
PART F

STUDY DESIGN, ANALYSIS AND
INTERPRETATION

Our aim in this final part of the book is to facilitate the overall planning and

conduct of an analysis, and to cover general issues in the interpretation of study

results. We start in Chapter 34 by explaining how to link the analysis to study

design. We include guides to aid the selection of appropriate statistical methods

for each of the main types of study, and draw attention to design features that

influence the approach to analysis.

In the next three chapters, we address three different issues related to interpret-

ation of statistical analyses. Chapter 35 tackles the calculation of sample size, and

explains its fundamental importance in the interpretation of a study’s results.

Chapter 36 covers the assessment and implications of measurement error and

misclassification in study outcomes and exposures. Chapter 37 outlines the differ-

ent measures that are used to assess the impact of an exposure or of a treatment on

the amount of disease in a population.

Finally, Chapter 38 recommends general strategies for statistical analysis.
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34.1 INTRODUCTION

The main focus of this book is on the statistical methods needed to analyse the

effect of an exposure (or treatment) on an outcome. In previous parts, we have

categorized these methods according to the types of outcome and exposure (or

treatment) variables under consideration. These are summarized in the inside

covers of the book. In this chapter, we now look more generally at how to link

the analysis to the study design. In particular, we:

� summarize the range of methods available for each of the following:

randomized controlled trials;

other designs to evaluate the impact of an intervention;

cross-sectional and longitudinal studies;

case–control studies;

� highlight the key elements of each design that determine the choice of statistical

method(s);

� discuss any specific issues that need to be considered in the interpretation of the

results;

� draw attention to design-specific considerations that need to be built into the

analysis plan, in addition to the general strategies for analysis outlined in

Chapter 38.

Detailed discussions of the design of different types of study are outside the scope

of this book, but are available in the following textbooks:
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Clinical trials: Friedman et al. (1998) and Pocock (1983)

Interventions in developing countries: Smith & Morrow (1996)

Cluster randomized trials: Donner & Klar (2000) and Ukoumunne et al. (1999)

Case–control studies: Breslow & Day (1980) and Schlesselman & Stolley (1982)

General epidemiology: Gordis (2000), Rothman (2002), Rothman & Greenland

(1998) and Szklo & Nieto (2000)

34.2 RANDOMIZED CONTROLLED TRIALS

Randomized controlled trials (RCTs) provide the best evidence on the effective-

ness of treatments and health care interventions. Their key elements are:

� The comparison of a group receiving the treatment (or intervention) under

evaluation, with a control group receiving either best practice, or an inactive

intervention.

� Use of a randomization scheme to ensure that no systematic differences, in either

known or unknown prognostic factors, arise during allocation between the

groups. This should ensure that estimated treatment effects are not biased by

confounding factors (see Chapter 18).

� Allocation concealment: successful implementation of a randomization scheme

depends on making sure that those responsible for recruiting and allocating

participants to the trial have no prior knowledge about which intervention they

will receive. This is called allocation concealment.

� Where possible, a double blind design, in which neither participants nor study

personnel know what treatment has been received until the ‘code is broken’

after the end of the trial. This is achieved by using a placebo, a preparation

indistinguishable in all respects to that given to the treatment group, except for

lacking the active component. If a double-blind design is not possible then

outcome assessment should be done by an investigator blind to the treatment

received.

� An intention to treat analysis in which the treatment and control groups are

analysed with respect to their random allocation, regardless of what happened

subsequently (see below).

It is crucial that RCTs are not only well designed but also well conducted and

analysed if the possibility of systematic errors is to be excluded. It is also essential

that they are reported in sufficient detail to enable readers to be able to assess the

quality of their conduct and the validity of their results. Unfortunately, essential

details are often lacking. Over the last decade concerted attempts to improve the

quality of reporting of randomized controlled trials resulted in the 1996

CONSORT statement (Begg et al., 1996), with a revised version in 2001 (Moher

et al., 2001). CONSORT stands for CONsolidated StandardsOf Reporting Trials.

The statement consists of a prototype flow diagram for summarizing the different

phases of the trial, with the numbers involved in each (Figure 34.1), and a checklist
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of items that it is essential for investigators to report (Table 34.1). Details of its

rationale and background together with a full description of each component can

be found on the website http:==www.consort-statement.org=.

Assessed for
eligibility (n = ...)

Excluded (n = ...)

Not meeting
inclusion criteria
(n = ...)

Refused to participate
(n = ...)

Other reasons (n = ...)
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Allocated to intervention
(n = ...)

Received allocated
intervention (n = ...)

Did not receive allocated
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(give reasons) (n = ...)
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Fig. 34.1 Revised template of the CONSORT diagram showing the flow of participants through each stage

of a randomized trial, reprinted with permission of the CONSORT group.

Analysis plan

In this section we will focus in particular on the features of the CONSORT

statement pertinent to the analysis plan, key stages of which are outlined in
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Table 34.1 The revised CONSORT statement for reporting randomized trials: checklist of items to include when

reporting a randomized trial, reprinted with permission of the CONSORT group.

Paper section and topic Itemno. Descriptor

TITLE AND ABSTRACT 1 How participants were allocated to interventions (e.g. ‘random allocation’,

‘randomized’, or ‘randomly assigned’)

INTRODUCTION

Background 2 Scientific background and explanation of rationale

METHODS

Participants 3 Eligibility criteria for participants and the settings and locations where the

data were collected

Interventions 4 Precise details of the interventions intended for each group and how and

when they were actually administered

Objectives 5 Specific objectives and hypotheses

Outcomes 6 Clearly defined primary and secondary outcome measures and, when

applicable, any methods used to enhance the quality of measurements

(e.g. multiple observations, training of assessors, etc.)

Sample size 7 How sample size was determined and, when applicable, explanation of any

interim analyses and stopping rules

Randomization:

Sequence generation 8 Method used to generate the random allocation sequence, including details

of any restriction (e.g. blocking, stratification)

Allocation concealment 9 Method used to implement the random allocation sequence (e.g. numbered

containers or central telephone), clarifying whether the sequence was

concealed until interventions were assigned

Implementation 10 Who generated the allocation sequence, who enrolled participants, and

who assigned participants to their groups

Blinding (masking) 11 Whether or not participants, those administering the interventions, and

those assessing the outcomes were blinded to group assignment.

When relevant, how the success of blinding was evaluated

Statistical methods 12 Statistical methods used to compare groups for primary outcome(s);

methods for additional analyses, such as subgroup analyses and

adjusted analyses

RESULTS

Participant flow 13 Flow of participants through each stage (a diagram is strongly

recommended). Specifically, for each group report the numbers of

participants randomly assigned, receiving intended treatment,

completing the study protocol, and analysed for the primary outcome.

Describe protocol deviations from study as planned, together with reasons

Recruitment 14 Dates defining the periods of recruitment and follow-up

Baseline data 15 Baseline demographic and clinical characteristics of each group

Numbers analysed 16 Number of participants (denominator) in each group included in each

analysis and whether the analysis was by ‘intention-to-treat’. State the

results in absolute numbers when feasible (e.g. 10=20, not 50%)

Outcomes and estimation 17 For each primary and secondary outcome, a summary of results for each

group, and the estimated effect size and its precision (e.g. 95%

confidence interval)

(continued)
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Table 34.1 (continued)

Paper section and topic Itemno. Descriptor

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including

subgroup analyses and adjusted analyses, indicating those pre-specified

and those exploratory

Adverse events 19 All important adverse events or side effects in each intervention group

DISCUSSION

Interpretation 20 Interpretation of the results, taking into account study hypotheses, sources

of potential bias or imprecision and the dangers associated with

multiplicity of analyses and outcomes

Generalizability 21 Generalizability (external validity) of the trial findings

Overall evidence 22 General interpretation of the results in the context of current evidence

Table 34.2. Although CONSORT has been designed primarily for two-group

parallel designs, most of it is also relevant to a wider class of trial designs, such as

equivalence, factorial, cluster and crossover trials.Modifications to theCONSORT

checklist for reporting trials with these and other designs are in preparation.

Table 34.2 Outline of analysis plan for a randomized controlled trial.

1. Complete flow diagram showing number of participants involved at each phase of the trial

2. Summarize baseline characteristics of trial population

3. Compare treatment groups with respect to baseline variables – focus on subset of variables thought to be

associated with main outcome(s). Avoid formal tests of the null hypothesis of no between-group differences,

since the null hypothesis must be true if the randomization was done properly

4. Conduct simple analysis of main outcome(s) by intention to treat

(a) Present the estimated effect of treatment together with a CI and test of the null hypothesis of no treatment

effect

(b) Consider sensitivity analyses examining the possible effect of losses to follow-up, if these might affect the

treatment effect estimate

5. Repeat analysis including adjustment for baseline variables if appropriate

6. Carry out any subgroup analyses if there is an a priori justification

7. Analyse side effects and adverse outcomes

8. Analyse secondary outcomes

Participant flow

An important first stage of the analysis is to work out the flow of the number of

participants through the four main phases of the trial: enrolment, allocation to

intervention groups, follow-up and analysis, as shown in Figure 34.1. In particu-

lar, it is important to note the number excluded at any stage and the reasons for

their exclusion. This information is crucial for the following reasons:

� Substantial proportions lost at any stage have important implications for the

external validity of the study, since the resulting participants may no longer be

representative of those eligible for the intervention.
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� Any imbalance in losses between treatment groups has implications for the

internal validity of the study, since they may lead to non-random differences

between the treatment groups which could influence the outcome.

� Knowing the difference between the number allocated to receive an interven-

tion, and number who actually received it (and=or adequately adhered to it), is

important for the interpretation of the estimated effect, as explained below

under ‘intention to treat analysis’.

Analysis of baseline variables

‘Baseline’ information collected at enrolment is used in the analysis of a trial in the

following ways:

1 To describe the characteristics of the trial participants, which is essential for

assessing the generalizibility of the results.

2 To demonstrate that the randomization procedure has successfully led to com-

parability between trial groups.

3 To adjust treatment effects for variables strongly related to the outcome (see

below).

4 To carry out subgroup analysis (see below).

In their review, ‘Subgroup analysis and other (mis)uses of baseline data in clinical

trials’, Assmann et al. (2001) found that the first two objectives are often confused,

and that the approach to the second is often methodologically flawed. They

recommend that:

� A general and detailed description is given of the trial participants, but that the

analysis of comparability between groups should be restricted to a few variables

known to be strong predictors of the primary outcome(s).

� Significance tests for baseline differences are inappropriate, since any differ-

ences are either due to chance or to flawed randomization. In addition, a non-

significant imbalance of a strong predictor will have more effect on the results

than a significant imbalance on a factor unrelated to the outcome.

Intention to treat analysis

In an ‘intention to treat’ analysis, participants are analysed according to their

original group assignment, whether or not this is the intervention they actually

received, and whether or not they accepted and=or adhered to the intervention.

Alternatively, analysis can be based on actual intervention received, with criteria

for exclusion if inadequate adherence to the intervention was achieved. This

is sometimes known as a ‘per protocol’ analysis. The primary analysis of a

RCT should always be an intention to treat analysis, since it avoids the possibility

of any bias associated with loss, mis-allocation or non-adherence of participants.

For example, consider a placebo-controlled trial of a new drug with unpleasant

side-effects. If the sickest patients are unable to take the new drug, they

may withdraw from the assigned treatment. Such problems will not affect the
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placebo group, and therefore a per-protocol analysis would give a biased result by

comparing the less sick patients in the drug group with all patients in the placebo

group.

If there is a substantial difference between those allocated to receive an inter-

vention and those who actually receive it (and adequately adhere to it), then we

recommend that in addition analyses are carried out adjusting for actual treatment

received, and that the results are compared with the intention to treat analysis. A

valid method to correct for non-adherence to treatment in randomized trials was

developed by Robins and Tsiatis (1991), but has not been widely used in practice,

partly because it is conceptually difficult. However, software implementing the

method is now available (White et al. 2002). It is important to report the numbers

involved, and the reasons for the losses in order to assess to what extent the

intention to treat analysis may lead to an underestimate of the efficacy of the

intervention under ideal circumstances, and to what extent the per protocol

analysis may be biased.

Adjustment for baseline variables

The analysis of the main outcome(s) should always start with simple unadjusted

comparisons between treatment groups. For most randomized controlled trials,

this is all that should be done. We recommend adjustment for covariates measured

at baseline only in the following circumstances:

� Where there is clear a priori evidence about which baseline factors are likely

to be strongly related to the outcome. Even where strong predictors

exist, adjustment for them in the analysis is only necessary if the outcome is

numerical.

� In particular, where the outcome is numerical and where a baseline measure-

ment of it has been taken. An example would be a trial of an anti-hypertensive

drug, where blood pressure is measured at baseline and following treatment. In

this case the baseline measurement is likely to be strongly correlated with the

outcome, and including it as a covariate in the analysis improves the precision

of the treatment effect (see Section 29.8). Note that this is a better approach

than taking differences from the baseline as the outcome variable, since the

latter tends to overcorrect (see Snedecor & Cochran, 1989).

� Where the trial is sufficiently small that an imbalance sufficiently large to bias

the treatment effect is possible. (Such a situation may occur in cluster-random-

ized trials; see below.)

Note that:

� The decision concerning covariates should not be made on the basis of statistic-

ally significant differences between the treatment groups at baseline, although

this is often the practice (see above discussion on analysis of baseline variables).

� It is not necessary to adjust for centre in multi-centre studies, unless it is a strong

predictor of outcome and the proportion of patients in the treatment group

differs between centres.
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Subgroup analyses

In their review, Assmann et al. (2001) found that the use of subgroup analyses is

widespread in clinical trials, and often flawed. The choice of subgroups used is

often not justified, their analysis is often inadequate and their results are given

undue emphasis. They note that of all the problems that have been identified in the

conduct, analysis and reporting of clinical trials, subgroup analysis remains the

most over-used and over-interpreted.

� Subgroup analyses should only be conducted if there is a clear a priori reason to

expect the treatment effect to differ between different groups of patients, such as

between males and females, or between different age groups. Only a few

predefined subgroups should be considered and analysis restricted to the main

outcomes.

� They should include formal tests for interaction, as described in Section 29.5,

and should not be based on inspection of subgroup P-values. A particularly

common error is to assume that a small P-value in one subgroup, but not in

another, provides evidence that the treatment effect differs between the sub-

groups. If the subgroups are of different sizes then this situation may arise even

if the subgroup treatment effects are identical!

� In addition, in multi-centre trials it may be useful to present the results by centre

as well as overall, as a means of data quality and consistency checking between

centres. The results of such analyses may be presented in a forest plot (see

Chapter 32). However, this should not lead to undue emphasis being placed on

any apparent differences seen, unless these are supported by strong evidence

supporting their plausibility.

Crossover trials

Crossover trials are trials in which both treatments (or the active treatment and the

placebo control) are given to each patient, with the order of allocation decided at

random for each patient. They are suitable in situations such as trials of analgesics

for pain relief or therapies for asthma, where outcomes can be measured at the end

of successive time periods, and where there is unlikely to be a carry-over effect of

the first treatment into the period when the second treatment is being given. To

address this issue, such trials may incorporate a ‘washout’ period between the

periods when treatments under investigation are administered.

The main advantage of crossover trials is that by accounting for between-

patient variability in the outcome they may be more efficient than a corresponding

trial in which treatments are randomly allocated to different individuals (parallel

group trial). The analysis of such trials should take account of the design by using

methods for paired data. For numerical outcomes, the mean difference between

each patient’s outcomes on the first and second treatment should be analysed (see

Section 7.6), and the standard deviation of the mean differences should always be

reported, to facilitate meta-analyses of such trials, or of trials using both crossover

402 Chapter 34: Linking analysis to study design



and parallel group designs. For binary outcomes, methods for matched pairs

should be used (see Chapter 21).

Cluster randomized trials

The development, and the major use, of RCTs is in the evaluation of treatments or

medical interventions (such as vaccines) applied at the individual level. In recent

years, however, the use of RCTs has extended to the evaluation of health service

and public health interventions. This has led to the development of cluster ran-

domized trials, in which randomization is applied to clusters of people rather than

individuals, either because of the nature of the intervention, or for logistical

reasons. Some examples are:

� Evaluation of screening of hypertension among the elderly in the UK in which

the unit of randomization was the GP practice.

� Evaluation of the impact on HIV transmission in Tanzania of syndromic

management of sexually transmitted diseases, where the unit of randomization

was STD clinics and their catchment populations.

� Evaluation in Glasgow of the impact on adolescent sexual behaviour of a sex

education programme delivered through school, in which the schools were the

unit of randomization.

� Evaluation in Ghana of the impact of weekly vitamin A supplementation on

maternal mortality, where the unit of randomization is a cluster of about 120

women, the number that a fieldworker can visit in a week.

Three essential points to note are that:

1 Any clustering in the design must be taken into account in the analysis, as

described in Chapter 31.

2 Because the number of clusters is often relatively small, a cluster randomized

design may not exclude the possibility of imbalance in baseline characteristics

between the treatment and control groups and careful consideration should be

given to measurement of known prognostic factors at baseline and whether it is

necessary to adjust for their effects in the analysis.

3 A cluster randomized trial needs to include more individuals than the corres-

ponding individually randomized trial. Sample size calculations for cluster

randomized trials are described in Chapter 35.

Choosing the statistical method to use

Table 34.3 provides a guide to selecting the appropriate statistical method to use.

It shows how this depends on:

� the type of outcome;

� whether adjustment for baseline variables is needed;

� whether subgroup analyses are being conducted;

� and, in the case of survival outcomes, whether the proportional hazards as-

sumption is satisfied.
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In addition, it highlights two special cases that need to be considered:

� whether the data are clustered, either in group allocation (cluster randomized

trials), or in outcome measurement (repeated measures in longitudinal stu-

dies=multiple measures per subject), and

� crossover trials, where for each patient, treatment and control outcomes are

matched.

Details of the methods can be found in the relevant sections of Parts B–E.

34.3 OTHER DESIGNS TO EVALUATE INTERVENTIONS

As discussed in Section 32.8, while the large-scale, randomized, controlled trial is

the ‘gold standard’ for the evaluation of interventions, practical (and ethical)

considerations may preclude its use. In this section, we summarize the alternative

evaluation designs available, and the analysis choices involved (see Kirkwood et

al., 1997). Essentially, we have one or more of three basic comparisons at our

disposal in order to evaluate the impact of interventions. These are:

1 The pre-post comparison involves comparing rates of the outcome of interest in

several communities before the intervention is introduced (pre-intervention),

with rates in the same communities after they have received the intervention

(post-intervention). Such a comparison clearly requires the collection of base-

line data. The plausibility of any statement attributing an impact to the inter-

vention will be strengthened if it is demonstrated that both the prevalence of the

risk factor under intervention and the rate of adverse outcome have diminished

following the intervention. However, pre-post comparisons alone, without ad-

equate concurrent controls, rarely provide compelling evidence that an inter-

vention has successfully impacted on health, since changes in both the

prevalence of risk factors and outcome are frequently observed to occur over

time in the absence of any intervention. It is therefore difficult to conclude that

an observed change is due to the intervention and not due to an independent

secular trend. An exception to this occurs when assessing mediating factors in

programmes which seek to introduce into a community a new treatment or

promote a product or behaviour that did not previously exist. It will, however,

still be difficult to attribute any change in health status to the programme since

the improvement may still be part of a secular trend, rather than a direct

consequence of the intervention.

2 The intervention–control comparison following the introduction of the interven-

tion is of course at the heart of a randomized controlled trial, but this compari-

son may be applied in a wider context. Thus the intervention versus control

comparison may be randomized or non-randomized, matched or unmatched,

double-blind or open. When the comparison is double-blind and randomized,

with a large number of units, as is the case with an ideally designed randomized

controlled trial, the plausibility of attributing any difference in outcome ob-

served to the intervention is high. In the absence of double-blindness or

AQ1
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randomization on a reasonably large scale, inference concerning the impact of

the intervention becomes more problematic and it becomes essential to control

for potential confounding factors.

3 Adopters versus non-adopters comparison: this is carried out at the individual

level even if the intervention is delivered at the community level. Individuals

who adopt the intervention are compared with those who do not adopt

the intervention. Such a comparison is essentially a ‘risk factor’ study rather

than an ‘impact’ study in that it measures the benefit to an individual

of adopting the intervention rather than the public health impact of the

intervention in the setting in which it was implemented. This would be the

case, for example, in comparing STD incidence rates among condom

users versus non-condom users following an advertising campaign. Great care

needs to be taken to control potential confounding factors, since adopters and

non-adopters of the intervention may differ in many important respects, includ-

ing their exposure to infection. The magnitude of this problem may be assessed

by a comparison of the non-adopters in the intervention area(s) with persons in

control areas.

Each of these three comparisons has its merits. In the absence of a randomized

controlled design, we recommend that an evaluation study include as many as

possible, since they give complementary information. From Table 34.4 it can be

seen that both a longitudinal design and a cross-sectional design with repeated

surveys in principle allow measurement of all three of the basic types of compari-

son. A single cross-sectional survey can make intervention–control comparisons

and adopter versus non-adopter comparisons but not pre-intervention post-inter-

vention comparisons. The longitudinal approach can more accurately establish

outcome and exposure status and the time sequence between them, but is consider-

ably more expensive and logistically complex than the cross-sectional approach.

Randomized controlled trials usually measure outcomes using a longitudinal or

repeated cross-sectional design in order to maximize follow-up. However, they are

not restricted to do so and, where appropriate, outcome can be measured using a

single cross-sectional survey. For example, in a cluster randomized trial of the

impact of a hygiene behaviour intervention, both hygiene practices and prevalence

of diarrhoea could be ascertained through a single cross-sectional survey carried

Table 34.4 Matrix showing the relationship between the ‘classical’ study designs and the three comparisons of

interest in evaluating an intervention.

Comparisons

Data collection Pre-post Intervention–control Adopters vs non-adopters

Longitudinal Yes Yes Yes

Cross-sectional (repeated) Yes Yes Yes

Cross-sectional (single round) No Yes Yes

Case-control No No Yes
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out, say, six months after the introduction of the intervention. A case–control

evaluation can only yield an adopter versus non-adopter comparison.

The choice of analysis methods for longitudinal and cross-sectional observa-

tional studies and for case control studies are summarized in the next two sections.

34.4 LONGITUDINAL AND CROSS-SECTIONAL STUDIES

We now turn to the analysis of observational studies to investigate the association

of an exposure with an outcome. In this section we cover methods relevant to

cross-sectional surveys and longitudinal studies, and in the next section those

relevant to case–control studies.

A cross-sectional study is carried out at just one point in time or over a short

period of time. Since cross-sectional studies provide estimates of the features of a

community at just one point in time, they are suitable for measuring prevalence

but not incidence of disease (see Chapter 15 for the definition of prevalence and

Chapter 22 for the definition of incidence), and associations found may be difficult

to interpret. For example, a survey on onchocerciasis showed that blind persons

were of lower nutritional status than non-blind. There are two possible explan-

ations for this association. The first is that those of poor nutritional status have

lower resistance and are therefore more likely to become blind from onchocercia-

sis. The second is that poor nutritional status is a consequence rather than a cause

of the blindness, since blind persons are not as able to provide for themselves.

Longitudinal data are necessary to decide which is the better explanation.

As described in Chapter 22, in a longitudinal study individuals are followed over

time, whichmakes it possible tomeasure the incidence of disease and easier to study

the natural history of disease. In some situations it is possible to obtain follow-up

data on births, deaths, and episodes of disease by continuous monitoring, for

example by monitoring registry records in populations where registration of deaths

is complete. Occasionally the acquisition of data may be retrospective, being carried

out from past records. More commonly it is prospective and, for this reason,

longitudinal studies have often been alternatively termed prospective studies.

Many longitudinal studies are carried out by conducting repeated cross-sectional

surveys at fixed intervals to enquire about, or measure, changes that have taken

place between surveys, such as births, deaths, migrations, changes in weight or

antibody levels, or the occurrence of new episodes of disease. The interval chosen

will depend on the factors being studied. For example, to measure the incidence of

diarrhoea, which is characterized by repeated short episodes, data may need to be

collected weekly to ensure reliable recall. To monitor child growth, on the other

hand, would require only monthly or 3-monthly measurements.

Choosing the statistical method to use

Table 34.5 provides a guide to the statistical methods available for the analysis of

cross-sectional and longitudinal studies and Table 34.6 summarizes the possible
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Table 34.6 Observational studies: guide to the appropriateness of types of outcome, for each study design.

Type of outcome

Study design Numerical Binary Rate Survival time

Longitudinal (complete follow-up) Yes Yes Yes Yes

Longitudinal (incomplete follow-up) Yes* Yes* Yes Yes

Longitudinal (repeated cross-sectional surveys) Yes** Yes** Yes Yes

Cross-sectional Yes Yes No No

Case–control No Yes No No

* Methods beyond the scope of this book

** Analyse taking into account repeated measures of outcome, using methods for clustered data (see

Chapter 31).

types of outcome according to the study design. The choice of which method to

use is determined by:

� the sampling scheme used to recruit participants into the study;

� whether measures are made at a single point in time, continuously over time, or

at repeated points in time;

� the types of the outcome and exposure variables.

The bottom line of the guide highlights two special cases that need to be con-

sidered:

� whether the data are clustered, either because of the sampling scheme (cluster

sampling or family studies), or in outcome measurement (repeated measures in

longitudinal studies=multiple measures per subject); and

� in the case of survival outcomes, whether the proportional hazards assumption

is satisfied.

Details of the methods can be found in the relevant sections of Parts B–E.

Types of sampling scheme and their implications

Occasionally a study includes the whole population of a confined area or insti-

tution(s), but more often only a sample is investigated. Whenever possible any

selection should be made at random. Possible schemes include:

1 Simple random sampling: the required number of individuals are selected at

random from the sampling frame, a list or a database of all individuals in the

population.

2 Systematic sampling: for convenience, selection from the sampling frame

is sometimes carried out systematically rather than randomly, by taking

individuals at regular intervals down the list, the starting point being

chosen at random. For example, to select a 5%, or 1 in 20, sample of the

population the starting point is chosen randomly from numbers 1 to 20,

and then every 20th person on the list is taken. Suppose 13 is the random

number selected, then the sample would comprise individuals 13, 33, 53, 73,

93, etc.
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3 Stratified sampling: a simple random sample is taken from a number of distinct

subgroups, or strata, of the population in order to ensure that they are all

adequately represented. If different sampling fractions are used in the different

strata, simple summary statistics will not be representative of the whole popu-

lation. Appropriate methods for the analysis of such studies use weights that are

inversely proportional to the probability that each individual was sampled, and

robust standard errors (see Chapter 30) to correct standard errors.

4 Multi-stage or cluster sampling: this is carried out in stages using the hierarchical

structure of a population. For example, a two-stage samplemight consist of first

taking a random sample of schools and then taking a random sample of

children from each selected school. The clustering of data must be taken into

account in the analysis.

5 Sampling on the basis of time: for example, the 1970 British Cohort Study

(BCS70) is an ongoing follow-up study of all individuals born between 5th

and 11th April, 1970 and still living in Britain.

34.5 CASE–CONTROL STUDIES

In a case–control study the sampling is carried out according to disease rather than

exposure status. A group of individuals identified as having the disease, the cases,

is compared with a group of individuals not having the disease, the controls, with

respect to their prior exposure to the factor of interest. The overriding principle is

that the controls should represent the population at risk of the disease. More

specifically, they should be individuals who, if they had experienced the disease

outcome, would have been included as cases in our study. The outcome is the

case–control status, and is therefore by definition a binary variable. The methods

to use are therefore those outlined in Part C. These are summarized in Table 34.7.

The main feature that influences the methods for analysis is whether controls were

selected at random or using a matched design.

Analysis of unmatched case–control studies

For unmatched case–control studies, standard methods for the analysis of binary

outcomes using odds ratios as the measure of association are used. Analysis of the

effect of a binary exposure starts with simple 2� 2 tables, and proceeds to the use of

Mantel–Haenszel methods and logistic regression to control for the effect of con-

founding variables. These methods were described in detail in Chapters 16 to 20.

Analysis of matched case–control studies

In a matched case–control study, each case is matched with one or more controls,

who are deliberately chosen to have the same values as the case for any potential

confounding variables. There are two main reasons for matching in case–control

studies:
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Table 34.7 Analysis of case–control studies: summary of methods.

Sampling scheme for controls Single exposure Adjustment for confounding variables

Random (unmatched case–control

study)

2� 2 table showing

exposure � case=control

Logistic regression or

Mantel–Haenszel methods

OR¼ cross-product ratio

Standard x2 test

Stratum matching (frequency

matched case–control study)

Stratified analysis: 2� 2 table for

each stratum

Mantel–Haenszel OR and x2 test

Logistic regression or stratified

analysis, controlling for both the

matching factor(s) and the

confounding variables

Individual matching (one control

per case)

2� 2 table showing agreement

between case–control pairs with

respect to risk factor

Conditional logistic regression

OR¼ ratio of discordant pairs

McNemar’s x2 test

Individual matching (multiple

controls per case)

Mantel–Haenszel OR and x2 test,

stratifying on matched sets

Conditional logistic regression

1 Matching is often used to ensure that the cases and controls are similar

with respect to one or more confounding variables. For example, in a study

of pancreatic cancer occurring in subjects aged between 30 and 80 years it

is likely that the cases will come from the older extreme of the age range. Controls

might then be selected because they are of similar age to a case. This would ensure

that the age distribution of the controls is similar to that of the cases, and may

increase the efficiency of the study, for example by decreasing the width of

confidence intervals compared to an unmatched study. Note that unless the

matching factor is strongly associated with both the outcome and the exposure

the increase in efficiency may not be large, and therefore may not justify the

increased logistical difficulties and extra analytic complexity.

2 In some case–control studies it is difficult to define the population that gave rise

to the cases. For example, a large hospital specializing in the treatment of

cardiovascular disease may attract cases not just from the surrounding area

but also referrals from further afield. In developing countries, there may be no

register of the population in a given area, or who attend a particular health

facility. An alternative way of selecting controls representative of the popula-

tion that gave rise to the cases is to select them from the neighbourhood of each

case. For example, controls might be selected from among subjects living in the

third-closest house to that of each case.

It is essential to note that if matching was used in the design, then the analysis must

always take this into account, as described in Chapter 21. In summary:

1 In the simple case of individually matched case–control studies with one control

per case and no confounders, the methods for paired data described in Sections

21.3 and 21.4 can be used.
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2 When there are several controls per case, Mantel–Haenszel methods may be

used to estimate exposure odds ratios by stratifying on the case–control sets.

However, they are severely limited because they do not allow for further control

of the effects of confounding variables that were not also matching variables.

This is because each stratum is a single case and its matched controls, so that

further stratification is not possible. For example, if cases were individually

matched with neighbourhood controls then it would not be possible to stratify

additionally on age group. Stratification can be used to control for additional

confounders only by restricting attention to those case–control sets that are

homogeneous with respect to the confounders of interest.

3 The main approach is to use conditional logistic regression (see Section 21.5),

which is a variant of logistic regression in which cases are only compared to

controls in the same matched set. This allows analysis adjusting for several

confounders at the same time. There is also no restriction on the numbers of

cases and controls in each matched set.

4 However, if cases and controls are only frequency matched (e.g. if we simply

ensure that the age distribution is roughly the same in the cases and controls),

then the matching can be broken in the analysis, and standard logistic regres-

sion used, providing the matching variable(s) are included in the model. Mantel–

Haenszel methods are also valid, with the analysis stratified on all matching

variables.

Interpretation of the odds ratio estimated in a case–control study

For a rare disease, we saw in Chapters 16 and 23 that the odds ratio, risk ratio and

rate ratio are numerically equal. For a common disease the meaning of the odds

ratio estimated in a case–control study depends on the sampling scheme used to

select the controls, as described by Rodrigues and Kirkwood (1990). Briefly, there

are three possibilities:

1 The most usual choice is to select controls from those still disease-free at the end

of the study (the denominator group in the odds measure of incidence); any

controls selected during the course of the study who subsequently develop

disease are treated as cases and not as controls. In this case the odds ratio

estimated in the case–control study estimates the odds ratio in the population.

2 An alternative, in a case–control study conducted in a defined population, is to

select controls from the disease-free population at each time at which a case

occurs (concurrent controls). In this case the odds ratio estimated in the case–

control study estimates the rate ratio in the population.

3 More rarely, the controls can be randomly selected from the initially disease-

free population (if this can be defined). In this case the odds ratio estimated in

the case–control study estimates the risk ratio in the population.
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35.1 INTRODUCTION

An essential part of planning any investigation is to decide how many people need

to be studied. A formal sample size calculation, justifying the proposed study size

and demonstrating that the study is capable of answering the questions posed, is

now a component of a research proposal required by most funding agencies. Too

often, medical research studies have been too small, because the sample size was

decided on purely logistic grounds, or by guesswork. This is not only bad practice: it

is considered bymany to be unethical because of the waste of time and potential risk

to patients participating in a study that cannot answer its stated research question.

On the other hand, studying many more persons than necessary is also a waste of

time and resources. In a clinical trial, conducting a study that is too large may also

be unethical, because this could mean that more persons than necessary were given

the placebo, and that the introduction of a beneficial therapy was delayed. In this

chapter we will:

1 Illustrate the principles involved in sample size calculations by considering a

simple example in detail.

2 Present the different formulae required for the most common sample size

calculations and illustrate their application.

3 Discuss the implications of loss to follow-up, control of confounding and

examination of subgroup effects.

4 Describe the principles of sample size calculation for clustered designs.

5 Define the two types of error that can occur in significance tests.

6 Illustrate the implications of study power for the interpretation of statistical

significance.

35.2 PRINCIPLES OF SAMPLE SIZE CALCULATIONS

Calculating the required sample size requires that we quantify the objectives of our

study. For example, it would not be sufficient to state simply that the objective is
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to demonstrate whether or not formula-fed infants are at greater risk of death

than breast-fed ones. We would also need to state:

1 The size of the increased risk that it was desired to demonstrate since, for

example, a smaller study would be needed to detect a fourfold relative risk

than to detect a twofold one.

2 The significance level (or P-value), that is the strength of the evidence, that we

require in order to reject the null hypothesis of no difference in risk between

formula- and breast-fed infants. The greater the strength of evidence required,

that is the smaller the P-value, the larger will be the sample size needed.

3 The probability that we would like to have of achieving this level of significance.

This is required since, because of sampling variation (see Section 4.5), we cannot

rule out the possibility that the size of the effect observed in the study will be

much smaller than the ‘true’ effect. This means that we can never guarantee that

a study will be able to detect an effect however large we make it, but we can

increase the probability that we do so by increasing the sample size. This

probability is called the power of the study.

For example, we might decide that a study comparing the risk of death among

formula-fed and breast-fed infants would be worthwhile if there was a 90%

probability of demonstrating a difference, at 1% significance, if the true risk

ratio was as high as 2. We would then calculate the number of children required.

Alternatively, if we knew that a maximum of 500 children were available in our

study, we might calculate the power of the study given that we wanted to detect a

true risk ratio of 3 at 5% significance.

The principles involved in sample size calculations will now be illustrated by

considering a simple example in detail.

Example 35.1

Consider a hypothetical clinical trial to compare two analgesics, a new drug (A)

and the current standard drug (B), in which migraine sufferers will be given drug A

on one occasion and drug B on another, the order in which the drugs are given

being chosen at random for each patient. For illustrative purposes, we will

consider a simplified analysis based on the drug stated by each patient to have

provided greatest pain relief. How many patients would we need in order to be

able to conclude that drug A is superior?

First, we must be specific about what we mean by superiority. We will state this

as an overall preference rate of 70% or more for drug A, and we will decide that

we would like a 90% power of achieving a significant result at the 5% level.

Under the null hypothesis of no difference between the efficacies of the two

drugs, the proportion of patients stating a preference for drug A will be 0.5 (50%).

We can test the evidence that the observed preference proportion, p, differs from

0.5 using a z-test, as described in Section 15.6:

z ¼ p� 0:5

s:e: ( p)
¼ p� 0:5

(
p

0:5� (1� 0:5)=n)
¼ p� 0:5

(
p

0:25=n)
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This result will be significant at the 5% level (P < 0:05) if z � 1:96, or in other

words if p is 1.96 standard errors or more away from the null hypothesis value of

0.5.

We will illustrate the principles behind sample size calculations by considering

different possible sample sizes and assessing their adequacy as regards the power

of our study.

SignificantNot significantSignificant

Significant Not significant Significant

Significant Not significant Significant

Probability of a
significant result 
= 42.1%

Probability of a
significant result 
increased to 82.4%

Probability of a
significant result 
= 90%

(a)  n = 20

(b)  n = 50

(c)  Required sample size
      (n = 62)

0 0.5 0.7

0 0.5 0.7

0 0.5 0.620.38 0.7

0.36 0.64

0.28 0.72

1

1

1

Fig. 35.1 Probability of obtaining a significant result (at the 5% level) with various sample sizes (n) when

testing the proportion of preferences for drug A rather than drug B against the null hypothesis value of 0.5, if

the true value is 0.7.
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(a) Wewill start with a sample size of n ¼ 20, as depicted in Figure 35.1(a). Here:

s:e: ¼ (0:25=20)
p ¼ 0:1118

0:5þ 1:96 � s:e: ¼ 0:5þ 1:96� 0:1118 ¼ 0:72

and 0:5� 1:96� s:e: ¼ 0:5� 1:96� 0:1118 ¼ 0:28

Thus observed proportions of 0.72 and above, or 0.28 and below, would

lead to a result that is significant at the 5% level.

If the true proportion is 0.7, what is the likelihood of observing 0.72 or

above, and thus getting a result that is significant at the 5% level? This is

illustrated by the shaded area in Figure 35.1(a). The curve represents the

sampling distribution, which is a normal distribution centred on 0.7 with a

standard error of (0:7� 0:3=20)
p ¼ 0:1025. The z-value corresponding to

0.72 is:

0:72� 0:7

0:1025
¼ 0:20

The proportion of the standard normal distribution above 0.20 is found

from Table A1 (in the Appendix) to equal 0.421, or 42.1%. In summary,

this means that with a sample size of 20 we have only a 42.1% chance of

demonstrating that drug A is better, if the true preference rate is 0.7.

(b) Consider next what happens if we increase the sample size to 50, as shown in

Figure 35.1(b). The ranges of values that would now be significant have

widened to 0.64 and above, or 0.36 and below. The sampling distribution

has narrowed, and there is a greater overlap with the significant ranges.

Consequently, the probability of a significant result has increased. It is now

found to be 82.4%, but this is still less than our required 90%.

(c) Thus we certainly need to study more than 50 patients in order to have 90%

power. But exactly how many do we need? We need to increase the sample

size, n, to the point where the overlap between the sampling distribution and

the significant ranges reaches 90%, as shown in Figure 35.1(c). We will now

describe how to calculate directly the sample size needed to do this. A

significant result will be achieved if we observe a value above

0:5þ 1:96� s:e: ¼ 0:5þ 1:96� (0:5� 0:5=n)
p

(or below 0:5� 1:96� s:e:).Wewant to select a large enough n so that 90%of

the sampling distribution is above this point. The z-value of the sampling

distribution corresponding to 90% is �1.28 (see Table A2), which means an

observed value of

0:7� 1:28� s:e: ¼ 0:7� 1:28� (0:7� 0:3=n)
p
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Therefore, n should be chosen large enough so that

0:7� 1:28� (0:7� 0:3=n)
p

> 0:5þ 1:96� (0:5� 0:5=n)
p

Rearranging this gives

0:7� 0:5 >
1:96� (0:5� 0:5)

p þ 1:28� (0:7� 0:3)
p

n
p

Squaring both sides, and further rearrangement gives

n >
[1:96� (0:5� 0:5)

p þ 1:28� (0:7� 0:3)
p

]2

0:22

¼ 1:56662

0:22
¼ 61:4

We therefore require at least 62 patients to satisfy our requirements of

having a 90% power of demonstrating a difference between drugs A and

B that is significant at the 5% level, if the true preference rate for drug A is

as high as 0.7.

35.3 FORMULAE FOR SAMPLE SIZE CALCULATIONS

The above discussion related to sample size determination for a test that a single

proportion (the proportion of participants preferring drug A to drug B) differs

from a specified null value. In practice it is not necessary to go through such

detailed reasoning every time. Instead the sample size can be calculated directly

from a general formula, which in this case is:

n >
[u �(1� �)
p þ v �null(1� �null)

p
]2

(�� �null)
2

where:

n ¼ required minimum sample size

� ¼ proportion of interest

�null ¼ null hypothesis proportion

u ¼ one-sided percentage point of the normal distribution corresponding to

100% � the power, e.g. if power ¼ 90%, (100%� power) ¼ 10% and u

¼ 1:28

v ¼ percentage of the normal distribution corresponding to the required (two-

sided) significance level, e.g. if significance level ¼ 5%, v ¼ 1:96.

For example, in applying this formula to the above example we have:

� ¼ 0:7, �null ¼ 0:5, u ¼ 1:28 and v ¼ 1:96

giving
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n >
[1:28� (0:7� 0:3)

p þ 1:96� (0:5� 0:5)
p

]2

(0:7� 0:5)2
¼ 1:56662

0:22
¼ 61:4

which is exactly the same as obtained above.

The same principles can also be applied in other cases. Detailed reasoning is not

given here but the appropriate formulae for use in the most common situations are

listed in Table 35.1. The list consists of two parts. Table 35.1(a) covers cases where

the aim of the study is to demonstrate a specified difference. Table 35.1(b) covers

situations where the aim is to estimate a quantity of interest with a specified

precision.

Note that for the cases with two means, proportions, or rates, the formulae give

the sample sizes required for each of the two groups. The total size of the study is

therefore twice this.

Table 35.2 gives adjustment factors for study designs with unequal size groups

(see Example 35.4). Note also that the formulae applying to rates give the required

sample size in the same unit as the rates (see Example 35.3).

The use of Table 35.1 will be illustrated by several examples. It is important to

realize that sample size calculations are based on our best guesses of a situation.

The number arrived at is not magical. It simply gives an idea of the sort of

numbers to be studied. In other words, it is useful for distinguishing between 50

and 100, but not between 51 and 52. It is essential to carry out sample size

calculations for several different scenarios, not just one. This gives a clearer picture

of the possible scope of the study and is helpful in weighing up the balance

between what is desirable and what is logistically feasible.

Example 35.2

A study is to be carried out in a rural area of East Africa to ascertain whether

giving food supplementation during pregnancy increases birth weight. Women

attending the antenatal clinic are to be randomly assigned to either receive or not

receive supplementation. Formula 4 in Table 35.1 will help us to decide how many

women should be enrolled in each group. We need to supply the following infor-

mation:

1 The size of the difference between mean birth weights that we would like to be

able to detect. After much consideration it was decided that an increase of

0.25 kg was an appreciable effect that we would not like to miss. We therefore

need to apply the formula with �1 � �0 ¼ 0:25 kg.

2 The standard deviations of the distributions of birth weight in each group. It

was decided to assume that the standard deviation of birth weight would be the

same in the two groups. Past data suggested that it would be about 0.4 kg. In

other words we decided to assume that �1 ¼ 0:4 kg and �0 ¼ 0:4 kg.

3 The power required. 95% was agreed on. We therefore need u ¼ 1:64.

4 The significance level required. It was decided that if possible we would like to

achieve a result significant at the 1% level. We therefore need v ¼ 2:58.
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Applying formula 4 with these values gives:

n >
(1:64þ 2:58)2 � (0:42 þ 0:42)

0:252
¼ 17:8084� 0:32

0:0625
¼ 91:2

Therefore, in order to satisfy our requirements, we would need to enrol about 90

women in each group.

Example 35.3

Before embarking on a major water supply, sanitation, and hygiene intervention

in southern Bangladesh, we would first like to know the average number of

episodes of diarrhoea per year experienced by under-5-year-olds. We guess that

this incidence is probably about 3, but would like to estimate it within 	0:2. This

means that if, for example, we observed 2.6 episodes/child/year, we would like to

be able to conclude that the true rate was probably between 2.4 and 2.8 episodes/

child/year. Expressing this in more statistical terms, we would like our 95%

confidence interval to be no wider than 	0:2. As the width of this confidence

interval is approximately 	2 s.e.’s, this means that we would like to study enough

children to give a standard error as small as 0.1 episodes/child/year. Applying

formula 9 in Table 35.1 gives:

n >
3

0:12
¼ 300

Note that the formulae applying to rates (numbers 2, 5, 9, 12) give the required

sample size in the same unit as the rates. We specified the rates as per child per

year. We therefore need to study 300 child-years to yield the desired precision.

This could be achieved by observing 300 children for one year each or, for

example, by observing four times as many (1200) for 3months each. It is import-

ant not to overlook, however, the possibility of other factors such as seasonal

effects when deciding on the time interval for a study involving the measurement

of incidence rates.

Example 35.4

A case–control study is planned to investigate whether bottle-fed infants are at

increased risk of death from acute respiratory infections compared to breast-fed

infants. The mothers of a group of cases (infant deaths, with an underlying

respiratory cause named on the death certificate) will be interviewed about the

breast-feeding status of the child prior to the illness leading to death. The results

will be compared with those obtained from mothers of a group of healthy controls

regarding the current breast-feeding status of their infants. It is expected that

about 40% of controls (�0 ¼ 0:4) will be bottle-fed, and we would like to detect a

difference if bottle-feeding was associated with a twofold increase of death

(OR ¼ 2).
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How many cases and controls need to be studied to give a 90% power (u ¼ 1:28)

of achieving 5% significance (v ¼ 1:96)? The calculation consists of several steps

as detailed in formula 7 of Table 35.1.

1 Calculate �1, the proportion of cases bottle-fed:

�1 ¼ �0OR

1þ �0(OR� 1)
¼ 0:4� 2

1þ 0:4� (2� 1)
¼ 0:8

1:4
¼ 0:57

2 Calculate ���, the average of �0 and �1:

���¼ 0:4þ 0:57

2
¼ 0:485

3 Calculate the minimum sample size:

n >
[1:28 (0:4�0:6þ 0:57�0:43)

p þ 1:96 (2�0:485�0:515)
p

]2

(0:57� 0:4)2

¼ [1:28 0:4851
p þ 1:96 0:4996

p
]2

0:172
¼ 2:27692

0:172
¼ 179:4

We would therefore need to recruit about 180 cases and 180 controls, giving a total

sample size of 360.

What difference would it make if, rather than recruiting equal numbers of cases

and controls, we decided to recruit three times as many controls as cases? Table

35.2 gives appropriate adjustment factors for the number of cases according to

differing number of controls per case. For c ¼ 3 the adjustment factor is 2/3. This

means we would need 180� 2=3, that is 120 cases, and three times as many,

Table 35.2 Adjustment factor for use in study designs to compare unequal sized groups,

such as in a case–control study selecting multiple controls per case. This factor (f ) applies

to the smaller group and equals (c þ 1)=(2c), where the size of the larger group is to be c

times that of the smaller group. The sample size of the smaller group is therefore fn, where

n would be the number required for equal-sized groups, and that of the larger group is cfn

(see Example 35.4).

Ratio of larger to smaller group (c) Adjustment to sample size of smaller group (f )

1 1

2 3/4

3 2/3

4 5/8

5 3/5

6 7/12

7 4/7

8 9/16

9 5/9

10 11/20
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namely 360, controls. Thus although the requirement for the number of cases has

considerably decreased, the total sample size has increased from 360 to 540.

35.4 ADJUSTMENTS FOR LOSS TO FOLLOW-UP, CONFOUNDING AND

INTERACTION

The calculated sample size should be increased to allow for possible non-response

or loss to follow-up. Further adjustments should be made if the final analysis will

be adjusted for the effect of confounding variables or if the examination of

subgroup effects is planned.

1 It is nearly always the case that a proportion of the people originally recruited to

the study will not provide data for inclusion in the final analysis: for example

because they withdraw from the study or are lost to follow-up, or because

information on key variables is missing. The required sample size should be

adjusted to take account of these possibilities. If we estimate that x% of patients

will not contribute to the final analysis then the sample size should be multiplied

by 100=(100� x). For example if x ¼ 20%, the multiplying factor equals

100=(100� 20) ¼ 1:25.

Adjustment factor for x% loss ¼ 100=(100� x)

2 Smith and Day (1984) considered the effect of controlling for confounding

variables, in the context of the design of case–control studies. They concluded

that, for a single confounding variable, an increase in the sample size of more

than 10% is unlikely to be needed. Breslow and Day (1987) suggested that for

several confounding variables that are jointly independent, as a rough guide one

could add the extra sample size requirements for each variable separately.

3 In some circumstances we wish to design a study to detect differences between

associations in different subgroups, in other words to detect interaction between

the treatment or exposure effect and the characteristic that defines the sub-

group. The required sample size will be at least four times as large as when the

aim is to detect the overall association, and may be considerably larger. For

more details see Smith and Day (1984) or Breslow and Day (1987).

35.5 ADJUSTMENT FOR CLUSTERED DESIGNS

The analysis of studies that employ a clustered design was described in Chapter 31.

These include cluster randomized trials, in which randomization is applied to

clusters of people rather than individuals (see also Section 34.2), family studies

and studies which employ a cluster sampling scheme (see also Section 34.4).

Because individuals within a cluster may be more similar to each other than to

individuals in other clusters, a cluster randomized trial needs to include more

AQ1

AQ2
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individuals than the corresponding individually randomized trial. The same is true

of studies that employ a cluster rather than individual sampling scheme.

The amount by which the sample size needs to be multiplied is known as the

design effect (Deff ), and depends on the intraclass correlation coefficient (ICC).

The ICC was defined in Section 31.4 as the ratio of the between-cluster variance to

the total variance.

Design effect (Deff) ¼ 1þ (n0 � 1)� ICC

ICC ¼ intraclass correlation coefficient

n0 ¼ average cluster size

It can be seen that two factors influence the size of the design effect:

1 the greater the ICC, the greater will be the design effect; and

2 the greater the number of individuals per cluster, the greater will be the design

effect.

The number of clusters required is given by:

No: of clusters ¼ n

n0
[1þ (n0 � 1)� ICC]

n ¼ uncorrected total sample size

n0 ¼ average cluster size

Estimation of the ICC, at the time that a study is designed, is often difficult

because published papers have not tended to report ICCs. Although attempts have

been made to publish typical ICCs, for different situations (for example see

Gulliford et al., 1999), it will usually be sensible to calculate the number of clusters

required under a range of assumptions about the ICC, as well as using a range of

values for the cluster size. In particular, it may be useful to present the results

graphically, with lines showing the number of clusters required against number of

individuals per cluster, for various values of ICC.

For more details about sample size calculations for cluster randomized trials,

see Donner and Klar (2000) or Ukoumunne et al. (1999). Alternatively, Hayes

and Bennett (1999) suggested a method based on the coefficient of variation

(standard deviation/mean) of cluster rates, proportions or means. They give

guidance on how to estimate this value with or without the use of prior data on

between-cluster variation, and provide formulae for both unmatched and pair-

matched trials.
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35.6 TYPES OF ERROR IN SIGNIFICANCE TESTS

A significance test can never prove that a null hypothesis is either true or false. It

can only give an indication of the strength of the evidence against it. In using

significance tests to make decisions about whether to reject a null hypothesis, we

can make two types of error: we can reject a null hypothesis when it is in fact true,

or fail to reject it when it is false. These are called type I and type II errors

respectively (Table 35.3).

As explained in Chapter 8, the P-value (significance level) equals the probability

of occurrence of a result as extreme as, or more extreme than, that observed if the

null hypothesis were true. For example, there is a 5% probability that sampling

variation alone will lead to a P < 0:05 (a result significant at the 5% level), and so

if we judge such a result as sufficient evidence to reject the null hypothesis, there is

a 5% probability that we are making an error in doing so, if the null hypothesis is

true (see Figure 35.2a).

The second type of error is that the null hypothesis is not rejected when it is

false. This occurs because of overlap between the real sampling distribution of

the sample difference about the population difference, d ( 6¼ 0) and the accept-

ance region for the null hypothesis based on the hypothesized sampling distri-

bution about the incorrect difference, 0. This is illustrated in Figure 35.2(b).

The shaded area shows the proportion (b%) of the real sampling distribution

that would fall within the acceptance region for the null hypothesis, i.e. that

would appear consistent with the null hypothesis at the 5% level. The prob-

ability that we do not make a type II error (100 � b%) equals the power of the

test.

If a lower significance level were used, making the probability of a type I

error smaller, the size of the shaded area would be increased, so that there

would be a larger probability of a type II error. The converse is also true. For a

given significance level, the probability of a type II error can be reduced by

increasing the power, by increasing either the sample size or the precision of the

measurements (see Chapter 36). Each of the curves in Figure 35.2 would be

taller and narrower, and overlap less; the size of the shaded area would

therefore be reduced.

Table 35.3 Types of error in hypothesis tests.

Reality

Conclusion of significance test Null hypothesis is true Null hypothesis is false

Reject null hypothesis Type I error

(probability ¼ significance level)

Correct conclusion

(probability ¼ power)

Do not reject null hypothesis Correct conclusion

(probability ¼ 1� significance level)

Type II error

(probability ¼ 1� power)
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Accept NH if sample
difference here

Reject NH if sample
difference here

Reject NH if sample
difference here

2.5%

0

2.5%

(a)  Type I error. Null hypothesis (NH) is true. Population difference = 0. The curve shows
the sampling distribution of the sample difference. The shaded areas (total 5%) give
the probability that the null hypothesis is wrongly rejected.

Accept NH if sample
difference here

Reject NH if sample
difference here

Reject NH if sample
difference here

0 d

b%

(b)  Type II error. Null hypothesis is false. Population difference = d=0. The continuous
curve shows the real sampling distribution of the sample difference, while the dashed
curve shows the sampling distribution under the null hypothesis. The shaded area is the
probability (b%) that the null hypothesis fails to be rejected.

/

Fig. 35.2 Probabilities of occurrence of the two types of error of hypothesis testing, illustrated for a test at

the 5% level.

35.7 IMPLICATIONS OF STUDY POWER FOR THE INTERPRETATION OF

SIGNIFICANCE TESTS

Unfortunately, significance tests are often misused, with investigators using a 5%

threshold for statistical significance and concluding that any non-significant result

means that the null hypothesis is true. Another common misinterpretation is that

the P-value is the probability that the null hypothesis is true.

Table 35.4(a) demonstrates why such thinking is incorrect. It is based on

considering what would happen if 1000 different null hypotheses were tested and

significance at the 5% level (P < 0:05) used as a threshold for rejection, under the

following plausible assumptions:
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Table 35.4 Implications of study power for the interpretation of significance tests.

(a) Conclusions of significance tests of 1000 hypotheses, of which 10% are false, using P ¼ 0:05 as threshold

significance level, and conducted with 50% power (adapted from Oakes, 1986).

Reality

Conclusion of significance test Null hypothesis true Null hypothesis false Total

Reject null hypothesis (P<0:05) 45 (Type I errors) 50 95

Do not reject null hypothesis (P�0:05) 855 50 (Type II errors) 905

Total 900 100 1000

(b) Proportion of false-positive significant results, according to the P-value used for significance, the power of the

study and the proportion of studies in which the null hypothesis is truly false (adapted from Sterne and Davey Smith

2001). The result corresponding to Table 35.4(a) is in bold.

Proportion of studies in which

the null hypothesis is false Power of study

Percentage of significant results that are false-

positives

P ¼ 0:05 P ¼ 0:01 P ¼ 0:001

20% 5.9 1.2 0.1

80% 50% 2.4 0.5 0.0

80% 1.5 0.3 0.0

20% 20.0 4.8 0.5

50% 50% 9.1 2.0 0.2

80% 5.9 1.2 0.1

20% 69.2 31.0 4.3

10% 50% 47.4 15.3 1.8

80% 36.0 10.1 1.1

20% 96.1 83.2 33.1

1% 50% 90.8 66.4 16.5

80% 86.1 55.3 11.0

1 10% of the null hypotheses tested are in fact false (i.e. the effect being investi-

gated is real), and 90% are true (i.e. the hypothesis tested is incorrect). This is

conceivable given the large numbers of factors searched for in the epidemi-

ological literature. For example by 1985 nearly 300 risk factors for coronary

heart disease had been identified; it is unlikely that more than a fraction of these

factors actually increase the risk of the disease.

2 The power of the test is 50%. This is consistent with published surveys of the

size of clinical trials (see, for example, Moher et al., 1994); a large proportion

having been conducted with an inadequate sample size to address the research

question.

Assumption (1) determines the column totals in the table; the null hypothesis is

true in 900 of the tests and false in 100 of them. The type I error rate will be 5%,

the significance level being used. This means that we will incorrectly reject 45 of
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the 900 true null hypotheses. Assumption (2) means that that the type II error rate

equals 50% (100%� power). We will therefore fail to reject 50 of the 100 null

hypotheses that are false. It can be seen from the table that of the 95 tests that

result in a statistically significant result, only 50 are correct; 45 (47.4%) are type I

errors (false positive results).

Table 35.4(b) extends Table 35.4(a) by showing the percentage of false positive

results for different P-value thresholds under different assumptions about both the

power of studies and the proportion of true null hypotheses. For any choice of

significance level, the proportion of ‘significant’ results that are false-positives is

greatly reduced as power increases. The table suggests that unless the proportion

of meaningful hypotheses is very small, it is reasonable to regard P-values less

than 0.001 as providing strong evidence against the null hypothesis.
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36.1 INTRODUCTION

In this chapter we consider how to examine for errors made in measuring outcome

or exposure variables, and the implications of such errors for the results of

statistical analyses. Such errors may occur in a variety of ways, including:

1 Instrumental errors, arising from an inaccurate diagnostic test, an imprecise

instrument or questionnaire limitations.

2 Underlying variability, leading to differences between replicate measurements

taken at different points in time.

3 Respondent errors, arising through misunderstanding, faulty recall, giving the

perceived ‘correct’ answer, or through lack of interest. In some instances the

respondent may deliberately give the wrong answer because, for example, of

embarrassment in questions connected with sexually transmitted diseases or

because of suspicion that answers could be passed to income tax authorities.

4 Observer errors, including imprecision, misuse=misunderstanding of proced-

ures, and mistakes.

5 Data processing errors, such as coding, copying, data entry, programming and

calculating mistakes.

Our focus is on the detection, measurement and implications of random error, in

the sense that we will assume that any errors in measuring a variable are independ-

ent of the value of other variables in the dataset. Detailed discussion of differential

bias arising from the design or conduct of the study, such as selection bias, is

outside the scope of this book. Readers are referred to textbooks on epidemiology

and study design: recommended books are listed at the beginning of Chapter 34.

We cover:
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1 How to evaluate a diagnostic test or compare a measurement technique against

a gold standard, that gives a (more) precise measurement of the true value.

Often, the gold-standard method is expensive, and we wish to examine the

performance of a cheaper or quicker alternative.

2 How to choose the ‘best’ cut-off value when using a numerical variable to give a

binary classification.

3 How to assess the reproducibility of a measurement, including:

� agreement between different observers using the same measurement tech-

nique,

� the agreement between replicate measurements taken at different points in

time.

4 The implications of inaccuracies in measurement for the interpretation of results.

36.2 THE EVALUATION OF DIAGNOSTIC TESTS

The analysis of binary outcome variables was considered in Part C, while methods

for examining the effect of binary exposure variables are presented throughout

this book. In this section we consider how to assess the ability of a procedure to

correctly classify individuals between the two categories of a binary variable. For

example, individuals may be classified as diseased or non-diseased, exposed or

non-exposed, positive or negative, or at high risk or not.

Sensitivity and specificity

The ability of a diagnostic test (or procedure) to correctly classify individuals into

two categories (positive and negative) is assessed by two parameters, sensitivity

and specificity:

Sensitivity¼ proportion of true positives correctly identified as such

¼ 1� false negative rate

Specificity¼ proportion of true negatives correctly identified as such

¼ 1� false positive rate

To estimate sensitivity and specificity, each individual needs to be classified defini-

tively (using a ‘gold-standard’ assessment) as true positive or true negative and, in

addition, to be classified according to the test being assessed.

Example 36.1

Table 36.1 shows the results of a pilot study to assess parents’ ability to recall the

correct BCG immunization status of their children, as compared to health author-

ity records. Of the 60 children who had in fact received BCG immunization,

almost all, 55, were correctly identified as such by their parents, giving a sensitivity

of 55=60 or 91.7%. In contrast, 15 of the 40 children with no record of BCG

AQ1
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Table 36.1 Comparison of parents’ recall of the BCG immunization status of their children with that recorded in the

health authority records.

BCG immunization according

to health authority records

(‘gold standard’ test)

BCG immunization according to parents

(procedure being assessed)

Yes No Total

Yes 55 5 60 Sensitivity ¼ 55=60 ¼ 91:7%

No 15 25 40 Specificity ¼ 25=40 ¼ 62:5%

Total 70 30 100

PPV ¼ 55=70

¼ 78:6%

NPV ¼ 25=30

¼ 83:3%

immunization were claimed by their parents to have been immunized, giving a

specificity of 25=40 or 62.5%.

Sensitivity and specificity are characteristics of the test. Their values do not depend

on the prevalence of the disease in the population. They are particularly important

in assessing screening tests. Note that there is an inverse relationship between the

two measures, tightening (or relaxing) criteria to improve one will have the effect

of decreasing the magnitude of the other. Where to draw the line between them

will depend on the nature of the study. For example, in designing a study to test a

new leprosy vaccine, it would be important initially to exclude any lepromatous

patients. One would therefore want a test with a high success rate of detecting

positives, or in other words a highly sensitive test. One would be less concerned

about specificity, since it would not matter if a true negative was incorrectly

identified as positive and so excluded. In contrast, for the detection of cases during

the post-vaccine (or placebo) follow-up period, one would want a test with high

specificity, since it would then be more important to be confident that any

positives detected were real, and less important if some were missed.

Predictive values

A clinician who wishes to interpret the results of a diagnostic test will want to

know the probability that a patient is truly positive if the test is positive and

similarly the probability that the patient is truly negative if the test is negative.

These are called the positive and negative predictive values of the test:

Positive predictive value (PPV) ¼ proportion of test positives

that are truly positive

Negative predictive value (NPV) ¼ proportion of test negatives

that are truly negative
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In Example 36.1, BCG immunization was confirmed from health authority

records for 55 of the 70 children reported by their parents as having received

immunization, giving a PPV of 55=70 or 78.6%. The NPV was 25=30 or 83.3%.

The values of the positive and negative predictive values depend on the preva-

lence of the disease in the population, as well as on the sensitivity and specificity of

the procedure used. The lower the prevalence of true positives, the lower will be

the proportion of true positives among test positives and the lower, therefore, will

be the positive predictive value. Similarly, increasing prevalence will lead to

decreasing negative predictive value.

Choosing cut-offs

Where binary classifications are derived from a numerical variable, using a cut-off

value, the performance of different cut-off values can be assessed using a Receiver

Operating Characteristic curve, often known as a ROC curve. This is a plot of

sensitivity against 1� specificity, for different choices of cut-off. The name of the

curve derives from its original use in studies of radar signal detection.

Example 36.2

Data from a study of lung function among 636 children aged 7 to 10 years living in

a deprived suburb of Lima, Peru were introduced in Chapter 11. For each child

the FEV1 (the volume of air the child could breathe out in 1 second) was measured

before and after she or he exercised on an electric treadmill for 4minutes, and the

percentage reduction in FEV1 after exercise was calculated. This ranged from

�17:9% (i.e. an increase post-exercise) to a 71.4% reduction.

A total of 60 (9.4%) of the parents (or carers) reported that their child had

experienced chest tightness suggestive of asthma in the previous 12months. There

was strong evidence of an association between % reduction in FEV1 and reported

chest tightness in the child (odds ratio per unit increase in % reduction 1.052, 95%

CI 1.031 to 1.075). To examine the utility of % reduction in FEV1 as a means of

diagnosing asthma, a ROC curve was plotted, as displayed in Figure 36.1, showing

sensitivity (vertical axis) against 1� specificity (horizontal axis) for different

choices of cut-off values for FEV1. In this example, we can see that if we required

75% sensitivity from our cut-off then specificity would be around 50%, while a

lower cut-off value that gave around 60% sensitivity would yield a specificity of

about 75%.

The overall ability of the continuous measure (in this case FEV1) to discriminate

between individuals with and without disease may be measured by the area under

the ROC curve. If perfect discrimination were possible (the existence of a cut-off

with 100% sensitivity and 100% specificity), the ROC curve would go across the

top of the grid area, and yield an area of 1. This is because decreasing the

specificity by lowering the cut-off would maintain sensitivity at 100%, since a

lower cut-off can only capture an equal or higher percentage of cases. In contrast,

if the continuous measure is not able to discriminate at all, then 100% sensitivity
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Fig. 36.1 ROC curve showing the sensitivity and specificity corresponding to different choices of cut-off for

% reduction in FEV1 as a test for chest tightness suggestive of asthma in children in Peru.

can only be achieved with 0% specificity and vice versa. The ROC curve will be the

straight line in Figure 36.1 showing sensitivity ¼ 1� specificity, and the area under

the curve will be 0.5. In this example the area under the ROC curve is 0.699. The

area under the ROC curve may also be used to quantify how well a predictor

based on a number of variables (for example based on the linear predictor from a

logistic regression model) discriminates between individuals with and without

disease.

36.3 ASSESSING REPRODUCIBILITY OF MEASUREMENTS

In this section we describe methods to assess the extent of reproducibility of a

measurement (also known as reliability), including:

� agreement between different observers using the same measurement technique;

� agreement between replicate measurements taken at different points in time.

This is particularly important for any variable that is subjectively assessed, such as

in Example 36.3, or for which theremay be underlying natural variation, such as the

composition of a person’s daily nutritional intake (see Example 36.5), which will

show some day-to-day variations, as well as possible marked seasonal differences.

Kappa statistic for categorical variables

For categorical variables, the extent of reproducibility is usually assessed using a

kappa statistic. This is based on comparing the observed proportion of agreement
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(Aobs) between two readings made by two different observers, or on two different

occasions, with the proportion of agreements (Aexp) that would be expected simply

by chance. It is denoted by the Greek letter kappa, 	, and is defined as:

	 ¼ Aobs � Aexp

1� Aexp

If there is complete agreement then Aobs ¼ 1 and so 	 ¼ 1. If there is no more

agreement than would be expected by chance alone then 	 ¼ 0, and if there is

less agreement than would be expected by chance alone then 	 will be negative.

Based on criteria originally proposed by Landis and Koch:

� kappa values greater than about 0.75 are often taken as representing excellent

agreement;

� those between 0.4 and 0.75 as fair to good agreement; and

� those less than 0.4 as moderate or poor agreement.

Standard errors for kappa have been derived, and are presented in computer

output by many statistical packages. These may be used to derive a P-value

corresponding to the null hypothesis of no association between the ratings on

the two occasions, or by the two raters. In general, such P-values are not of interest,

because the null hypothesis of no association is not a reasonable one.

We will illustrate the calculation of kappa statistics using data from a study of

the way in which people tend to explain problems with their health. We will do this

first using a binary classification, and then a fuller 4-category classification.

Example 36.3: Binary classification

Table 36.2 summarizes data from a study in which 179 men and women filled in a

Symptom Interpretation Questionnaire on two occasions three years apart. On the

basis of this questionnaire they were classified according to whether or not they

tended to provide a normalizing explanation of symptoms. This means discounting

symptoms, externalizing them and explaining them away as part of normal experi-

ence. It can be seen that while 76 participants were consistently classified as

normalizers, and 47 as non-normalizers, the classification changed for a total of

56 participants. More participants were classified as normalizers on the second

than the first occasion.

The observed proportion of agreement between the assessment on the two

occasions, denoted by Aobs is therefore given by:

Aobs ¼ (76 þ 47)=179 ¼ 123=179 ¼ 0:687 (68:7%)

Part (b) of Table 36.2 shows the number of agreements and disagreements that

would be expected between the two classifications on the basis of chance alone.

These expected numbers are calculated in a similar way to that described for the
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Table 36.2 Classification of 179 men and women as ‘symptom normalizers’ or not, on

two measurement occasions three years apart. Data kindly provided by Dr David Kessler.

(a) Observed numbers

Second classification

First classification Normalizer Non-normalizer Total

Normalizer 76 17 93

Non-normalizer 39 47 86

Total 115 64 179

(b) Expected numbers

Second classification

First classification Normalizer Non-normalizer Total

Normalizer 59.7 33.3 93

Non-normalizer 55.3 30.7 86

Total 115 64 179

chi-squared test in Chapter 17. The overall proportion classified as normalizers on

the second occasion was 115=179. If this classification was unrelated to that on

the first, then one would expect this same proportion of second occasion normal-

izers in each first occasion group, that is 115=179� 93 ¼ 59:7 classified as nor-

malizers on both occasions, and 115=179� 86 ¼ 55:3 of those classified as

non-normalizers on the first occasion classified as normalizers on the second.

Similarly 64=179� 93 ¼ 33:3 of those classified as normalizers on the first

occasion would be classified as non-normalizers on the second, while

64=179� 86 ¼ 30:7 would be classified as non-normalizers on both occasions.

The expected proportion of chance agreement is therefore:

Aexp ¼ (59:7þ 30:7)=179 ¼ 0:505 (50:5%)

Giving a kappa statistic of:

	 ¼ (0:687� 0:505)=(1� 0:505) ¼ 0:37

This would usually be interpreted as representing at most moderate agreement

between the two classifications made over the three-year follow-up period.

Example 36.4: Categorical classification

Table 36.3(a) shows a more complete version of the data presented in Table 36.2,

with each participant now assessed as belonging to one of four groups according

to the way in which they tended to explain symptoms. Those classed as non-

normalizers (see earlier explanation) have been divided into somatizers, those who
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Table 36.3 Classification of the dominant style for explaining symptoms of 179 men and women as

normalizers, somatizers, psychologizers or no dominant style, on two measurement occasions three

years apart. Data kindly provided by Dr David Kessler.

(a) Observed numbers

Dominant style at

first classification

Dominant style at second classification

Normalizer Somatizer Psychologizer None Total

Normalizer 76 0 7 10 93

Somatizer 2 0 3 1 6

Psychologizer 17 1 15 8 41

None 20 3 5 11 39

Total 115 4 30 30 179

(b) Expected numbers of agreements

Dominant style at

first classification

Dominant style at second classification

Normalizer Somatizer Psychologizer None Total

Normalizer 59.7 93

Somatizer 0.1 6

Psychologizer 6.9 41

None 0.2 39

Total 115 4 30 30 179

tend to explain their symptoms as indicating a potentially more serious physical

illness, psychologizers, those who tend to give psychological explanations for their

symptoms, and those with no dominant style. The observed proportion of agree-

ment between the two occasions using the four category classification is:

Aobs ¼ (76 þ 0 þ 15 þ 11)=179 ¼ 102=179 ¼ 0:570 (57:0%)

The expected numbers for the various combinations of first and second occasion

classification can be calculated in exactly the same way as argued in the two-

category example. For the kappa statistic, we need these only for the numbers of

agreements; these are shown in Table 36.3(b).

Aexp ¼ (59:7þ 0:1þ 6:9þ 0:2)=179 ¼ 72:9=179 ¼ 0:407 (40:7%)

giving

	 ¼ Aobs � Aexp

1� Aexp

¼ (0:570� 0:407)=(1� 0:407) ¼ 0:27

representing poor to moderate agreement.

As the number of categories increases, the value of kappa will tend to decrease,

because there are more opportunities for misclassification. Further, for ordinal
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measures we may wish to count classification into adjacent categories as partial

agreement. For instance, classification into adjacent categories might count as

50% agreement, such as normalizers classified as somatizers and vice versa in

Table 36.3. This is done using a weighted kappa statistic, in which the observed and

expected proportions of agreement are modified to include partial agreements, by

assigning a weight between 0 (complete disagreement) and 1 (complete agreement)

to each category. Kappa statistics can also be derived when there are more than

two raters: for more details see Fleiss (1981) or Dunn (1989).

Numerical variables: reliability and the intraclass correlation coefficient

We now describe how to quantify the amount of measurement error in a numer-

ical variable. As with the kappa statistic, this may be done using replicate meas-

urements of the variable: for example measurement of blood pressure made on the

same patient by two observers at the same time, or using the same automated

measuring device on two occasions one week apart.

The reliability of a measurement is formally defined as the ratio of the variance

of the ‘true’ (underlying) values between individuals to the variance of the ob-

served values, which is a combination of the variation between individuals (�2
u)

and measurement error (�2
e). It can be measured using the intraclass correlation

coefficient (ICC), defined in Section 31.4 in the context of random-effects models:

Intraclass correlation coefficient (ICC) ¼ � 2
u

�2
u þ �2

e

�2
u ¼ variance between true measurements

�2
e ¼ measurement error variance

Here the ‘clusters’ are the individuals on whom measurements are made, and the

observations within clusters are the repeated measurements on the individuals.

ICC can range from 0 to 1, with the maximum of 1 corresponding to complete

reliability, which is when there is no measurement error, �2
e ¼ 0. The smaller

the amount of measurement error, the smaller will be the increase in the variability

of the observed measurements compared to the true measurements and the

closer will be the reliability (and ICC) to 1. If all individuals have the same

‘true’ value, then �2
u ¼ 0 and ICC ¼ 0; all observed variation is due to measure-

ment error.

The intraclass correlation coefficient may be estimated using a one-way analysis

of variance (see Chapter 11), or by using a simple random-effects model (see

Chapter 31). When there are paired measurements, the ICC can also be derived

by calculating the Pearson (product moment) correlation with each pair entered

twice, once in reverse order.
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Example 36.5

As part of a case–control study investigating the association between asthma and

intake of dietary antioxidants (measured using food frequency questionnaires),

replicate measurements of selenium intake were made 3months after the original

measurements, for 94 adults aged between 15 and 50 years. Figure 36.2 is a scatter

plot of the pairs of measurements; note that because estimated selenium intake

was positively skewed the measurements are plotted on a log scale (see Chapter

13). While there is clearly an association between the measurements on the first

and second occasions, there is also substantial between-occasion variability.

Themean and standard deviation of log selenium intake (measured in log (base e)

�g=week) in the 94 subjects with repeat measurements were 3.826 (s:d: ¼ 0:401) on

the first occasion and 3.768 (s:d: ¼ 0:372) on the second occasion. There was some

evidence that measured intake declined between the two measurements (mean

reduction 0.058, 95% CI �0:008 to 0.125, P ¼ 0:083). The estimated components

of variance were:

Within-subject (measurement error) variance, � 2
e ¼ 0:0535

Between-subject variance, � 2
u ¼ 0:0955

Total variance ¼ � 2
u þ � 2

e ¼ 0:1491

Fig. 36.2 Scatter plot of weekly selenium intake (�g=week) on a log scale among 94 participants in a study

of asthma and intake of antioxidant vitamins, measured using a food frequency questionnaire on two

occasions three months apart. Data displays and analyses from the FLAG study (Shaheen SO, Sterne JAC,

Thompson RL, Songhurst CE, Margetts BM, Burney PGJ (2001) American Journal of Respiratory and Critical

Care Medicine 164: 1823–1828).
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Therefore,

ICC ¼ �2
u

�2
u þ �2

e

¼ 0:0955=0:1491 ¼ 0:6410

Thus in this example, 64.1% of the total variability was between-subject variabil-

ity, indicating fairly good reliability of assessing selenium intake using a single

application of a food frequency questionnaire.

Links between weighted kappa and the intraclass correlation coefficient

For ordered categorical variables, there is a close link between the weighted kappa

statistic (defined above) and the intraclass correlation coefficient. If the variable

has k categories, and the weight, wij, for a subject in category i at the first

measurement and j at the second measurement is chosen to be:

wij ¼ 1� (i � j)2

(k� 1)2

then the value of the weighted kappa will be very close to the ICC. For example,

for an ordered categorical variable with four categories the weights would be

w11 ¼ w22 ¼ w33 ¼ w44 ¼ 1� 0

32
¼ 1

w12 ¼ w21 ¼ w23 ¼ w32 ¼ w34 ¼ w43 ¼ 1� 12

32
¼ 0:889

w13 ¼ w31 ¼ w24 ¼ w42 ¼ 1� 22

32
¼ 0:556

w14 ¼ w41 ¼ 1� 32

32
¼ 0

36.4 NUMERICAL VARIABLES: METHOD COMPARISON STUDIES

We will now consider analyses appropriate to method comparison studies, in which

two different methods of measuring the same underlying (true) value are com-

pared. For example, lung function might be measured using a spirometer, which is

expensive but relatively accurate, or with a peak flow meter, which is cheap (and

can therefore be used by asthma patients at home) but relatively inaccurate. The

appropriate analysis of such studies was described, in an influential paper, by

Bland and Altman (1986).

Example 36.6

We will illustrate appropriate methods for the analysis of method comparison

studies using data on 1236 women who participated in the British Women’s
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Regional Heart Study. The women were asked to report their weight as part of a

general questionnaire, and their weight was subsequently measured using accurate

scales. Figure 36.3 is a scatter plot of self-reported versus measured weight.

The two measures are clearly strongly associated: the Pearson correlation

between them is 0.982. It is important to note, however, that the correlation

measures the strength of association between the measures and not the agreement

between them. For example, if the measurements made with the new method were

exactly twice as large as those made with the standard method then the correlation

would be 1, even though the new method was badly in error. Further, the

correlation depends on the range of the true quantity in the sample. The correl-

ation will be greater if this range is wide than if it is narrow.

The diagonal line in Figure 36.3 is the line of equality: the two measures are in

perfect agreement only if all measurements lie along this line. It can be seen that

more of the points lie below the line than above it, suggesting that self-reported

weight tends to be lower than measured weight.

Bland and Altman suggested that the extent of agreement could be examined by

plotting the differences between the pairs of measurements on the vertical axis,

against the mean of each pair on the horizontal axis. Such a plot (often known as a

Bland–Altman plot) is shown in Figure 36.4. If (as here) one method is known to be

accurate, then the mean difference will tell us whether there is a systematic bias (a

tendency to be higher or lower than the true value) in the other measurement. In

Fig. 36.3 Scatter plot of self-reported versus measured weight (kg) in 1236 women who participated in the

British Regional Women’s Heart Study. The solid line is the line of equality. Data displays and analyses by

kind permission of Dr Debbie Lawlor and Professor Shah Ebrahim.

440 Chapter 36: Measurement error: assessment and implications



Fig. 36.4 Scatter plot (Bland–Altman plot) of self-reported minus measured weight (vertical axis) against

mean of self-reported and measured weight (horizontal axis) in 1236 women who participated in the British

Regional Women’s Heart Study. The dashed horizontal line corresponds to the mean difference (�0:93 kg)

while the dotted horizontal lines correspond to the 95% limits of agreement.

this example, mean self-reported weight was 68.88 kg, while the mean measured

weight was 69.85 kg. The mean difference between self-reported and measured

weight was �0:93 kg (95% CI �1:07 to �0:80 kg). There was thus a clear tendency

for the women to under-report their weight, by an average of 0.93 kg. This is

shown by the dashed horizontal line in Figure 36.4.

The dotted horizontal lines in Figure 36.4 correspond to the 95% limits of

agreement, given by the mean difference plus or minus twice the standard deviation

of the differences. If the differences are normally distributed then approximately

95% of differences will lie within this range. In this example the 95% limits of

agreement are from �5:51 kg to 3.65 kg. Inspection of Figure 36.4 also shows that

the differences were negatively skewed; there were more large negative differences

than large positive ones. Further, there was a tendency for greater (negative)

differences with greater mean weight.

Note that the difference should not be plotted against either of the individual

measurements, because of the problem of ‘regression to the mean’ described in

Section 36.5.

Having calculated the mean difference and the 95% limits of agreement, it is for

the investigator to decide whether the methods are sufficiently in agreement for

one (perhaps the cheaper method) to be used in place of the other. In this example,

the systematic underreporting of weight in questionnaires, and the reduced
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accuracy, would have to be considered against the increased cost of inviting

women to a visit at which their weight could be measured accurately.

36.5 IMPLICATIONS FOR INTERPRETATION

The problems that may result from errors that occur when measuring outcome or

exposure variables are summarized in Table 36.4. Each type of problem will be

addressed in the sub-sections below. Note that the focus here is on random errors,

in the sense that we are assuming that any errors in measuring a variable are

independent of the values of other variables in the dataset.

Table 36.4 Summary of implications of random misclassification and measurement error.

Type of error

Type of variable

Misclassification

(binary=categorical variable)

Measurement error

(numerical variable)

Outcome Regression dilution bias Regression to the mean

Exposure Regression dilution bias

Potential problems if adjusting for confounders

Regression dilution bias

Regression dilution bias means that the estimated regression coefficient of the

exposure-effect estimate has been biased towards the null value of no exposure

effect, so that the magnitude of the association between the exposure and outcome

will tend to be underestimated:

1 For a numerical exposure variable, the degree of bias depends on the intraclass

correlation coefficient (ICC). For linear regression the relationship is:

Estimated coefficient ¼ correct coefficient� ICC

For other regression models, such as logistic regression and Cox regression, the

same relationship holds approximately, providing that the correct coefficient is

not too large, and that the measurement error variance is not too large com-

pared to the variance between true measurements. Frost and Thompson (2000)

compare a number of methods to correct for regression dilution bias.

2 The estimated effect of a categorical (or binary) exposure variable can be

corrected using replicate measurements on some or all individuals. However,

methods to do this are more complex than those for numerical exposure

variables, because the errors will be correlated with the true values. For example,

if the true value of a binary variable is 0 then the size of the error is either 0 or 1,

while if the true value is 1 then the size is 0 or �1. For this reason, applying

AQ2
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methods appropriate for numerical exposure variables will overcorrect the

regression dilution in the effect of a binary exposure variable. Appropriate

methods for this situation are reviewed by White et al. (2001).

3 For a binary outcome variable, if the sensitivity and specificity with which it was

measured are known then estimated odds ratios from logistic regression may be

corrected, as described by Magder and Hughes (1997).

4 Measurement error in a numerical outcome variable does not lead to regression

dilution bias, although the greater the measurement error the lower the preci-

sion with which exposure-outcome associations are estimated.

As mentioned above, correcting for regression dilution bias requires that we make

replicate measurements on some or all subjects. If each subject-evaluation costs the

same amount, then we must trade off the benefits of increasing the number of

subjects in our study with the benefits of increasing the number of measurements

per subject. Phillips and Davey Smith (1993) showed that it will sometimes be

better to recruit a smaller number of subjects with each evaluated on more than

one occasion, because this leads to more precise estimates of subjects’ exposure

levels and hence to reduced bias in exposure effect estimates. They suggested that

attempts to anticipate and control bias due to exposure measurement error should

be given at least as high a priority as that given to sample size assessment in the

design of epidemiological studies.

Before applying any method to correct regression coefficients for measurement

error, it is important to be aware of the potential problems associated with

measurement error in a number of exposure variables included in multivariable

models, as described in the next sub-section.

The effects of measurement error and misclassification in multivariable

models

When there are measurement errors in a number of exposure variables, and we

wish to control for the possible confounding effects of each on the other, the

effects are less straightforward to predict than is the case when we are considering

the association between an outcome and a single exposure variable. For example,

consider the situation in which:

1 the correct (underlying) value of exposure A is associated with the disease

outcome, but is measured with substantial error;

2 the correct (underlying) value of exposure B is not associated with the disease

outcome after controlling for exposure A; and

3 the amount of measurement error in exposure B is much less than the measure-

ment error in exposure A.

In this situation, including A and B in a multivariable model may give the

misleading impression that B is associated with the outcome, and that A is not

associated with the outcome after controlling for B: the opposite of the true

situation if there were no measurement error.

36.5 Implications for interpretation 443



Such possible problems are frequently ignored. Note that the bias caused by

differing amounts of measurement error in the two exposure variables may act in

either direction, depending on:

1 the direction of the association between the two variables;

2 the relative amounts of error in measuring them; and

3 whether the measurement errors are correlated.

Regression to the mean

Regression to the mean refers to a phenomenon first observed by Galton when he

noticed that the heights of sons tended to be closer to the overall mean than the

heights of their fathers. Thus, tall fathers tended to have sons shorter than

themselves, while the opposite was true for short fathers.

The same phenomenon occurs whenever two repeat measurements are made,

and where they are subject to measurement error. Larger values of the first

measurement will, on average, have positive measurement errors while smaller

values of the first measurement will, on average, have negative measurement

errors. This means that the repeat measurement will tend to be smaller if the

first measurement was larger, and larger if the first measurement was smaller. It

follows that the size of the first measurement will be negatively associated with the

difference between the two measurements.

The implications of this will be explained in more detail by considering the

repeated measurement of blood pressure and the assessment of anti-hypertensive

drugs in reducing blood pressure. For a more detailed discussion of regression to

the mean, and methods to correct for it, see Hayes (1988).

Example 36.7

Figure 36.5 shows the relationship between two diastolic blood pressure readings

taken 6months apart on 50 volunteers, while Figure 36.6 is a scatter plot of the

difference between the two readings (vertical axis) against the initial reading

(horizontal axis). This gives the impression that there is a downward gradient,

so that those with a high initial level have a reduced blood pressure 6months later,

while the opposite is true for those with an initial low level. However, for the

reasons explained above, this downward gradient may be the result of measure-

ment error. If there is no association between the true reduction and the true initial

value, the regression coefficient �obs for the observed association between the

difference and the initial value is given by:

�obs ¼ ICC� 1

in absence of ‘true’ association
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Fig. 36.5 The relationship between two diastolic blood pressure readings taken six months apart on 50

volunteers, showing little change on average. The straight line is the relationship that would be seen if the

readings on the two occasions were the same.

Fig. 36.6 Change in diastolic blood pressure plotted against initial value. An artificial negative correlation

(r ¼ �0:35, d:f: ¼ 48, P ¼ 0:013) is observed. The straight line is the regression line corresponding to

this association.

Thus the greater the measurement error variance, the smaller is the ICC and so the

greater is the slope of this apparent negative association.

Thus measurement error has important implications when the focus of interest

is change in outcome measurement, for example in a clinical trial to evaluate the

ability of an anti-hypertensive drug to reduce blood pressure:

1 If, as is often the case, the trial is confined to people with high initial diastolic

blood pressure, say 120mmHg or above, then it can be seen from Figure 36.6

that their repeated blood pressure measurements would show an average
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reduction, even in the absence of any treatment. It is therefore essential to have

a control group, and to compare any apparent reduction in the treatment group

with that in the control group.

2 Analyses investigating whether the size of any change in blood pressure is

related to the initial value must correct for regression to the mean. Blomqvist

(1977) suggested that the true regression coefficient can be estimated from the

observed regression coefficient using:

�true ¼
�obs þ (1� ICC)

ICC

To apply this method in practice requires an external estimate of the within-

person (measurement error) variance.

3 Oldham (1962) suggested plotting the difference, BP2 � BP1, against the average

of the initial and final blood pressure readings, 1⁄2 (BP1 þ BP2), rather than

against the initial reading as shown in Figure 36.7, to correct for regression to

the mean. (Note the similarity with Bland–Altman plots, described in Section

36.4.) The correlation is attenuated to �0:19, suggesting that much or all of the

apparent association between blood pressure reduction and initial blood pres-

sure was caused by regression to the mean. However, there are at least two

circumstances when this can give misleading results. The Oldham plot will show

a positive association when the true change is unrelated to the initial level, if:

� the true change differs between individuals; or

� individuals have been selected on the basis of high initial values.

Fig. 36.7 Change in diastolic blood pressure plotted against the average of the initial and final readings,

The correlation is attenuated to �0:19, suggesting little or no relationship between BP2 � BP1 and blood

pressure.

AQ3
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37.1 INTRODUCTION

In this chapter we focus on the different measures that are used to assess the

impact of an exposure or of a treatment on the amount of disease in a population.

We start by summarizing the three different ratio measures of the association

between an exposure (or treatment) and outcome, used throughout the book, and

show how these relate to measures of impact.

37.2 MEASURES OF ASSOCIATION

Table 37.1 summarizes the three ratio measures that we use to assess the strength

of the association between an exposure (or treatment) and an outcome. These are

the risk ratio, the rate ratio and the odds ratio.

Risk ratios

A risk ratio > 1 implies that the risk of disease is higher in the exposed group than

in the unexposed group, while a risk ratio < 1 occurs when the risk is lower in the

exposed group, suggesting that exposure may be protective. A risk ratio of 1 occurs

when the risks are the same in the two groups and is equivalent to no association

between the exposure and the disease. The further the risk ratio is from 1, the

stronger the association. See Chapter 16 for methods to derive confidence inter-

vals for the RR.
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Table 37.1 Summary of ratio measures of the association between exposure and disease, and the different study

designs in which they can be estimated.

Study design(s) in which they can be estimated

Definitions of different ratio measures

Longitudinal

(complete

follow-up)

Longitudinal

(incomplete

follow-up) Cross-sectional Case–control

Risk ratio ¼ risk in exposed group

risk in unexposed group

Yes No Yes No

Rate ratio ¼ rate in exposed group

rate in unexposed group
Yes Yes No No

Odds ratio ¼ odds in exposed group

odds in unexposed group
Yes No Yes Yes

Odds ratios

Interpretation of odds ratios is the same as that for risk ratios (see above), but

the odds ratio is always further away from 1 than the corresponding risk ratio.

Thus:

� if RR>1 then OR>RR;

� if RR<1 then OR<RR.

For a rare outcome (one in which the probability of the event not occurring is

close to 1) the odds ratio is approximately equal to the risk ratio (since the odds is

approximately equal to the risk).

Rate ratios

While the calculation of the risk is based on the population at risk at the start of

the study, the rate is based on the total person-years at risk during the study and

reflects the changing population at risk. This was illustrated for a cohort study in

Figure 22.2. When the outcome is not rare, the risk ratio will change over time, so

that the rate ratio (providing that it is constant over time) may be a more

appropriate measure of the association between exposure and disease. In particu-

lar, if all subjects experience the disease outcome by the end of the study, then the

risk ratio will be 1 even if the time to event was much greater in the exposed than

the unexposed group (or vice versa).

Comparison of the rate ratio, risk ratio and odds ratio

It was shown in Chapters 16 and 23 that for a rare outcome

Risk � Odds � Rate� Time

so that Risk ratio � Odds ratio � Rate ratio

AQ1
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For a common disease, however, the three measures are different, and will lead to

three different measures of association between exposure and disease. The pre-

ferred choice in longitudinal studies is to use rate ratios (or hazard ratios when

data on times to event occurrences are available and disease rates change over

time: see Chapter 26). The rate ratio is the only choice when follow-up is incom-

plete, or individuals are followed for differing lengths of time. The use of risk

ratios is more appropriate, however, when assessing the protective effect of an

exposure or intervention, such as a vaccine, which it is believed offers full protec-

tion to some individuals but none to others, rather than partial protection to all

(Smith et al., 1984).

The risk ratio and odds ratio can both be estimated from longitudinal studies

with complete follow-up and from cross-sectional studies. Although the risk ratio

would generally be regarded as more easily interpretable than the odds ratio, the

odds ratio is often used because the statistical properties of procedures based on

the odds ratio are generally better. In case–control studies the odds ratio is always

used as the measure of effect.

37.3 MEASURES OF THE IMPACT OF AN EXPOSURE

We now show how ratio measures (of the strength of the association between

exposure and disease) relate to measures of the impact of exposure. The formulae

we present apply identically whether risks or rates are used.

Attributable risk

The risk ratio assesses how much more likely, for example, a smoker is to

develop lung cancer than a non-smoker, but it gives no indication of the magni-

tude of the excess risk in absolute terms. This is measured by the attributable

risk:

Attributable risk (AR)¼ risk among exposed � risk among unexposed

¼ the risk difference (see Section 16:3)

Example 37.1

Table 37.2 shows hypothetical data from a cohort study to investigate the associ-

ation between smoking and lung cancer. Thirty-thousand smokers and 60 000

non-smokers were followed for a year, during which time 39 of the smokers and

six of the non-smokers developed lung cancer. Thus the risk ratio was:
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Table 37.2 Hypothetical data from a one year cohort study to investigate the association between

smoking and lung cancer. The calculations of relative and attributable risk are illustrated.

Lung cancer No lung cancer Total One year risk

Smokers 39 29 961 30 000 1.30=1000

Non-smokers 6 59 994 60 000 0.10=1000

Total 45 89 955 90 000

RR ¼ 1:30
0:10 ¼ 13:0 AR ¼ 1:30� 0:10 ¼ 1:20=1000 Prop AR ¼ 1:20

1:30 ¼ 0:923 or 92:3%

RR ¼ 39=30000

6=60000
¼ 1:30

0:10
¼ 13:0

so that there was a very strong association between smoking and lung cancer. The

attributable risk of lung cancer due to smoking, given by the difference between

the risks among smokers and non-smokers, was:

AR ¼ 1:30� 0:10 ¼ 1:20 cases per 1000 per year

Attributable risk is sometimes expressed as a proportion (or percentage) of the

total incidence rate among the exposed, and is then called the proportional attrib-

utable risk, the attributable proportion (exposed), the attributable fraction (ex-

posed) or the aetiologic fraction (exposed).

Proportional AR¼ risk among exposed� risk among unexposed

risk among exposed

¼ (RR� 1)

RR

In the example, the proportional attributable risk was 1.20=1.30¼ 0.923, suggest-

ing that smoking accounted for 92.3% of all the cases of lung cancer among the

smokers.

Comparing attributable and relative measures

Example 37.2

Table 37.3 shows the relative and attributable rates of death from selected causes

associated with heavy cigarette smoking. The association has been most clearly

demonstrated for lung cancer and chronic bronchitis, with rate ratios of 32.4 and

21.2 respectively. If, however, the association with cardiovascular disease,
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Table 37.3 Relative and attributable rates of death from selected causes, 1951–1961, associated with

heavy cigarette smoking by British male physicians. Data from Doll & Hill (1964) British Medical Journal 1,

1399–1410, as presented by MacMahon & Pugh (1970) Epidemiology – Principles and Methods. Little,

Brown & Co., Boston (with permission).

Age-standardized death rate (per 1000 person-years)

Cause of death Non-smokers Heavy smokers RR AR

Lung cancer 0.07 2.27 32.4 2.20

Other cancers 1.91 2.59 1.4 0.68

Chronic bronchitis 0.05 1.06 21.2 1.01

Cardiovascular disease 7.32 9.93 1.4 2.61

All causes 12.06 19.67 1.6 7.61

although not so strong, is also accepted as being causal, elimination of smoking

would save even more deaths due to cardiovascular disease than due to lung

cancer: 2.61 compared to 2.20 for every 1000 smoker-years at risk. Note that the

death rates were age standardized to take account of the differing age distributions

of smokers and non-smokers, and of the increase in death rates with age (see

Chapter 25).

In summary, the risk (or rate) ratio measures the strength of an association

between an exposure and a disease outcome. The attributable risk (or rate), on the

other hand, gives a better idea of the excess risk of disease experienced by an

individual as the result of being exposed.

Population attributable risk

It is important to realize that the overall impact of an exposure on disease in

the population also depends on how prevalent the exposure is. In population

terms a rare exposure with a high associated risk ratio may be less serious in the

total number (or proportion) of deaths that it will cause than a very common

exposure with a lower associated risk ratio. The impact at the population level is

assessed by the excess overall risk (or rate) in the population as compared with the

risk (or rate) among the unexposed. The resulting measure is the population

attributable risk:

Population AR ¼ overall risk� risk among unexposed

This may also be expressed as a proportion (or percentage) of the overall risk. The

resulting measure is the population proportional attributable risk, alternatively

named the aetiologic fraction (population) or the attributable fraction (popula-

tion).
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Population proportional AR¼ overall risk� risk among unexposed

overall risk

¼ prevalenceexposure(RR� 1)

1þ prevalenceexposure(RR� 1)

Figure 37.1 shows how the value of the population proportional attributable

risk increases independently with the prevalence of the exposure and with the size

of the risk ratio. If all the population are exposed (prevalence¼ 100%), then the

value of the population proportional attributable risk is the same as the propor-

tional AR (exposed) defined above.

Fig. 37.1 Relationship between population proportional attributable risk and prevalence of exposure for

various values of the risk ratio.

Potential impact of reducing prevalence of exposure

The population attributable and proportional attributable risks give a measure of

the burden of disease in the population associated with a particular exposure.

They also give a measure of the impact that would be achieved by a totally

successful intervention which managed to eliminate the exposure. This is a theor-

etical maximum impact that is unlikely to be realized in practice. For example, it is

unlikely that any approach to control smoking would result in all smokers giving

up. If the intervention reduces the prevalence of exposure by r%, then the actual

impact will be as follows:
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Percentage impact ¼ r%� Population proportional AR

Example 37.3

Figure 37.2 illustrates the difference between potential impact and population

proportional attributable risk in a hypothetical population of 1000 children,

followed for one year without loss to follow-up. There are 400 children exposed

to a risk factor that is associated with a three-fold risk of death, and 600 children

who are not exposed. The 600 children in the unexposed group experience a

mortality rate of 50=1000=year which means that 600� 50=1000 ¼ 30 of them

will die during the year. If the 400 children in the exposed group were at the same

risk as the unexposed children, then 400� 50=1000 ¼ 20 of them would die.

However, they are at 3 times this risk. Their mortality rate is therefore

150=child=year, which translates into 400� 150=1000 ¼ 60 deaths during the

year, an excess of 40 deaths associated with exposure. Thus if it were possible to

eliminate exposure to the risk factor, the total number of deaths per year would be

reduced by 40, giving a total of 50 rather than 90 deaths a year. The population

proportional attributable risk, which is the percentage of deaths attributable to

exposure, equals 40=90, or 44%.

Suppose now that an intervention took place which successfully reduced the

prevalence of exposure by one half, that is from 40% to 20%. The right hand

panel in Figure 37.2 shows that there would then be 70 deaths a year. As the

size of the exposed group would be halved, the number of excess deaths

Unexposed Exposed Excess deaths Deaths saved

Population Deaths Population Deaths

400
RR=3

600

40
Excess
deaths

20

30

200
RR=3

800

20
Deaths
saved

20
Excess
deaths

10

40

Pre-intervention Post-intervention

Proportional AR
=40/90 =44%

Impact
=20/90 =22%

Fig. 37.2 Example showing potential impact of an intervention, assuming (i) 40% of population exposed

pre-intervention, (ii) RR associated with exposure equals 3, (iii) mortality rate among unexposed equals

50=1000/year, and (iv) the intervention reduces the prevalence of exposure by 50%.

37.3 Measures of the impact of an exposure 453



would also be halved, and would now be 20 rather than 40. Such an intervention

would therefore prevent 20 of the pre-intervention total of 90 deaths. That is, its

impact would be 20=90, or 22%.

37.4 MEASURES OF THE IMPACT OF A TREATMENT OR

INTERVENTION

Efficacy

The efficacy of a treatment or intervention is measured by the proportion of cases

that it prevents. Efficacy is directly calculated from the risk ratio (or rate ratio)

comparing disease outcome in the treated versus control group. For a successful

treatment (or intervention) this ratio will be less than 1.

Efficacy ¼ 1�RR

Example 37.4

Table 37.4 shows the hypothetical results from a randomized controlled trial of a

new influenza vaccine. A total of 80 cases of influenza occurred in the placebo

group. If this group had instead received vaccination one would have expected

only 8.3% (the rate experienced by the vaccinated group) of them to have de-

veloped influenza, that is 220� 0:083 ¼ 18:3 cases. The saving would therefore

have been 80� 18:3 ¼ 61:7 cases, giving an efficacy of 61:7=80 ¼ 77:2%.

The efficacy can be calculated directly from the risk ratio, which gives the risk in

the vaccinated group as a proportion of the risk in the control group. If the

vaccination had no effect, the risks would be the same and the risk ratio would

equal 1. In this case, the risk is considerably lower in the vaccine group. The risk

ratio equals 0.228, considerably less than 1. In other words the risk of influenza in

the vaccine group is only 0.228 or 22.8% of that in the placebo group. The vaccine

has therefore prevented 77.2% of influenza cases.

Table 37.4 Results from an influenza vaccine trial, previously presented in Table 16.2.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

RR ¼ 20=240

80=220
¼ 0:083

0:364
¼ 0:228; Efficacy ¼ 1� 0:228 ¼ 0:772, or 77:2%
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The confidence interval for efficacy is calculated from the confidence interval for

risk ratio, as follows. Recall from Section 16.5 that:

95% CI (RR) ¼ RR=EF to RR� EF,

where EF ¼ exp[1:96� s:e:(logRR)]

and s:e:(logRR) ¼ [(1=d1 � 1=n1)þ (1=d0 � 1=n0)]
p

Since efficacy equals one minus RR, its 95% confidence interval is obtained by

subtracting each of the RR confidence limits from one.

95% CI (Efficacy) ¼ 1�RR� EF to 1�RR=EF

Note that the lower efficacy limit is obtained from the upper RR limit, and the

upper efficacy limit from the lower RR limit. In this example:

s:e:(log RR) ¼ [(1=20� 1=240)þ (1=80� 1=220)]
p ¼ 0:2319

EF ¼ exp(1:96� 0:2319) ¼ exp(0:4546) ¼ 1:5755

95% CI (RR) ¼ RR=EF to RR� EF ¼ 0:228=1:5755 to 0:228� 1:5755

¼ 0:145 to 0:359

95% CI (Efficacy) ¼ 1�RR� EF to 1�RR=EF ¼ 1� 0:359 to 1� 0:145

¼ 0:641 to 0:855

Thus the 95% confidence interval for the efficacy of this influenza vaccine is from

64.1% to 85.5%.

Number needed to treat

An additional way of measuring the impact of treatment, which has become

popular in recent years, is the number needed to treat (NNT). This is the number

of patients who we must treat in order to prevent one adverse event. It is defined

as:

Number needed to treat (NNT) ¼ 1

risk differencej j

The vertical bars in the formula mean the absolute value of the risk difference, that

is the size of the risk difference ignoring its sign. NNT is best used to illustrate the
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likely impact of treatment given a range of possible risks of the outcome event in

the treated population.

Example 37.5

Consider the effect of a new treatment that reduces the risk of death following

myocardial infarction by 25% (risk ratio¼ 0.75). The impact of using such a

treatment will depend on the frequency of death following myocardial infarction.

This is illustrated in Table 37.5, which shows that if the risk of death is 0.5 then

125 lives will be saved by treating 1000 patients with the new treatment, while if

this risk of death is 0.02 then only five lives will be saved. The reduction in the

number of deaths is simply the risk difference multiplied by the number of patients

(risk difference¼ risk of event in treated patients minus risk of event in control

patients). Therefore the risk difference measures the impact of treatment in redu-

cing the risk of an adverse event in the same way that the attributable risk

measures the impact of exposure in increasing the risk of an adverse event.

The values of the NNT are also shown in the table. When the risk of death in the

absence of treatment is 0.5, the NNT equals 1=0.125¼ 8. Thus we will prevent one

death for every eight patients treated. If, on the other hand, the risk of death in the

absence of treatment is only 0.02, the NNT equals 1=0.005¼ 200, meaning that we

will prevent one death for every 200 patients treated.

Table 37.5 Number of deaths in 1000 patients suffering a myocardial infarction according to whether a new

treatment is used, assuming different risks of death in the absence of the new treatment and a treatment risk ratio

of 0.75.

Risk of death Number of deaths

Current

treatment

(a)

New

treatment

(b) ¼ 0.75 � (a)

Risk

difference

(c) ¼ (b) � (a)

Current

treatment

(d) ¼ 1000 � (a)

New

treatment

(e) ¼ 1000 � (b)

Reduction in

number of deaths

(f) ¼ (d) � (e)

NNT

(g) ¼ 1=|(c)|

0.5 0.375 �0:125 500 375 125 8

0.1 0.075 �0:025 100 75 25 40

0.02 0.015 �0:005 20 15 5 200

Number needed to harm

It is important to distinguish between beneficial effects of a treatment (risk ratio

<1, risk difference <0Þ and harmful effects (risk ratio >1, risk difference >0). If

the treatment is harmful then the NNT is referred to as the number needed to harm

(NNH). This can be useful to assess the adverse impact of a treatment which has

known side effects. For example, if our treatment for myocardial infarction was

known to increase the risk of stroke, we might compare the number of patients

treated to cause one stroke (NNH) with the number of patients treated to prevent

one death (NNT).
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Note that if the treatment has no effect (risk ratio ¼ 1, risk difference¼ 0) then

the NNT is 1=0 ¼ 1 (infinity). This has a sensible interpretation: if the treatment

is ineffective then we will not prevent any outcome events however many patients

we treat. However problems can arise when deriving confidence intervals for the

NNT, if one limit of the CI is close to the point of no treatment effect.

37.5 ESTIMATES OF ASSOCIATION AND IMPACT FROM

MULTIVARIABLE ANALYSES

In most circumstances, multivariable analyses are based on ratio measures of the

effect of exposure or treatment. This is because, both on theoretical grounds and

on the basis of experience, the assumption of no interaction between the exposure

and confounding variables is more likely to hold (at least approximately) for ratio

measures. In the context of randomized trials, there is good empirical evidence

that meta-analyses based on risk differences tend to be more heterogeneous than

meta-analyses based on risk ratios or odds ratios (see Engels et al., 2000; or Egger

et al., 2001, pages 313–335).

It is therefore usually sensible to derive a ratio estimate of the strength of

association in a multivariable analysis of an observational study or meta-analysis

of randomized trials, whatever measure of impact is required. Estimates of NNT

or NNH are then derived by considering a range of levels of risk in the unexposed

group, and=or prevalence of exposure.
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38.1 INTRODUCTION

It is essential to plan and conduct statistical analyses in a way that maximizes the

quality and interpretability of the findings. In a typical study, data are collected on

a large number of variables and it can be difficult to decide which methods to use

and in what order. In this final chapter we present general guidelines on strategies

for data analysis.

38.2 ANALYSIS PLAN

The formulation of a written plan for analysis is recommended. The extent to

which it is possible to plan analyses in detail will depend on the type of study being

analysed:

� For a randomized controlled trial (RCT), which by its nature addresses a set of

clearly defined questions, the analysis plan is usually specified in detail. It will

include the precise definition of primary and secondary outcomes, the statistical

method to be used, guidelines on whether to adjust for baseline variables and,

possibly, a small number of planned subgroup analyses. See Section 34.2 for a

description of the analysis of RCTs.

� For an observational study, which is exploratory in nature, it is often not

possible to completely specify a plan for the analysis. However it is helpful to

write down, in advance, the main hypothesis or hypotheses to be addressed.

This will include the definitions of the outcome and exposure variables that will

be needed to answer these question(s), the variables thought a priori to be

possible confounders of the exposure–outcome association(s) and a small

number of possible effect modifiers.

Well-written analysis plans both serve as a guide for the person conducting

the analysis and, equally importantly, aid the interpretation and reporting of
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results. For example, if we find evidence of a subgroup effect (interaction) we

should report whether this was specified a priori or whether it is an unexpected

finding.

38.3 DATA CHECKING

Careful checking and editing of the data set are essential before statistical

analysis commences. The first step is to examine the distribution of each of

the variables to check for possible errors. For categorical variables, this

means checking that all observations relate to allowed categories, and that the

frequencies in each category make sense. For numerical variables, range checks

should be performed to search for values falling outside the expected range.

Histograms can also be used to look for ‘outliers’ that look extreme relative to

the rest of the data.

The next step is to conduct consistency checks, to search for cases where two or

more variables are inconsistent. For example, if sex and parity are recorded, a

cross-classification of the two can be used to check that no males were recorded

with a parity of one or more. Scatter plots can be useful for checking the

consistency of numerical variables, for example of weight against age, or weight

against height. Further outliers can be detected in this way.

Possible errors should be checked against the original records. In some cases it

may be possible to correct the data. In other cases, it may be necessary to insert a

missing value code if it is certain that the data were in error (for example an

impossible birth weight). In borderline cases, where an observation is an outlier

but not considered impossible, it is generally better to leave the data unchanged.

Strictly speaking, the analysis should then be checked to ensure that the conclu-

sions are not affected unduly by the extreme values (either using sensitivity

analyses in which the extreme values are excluded, or by examining influence

statistics; see Section 12.3). Note that when numerical values are grouped into

categories before analysis, a small number of outliers are unlikely to have a

marked influence on the results.

For studies in which individuals are classified as with and without disease,

checks should generally be made separately in the two groups, as the distributions

may be quite different.

38.4 INITIAL ANALYSES

Descriptive analysis

Once the data have been cleaned as thoroughly as possible, the distributions of

each of the variables should be re-examined (see Chapter 3), both (i) as a final

check that required corrections have been made, and (ii) to gain an understanding

of the characteristics of the study population. Individuals with and without disease

should again be examined separately.
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Specifying variables for analysis

In addressing a particular question we will need to specify both the outcome

variable and the exposure variable or variables (see Section 2.4). In observational

studies, the control of confounding (see Chapter 18) is a key issue in the analysis,

and so we should identify:

1 variables believed in advance to confound the exposure–outcome association

(a priori confounders); and

2 other variables to be investigated as possible confounders, since a plausible

argument can be made concerning their relationship with the exposure and

outcome variables, but for which there is little or no existing evidence.

We should also specify any variables considered to be possible effect-modifiers: in

that they modify the size or even the direction of the exposure–outcome associ-

ation. As described in Sections 18.4 and 29.5, effect modification is examined

using tests for interaction.

In practice, variables may play more than one role in an analysis. For example,

a variable may confound the effect of one of the main exposures of interest, but its

effect may also be of interest in its own right. A variable may be a confounder for

one exposure variable and an effect-modifier for another. Many studies have an

exploratory element, in that data are collected on some variables which may turn

out to be important exposures, but if they do not they may still need to be

considered as potential confounders or effect-modifiers.

Data reduction

Before commencing formal statistical analyses, it may be necessary to derive new

variables by grouping the values of some of the original variables, as explained in

Section 2.3. Note that the original variables should always be retained in the dataset;

they should never be overwritten.

Grouping of categorical exposure variables is necessary when there are large

numbers of categories (for example, if occupation is recorded in detail). If there

is an unexposed category, then this should generally be treated as a separate group

(e.g. non-smokers). The exposed categories should be divided into several groups;

four or five is usually sufficient to give a reasonable picture of the risk relation-

ship.

Grouping of numerical exposure variables may be necessary in order to:

1 use methods based on stratification (see Chapters 18 and 23), as recommended

for the initial examination of confounding (see below);

2 use graphical methods to examine how the level of a non-numerical outcome

changes with exposure level (see Section 29.6); and

3 to examine whether there is a linear association between a numerical exposure

variable and a non-numerical outcome (see Section 29.6).

Note that grouping entails loss of information: after checking linearity assumptions

or performing initial analyses using the grouped variable it may be appropriate
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to use the original variable, or a transformation of the original variable (see

Chapter 13), in the final analysis.

One strategy for numerical exposures is to divide the range of the variable using,

say, quintiles, to give five groups with equal numbers of subjects in each group.

This helps to ensure that estimates of effect for each category are reasonably

precise, but can sometimes obscure an important effect if a few subjects with

very high levels are grouped with others with more moderate levels. Alternatively,

cut-off points may be chosen on the basis of data from previous studies, the aim

being to define categories within which there is thought to be relatively little

variation in risk. Using standard cut-off points has the advantage of making

comparisons between studies easier. For example, Table 38.1 shows the different

possibilities for including body mass index (BMI), defined as weight=(height2), in

an analysis to examine its association with a disease outcome.

For variables included in the analysis as confounders, three or four categories

may be sufficient to remove most of the confounding. However, more categories

will be needed if the confounding is strong, as would often be the case with age, for

example. It is often necessary to examine the strength of the association between

the potential confounder and the outcome variable before deciding on the number

of categories to be used in analysis. The weaker the association, the more one may

combine groups. However it would be unwise to combine groups with very

different risks or rates of disease.

A further consideration is that for analyses of binary or time-to-event outcomes,

groups in which there are no, or very few, outcome events must be combined with

others before inclusion in analysis.

Table 38.1 Possible ways of deriving variables based on measured body mass index (BMI).

Choice

(i) Original variable

(ii) A transformation of the original variable (for example log BMI)

(iii) Quintiles of BMI, coded 1–5

(iv) Quintiles of BMI, coded as the median BMI in each quintile

(v) Standard cut-offs for BMI focusing on high levels of BMI as risky

(<25 ¼ normal; 25�30 ¼ overweight; �30 ¼ obese)

(vi) Standard cut-offs including an underweight group

(<20 ¼ underweight; 20�25 ¼ normal; 25�30 ¼ overweight; �30 ¼ obese)

Univariable analyses

It is usually helpful to begin with a univariable analysis, in which we examine

the association of the outcome with each exposure of interest, ignoring all

other variables. This is often called the crude association between the exposure

and the outcome. Although later analyses, controlling for the effects of

other variables, will supersede this one, it is still a useful stage of the analysis

because:
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1 Examination of simple tables or graphs, as well as the estimated association, can

give useful information about the data set. For example, it can show that there

were very few observations, or very few outcome events, in particular exposure

categories.

2 These analyses will give an initial idea of those variables that are strongly

related to the disease outcome.

3 The degree to which the crude estimate of effect is altered when we control for

the confounding effects of other variables is a useful indication of the amount of

confounding present (or at least, the amount that has been measured and

successfully removed).

For exposures with more than two levels, one of the levels has to be chosen as

the baseline (see Section 19.2). Often this will be the unexposed group or, if

everyone is exposed to some extent, the group with the lowest level of exposure.

If there are very few persons in this group, however, this will produce exposure

effect estimates with large standard errors. It is then preferable to choose a larger

group to be the baseline group.

38.5 ALLOWING FOR CONFOUNDING

This section should be read in conjunction with Section 29.8, which describes

general issues in the choice of exposure variables for inclusion in a regression

model.

In any observational study, the control of confounding effects will be a major

focus of the analysis. We have two tools available for this task: classical (Mantel–

Haenszel) methods based on stratification, and regression modelling. We have

emphasized the similarities between the two approaches (see Chapters 20 and 24),

so they should not be seen as in conflict. Regression methods controlling for the

effect of a categorical variable involve exactly the same assumptions, and hence

give essentially the same results, as Mantel–Haenszel methods stratifying on the

categorical variable.

A major reason for using classical methods in the initial phase of the analysis

is that the output encourages us to examine the exposure–outcome association

in each stratum, together with the evidence for interaction (effect modification). In

contrast, it is easy to use regression models without checking the assumption

that there is no interaction between the effects of the different variables in the

model.

However, regression models are generally the best approach when we wish to

control for the effects of a number of confounding variables, because stratifying

on the cross-classification of all the confounders is likely to produce a large

number of strata. As explained in Section 29.5, by assuming in regression models

that there is no interaction between the effects of confounding variables, we can

greatly reduce the number of strata (the number of parameters used to model the

effect of the confounders). In addition, dose–response effects can be examined

more flexibly in regression models (see Section 29.6).
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The need for external knowledge in assessment of confounding

As explained in Chapter 18, a confounding variable, C, is one that is associated

with both the exposure variable (E) and the outcome variable (D), and is not on

the part of the causal chain leading from E to D. It is important to realize that

external knowledge is more important than statistical strategies in choosing appro-

priate confounders to be controlled for in examining a particular exposure–out-

come association. This is because statistical associations in the data cannot, on their

own, determine whether it is appropriate to control for the effects of a particular

variable.

Example 38.1

In their article on the appropriate control of confounding in studies of the

epidemiology of birth defects, Hernán et al. (2002) considered the following

example. Should we control for C, a binary variable which records the event

that the pregnancy ended in stillbirth or therapeutic abortion, when examining

the association between folic acid supplementation in early pregnancy (the expos-

ure variable, E) and the risk of neural tube defects (the outcome, D) using data

from a case–control study? They pointed out that controlling for C would not be

the correct analysis, although:

1 controlling for the effect of C leads to a substantial change in the estimated

association between E and D; and

2 C is strongly associated with both E and D, and is not on the causal pathway

between them.

The reason is that C is affected by both E and D, rather than having any influence

on either of them. Therefore C, in this instance, cannot confound the E–D associ-

ation. Yet it is not uncommon to find epidemiological analyses controlling for C in

situations such as this. Note that restricting the analysis to live births (i.e. consider-

ing only one of the strata defined by C) will also produce a biased estimate of the E–

D association in this situation.

This example shows that careful consideration of the likely direction of associ-

ations between E, D and C is required in order to decide whether it is appropriate

to control for C in estimating the E–D association. Figure 38.1 gives examples of

circumstances in which C will and will not confound the E–D association.

Example 38.2

Because of the frequent introduction of new antiretroviral drugs for treatment of

HIV-infected persons, and the large number of different possible combinations of

these, many relevant questions about the effect of different drugs or drug combin-

ations have not been addressed in randomized trials with ‘hard’ outcomes such as

development of AIDS or death. There is therefore great interest in using longitu-

dinal studies of HIV-infected individuals to address these questions.

Consider a comparison of drug regimens A and B. Because antiretroviral

therapy may involve taking a large number of pills per day, and may have serious
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Fig. 38.1 Circumstances in which C will and will not confound an exposure–disease (E–D) association.

(Adapted from Case Control Studies MEB2 by James J. Schlesselman, copyright 1982 by Oxford University

Press, Inc., with permission.)

side-effects, adherence to the prescribed regime is likely to be associated both

with the probability of progressing to AIDS (D) and with the drug regimen

(E). However, in this example the drug regimen used is likely to influence adherence

to therapy. It would not, therefore, be appropriate to control for adherence in

estimating the E–D association, as it will be on the pathway between them.

Example 38.3

The ‘fetal origins’ hypothesis suggests that there are associations between prenatal

growth, reflected in measures such as birthweight, and adult heart disease.

Huxley et al. (2002) reviewed 55 studies that had reported associations between

birthweight (exposure) and later systolic blood pressure (outcome). Almost

all of the reported regression coefficients were adjusted for adult weight. However,

these need to be interpreted with caution since adult weight is on the causal

pathway between birthweight and blood pressure. Removing the adjustment

for adult weight, in 12 studies, halved the size of the estimated association.

464 Chapter 38: Strategies for analysis



Choosing confounders

Taking into account the need to combine external knowledge with statistical

associations, we recommend the following strategy for choosing confounders:

1 Formulating a conceptual, hierarchical framework for the relationships

between the different variables and the disease outcome is strongly recom-

mended, as described by Victora et al. (1997) in the context of determinants

of childhood diarrhoea mortality. This is particularly useful both as a way of

summarizing existing knowledge and for clarifying the direction of any associ-

ations.

2 As a general rule, variables that are known a priori to be important confoun-

ders, based on previous work should be controlled for in the analysis.

3 In addition, other possible confounders may be selected as a result of explora-

tory analysis. This should be:

� restricted to variables that are associated with both the outcome and

exposure, and are not on the causal pathway between them;

� based on both the data being analysed and external knowledge, and after

careful consideration of the direction of associations.

4 Note, however, that for multiple linear regression, all exposure variables that are

clearly associated with the outcome should be included when estimating the

effect of a particular exposure, whether or not they are confounders (with the

exception that variables on the causal pathway between the exposure of interest

and the outcome should not be included; see Section 29.8).

5 Note also that automated ‘stepwise’ regression procedures are unlikely to be

appropriate in analyses whose aim is to estimate the effect of particular expos-

ures (see Section 29.8).

38.6 ANALYSING FOR INTERACTIONS

Three sorts of interaction may be distinguished:

1 Interaction between confounders. The main difference between regression models

and classical methods is that classical methods always allow for all interactions

between confounders. This is in fact usually unnecessary.

2 Interaction between a confounder and an exposure of interest. Strictly speaking,

the calculation of exposure effect estimates controlled for confounding variables

is appropriate only if the exposure effect is the same for all levels of the

confounder. In practice, of course, the effect will vary to at least some extent

between strata; in other words there is likely to be some interaction between the

exposure and the confounders controlled for in the analysis. In the presence of

substantial interaction, the stratum-specific effects of the exposure should be

reported.

3 Interaction between exposures of interest. If present, this may be of importance

both for the scientific interpretation of an analysis and for its implications for

preventive intervention.

38.6 Analysing for interactions 465



An exhaustive search for interactions with all possible variables, however, is

unlikely to be useful. Formal tests for interaction lack power, and statistically

significant interactions identified by a systematic sweep of all variables may well

be chance effects, while real interactions may go undetected. Sample sizes are

typically inadequate to have high power of detecting any but the strongest inter-

actions (see Section 35.4). Combining groups in the interaction parameter may

increase the power of tests for interaction (see Section 29.5).

The purpose of a statistical analysis is to provide a simplified but useful picture

of reality. If weak interactions are present, this is probably of little intrinsic

interest, and the calculation of an overall pooled estimate of effect for an individ-

ual exposure is a reasonable approximation to the truth.

For these reasons, we suggest delaying analysis for interactions to the final

analysis. Exposure–exposure and exposure–confounder interactions should then

be examined, paying particular attention to those thought a priori to be worth

investigation. These should be examined one at a time, to avoid a model with too

many additional parameters. In assessing the evidence for interactions, as much

attention should be paid to the presence of meaningful trends in effect estimates

over the strata, as to the results of formal tests for interaction.

38.7 MAKING ANALYSES REPRODUCIBLE

In the early stages of a statistical analysis it is useful to work interactively with the

computer, by trying a command, looking at the output, then correcting or refining

the command before proceeding to the next command. However, we recommend

that all analyses should eventually be done using files (programs) containing lists

of commands.

It is usually the case that, after analyses are first thought to be complete,

changes are found to be necessary. For example, more data may arrive, or

corrections may be made, or it may be discovered that an important confounder

has been omitted. This often means that the whole analysis must be performed

again. If analyses were performed interactively, this can be a daunting task. The

solution is to ensure that the whole analysis can be performed by running a series

of programs.

A typical series of programs is illustrated in Table 38.2. We strongly recommend

that you add frequent comment statements to your programs, which explain what

is being done in each section; especially in complicated or long programs. This is

useful for other members of the project team, and also invaluable when returning

to your own program some time later to rerun it or to modify it for a new analysis.

It is also important to document the analysis by recording the function of each

program file, and the order in which they should be run.

Following this strategy has two important consequences. Firstly, it will now be

straightforward to reproduce the entire analysis after corrections are made to the

raw data. Secondly, you will always be able to check exactly how a derived

variable was coded, which confounders were included in a particular analysis,
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Table 38.2 Typical sequence of programs to perform the analyses needed to analyse a particular exposure–

outcome association.

Program 1: Read the raw data file into the statistical package, label variables so that it is easy to

identify them, check that they have the correct value ranges, check consistency between

variables, create derived variables by recoding and combining variables, save the resulting

dataset

Program 2: Use the new dataset to examine associations between the outcome variable and the

exposures and confounders of interest, by producing appropriate graphs and tables and

performing univariable analyses

Program 3: Use Mantel–Haenszel and regression analyses to estimate exposure effects controlled for

potential confounders

Program 4: Examine interactions between exposures and between exposures and confounders

Program 5: Produce final tables for the research report

and so on. Remember that reviewers’ comments on a draft manuscript that was

submitted for publication tend to be received many months after the paper was

submitted (and even longer after the analysis was done). Minor modifications to

the analysis will be straightforward if the analysis is reproducible, but can waste

huge amounts of time if it is not.

38.8 COMMON PITFALLS IN ANALYSIS AND INTERPRETATION

Even when the analyses of primary interest are specified at the start of the study, a

typical analysis will involve choices of variable groupings and modelling strategies

that can make important differences to the conclusions. Further, it is common to

investigate possible associations that were not specified in advance, for example if

they were only recently reported. Three important reasons for caution in inter-

preting the results of analyses are:

1 Multiple comparisons. Even if there is no association between the exposure and

outcome variables, we would expect one in twenty comparisons to be statistic-

ally significant at the 5% level. Thus the interpretation of associations in a study

in which the effect of many exposures was measured should be much more

cautious than that for a study in which a specific a priori hypothesis was

specified. Searching for all possible associations with an outcome variable is

known as ‘data-dredging’ and may lead to dramatic but spurious findings.

2 Subgroup analyses. We should be particularly cautious about the interpretation

of apparent associations in subgroups of the data, particularly where there is no

convincing evidence of an overall association (see Section 34.2). It is extremely

tempting to emphasize an ‘interesting’ finding in an otherwise negative study.

3 Data-driven comparisons. A related problem is that we should not group an

exposure variable in order to produce the biggest possible association with the

outcome, and then interpret the P-value as if this had always been the intended

comparison. For example, when rearranging ten age groups into two larger
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groups, we could compare 1 with 2–10 or 1 and 2 with 3–10 and so on. If we

choose a particular grouping out of these nine possible ones because it shows

the largest difference between ‘younger’ and ‘older’ individuals, then we have

chosen the smallest P-value from nine possible ones. It is sensible to decide how

variables will be grouped as far as possible before seeing how different group-

ings affect the conclusions of your study.

These problems do notmean that all studies must have hypotheses and methods of

analysis that are specified at the outset. However, the interpretation of a finding

will be affected by its context. If a reported association is one of fifty which were

examined, this should be clearly stated when the research is reported. We would

probably view such an association (even with a small P-value) as generating a

hypothesis that might be tested in future studies, rather than as a definitive result.

38.9 CONCLUSIONS

In all but the simplest studies, there is no single ‘correct’ analysis or answer. Fast

computers and excellent statistical software mean that it is easy to produce

statistical analyses. The challenge to medical statisticians is to produce analyses

that answer the research question as clearly and honestly as possible.
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APPENDIX

STATISTICAL TABLES

A1 Areas in tail of the standard normal distribution 470

A2 Percentage points of the standard normal distribution 472

A3 Percentage points of the t distribution 473

A4 Two-sided P-values for the t distribution, according to the

value of the test statistic 474

A5 Percentage points of the x2 distribution 476

A6 Probits 477

A7 Critical values for the Wilcoxon matched pairs signed rank test 479

A8 Critical ranges for the Wilcoxon rank sum test 480

A9 Random numbers 482


