 2000), such

as the possible clustering of cases of leukaemia or variant Creutzfeldt–Jakob

disease in a particular area. Such clusters violate what might otherwise be a

Poisson distribution.

22.5 STANDARD ERROR OF A RATE

We now discuss the use of the Poisson distribution for the analysis of rates. Recall

that:

Rate, l ¼ number of events

total person-years of observation
¼ d

T

Although the value of the total person-years of observation (T) is affected by the

number of events, and the time at which they occur (since an individual’s period of

observation only contributes until they experience an event, as then they are no

longer at risk), it can be shown that we do not need to explicitly consider this

variation in T. We can therefore calculate the standard error of a rate as

follows:

s:e: (rate) ¼ s:e: (number of events)

T
¼ d

p

T
¼ l

T

r

The right hand version of the formula (derived by replacing d
p

with (lT)
p

)

makes it clear that the standard error of the rate will be smaller the larger the

total person-years of observation, as l will be the same, on average, whatever the

value of this.

Example 22.1 (continued)

We showed earlier that in the 2-year morbidity study in rural Guatemala the rate

of acute lower respiratory infections, expressed per 1000 child-years at risk, was

estimated to be 65.3 per 1000 child-years. The standard error of the rate is:

s:e: ¼ d
p

T
� 1000 ¼ 57

p

873
� 1000 ¼ 8:6
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22.6 CONFIDENCE INTERVAL FOR A RATE

A confidence interval for a rate can be derived from its standard error, in the usual

way. However, it is preferable to work on the log scale and to derive a confidence

interval for the log rate, and then to antilog this to give a confidence interval for a

rate, since this takes account of the constraint that the rate must be greater than or

equal to zero. We now show how to do this.

The formula for the standard error of the log rate is derived using the delta

method (see Box 16.1 on p. 157), and is:

s:e: ( log rate) ¼ 1

d
p

Thus, perhaps surprisingly, the standard error of the log rate depends only on the

number of events, and not on the length of follow-up time. In the same way as

shown in Chapter 16, the steps of calculating the confidence interval on the log

scale and then converting it to give a confidence interval for the rate can be

combined into the following formulae:

95% CI (rate) ¼ rate=EF to rate� EF

Error factor (EF) ¼ exp(1:96= d
p

)

Example 22.1 (continued)

For the Guatemala morbidity study there were 57 lower respiratory infections in

873 child-years at risk. The log rate per 1000 child-years at risk, is log(l) ¼
log(1000� 57=873) ¼ log(65:3) ¼ 4:179. The standard error of this log rate is:

s:e: ( log rate) ¼ 1= d
p ¼ 1= 57

p ¼ 0:132

1 The 95% confidence interval for the log rate is therefore:

95% CI ¼ 4:179� (1:96� 0:132) to 4:179 þ (1:96� 0:132) ¼ 3:919 to 4:438

The 95% confidence interval for the rate is:

95% CI ¼ exp(3:919) to exp(4:438) ¼ 50:36 to 84:65 infections per

1000 child-years

2 Alternatively, we may calculate the 95% CI using the 95% error factor (EF) for

the rate:
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EF ¼ exp(1:96= d
p

) ¼ exp(1:96= 57
p

) ¼ 1:296

The 95% confidence interval for the rate is:

95% CI ¼ l
EF

to l� EF ¼ 65:3=1:296 to 65:3� 1:296

¼ 50:36 to 84:65 infections per 1000 child-years
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23.1 INTRODUCTION

In this chapter we describe the two measures used to compare rates in different

exposure groups: the rate difference and the rate ratio. We then show how to

use Mantel–Haenszel methods to estimate rate ratios controlling for confounding

factors. In Part C we emphasized the similarity between Mantel–Haenszel

methods, which use stratification to estimate odds ratios for the effect of exposure

controlled for the effects of confounding variables, and logistic regression

models. Mantel–Haenszel methods for rate ratios are closely related to the corres-

ponding regression model for rates, Poisson regression, which is introduced in

Chapter 24.

23.2 COMPARING TWO RATES

We now see how the rates of disease in two exposure groups may be compared,

using two different measures: the rate difference and the rate ratio.

Rate differences

Example 23.1

The children in the Guatemala morbidity study analysed in Example 22.1 were

subdivided according to the quality of their housing conditions. The data are

shown in Table 23.1, together with the notation we will use. We will consider

children living in poor housing conditions to be the exposed group and, as in Part

C, denote exposed and unexposed groups by the subscripts 1 and 0 respectively.

The rate difference comparing poor with good housing is 93:0� 46:3 ¼ 46:7

infections per 1000 child-years.
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Table 23.1 Incidence of lower respiratory infection among children aged less than 5 years, according to

their housing conditions.

Housing condition

Number of acute lower

respiratory infections Child-years at risk Rate=1000 child-years

Poor (exposed) d1 ¼ 33 T1 ¼ 355 l1 ¼ 93:0

Good (unexposed) d0 ¼ 24 T0 ¼ 518 l0 ¼ 46:3

Total d ¼ 57 T ¼ 873 l ¼ 65:3

The standard error of a rate difference is:

s:e: (rate difference) ¼ d1

T2
1

þ d0

T2
0

� �s

This canbeused in theusualway toderivea95%confidence interval. In this example,

s:e: ¼ d1

T2
1

þ d0

T2
0

 !s
¼ 33

3552
þ 24

5182

� �r
� 1000

¼ 18:7 infections per 1000 child-years

and the 95% confidence interval is:

46:7� 1:96�18:7 to 46:7þ 1:96�18:7

¼ 10:0 to 83:4 infections per 1000 child-years

With 95% confidence, the rate of lower respiratory infections among children

living in poor housing exceeds the rate among children living in good housing by

between 10.0 and 83.4 infections per 1000 child-years.

Rate ratios

As explained in more detail in the next chapter, the analysis of rates is usually

done using rate ratios rather than rate differences. The rate ratio is defined as:

Rate ratio ¼ rate in exposed

rate in unexposed
¼ l1

l0
¼ d1=T1

d0=T0

¼ d1 � T0

d0 � T1

As for risk ratios and odds ratios, we use the standard error of the log rate ratio to

derive confidence intervals, and tests of the null hypothesis of no difference
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between the rates in the two groups. This (again derived using the delta method) is

given by:

s:e: of log(rate ratio) ¼ 1=d1 þ 1=d0ð Þp

The 95% confidence interval for the rate ratio is:

95% CI ¼ rate ratio=EF to rate ratio� EF, where

EF ¼ exp[1:96� s:e: of log(rate ratio)]

z-test for the rate ratio

A z-test (Wald test, see Chapter 28) of the null hypothesis that the rates in the two

groups are equal is given by:

z ¼ log(rate ratio)

s:e: of log(rate ratio)

Example 23.1 (continued)

The rate ratio comparing children living in poor housing with those living in good

housing is:

rate ratio ¼ 33=355

24=518
¼ 2:01

The standard error of the log(rate ratio) is 1=33þ 1=24ð Þp ¼ 0:268, and the 95%

error factor is:

95% EF ¼ exp(1:96� 0:268) ¼ 1:69

A 95% confidence interval for the rate ratio is thus:

95% CI ¼ 2:01=1:69 to 2:01� 1:69 ¼ 1:19 to 3:39
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With 95% confidence, the rate of acute lower respiratory infections among

children living in poor housing is between 1.19 and 3.39 times the rate among

children living in good housing. The z statistic is log(2.01)/0.268 ¼ 2.60; the

corresponding P value is 0.009. There is therefore good evidence against the null

hypothesis that infection rates are the same among children living in good and

poor quality housing.

Relationship between rate ratio, risk ratio and odds ratio

From Chapter 16, we know that for a rare event the risk ratio is approximately

equal to the odds ratio. And in the last chapter we saw that for a rare event, risk up

to time t approximately equals lt. It therefore follows that for a rare event the risk
ratio and rate ratio are also approximately equal:

Risk ratio � l1t
l0t

¼ l1
l0

¼ Rate ratio � Odds ratio

However when the event is not rare the three measures will all be different. These

different measures of the association between exposure and outcome event, and of

the impact of exposure, are discussed in more detail in Chapter 37.

23.3 MANTEL–HAENSZEL METHODS FOR RATE RATIOS

Recall from Chapter 18 that a confounding variable is one that is related both to

the outcome variable and to the exposure of interest (see Figure 18.1), and that is

not a part of the causal pathway between them. Ignoring the effects of confound-

ing variables may lead to bias in our estimate of the exposure–outcome associ-

ation. We saw that we may allow for confounding in the analysis via stratification:

restricting estimation of the exposure–outcome association to individuals with the

same value of the confounder. We then used Mantel–Haenszel methods to com-

bine the stratum-specific estimates, leading to an estimate of the summary odds

ratio, controlled for the confounding.

We now present Mantel–Haenszel methods for rate ratios. Table 23.2 shows the

notation we will use for the number of events and person-years in each group, in

stratum i. The notation is exactly the same as that in Table 23.1, but with the

subscript i added, to refer to the stratum i.

Table 23.2 Notation for the table for stratum i.

Number of events Person-years at risk

Group 1 (Exposed) d1i T1i
Group 0 (Unexposed) d0i T0i
Total di ¼ d0i þ d1i Ti ¼ T0i þ T1i

23.3 Mantel–Haenszel methods for rate ratios 243



The data consist of c such tables, where c is the number of different values the

confounding variable can take. The estimate of the rate ratio for stratum i is

RRi ¼ d1i=T1i

d0i=T0i

¼ d1i � T0i

d0i � T1i

Mantel–Haenszel estimate of the rate ratio controlled for confounding

As for the odds ratio, the Mantel–Haenszel estimate of the rate ratio is a weighted

average (see Section 18.3) of the rate ratios in each stratum. The weight for each

rate ratio is:

wi ¼ d0i � T1i

Ti

Since the numerator of the weight is the same as the denominator of the rate ratio

in stratum i, wi � RRi ¼ (d1i � T0i)=Ti. These weights therefore lead to the

following formula for the Mantel–Haenszel estimate of the rate ratio:

RRMH ¼ �(wi � RRi)

�wi

¼

X d1i � T0i

TiX d0i � T1i

Ti

Following the notation of Clayton and Hills (1993), this can alternatively be

written as:

RRMH ¼ Q=R, where

Q ¼
X d1i � T0i

Ti

and R ¼
X d0i � T1i

Ti

Example 23.2

Data on incidence of acute lower respiratory infections from a study in Guatemala

were presented in Example 23.1 and Table 23.1. The rate ratio comparing children

living in poor with good housing conditions is 2.01 (95% CI 1.19 to 3.39). Table

23.3 shows the same information, stratified additionally by the type of cooking

stove used in the household.
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Table 23.3 Association between incidence of acute lower respiratory infection and housing conditions, stratified

by type of cooking stove.

(a) Wood burning stove (stratum 1)

Housing condition Number of infections Child-years at risk Rate=1000 child-years

Poor (exposed) d11 ¼ 28 T11 ¼ 251 l11 ¼ 111:6

Good (unexposed) d01 ¼ 5 T01 ¼ 52 l01 ¼ 96:2

Total d1 ¼ 33 T1 ¼ 303 l1 ¼ 108:9

Rate ratio ¼ 1:16 (95% CI 0.45 to 3.00), P ¼ 0:76

(b) Kerosene or gas stove (stratum 2)

Housing condition Number of infections Child-years at risk Rate=1000 child-years

Poor (exposed) d12 ¼ 5 T12 ¼ 104 l12 ¼ 48:1

Good (unexposed) d02 ¼ 19 T02 ¼ 466 l02 ¼ 40:8

Overall d2 ¼ 24 T2 ¼ 570 l2 ¼ 42:1

Rate ratio ¼ 1:18 (95% CI 0.44 to 3.16), P ¼ 0:74

Table 23.4 Person-years of observation according to housing conditions

and type of cooking stove.

Type of stove

Housing condition Wood burning stove Gas or kerosene stove

Poor (exposed) T11 ¼ 251 T21 ¼ 104

Good (unexposed) T10 ¼ 52 T20 ¼ 466

Examination of the association between quality of housing and infection rates

in the two strata defined by type of cooking stove shows that there is little evidence

of an association in either stratum. Type of cooking stove is a strong confounder

of the relationship between housing quality and infection rates, because most poor

quality houses have wood burning stoves while most good quality houses have

kerosene or gas stoves. This can be seen by tabulating the person-years of obser-

vation according to housing condition and cooking stove, as shown in Table 23.4.

Table 23.5 shows the calculations needed to derive the Mantel–Haenszel rate

ratio combining the stratified data, presented in Table 23.3, on the association

between housing conditions (the exposure variable) and the incidence of acute

lower respiratory infection (the outcome), controlling for type of stove.

The Mantel–Haenszel estimate of the rate ratio equals:

RRMH ¼ Q=R ¼ 8:89=7:61 ¼ 1:17
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Table 23.5 Calculations required to derive the Mantel–Haenszel summary rate ratio, with associated confidence

interval and P value.

Stratum i RRi wi ¼ d0i�T1i
Ti

wi � RRi Vi d1i E1i

Wood stove (i ¼ 1) 1.16 4.14 4.81 4.69 28 27.34

Kerosene=gas (i ¼ 2) 1.18 3.47 4.09 3.58 5 4.38

Total R ¼ 7:61 Q ¼ 8:89 V ¼ 8:27 O ¼ 33 E ¼ 31:72

After controlling for the confounding effect of type of stove, the rate of infection is

only slightly (17%) greater among children living in poor housing conditions

compared to children living in good housing conditions.

Standard error and confidence interval for the Mantel–Haenszel RR

As is usual for ratio measures, the 95% confidence interval for RRMH is derived

using the standard error of log(RRMH), denoted by s:e:MH.

95% CI ¼ RRMH=EF to RRMH � EF, where

the error factor EF ¼ exp(1:96� s:e:MH)

The simplest formula for the standard error of logRRMH (Clayton and Hills 1993)

is:

s:e:MH ¼ V

Q� R

� �r
, where

V ¼ �Vi, and Vi ¼ di � T1i � T0i

T2
i

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event, i.e. the variances of the d1i’s. Note

that the formula for the variance Vi of d1i for stratum i gives the same value

regardless of which group is considered as exposed and which is considered as

unexposed.

Example 23.2 (continued)

Using the results of the calculations for Q, R and V shown in Table 23.5, we find

that:
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s:e:MH ¼ V

Q� R

� �r
¼ 8:27

8:89� 7:61

� �
¼ 0:35

r

so that EF ¼ exp(1:96� 0:35) ¼ 1:98, RRMH=EF ¼ 1:17=1:98 ¼ 0:59, and

RRMH � EF ¼ 1:17� 1:98 ¼ 2:32. The 95% confidence interval is therefore:

95% CI for RRMH ¼ 0:59 to 2:32

Mantel–Haenszel x2 test of the null hypothesis

Finally, we test the null hypothesis that RRMH ¼ 1 by calculating the Mantel–

Haenszel x2 test statistic:

x2MH ¼ (�d1i � �E1i)
2

�Vi

¼ (O� E)2

V
¼ U2

V
; d:f : ¼ 1

This is based on a comparison in each stratum of the number of exposed individ-

uals observed to have experienced the disease event (d1i) with the expected number

in this category (E1i) if there were no difference in the rates between the exposed

and unexposed. The expected numbers are calculated in the same way as for the

standard �2 test described in Chapter 17.

E1i ¼ di � T1i

Ti

The formula has been simplified by writing O for the sum of the observed

numbers, E for the sum of the expected numbers and U for the difference between

them:

O ¼ �d1i, E ¼ �E1i and U ¼ D� E

Note that �2
MH has just 1 degree of freedom irrespective of how many strata are

summarized.

Example 23.2 (continued)

From the data presented in Table 23.5, a total of O ¼ 33 children living in poor

housing experienced acute lower respiratory infections, compared with an
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expected number of 31.72, based on assuming no difference in rates between poor

and good housing. Thus the Mantel–Haenszel �2 statistic is:

�2
MH ¼ U2

V
¼ (33� 31:72)2

8:27
¼ 0:20 (1 d:f :, P ¼ 0:655)

After controlling for type of cooking stove, there is no evidence of an association

between quality of housing and incidence of lower respiratory infections.

Test for effect modification (interaction)

Use of Mantel–Haenszel methods to control for confounding assumes that the

exposure–outcome association is the same in each of the strata defined by the levels

of the confounder, in other words that the confounder does not modify the effect

of the exposure on the outcome event. If this is true, RRi ¼ RRMH, and it follows

that:

(d1i � T0i �RRMH � d0i � T1i) ¼ 0

The x2 test for heterogeneity is based on a weighted sum of the squares of these

differences:

�2 ¼ �
(d1i � T0i �RRMH � d0i � T1i)

2

RRMH � Vi � T2
i

, d:f : ¼ c� 1

where Vi is as defined above, and c is the number of strata. The greater the

differences between the stratum-specific rate ratios and RRMH, the larger will be

the heterogeneity statistic.

Example 23.2 (continued)

The rate ratios in the two strata were very similar (1.16 in houses with wood-

burning stoves and 1.18 in houses with kerosene or gas stoves). We do not,

therefore, expect to find evidence of effect modification. Application of the

formula for the test for heterogeneity gives �2 ¼ 0:0005 (1 d:f :), P ¼ 0:98. There

is thus no evidence that type of cooking stove modifies the association between

quality of housing and rates of respiratory infections.
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24.1 INTRODUCTION

In this chapter we introduce Poisson regression for the analysis of rates. This is

used to estimate rate ratios comparing different exposure groups in the same way

that logistic regression is used to estimate odds ratios comparing different exposure

groups. We will show how it can be used to:

� compare the rates between two exposure (or treatment) groups

� compare more than two exposure groups

� examine the effect of an ordered or continuous exposure variable

� control for the confounding effects of one or more variables

� estimate and control for the effects of exposures that change over time

We will see that Poisson regression models comparing two exposure groups give

identical rate ratios, confidence intervals and P-values to those derived using the

methods described in Section 23.2. We will also see that Poisson regression to

control for confounding is closely related to the Mantel–Haenszel methods for

rate ratios, described in Section 23.3. Finally, we will show how to estimate and

control for the effects of variables that change over time, by splitting the follow-up

time for each subject.

Like logistic regression models, Poisson regression models are fitted on a log

scale. The results are then antilogged to give rate ratios and confidence intervals.

Since the principles and the approach are exactly the same as those outlined for

logistic regression in Part C, a more concise treatment will be given here; readers

are referred to Chapters 19 and 20 for more detail. More general issues in

regression modelling are discussed in Chapter 29.
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24.2 POISSON REGRESSION FOR COMPARING TWO EXPOSURE

GROUPS

Introducing the Poisson regression model

The exposure rate ratio is defined as:

Exposure rate ratio ¼ rate in exposed group

rate in unexposed group

If we re-express this as:

Rate in exposed group ¼ Rate in unexposed group� Exposure rate ratio

then we have the basis for a model which expresses the rate in each group in terms

of two model parameters. These are:

1 The baseline rate. As in Chapters 19 and 20, we use the term baseline to refer to

the exposure group against which all the other groups are compared. When

there are just two exposure groups, then the baseline rate is the rate in the

unexposed group. We use the parameter name Baseline to refer to the rate in

the baseline group.

2 The exposure rate ratio. This expresses the effect of the exposure on the rate of

disease. We use the parameter name Exposure to refer to the exposure rate

ratio.

As with logistic regression, Poisson regression models are fitted on a log scale. The

two equations that define this model for the rate of an outcome event are shown in

Table 24.1, together with the corresponding equations for the log rate. The

equations for the rate can be abbreviated to:

Rate ¼ Baseline� Exposure

The two equations that define the Poisson regression model on the log scale can be

written:

log(Rate) ¼ log(Baseline)þ log(Exposure rate ratio)

Table 24.1 Equations defining the Poisson regression model for the comparison of two exposure groups.

Exposure group Rate Log rate

Exposed ( group 1) Baseline rate� exposure rate ratio Log(baseline rate)þ log(exposure rate ratio)

Unexposed ( group 0) Baseline rate Log(baseline rate)
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In practice, we abbreviate it to:

log(Rate) ¼ Baselineþ Exposure

since it is clear from the context that output on the log scale refers to log rate and

log rate ratios. Note that whereas the exposure effect on the rate ratio scale is

multiplicative, the exposure effect on the log scale is additive.

Example 24.1

All the examples in this chapter are based on a sample of 1786 men who took part

in the Caerphilly study, a study of risk factors for cardiovascular disease. Partici-

pants were aged between 43 and 61 when they were first examined, and were

followed for up to 19 years. The first examinations took place between July 1979

and October 1983, and the follow-up for the outcome (myocardial infarction or

death from heart disease) ended in February 1999. Further information about the

study can be found at www.epi.bris.ac.uk/mrc-caerphilly.

The first ten lines of the dataset are shown in Table 24.2. Variable ‘cursmoke’,

short for current smoker at recruitment, was coded as 1 for subjects who were

smokers and 0 for subjects who were non-smokers, and variable ‘MI’ was coded

as 1 for subjects who experienced a myocardial infarction or died from heart

disease during the follow-up period and 0 for subjects who did not. Variable

‘years’ is the years of follow-up for each subject (the time from examdate to

exitdate); it was derived using a statistical computer package, as described in

Section 22.2.

There were 990 men who were current smokers at the time they were recruited

into the study, and 796 men who had never smoked or who were ex-smokers.

Table 24.3 shows rates of myocardial infarction in these two groups. The rate ratio

comparing smokers with never=ex-smokers is 16:98=9:68 ¼ 1:700.

Table 24.2 First ten lines of the computer dataset from the Caerphilly study. Analyses of the Caerphilly study

are by kind permission of the MRC Steering Committee for the Management of MRC Epidemiological Resources

from the MRC Epidemiology Unit (South Wales).

id dob examdate exitdate years MI cursmoke

1 20=May=1929 17=Jun=1982 31=Dec=1998 16.54 0 1

2 9=Jul=1930 10=Jan=1983 24=Dec=1998 15.95 0 0

3 6=Feb=1929 23=Dec=1982 26=Nov=1998 15.93 0 1

4 24=May=1931 7=Jul=1983 22=Nov=1984 1.38 1 0

5 9=Feb=1934 3=Sep=1980 19=Dec=1998 18.29 0 0

6 14=Mar=1930 17=Nov=1981 31=Dec=1998 17.12 0 0

7 13=May=1933 30=Oct=1980 27=Dec=1998 18.16 0 1

8 23=May=1924 24=Apr=1980 24=Jan=1986 5.75 1 1

9 20=Jun=1931 11=Jun=1980 12=Dec=1998 18.50 0 1

10 12=May=1929 17=Nov=1979 20=Jan=1995 15.18 1 0
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Table 24.3 Rates of myocardial infarction among men who were and were not current smokers at the time

they were recruited to the Caerphilly study.

Current smoker at

entry to the study

Number of myocardial

infarctions Person-years at risk Rate per 1000 person-years

Yes (exposed) d1 ¼ 230 T1 ¼ 13 978 l1 ¼ 230=13:978 ¼ 16:98

No (unexposed) d0 ¼ 118 T0 ¼ 12 183 l0 ¼ 118=12:183 ¼ 9:68

Overall d ¼ 348 T ¼ 26 161 l ¼ 348=26:161 ¼ 13:30

We will now show how to use Poisson regression to examine the association

between smoking and rates of myocardial infarction in these data. To use a

computer package to fit a Poisson regression model, it is necessary to specify

three items:

1 The name of the outcome variable, which in this case is MI. If each line of the

dataset represents an individual (as is the case here) then the outcome variable is

coded as 1 for individuals who experienced the event and 0 for individuals who

did not experience the event. If data have been grouped according to the values of

different exposure variables then the outcome contains the total number of

events in each group.

2 The total exposure time, for the individual or the group (depending on whether

each line in the dataset represents an individual or a group). As will be explained

in Section 24.3, this is used as an offset in the Poisson regression model.

3 The name of the exposure variable(s). In this example, we have just one exposure

variable, which is called cursmoke. The required convention for coding is that

used throughout this book; thus cursmoke was coded as 0 for men who were

never=ex-smokers at the start of the study (the unexposed or baseline group) and

1 for men who were current smokers at the start of the study (the exposed

group).

The Poisson regression model that will be fitted is:

Rate of myocardial infarction ¼ Baseline� Cursmoke

Its two parameters are:

1 Baseline: the rate of myocardial infarction in the baseline group (never=ex-

smokers), and

2 Cursmoke: the rate ratio comparing current smokers with never=ex-smokers.

Output on the ratio scale

Table 24.4 shows the computer output obtained from fitting this model. The two

rows in the output correspond to the two parameters of the logistic regression

model; cursmoke is our exposure of interest and the constant term refers to the
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Table 24.4 Poisson regression output for the model relating rates of myocardial infarction with smoking at

the time of recruitment to the Caerphilly study.

Rate ratio z P > jzj 95% CI

Cursmoke 1.700 4.680 0.000 1.361 to 2.121

Constant 0.00969 �50:37 0.000 0.00809 to 0.0116

baseline group. The same format is used for both parameters, and is based on

what makes sense for interpretation of the effect of exposure. This means that

some of the information presented for the constant (baseline) parameter is not of

interest.

The column labelled ‘Rate Ratio’ contains the parameter estimates:

1 For the first row, labelled ‘cursmoke’, this is the rate ratio (1.700) comparing

smokers at recruitment with never=ex-smokers. This is identical to the rate ratio

that was calculated directly from the raw data (see Table 24.3).

2 For the second row, labelled ‘constant’, this is the rate of myocardial

infarction in the baseline group (0:00969 ¼ 118=12 183, see Table 24.3). As we

explained in the context of logistic regression, this apparently inconsistent

labelling is because output from regression models is labelled in a uniform

way.

The remaining columns present z statistics, P-values and 95% confidence intervals

corresponding to the model parameters. They will be explained in more detail after

the explanation of Table 24.5 below.

Output on the log scale

Table 24.5 shows Poisson regression output, on the log scale, for the association

between smoking and rates of myocardial infarction. The model is:

Log(Rate) ¼ Baselineþ Cursmoke

where

� Baseline is the log rate of myocardial infarction in never=ex-smokers, and

� Cursmoke is the log rate ratio comparing the rate of myocardial infarction in

smokers with that in never=ex-smokers.

Table 24.5 Poisson regression output (log scale) for the association between smoking and

rates of myocardial infarction.

Coefficient s.e. z P > jzj 95% CI

Cursmoke 0.530 0.113 4.680 0.000 0.308 to 0.752

Constant �4:64 0.092 �50:37 0.000 �4:82 to �4:45
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The interpretation of this output is very similar to that described for logistic

regression in Chapter 19; readers are referred there for a more detailed discussion

of all components of the output.

1 The first column gives the results for the regression coefficients (corresponding

to the parameter estimates on a log scale). For the row labelled ‘cursmoke’ this

is the log rate ratio comparing smokers with non-smokers. It agrees with what

would be obtained if it were calculated directly from Table 24.3:

log rate ratio ¼ log(16:98=9:68) ¼ log(1:70) ¼ 0:530

1 For the row labelled ‘constant’, the regression coefficient is the log rate in the

baseline group, i.e. the log rate of myocardial infarction among non-smokers:

log rate ¼ log(118=12 183) ¼ log(0:00969) ¼ �4:637

2 The second column gives the standard errors of the regression coefficients. For a

binary exposure variable, these are exactly the same as those derived using the

formulae given in Section 23.2. Thus:

s:e:( log rate ratio) ¼ 1=d1 þ 1=d0ð Þp ¼ 1=118þ 1=230ð Þp ¼ 0:113

s:e:( log rate in never=ex-smokers) ¼ 1=d0ð Þp ¼ 1=118ð Þp ¼ 0:092

3 The 95% confidence intervals for the regression coefficients in the last column

are derived in the usual way. For the log rate ratio comparing smokers with

never=ex-smokers, the 95% CI is:

95% CI ¼ (0:530 � (1:96� 0:113)) to (0:530þ (1:96� 0:113))

¼ 0:308 to 0:752

4 Each z statistic in the third column is the regression coefficient divided by its

standard error. They can be used to derive a Wald test of the null hypothesis

that the corresponding regression coefficient ¼ 0.

5 The P-values in the fourth column are derived from the z statistics in the usual

manner (see Table A1 in the Appendix) and can be used to test the null

hypothesis that the true (population) value for the corresponding population

parameter is zero. For example the P-value of 0.000 (i.e. < 0:001) for the log

rate ratio comparing smokers with never=ex-smokers indicates that there is

strong evidence against the null hypothesis that rates of myocardial infarction

are the same in smokers as in non-smokers.

As previously explained in the context of logistic regression, we are usually

not interested in the z statistic and corresponding P-value for the constant

parameter.
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Relation between outputs on the ratio and log scales

As with logistic regression, the results in Table 24.4 (output on the original, or

ratio, scale) are derived from the results in Table 24.5 (output on the log scale).

Once the derivation of the ratio scale output is understood, it is rarely necessary to

refer to the log scale output: the most useful results are the rate ratios, confidence

intervals and P-values displayed on the ratio scale, as in Table 24.4. Note that the

output corresponding to the constant term (baseline group) is often omitted from

computer output, since the focus of interest is on the parameter estimates (rate

ratios) comparing the different groups.

1 In Table 24.4, the column labelled ‘Rate Ratio’ contains the exponentials

(antilogs) of the Poisson regression coefficients shown in Table 24.5. Thus the

rate ratio comparing smokers with never=ex-smokers¼ exp(0.530)¼ 1.700.

2 The z statistics and P-values are derived from the regression coefficients and

their standard errors, and so are identical in the two tables.

3 The 95% confidence intervals in Table 24.4 are derived by antilogging

(exponentiating) the confidence intervals on the log scale presented in Table

24.5. Thus the 95% CI for the rate ratio comparing smokers with never=ex-

smokers is:

95% CI ¼ exp(0:308) to exp(0:752) ¼ 1:361 to 2:121

This is identical to the 95% CI calculated using the methods described in Section

23.2.

95% CI for rate ratio ¼ rate ratio=EF to rate ratio� EF

where the error factor EF ¼ exp(1:96� s:e: ( log rate ratio)). Note that since the

calculations are multiplicative:

Rate ratio

Lower confidence limit
¼ Upper confidence limit

Rate ratio

This can be a useful check on confidence limits presented in tables in published

papers.

24.3 GENERAL FORM OF THE POISSON REGRESSION MODEL

The general form of the Poisson regression model is similar to that for logistic

regression (Section 19.3) and that for multiple regression (Section 11.4). It relates

the log rate to the values of one or more exposure variables:

log(rate) ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp
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The quantity on the right hand side of the equation is known as the linear predictor

of the log rate, given the particular value of the p exposure variables x1 to xp. The

�’s are the regression coefficients associated with the p exposure variables.

Since log(rate) ¼ log(d=T) ¼ log(d) � log(T), the general form of the Poisson

regression model can also be expressed as:

log(d) ¼ log(T)þ �0 þ �1x1 þ �2x2 þ . . .þ �pxp

The term log(T) is known as an offset in the regression model. To use statistical

packages to fit Poisson regression models we must specify the outcome as the

number of events and give the exposure time T, which is then included in the offset

term, log(T).

We now show how this general form corresponds to the model we used in

Section 24.2 for comparing two exposure groups. The general form for comparing

two groups is:

Log rate ¼ �0 þ �1x1

where x1 (the exposure variable) equals 1 for those in the exposed group and 0 for

those in the unexposed (baseline) group.

Using a similar argument to that given in Section 19.3 in the context of logistic

regression models, it is straightforward to show that:

1 �0 (the intercept) corresponds to the log rate in the unexposed (baseline) group,

and

2 �1 corresponds to the log of the rate ratio comparing exposed and unexposed

groups (the exposure rate ratio).

The equivalent model on the ratio scale is:

Rate of disease ¼ exp(�0)� exp(�1x1)

In this multiplicative model exp(�0) corresponds to the rate of disease in the

baseline group, and exp(�1) to the exposure rate ratio.

24.4 POISSON REGRESSION FOR CATEGORICAL AND CONTINUOUS

EXPOSURE VARIABLES

We now consider Poisson regression models for categorical exposure variables

with more than two levels, and for ordered or continuous exposure variables. The

principles have already been outlined in detail in Chapter 19, in the context of

logistic regression. The application to Poisson regression will be illustrated by
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examining the association between social class and rates of myocardial infarction

in the Caerphilly study.

Poisson regression to compare more than two exposure groups

To examine the effect of categorical exposure variables in Poisson and other regres-

sion models, we look at the effect of each level compared to a baseline group. This is

done using indicator variables, which are created automatically by most statistical

packages, as explained in more detail in Box 19.1 on page 200.

Example 24.2

In the Caerphilly study, a Poisson regression model was fitted to investigate the

evidence that rates of myocardial infarction were higher among men in less

privileged social classes. Table 24.6 shows the output, with the social class vari-

able, socclass, coded from 1¼ social class I (most affluent) to 6¼ social class V

(most deprived). The model was fitted with social class group III non-manual as

the baseline group, since this was the largest group in the study, comprising 925

(51.8%) of the men. The regression confirms that there is a pattern of increasing

rates of myocardial infarction in more deprived social classes. This trend is

investigated further in Table 24.7 below.

Note that some statistical computer packages will allow the user to specify

which exposure group is to be treated as the baseline group. In other packages,

it may be necessary to recode the values of the variable so that the group chosen to

be the baseline group has the lowest coded value.

Table 24.6 Poisson regression output for the effect of social class on the rate of myocardial infarction. The model

has six parameters: the rate in the baseline group (rate not shown in the table) and the five rate ratios comparing

the other groups with this one. It can be written in abbreviated form as: Rate ¼ Baseline� Socclass.

Rate ratio z P > jzj 95% CI

Socclass(1), I 0.403 �2.36 0.018 0.190 to 0.857

Socclass(2), II 0.759 �1.75 0.080 0.557 to 1.034

Socclass(3), III non-manual 1 (baseline group)

Socclass(4), III manual 0.956 �0.25 0.802 0.675 to 1.355

Socclass(5), IV 0.965 �0.21 0.836 0.693 to 1.344

Socclass(6), V 1.316 1.14 0.253 0.821 to 2.109

Poisson regression for ordered and continuous exposure variables

Example 24.2 (continued)

To investigate further the tendency for increasing rates of myocardial infarction

with increasing deprivation, we can perform a test for trend by fitting a Poisson

regression model for the linear effect of social class. This will assume a constant
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Table 24.7 Poisson regression output for the model for the linear effect of social class on rates of myocardial

infarction: Rate¼ Baseline� [Socclass], where [Socclass] is the rate ratio per unit increase in social class.

Rate ratio z P > jzj 95% CI

Socclass 1.117 2.411 0.016 1.021 to 1.223

increase in the log rate ratio for each unit increase in social class, and correspond-

ingly a constant rate ratio per increase in social class. The results are shown in

Table 24.7. The estimated rate ratio per unit increase in social class is 1.117 (95%

CI 1.021 to 1.223, P ¼ 0:016). There is some evidence of an association between

increasing social deprivation and increasing rates of myocardial infarction.

24.5 POISSON REGRESSION: CONTROLLING FOR CONFOUNDING

Readers are referred to Chapter 20 for a detailed discussion of how regression

models control for confounding in a manner that is analogous to the stratification

procedure used in Mantel–Haenszel methods. Both methods assume that the true

exposure effect comparing exposed with unexposed individuals is the same in each

of the strata defined by the levels of the confounding variable.

Example 24.3

In Section 24.4 we found evidence that rates of myocardial infarction in the

Caerphilly study increased with increasing social deprivation. There was also a

clear association (not shown here) between social class and the prevalence of

smoking at the time of recruitment, with higher smoking rates among men of

less privileged social classes. It is therefore possible that social class confounds the

association between smoking and rates of myocardial infarction. We will examine

this using both Mantel–Haenszel and Poisson regression analyses to estimate the

rate ratio for smoking after controlling for social class. We will then compare the

results.

Table 24.8 shows the rate ratios for smokers compared to non-smokers in strata

defined by social class, together with the Mantel–Haenszel estimate of the rate

ratio for smoking controlling for social class. This equals 1.65 (95% CI 1.32 to

2.06), only slightly less than the crude rate ratio of 1.70 (see Table 24.4). It appears

therefore that social class is not an important confounder of the association

between smoking and rates of myocardial infarction.

Table 24.9 shows the output (on the rate ratio scale) from the correspond-

ing Poisson regression. This model assumes that the rate ratio for smoking is the

same regardless of social class, and (correspondingly) that the rate ratios for social

class are the same regardless of smoking. The estimated rate ratio for smoking

controlled for social class is 1.645, almost identical to the Mantel–Haenszel

estimate (see Table 24.8). There is also little difference between the crude

effect of social class (Table 24.6) and the effect of social class controlling for

smoking.
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Table 24.8 Rate ratios for the association of smoking with rates of myocardial infarction in the Caerphilly

study, separately in social class strata, together with the Mantel–Haenszel estimate of the rate ratio for

smoking controlling for social class.

Social class stratum

Rate ratio (95% CI) for smokers

compared to non-smokers

I (most affluent) 2.07 (0.46 to 9.23)

II 1.49 (0.86 to 2.58)

III non-manual 1.68 (1.23 to 2.30)

III manual 1.38 (0.73 to 2.62)

IV 1.75 (0.91 to 3.35)

V (least affluent) 2.15 (0.77 to 5.96)

Mantel–Haenszel estimate of the rate ratio for smokers

compared to non-smokers, controlling for social class

1.65 (1.32 to 2.06)

x2 for heterogeneity of rate ratios¼ 0:82 (d:f: ¼ 5, P ¼ 0:98)

Table 24.9 Poisson regression output for the model including both current

smoking and social class. The model can be written in abbreviated form as

Rate¼ Baseline � Cursmoke� Socclass, where the baseline group are non-

smokers in Socclass (3).

Rate ratio z P > jzj 95% CI

Cursmoke 1.645 4.351 0.000 1.315 to 2.058

Socclass(1) 0.445 �2.103 0.035 0.209 to 0.946

Socclass(2) 0.830 �1.176 0.240 0.608 to 1.133

Socclass(4) 1.014 0.075 0.940 0.715 to 1.437

Socclass(5) 0.976 �0.142 0.887 0.701 to 1.359

Socclass(6) 1.333 1.194 0.232 0.832 to 2.136

Note the different forms of the output for the Mantel–Haenszel and Poisson

regression approaches. The Mantel–Haenszel output shows us stratum-specific

effects of the exposure variable, which draws our attention to differences between

strata and reminds us that when we control for smoking we assume that the effect

of smoking is the same in different social classes. The Poisson regression output

shows us the effect of smoking controlled for social class, and the effect of social

class controlled for smoking. However, we should be aware of the need to test the

underlying assumption that the effect of each variable is the same regardless of the

value of the other: that is that there is no effect modification, also known as

interaction. For Mantel–Haenszel methods this was described in Section 23.3.

We see how to examine interaction in regression models in Chapter 29.

24.6 SPLITTING FOLLOW-UP TO ALLOW FOR VARIABLES WHICH

CHANGE OVER TIME

In any long-term study the values of one or more of the exposure variables may

change over time. The most important such change is in the age of subjects in the
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study. Since rates of most disease outcomes are strongly associated with age, we

will usually wish to control for age in our analysis.

To allow for changes in age, or for any exposure variable whose value changes

during the study, we simply divide the follow-up time for each person into distinct

periods, during which the variable does not change. Since age, of course, changes

constantly we divide the follow-up time into age groups. For example, in the

Caerphilly study we might use five-year age groups: 40–44, 45–49, 50–54 and so

on. Note that age 50–54 means ‘from the date of the 50th birthday to the day

before the 55th birthday’. The underlying assumption is that rates do not differ

much within an age group, so that for example it assumes that the rate of

myocardial infarction will be similar for a 54-year-old and a 50-year-old.

Narrower age bands will be appropriate when rates vary rapidly with age; for

example in a study of infant mortality.

Table 24.10 and Figure 24.1 illustrate the division of the follow-up period into

5-year age bands for subject numbers 1 and 2 in the Caerphilly dataset. Subject 1

was aged 58.52 years when he was recruited, and therefore started in the 55–59 age

group. He passed through the 60–64, 65–69 and 70–74 age groups, and was in the

75–79 age group at the end of the study (at which time he was aged 75.36).

Subject 2 was also in the 55–59 age group when he was recruited. He was in the

60–64 age group when he experienced a myocardial infarction on 27 Feb 1985, at

which time he was aged 61.81.

It is important to note that the value of MI (myocardial infarction, the outcome

variable) is equal to 0 for every interval unless the subject experienced an MI at the

end of the interval, in which case it is 1. Thus for subject 1, the value of MI is 0 for

every interval, and for subject 2 it is 0 for the first interval and 1 for the second

interval. In general, the value of the outcome variable for a subject who experi-

enced the outcome will be zero for every interval except the last.

Having divided the follow-up time in this way, we may now use Mantel–

Haenszel or Poisson regression methods to examine the way in which disease

rates change with age group, or to examine the effects of other exposures having

Table 24.10 Follow-up time split into 5-year age bands for the first two subjects in the Caerphilly study.

Date at start of

interval

Date at end

of interval Age group

Age at start

of interval

Age at end

of interval

Years in

interval MI

Subject 1, born 22 Aug 1923, recruited 1 Mar 1982, exit (at end of follow-up) 31 Dec 1998

1 Mar 1982 21 Aug 1983 55–59 58.52 60 1.48 0

22 Aug 1983 21 Aug 1988 60–64 60 65 5 0

22 Aug 1988 21 Aug 1993 65–69 65 70 5 0

22 Aug 1993 21 Aug 1998 70–74 70 75 5 0

22 Aug 1998 31 Dec 1998 75–79 75 75.36 0.36 0

Subject 2, born 8 May 1923, recruited 30 May 1982, exit (on date of MI) 27 Feb 1985

30 May 1982 7 May 1983 55–59 59.06 60 0.94 0

8 May 1983 27 Feb 1985 60–64 60 61.81 1.81 1
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Fig. 24.1 Age of subjects 1 and 2 during the Caerphilly study. The dotted vertical lines denote 5-year age

bands.

controlled for the effects of age group. Perhaps surprisingly, we analyse the

contributions from the different time periods from the same individual in exactly

the same way as if they were from different individuals. See Clayton and Hills

(1993) for the reasons why this is justified. Also, note that if we analyse this

expanded data set (with follow-up split into age groups) but omit age group

from the analysis we will get exactly the same answer as in the analysis using the

original intervals. This is because the number of events and the total follow-up

time are exactly the same in the original and expanded datasets.

Table 24.11 shows the total number of events (d ) and person-years (T ) in the

different age groups in the Caerphilly study, together with the rates per 1000

person-years and corresponding 95% confidence intervals. Rates of myocardial

infarction generally increased with increasing age.

Table 24.11 Rates of myocardial infarction in different age groups in the Caerphilly study.

Age group d T Rate per 1000 person-years 95% CI

45–49 12 1 627 7.376 4.189 to 12.989

50–54 42 4 271 9.833 7.267 to 13.305

55–59 73 6 723 10.858 8.632 to 13.657

60–64 102 7 115 14.336 11.807 to 17.406

65–69 76 4 287 17.726 14.157 to 22.195

70–74 30 1 872 16.029 11.207 to 22.926

75–79 13 266 48.958 28.428 to 84.315

This same approach may be used to examine any effect that may change over

time. For example:

� if repeat measurements of exposures are made on different occasions after

baseline, we may divide the follow-up time into the periods following each

measurement, with time-updated values of the exposure measured at the begin-

ning of each period.

� secular changes can be analysed by dividing time into different time periods (for

example, 1970 to 1974, 1975 to 1979, etc.).
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Joint effects may be investigated by dividing the period of follow-up according to

the values of two variables. Note that the way in which individuals move through

different categories of age group and time period may be displayed in a Lexis

diagram (see Clayton and Hills, 1993 or Szklo and Nieto, 2000).

In Section 27.5, we explain how Poisson regression with follow-up time split

into intervals is related to Cox regression analysis of survival data, and in Section

27.4 we discuss the criteria for choice of the time axis.
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25.1 INTRODUCTION

Death rates and disease incidence rates are usually strongly related to age, and

often differ for the two sexes. Population mortality and incidence rates therefore

depend critically on the age–sex composition of the population. For example, a

relatively older population would have a higher crude mortality rate than

a younger population even if, age-for-age, the rates were the same. It is therefore

misleading to use overall rates when comparing two different populations

unless they have the same age–sex structure. We saw in Chapter 23 how to use

Mantel–Haenszel methods and in Chapter 24 how to use Poisson regression to

compare rates between different groups after controlling for variables such as age

and sex.

We now describe the use of standardization and standardized rates to produce

comparable measures between populations or sub-groups, adjusted for major

confounders, such as any age–sex differences in the composition of the different

populations or subgroups. Mantel–Haenszel or regression methods should be used

to make formal comparisons between them.

There are two methods of standardization: direct and indirect, as summarized in

Table 25.1. Both use a standard population.

Table 25.1 Comparison of direct and indirect methods of standardization.

Direct standardization Indirect standardization

Method Study rates applied to standard

population

Standard rates applied to study

population

Data required

Study population(s) Age–sex specific rates Age–sex compositionþ total

deaths (or cases)

Standard population Age–sex composition Age–sex specific rates (þ overall

rate)

Result Age–sex adjusted rate Standardized mortality (morbidity)

ratio (þ age–sex adjusted rate)

CHAPTER 25

Standardization

25.1 Introduction

25.2 Direct standardization

25.3 Indirect standardization

25.4 Use of Poisson regression for

indirect standardization

Extension to several SMRs

AQ1



� In direct standardization, the age–sex specific rates from each of the populations

under study are applied to a standard population. The result is a set of stand-

ardized rates.

� In indirect standardization, the age–sex specific rates from a standard population

are applied to each of the study populations. The result is a set of standardized

mortality (or morbidity) ratios (SMRs).

The choice of method is usually governed by the availability of data and by their

(relative) accuracy. Thus, direct standardization gives more accurate results when

there are small numbers of events in any of the age–sex groups of the study

populations. The indirect method will be preferable if it is difficult to obtain

national data on age–sex specific rates.

Both methods can be extended to adjust for other factors besides age and sex,

such as different ethnic compositions of the study groups. The direct method can

also be used to calculate standardized means, such as age–sex adjusted mean blood

pressure levels for different occupational groups.

25.2 DIRECT STANDARDIZATION

Example 25.1

Table 25.2 shows the number of cases of prostate cancer and number of person-

years among men aged � 65 living in France between 1979 and 1996. The data are

shown separately for six 3-year time periods. Corresponding rates of prostate

cancer per 1000 person-years at risk (pyar) are shown in Table 25.3

Table 25.3 shows that the crude rates (those derived from the total number

of cases and person-years, ignoring age group) increased to a peak of

2.64=1000 pyar in 1988–90 and then declined. However Table 25.2 shows that

the age-distribution of the population was also changing during this time: the

number of person-years in the oldest (� 85 year) age group more than doubled

between 1979–81 and 1994–96, while increases in other age groups were more

modest. The oldest age group also experienced the highest rate of prostate cancer,

in all time periods.

Table 25.2 Cases of prostate cancer=1000 person-years among men aged � 65 living in France between 1979

and 1996.

Time period

Age group 1979–81 1982–84 1985–87 1988–90 1991–93 1994–96

65–69 2021=2970 1555=2197 1930=2686 2651=3589 2551=3666 2442=3764

70–74 3924=2640 3946=2674 3634=2272 2842=1860 3863=2703 4158=3177

75–79 5297=1886 5638=1946 6018=1980 6211=2028 4640=1598 4253=1659

80–84 4611=985 5400=1134 6199=1189 6844=1294 6926=1393 6412=1347

� 85 3273=478 3812=539 4946=616 6581=764 7680=878 8819=1003

Total 19126=8959 20351=8490 22727=8743 25129=9535 25660=10238 26084=10950
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Table 25.3 Rates of prostate cancer (per 1000 person-years) in men aged � 65 living in France between 1979

and 1996.

Time period

Age group 1979–81 1982–84 1985–87 1988–90 1991–93 1994–96

65–69 0.68 0.71 0.72 0.74 0.70 0.65

70–74 1.49 1.48 1.60 1.53 1.43 1.31

75–79 2.81 2.90 3.04 3.06 2.90 2.56

80–84 4.68 4.76 5.21 5.29 4.97 4.76

� 85 6.85 7.07 8.03 8.61 8.75 8.79

Crude rate 2.13 2.40 2.60 2.64 2.51 2.38

Standardized rate 2.35 2.40 2.60 2.64 2.54 2.39

This means that the overall rates in each time period need to be adjusted for

the age distribution of the corresponding population before they can meaningfully

be compared. We will do this using the method of direct standardization.

1 The first step in direct standardization is to identify a standard population. This

is usually one of the following:

� one of the study populations

� the total of the study populations

� the census population from the local area or country

The choice is to some extent arbitrary. Different choices lead to different

summary rates but this is unlikely to affect the interpretation of the results

unless the patterns of change are different in the different age group strata (see

point 5). Here we will use the number of person-years for the period 1985–87.

2 Second, for each of the time periods of interest, we calculate what would be the

overall rate of prostate cancer in our standard population if the age-specific

rates equalled those of the time period of interest. This is called the age

standardized survival rate for that time period.

Overall rate in standard population
Age standardized rate ¼ if the age-specific rates were the same ¼ �(wi�li)

�wias those of the population of interest

In the above definition, wi is the person-years at risk in age group i in the

standard population, li ¼ di=pyari is the rate in age group i in the time period of

interest and the summation is over all age groups. Note that this is simply a

weighted average (see Section 18.3) of the rates in the different age groups in the

time period of interest, weighted by the person-years at risk in each age group in

the standard population.
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Table 25.4 Calculating the age standardized rate of prostate cancer for 1979–81, using direct

standardization with the person-years during 1985–87 as the standard population.

Age group

Standard population:

thousands of person-

years in 1985–87, wi

Study population:

Rates in 1979–81, li

Estimated number of

cases in standard

population, wi � li

65–69 2686 0.6805 1827.8

70–74 2272 1.4864 3377.1

75–79 1980 2.8086 5561.0

80–84 1189 4.6812 5565.9

� 85 616 6.8473 4217.9

All ages �wi ¼ 8743 �(wi � li) ¼ 20549:8

Age adjusted rate ¼ 2.35

For example, Table 25.4 shows the details of the calculations for the age-

standardized rate for 1979–81, using the person-years in 1985–87 as the stand-

ard population. In the 65 to 69-year age group, applying the rate of 0.6805 per

1000 person-years to the 2686 person-years in that age group in the standard

population gives an estimated number of cases in this age group of

0:6805� 2686 ¼ 1827:8. Repeating the same procedure for each age group,

and then summing the numbers obtained, gives an overall estimate of 20549.8

cases out of the total of 8743 thousand person-years in the standard population:

an age-standardized rate for the study population of 2.35 per 1000 person-years.

3 The results for all the time periods are shown in the bottom row of Table 25.3.

The crude and standardized rates of prostate cancer in the different time periods

are plotted in Figure 25.1(a). This shows that the crude rate was lower than the

directly standardized rate in the 1979–81 period, but similar thereafter. This is

because, as can be seen in Table 25.2, in the 1979–81 period there were propor-

tionally fewer person-years in the oldest age groups, in which prostate cancer

death rates were highest.

4 The standard error for the standardized rate is calculated as:

Standard error of Standard error of

standardized rate standardized proportion

1

�wi

X w2
i di

(pyari)
2

� �s
1

�wi

Xw2
i pi(1� pi)

ni

� �s

4 where the left hand formula is used for standardized rates and the right hand

formula for standardized proportions. In these formulae the weights wi are the

person-years or number of individuals in the standard population. Using this

formula, the standard error of the standardized rate in 1979–81 is 0.017 per 1000

person-years, so that the 95% confidence interval for the standardized rate in

1979–81 is:
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95% CI ¼ 2:35� 1:96�0:017 to 2:35þ 1:96�0:017

¼ 2:32 to 2:38 per 1000 person-years

5 Finally, it is important to inspect the patterns of rates in the individual strata

before standardizing, because when we standardize we assume that the patterns

of change in the rates are similar in each stratum. If this is not the case then the

choice of standard population will influence the observed pattern of change in

the standardized rates. For example, in Figure 25.1(b) it can be seen that the

rate in the �85 year age group increased more sharply than the rates in the

other age groups. This means that the greater the proportion of individuals in

the �85 year age group in the standard population, the sharper will be the

increase in the standardized rate over time.

Fig. 25.1 (a) Crude and directly standardized rates of prostate cancer among men aged � 65 years living in

France between 1979 and 1986, with the population in 1985–87 chosen as the standard population. (b)

Time trends in age-specific rates of prostate cancer, among men aged � 65 years living in France between

1979 and 1986.
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25.3 INDIRECT STANDARDIZATION

Example 25.2

Table 25.5 shows mortality rates from a large one-year study in an area endemic

for onchocerciasis. One feature of interest was to assess whether blindness, the

severest consequence of onchocerciasis, leads to increased death rates. From the

results presented in Table 25.5 it can be seen that:

� not only does mortality increase with age and differ slightly between males and

females, but

� the prevalence of blindness also increases with age and is higher for males than

for females.

The blind sub-population is therefore on average older, with a higher proportion

of males, than the non-blind sub-population. This means that it would have a

higher crude mortality rate than the non-blind sub-population, even if the indi-

vidual age–sex specific rates were the same. An overall comparison between the

blind and non-blind will be obtained using the method of indirect standardization.

1 As for direct standardization, the first step is to identify a standard population.

The usual choices are as before, with the restrictions that age–sex specific

mortality rates are needed for the standard population and that the population

chosen for this should therefore be large enough to have reliable estimates of

these rates. In this example the rates among the non-blind will be used.

2 These standard rates are then applied to the population of interest to calculate

the number of deaths that would have been expected in this population if the

mortality experience were the same as that in the standard population.

For example, in stratum 1 (males aged 30–39 years) one would expect a

proportion of 19=2400 of the 120 blind to die, if their risk of dying was the

same as that of the non-blind males of similar age. This gives an expected 0.95

deaths for this age group. In total, 22.55 deaths would have been expected

among the blind compared to a total observed number of 69.

3 The ratio of the observed to the expected number of deaths is called the standard-

ized mortality ratio (SMR). It equals 3.1 (69=22.55) in this case. Overall, blind

persons were 3.1 times more likely to die during the year than non-blind persons.

Standardized

mortality

ratio (SMR)

¼ observed number of deaths

expected number of deaths if the

age�sex specific rates were the same

¼ �di
�Ei

as those of the standard population

The SMR measures how much more (or less) likely a person is to die in the

study population compared to someone of the same age and sex in the standard

population. A value of 1 means that they are equally likely to die, a value larger
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than 1 that they are more likely to die, and a value smaller than 1 that they

are less likely to do so. The SMR is sometimes multiplied by 100 and expressed

as a percentage. Since the non-blind population was used as the standard,

its expected and observed numbers of deaths are equal, resulting in an SMR

of 1.

4 The 95% confidence interval for the SMR is derived using an error factor (EF)

in the same way as that for a rate ratio (see Section 23.2):

95% CI ¼SMR=EF to SMR� EF, where

EF ¼ exp(1:96= di
p

)

In this example, EF ¼ exp(1:96= 6
p

9) ¼ 1:266, and the 95% confidence interval

for the SMR is:

95% CI ¼ SMR

EF
to SMR� EF ¼ 3:06=1:266 to 3:06� 1:266 ¼ 2:42 to 3:87

5 Age–sex adjusted mortality rates may be obtained by multiplying the SMRs by

the crude mortality rate of the standard population, when this is known. This

gives age–sex adjusted mortality rates of 12.8 and 39.7=1000=year for the non-

blind and blind populations respectively.

Age�sex adjusted ¼ SMR � crude mortality rate of

mortality rate standard population

25.4 USE OF POISSON REGRESSION FOR INDIRECT

STANDARDIZATION

We may use Poisson regression to derive the SMR, by fitting a model with:

� each row of data corresponding to the strata in the study population;

� the number of events in the study population as the outcome. In Example 25.2

this would be the number of deaths in the blind population;

� no exposure variables (a ‘constant-only’ model);

� specifying the expected number of events in each stratum (each row of the data),

instead of the number of person-years, as the offset in the model. In Example

25.2, these are the expected number of deaths given in the right hand column of

Table 25.5.

Table 25.6 shows the output from fitting such a model to the data in Example

25.2. The output is on the log scale, so the SMR is calculated by antilogging the
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Table 25.6 Poisson regression output (log scale), using the expected number of deaths in the blind population as

the offset.

Coefficient s.e. z P > jzj 95% CI

Constant 1.1185 0.1204 9.29 0.000 0.8825 to 1.3544

coefficient for the constant term. It equals exp(1:1185) ¼ 3:1, the same as the value

calculated above.

SMR ¼ exp(regression coefficient for constant term)

The 95% CI for the SMR is derived by antilogging the confidence interval for

the constant term. It is exp(0:8825) to exp(1:3544) ¼ 2:42 to 3:87. It should be

noted that indirect standardization assumes that the age–sex specific rates in

the standard population are known without error. Clearly this is not true in the

example we have used: the consequence of this is that confidence intervals for the

SMR derived in this way will be somewhat too narrow. For comparison, a

standard Poisson regression analysis of the association between blindness and

death rates for the data in Table 25.5 gives a rate ratio of 3.05, and a 95% CI of

2.24 to 4.15.

Extension to several SMRs

It is fairly straightforward to extend this procedure to estimate, for example, the

SMRs for each area in a geographical region by calculating the observed and

expected number of deaths in each age–sex stratum in each area, and fitting a

Poisson regression model including indicator variables for each area, and omitting

the constant term. The SMRs would then be the antilogs of the coefficients for the

different area indicator variables.
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26.1 INTRODUCTION

The methods described so far in this part of the book assume that rates are

constant over the period of study, or within time periods such as age groups

defined by splitting follow-up time as described in Section 24.6. However, in

longitudinal studies in which there is a clear event from which subjects are

followed, such as diagnosis of a condition or initiation of treatment, it may not

be reasonable to assume that rates are constant, even over short periods of time.

For example:

� the risk of death is very high immediately after heart surgery, falls as the patient

recovers, then rises again over time;

� the recurrence rate of tumours, following diagnosis and treatment of breast

cancer, varies considerably with time.

Methods for survival analysis allow analysis of such rates without making the

assumption that they are constant. They focus on:

1 the hazard h(t): the instantaneous rate at time t. They do not assume that the

hazard is constant within time periods;

2 the survivor function S(t), illustrated by the survival curve. This is the probabil-

ity that an individual will survive (i.e. has not experienced the event of interest)

up to and including time t.

We start by describing two ways of estimating the survival curve; life tables and

the Kaplan–Meier method. We will then explain the proportional hazards as-

sumption, and discuss how to compare the survival of two groups using Mantel–

Cox methods. In the next chapter we will discuss regression analysis of survival
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data. We will see that these methods are closely related to, and often give similar

results to, the Mantel–Haenszel and Poisson regression methods for the analysis

of rates.

In Chapter 22 we stated that survival times for subjects who are known to

have survived up to a certain point in time, but whose survival status past that

point is not known, are said to be censored. Throughout this and the next chapter

we will assume that the probability of being censored (either through loss to

follow-up or because of death from causes other than the one being studied) is

unrelated to the probability that the event of interest occurs. If this assumption is

violated then we say that there is informative censoring, and special methods must

be used.

26.2 LIFE TABLES

Life tables are used to display the survival pattern of a community when we do not

know the exact survival time of each individual, but we do know the number of

individuals who survive at a succession of time points. They may take one of two

different forms. The first, a cohort life table, shows the actual survival of a group

of individuals through time. The starting point from which the survival time is

measured may be birth, or it may be some other event. For example, a cohort life

table may be used to show the mortality experience of an occupational group

according to length of employment in the occupation, or the survival pattern of

patients following a treatment, such as radiotherapy for small-cell carcinoma of

bronchus (Table 26.1). The second type of life table, a current life table, shows the

expected survivorship through time of a hypothetical population to which current

age-specific death rates have been applied. Historically, this was more often used

for actuarial purposes and was less common in medical research. In recent times,

this approach has been used to model the burden of disease due to different causes

and conditions (Murray & Lopez, 1996).

Example 26.1

Table 26.1 shows the survival of patients with small-cell carcinoma of bronchus,

month by month following treatment with radiotherapy. This table is based on

data collected from a total of 240 patients over a 5 year period. The data them-

selves are summarized in columns 1–4 of the life table; the construction of a cohort

life table is shown in columns 5–8.

Column 1 shows the number of months since treatment with radiotherapy

began. Columns 2 and 3 contain the number of patients alive at the beginning

of each month and the number who died during the month. For example, 12 of the

240 patients died during the first month of treatment, leaving 228 still alive at the

start of the second month. The number of patients who were censored during each

month (known to have survived up to month i but lost to follow-up after that

time) is shown in column 4. The total number of persons at risk of dying during

the month, adjusting for these losses, is shown in column 5. This equals the
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number alive at the beginning of the month minus half the number lost to follow-

up, assuming that on average these losses occur half-way through the month.

Column 6 shows the risk of dying during a month, calculated as the number of

deaths during the month divided by the number of persons at risk. Column 7

contains the complementary chance of surviving the month.

Column 8 shows the cumulative chance of surviving. This is calculated by

applying the rules of conditional probability (see Chapter 14). It equals the chance

of surviving up to the end of the previous month, multiplied by the chance of

surviving the month. For example, the chance of surviving the first month was

0.9500. During the second month the chance of surviving was 0.9605. The overall

chance of surviving two months from the start of treatment was therefore

0:9500� 0:9605 ¼ 0:9125. In this study all the patients had died by the end of

18months.

More generally, the cumulative chance of surviving to the end of month i is

given by:

S(i) ¼ chance of surviving to month (i � 1)� chance of surviving month i

¼ S(i � 1)� si or s1 � s2 � . . .� si

These are the probabilities S(i) of the survivor function. The survival curve is

illustrated in Figure 26.1.

Fig. 26.1 Survival curve for patients with small-cell carcinoma of the bronchus treated with radiotherapy,

drawn from life table calculations presented in Table 26.1.
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Confidence interval for the survival curve

The 95% confidence interval for each S(i) is derived using an error factor (see

Kalbfleisch & Prentice, 1980, pp. 14, 15 for details) as follows:

95% CI ¼ S(t)(1=EF) to S(t)EF, where

EF ¼ exp 1:96� [�d=(n(n� d))]
p

[� log((n� d)=n)]2

� �

In this formula, the summations are over all the values of d and n, up to and

including time interval i. Figure 26.1 includes the 95% confidence intervals calcu-

lated in this way, using the data in columns 3 and 5 of Table 26.1. Because

derivation of such confidence intervals involves a substantial amount of calcula-

tion, it is usually done using a statistical computer package.

Life expectancy

Also of interest is the average length of survival, or life expectancy, following the

start of treatment. This may be crudely estimated from the survival curve as the

time corresponding to a cumulative probability of survival of 0.5, or it may be

calculated using columns 1 and 8 of the life table. For each interval, the length of

the interval is multiplied by the cumulative chance of surviving. The total of these

values plus a half gives the life expectancy. (The addition of a half is to allow for

the effect of grouping the life table in whole months and is similar to the continuity

corrections we have encountered in earlier chapters.)

Life expectancy ¼ 0:5 þ
X length of

interval
� cumulative chance

of survival

� �

In Table 26.1 all the intervals are of 1month and so the life expectancy is simply

the sum of the values in column 8 plus a half, which equals 7.95months.

26.3 KAPLAN–MEIER ESTIMATE OF THE SURVIVAL CURVE

In many studies we know the exact follow up time (for example, to within 1 day)

for each individual in the study, and may therefore wish to estimate the survivor

function S(t) using this information rather than by dividing the survival time into

discrete periods, as is done in the life table method. This avoids the assumption

that individuals lost to follow-up are censored half way through the interval. The
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difference between the approaches is likely to be minimal if the periods in the life

table are short, such as 1month, but for longer periods (such as 1 year) infor-

mation is likely to be lost by grouping.

The estimate using exact failure and censoring times is known as the Kaplan–

Meier estimate, and is based on a similar argument to that used in deriving life

tables. To derive the Kaplan–Meier estimate, we consider the risk sets of individ-

uals still being studied at each time, t, at which an event occurs. If there are nt

individuals in the risk set at time t, and dt events occur at that precise time then the

estimated risk, rt, of an event at time t is dt=nt, and so the estimated survival

probability at time t is:

st ¼ 1� rt ¼ nt � dt

nt

At all times at which no event occurs, the estimated survival probability is 1.

To estimate the survivor function, we use a similar conditional probability

argument to that used in deriving life tables. We number the times at which

disease events occur as t1, t2, t3 and so on. Since the estimated survival probabil-

ity until just before t1 is 1:

S(t1) ¼ 1� st1 ¼ st1

The survival probability remains unchanged until the next disease event, at time t2.

The survivor function at this time t2 is:

S(t2) ¼ S(t1)� st2 ¼ st1 � st2

In general, the survival probability up to and including event j is:

S(tj) ¼ S(t(j�1))� stj ¼ st1 � st2 � . . .� stj

This is known as the product-limit formula. Note that loss to follow-up does not

affect the estimate of survival probability: the next survival probability is calcu-

lated on the basis of the new denominator, reduced by the number of subjects lost

to follow-up since the last event.

Example 26.2

The examples for the rest of this chapter are based on data from a randomized

trial (see Chapter 34) of Azathioprine for primary biliary cirrhosis, a chronic and

eventually fatal liver disease (Christensen et al., 1985). The trial was designed to
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compare an active treatment, Azathioprine, against placebo. Between October

1971 and December 1977, 248 patients were entered into the trial and followed for

up to 12 years. A total of 184 patients had the values of all prognostic variables

measured at baseline. Of these, 31 had central cholestasis (a marker of disease

severity) at entry. Among these 31 patients there were 24 deaths, and 7 losses to

follow-up, as shown in Table 26.2.

The first death was at 19 days, so the risk of death at 19 days was

r19 ¼ 1=31 ¼ 0:0323. The survival probability at 19 days is therefore s19 ¼ 1

� 0:0323 ¼ 0:9677, and the survivor function S(19) ¼ s19 ¼ 0:9677. The next

death was at 48 days; at this point 30 patients were still at risk. The risk of death

at 48 days was r48 ¼ 1=30 ¼ 0:0333. The survival probability at 48 days is there-

fore s48 ¼ 1� 0:0333 ¼ 0:9667, and the survivor function S(48) ¼ s19 � s48

¼ 0:9355. Similarly, the estimate of the survivor function at 96 days is

s19 � s48 � s96 ¼ 0:9677� 0:9667� 0:9655 ¼ 0:9032, and so on.

Displaying the Kaplan–Meier estimate of S(t)

The conventional display of the Kaplan–Meier estimate of the survival curve for

the 31 patients with central cholestasis is shown in Figure 26.2. The survival curve

is shown as a step function; the curve is horizontal at all times at which there is no

outcome event, with a vertical drop corresponding to the change in the survivor

function at each time when an event occurs. At the right-hand end of the curve,

when there are very few patients still at risk, the times between events and the

drops in the survivor function become large, because the estimated risk (rt ¼ dt=nt)

is large at each time t at which an event occurs, as nt is small. The survivor

function should be interpreted cautiously when few patients remain at risk.

Confidence interval for the survival curve

Confidence intervals for S(t) are derived in the same way as described earlier for

life tables.

26.4 COMPARISON OF HAZARDS: THE PROPORTIONAL HAZARDS

ASSUMPTION

The main focus of interest in survival analysis is in comparing the survival patterns

of different groups. For example, Figure 26.3 shows the Kaplan–Meier estimates

of the survivor functions for the two groups of patients with and without central

cholestasis at baseline. It seems clear that survival times for patients without

central cholestasis at baseline were much longer, but how should we quantify

the difference in survival? The differences between the survival curves are obvi-

ously not constant. For example both curves start at 1, but never come together
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Fig. 26.2 The Kaplan–Meier estimate of the survivor function, S(t), together with upper and lower

confidence limits, for 31 patients with primary biliary cirrhosis and central cholestasis.

Fig. 26.3 Kaplan–Meier estimates of the survivor function, S(t), for primary biliary cirrhosis patients with

and without and central cholestasis at baseline.

again. With two groups followed until everyone has died, both survival curves will

also finish at 0; yet one group may have survived on average much longer than the

other.
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We solve the problem of allowing for differences in survival time by comparing

the hazards in the two groups over the duration of follow-up. As noted at the

beginning of this chapter, in survival analysis we avoid the assumption that the

hazards of the event of interest are constant over the study period. Instead, we

assume that the ratio of the hazards in the two groups remains constant over time,

even if the underlying hazards change. In other words, we assume that at all times t:

h1(t)

h0(t)
¼ constant

where h1(t) is the hazard in the exposed group at time t and h0(t) is the hazard in

the unexposed group at time t. This important assumption is known as the

proportional hazards assumption.

Examining the proportional hazards assumption

We now see how this assumption may be examined graphically. It is difficult to

estimate the hazard directly from data, since this would give a series of ‘spikes’

when an event occurs, interspersed with zeros when there is no disease event.

Instead we use the cumulative hazard function, H(t). This is the total hazard

experienced up to time t, and is estimated by the sum of the risks at each time i

at which an event occurs.

H(t) ¼ �
di

ni
, summed over all times up to and including t

This is known as the Nelson–Aalen estimate of the cumulative hazard function. It

follows from the definition of the cumulative hazard that the hazard function is

the slope in a graph of cumulative hazard against time, so we can examine the way

in which the hazard varies with time by examining how the slope of the cumulative

hazard varies with time.

If the ratio of the hazards in the exposed and unexposed groups is constant over

time, it follows that the ratio of the cumulative hazard functions must also equal

this constant:

H1(t)

H0(t)
¼ h1(t)

h0(t)
¼ constant

And that, applying the rules of logarithms:
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log(H1(t))� log(H0(t)) ¼ log(constant)

Therefore, if the proportional hazards assumption is correct then graphs of the log

of the cumulative hazard function in the exposed and unexposed groups will be

parallel.

Figure 26.4 shows the log cumulative hazard against time since start of treat-

ment for primary biliary cirrhosis patients with and without central cholestasis at

baseline. It suggests that there is no major violation of the proportional hazards

assumption, since the lines appear to be reasonably parallel. In this example time

has been plotted on a log scale to stretch out the early part of the time scale,

compared to the later, because more events occur at the beginning of the study

than near the end. Note, however, that this does not affect the relative positioning

of the lines; they should be parallel whether time is plotted on a log scale or on the

original scale.

It can be shown mathematically that that the cumulative hazard is related to the

survival function by the following formulae:

H(t) ¼ � log(S(t)), or equivalently

S(t) ¼ e�H(t)

Because of this, graphs of log(� log(S(t))) are also used to examine the propor-

tional hazards assumption.

Fig. 26.4 Cumulative hazard (log scale) against time (log scale) for primary biliary cirrhosis patients with

and without central cholestasis at baseline, in order to check the proportional hazards assumption.

282 Chapter 26: Survival analysis: displaying and comparing survival patterns



Links between hazards, survival and risks when rates are constant

In Section 22.3 we described the relationship between risks and rates, and noted

that when the event rate, l, is constant over time then the proportion of the

population event-free decreases exponentially over time. This proportion is

exactly the same as the survivor function, S(t). In the box below we extend the

set of relationships to include the hazard, and cumulative hazard. Note that the

hazard is constant over time, and that the cumulative hazard increases linearly

over time. This is in contrast to the risk which does not increase at a steady pace;

its rate of increase decreases with time.

When the event rate, l, is constant over time:

h(t) ¼ l

H(t) ¼ lt

S(t) ¼ e�lt

Risk up to time t ¼ 1� e�lt

Average survival time ¼ 1=l

26.5 COMPARISON OF HAZARDS USING MANTEL–COX METHODS:

THE LOG RANK TEST

Mantel–Cox estimate of the hazard ratio

The Mantel–Cox method is a special application of the Mantel–Haenszel proced-

ure, in which we construct a separate 2� 2 table for each time at which an event

occurs. It combines the contributions from each table, assuming that the hazard

ratio is constant over the period of follow-up. We will use the same notation as

that given in Table 18.3. Usually, there is only one event at a particular time, so in

each table either d1i is 0 and d0i is 1 or vice-versa, but the procedure also works if

there are ties (more than one event at a particular time). TheMantel–Cox estimate

of the hazard ratio is given by:

HRMC ¼ Q=R, where

Q ¼ �
d1i � h0i

ni
and R ¼ �

d0i � h1i

ni
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Standard error and confidence interval of the Mantel–Cox HR

The standard error of log HRMC is:

s:e:MC ¼ V=(Q� R)ð Þp
, where

V ¼ �Vi ¼ �
di � n0i � n1i

n2i

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event.

This may be used to derive a 95% confidence interval for HRMC in the usual

way:

95% CI ¼ HRMC=EF to HRMC � EF, where

EF ¼ exp(1:96� s:e:MC)

Mantel–Cox x2 (or log rank) test

Finally, we test the null hypothesis that HRMC ¼ 1 by calculating theMantel–Cox

x2 statistic, which is based on comparisons in each stratum of the number of

exposed individuals observed to have experienced the event (d1i), with the expected

number in this category (E1i) if there were no difference in the hazards between

exposed and unexposed. Note that �2
MC has just 1 degree of freedom irrespective of

how many events occur.

�2
MC ¼ U2

V
; d:f : ¼ 1, where

U ¼ �(d1i � E1i), and E1i ¼ di � n1i

ni

This x2 test is also known as the log rank test; the rather obscure name comes from

an alternative derivation of the test.

Example 26.3

In the trial of survival in primary biliary cirrhosis patients, there were 72 deaths

among the 153 patients without central cholestasis at baseline, and 24

deaths among the 31 patients with central cholestasis at baseline. Table 26.3

AQ4
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shows the calculations needed to derive the Mantel–Cox hazard ratio and associ-

ated log rank test statistic for the first 15 days on which one or more deaths

occurred, together with the total values of U, V, Q and R for the whole dataset.

The estimated hazard ratio is Q=R ¼ 21:224=5:538 ¼ 3:833. The interpretation

is that, on average, the hazard in patients with central cholestasis at baseline was

3.833 times the hazard in patients without central cholestasis.

The standard error of the log hazard ratio is

[
p

V=(Q� R)] ¼ [
p

7:387=(21:224� 5:538)] ¼ 0:2507

The error factor is therefore exp(1:96� 0:2507) ¼ 1:635, so that the 95% CI for

the hazard ratio is 2.345 to 6.264. The (log rank) x2 statistic is:

x2MC ¼ 15:6862

7:387
¼ 33:31, P < 0:001

There is thus strong evidence that the hazard rates, and hence survival rates,

differed between the two groups.

These methods can also be extended to adjust for different compositions of the

different groups, such as different sex ratios or different age distributions. For

instance, we could stratify additionally on sex, and apply the method in the same

way.
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27.1 INTRODUCTION

We now describe Cox regression, also known as proportional hazards regression.

This is the most commonly used approach to the regression analysis of survival

data. It uses the same approach as the Mantel–Cox method described in Section

26.5:

� it assumes that the ratio of the hazards comparing different exposure groups

remains constant over time. This is known as the proportional hazards assump-

tion;

� it is based on considering the risk sets of subjects still being followed up at each

time that an event occurred. At the time of each event, the values of the

exposure variables for the subject who experienced the disease event are com-

pared to the values of the exposure variables for all the other subjects still being

followed and who did not experience the disease event.

After introducing Cox regression, we then consider:

� what to do when the proportional hazards assumption does not appear to hold;

� the way in which the choice of time axis influences the nature of the risk sets;

� the link between Cox and Poisson regression;

� the use of parametric survival models as an alternative approach.

General issues in regression modelling, including fitting linear effects and testing

hypotheses, are discussed in more detail in Chapter 29.

27.2 COX REGRESSION

The mathematical form of the Cox proportional hazards model is:

Log(h(t)) ¼ log(h0(t))þ �1x1 þ �2x2 þ . . .þ �pxp
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where h(t) is the hazard at time t, h0(t) is the baseline hazard (the hazard for an

individual in whom all exposure variables ¼ 0) at time t, and x1 to xp are the p

exposure variables.

On the ratio scale the model is:

h(t) ¼ h0(t)� exp(�1x1 þ �2x2 þ . . .þ �pxp)

When there is a single exposure variable (x1) and just two exposure groups (x1 ¼ 1

for exposed individuals and 0 for unexposed individuals) the model is described by

two equations, as shown in Table 27.1.

The hazard ratio comparing exposed with unexposed individuals at time t is

therefore:

HR(t) ¼ h0(t) exp(�1)

h0(t)
¼ exp(�1)

The model thus assumes that the hazard ratio remains constant over time; it

equals exp(�1). It is this assumption that is highlighted in the name ‘proportional

hazards’ regression. The regression coefficient �1 is the estimated log hazard ratio

comparing exposed with unexposed individuals.

Table 27.1 Equations defining the Cox regression model for the

comparison of two exposure groups, at time t.

Exposure group Log(Hazard at time t) Hazard at time t

Exposed (x1 ¼ 1) log(h0(t))þ �1 h0(t)� exp(�1)

Unexposed (x1 ¼ 0) log(h0(t)) h0(t)

Example 27.1

Table 27.2 shows the output from a Cox regression analysis of the effect of central

cholestatis at baseline (variable name cencho0) in primary biliary cirrhosis pa-

tients. There is clear evidence that this increased the hazard rate. The results are

very similar to the Mantel–Cox estimate of the hazard ratio (3.833, 95%

CI¼ 2.345 to 6.264), derived in Section 26.5. The square of the Wald z-test statistic

is 5:3872 ¼ 29:02, similar to but a little smaller than the log rank �2 statistic of

33.31, derived in Section 26.5. Three points should be noted:

1 Cox regression analysis is based on a conditional likelihood estimation procedure,

in which the values of the exposure variables are compared between individuals

within the risk sets of individuals being followed at each time at which
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Table 27.2 Cox regression output for the model for the effect of central

cholestasis at baseline in the study of survival in patients with primary biliary

cirrhosis, introduced in Example 26.2.

Hazard ratio z P > jzj 95% CI

cencho0 3.751 5.387 0.000 2.319 to 6.067

an event occurs. The baseline hazard (which can vary over time) is therefore not

estimated and is not displayed.

2 As explained earlier, the model is based on the proportional hazards assump-

tion. This assumption may be investigated graphically, as described in Section

26.4. Alternatively, statistical tests of the proportional hazards assumption are

available, as discussed below.

3 As with all regression models, it is straightforward to estimate the effect of more

than one exposure variable. As usual, we assume that the effects of different

exposures combine in a multiplicative manner: this was explained in detail in

Section 20.2, in the context of logistic regression. On the basis of this assump-

tion, we may interpret the estimated effect of each exposure variable as the

effect after controlling for the confounding effects of other exposure variables in

the model. This assumption may be examined by fitting interaction terms (see

Section 29.4).

27.3 NON-PROPORTIONAL HAZARDS

Non-proportional hazards correspond to an interaction between the exposure

variable and time: in other words the exposure effect (hazard ratio) changes

over time. In addition to the graphical examination of proportional hazards

described in Section 26.4, many software packages provide statistical tests of the

proportional hazards assumption. Three analysis options when evidence of non-

proportional hazards is found are:

1 Extend the model to include an exposure-time interaction term. For example,

for a single binary exposure variable, the model could assume:

hazard ratio ¼ exp(�1 þ �2t)

In theory, there is no reason that complex changes of the exposure hazard ratios

over time should not be modelled. However, not all statistical software will

allow this.

2 If the variable for which there is evidence of non-proportional hazards is a

confounder, rather than the main exposure of interest, then the regression may

be stratified according to the values of this confounding variable. This modifies

the risk sets, so that they include only individuals with the same value of the

confounding variable. The effect of the confounder is not estimated, but its

effects are controlled for without assuming proportional hazards.
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3 Split the follow-up time into different periods, as described in Section 24.6. It is

then straightforward to fit models that allow the exposure effect to differ

between time periods. Splitting follow-up time can also be used to derive tests

of the proportional hazards assumption, by looking for interactions between

exposure and time period (see Section 29.4 for a description of tests for inter-

action in regression models).

27.4 CHOICE OF TIME AXIS IN SURVIVAL ANALYSES

When following subjects after diagnosis or treatment of a disease, it may

be reasonable to suppose that the major determinant of variation in the hazard

will be the time since diagnosis or treatment. This was the assumption we made

in the study of primary biliary cirrhosis, when we examined patients from the

time they were treated. Our risk sets were constructed by considering all

subjects who were at risk at the times after the start of treatment at which events

occurred.

However, there are different options for the choice of time axis which may be

more suitable in other situations. For example, consider the Caerphilly study of

risk factors for cardiovascular disease, in which the dates of the first examinations

took place between July 1979 and October 1983, and participants were aged

between 43 and 61 when they were first examined. There are three possible choices

for the time scale for construction of risk sets:

1 time since recruitment to the study;

2 time since birth (i.e. age);

3 year of the study (i.e. date).

Each of these choices will lead to different risk sets (sets of subjects at risk when an

event occurred) at the times at which events occur. We illustrate the differences

between these time scales using ten patients randomly chosen from the Caerphilly

study. Their dates of birth, entry to, and exit from, the study, together with the

corresponding ages and time in the study are shown in Table 27.3.

Table 27.3 Dates and ages of entry to, and exit from, the Caerphilly study for ten randomly selected subjects.

Subject

number Date of birth

Date of first

examination Date of exit

Age at

entry Age at exit

Years in

study (T) MI

151 20 Oct 1931 30 May 1980 18 Dec 1998 48.61 67.16 18.55 0

158 21 Mar 1933 2 Dec 1981 9 May 1984 48.70 51.13 2.43 1

658 12 Aug 1925 22 Oct 1981 18 Jul 1996 56.19 70.93 14.74 1

941 28 Oct 1933 29 May 1982 19 Dec 1998 48.58 65.14 16.56 0

1376 19 Sep 1935 21 Mar 1982 25 Nov 1998 46.50 63.18 16.68 0

1467 9 Jan 1930 6 Jul 1982 3 Aug 1993 52.49 63.56 11.08 0

1650 19 Nov 1927 24 Nov 1982 31 Dec 1998 55.01 71.12 16.10 0

1673 14 Feb 1926 3 Jul 1983 31 Dec 1998 57.38 72.88 15.50 0

1754 21 Jul 1921 1 Oct 1980 31 Dec 1998 59.20 77.45 18.25 0

1765 27 Mar 1924 30 Dec 1982 13 Dec 1998 58.76 74.71 15.95 0
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The risk sets corresponding to the three different choices of time axis

are illustrated in Figure 27.1. The horizontal lines represent the follow-up

time for each subject. The follow-up line ends in a closed circle for subjects

who experienced an MI (numbers 158 and 658). It ends in an open circle

for subjects who were censored, either because they were lost to follow-up (subject

1467 on 3 August 1993), or because they were still healthy at the time of

their end of study follow-up in November or December 1998 (the other

seven subjects). Subjects whose follow-up is intersected by the dotted vertical

lines, at the times of the MIs, are members of the risk set for that MI, i.e.

those with whom the covariates of the patient who experienced the MI are

compared.

1 Risk sets corresponding to time from entry to the study, Figure 27.1(a): at the

time of the first MI all subjects were still being followed and are therefore in the

risk set, while at the time of the second MI all subjects except 158 and 1467 are

in the risk set.

The majority of published applications of Cox regression use this choice, in

which all subjects start at time 0. This is partly because Cox regression was

originally developed for data on survival following a defined event, and also

because until recently most computer programs for Cox regression insisted that

all subjects enter at time 0. However, there is no reason why risk sets should not

be constructed on the basis of delayed entry, and some statistical packages now

allow flexible choices of time axis in Cox regression. In contrast, choices (2) and

(3) both imply that subjects enter the study at different times, as well as having

different periods of follow-up.

2 Risk sets corresponding to choosing age as the time axis, Figure 27.1(b): these

consist of all subjects who were still being followed at a time when they were the

same age as that of the subject who experienced the MI. Since subject 158 was

relatively young when he experienced his MI, only three other subjects are

members of this risk set. Similarly only four other subjects are members of the

risk set for subject 658.

3 Risk sets corresponding to choosing calendar time as the time axis, Figure

27.1(c): in this example, because subjects were recruited over a relatively short

period, the risk sets are the same as for (a), but in general this need not be the

case.

Criteria for choice of time axis

In general, the best choice of time axis in survival analysis will be the scale over

which we expect the hazard to change most dramatically. In studies of survival

following diagnosis of a disease such as cancer, the best time axis is usually time

since recruitment (start of study). Calendar time would be a sensible choice in

studies of survival following an environmental disaster, such as the leak of

poisonous fumes from a factory, which occurred at a particular time. In contrast,

recruitment to the Caerphilly study did not depend on the participant experiencing
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Fig. 27.1 Risk sets corresponding to three different choices of time axis, for ten patients randomly chosen

from the Caerphilly study. The follow-up line ends in a closed circle for subjects who experienced an MI and

an open circle for subjects who were censored. The dotted vertical lines show the risk sets at the time of

each MI for the different choices of time axis.
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a particular event: simply on the person living in Caerphilly and being in later

middle age at the time the study was established. Therefore measuring time from

recruitment to the study does not seem a sensible choice of time axis: in this case

age is a better choice.

More than one time axis

Finally, we may wish to do a Cox regression that allows for the effect of more than

one variable to change over time. There are two main reasons for doing this:

1 we may want to allow for changing rates of disease according to, say, age group,

while keeping time since an event such as diagnosis of disease as the time axis

used to define the risk sets;

2 we may want to allow for the effect of exposures which are measured more than

once, and estimate the association of the most recent exposure measurement

with rates of disease.

The procedure is the same in each case. We simply split the follow-up time for each

subject into periods defined by (1) age group, or (2) the time between exposure

measurements, in the same way as described at the end of Section 24.6. Providing

that the software being used for Cox regression will allow for delayed entry, we

then fit a standard Cox regression model, controlling for the effects of the time-

varying exposures.

27.5 LINKS BETWEEN POISSON REGRESSION AND COX REGRESSION

We have described two different regression models for the analysis of longitudinal

studies. In Poisson regression we assume that rates are constant within time

periods, and estimate rate ratios comparing exposed with unexposed groups. In

Cox regression we make no assumptions about how the hazard changes over time;

instead we estimate hazard ratios comparing different exposure groups. This is

done by constructing risk sets, which consist of all subjects being followed at the

time at which each event occurs, and assuming that the hazard ratio is the same

across risk sets.

At the end of Chapter 24 we saw that we may allow for variables which

change over time in Poisson regression by splitting the follow-up time, for example

into 5-year age groups, and estimating the rate ratio separately in each time

period, compared to a baseline period. This is illustrated in Figure 27.2, using

5-year age groups, for the ten subjects from the Caerphilly study. We consider the

total number of events, and total length of follow-up, in each age group. Now

suppose that we make the age groups smaller (1-year, say). Only age groups in

which an event occurs will contribute to the analysis, and the follow-up time

within each of these groups will be approximately equal. As we make the time

intervals progressively shorter, we will be left with the risk sets analysed in Cox

regression.
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Fig. 27.2 Follow-up split into 5-year age groups, for ten subjects from the Caerphilly study.

27.6 PARAMETRIC SURVIVAL MODELS

Parametric survival models are an alternative regression approach to the analysis

of survival data in which, instead of ignoring the hazard function, as in Cox

proportional hazards models, we model the survivor function in the baseline

group using one of a choice of mathematical functions. For example, we have

already seen in Sections 22.3 and 26.4 that if the rate (hazard) is constant over time

then the survivor function is exponential. This is exactly the assumption of

Poisson regression, which means that it is therefore identical to a parametric

survival model assuming an exponential survivor function. Other commonly

used survivor function distributions are the Weibull, Gompertz, gamma, lognor-

mal and log-logistic functions. Weibull models assume proportional hazards and

usually give very similar estimated hazard ratios to those from Cox models.

Because parametric survival models explicitly estimate the survivor function

they may be of particular use when the aim of a study is to predict survival

probabilities in different groups. For more details, see Cox and Oakes (1984) or

Collett (2003).
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