Appendix A

Lyocell end-use development datasheets

The following datasheets are presented with the kind permission of Acordis Fibres.

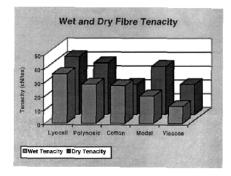
But for changing the fibre name from 'Courtaulds Lyocell' to 'Acordis Lyocell' or 'Tencel' they are the original documents prepared by Mr Manny Coulon, Ms Pam Johnson, Mr Robert Morley, and Mr Calvin Woodings for launching lyocell into the technical textiles, nonwovens, and special paper markets between 1996 and 1998.

They cover the following properties of lyocell in the end-uses mentioned. Technical textiles:

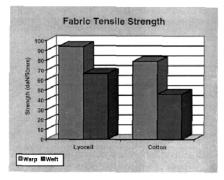
- 1 Tensile and tear strength
- 2 Dimensional stability
- 3 Heat ageing
- 4 Abrasion resistance
- 5 Drape and fluidity
- 6 Moisture
- 7 Fibrillation

Nonwovens:

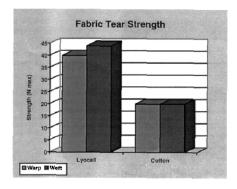
- 8 Web bonding Hydroentanglement
- 9 Web bonding Needling
- 10 Web bonding Latex
- 11 Wet-laying
- 12 Air-laying
- 13 Wipes
- 14 Medical swabs and gauzes
- 15 Absorbency
- 16 Chemical and UV resistance
- 17 Biodegradation


Special papers:

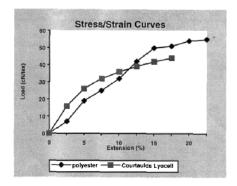
- 18 100% Acordis Lyocell papers
- 19 Blends
- 20 Filtration
- N.B. The 'Acordis Lyocell' brand has been dropped. Acordis's lyocell fibre is now branded Tencel® in all markets.


Tensile and Tear Strength

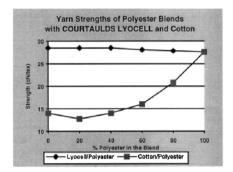
Whether TENCEL[®] fibre is wet or dry, its strength exceeds that of cotton and is in fact stronger than all other cellulosic man-made staple fibres. Its compatibility with polyester means that blends with TENCEL[®] form yarns of similar strength to 100% polyester. Resulting fabric strengths can be exceptional, particularly in respect of tear resistance.


The dry tenacity of TENCEL[®] is up to 44 cN/tex (5 g/dett), considerably greater than other cellulose fibres. Even when wet, this highly moisture absorbent fibre will retain up to 80% of its strength. Of course, when dried, the original fibre strength is recovered.

This high fibre strength translates into high tensile strength in the spun yarn. In finished fabrics, TENCEL^{\otimes} can easily give a 25% tensile strength advantage over cotton.

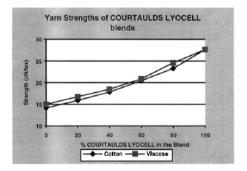


The tear strength performance is even more impressive: tear strengths can double that expected for a similar cotton fabric, depending upon the fabric construction used,



Blends with polyester

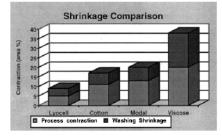
TENCEL[®] blends particularly well with polyester. The stress / strain curves for both fibres are compatible, such that yarns of high strength are possible.



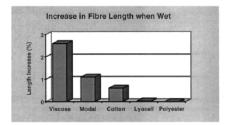
In combination with polyester, yarn strengths, and therefore fabric strengths, are comparable to 100% polyester at all blend levels with TENCEL[®].

This means that the proportions of each fibre used in a polyester blend with TENCEL[®] can be adjusted to meet other performance requirements whilst still maintaining optimum strength. For instance, high compatibility with polyester allows freedom to balance the abrasion resistance offered by the polyester with the absorbency and comfort brought by the TENCEL[®], and without compromising the fabric tensile properties.

Polyester blends with cotton give inferior strength. Even with 30% polyester in blend with cotton, yarn strength is no greater than for 100% cotton. This is because the stress/strain curve of cotton is a poor match to polyester, whilst that of TENCEL[®] is highly compatible with polyester.


A blend of TENCEL[®] with cotton or viscose also yields improvements in yarn strength. Strength increases are achieved in almost direct proportion to the percentage of TENCEL[®] fibre added to the blend.

TENCEL[®], either as 100%, or in blend with polyester produces strong yarns which translate into excellent fabric tensile and tear strength. The absorbency of TENCEL[®] results in fabrics which are comfortable to wear and perform well in demanding applications.


Dimensional Stability of Woven Fabrics

Woven fabrics produced from TENCEL[®] fibre have excellent stability both in processing and in use. Resin free fabrics give lower shrinkage in laundering than comparable cotton fabrics and do not show the progressive shrinkage problems often associated with cotton and other cellulosic fabrics.

Wet Stability - The superior wet stability of TENCEL[®] is due to its high wet modulus and, to a lesser extent, its low linear swelling in water. Fabrics from TENCEL[®] can produce smaller losses in area during wet processing as well as low laundering shrinkages in use. Combined processing and shrinkage losses can be better than half that for cotton and other cellulosics. TENCEL[®] fabrics can achieve stable dimensions rapidly when wet, and still offer lower residual shrinkage.

Such dimensional stability is not unusual for TENCEL[®], even without the use of resins if fabrics are relaxed correctly in finishing.

The basis for the inherent stability of TENCEL[®] is that its fibres do not change in length when wet. All other cellulosic fibres grow in length when wet, which means that for every wet/dry cycle there is potential for progressive shrinkage as the fibres alternately extend in length and then contract.

If required, the good dimensional stability of TENCEL $^{\otimes}$ fabrics can be enhanced still further by the use of

suitable resins or by blending with a synthetic fibre such as polyester or nylon.

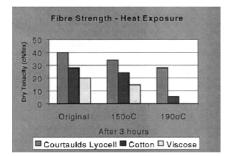
TENCEL* fibre is stiffer than other cellulosics when wet. Fibres with low wet stiffness will easily distort during wet processing which can lead to shrinkage problems. Low wet modulus is one cause of such shrinkage problems with viscose and is also a contributing factor in the progressive shrinkage of cotton. Progressive shrinkage is accepted as a characteristic feature of cotton but is typically negligible in fabrics made from TENCEL*.

Fibre Tensile Moduli Compared to Other Cellulosics

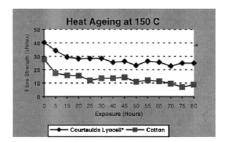
	TENCEL	Polynosic	Modal	Cotton	Viscose
Dry cN/tex	1113	-	717	500	371
Wet cN/tex	265	210	125	150	53

Dry Stiffness - TENCEL[®] fibre has a dry tensile modulus comparable to polyester and is resistant to stretching. This high fibre stiffness means that appropriately finished fabrics are stable under load and will resist distortion better than nylon.

Fibre Tensile Moduli Compared to Synthetics


	TENCEL [®]		
		HT polyester	HT nylon
Dry (cN/tex)	1113	1014	500
Dry (GPa)	16	14	6

Heat Ageing


In addition to having a higher initial strength, TENCEL® outperforms cotton in its ability to retain fibre strength when subjected to elevated temperatures. In suitably engineered structures, TENCEL® can withstand higher temperatures over longer periods than cotton or viscose.

TENCEL® fibres do not melt and are stable below 150°C. Above 170°C the fibres start to lose strength gradually, beginning to decompose more rapidly by 300°C. At 420°C the fibres will ignite. Under controlled conditions they can be oxidised and carbonised.

Cellulosic fibres are not well known for their thermal resistance or thermal stability. However, TENCEL® exhibits better resistance to dry heat at 150°C than cotton and viscose fibres.

The strength benefit of TENCEL® is also apparent after three hours exposure to 190°C. The strength of viscose and cotton fibres are reduced by over two thirds. In comparison, TENCEL® loses less than one third. After 80 hours exposure at 150°C, TENCEL® remains as strong as the unexposed cotton fibre.

The strength advantage of TENCEL® was maintained throughout the test, which was extended to over 1000 hours.

TENCEL® discolours significantly less than viscose and cotton fibres, when exposed to temperatures above 120°C for extended periods of time.

Abrasion Resistance

In line with other cellulosics, the abrasion performance of TENCEL[®] is sufficient for the general needs of apparel. For more demanding uses in industrial and technical applications, enhanced abrasion resistance may be required. Practical options include blending with low proportions of synthetic fibre or application of special finishes or resins. Such fabrics can retain many of the desirable features of 100% TENCEL[®]

20% Blends with polyester or nylon

Blends with synthetic fibres can provide a considerable improvement in the abrasion performance of TENCEL[®] fabrics. Substitution of 20% polyester doubles the Martindalc abrasion resistance to 35,000 cycles for a typical 200g/m² fabric. Blending with 20% nylon in a similar fabric construction has raised the Martindale abrasion level to more than 100,000 cycles.

	100% TENCEL [®]	80:20 blend TENCEL® / polyester	80:20 blend TENCEL [®] / nylon
Martindale cycles	15,000	35,000	100,000+

Blending with 20% of a synthetic fibre produces fabrics which retain much of the original character and physical performance benefits of 100% TENCEL[®] fabrics.

Synthetic blend levels of 20% and below are not considered to present a hot melt hazard in next-to-skin applications provided that fibre blends are used rather than yarn on yarn mixing.

TENCEL[®] fabrics that also contain synthetic fibres can be cross dyed to solid shades if required. However, TENCEL[®] fabrics with up to 20% polyester or nylon can give attractive marl effects where only the lyocell fibre has been dyed.

10% Blends with nylon

Using even lower blending levels of synthetic fibre, significant performance benefits are still possible. With only 10% nylon in an intimate blend, Martindale abrasion performance can be raised to over 60,000 cycles for a 200g/m² fabric.

	100% TENCEL [®]	90:10 blend TENCEL® / nylon	80:20 blend TENCEL® / nylon
Martindale cycles	15,000	66,000	100,000+

Use of Fabric Finishes

Abrasion resistance can also be improved by the use of suitable fabric finishes.

For example, the application of an Axis treatment to TENCEL[®] fabric results in a small but worthwhile improvement in measured abrasion performance.

	100% TENCEL® (without resin)		100% TENCEL [∞] (Perapret HVN)
Martindale cycles	15,000	20,000	29,000

Abrasion performance can be increased still further by the use of a resin binder. By applying 100g/l Perapret HVN, the abrasion resistance of 100% TENCEL[®] fabric can be raised to 29,000 Martindale cycles (again, for a 200 g/m² fabric). Although such finishes tend to stiffen the fabric, the natural drape and fluidity of TENCEL[®] means that the final handle is still softer than for other cellulosics without a finish.

Drape and Fluidity

Fabrics in TENCEL® are characterised by their unique drape and fluidity. Such tactile properties are a direct result of the space created within the fabric when it is prepared, dyed and finished. The spaces between the warp and weft yarns allow the fabric to drape well and the ease with which the yarns can move relative to one another gives the impression of fluidity in the fabric.

Loomstate fabrics in TENCEL® are similar to other loomstate fabrics in terms of stiffness, due to the presence of size and the frictional forces between the yarns. However, after wet processing, the handle of the fabric changes significantly: the fabric develops better drape and a fluidity that clearly differs from other fabrics. Hence, the fluidity and drape are related to changes that take place during wet processing of the fabric.

What happens during wet processing?

When TBNCEL® fibre is wetted it absorbs water and the fibre diameter increases by about 35%, but the fibre length does not change.

Figure 1 - greige fabric

Figure 2 - wet fabric

Figure 3 - dried fabric

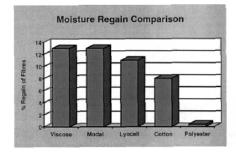
When a greige fabric (Figure 1) in TENCEL® is wetted, the swelling of the fibres/yarns causes an increase in the crimp of the yarn but without an increase in the length of the yarn (Figure 2). Therefore, the distance between the extremities of the ends of the yarn in the fabric must decrease to accommodate the increase in yarn crimp. The fabric dimensions therefore decrease, i.e. the fabric shrinks.

When the fabric is dried the fibres/yarns reduce in diameter back to their original size (Figure 3) but the dimensions of the fabric are not recovered, therefore the fabric remains in the "shrunk" state. This means that space is created around each yarn in the fabric as a result of the wet treatment and subsequent drying. The more a TENCEL® fabric is wetted and dried, the more the fibres and yarns will take up the new configuration of the wet fabric. Fibre movement occurs within the yarns as the fibres reduce in diameter during drying. Fabric treatment processes that involve a number of wetting and drying cycles are therefore very effective in creating space between yarns.

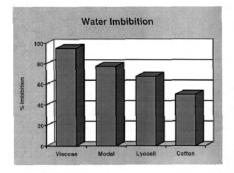
The creation of space between the warp and weft yarns increases the bulk of the fabric and allows the yarns to move easily relative to each other. This ease of movement within the fabric produces both the drape characteristics and the sense of fabric fluidity.

Why other fabrics behave differently

- TENCEL® yarns are very lean, so there is little space within the yarn for the fibres to swell into. The yarn diameter therefore increases significantly when it is wetted. The yarns return to their lean state after the wetted fabric has been dried, so space is created around the yarns rather than within the yarns.
- Other fibres and yarns retain their bulk after wetting and drying, and this reduces available space that has been created around the yarns. There is therefore a greater force between the yarns to limit their movement. Some other cellulosic fibres also give lean yarns but they are not robust enough to withstand the wetting and drying processes required for "space creation".
- Synthetic fibres are generally hydrophobic and therefore do not absorb water. Space cannot therefore be created by the swelling and contraction of the fibres as they are wetted and dried.


To generate drape and fluidity

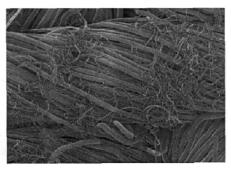
- · Fabric must be allowed to shrink during wet processes
- Tensioning of the fabric should be minimised during wel processing and stentering.
- Dry beating and tumble drying the fabric will enhance drape and fluidity.
- The use of lubricants can help to generate drape and fluidity.
- Increasing the bulk of the yarns will not enhance drape and fluidity.


Moisture Properties

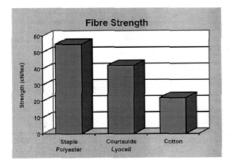
In common with other cellulosics, TENCEL[®] absorbs water readily to give excellent wearer comfort. Molsture absorbency is combined with an inherently high strength capability to provide a combination of properties that is unusual, if not unique in a cellulosic man-made staple fibre. Absorbency may be enhanced further by using the fibrillating capability of TENCEL[®].

The moisture absorbency of TENCEL^{\otimes} fibre is high, and this means that fabrics made from it provide the kind of wearer comfort normally associated with natural fibres such as cotton.


The natural moisture regain of TENCEL[®] is slightly higher than for cotton and much greater than for synthetic fibres such as polyester. This helps to ensure static free handling of TENCEL[®] fibres, yarns and fabrics, both in processing and in use.

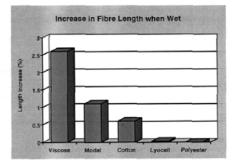

Another measure of water absorbency of a fibre, imbibition, again shows that, TENCEL® can be more absorbent than cotton.

The total moisture absorbency of a fabric made from any cellulosic fibre also will depend on the physical structure,

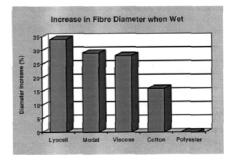

as well as the accessibility of the cellulose. In the case of TENCEL[®] the physical structure of the final fabric can be modified during wet processing to create surface microfibrils. These fibrils provide an increase in the surface area available for water absorption. This fibrillation capability offers the potential for features normally only available from expensively produced synthetic microfibres.

Surface of fabric without fibrillation

Fibrillated fabric surface



High strength together with good moisture absorbency are an unusual combination in any fibre. TENCEL[®] provides both in good measure, whilst cotton has a lower strength, and polyester provides the strength but not the absorbency required to give wearer comfort.

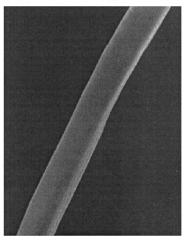

 $TENCEL^{\circ}$ retains over 80% of its inherent fibre strength when wet. Full strength is of course recovered when dried again.

The fibre has a high moisture absorbency and yet still has low shrinkage both in processing and in use (see Technical Textiles 6 datasheet). This stability draws from the relatively high fibre stiffness and the fact that the length of a TENCEL[®] fibre is completely unchanged when wetted or dried.

In comparison, other cellulosic fibres become considerably swollen in length when wet which contributes to potential shrinkage problems in fabrics made from them.

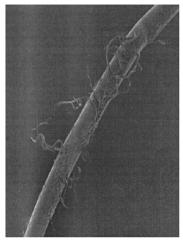
Although the length of a TENCEL* fibre is unaffected by moisture, there is significant swelling in fibre diameter. Indeed, where required, fibre and yarn swelling can be used to close up the spacing between yarns within a fabric in applications such as barrier fabrics, filters and water repellent products.

Fibrillation

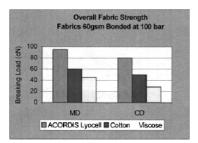

TENCEL® can be fibrillated to develop interesting aesthetic effects that can also have practical benefits in technical and industrial applications.

Fibrillation is the longitudinal splitting of a single fibre into microfibres of typically less than 1 to 4 microns in diameter. The splitting occurs as a result of wet abrasion against fabric or metal. The fibrils are so fine that they can become almost transparent, giving a white or 'frosty' appearance to finished fabric. In cases of extreme fibrillation, the micro-fibrils can become entangled, giving a pilled appearance.

Using fibrillation


Fibrillation can occur in the wet processing of fabrics and garments made from TENCEL⁶. The microfibres generated can be used to create a variety of interesting tactile aesthetics. A peach skin effect, which can also withstand repeated domestic washing at 40° C is possible, providing that the fibrillation is developed such that the fibrils cannot become long and entangled. This is key.

Fibrillation can be used in both piece dycing of fabric and in garment washing/dycing to produce characteristic soft and drapey aesthetics.

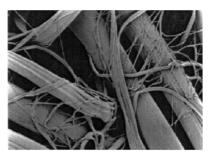

Unfibrillated TENCEL®

Fibrillated TENCEL® fibre

Web Bonding - Hydroentanglement

ACORDIS LYOCELL exhibits good hydroentanglement efficiency, having good aperturing clarity, and providing strong, stable, low linting, soft absorbent fabrics over a wide range of pressures. Hydroentangled ACORDIS LYOCELL fabrics are significantly stronger than those produced from other cellulosic fibres. By using lower decitex ACORDIS LYOCELL, strength, absorbency and handle of hydroentangled fabrics can be further improved.

ACORDIS LYOCELL is ideally suited to the hydroentanglement process. The fibre's high wet and dry strength can be translated into high fabric strengths, with the added opportunity to generate fibrillation using this process.


Plain and apertured hydroentangled fabrics can be produced using ACORDIS LYOCELL down to 20gsm. Strong stable fabrics can be made at a range of pressures without the use of binders. When bonded at low pressures, lyocell fabrics are exceptionally soft, have an attractive, silky appearance and particularly good drape characteristics.

ACORDIS LYOCELL fibres can be fibrillated by using bonding pressures over 120 bar.

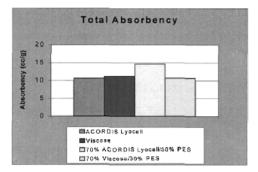
Fibrillation can alter fabric properties significantly, depending upon the fabric construction - opacity, wicking, wiping performance, strength, and barrier performance can all be improved.

Low levels of fibrillation do not increase fabric linting, as the fibrils remain attached to the fibre.

Fibrillated ACORDIS LYOCELL fibres

The abrasion and delamination resistance of hydroentangled lyocell fabrics can be improved by blending with nylon or polyester. Superior, high strength, bulky, porous and absorbent coating substrates, having a smooth surface, particularly suitable for use in artificial leathers can be made.

Durable fabrics with a more textile like appearance are also possible by manipulation of the bonding conditions used. High pressure bonding of ACORDIS LYOCELL fibres has produced fabrics of comparable strength to equivalent weight woven cotton.

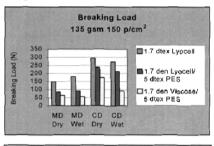

ACORDIS LYOCELL has been found to have excellent aperturing and embossing clarity compared to other cellulosic fibres used in hydroentanglement, making excellent fabrics for gauzes and wipes.

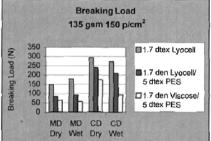
ACORDIS LYOCELL can be readily used in blends with viscose to improve both wet and dry strengths of hydroentangled nonwovens. Blends with polyester have also produced highly absorbent products.

ACORDIS LYOCELL has similar absorbency to viscose fibre, but this is significantly improved when blended with polyester. This is primarily due to the higher resilience of lyocell fibre, which does not suffer from wet collapse as viscose does.

302 Regenerated cellulose fibres

As with any fibre, some optimisation of fibre type, blend ratio and pressure profile will be required to achieve the desired parameters. Lower decitex variants such as 1.4 can offer improved strength, softness and absorbency over 1.7 decitex fibres, for the same basis weight and bonding conditions.

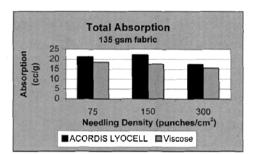

Because of the solvent spinning process, ACORDIS LYOCELL is a remarkably pure form of cellulose. After hydroentanglement ACORDIS LYOCELL has been found to have lower levels of cations and anions than other cellulosic fibres, making it suitable for products such as high performance clean room wipes.


Hydroentangled ACORDIS LYOCELL now has US FDA 510K covering its use in sensitive medical applications, where its strength, absorbency, low linting, precise aperturing and disposability are key features. Unlike its synthetic counterparts, lyocell products are completely biodegradable.

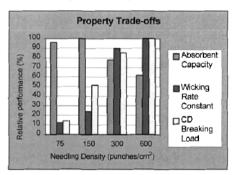
Web Bonding - Needling

ACORDIS LYOCELL fibres give stronger and more stable needlefelts than viscose. Needled ACORDIS LYOCELL webs are more resistant to wet collapse than viscose equivalents and can form more open, bulky structures with a higher absorbent capacity.

At moderate needling densities, ACORDIS LYOCELL needlefelts are markedly stronger and more stable than viscose equivalents. This is illustrated by the tensile and burst strength data below, which particularly highlight the strength retention of ACORDIS LYOCELL when wet.

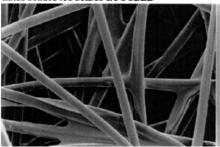


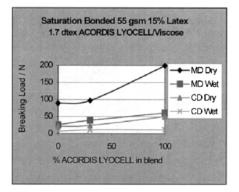
ACORDIS LYOCELL is so strong that it can easily be used at finer counts. In trials, fabrics made from 1.7 dtex ACORDIS LYOCELL were over twice as strong as viscose when dry and three times as strong when wet. ACORDIS LYOCELL can also boost the strength of cellulosic/polyester blends.


Higher strength can be valuable in itself, but also offers the potential to make lighter products or to reduce the level of non-absorbent binding materials.

ACORDIS LYOCELL which forms more open, bulky needlefelt structures than comparable viscose fibres can help increase total absorbent capacity.

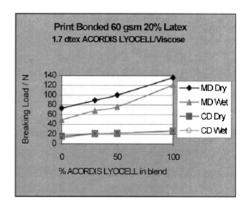
The high wet modulus of ACORDIS LYOCELL also leads to improved wet resiliency. Needlefelts made from 1.7 dtex ACORDIS LYOCELL show only half the wet collapse of equivalent 3.3 dtex rayon structures. This is clearly advantageous in applications where liquid retention is important.


The balance of strength, absorption rate and capacity can be further manipulated for a particular end-use by the choice of appropriate needling parameters.


Web Bonding - Latex

Replacing viscose with ACORDIS LYOCELL in latex bonded fabrics doubles dry strength and gives an even greater improvement in wet strength. This opens up opportunities for stronger or lighter products, or reduced binder levels for greater absorbency.

Latex bonded ACORDIS LYOCELL


In saturation bonding, ACORDIS LYOCELL gives twice the dry fabric strength of viscose rayon and an even greater improvement in wet strength.

This improved strength offers various opportunities. Fabrics can be made stronger. Alternatively products can be made to current strength specifications, but at lower basis weight or with reduced binder levels. Lower binder levels create the potential for increased absorbency and better fabric aesthetics. Because ACORDIS LYOCELL has a higher fibre modulus than viscose rayon, the resulting saturation bonded fabrics are stiffer than when viscose is used under the same bonding conditions. This may be beneficial in some end uses, e.g. interlinings.

If greater drape and softness is required, the use of a softer (lower Tg) latex is recommended to achieve the optimum balance of fabric aesthetics and performance.

Similar effects can be achieved in print bonded fabrics, e.g. for household wiping applications. Partially replacing viscose with ACORDIS LYOCELL boosts strength, opening the way for stronger, lighter or more absorbent products.

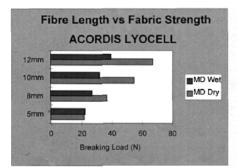
Wet Laying

ACORDIS LYOCELL is produced as a tow, which is parallel and twist-free. In this form it is

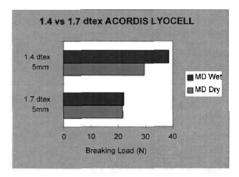
ideal for precision cutting to short fibre lengths for wet-laid nonwovens, allowing clean,

uniform webs to be produced.

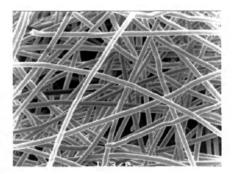
ACORDIS LYOCELL can be dispersed easily in water. The fibre has a relatively high modulus, so long lengths can be used for wet-laying, allowing very strong webs to be produced by this route. ACORDIS LYOCELL has been successfully wet-laid up to 16mm, although the fibre does need a high degree of dilution at such long staple lengths.


The circular cross-section of lyocell fibres produces a large amount of inter-fibre contact, resulting in a high wet web cohesion and making transfers of the web prior to bonding much easier.

ACORDIS LYOCELL has a low water imbibition which allows easier drying of wet fabrics whilst the fibre's high wet stability results in reduced fabric shrinkage losses.

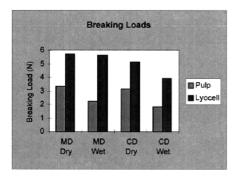

The fibre can be fibrillated by vigorous mixing of the slurry in a hydrapulper or similar mixer. Fibrillation adds strength to the web, which can then be processed as a paper. Alternatively, bonding can be carried out by hydroentanglement, where, again, fibrillation can be induced if so desired.

Fibrillation dramatically increases the mean length to diameter ratio, and agglomeration will result if fibres are close to the critical length and concentration.

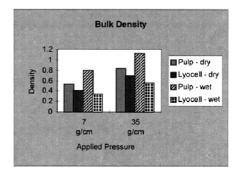

Hydroentangled wet-laid lyocell webs produce strong fabrics. Further significant strength improvements can be achieved by increasing the fibre length: fabric produced from 12mm lyocell has three times the dry tensile strength of 5mm fabric.

Decreasing fibre from 1.7 to 1.4 dtex, also produces significantly stronger wetlaid nonwovens by increasing the number of fibres within the fabric. The 1.4 dtex wetlaid nonwoven also exhibits significantly higher wet than dry strength.

Further strength improvement is possible by using longer length 1.4 dtex fibres.



Air Laying

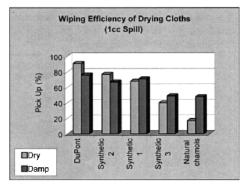

ACORDIS LYOCELL tow can be precision cut to short fibre lengths, either crimped or uncrimped, which are ideal for air-laying. Inclusion of the fibre in air-laid pulp products can improve bulk, softness, absorbent capacity and strength.

The importance of air-laying as a technology is growing significantly, with more sophisticated products and demanding applications being introduced. This extends the opportunity for using new fibres in addition to woodpulp, in order to achieve the desired fabric properties. As ACORDIS LYOCELL is manufactured as a tow product, it can be cut to short lengths suitable for air-laying processes. Additionally, there exists the possibility to use crimped or uncrimped fibre the choice depending upon the process detail and fabric properties required. A range of fibre decitexs is available, and fibre finish can be tailored to suit the specific process requirements.

Results from fabrics produced using flat-bed air-lay technology demonstrate the benefits of using ACORDIS LYOCELL fibre in air-laid structures. In a series of trials 4mm crimped ACORDIS LYOCELL was used as a replacement for pulp in a 80 gsm fabric with 20% bicomponent fibre (included for bonding purposes). The length of the lyocell fibres and excellent strength properties result in a significant strength improvement, especially when wet - where the fabric containing ACORDIS LYOCELL shows a doubling in strength.

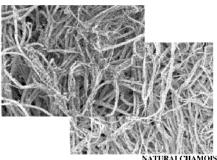
The use of ACORDIS LYOCELL also results in an improvement in bulk properties. Dry results show the fabric including lyocell to be thicker (lower bulk density). Lyocell also shows superior resiliency when wet, indicated by the smaller increase in density compared to pulp.

This improvement in bulk and resiliency leads also to an increase in total absorptive capacity. The fabric containing lyocell has a total absorption of 21.9 cc/g - an improvement of around 50%. Panel testing used to evaluate fabric softness shows a significant improvement in fabric hand when lyocell was used. ACORDIS LYOCELL can, therefore, also bring benefits in fabric softness.


8-10mm ACORDIS LYOCELL can be used in cylindertype air-lay processes. Here, the use of longer fibre lengths gives further improvements in properties.

Wipes

ACORDIS LYOCELL's unique combination of strength, absorbency and fibrillation potential make it an ideal component in products for a variety of wiping applications. Lyocell is already being used commercially in drying cloths, wipes for critical tasks (clean manufacturing environments, print and paint shops), food service wipes and patient washcloths in the medical industry.

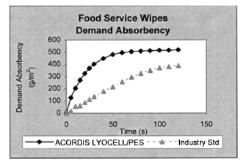

Drying Cloths

A commercial drying cloth based on ACORDIS LYOCELL shows faster rates of water absorption than competitive products. Owing to its high rate of demand absorbency and absorbent capacity, this wipe absorbs more surface water than competitive products in a test to simulate wiping.

The lyocell based drying cloth is as strong as natural chamois and can be washed repeatedly. Wiping performance actually improves with repeated washing.

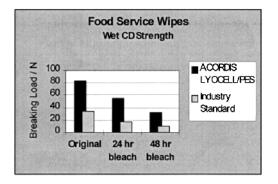
ACORDIS LYOCELL

The fibrillated ACORDIS LYOCELL fibres are able to simulate the collagen microfibre structure of natural chamois better than typical man-made drying cloths.


Furthermore, unlike natural chamois, the lyocell-faced cloth does not feel slimy when wet and stays soft even when dry.

Critical Task Wipes

These wipes are used in a variety of applications where low linting fabrics are required, such as clean manufacturing environments and automotive or boat painting and refinishing. The presence of ACORDIS LYOCELL enhances various critical performance features of hydroentangled critical task wipes. The product absorbs liquid faster and has a higher wet tensile strength, but stays soft, preventing the risk of abrasion damage. ACORDIS LYOCELL gives lower linting without the use of binders.


Food Service Wipcs

Apertured spunlaced food service wipes made from a blend of ACORDIS LYOCELL and polyester offer several advantages over an industry standard 2 oz/yd^2 wipe. Demand absorbency is 7 times faster and capacity is 60% greater. There is also less residual smearing when wiping ketchup in a wiping simulation test.

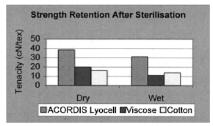
The product has twice the CD wet strength and remains stronger after extended bleaching.

As well as being stronger and more absorbent it is also softer.

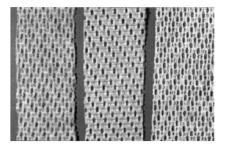
Baby wet wipes

ACORDIS LYOCELL also has the potential to create improved wet wipes, although these are not yet commercial. Lyocell enhances strength and stability, increases wet resiliency and gives improved crease definition. ACORDIS LYOCELL also gives excellent embossing clarity so is ideal for creating novel surface texture effects.

Medical Swabs and Gauzes

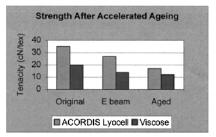

ACORDIS LYOCELL exhibits good hydroentanglement efficiency, delivers aperturing clarity, and provides strong, stable, low linting absorbent fabrics ideal for use in medical applications. Hydroentangled ACORDIS LYOCELL fabrics are significantly stronger than those produced from other cellulosic fibres. It meets the necessary standards required of fabrics for medical uses and provides an ideal partner for blends.

Hydroentangled fabrics continue to take an increased share of the swab and gauze market. The performance of ACORDIS LYOCELL is ideally suited to the hydroentanglement process. The fibre's high wet and dry strength can be translated into high fabric strengths.


Plain and apertured hydroentangled fabrics can be produced using ACORDIS LYOCELL down to 20gsm. Strong stable fabrics can be made at a range of pressures without the use of binders. When bonded at low pressures, ACORDIS LYOCELL fabrics are exceptionally soft, have an attractive, silky appearance and particularly good drape characteristics. At higher bonding pressures a firmer handle is obtained which can assist debridement.

Hydroentangled ACORDIS LYOCELL has US FDA 510K approval covering its use in sensitive medical applications. 100% ACORDIS Lyocell products are completely biodegradable.

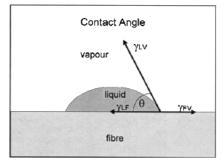
A cellulosic fibre needs to perform acceptably following sterilisation as a pre-requisite to finding widespread acceptance in nonwoven medical end-uses.



ACORDIS LYOCELL has been found to have excellent aperturing and embossing clarity compared to other cellulosic fibres used in hydroentanglement, making excellent fabrics for gauzes. ACORDIS LYOCELL is supplied in a delustred form to provide a non-reflective surface in use.

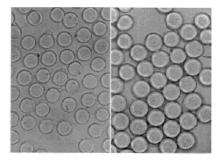
ACORDIS LYOCELL can be readily used in blends with viscose to improve both wet and dry strengths of hydroentangled nonwovens. Blends with polyester have also produced highly absorbent products.

ACORDIS LYOCELL has similar absorbency to viscose fibre, but this is significantly improved when blended with polyester, which is primarily due to the higher resilience of lyocell fibre.



ACORDIS LYOCELL fibres are produced to meet the pharmacopoeia requirements originally devised for woven cotton products. Product development is designed to meet customers specific requirements.

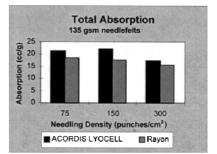
Absorbency


The affinity of ACORDIS LYOCELL for water lends itself to a range of applications in absorbent products. Like viscose rayon, ACORDIS LYOCELL has a highly wettable surface and inherent fibre absorbency. However, ACORDIS LYOCELL exhibits less wet collapse than rayon, thanks to its high wet modulus. This resiliency can boost absorbent capacity as well as maintaining pore integrity for faster wicking.

ACORDIS LYOCELL is hydrophilic and swells in water, making it suitable for a range of applications in absorbent products.

The fibre has a similar fibre/water contact angle to viscose rayon (10-40° depending on surface finish), leading to rapid fibre surface wetting on exposure to water.

After water penetration, the fibre cross sectional area increases by 50% - over twice the swelling of cotton.



ACORDIS LYOCELL swelling in water

Such swelling enhances liquid transport within and between fibres, which can be particularly important in applications where liquid is moved vertically against the force of gravity.

ACORDIS LYOCELL has a higher water imbibition than cotton, but lower than viscose (ACORDIS LYOCELL 65%, cotton 45%, viscose 95%).

Generally, structures made from viscose lose bulk when wetted, due to the fibre's low wet modulus. This reduces inter fibre pore volume and so lowers the total absorbent capacity. The high wet modulus of ACORDIS LYOCELL makes it resistant to such wet collapse, offering the potential to improve absorbent capacity. For example, ACORDIS LYOCELL gives a higher total absorption than viscose in this series of needlefelts.

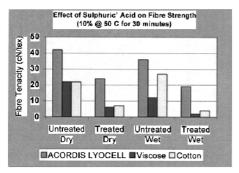
The rate of fluid absorption depends on pore size. Smaller dry pores increase the capillary force which drives fluid uptake, whilst larger wetted pores reduce the viscous drag that slows down fluid transport. The rates of transplanar absorption and wicking in a fabric are therefore highly dependent on fabric construction.

In viscose nonwovens, wet collapse can drastically reduce the size of pores in the wet structure, increasing the drag forces that inhibit flow. By contrast, the resiliency of ACORDIS LYOCELL helps to maintain pore integrity and favours faster wicking rates.

Chemical and UV Resistance

In addition to having a higher initial strength, ACORDIS LYOCELL outperforms other

cellulosic fibres in its ability to retain fibre strength and integrity when exposed to mineral

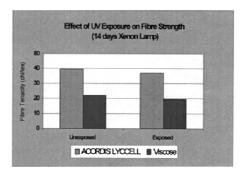

acids or UV irradiation.

Chemical Properties

ACORDIS LYOCELL degrades hydrolytically when in contact with hot dilute or concentrated mineral acids. The fibre swells when first exposed to alkalis (maximum at 9% NaOH solution at 25°C) and then ultimately, disintegrate.

Strength Retention

Cellulosic fibres are not usually regarded as being resistant to degradation by acids or alkali. However, ACORDIS LYOCELL not only resists the degradative effects of mineral acids better than both cotton and viscose, but also retains a higher proportion of its already superior wet and dry strengths.


Swelling

Lyocell swells when in contact with either acids or alkali in a comparable way to viscose.

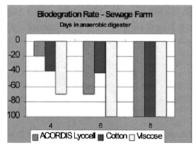
% Fibre Swelling		Sulphuric Acid Concentration		Sodium Hydroxide Concentration	
	0.1%	1.0%	1.0%	10.0%	
ACORDIS LYOCELL	46	47	50	1345	
Viscose	69	49	101	1059	

UV Resistance

ACORDIS LYOCELL retains its significant strength advantage over viscose following prolonged exposure to UV irradiation. After 14 days exposure to a Xenon lamp (equivalent to 140 days of direct sunlight) the fibre tenacity is reduced by less than 10%.

Biodegradation

Cellulose is the natural polymer that makes up the living cells of all vegetation. It is the most abundant and renewable biopolymer on Earth. Like all cellulosic fibres, products made from ACORDIS LYOCELL are completely biodegradable and can be composted, digested in sewage, landfilled or incinerated.


Biodegradation occurs through the action of enzymes created by living organisms, breaking a product down to carbon dioxide (CO_2) and water (H_2O). Cellulosic fibres commonly used in nonwoven products such as ACORDIS LYOCELL, viscose and cotton are known to be biodegradable, whereas synthetic fibres are not.

Composting

ACORDIS LYOCELL and viscose fibres were found to have degraded completely after 6 weeks in a static aerated compost pile, and cotton fibre had suffered a weight loss of 80%. The synthetic fibres tested, polyester, polypropylene and polyethylene, showed very little signs of degradation.

Sewage Treatment

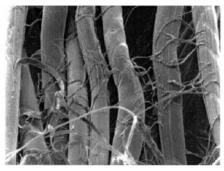
Sewage treatment plants and septic tanks operate mainly under anaerobic conditions, though some parts of the process are aerobic. The microorganisms present in sewage are accustomed to breaking down cellulosic products such as tissue paper. The resultant natural gas generated can be used to power the sewage treatment works.

ACORDIS LYOCELL, viscose and cotton fibres degrade completely within 8 days in a typical sewage farm anaerobic digester, where the residence cycle is about 20 days. The synthetic fibres tested show slight reductions in tensile strength after 12 weeks in an anaerobic digester. Similar results would be obtained in septic tanks.

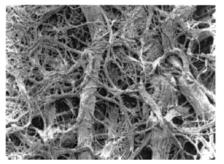
Landfill

Organic matter buried in the ground rots over a period of time by the bacterial process of anaerobic digestion. A landfill site is not easy to define or simulate, as it is somewhat heterogeneous. Soil burial tests (BS 6085 /AATCC 30) are accepted methods of assessing the biodegradability of a product. ACORDIS LYOCELL, viscose and cotton fibres degrade completely within 12 weeks. Synthetic fibres gain weight initially, and only show slight strength and weight loss after 24 weeks burial.

The result of the biodegradation studies carried out to date correlate well with the knowledge we have regarding the structure and chemical resistance of cellulosic and synthetic fibres.

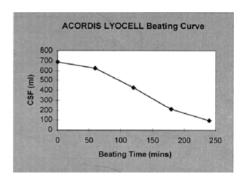

Incineration

Mass incineration plants especially in large conurbations, with facilities for recovering energy from waste, can earn substantial amounts of money from the sale of electricity to power generating companies. Cellulosic fibres, such as ACORDIS LYOCELL burn readily with a heat of combustion of 15 kJ/g. Such plants also have the added advantage of reducing the volume of refuse sent to landfill sites by as much as 90%.

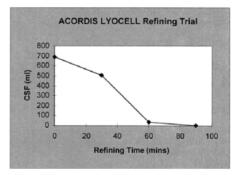

100% ACORDIS LYOCELL Papers

The ability of ACORDIS LYOCELL fibre to split into micro-fibres during wet processing makes it ideal for use in papers. The long fibre length and round sub-micron fibrils can improve paper properties such as tear strength, opacity and air permeability. These properties can be tailored by controlling the amount of fibrillation generated on the fibre.

ACORDIS LYOCELL Low fibrillation



ACORDIS LYOCELL Highly fibrillated



The potential for ACORDIS LYOCELL fibre to fibrillate into micro-fine fibrils makes it ideal for use in special papers. This fibrillation can be achieved using papermaking equipment such as beaters or refiners or by vigorous mixing in a hydrapulper or high shear mixer.

Laboratory beating demonstrates the potential for lyocell fibre to be fibrillated to a range of levels, as indicated by the Canadian Standard Freeness test for drainage rate.

Pilot scale refining work has demonstrated the potential for fibre fibrillation, whilst plant scale trials have confirmed that lyocell can be processed using standard papermaking equipment. ACORDIS LYOCELL has been successfully fibrillated in beaters, refiners and hydrapulpers

The unique nature of ACORDIS LYOCELL and of the fibrillation generated from it, results in characteristic paper properties: papers with good tensile strength, outstanding tear strength and high opacity can be made.

314 Regenerated cellulose fibres

Lyocell papers also have relatively high air permeability compared to woodpulp papers due to the circular crosssection of the fibres and fibrils.

Typical water leaf paper results show how the generation of fibrillation influences sheet performance and the interesting combination of properties which are generated. As more fibrillation is produced, tensile and tear properties increase. Air resistance increases although it remains low compared to a paper produced from woodpulp. Opacity of the paper increases as refining progresses.

Recommendations for wet strength resins suitable for use with ACORDIS LYOCELL can be supplied. Laboratory

work has shown that wet and dry properties can be improved without adversely affecting air permeability.

ACORDIS LYOCELL is suitable for a wide range of special paper types covering end-uses such as filters, battery separators, food casings, map and chart papers, tea bags, cigarette papers, bank-note and security papers.

ACORDIS LYOCELL papers have gained German BGA approval for use in food contact applications.

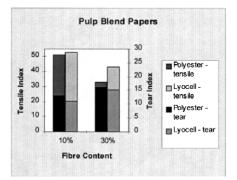
100% Lyocell, refined at 0.75%	Refining Energy (kWh/tonne)			
consistency, SEL 0.2 Ws/m	0	200	400	600
Freeness (ml)	800	607	93	0
Basis Weight (gsm)	79.3	68.5	66.8	66.4
Thickness (microns)	256	178	151	135
Bulk (cc/g)	3.2	32.6	2.3	2.0
Tear Strength (mN)	584	2237	1823	973
Burst Strength (kPa)	18.8	101	120	136
Tensile Strength (N/15mm)	3.8	15.8	25.3	30.7
Breaking Length (km)	0.3	1.8	2.57	3.2
Stretch (%)	1.9	1.7	2.6	2.2
Double Folds	0	15	69	287

Woodpulp Fibrillation

ACORDIS LYOCELL Fibrillation

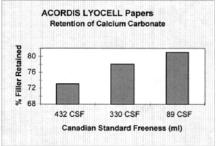
Blends

ACORDIS LYOCELL is ideal for use in blend with woodpulp and can enhance specific


properties, such as tear, opacity and filler retention. The fibre can also be used as a binder for microglass fibres.

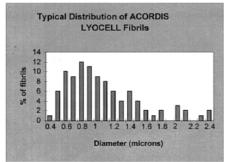
ACORDIS LYOCELL can be used to enhance specific properties of papers when combined with other fibres and it is particularly effective in improving tear strength and opacity as well as in reducing air resistance. ACORDIS LYOCELL can be used readily in blend with a wide range of other fibres. For example, in laboratory work, addition of lyocell to a typical pulp stock (70% hardwood, 30% softwood) gave improvements in a range of properties.

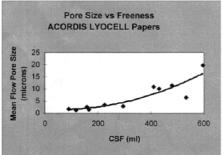
	Tear Index (mN.m ² /g)	Tensile Index (Nm/g)	Burst Index (kPa. m ² /g)	Air Resistance (secs)	Opacity (%)
100% Pulp	11.0	52.5	4.7	10.4	71.3
90% Pulp 10% unbeaten ACORDIS LYOCELL	13.2	50.4	4.35	4.01	73.2
90% Pulp 10% 230 CSF ACORDIS LYOCELL	13.8	60.4	4.0	9.8	74.8


The improvement in properties which can be obtained by inclusion of ACORDIS LYOCELL makes it a highly suitable alternative to other reinforcing fibres.

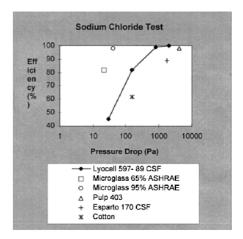
For example, short cut polyester is commonly used for tear strength enhancement.

Results show lyocell to give very similar improvements in tear than polyester, when blended with pulp. Tensile results are also similar. Additionally, using lyocell has the advantage of maintaining a furnish composed of 100% cellulose. ACORDIS LYOCELL can also be used in blend with synthetic fibres, which do not self-bond readily and normally require a chemical bonding agent. Papers can be made from blends of lyocell with microglass without the need for an additional binder - the lyocell adds strength and flexibility to the sheet. Alternatively, inclusion of ACORDIS LYOCELL could allow a reduction in the amount of binder required for a paper.


ACORDIS LYOCELL can also be used as an agent to aid retention of fillers in papers - the fine fibrils allowing particulates to be held in place effectively. This can enable the inclusion of higher levels of filler, or reduce the loss of fillers from the sheet.

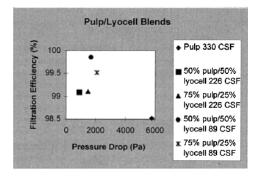

Filtration

The ability for ACORDIS LYOCELL fibre to split into circular, sub-micron fibrils generates the potential to capture small particles, whilst maintaining good air permeability. These properties make ACORDIS LYOCELL an ideal fibre for filtration applications.


One of the many end-uses for which ACORDIS LYOCELL is ideally suited is in the area of filtration. LyOCELI bire can be processed into a fibrillated paper using standard papermaking techniques. The papers produced are strong and have unique properties as the fibrils produced from the fibre are mainly circular in cross-section, with a range of diameters down to submicron levels.

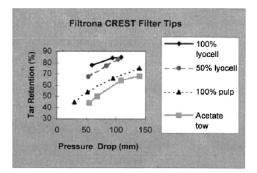
The ability of the fibre to split into these fine, round fibrils means that papers can be made which are ideal for filters - having good permeability coupled with the ability to capture small particles effectively. The pore size of the papers and hence their efficiency can be controlled readily by altering the level of fibrillation generated. This is demonstrated by comparing pore size (measured using a Coulter Porometer) with fibrillation level as measured by CSF (Canadian Standard Freeness).

The filtration efficiency of papers made from ACORDIS LYOCELL can be demonstrated using a standard air filtration test. Using a sodium chloride aerosol challenge (BS4400) to assess the performance of flat papers, fibrillated ACORDIS LYOCELL papers were compared with commercial samples of microglass and cellulose (woodpulp) filter papers.



The results demonstrate the performance advantage of ACORDIS LYOCELL papers over woodpulp sheets higher efficiency at a lower or comparable pressure drop.

Compared to microglass, ACORDIS LYOCELL papers do show higher pressure drops, though the paper properties are significantly better and have the additional advantage of requiring no binder.


	Tensile	Tear	Bulk
	Index	Index	(cc/g)
	(Nm/g)	(mN.m ² /g)	
Microglass	5.1	5.5	7.7
Woodpulp	14.8	4.7	2.2
ACORDIS	10.7	16.0	4.0
LYOCELL			

Although ACORDIS LYOCELL can be used alone, it is particularly suited to being used in blends. Significant advantages can be achieved using lyocell in combination with other fibres to engineer a product with the correct filtration characteristics. Fibre fibrillation levels can be tailored to suit the application and complement the other fibres being used. Work in blending pulp and lyocell has shown that addition of ACORDIS LYOCELL can improve filtration efficiency without impairing pressure drop.

In combination with glass fibre, lyocell offers the opportunity to improve paper strength and integrity, without severely affecting filtration performance. The requirement for binders can also be reduced.

One product which utilises the characteristics of lyocell paper is the CREST^m cigarette filter, developed by ACORDIS in collaboration with Filtrona International Ltd. The Crest material was developed for use in ultralow tar products (1-2 mg tar) which require a combination of very high tar retentions with acceptable resistance to draw (i.e. pressure drop).

Appendix A 317

The optimised ACORDIS LYOCELL paper has a intermediate level of fibrillation giving a retentive yet permeable sheet. A blend of pulp and lyocell can also be used. The paper is made into a filter tip in the same way as a normal pulp paper. However, filtration results show the superior performance of both 100% ACORDIS LYOCELL or 50% lyocell 50% pulp, clearly differentiated from acetate or semi-crepe paper tips.

The exceptional performance of ACORDIS LYOCELL paper in filter tips is due to its unique filtration characteristics. The Filtrona CREST[™] filter offers design opportunities in the growing ultra-low tar cigarette market, and clearly demonstrates the potential offered by ACORDIS LYOCELL in filtration applications.

Fibrillation of ACORDIS LYOCELL can also be accomplished in structures other than papers for example during hydroentanglement or any wet processes. Such fibrillated fabrics and structures exhibit similar advantages in filtration applications.

Examples of specific filtration applications for ACORDIS LYOCELL include automotive filters (fuel, oil, air), HEPA and ULPA filters, medical filters, vacuum bags and food and beverage filters.

ACORDIS LYOCELL papers have obtained German BGA approval for use in food contact applications.

Appendix B

Archive photographs of regenerated cellulosic fibre processes

The photographs in this appendix are presented courtesy of the Akzo-Nobel (UK) Ltd Archives in Coventry.

Plates 1 to 8 illustrate progressive developments in yarn handling methods from the 1930s' cake-spinning/hank-winding process (Plate 1, but see also Fig. 1.3 in Chapter 1 for the 1905 cake spinning machine) through continuous-warp spinning/washing of tyre yarn (Plates 2 and 3, but see also Fig. 9.5 in Chapter 9 for the self-advancing reel spinning system) to the staple fibre spinning/washing system (Plates 4 to 8).

Plates 9 and 10 are diacetate spinning, a dry process requiring no washing equipment.

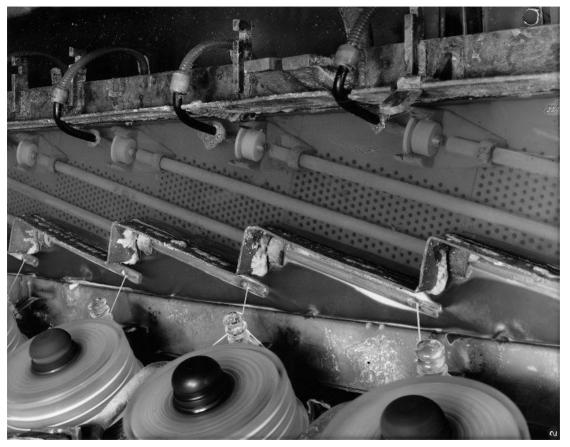
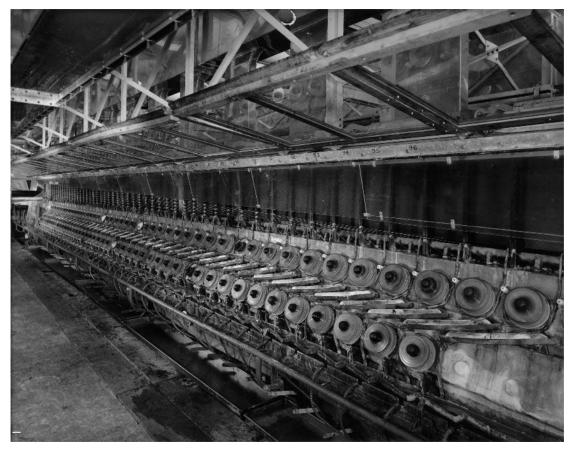
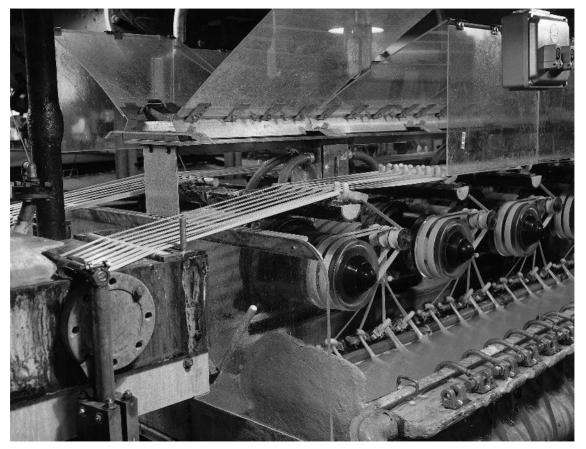

Plate 11 shows the mixing of the extremely viscous hot lyocell dope in an early pilotscale mixer.

Plate 12 shows the ease with which the hot lyocell dope can be dry-formed into fibres.

Plate 13 shows extrudable glass-like 'chips' of solid cellulose-in-NMMO.

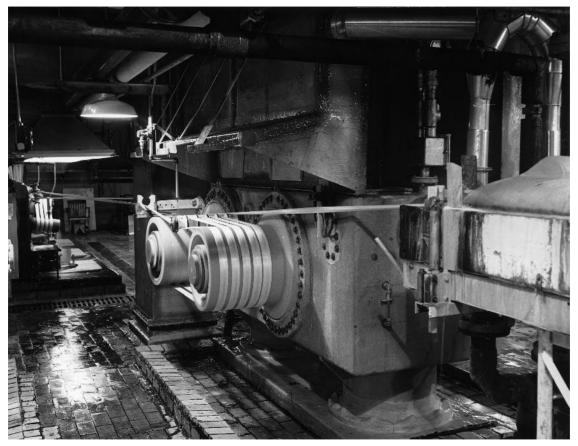


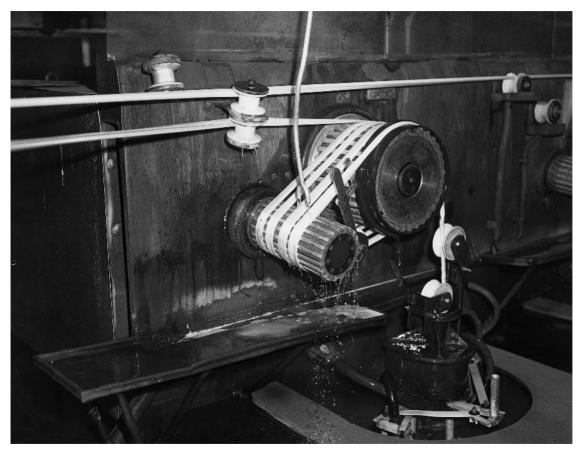
1 Viscose filament yarn process circa 1930: preparing hanks for washing.

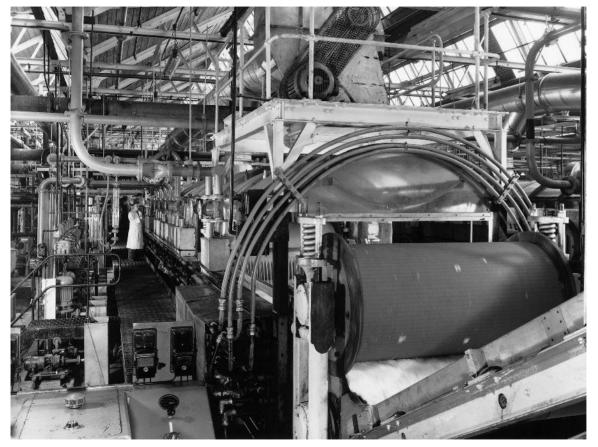


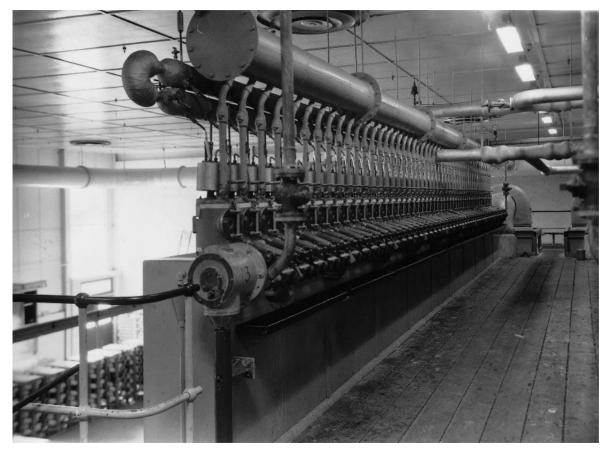
320

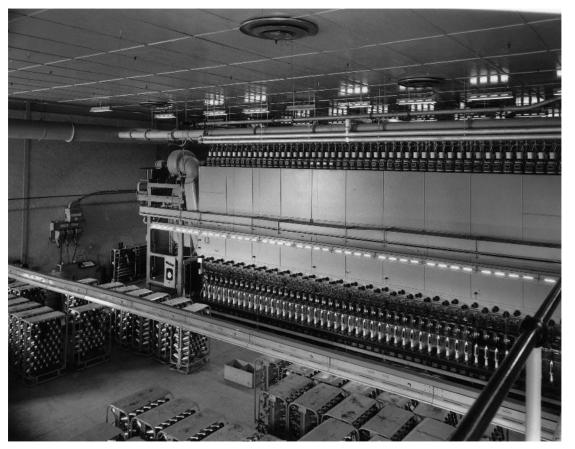
2 Viscose tyre yarn process: tube spinning.


3 Viscose tyre yarn spinning: warp process.


4 Viscose staple fibre process: spinning.

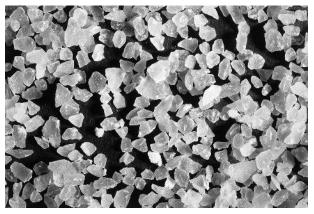

5 Viscose staple fibre process: hot stretching the tows.


6 Viscose staple fibre process: traction unit after hot stretching.



7 Viscose staple fibre process: feeding the tow cutter.

8 Viscose staple fibre process: wash machine.


10 Diacetate yarn spinning machine.

11 Cellulose in NMMO: premix.

12 Cellulose in NMMO: fibre-forming potential evident.

13 Cellulose in NMMO: chips of solid cellulose.

Index

acetate see cellulose acetate Acordis Fibres Aczordis Fibres - ardic, see synthetic fibres 129 Akzo-Nobel 18 19 195 196 274 alginate fibres 168 169 170 171 263 applications of 170 170 171 263 applications of 170 170 Alleston, R. 126 alloy rayons 256 257 - - American Enka 14 17 18 256 American Viscose Company 10 - - - artificial fibres see cellulose fibres - - - - regenerated and synthetic fibres - - - - - artificial fibres see cellulose fibres - 147 148 - - - - autificial fibres see cellulose fibres - - - - - - - - - - - - - - - - - - -	<u>Index Terms</u>	<u>Links</u>				
Acordis Fibres acrylic, see synthetic fibres Aizawa, H. 129 Akzo-Nobel 18 19 195 196 274 alginate fibres 168 169 170 171 263 applications of 170 170 171 263 alloy rayons 256 257 257 4000000000000000000000000000000000000	acetate see cellulose acetate					
acrylic, see synthetic fibresAizawa, H.129Akzo-Nobel1819195196274alginate fibres168169170171263applications of170170171263applications of170170171263applications of170170171263applications of170170171263applications of170170171263applications of17017118256American Viscose Company101017118amine-oxide technology1415161718Armell1601771814614718artificial fibres see cellulose fibres1963646572regenerated and synthetic fibres19120126127128artificial silk, see Chardonnet silk520107115116Asahi Chemical Industries Co.520107115128uotput140141148146147158261productivity135136137137137137Audemars, George22250256144157Avril Prima249250256137157208Barker, S.W.126128135137157157Barnen1281281						
Aizawa, H.129Akzo-Nobel1819195196274alginate fibres168169170171263applications of170170170170properties of170170170170Alleston, R.126126126126alloy rayons2562571661718amine-oxide technology101415161718artificial fibres see collubos fibres1963646572regenerated and synthetic fibres14714814417115116artificial fibres see collubos fibres119120126127128ago utput140141141149141148productivity138136137136137audemars, George22250256256256Avril Prima249250256256137banknotes, see paper, see also inflated126128135137157Barker, S.W.126128135137157157Barker, S.W.126128135137157Baunt Mills127128137157157Beadle, Clayton571969798Bayer Co126143103105115Beadle, Clayton511969798 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Akzo-Nobel 18 19 195 196 274 alginate fibres 168 169 170 171 263 applications of 170 170 171 263 alloy rayons 256 257 257 256 257 American Viscose Company 10 18 256 72 amine-oxide technology 14 15 16 17 18 artificial fibres see cellulose fibres 160 177 116 artificial silk, see Chardonnet silk 147 148 127 128 Asahi Chemical Industries Co. 5 20 107 115 116 119 120 126 127 128 output 140 141 147 148 147 148 productivity 138 136 137 147 1		129				
alginate fibres 168 169 170 171 263 applications of 170 170 170 171 263 properties of 170 170 170 171 263 Alleston, R. 126 170 171 263 alloy rayons 256 257 164 16 17 18 American Enka 14 17 18 256 257 American Viscose Company 10 16 17 18 amine-oxide technology 14 15 16 17 18 Arnell 160 17 18 18 18 19 63 64 65 72 see also lyocell and NMMO technology 147 148 147 18 148 147 148 119 120 126 127 128 artificial silk, see Chardonnet silk 119 120 126 127 128 129 132 133 146 147 158 261 products 145 146 14			19	195	196	274
applications of properties of170 170Alleston, R.126alloy rayons256257American Enka1417181010amine-oxide technology1011151617181963646572see also lyocell and NMMO technologyArnell160artificial fibres see cellulose fibres regenerated and synthetic fibresartificial kidney147148artificial kidney147148attificial silk, see Chardonnet silk520107115116Asahi Chemical Industries Co.520107115116129132133129132133128output140141products264250256Avtex249250256256257Avril Prima249250256256banknotes, see paper; see also inflated126127128viscose rayons26826264260266Barmen12828250256256Barmen128135137157Bault Mills127128135137157Bault Mills127128135137157Beadle, Clayton57128119969798Baunt Mills1271281969798Baun		168	169		171	263
properties of Alleston, R.170 126 alloy rayons170 126 257 American Enka14 1417 18 25618 256American Viscose Company amine-oxide technology14 1415 1616 17 18 1916 6465 72American Viscose Company amine-oxide technology14 1415 1616 1718 18 1916 64Arnell artificial fibres see cellulose fibres regenerated and synthetic fibres artificial slk, see Chardonnet silk147 148 147148 147Asahi Chemical Industries Co.5 20 107115 115116 119 120 126 126 127128 128 261 264 264 264 264 264 264 264 264 264 productivity waste recovery135 136 137 135 136 137137 157 157 266 266 27 27 276banknotes, see paper; see also inflated viscose rayons Barker, S.W. Bayer Co 208 260 208 260 208 260 208 260 260 260 260 276135 277 276 276 276 276 276 276 276 276 276 276 277 277 278 270 278 270 2	•	170				
alloy rayons256257American Enka141718256American Enka141718256American Viscose Company10101115161718amine-oxide technology1415161718151672see also lyocell and NMMO technologyArnell160160111481516127128artificial fibres see cellulose fibres14714814115116129126127128artificial kidney147147148141141141141141141141141141141141141141141141141155136137151116145146147158261264<		170				
American Enka141718256American Viscose Company1010amine-oxide technology1415161718amine-oxide technology1415161718see also lyocell and NMMO technology1601601718artificial fibres see cellulose fibres16017115116artificial silk, see Chardonnet silk520107115116Asahi Chemical Industries Co.520107115116119120126127128129132133output140141141158261products135136137158261Avtex249250256256256Avril Prima249250256256banknotes, see paper; see also inflated128135137157Barnen128128135137157Barnen126128135137157Beadle, Clayton572081516J.P. Bemberg A G51196979899101103105115115methodology126143126143151	Alleston, R.	126				
American Viscose Company amine-oxide technology10 1415161718 19 $amine-oxide technology141516171819best also lyocell and NMMO technology160artificial fibres see cellulose fibresregenerated and synthetic fibres160artificial silk, see Chardonnet silk147148Asahi Chemical Industries Co.520107115116119129132133126127128129132133136137160autificial silk, see Chardonnet silk146147158261Asahi Chemical Industries Co.520107115116119120126127128128135136output140141141148147158261audemars, George22250256256141Avtex24925025625615157Avrin Prima249226256256157157Barnen128126128135137157Barnen126128135137157Beadle, Clayton5720815167J.P. Bemberg A G51196979899101103105115166115autificial silk126143145146147<$	alloy rayons	256	257			
amine-oxide technology14151617181963646572see also lyocell and NMMO technologyArnell160artificial fibres see cellulose fibresregenerated and synthetic fibresartificial kidney147148artificial silk, see Chardonnet silk147148Asahi Chemical Industries Co.52010711511619120126127128129132133136137output140141144146productivity13836137waste recovery135136137Audemars, George22250256Avtex249250256256Avril Prima128135137157Barmen128126128135137Bayer Co126128135137157Beadle, Clayton5720811969798J.P. Bemberg A G51196979899101103105115methodology126143143143143145145140141141141141141141141141150111115116137137157160115116137141141141141	American Enka	14	17	18	256	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	American Viscose Company	10				
see also lyocell and NMMO technologyArnell160artificial fibres see cellulose fibresregenerated and synthetic fibresartificial kidney147Ataba Chardonnet silkAsahi Chemical Industries Co.520107119120129132133output140141148products145145146147158264productivity135136137Audemars, George2Avtex249250256Avrex249260256Avrex249270256Barnen128Bayer Co126128135Bayer Co126129132137157Beadle, Clayton551199101103105151161271281281151391151401271501151511101521111531151541151551115511515511515611515711515811515911515011515011515011515012615	amine-oxide technology	14	15	16	17	18
Arnell160artificial fibres see cellulose fibres regenerated and synthetic fibres artificial silk, see Chardonnet silk147148Asahi Chemical Industries Co.520107115116119120126127128129132133147148output140141140141products145146147158261264264264264264productivity138383637Audemars, George22250256Avtex249250256256Avtex249250256256Avril Prima126128135137157Barnen128126128135137157Beadle, Clayton57208208208Beadle, Clayton5799101103105115methodology126143143143145115		19	63	64	65	72
artificial fibres see cellulose fibres regenerated and synthetic fibres artificial silk, see Chardonnet silkAsahi Chemical Industries Co.520107115116119120126127128129132133129132133output140141141158261products145146147158261264264264264147158261productivity13836137140141waste recovery135136137140141Audemars, George22250256145Avtex249250256156157banknotes, see paper; see also inflated126128135137157Barnen128126128135137157Bayer Co1261281351371572082081196979899101103105115115methodology126143143155115	see also lyocell and NMMO technology					
regenerated and synthetic fibres artificial kidney147148artificial kidney147148artificial silk, see Chardonnet silk520107115116Asahi Chemical Industries Co.520107115116119120126127128129132133126127128output140141141141141products145146147158261264264264264264264vaste recovery135136137158Audemars, George22250256Avtex249250256256Avtex249250256256Barker, S.W.126128135137157Bayer Co126128135137157Badle, Clayton57208208208Beadle, Clayton572829205115methodology126143105115155	Arnell	160				
artificial kidney artificial silk, see Chardonnet silkAsahi Chemical Industries Co.520107115116119120126127128129132133129output products140141141products145146147158261264 productivity13336137264productivity waste recovery13513613740Audemars, George Avtex249250256256Avtex Naver249250256256Avtex Naver126128135137157Barnen Barker, S.W.126128135137157Barnen Bayer Co57208208208Beadle, Clayton Beaunit Mills57208101103105115J.P. Bemberg A G51196979899101103105115methodology126143143143143145143145145	artificial fibres see cellulose fibres					
artificial silk, see Chardonnet silkAsahi Chemical Industries Co.520107115116119120126127128129132133129132133output140141141141141products145146147158261264264264135136137waste recovery135136137158249Audemars, George2222Avtex249250256256Avril Prima249250256banknotes, see paper; see also inflated126128135137basker, S.W.126128135137157Barmen128126128135137157Baealle, Clayton57208208126128J.P. Bemberg A G51196979899101103105115115methodology126143143143143	regenerated and synthetic fibres					
Asahi Chemical Industries Co.520107115116119120126127128129132133129132133output140141141141products145146147158261264264264264147158261waste recovery13513613715716Audemars, George22250256256Avtex24925025625626Avtex24925025625626banknotes, see paper; see also inflated126128135137157Barmen128126128135137157Bayer Co126128135137157Beadle, Clayton5720811969798J.P. Bemberg A G51196979899101103105115methodology126143126143145145145145	artificial kidney	147	148			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	artificial silk, see Chardonnet silk					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Asahi Chemical Industries Co.	5	20	107	115	116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		119	120	126	127	128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		129	132	133		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	products		146	147	158	261
waste recovery 135 136 137 Audemars, George 2 2 Avtex 249 250 256 Avril Prima 249 250 256 banknotes, see paper; see also inflated 249 250 256 banknotes, see paper; see also inflated 126 128 135 137 157 Barmen 126 128 135 137 157 208 Beadle, Clayton 5 7 208 126 128 135 137 157 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 126 143 125 115						
Audemars, George2 Avtex249 249 250 250 256Avril Prima249249250 256 256banknotes, see paper; see also inflated viscose rayons126 Barmen128 128Barren128 208135137157 208Beadle, Clayton5 57 128 1277 128 99101 103105115 115 methodology						
Avtex 249 250 256 Avril Prima 249 249 250 256 banknotes, see paper; see also inflated 249 250 256 banknotes, see paper; see also inflated 126 128 135 137 157 Barmen 128 126 128 135 137 157 Beadle, Clayton 5 7 208 7 128 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 143	-		136	137		
Avril Prima 249 banknotes, see paper; see also inflated	-					
banknotes, see paper; see also inflated viscose rayons Barker, S.W. 126 Barmen 128 Bayer Co 126 128 135 137 157 208 Beadle, Clayton 5 7 Beaunit Mills 127 128 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143			250	256		
$\begin{array}{c ccccc} viscose rayons \\ Barker, S.W. & 126 \\ Barmen & 128 \\ Bayer Co & 126 & 128 & 135 & 137 & 157 \\ & & & & & & \\ & & & & & & \\ & & & & $	Avril Prima	249				
$\begin{array}{c ccccc} viscose rayons \\ Barker, S.W. & 126 \\ Barmen & 128 \\ Bayer Co & 126 & 128 & 135 & 137 & 157 \\ & & & & & & \\ & & & & & & \\ & & & & $	hanknotes see paper: <i>see also</i> inflated					
Barker, S.W.126Barmen128Bayer Co126128135137157 208 208Beadle, Clayton57Beaunit Mills127128J.P. Bemberg A G511969798 99 101103105115methodology126143143143						
Barmen 128 Bayer Co 126 128 135 137 157 208 208 208 128 135 137 157 Beadle, Clayton 5 7 7 128 127 128 127 128 11 96 97 98 99 101 103 105 115 methodology 126 143		126				
208 Beadle, Clayton 5 7 Beaunit Mills 127 128 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 143		128				
208 Beadle, Clayton 5 7 Beaunit Mills 127 128 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 143	Bayer Co	126	128	135	137	157
Beaunit Mills 127 128 J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 143	2	208				
J.P. Bemberg A G 5 11 96 97 98 99 101 103 105 115 methodology 126 143 105 115	Beadle, Clayton	5	7			
99 101 103 105 115 methodology 126 143		127	128			
99 101 103 105 115 methodology 126 143	J.P. Bemberg A G	5		96	97	98
methodology 126 143	-	99	101	103	105	115
	methodology	126				
1	output	140	141			

<u>Index Terms</u>	<u>Links</u>				
silk	5				
Bemliese	144	146	261	262	264
Bernigaud, Count L.M.H., Comte de	3	4			
Chardonnet					
see also Chardonnet					
Bevan, E.J.	5	6	7	8	37
	105	156	174		
bleaching	56	200	200	221	
Boerstoel, H.	199	200	208	221	
Bonded Fibre Fabrics	262 126				
Boss, E. British Celanese Ltd.	120	158	208		
British Cellulose Co. Ltd.	14	158	208		
Bronnert, E.	94	100	105		
Broiniert, E.	74	105	105		
carbamate derivatives	19				
Celanese	157	158			
Cellit	157				
cellulose acetate	156	157	158	159	160
	161	162	163	164	165
	166	167	168	200	201
fibre structure	208				
products	157	158	160		
production	158	159	160	237	277
1 (71	278	279	280	281	282
secondary fibres	160	161	162	163	164
anna artí an	165	166	167	168	229
properties	209 227	210 228	211 232	222	225
cellulose derivatives, unstable see cellulose	221	220	232		
cellulose/urea systemsnitrite, methylol					
cellulose and cellulose/urea systems					
cellulose fibres, regenerated; see also wood					
fibre					
crosslinking	231				
dissolution, see solvents					
diversity	201				
fineness	201				
history	1–20				
lyocell, <i>see</i> lyocell	265 02				
markets/production market trends	265–82 282	283	284	285	286
market trends	282 287	283	284 289	285	280
by spinning route	287	200	209		
unspun	253	284			
molecular characterization	123	124	125	202	203
	204	205	206	202	
morphology of	201	202			
properties	189	199	208	226	227
	228	231	232		

<u>Index Terms</u>	<u>Links</u>				
absorbency	143	144	145	270	271
Ş	276	277			
comparative	209	210	211		
density	212	213	214		
durability	228	229	230		
elasticity	222	223	224	225	226
5	230	231			
methylol cellulose	184	185	186		
moisture absorption	212	213	214		
tensile strength	214	215	216	217	218
-	219	220	221	222	
and viscose process	53	54	55	56	
wet collapse	270	271			
research and development	103	104	105	106	107
-	113				
sodium carboxymethyl cellulose (CMC)					
fibres	171	172			
steam explosion	20				
structure of	199	202	203	204	205
	206	207	208	217	218
crystalline	204	206	207	208	219
	220	230			
thermodynamic requirements for	175	176			
viscose, see viscose					
cellulose/hydrazine system	194				
cellulose membranes	15	147	148		
cellulose nitrate	2	3	4	10	200
	235				
see also Chardonnet silk					
denitration	3	4			
cellulose nitrite	178	179	180	181	
fiber properties	179	180			
recycling	180	181			
cellulose/phosphoric acid	194	195	196		
cellulose solvent systems, see solvents					
cellulose triacetate	168	200	201		
fibre structure	208				
properties	209	210	211	227	229
	231				
cellulose/urea systems	186	187	188	189	

fibre properties recycling cellulose xanthate

see also viscose Chardonnet. H.B. Chardonnet silk

This page has been reformatted by Knovel to provide easier navigation

<u>Index Terms</u>	Links				
see also viscose					
flammability	2	4	5		
price	101				
chemical recovery, see recycling					
cigarette filter tow	165	166	167	270	
continuous spinning	125	126	127	128	130
	245	246			
cordenka	200	221			
cotton	2	216			
production	275	276	286		
qualities	238				
shortages	238	240			
spinning	238	24			
substitutes	240	246	248	249	250
	251	252	253		
see also, rayon					
cotton linter	107				
Coulsey, H.A.	207				
Courtauld Samuel & Co Ltd.	8	9	10	11	208
	235	239	240	274	
alginate fibres	169	170			
banknotes	251				
cellulose acetate products	157	158	160		
cotton substitutes	250	251	252	253	
economic strategies	14				
history	8	9	10	11	235
	240				
lyocell	14	15	16	17	18
	19	64		100	•••
productivity	12	13	14	138	239
1 • 1	240	243			
spun-laid nonwovens	261	<u> </u>	175		
Tencel	63	65	175		
Courtelle	14				
Cox, Norman	243	200	247		
crimping Creates William	71 88	200	247		
Crooks, William	88 5	89	7	8	27
Cross, C.F.		6	7	8	37
Complexister DIE	105	156	174		
Cumberbirch, R.J.E.	214 10	216 95	200	225	
cuprammonium rayon	10		200	235	
disadvantages future of	101	148 148	149	150	199
history	88–107	148	149	130	199
labour productivity	137	138	139	140	
	137	138	139	201	
morphology	140 95	141 96	142 100	102	103
output	95 140	96 279	100	102	105
pr ocess	88–155	217			
process chemical solution	88–133 108	109	110	111	
circuitear solution	100	107	110	111	

fabric industry

<u>Index Terms</u>	<u>Links</u>				
Farbenfabriken Bayer see Bayer Co					
fibre industry	274				
fibres, see cellulose fibres					
Fibrid	167	•••			
fibrillation, lyocell	63	230	240		
Fibro	201 13	208 238	240 239	241	242
filament, cellulose production	279	238 280	239 281	241 282	242
flame retardant (FR) rayons	279	280 254	251	282 256	
Foltzer, Joseph	93	234 94	255	250	
Ford, J.E.	208				
Fortisan	160	200	208	215	221
	222	227			
Franchimont, A.	156				
Fremery, M.	5	91	92	94	103
	105	138			
Galaxy	253	256			
General Artificial Silk Co.	7				
Glanzstoff silk	3	11	95	96	98
Glover, Walter	241				
guncotton	2				
Hagen, W.G.	135				
hank spinning	119	127			
Harrop, J.	137				
Hearle, J.W.S.	156–73		199–234		
Hermans, P.H.	213	232			
high-tenacity yarn	200	250			
high wet modulus rayons (HWM) Hoechst	248 274	250			
Hoermann, O.	274 156				
Hofmann, H.	127				
Hooke, Robert	127	2			
hosiery	236	237			
artificial silk	3	5	235	236	237
staple fibre	241				
hydroentanglement (HE) bonding	271	272			
ICI	274				
Iijima, H.	120				
Industrial Rayon Corporation (USA)	11	127	128	244	
industrial yarns	242	243	244	245	246
inflated viscose rayons	251	252			
Ingham, C.E.	135				
Ishida, F.	129	-			
ITT Rayonier	174	249			
Iwase, K.	131	133			
Johnson, T.F.M.	273-89				

Index Terms	<u>Links</u>				
JPB	128				
Kamide, Kenji	20	88–155			
Kevlar	199	221	-	0	
Kew laboratories	5	6	7	8	
knitting	236	237			
Koppe, Paul	8				
Kurashiki Rayon	250				
Laminariae see alginate fibres					
lamp filaments	3	6			
Lancashire Cotton Corporation	14				
Lehner Artificial Silk Ltd.	3	103			
Lenzing	19				
Liebermann, C.	156				
Lilienfeld	200				
liquid crystal fibres	201				
lithium chloride/dimethyl acetamide	190	191	192	193	194
fibre properties	191	192			
Little, A.D.	7	156	157		
Lönnberg, Bruno	22-36				
Lustron Company	160				
Luvisca	236				
lyocell	200	201			
fibrillation	63				
history of	14	15	16	17	18
	19				
molecular structure	207	208			
nonwovens	264				
papers	258	260			
production	277	278	280	281	282
properties	63	172			
lyocell process	62	63	65	66	
amine oxide technology	63	64	65		
blending	63				
crimping, cutting and baling	71				
fibre drying	71				
fibre treatments	70				
fibre washing	69	70			
pulping	66				
raw materials	62				
solution filtration	68				
solution making	66	67			
solution transport	67	68			
solvent recovery	17	71	72	73	
spinning	17	18	68	69	
McCorsley, Clarence C.	17	18			
Mack, C.	214	216			
Makita, M.	130	210			
	100				

38				
	æ			

<u>Index Terms</u>	<u>Links</u>				
membranes see cellulose membranes					
Mercer, John	88	89			
methylol cellulose	181	182	183	184	185
-	186				
fibre properties	184	185	186		
solvent recycling	186				
Michelin Research	195				
Miles, G.	156				
Mitsubishi Rayon Co.	262	263			
Miyamoto, I.	112	114			
Miyazaki, T.	126	130	132		
modal staple, see staple fibres					
Moroe, I.	131	133			
Morton, W.E.	212	216	217	222	223
	225	227			
Müller spinbath	8	9	10	15	236
-	248				
Nadin, L.	156				
natural fibres	274	275			
see also cotton, silk and wool					
net process	132	133	134		
Nishiyama, Kazunari	88-155				
nitrate process	101	102	105	106	
nitrocellulose	200				
NMMO technology	15	16	17	20	174
	175	177			
see also amine oxide technology and	lyocell				
Nobel, Alfred	2	6			
	252	257 (7			

see also annie okide teennology and ij					
Nobel, Alfred	2	6			
nonwovens	253	257-67			
disposable	258				
dry-laid	257	258	259		
markets	265	266	267		
spun-laid	260	261	262	263	264
wet-laid	259	260			
Northolt, M.G.	205				
paper	6	15			
banknotes	251				
lyocell	258	260			
rayon, see inflated viscose rayons					
Pauly, Hermann	5	91	92	94	97
	104				
Payen, Anselme	1				
Pears, Andrew	6	7			
Pellerin, Augustin	238				
Planova	134	148			
Plonsker, H.R.	223				
polyester market trends	282	283	284	285	289
polymerization, degree of	202	214	216		

<u>Index Terms</u>	<u>Links</u>				
polynosic staple fibres	200	248	249		
polypropylene	200	275	276	283	
F J F F J			_,,,		
rayon see also cuprammonium rayon and visco	ose				
alloy rayons	256	257			
flame retardant	253	254	255	256	
high wet modulus (HWM)	248	250			
hydroentanglement (HE) bonding	271	272			
inflated viscose rayons	251	252			
recycling	174	180	181	238	
cellulose nitrite	180	181			
cellulose/urea systems	189				
cuprammonium process	135	136	137		
lyocell process	71	72	73		
methylol cellulose	186				
soda	43	44			
solvents	17				
viscose process	57	58	59	60	61
	237	238			
crystallization	59				
degassing	58	59			
effluent treatment	60				
evaporation	59				
spinbath clarification	59	60			
waste	135	136	137	237	238
renewable resources	62				
Ribbonfil	201				
Rushbrook, G.H.	10				
Saito, M.	124				
Sarille	201				
Schützenberger, P.	156				
Schweizer, Matthias Eduard	4	88	89	104	
seaweed, see alginate fibres					
second generation fibres see cellulose fibres					
regenerated					
Seraceta	158				
SI Fibre	252	255	256		
silk	1	2			
see also Chardonnet silk					
Smith, S.B.	207				
Snia Viscosa	158	186	240	249	
sodium carboxymethyl cellulose (CMC)	171	1.50			
fibres	171	172			
solvent recycling see recycling					
solvents, cellulose					10
amine-oxide	14	15	16	17	18
	19	63	64	65	72
see also lyocell and NMMO technology		-	100	100	110
cupro	4	5	108	109	110

<u>Index Terms</u>	<u>Links</u>				
see also cuprammonium rayon	111	112	113	114	
DMSO	178	181	182	183	184
cellulose xanthate	5	6	7	8	9
	10	11	12	13	14
	19	248			
see also viscose					
novel	176	177			
carbamate derivatives	19				
cellulose/hydrazine system	194				
cellulose nitrite	178	179	180	181	
cellulose/phosphoric acid	194	195	196		
cellulose/urea systems	186	187	188	189	
lithium chloride/dimethyl acetamide	190	191	192	193	194
methylol cellulose	181	182	183	184	185
	186				
spinning technology	273	107	100		
advancing reel method	126	127	128		
cellulose nitrite solutions	179	180			
cellulose/phosphoric acid cellulose/urea solutions	195 191	196			
continuous belt method	191	192 128			
	120	128	127	128	130
continuous spinning	245	246	127	120	150
cotton system	243	240			
Dobson and Barlow spinning table	238	24			
fibre properties	189				
hank spinning	119	127			
history	1	2	3	4	5
motory	6	- 7	8	9	Ũ
lithium chloride/dimethyl acetamide	191	192	Ū.	-	
lyocell	68	69			
methylol cellulose solutions	184	185	186		
net process	132	133	134		
simple continuous method	126	128			
simple roller method	127	128			
stretch-spinning	5	95	96	97	98
	99	100	101	102	103
	115	116	117	118	119
	129				
commercial	119				
dynamics of	115	116	117	118	119
yarn denier	99	100	101	164	
technical innovation	129	130	131	132	
velocity	129	134	135		
viscose	50	51	52	53	
,	243	245	246	110	100
wet-spinning	14	114	115	119	120
anun laid nonwayang	121	122	123	139 264	
spun-laid nonwovens Stanford, E.C.C.	261 168	262	263	264	
Stanfold, E.C.C.	100				

Index Terms	<u>Links</u>				
staple fibres	11	273			
cotton substitutes	240	246	247	248	249
	250	251	252	253	
crimping	200	247			
industrial yarns	242	243	244	245	246
modal staple	200	201	216	227	229
	237	238	248		
product development	241				
productivity	240	241			
polynosic fibres	200	248	249		
production	279	280	281	282	
tyre yarns	11	242	244	246	249
use in carpets	14	247			
wool substitutes	246	247	248		
steam explosion	20				
Stearn, C.H.	6	7	104	105	
stretch-spinning	5	95	96	97	98
	99	100	101	102	103
	115	116	117	118	119
	129				
commercial	119				
dynamics of	115	116	117	118	119
yarn denier	99	100	101	164	
Super AB	264				
Swan, J.W.	3	6	89	105	106
synthetic fibres	14	259	260	265	266
	270	273	275		
acrylic	282	283	284	285	286
polypropylene	274	275	276	283	
polyester, market trends	282	283	284	285	289
Tachikawa, S.	248				
tampons	252	256	257	258	259
see also SI Fibre					
Teikoku Jinken	138				
Tenasco	201	208	218		
Tencel	19	63	65	175	199
	207	228			
see also lyocell					
properties	216				
tension drying	127				
Tetley, H.G.	8	10			
textile industry	273	274			
Thiele, E.	95	96	97	98	99
	105	115	119	138	
Topham, C.F.	6	7	105		
candle filter	7				
spinning box	7	119			
spinning pump	7				
tow	273				

<u>Index Terms</u>	<u>Links</u>				
toxic shock	257				
Tricel	160	208			
Tufcel	249	200			
Turbak, Albin		74–98			
Twaron	199	221			
tyre yarns	11	242	244	246	249
5 5					
unspun markets	253	284			
Urban, J.	5	91	92	94	105
	138				
Urquhart, A.R.	212	213			
Vereinigte Glanzstoffe Fabriken (VGF)	5	10	11	94	99
	105	115			
output	95	96	100		
productivity	138	240			
Viloft	201	254			
viscose	200	235			
alloys	256	257			
crimped staple	200	247			
filament	13	238	239		
production	279	280	281	282	
history of	4	5	6	7	8
5	9	10	11	12	13
	14	15	37	236	
industrial yarns	242	243	244	245	246
inflated viscose rayons	251	252			
labour productivity	137	138			
molecular structure	206	207			
nonwovens	257-72				
output	10	11	12	13	14
	15	102			
price	101				
process unreliability	7				
production	11	14	237	238	239
	244	277	278	279	
properties	209-32	242	249	250	251
strength	242	243			
raw materials	39	40	41	42	
staple <i>see</i> staple fibres					
use in carpets	14	247			
waste	237	238			
viscose process	37–61	201			
additives	10	50			
ageing	48–9	49			
alkcell transportation	46				
bleaching	56				
chemical recovery	57-61				
deaeration	50				
dyeing	236				

Index Terms Links electron processing environmental concerns and fibre properties filament regeneration filtration finishing irradiative depolymerisation knitting mercerizing modifiers pressing shredding skin soda recovery spinning steeping stretching tow-laying washing xanthation Viscose Spinning Syndicate Ltd. Visil waste recovery see recycling Wardle and Davenport Weibel, J.P. Weston, Edward wet collapse 62-87 White, Patrick Wilkes, Andrew G. 37-61 wood fibre, see also cellulose fibres 22-34 bleaching technology delignification sources wood pulp production long-term trends uses, see lyocell wood pulping methods acid bisulphite processes alkaline pulping environmental impact Milox concept modern approach prehydrolysis Kraft processes sulphite-soda processes Woodings, Calvin 1 - 21156 - 73235-72 wool substitutes

<u>Index Terms</u>	<u>Links</u>				
wound dressings	170	171	172	263	
yarn	273	274			
denier	99	100	101	164	
high-tenacity	200				
industrial	242	243	244	245	246
knitted	287	288			
markets	286	287			
tyre	11	242	244	246	249
woven	287				
xanthate process	5	6	7	8	9
	10	11	12	13	14
	19	47	48	53	174
	248				