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220 5 PROTEIN STRUCTURE AND DRUG DISCOVERY

Learning goals

1. To understand the concept of protein folding: the process by which the
one-dimensional amino acid sequence encoded by a gene takes up a
definite and biologically active three-dimensional conformation.

2. To recognize that steric considerations severely limit the conformations
of the polypeptide chain, with the Sasisekharan-Ramakrishnan-
Ramachandran plot showing the allowed states of the mainchain.

3. To get to know the 20 sidechains—the actors that play all the roles in all
the proteins.

4. To understand the hydrophobic effect and its implications for the
structures and energetics of folded proteins.

5. To generalize the ideas of sequence alignment to the alignment of
protein sequences by structural superposition.

6. To know the relationship between divergence of sequence and diver-
gence of structure in protein evolution.

7. To become familiar with classification of protein folding patterns, as
presented for example, by the Structural Classification of Proteins
(SCOP) database and web site.

8. To know some basic approaches to the prediction of protein structure
from amino acid sequence, and the state of the art as revealed in the
Critical Assessment of Structure Prediction (CASP) programmes.

9. To understand the basis of Hidden Markov Models, the most powerful
methods now available for deducing affinities between proteins from
their sequences.

10. To know the basic requirements for a successful drug, and understand
some approaches to drug discovery and design.

Introduction

The great variety of three-dimensional structures and functions of proteins
arise in molecules that share underlying common features. Chemically, pro-
teins are like strings of Christmas tree lights: Each protein consists of a linear
(that is, unbranched} polymer mainchain with different amino acid sidechains
attached at regular intervals (Fig. 1.6). The wire linking the string of lights
corresponds to the repetitive mainchain or backbone, and the variable
sequence of colours of the lights corresponds to the individuality of the
sequence of sidechains.




INTRODUCTION

The amino acid sequence of a protein is specified by the nucleotide sequence
of a gene. The three-dimensional structures of protein molecules are deter-
mined, without further participation of nucleic acids, by the one-dimensional
sequences of their amino acids. Proteins fold spontaneously to their native
conformations.

How does the amino acid sequence encode the three-dimensional structure?
Any possible folding of the mainchain places different residues into contact. The
interactions of the sidechains and mainchain, with one another and with the
solvent, and the restrictions placed on sidechain mobility, determine the relative
stabilities of different conformations. This is a consequence of the second law of
thermodynamics, which states that systems at constant temperature and pres-
sure find an equilibrium state that is a compromise between comfort (low
enthalpy, H) and freedom (high entropy, S), to give a minimum Gibbs free energy
G =H — TS, in which T is the absolute temperature. (In human relationships,
marriage is just such a compromise.)

Proteins have evolved so that one folding pattern of the mainchain is thermo-
dynamically significantly better than other conformations. This is the native
state. If we could calculate sufficiently accurately the energies and entropies of
different conformations, and if we could computationally examine a large
enough set of possible conformations to be sure of including the correct one, it
would be possible consistently to predict protein structures from amino acid
sequences on the basis of a priori physicochemical principles. There has been
progress towards this goal but it has not yet been achieved.

The mainchain of each protein in its native state describes a curve in space.
We now know the structures of 30 000 proteins (including many replicates or
single-site mutants), and see in them a great variety of spatial patterns. The first
problem in analysing these structures is one of presentation. Figure 5.1 illus-
trates, for the small protein acylphosphatase, the difficulty in interpreting a fully-
detailed, literal representation, and the kind of simplified pictures that computer
programs produce to give us visual access to the material. An active cottage
industry has produced many different simplified representations. A skilled
molecular illustrator will combine them to show different parts of a structure in
finely-tuned degrees of detail.

The central frame of Fig. 5.1 shows the course through space of the main-
chain of acylphosphatase. Two regions at the front of the picture have the form
of helices—like classic barber’s poles—with their axes almost vertical in the
orientation shown. Acylphosphatase also contains four strands of sheet. These
too are approximately vertical in orientation. The four strands interact laterally
to stabilize their assembly into a B-sheet. In the bottom frame, helices and
strands are represented as ‘icons’: helices as cylinders and strands of sheet
as large arrows. The top frame of Fig. 5.1, showing the most detailed represen-
tation of the structure, including mainchain and sidechains, indicates the
importance of simplification in producing an intelligible picture of even a small
protein.
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222 5 PROTEIN STRUCTURE AND DRUG DISCOVERY

Fig. 5.1 Proteins are sufficiently complex structures that it has been necessary to develop
specialized tools to present them. This figure shows a relatively small protein,
acylphosphatase, at three different degrees of simplification. Top: complete skeletal model;
mainchain bolder than sidechains. Centre: the course of the chain is represented by a
smooth interpolated curve, the chevrons indicating the direction of the chain. Bottom:
schematic diagram, in which cylinders represent helices and arrows represent strands of
sheet. The solid objects in the picture are represented as'translucent’ by altering lines that
pass behind them to broken lines. It is possible to superpose different representations
visually by rotating the page 90° and viewing in stereo (but not for too long}).



PROTEIN STABILITY AND FOLDING

Protein stability and folding

Although it is not yet possible to predict the structures of proteins from basic
physical principles alone, we do understand the general nature of the interactions
that determine protein structures.

To form the native structure, the protein must optimize the interactions within
and between residues, subject to constraints on the space curve traced out by the
mainchain. Preferred conformations of the mainchain bias the folding pattern
towards recurrent structural patterns: helices, extended regions that interact to
form sheets, and several standard types of turns.

The Sasisekharan-Ramakrishnan-Ramachandran plot describes
allowed mainchain conformations

To a good approximation, the mainchain conformation of each non-glycine
residue is restricted to two discrete conformational states.

A fragment of the linear polypeptide chain common to all protein structures is
shown in Fig. 5.2. Rotation is permitted around the N-Coa and Ca-C single bonds
of all residues (with one exception: proline). The angles ¢ and ¢ around these
bonds, and the angle of rotation around the peptide bond, w, define the confor-
mation of a residue. The peptide bond itself tends to be planar, with two allowed
states: trans, w =~ 180° (usually) and cis, w = 07 {rarely, and in most cases at a pro-
line residue). The sequence of ¥, & and w angles of all residues in a protein defines
the backbone conformation.

The principle that two atoms cannot occupy the same space limits the values of
conformational angles. The allowed ranges of & and y, for w = 180° fall into

Fig. 5.2 Definition of conformational angles of the polypeptide backbone.
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Fig. 5.3 A Sasisekharan-Ramakrishnan-Ramachandran plot of acylphosphatase (PDB
code 2Acy). Note the clustering of residues in the o and 3 regions, and that most of
the exceptions occur in Glycine residues (labelled G).

defined regions in a graph called a Sasisekharan-Ramakrishnan-Ramachandran
plot—usually shortened to ‘Ramachandran plot’ (see Fig. 5.3). Solid lines in the
figure delimit energetically-preferred regions of ¢ and \s; broken lines in the
figure delimit sterically-disallowed regions. The conformations of most amino
acids fall into either the oy or 8 regions. Glycine has access to additional conforma-
tions. In particular it can form a left-handed helix: o;. Figure 5.3 shows the typica.
distribution of residue conformations in a well-determined protein structure
Most residues fall in or near the allowed regions, although a few are forced by the
folding into energetically less-favourable states.

The allowed regions generate standard conformations. A stretch of consecutive
residues in the o conformation (typically 6-20 in native states of globular proteins
generates an o-helix. Repeating the B conformation generates an extende:Z
B-strand. Two or more B-strands can interact laterally to form B-sheets, as -
acylphosphatase (Fig. 5.1). Helices and sheets are ‘standard’ or ‘prefabricated’ stru.-
tural pieces that form components of the conformations of most proteins. They ar-
stabilized by relatively weak interactions, hydrogen bonds, between maincha:~
atoms. In some fibrous proteins virtually all of the residues belong to one of thes:-
types of structure: wool contains «-helices; silk B-sheets. Amyloid fibrils, formed :-.
disease states by many proteins, also contain extensive 3-sheets. Steric interactio::
permit a stretch of consecutive residues to be all in the ay conformation or ai. .-
the B conformation, but disallow a helix followed by a strand and vice versa.




PROTEIN STABILITY AND FOLDING

Typical globular proteins contain several helix and/or sheet regions, connected
by turns. Usually the ends of helix or strand regions appear on the surface of
a domain of a protein structure. They are connected by turns, or loops—regions
in which the chain alters direction to point back into the structure. Many but not
all turns are short, surface-exposed regions that tend to contain charged or polar
residues.

How does the mainchain choose among the possible allowed conformations?
What is unique about each protein is the sequence of its sidechains. Therefore
interactions involving sidechains must determine the mainchain conformation.

The sidechains

Sidechains offer the physicochemical versatility required to generate all the
different folding patterns. The sidechains of the twenty amino acids vary in:

+ Size The smallest, glycine, consists of only a hydrogen atom; one of the largest,
phenylalanine, contains a benzene ring.

+ Electric charge Some sidechains bear a net positive or negative charge at nor-
mal pH. Asp and Glu are negatively charged. Lys and Arg are positively charged.
(Charged residues of opposite sign can form attractive pairwise interactions
called salt bridges.)

+ Polarity Some sidechains are polar; they can form hydrogen bonds to other
polar sidechains, or to the mainchain, or to water. Other sidechains are elec-
trically neutral. Some of these contain chemical groups related to ordinary
hydrocarbons such as methane or benzene. Because of the thermodynami-
cally unfavourable interaction of hydrocarbons with water, these are called
‘hydrophobic’ residues. Congregation of hydrophobic residues in protein interi-
ors, predicted by W. J. Kauzmann before the first protein structures were deter-
mined, is an important contribution to protein stability. This effect is analogous
to the formation of droplets of oil in salad dressing (see Box: The hydrophobic
effect).

+ Shape and rigidity The overall shape of a sidechain depends on its chemical
structure and on its degrees of internal conformational freedom.

Protein stability and denaturation

What are the chemical forces that stabilize native protein structures? What is the
process by which a protein folds from an ensemble of denatured conformations
to a unique native state?

To address these questions, biochemists have studied the denaturation of pro-
teins in response to heat, or to increasing concentrations of urea or guanidinium
hydrochloride (commonly-used denaturants). Some measurements are static—
determination of the amount of native and denatured states at equilibrium under
different conditions, or the heat released at points along the transition. Others
are kinetic—measurement of rates of folding or unfolding, or identification of
structures that appear transiently during the process.
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The hydrophobic effect

The difference among the different amino acid sidechains in their prefer-
ences for aqueous or oil-like environments is one of the governing principles
of protein structure.

What is the hydrophobic effect? It is the sparing solubility of non-polar
solutes in water, arising from the microscopic structure of liquid water
around such solutes. Phase separation in oil-water mixtures—for instance,
salad dressing—is one common example. Another is that gases {unlike most
solids) are less soluble in water as the temperature increases. Readers with
whistling tea kettles will have heard low levels of sound prior to proper boil-
ing, as the dissolved air comes out of solution as the water is heated.

What is the origin of the hydrophobic effect? Cold water is a highly struc-
tured liquid. It contains many hydrogen bonds, which account for its high
heat of vaporization and low density. But water is even more highly ordered
around solutes than in the pure liquid. Methane dissolved in water—it is only
slightly soluble, but soluble enough to study—is surrounded by a cage of
water molecules called a clathrate complex. As a result, dissolving methane
in water makes the solvent even more ordered, lowering the entropy. The
natural tendency toward states of higher entropy inhibits the dissolving of
methane in water. This is why methane and other hydrocarbons are only very
slightly water-soluble. The solubilities of nonpolar gases decrease upon
heating—from an already small value in cold water—because as the tempera-
ture increases entropy plays an even more important role in determining the
equilibrium state.

The hydrophobic effect in aqueous solutions of simple nonpolar solutes was
well known to physical chemists when W. J. Kauzmann, in 1959, recognized
its importance for protein structure.

The nonpolar sidechains of proteins are similar to oil-like solutes. Their
interaction with water is unfavourable. Kauzmann predicted that they would
be sequestered in protein interiors, away from the solvent. This oil-drop model
of protein interiors was confirmed by the X-ray crystal structures of globular
proteins. We now recognize also the importance of high packing densities
in protein interiors, and that it is better to regard the interior of a folded pro-
tein as more like a crystal than like an organic liquid. But the hydrophobic
effect has lost none of its significance.

The backbone must traverse the interiors of the protein, and carries with
it the polar N and O atoms of the peptide groups, which can interact with
other polar mainchain atoms and with polar sidechains such as threonine
or asparagine. Thus the interior is not completely oil-like. However, charged
residues are almost completely excluded from protein interiors; in rare cases
they form internal salt bridges. Conversely, the surface of a protein is not
exclusively charged or polar. About half the residues on the surface of a
protein are nonpolar.




PROTEIN STABILITY AND FOLDING

One important message is that proteins are only marginally stable. The native
state of globular proteins is typically only 20-60 k] mol~! (5-15 kcal mol~1) more
stable than the denatured state. This is the equivalent of about one or two
water-water hydrogen bonds.

Precisely why proteins have marginal stability is unclear. Some people believe
that it facilitates protein turnover. Others suggest that proteins are as stable as
they need to be so ‘why bother’ (less informally: there is no selective advantage
in) further optimizing the stabilizing interactions. We do know that the interac-
tions that stabilize native proteins are capable of producing protein structures
with much higher stabilities.

Suppose you are a globular protein in aqueous solution, and you want to
achieve a stable native state. Your major problem is the great loss of conforma-
tional freedom, relative to the ensemble of denatured states, that is exacted from
you in adopting a unique conformation. This entails a large reduction in entropy,
which is thermodynamically unfavourable. One way in which you can compen-
sate is to form a compact globular state, burying many residues in the interior
away from contact with water. The release of water from interaction with
the nonpolar atoms of the protein produces a compensating increase in entropy
arising from the hydrophobic effect (see Box).

That’s fine, but now you discover that to form the compact state you have
buried many polar atoms, including but not limited to mainchain nitrogen and
carbonyl oxygens. In the denatured state, these atoms make hydrogen bonds to
water. When buried in the interior, their hydrogen-bonding potential must some-
how be satisfied. (Don’t forget: one or two uncompensated hydrogen bonds and
you've blown it; your native state would be unstable.} A fairly general-purpose
solution that satisfies mainchain hydrogen-bonding potential is to form helices
or sheets.

There is a bonus: Formation of secondary structure also ensures that the
mainchain is in a stereochemically acceptable conformation, as limited by the
Sasisekharan-Ramakrishnan-Ramachandran plot. Residues in a-helices are all in
the a conformation; residues in strands of B-sheet are all in the g conformation.

How do you decide which regions should form helices or strands? Enthalpically,
helix and sheet are reasonably similar for most residues. However, entropically,
some sidechains are more hindered in helices than in strands; these prefer
strands. These effects bias the formation of secondary structures. Specific
sequences providing sidechain-mainchain hydrogen bonds form helix caps,
governing where o-helices begin and end.

How compact is the globular state required to be? You could achieve exclusion
of water from your interior by fairly loose packing—as long as no channel is
larger than 1.4 A in radius (the size of a water molecule). But the closer together
you can squeeze your atoms, the better advantage you can take of Van der Waals
forces, general forces of attraction between atoms that give matter its general
cohesion. Protein interiors are densely packed: the fitting together of the
sidechains is like a solved jigsaw puzzle. However, the puzzle pieces {the residues)
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are deformable, so the folding process is more complicated than the rigid
matching of pieces in ordinary jigsaw puzzles.

In summary, you have to find a conformation of the chain that simultaneously
solves all the following problems:

1. All residues must have stereochemically allowed conformations. This applies
to both the mainchain and the sidechains. Steric collisions would raise the
energy of the conformation and render it unstable.

2. Buried polar atoms must be hydrogen-bonded to other buried polar atoms. If
you miss out a few hydrogen bonds, the protein will prefer to form the dena-
tured state in order to allow these polar atoms to hydrogen-bond to solvent.

3. Enough hydrophobic surface must be buried, and the interior must be suffi-
ciently densely packed, to provide thermodynamic stability.

For most proteins, there is a unique solution of all these problems, and this
defines the native state. Some proteins change conformation when they bind
ligands, or pass through metastable states, as part of their mechanisms of function.

The fact that one conformation of a protein—the native state—has substantially
greater stability than other conformations is complex but not mysterious. It is a
question of optimizing the available interactions, and selecting sequences for
which this optimum is unique and substantially lower than others. For most
regions the local structure is determined by local interactions. Therefore if the
native state were not unique there would have to be more than one way to fit a
given set of pieces together. Given the chain constraints it is easy for evolution to
avoid this.

Protein folding

Suppose again that you are a protein, and that you are denatured. Now that you
understand how your native state is stabilized, how would you go about finding it?
Clearly you can't try all conformations—many years ago C. Levinthal calculated
that a simple conformational search, using reasonable numbers for speeds of
internal rotations, would require much too much time. Two circumstances
conspire to make the process by which proteins fold to their native states mysteri-
ous as well as complex.

First is the fact that proteins are only marginally stable. This implies that
any quasi-stable intermediate in protein folding must be even less stable, else the
folding process would get trapped in the intermediates. Indeed, for many pro-
teins, measurements of fractions of molecules in native and denatured states as a
function of temperature or denaturant concentration imply simple, two-state.
Native & Denatured equilibria in which undetectably few molecules are anything
but native or denatured. This confirms that any putative intermediates can have
no more than marginal stability. But this makes it difficult to follow the folding
transition structurally.

The second circumstance that makes protein folding mysterious is that the
denatured state is so heterogeneous that in the absence of stable intermediates
there is no convenient way to visualize the complete pathway.




APPLICATIONS OF HYDROPHOBICITY

Contrast protein folding with two other types of structure formation:

1. In assembling do-it-yourself furniture, one passes through a succession of
well-defined intermediate states. First one screws A to B in the native-like
conformation. The structure of the A-B fragment is determined and stabilized
purely by the interactions between A and B. Were it not for gravity, a stable
A-B intermediate would be formed. But proteins don’t have the luxury of
forming stable intermediates.

2. In assembling an arch from its voussoirs, the structure as a whole has no
stability until the keystone is inserted. Only the completed arch has independ-
ent stability, there are no stable intermediates, and the only way to assemble
the structure is by using scaffolding which is subsequently removed. But
proteins don’t have the luxury of using external scaffolding.

What proteins have to do is to work with unstable intermediates—like do-it-
yourself furniture in the presence of gravity—and to get the job finished before the
intermediates fall apart, or else to keep reforming them and trying again.

Identification of transient structure during protein folding can be achieved
experimentally by isotope exchange measurements. Prepare a sample of dena-
tured protein in which all hydrogen atoms are replaced by deuterium. (It is possi-
ble to separate signals from H and D in NMR experiments.) At various times
during refolding, in separate experiments, expose the sample to a pulse of
protons. After the native state is formed, detect where in the structure D & H
exchange occurred and when. Such studies justify the model that many proteins
fold by initial formation of a ‘molten globule’ containing some native secondary
structure, but without the tertiary structural interactions that lock the molecule
into its final conformation. This is followed by a hierarchical condensation to
form supersecondary structure, etc., leading eventually to accretion of the native
state. For most proteins, there is no evidence for non-native structures as inter-
mediates along productive folding pathways, although non-native structures—
such as incorrect proline isomers—can divert and thereby slow down the folding
process.

The conclusion is that structures of local regions are determined primarily
by local interactions, and, although these interactions may be inadequate to sta-
bilize local regions to the point where they can be isolated, they are good enough
to provide a low-energy pathway for structure assembly.

Applications of hydrophobicity
Using a hydrophobicity scale that assigns a value to each amino acid, we can
plot the variation of hydrophobicity along the sequence of a protein. This is
called a hydrophobicity profile. Analysis of hydrophobicity profiles has been
used to predict the positions of turns between elements of secondary structure,
exposed and buried residues, membrane-spanning segments, and antigenic sites.
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Example 5.1 Use of hydrophobicity profiles to predict the positions of turns
between helices and strands of sheet

Figure 5.4a shows the hydrophobicity profile of hen egg white lysozyme. It
has pronounced minima at the following residues: 17, 44, 70, 100, and 117.
Figure 5.4b shows the structure of hen egg white lysozyme, from which it is
possible to check the correlation between turns in the structure and the posi-
tions of the minima in the hydrophobicity profile.
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0.75r

Hydrophobicity

0.75
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0
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Fig. 5.4 (a) Hydrophobicity profile of hen egg white lysozyme. (Produced using
the Primary Structure Analysis tools available through http://www.expasy.org.)
(b) Structure of hen egg white lysozyme. Regions corresponding to minima in the
hydrophobicity plot are shown in red.
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APPLICATIONS OF HYDROPHOBRICITY

__>

Four of the major minima in the hydrophobicity profile appear at or near the
positions of turns. Another minimum occurs in a surface-exposed region, but
in the structure this corresponds to a strand of a B-sheet rather than to a
turn. One of the minima is within a helix. Conversely, many of the turns do
not correspond to pronounced minima in the hydrophobicity plot. Hydro-
phobicity profiles provide useful information, but do not unambiguously
predict all turns in a protein structure,

Example 5.2 The helical wheel

O. B. Ptitsyn observed that w«-helices in globular proteins often have
a ‘hydrophobic face’ turned inwards towards the protein interior, and a
‘hydrophilic face’ turned outwards towards the solvent. Each residue in an
a-helix appears at a position 100° around the circumference from its prede-
cessor. Therefore, to achieve Ptitsyn’s effect, the sequence of residues should
alternate between hydrophobic and hydrophilic with a periodicity of approx-
imately four.

To check this relationship, the residues can be projected onto a plane
perpendicular to a helix axis, a diagram called a helical wheel. This example
shows the sequence of an a-helix of sperm whale myoglobin. Charged and
polar residues appear in boldface type; others in ordinary type.

39F £aE
I
22A 256 32
26Q
21V
oy 281
23G
© 200 aan
27D
34K 31R

The helix has a hydrophobic face—which points to the inside of the struc-
ture, and a hydrophilic face—which points outside. From such a pattern of
hydrophobicity we can predict whether a region of an amino acid sequence
is likely to form an a-helix in the native protein structure.

The next box shows a PERL program to draw helical wheels.
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PERL Example 5.1 A program to draw helical wheels

#!/usr/bin/perl

#helwheel.pl —- draw helical wheel

#usage: echo DVAGHGQDILIRLFKSH | helwheel.prl > output.ps
# or echo 20DVAGHGQDILIRLFKSH | helwheel.prl > output.ps
# the numerical prefix sets the first residue number

# The output of this program is in PostScript (TM),
# a general-purpose graphical language

# The next section prints a header for the PostScript file

print <<EOF;

%!PS-Adobe-

%%BoundingBox: (atend)

%1 0 0 setrgbcolor

Ynewpath

%37.5 161 moveto 557.5 161 lineto 557.5 681 lineto 37.5 681 lineto
%closepath stroke

297.5 421. translate 2 setlinewidth 1 setlinecap

/Helvetica findfont 20 scalefont setfont 0 0 moveto

EOF

# Define fonts to associate with each amino acid

$font{"G"} = "Helvetica"; $font{"A"} = "Helvetica"; $font{"S"} = "Helvetica”
$font{"T"} = "Helvetica"; $font{"C"} = "Helvetica"; $font{"V"} = "Helvetica"
$font{"I"} = "Helvetica"; $font{"L"} = "Helvetica"; $font{"F"} = "Helvetica";
$font{"Y"} = "Helvetica"; $font{"P"} = "Helvetica"; $font{"M"} = "Helvetica";
$font{"W"} = "Helvetica"; $font{"H"} = "Helvetica-Bold"; $font{"N"} = "Helvetica-Bold";

$font{"Q"} = "Helvetica-Bold"; $font{"D"} = "Helvetica-Bold"; $font{"E"} = "Helvetica-Bold";
$font{"K"} = "Helvetica-Bold"; $font{"R"} = "Helvetica-Bold";

$_= <3 # read line of input j

chop();$_ =~ s/\s//g; # remove terminal carriage return and blanks i

if (8. =" s/~(\d+)//) # if input begins with integer 1
{$resno = $1;} # extract it as initial residue number

else {$resno = 1} # if not, set initial residue number = 1

$radius = 50; # initialize values for radius,

$x = 0; $y = -50; $theta = -90; # x, y and angle theta

# print light gray spiral arc as succession of line segments, 10 per residue

$npoints = 10*(length($_) - 1);

print "0.8 0.8 0.8 setrgbcolor\n"; # set colour to light gray

print "newpath\n"; # draw spiral arc

printf ("%8.3f %8.3f moveto\n",$x,$y);

foreach $d (1 .. $npoints) { # 10 points per residue
$theta += 10; $radius += 0.6; # increase radius and theta
$x = $radius*cos($theta*0.01747737); # calculate new value of x
$y = $radius*sin($theta*0.01747737); # and y
printf("%8.3f %8.3f lineto\n",$x,$y);

}

print "stroke\n";

# print residues and residue numbers

$radius = 50; # reinitialize values for radius,

$x = 0; $y = -50; $theta = -90; # x, y and angle theta

print "0 setgray\n"; # set colour to black
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-

foreach (split ("",$.)) {
print "/$font{$_} findfont ";
print "20 scalefont setfont\n";
printf ("%8.3f %8.3f moveto\n",$x,$y);
print " ($resno$_) stringwidth";
print " pop -0.5 mul -7 rmoveto\n";
print " ($resno$_) show\n";
print "% $theta $resno$_\n";

# loop over characters from input line
# set font appropriate

# for this amino acid

# move to current point

# adjust position to center residue

# identification on point on spiral
# print residue number and id

$theta += 100; $radius += 6; # set new values of angle, radius
$x = $radius*cos($thetax0.01747737); # compute new values of x
$y = $radius*sin($theta+0.01747737); # and y
$resno++; # increase residue number
}
print "showpage\n"; # postscript signals to
print "%%BoundingBox:"; # print
$x1 = 297.5 - 1.05%$radius; # x
$xr = 297.5 + 1.05*x$radius; # and
$yb = 421. - 1.05*$radius; # y
$yt = 421. + 1.05*$radius; # limits

printf ("%8.3f %8.3f %8.3f %8.3f\n",$x1,$xr,$yb,$yt);

print "showpage\n";
print "%%EOF\n"; # and wind up

Superposition of structures, and
structural alignments

Some aspects of sequence analysis carry over fairly directly into structural analysis,
some must be generalized, and others have no analogues at all.

As in the case of sequences, a fundamental question in analysing structures is
to devise and compute a measure of similarity. If two molecules have identical or
very similar structures, we can imagine superposing them so that corresponding
points are as close together as possible. Then the average distance between corres-
ponding points is a measure of the structural similarity. In practice it is conven-
tional to report the root-mean-square deviation of the corresponding atoms:

r.m.s. deviation = _/ Yd?/n

where d, is the distance between the i** pair of atoms (one atom from each struc-
ture) after optimal fitting, and n is the number of points.

This assumes that we have prespecified the correspondence between the
points; that is, the alignment.

If the correspondence is not known, we must first determine it and only then cal-
culate the r.m.s. deviation of the alignable substructures. If each point corresponds to
an atom representing the successive residues of a protein or nucleic acid structure
(the Co atoms of proteins or the phosphorus atoms of nucleic acids), the problem is
literally a question of alignment (= assignment of residueresidue correspondences)
(see Box, page 235). Indeed, determination of residue-residue correspondences via
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structural superposition of two or more proteins is a powerful method of sequence
alignment. Because structure tends to diverge more conservatively than sequence
during evolution, structure alignment is a more powerful method than pairwise
sequence alignment for detecting homology, and aligning the sequences and
measuring the structural similarity of distantly-related proteins. (See Box, page 235.)

Example 5.3 Structural alignment of y-chymotrypsin and Staphylococcus
aureus epidermolytic toxin A

Chymotrypsin and S. aureus epidermolytic toxin A are both members of the
chymotrypsin family of proteinases. Figure 5.5 shows a structural superposition
of PDB entries 8GcH (y-chymotrypsin) (black) and 1agj (S. aureus epidermolytic
toxin A) (red). The molecules share the common chymotrypsin-family serine
proteinase folding pattern, and the Ser-His-Asp catalytic triad (thicker lines).

A sequence alignment derived from the superposition follows:

8gch CGVPAIQPVLIVNG---- EEAVP--GS----WPWQVSLQ-DKTG
lagj -—--—----————- EVSAEEIKKHEEKWNKYYGVNAFNLPKELFSKVDEKDR-QKYPYNTIGNVFVK-G—

8gch FH--FCGGSLINE-NWVVTAAHC-GV~T---T-SDVVVAGEFDQG---SSSEKI--QKLKIAKVFK-NS-
lagj --QTSATGVLIG-KNTVLTNRHIAK-FANGDPSKVSFRPSI-NTDDNGNT-E-TPYGEYEVKEILQEP-F

8gch KYNSLTINNDITLLKLST----- AAS--FSQTVSAVCLPSASD--DFAAGTTCVTTGWG-LTRYNTPD-R
lagj GAG----- VDLALIRLKPDQNGVSL-GDK---ISPAKIGT---SNDLKDGDKLELIGYPFDH----KVNQ

9gch LQQASLPLL~SNTNCKKYWGTKIKDAM--ICAGASGV~SSCMGDSGGPLVCKKNGAWTLVGIVSWGSSTC
lagj MHRSEIELTTLS------------~=- RGLRYY----GFTVPGNSGSGIFNSN---GELVGIHSSK----

8gch STST------—--- PGVYARVTA-LVNWVQQTLAAN-
lagj ----VSHLDREHQINYGVGIGNYVKRIINEKN-~~E

The resemblance between these two sequences is well within the ‘twilight
zone.’ It could not be derived correctly from standard pairwise alignment of
the two sequences alone.

Fig. 5.5 Structural superposition of y—chymotrypsin {8GcH] (black) and S. aureus
epidermolytic toxin A [1Ag)] (red). The sidechains of the catalytic triads are shown.
Observe that the region around the active site is the best-conserved part of

the protein.




DALI (DISTANCE-MATRIX ALIGNMENT)

Determination of similarity and alignment in computational chemistry
1. Similarity of two sets of atoms with known correspondences:
pe—¢q,i=1,...N
The analogue, for sequences, is the Hamming distance: mismatches only.

2. Similarity of two sets of atoms with unknown correspondences, but for
which the molecular structure—specifically the linear order of the residues—
restricts the possibilities. In the case of proteins or nucleic acids we are
limited to correspondences in which we retain the order along the chain:

Pig € djpp k=1,...K=NM

with the constraint that: k; >k, = i(k,) > i(k;) and j(k;) > j(k,). This can
be thought of as analogous to the Levenshtein distance, or to sequence
alignment with gaps. The result of such a calculation is an alignment of
parts or all of the sequences.

3. Similarities between two sets of atoms with unknown correspondence,
with no restrictions on the correspondence:

Py € i

This problem arises in the following important case: Suppose two (or more)
molecules have similar biological effects, such as a common pharmacologi-
cal activity. It is often the case that the structures share a common constella-
tion of a relatively small subset of their atoms that is responsible for the
biological activity. These atoms are called a pharmacophore. The problem
is to identify them: to do so it is useful to be able to find, within two or more
molecules, the maximal subsets of atoms that have a similar structure. (See
Case Study 5.1.)

DALI (Distance-matrix ALIgnment)

As proteins evolve, their structures change. Among the subtle details that evolu-
tion has strongly tended to conserve are the patterns of contacts between
residues. That is, if two residues are in contact in one protein, the residues
aligned with these two in a related protein are also likely to be in contact. This is
true even in very distant homologues, and even if the residues involved change in
size. Mutations that change the sizes of packed buried residues cause adjust-
ments in the packing of the helices and sheets against one another.

L. Holm and C. Sander applied these observations to the problem of structural
alignment of proteins. If the interresidue contact pattern is preserved in distantly-
related proteins, then it should be possible to identify distantly-related proteins by
detecting conserved contact patterns.

Computationally, one makes matrices of residue-residue contact patterns in two
proteins (this is very easy), and then seeks the maximal matching submatrices
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Fig. 5.6 The regions of common fold, as determined by the program DALI by L. Holm
and C. Sander, in the TIM-barrel proteins mouse adenosine deaminase [1rkx] (black)
and Pseudomonas diminuta phosphotriesterase [1pTa] (red). In the alignment shown

in this figure, the sequences have only 13% identical residues—closer to midnight than
to the twilight zone.

(this is hard). Using carefully chosen approximations, Holm and Sander wrote an
efficient program called DALI (for Distance-matrix ALIgnment) that is now in com-
mon use for identifying proteins with folding patterns similar to that of a query
structure. The program runs fast enough to carry out routine screens of the entire
Protein Data Bank for structures similar to a newly-determined structure, and
even to perform a classification of protein domain structures from an all-against-
all comparison. Holm and Sander have found several unexpected similarities not
detectable at the level of pairwise sequence alignment.

An example of DALI’s ‘reach’ into recognition of very distant structural similari-
ties is its identification of the relation between mouse adenosine deaminase.
Klebsiella aerogenes urease, and Pseudomonas diminuta phosphotriesterase (see Fig. 5.6).

DALI is available over the Web. You can submit coordinates to the site
http://www2.ebi.ac.uk/dali/, and receive the set of similar structures and their
alignments with the query.

Evolution of protein structures
Included in the 30 000 protein structures now known are several families in
which the molecules maintain the same basic folding pattern over ranges of
sequence similarity from near-identity down to well below 20% conservation. The
serine proteinases (y-chymotrypsin and S. aureus epidermolytic toxin A, Fig. 5.5
and the adenosine deaminase-phosphotriesterase family, (Fig. 5.6) are examples.
The general response to mutation is structural change. It is characteristic of
biological systems that the objects we observe to have a certain form arose by
evolution from related objects with similar but not identical form. They must.
therefore, be robust, in having the freedom to tolerate some variation. We can
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take advantage of this robustness in our analysis: By identifying and comparing
related objects, we can determine conserved and variable features, and thereby
distinguish that which is crucial to structure and function (and therefore con-
served) from that which can survive change (and therefore available to vary).

Natural variations in families of homologous proteins that retain a common
function reveal how structures accommeodate changes in amino acid sequence.
Surface residues not involved in function are usually free to mutate. Loops on the
surface can often accommodate changes by local refolding. Mutations that
change the volumes of buried residues generally do not change the conforma-
tions of individual helices or sheets, but produce distortions of their spatial
assembly. The nature of the forces that stabilize protein structures sets general
limitations on these conformational changes; particular constraints derived from
function vary from case to case.

Families of related proteins tend to retain common folding patterns. However,
although the general folding pattern is preserved, there are distortions which
increase as the amino acid sequences progressively diverge. These distortions are
not uniformly distributed throughout the structure. Usually, a large central core of
the structure retains the same qualitative fold, and other parts of the structure
change conformation more radically. Consider the letters B and R. As structures,
they have a common core which corresponds to the letter P. Outside the common
core they differ: at the bottom right B has a loop and R has a diagonal stroke.

Systematic studies of the structural differences between pairs of related pro-
teins have defined a quantitative relationship between the divergence of the
amino acid sequences of the core of a family of structures and the divergence of
structure. As the sequence diverges, there are progressively increasing distortions
in the mainchain conformation, and the fraction of the residues in the core usu-
ally decreases. Until the fraction of identical residues in the sequence drops
below about 40-50%, these effects are relatively modest. Almost all the structure
remains in the core, and the deformation of the mainchain atoms is on average
no more than 1.0 A. With increasing sequence divergence, some regions refold
entirely, reducing the size of the core, and the distortions of the residues remain-
ing within the core increase in magnitude.

A correlation between the divergence of sequence and structure applies to all
families of proteins. Figure 5.7a shows the changes in structure of the core,
expressed as the root-mean-square deviation of the mainchain atoms after opti-
mal superposition, plotted against the sequence divergence: the percentage of
conserved amino acids of the core after optimal alignment. The points corres-
pond to pairs of homologous proteins from many related families. (Those at 100%
residue identity are proteins for which the structure was determined in two or
more crystal environments, and the deviations show that crystal packing
forces—and, to a lesser extent, solvent and temperature—can modify slightly the
conformation of the proteins.) Figure 5.7b shows the changes in the fraction of
residues in the core as a function of sequence divergence. The fraction of residues
in the cores of distantly-related proteins can vary widely: in some cases the frac-
tion of residues in the core remains high, in others it can drop to below 50% of
the structure.
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Fig. 5.7 Relationships between divergence of amino acid sequence and
three-dimensional structure of the core, in evolving proteins. (a) Variation of rm.s.
deviation of the core with the per cent identical residues in the core. (b) Variation of
size of the core with the per cent identical residues in the core. This figure shows results
calculated for 32 pairs of homologous proteins of a variety of structural types.
(Adapted from Chothia, C. & Lesk, A. M. (1986), Relationship between the divergence
of sequence and structure in proteins, The EMBO Journal, 5, 823-826.)

Classifications of protein structures

Being able to measure protein structural differences quantitatively allows us to
ter and classify protein folding patterns. Organization of protein structures a
ing to folding pattern imposes a very useful logical structure on the entries m
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Protein Data Bank. It affords a basis for structure-oriented information retrieval.
Several databases derived from the PDB are built around classifications of protein
structures. They offer useful features for exploring the protein structure world,
including: search for keyword or sequence, navigation among similar structures at
various levels of the classification hierarchy, presentation of structure pictures,
probing the databank for structures similar to a new structure, and links to other
sites. These databases include SCOP (Structural Classification of Proteins), CATH
(Class, Architecture, Topology, Homologous superfamily), FSSP/DDD (Fold classifica-
tion based on Structure-Structure alignment of Proteins/Dali Domain Dictionary),
and CE (The Combinatorial Extension Method, by L. N. Shindyalov and P. Bourne}.

SCoP

SCOP, by A. G. Murzin, L. Lo Conte, B. G. Ailey, S. E. Brenner, T. J. P. Hubbard, and
C. Chothia, organizes protein structures in a hierarchy according to evolutionary
origin and structural similarity. At the lowest level of the SCOP hierarchy are indi-
vidual domains (see page 42}, extracted from the Protein Data Bank entries. Sets
of domains are grouped into families of homologues, for which the similarities in
structure, sequence, and sometimes function imply a common evolutionary ori-
gin. Families containing proteins of similar structure and function, but for which
the evidence for evolutionary relationship is suggestive but not compelling, form
superfamilies. Superfamilies that share a common folding topology, for at least a
large central portion of the structure, are grouped as folds. Finally, each fold
group falls into one of the general classes. The major classes in SCOP are «, B,
a + B, ofB, and miscellaneous ‘small proteins,” which often have little secondary
structure and are held together by disulphide bridges or ligands.

The box shows the SCOP classification of flavodoxin from Clostridium beijerinckii
(Plate V). For illustrations of the degree of similarities of proteins grouped together
at different levels of the hierarchy, and discussion of other classification schemes,
see Introduction to Protein Architecture: The Structural Biology of Proteins, Chapter 4.

SCOP classification of Flavodoxin from Clostridium beijerinckii

1. Root SCOP

2. Class o and B proteins (a/B)
Mainly parallel B-sheets (B-«-B units)

3. Fold Flavodoxin-like
3 layers, «/B/a; parallel B-sheet of 5 strands, order 21345

4. Superfamily Flavoproteins
5. Family Flavodoxin-related binds FMN
6. Protein Flavodoxin

7. Species Clostridium beijerinckii
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The SCOP release of January 2004 contained 13 220 PDB entries, split into
31474 Domains. The distribution of entries at different levels of the hierarchy is:

Class Number of

families superfamilies folds
All-o. proteins 337 224 138
A||[3procems ................................................ e S 5
a/ﬁprotems ....................................................... e g , ,
S [3 . prmems .................................................... o oy o
Mulndomamprotems ......................................... e s
PV andcellsurfaceprotems ................ jg L |
Sma"pmtems R i
L gy 947 e

Numerous other web sites offering classifications of protein structures are
indexed at: http://www.bioscience.org/urllists/protdb.htm .

Protein structure prediction and modelling

The observation that each protein folds spontaneously into a unique three-
dimensional native conformation implies that nature has an algorithm for
predicting protein structure from amino acid sequence. Some attempts to under-
stand this algorithm are based solely on general physical principles; others
appeal to known amino acid sequences and protein structures. A proof of our
understanding would be the ability to reproduce the algorithm in a computer
program that could predict protein structure from amino acid sequence.

Most attempts to predict protein structure from basic physical principles alone
try to reproduce the interatomic interactions in proteins, to define a computable
energy associated with any conformation. Computationally, the problem of pro-
tein structure prediction then becomes a task of finding the global minimum of
this conformational energy function. So far this approach has not succeeded.
partly because of the inadequacy of the energy function and partly because the
minimization algorithms tend to get trapped in local minima.

Other a priori approaches to structure prediction are based on attempts to sim-
plify the problem, to capture somehow the essentials.

The alternative to a priori methods are approaches based on assembling
clues to the structure of a target sequence by finding similarities to know=
structures. These empirical or ‘knowledge-based’ methods are becoming ver:
powerful.

We are coming closer and closer to saturating the set of possible folds wiz=
known structures. This is the stated goal of structural genomics projects isee
Box). Once we have a complete set of folds and sequences, and powerful methocs
for relating them, empirical methods will provide pragmatic solutions of mazv
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Structural genomics

In analogy with full-genome sequencing projects, structural genomics has
the commitment to deliver the structures of the complete protein repertoire.
X-ray crystallographic and NMR experiments will solve a ‘dense set’ of pro-
teins, such that all proteins are within modelling range of one or more
known experimental structures. More so than genomic sequencing projects,
structural genomics projects combine results from different organisms. The
human proteome is of course of special interest, as are proteins unique to
infectious micro-organisms.

The goals of structural genomics have become feasible partly by advances
in experimental techniques, which make high-throughput structure deter-
mination possible; and partly by advances in our understanding of protein
structures, which define reasonable general goals for the experimental
work, and suggest specific targets.

The theory and practice of homology modelling suggests that at least 30%
sequence identity between target and some experimental structure is neces-
sary. This means that experimental structure determinations will be
required for an exemplar of every sequence family, including many that
share the same basic folding pattern. Experiment will have to deliver the
structures of something like 10 000 domains. In the year 2004, approximately
5000 structures were deposited in the PDB, so the throughput rate is not far
from what is required.

Methods of bioinformatics can help select targets for experimental structure
determination that offer the highest pay-off in terms of useful information.
Goals of target selection include:

« elimination of redundant targets—proteins too similar to known structures.

« identification of sequences with undetectable similarity to proteins of
known structure.

¢ identification of sequences with similarity only to proteins of unknown
function, or

« proteins of unknown structure with ‘interesting’ functions; for example,
human proteins implicated in disease, or bacterial proteins implicated in
antibiotic resistance.

+ proteins with properties favourable for structure dermination—likely to be
soluble, contain methonine (which facilitates solving the phase problem of
X-ray crystallography).

The machinery for carrying out the modelling is already up and
running. MODBASE (http://alto.compbio.ucsf.edu/modbase.cgi/index.cgi)
and 3DCrunch (http://www.expasy.org/swissmod/SWISS-MODEL.html) collect
homology models of proteins of known sequence.

Structural genomics projects are supported by large-scale initiatives from
the US National Institutes of Health and private industry.
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problems. What will be the effect of this on attempts to predict protein structure
a priori? The intellectual appeal of the problem will still be there. After all, nature
folds proteins without searching databases. But it is unlikely that the problem
will continue to command interest of the same intensity, and support of the same
largesse, once a pragmatic solution has been found.

However, there is a paradox: The methods being developed for identifying folding
patterns in sequences are more than exercises in tuning parameters in scoring
functions. They are experiments that explore and expose the essential features of
amino acid sequences that determine protein structures. When they succeed, we
will have a far sounder basis for understanding sequence-structure relationships
than we do now. It may be that a posteriori understanding will provide the clues
that will make a priori prediction possible.

Methods for prediction of protein structure from amino acid sequence include:

¢ Attempts to predict secondary structure without attempting to assemble
these regions in three-dimensions. The results are lists of regions of the
sequence predicted to form a-helices and regions predicted to form strands of
B-sheet.

+ Homology modelling: prediction of the three-dimensional structure of a pro-
tein from the known structures of one or more related proteins. The results are
a complete coordinate set for mainchain and sidechains, intended to be a high-
quality model of the structure, comparable to at least a low-resolution experi-
mental structure.

+ Fold recognition: given a library of known structures, determine which of
them shares a folding pattern with a query protein of known sequence
but unknown structure. If the folding pattern of the target protein does not
occur in the library, such a method should recognize this. The results are a
nomination of a known structure that has the same fold as the query protein.
or a statement that no protein in the library has the same fold as the query
protein.

+ Prediction of novel folds, either by a priori or knowledge-based methods. The
results are a complete coordinate set for at least the mainchain and sometimes
the sidechain also. The model is intended to have the correct folding pattern.
but would not be expected to be comparable in quality to an experimental
structure. D. Jones has likened the distinction between fold recognition and
a priori modelling to the difference between a multiple-choice question on an
exam and an essay question.

Critical Assessment of Structure Prediction (CASP)

The CASP programmes were introduced briefly in Chapter 1. CASP organizes
blind tests of protein structure predictions, in which participating crystallogra-
phers and NMR spectroscopists make public the amino acid sequences of the
proteins they are investigating, and agree to keep the experimental structures
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secret until predictors have had a chance to submit their models. CASP runs on a
two-year cycle. At the end of the year a gala meeting brings the predictors togeth-
er to discuss the current results and to gauge progress.

Predictions in CASP have traditionally fallen into three main categories:
(1) comparative modelling—in effect homology modelling, (2) fold recognition,
and (3) modelling of novel folds:

CASP Category Nature of target

Comparative modelling Close homologues of known structure are available; homology
modelling methods are applicable.

close relative for homology modelling; the challenge is to identify
structures with similar topology.

New Fold No structure with same folding pattern known; requires either a
genuine a priori method or a knowledge-based method that can
combine features of several known structures.

Assessors, one for each category, compare the predicted and experimental
structures, and judge the predictions. Speakers at the end-of-year meeting
include the organizers, the assessors, and selected predictors, including those
who have been particularly successful, or who have an interesting novel method
to present.

The latest CASP programme took place in 2004. Departures from past practice
include: (1) secondary structure prediction is no longer separarately assessed, and
(2) a new category, prediction of function, was introduced. There were 87 targets.
In all categories, 201 groups of predictors submitted a total of 28 965 models. This
was approximately equal to the number of entries in the PDB at the time!

Many predictions are prepared by groups of researchers who inspect the results
generated by their computer programs, and select and edit them before submis-
sion. In addition, the target sequences are sent to web servers that return predic-
tions without human intervention. The CAFASP: Critical Assessment of Fully
Automated Structure Prediction programme monitors the quality of these pre-
dictions. It is thereby possible to determine to what extent successful procedures
could be made fully automatic. CASP thus comprises three challenges:

Human against protein CASP
Computer against protein ~ CAFASP
Human against computer CASP v. CAFASP

A separate programme of blind tests of prediction evaluates methods for pre-
dicting protein-protein interactions, or ‘docking’. This is CAPRI—Critical
Assessment of PRedicted Interactions. Both CASP and CAPRI held assessment
meetings in December 2004.

Structure predictions of the sixth CASP programme showed continued improve-
ments. For the most part progress has been incremental rather than spectacular,
with one notable exception: David Baker’s group predicted and redifined the
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structure of a small (70-residue) protien from Thermus thermophilus, producing a
model that deviated by 1.59 A from the X-ray structure! Indeed, improvements in
knowledge-based methods originally developed for novel folds threatens to
supersede traditional methods for fold recognition, such as threading, that make
explicit reference to libraries of complete structures.

Results at CAPRI show that complexes between partners that do not undergo
major conformational changes can now be predicted accurately from the struc-
tures of the components. Large conformational changes upon complex formation
still present difficulties. However, progress could be seen in at least one case, the
trimeric TBE envelope protien.

For both CASP and CAPRI, the best results ae very impressive. One observer
commented that the current state of protien structure prediction is that ‘failure
can no longer be guaranteed.’ Consistency is the challenge.

Secondary structure prediction

It seems obvious that (1) it should be easier to predict secondary structure than
tertiary structure, and (2) to predict tertiary structure, a sensible way to proceed
would be first to predict the helices and strands of sheet and then to assemble
them. Whether or not these propositions are correct, many people have believed
and acted upon them. Given the amino acid sequence of a protein of unknown
structure, they produce secondary structure predictions, the assignment of
regions in the sequence as helices or strands of sheet.

To assess the quality of a secondary structure prediction, classify the residues in
the experimental three-dimensional structure into three categories (helix = =.
strand = E (extended), and other = -). The per cent of residues predicted correctly
is denoted Q3. At the 2000 CASP programme, the PROF server by B. Rost achieved
a good prediction of a domain from the Thermus aquaticus mismatch repair pre-
tein MutS. The value of Q3 for Rost’s prediction is 81%:

10 20 30 40 50

I | I | I
Amino acid sequence ALVEDPPLKVSEGGLIREGYDPDLDALRAAHREGVAYFLELEERERERTG

Prediction HH---—--=-———= EEE------ HHHHHHHHHH-HHHHHHHHHHHHHHH-
Experiment -E-—- E HHHHHHHHHHHHHHHHHHHHHHHHHHHH-
60 70 80 90 100

I I | | I
Amino acid sequence IPTLKVGYNAVFGYYLEVTRPYYERVPKEYRPVQTLKDRQRYTLPEMKEK

Prediction --EEEEEEEEEEEEEEEE-----—----- EEEEEEEE--EEEE-HHHHHH
Experiment —--—-EEEEE---EEEEEEEHHHHHH----- EEEEE---EEEEE-HHHHHH
110 120

! I
Amino acid sequence EREVYRLEALIRRREEEVFLEVRERAKRQ
Prediction HHHHHHHHHHHHHHHHHHHHHHHHHHHH -
Experiment HHHHHHHHHHHHHHHHHHHHHHHHHHH -~

Figure 5.8 shows the experimental structure, with the predicted secondary struc-
tures distinguished. Except for a short 3, helix, the secondary structural elemern=
are predicted correctly except for some minor discrepancies in the positions z=
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(b)

Fig. 5.8 The structure from the Thermus aquaticus mismatch repair protein MutS
[1ewq]. (a) The regions predicted by the PROF server of Rost to be helical are shown as
wider ribbons. The prediction missed only a short 3, helix, at the top left of the
picture. (b) The regions predicted to be in strands are shown as wider ribbons.

which they start and end. (Other scoring schemes that check for segment overlap
are less sensitive to end effects.) The quality of this result is very high but not
exceptionally rare. This target was classified as being of medium difficulty by the
CASP4 assessors. At present, PROF is running at an average accuracy of Q3 ~ 77%.
Other secondary structure prediction methods are also doing comparably well.

The most powerful methods of secondary structure prediction are based on
neural networks.

Neural networks

Neural networks are a class of general computational structures based loosely on
the anatomy and physiology of biological nervous systems. They have been
applied successfully to a wide variety of pattern recognition, classification, and
decision problems.
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A single neuron, in the computational scheme, is a node in a directed graph,
with one or more entering connections designated as input, and a single leaving
connection called the output:

1or0Q

1or0 output 1 it
— | sum of inputs >2
else output 0

1or0Q

In the physiological metaphor, one says that the neuron ‘fired’ if the output is 1,
and that the neuron ‘didn’t fire’ if the output is 0. Simulated neurons can differ in
the number of input and output connections, and in the formula for deciding
whether to fire (see Box).

To form a network, assemble several neurons and connect the outputs of some
to the inputs of others. Some nodes contain connections that provide input to the
entire network; some deliver output information from the network to the out-
side world; and others, that do not interact directly with the outside, are called
hidden layers.

Input layer “Hidden” layer Output layer

Input 1
——|

Input 2 Output

Input 3
—_—

An unlimited degree of complexity is available by assembling and connecting new
rons, and by varying the strengths of the connections. That is, instead of taking a
simple sum of inputs i, + i,+1,, take a weighted sum—for instance, 10i; + 5i,~:»
which would make the neuron most sensitive to input 1 and least sensitive to input X
Biologically, this corresponds to changing the strengths of synapses.
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Logic of neural networks

For a single neuron, a linear decision process governing the output has a geo-
metric interpretation in terms of lines and planes. The neuron in the follow-
ing figure has two inputs. If we interpret the inputs as the coordinates of a
point (x, y) in the plane, the neuron ‘decides’ on which side of a line the input
point lies. The output will be 1 if and only if x + y < 2;that is, if the point is
below and to the left of the line x + y = 2.

\2\ region of output=0

1

output 1 if
X+y=<2;
else output 0

region of output =1

N

A neural network is specified by the topology of its connections, and the
weights and decision formulas of its nodes. A network can make more com-
plex decisions than a single neuron. Thus, if one neuron with two inputs can
decide on which side of a line a point lies, three neurons can select points
that lie within a triangle:

output 1 if
X+y<2
else output 0

region for which output
of network=1

output 1 if
sum of inputs
>2 else
output 0

output 1 if
x>0
else output 0

output 1 if
y>0
else output 0
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%

Logic of neural networks (continued)

Neural networks are more powerful and robust if the output is a smoothly-
varying function of the inputs. Such networks can perform more general
kinds of computations and are better at pattern recognition. Also, for train-
ing the network it is useful if the output is a differentiable function of the
parameters. To this end, a sharp threshold function for the output of a neu-
ron is replaced by a smoothed-out step, or sigmoidal, function:

1 1

0 0

step function sigmoidal function

A property of a neural network that gives it great power is that the weights
may be regarded as variables, and a calculation or learning process may determine
the weights appropriate for a particular decision or pattern identifier. To train a
network, feed the system sets of sample input for which the desired output is
known, and compare the output with the correct answer. If the observed output
differs from the desired one, adjust the parameters. The topology of the network
remains invariant during the training process, although of course setting a
weight to 0 has the effect of detaching an input.

The type of neural network that has been applied to secondary structure pre-
diction is shown in Fig. 5.9.

A major advance in secondary structure prediction occurred with the applica-
tion of evolutionary information, the recognition that multiple sequence
alignment tables contain much more information than individual sequences. The
conservation of secondary structure among related proteins means that the
sequence-structure correlations are much more robust when a family as a whole
is taken into account. Most neural network-based methods for secondary struc-
ture prediction now feed the input layer not simply the identities of the amino
acid at successive positions, but a profile derived from a multiple sequence
alignment.

It has also proved useful to run two neural networks in tandem, to make use of
observed correlations among conformations of residues at neighbouring positions.
Predictions of the states of several successive residues, by a network similar to the
one shown in Fig. 5.9, are combined by a second network into a final prediction.

A test of the maturity of a prediction method is whether it can be made fully
automatic. Some computational methods produce only rough drafts of a protein
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Fig. 5.9 A neural network applicable to secondary structure prediction contains
three layers:

+ The input layer sees a sliding 15-residue window in the sequence. That is, it treats a
15-residue region, predicts the secondary structure of the central residue (marked by
an arrow, at the top) and then moves the window one residue along the amino acid
sequence and repeats the process. To each of the 15 residues in the current window
there correspond 20 nodes in the input layer of the network, one of which will be
triggered according to the amino acid in that position.

+ A hidden layer of ~100 units connects the input with the output. Each node of the
hidden layer is connected to all input and output units; not all the connections are
shown.

+ The output layer consists of only three nodes, that signify prediction that the
central residue in the window be in a helix, strand, or other conformation.

structure prediction, requiring human intervention to bring them to final form.
Others are automatic, and there are many web servers that will accept sequences
and return the predictions. PROF, the system that predicted the secondary struc-
ture of MutS, is one of these.

A continuous, fully-automatic, analysis of protein structure prediction web
servers, including but not limited to secondary structure predictions, is called
EVA. It is a collaboration among groups in New York, San Francisco, and Madrid.
The Protein Data Bank supplies sequences shortly in advance of release of the
corresponding structures, and the software implementing EVA submits them to
prediction servers and analyses the results. It can be thought of as a continuous
CASP programme, restricted to methods that can be both applied and judged
automatically. See: http://cubic.bioc.columbia.edu/eva .

The goals of EVA are to monitor progress in the field, and to indicate to users
the best protein structure prediction servers in different categories. EVA has
access to much more data than has been available in the CASP programmes
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themselves. Therefore its conclusions are in principle less vulnerable to statistical
fluctuations in the nature and difficulty of the targets than the tests reported in
CASP programmes.

Homology modelling

Model-building by homology is a useful technique when one wants to predict the
structure of a target protein of known sequence, when the target protein is related
to at least one other protein of known sequence and structure. If the proteins are
closely related, the known protein structures—called the parents-—can serve as
the basis for a model of the target. Although the quality of the model will depend
on the degree of similarity of the sequences, it is possible to specify this quality
before experimental testing (see Fig. 5.7). In consequence, knowing the quality of
the model required for the intended application permits intelligent prediction of
the probable success of the exercise.

Steps in homology modelling are:

1. Align the amino acid sequences of the target and the protein or proteins of
known structure. It will generally be observed that insertions and deletions lie
in the loop regions between helices and sheets.

2. Determine mainchain segments to represent the regions containing inser-
tions or deletions. Stitching these regions into the mainchain of the known
protein creates a model for the complete mainchain of the target protein.

3. Replace the sidechains of residues that have been mutated. For residues that
have not mutated, retain the sidechain conformation. Residues that have
mutated tend to keep the same sidechain conformational angles, and could be
modelled on this basis. However, computational methods are now available to
search over possible combinations of sidechain conformations.

4. Examine the model—both by eye and by programs—to detect any serious col-
lisions between atoms. Relieve these collisions, as far as possible, by manual
manipulations.

5. Refine the model by limited energy minimization. The role of this step is
to fix up the exact geometrical relationships at places where regions of
mainchain have been joined together, and to allow the sidechains to wrig-
gle around a bit to place themselves in comfortable positions. The effect is
really only cosmetic—energy refinement will not fix serious errors in such a
model.

To a great extent, this procedure produces ‘what you get for free’ in that it
defines the model of the protein of unknown structure by making minimal
changes to its known relative. Unfortunately it is not easy to make substantial
improvements. A rule of thumb (referring again to Fig. 5.8) is that if the two
sequences have at least 40-50% identical amino acids in an optimal alignment of
their sequences, the procedure described will produce a model of sufficient
accuracy to be useful for many applications. For very distantly-related proteins,
neither the procedure described nor any other currently available method will




PROTEIN STRUCTURE PREDICTION AND MODELLING 251

produce a model, correct in detail, of the target protein from the structure of its
relative.

In most families of proteins the structures contain relatively constant regions
and more variable ones. The core of the structure of the family retains the folding
topology, although it may be distorted, but the periphery can entirely refold.
A single parent structure will permit reasonable modelling of the conserved por-
tion of the target protein, but will fail to produce a satisfactory model of the vari-
able portion. Moreover, it will not be easy to predict which are the variable and
constant regions. A more favourable situation occurs when several related pro-
teins of known structure can serve as parents for modelling a target protein.
These reveal the regions of constant and variable structure in the family. The
observed distribution of structural variability among the parents dictates an
appropriate distribution of constraints to be applied to the model.

Mature software for homology modelling is available. SWISS-MODEL is a web
site that will accept the amino acid sequence of a target protein, determine
whether a suitable parent or parents for homology modelling exist, and, if so,
deliver a set of coordinates for the target. SWISS-MODEL was developed by
T. Schwede, M. C. Peitsch and N. Guex, now at The Geneva Biomedical Research
Institute. Another program in widespread use, MODELLER, was originally devel-
oped by A.Sali.

*PAA//
Web resources: Homology modelling 8~°z
4?3 5\«‘“
SWISS-MODEL (homology modelling server):

http://www.expasy.ch/swissmod/SWISS-MODEL.html

Results of application of SWISS-MODEL to proteins of known sequence are available
through 3DCrunch:

http://www.expasy.org/swissmod/SWISS-MODEL.html

MODELLER (homology modelling software):
http://salilab.org/modeller/modelier.htm]

Results of application of MODELLER to proteins of known sequence are available

through MODBASE:

http://alto.compbio.ucsf.edu/modbase.cgi/index.cgi

For a description of web sites in structural genomics: Wixon, J. (2001),
Structural genomics on the web, Comp. Funct. Genomics, 2, 103-113.

An example of the automatic prediction by SWISS-MODEL is the prediction of
the structure of a neurotoxin from red scorpion (Buthus tamulus) from the known
structure of the neurotoxin from the related North African yellow scorpion
{Androctonus australis hector). These two proteins have 52% identical residues in
their sequence alignment. With such a close degree of similarity it is not surpris-
ing that the model fits the experimental result very closely, even with respect to
the sidechain conformation (Fig. 5.10).
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Fig. 5.10 SWISS-MODEL predicts the structure of red scorpion neurotoxin [10Q7]
(red) from a closely-related protein [1rTx] (black). The prediction was done
automatically. Observe that most of the buried sidechains have not mutated, and have
very similar conformations. Some sidechains on the surface have different
conformations, and the mainchain of the C-terminus is in a different position (upper
left). Not shown is a network of disuiphide bridges, which constrain the structure.
However, a model of this high quality would be expected for two such closely-related
proteins, even without the extra constraints.

Fold recognition

Searching a sequence database for a probe sequence and searching a structure
database with a probe structure are problems with known solutions. The mixed
problems—probing a sequence database with a structure, or a structure database
with a sequence, are less straightforward. They require a method for evaluating
the compatibility of a given sequence with a given folding pattern.

The goal is to abstract the essence of a set of sequences or structures. Other pro-
teins that share the pattern are expected to adopt similar structures.

3D profiles

We have discussed patterns and profiles derived from multiple sequence align-
ments and their application to detection of distant homologues. One way to take
advantage of available structural information to improve the power of these
methods is a type of profile derived from the available sequences and structures
of a family of proteins.

J. U. Bowie, R. Liithy and D. Eisenberg analysed the environments of each position
in known protein structures and related them to a set of preferences of the 20
amino acids for these structural contexts.

Given a protein structure, they classified the environment of each amino acid
in three separate categories:

1. Its mainchain hydrogen-bonding interactions, that is, its secondary structure.
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2. The extent to which it is buried within or on the surface of the protein
structure.

3. The polar/nonpolar nature of its environment.

The secondary structure may be one of three possibilities: helix, sheet and other.
A sidechain is considered buried if the accessible surface area is less than 40 A2,
partially buried if the accessible surface area is between 40 and 114 A2, and
exposed if the accessible surface area is greater than 114 A2. The fraction of
sidechain area covered by polar atoms is also measured. The authors define six
classes on the basis of accessibility and polarity of the surroundings. Sidechains
in each of these six classes may be in any of three classes according to the
secondary structures. This gives a total of 18 classes.

Assigning each sidechain to one of 18 class means that it is possible to write a
coded description of a protein structure as a message in an alphabet of 18 letters,
called a 3D structure profile. Algorithms developed for sequence searches can
thereby be applied to ‘sequences’ of encoded structures. For example, one could
try to align two distantly-related sequences by aligning their 3D structure profiles
rather than their amino acid sequences. The 3D profile method translates protein
structures into one-dimensional probe (or probe-able) objects that do not explicitly
retain either the sequence or structure of the molecules from which they were
derived.

Next, how can one relate the 3D structure profile to the corpus of known
sequences and structures? 1t is clear that some amino acids will be unhappy in
certain kinds of sites; for example, a charged sidechain would not be buried in an
entirely nonpolar environment. Other preferences are not so clear-cut, and it is
necessary to derive a preference table from a statistical survey of a library of well-
refined protein structures.

Suppose now that we are given a sequence and want to evaluate the likelihood
that it takes up, say, the globin fold. From the 3D structure profile of the known
sperm whale myoglobin structure we know the environment class of each posi-
tion of the sequence. Consider a particular alignment of the unknown sequence
with sperm whale myoglobin, and suppose that the residue in the unknown
sequence that corresponds to the first residue of myoglobin is phenylalanine. The
environment class in the 3D structure profile of the first residue of sperm whale
myoglobin is: exposed, no secondary structure. One can score the probability of
finding phenylalanine in this structural environment class from the table of pref-
erences of particular amino acids for this 3D structure profile class. (The fact that
the first residue of the sperm whale myoglobin sequence is actually valine is not
used, and in fact that information is not directly accessible to the algorithm.
Sperm whale myoglobin is represented only by the sequence of environment
classes of its residues, and the preference table is averaged over proteins with
many different folding patterns.) Extension of this calculation to all positions and
to all possible alignments not allowing gaps within regions of secondary struc-
ture gives a score that measures how well the given unknown sequence fits the
sperm whale myoglobin profile.

253



254

5 PROTEIN STRUCTURE AND DRUG DISCOVERY

A particular advantage of this method is that it can be automated, with a new
sequence being scored against every 3D profile in the library of known folds, in
essentially the same way as a new sequence is routinely screened against a library
of known sequences.

Use of 3D profiles to assess the quality of structures

The 3D profile derived from a structure depends only very indirectly on the
aminoe acid sequence. It is therefore meaningful to ask, not only whether it is pos-
sible to identify other amino acid sequences compatible with the given fold, but
whether the score of a 3D profile for its own parent sequence is a measure of the
compatibility of the sequence with the structure. Naturally, if real sequences did
not generally appear to be compatible with their own structures, one would be
forced to conclude that a useful method for examining the relationship between
sequence and structure had not been achieved. Two interesting results are
observed: (1) Protein structures determined correctly do fit their own profiles
well, although other, related, proteins may give higher scores. The profile is
abstracting properties of the family, not of individual sequences. (2) When a
sequence does not match a profile computed from an experimental structure of
that protein, there is likely to have been an error in the structure determination.
The positions in the profile that do not match can identify the regions of error.

Threading

Threading is a method for fold recognition. Given a library of known structures,
and a sequence of a query protein of unknown structure, does the query protein
share a folding pattern with any of the known structures? The fold library could
include some or all of the Protein Data Bank, or even hypothetical folds.

The basic idea of threading is to build many rough models of the query protein,
based on each of the known structures and using different possible alignments of
the sequences of the known and unknown proteins. This systematic exploration of
the many possible alignments gives threading its name: Imagine trying out all align-
ments by pulling the query sequence gently through the three-dimensional frame-
work of any known structure. Gaps must be allowed in the alignments, but if the
thread is thought of as being sufficiently elastic the metaphor of threading survives.

Both threading and homology modelling deal with the three-dimensional struc-
ture induced by an alignment of the query sequence with known structures of
homologues. Homology modelling focuses on one set of alignments and the goal
is a very detailed model. Threading explores many alignments and deals with
only rough models usually not even constructed explicitly:

Homology modelling Threading
First, identify homologues Try all possible parents
Then, determine optimal alignment Try many possible alignments

Optimize one model Evaluate many rough models
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Successful fold recognition by threading requires:
1. A method to score the models, so that we can select the best one.

2. A method for calibrating the scores, so that we can decide whether the best-
scoring model is likely to be correct.

Several approaches to scoring have been tried. One of the most effective is
based on empirical patterns of residue neighbours, as derived from known struc-
tures. Observe the distribution of interresidue distances in known protein
structures, for all 20 X 20 pairs of residue types. For each pair, derive a prob-
ability distribution, as a function of the separation in space and in the amino acid
sequence. For instance, for the pair Leu-Ile, consider every Leu and lle residue in
known structures, and, for each Leu-Ile pair, record the distance between their
CB atoms, and the difference in their positions in the sequence. Collecting these
statistics permits estimation of how well the distributions observed in a model
agree with the distributions in known structures.

The Boltzmann equation relates probabilities and energies. Usual applications
of the Boltzmann equation start from an energy function and predict a probability
distribution. (A standard example is the prediction of the density of the atmo-
sphere as a function of altitude, from the gravitational potential energy function
of the air molecules.) For threading, one turns this on its head, and derives an
energy function from the probability distribution. This energy function is then
used to score threading models.

For each structure in the fold library, the procedure finds the assignment of
residues that produces the lowest energy score. Although this is an alignhment
problem, the nonlocal interactions mean that it can’t be solved by dynamic
programming.

Fold recognition at CASP

The best methods for fold recognition are consistently effective. These include
but are not limited to methods based on threading.

Figures 5.11 and 5.12 show a prediction by A. G. Murzin, and another predic-
tion by Bonneau, Tsai, Ruczinski and Baker, of targets from the 2000 CASP pro-
gramme, both proteins of unknown function from H. influenzae.

Conformational energy calculations and molecular dynamics

A protein is a collection of atoms. The interactions between the atoms create a
unique state of maximum stability. Find it, that’s all!

The computational difficulties in this approach arise because (a) the model of
the interatomic interactions is not complete or exact, and (b) even if the model
were exact we should face an optimization problem in a large number of vari-
ables, involving nonlinearities in the objective function and the constraints, cre-
ating a very rough energy surface with many local minima. Like a golf course
with many bunkers, such problems are very difficult.
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Target

Template of known structure

Fig. 5.11 Prediction of structure of H. influenzae, hypothetical protein. (a) The folding
pattern of the target. (b) Prediction by A. G. Murzin. (c) Folding pattern of the closest
homologue of known structure: an N-ethylmaleimide-sensitive fusion protein involved
in vesicular transport (PDB entry InsF). The topology of Murzin's prediction is closer to
the target than that of the closest single parent.

Fig. 5.12 Prediction by Bonneau, Tsai, Ruczinski and Baker of another hypothetical
protein from H. influenzae, based on glycine N-methyltransferase [ 1xva). Experimental
structure, black; prediction, red. Note that much of the prediction superposes well on
the experimental structure and that the parts that do not superpose well have similar
local structures but improper orientation and packing against the main body of the
protein.
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The interactions between atoms in a molecule can be divided into:

(a) Primary chemical bonds—strong interactions between atoms that must
be close together in space. These are regarded as a fixed set of inter-
actions that are not broken or formed when the conformation of a protein
changes, but which, however, are equally consistent with a large number of
conformations.

(b) Weaker interactions that depend on the conformation of the chain. These can
be significant in some conformations and not in others—they affect sets of
atoms that are brought into proximity by different folds of the chain.

The conformation of a protein can be specified by giving the list of atoms in the
structure, their coordinates, and the set of primary chemical bonds between
them (this can be read off, with only slight ambiguity, from the amino acid
sequence). Terms used in the evaluation of the energy of a conformation typically
include:

+ Bond stretching =, . K.(r — ry)2. Here r, is the equilibrium interatomic sepa-
ration and K, is the force constant for stretching the bond. r, and K, depend on
the type of chemical bond.

+ Bond angle bend 2, K(6 — 0,). For any atom i that is chemically bonded to
two (or more) other atoms j and k, the angle i-j-k has an equilibrium value 0,
and a force constant for bending K,,.

¢ Other terms to enforce proper stereochemistry penalize deviations from pla-
narity of certain groups, or enforce correct chirality (handedness) at certain
centres.

+ Torsion angle = ;.0u3Val1+cos n8]. For any four connected atoms: i bonded
to j bonded to k bonded to [, the energy barrier to rotation by an angle 6 of atom !
with respect to atom i around the j-k bond is given by a periodic potential. V, is
the height of the barrier to internal rotation; n barriers are encountered during
a full 360° rotation. The mainchain conformational angles ¢, & and o are
examples of torsional rotations (see Fig. 5.2).

+ Van der Waals interactions %, 5, (AR, "> — B,R;®). For each pair of non-bonded
atoms i and j, the first term accounts for a short-range repulsion and the second
term for a long-range attraction between them. R; is the distance between
atoms i and j. The parameters A and B depend on atom type.

+ Hydrogen bond =,3.(CR;"” — D;R;'"”). The hydrogen bond is a weak
chemicalfelectrostatic interaction between two polar atoms. Its strength
depends on distance and also on the bond angle. This approximate hydrogen
bond potential does not explicitly reflect the angular dependence of hydrogen
bond strength; other potentials attempt to account for hydrogen bond geometry
more accurately.
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+ Electrostatics 2; ,; Q;Qj/(eRy). Q; and Q; are the effective charges on atoms
i and j, R; is the distance between them, and e is the dielectric ‘constant’. This
formula applies only approximately to media that are not infinite and isotropic,
including proteins.

+ Solvent Interactions with the solvent, water, and cosolutes such as salts and
sugars, are crucial for the thermodynamics of protein structures. Attempts to
model the solvent as a continuous medium, characterized primarily by a dielec-
tric constant, are approximations. With the increase in available computer
power, it is now possible to include solvent explicitly, simulating the motion of
a protein in a box of water molecules.

There are numerous sets of conformational energy potentials of this or closely-
related forms, and a great deal of effort has gone into the tuning of parameter
sets. The energy of a conformation is computed by summing these terms over all
appropriate sets of interacting atoms.

The potential functions satisfy necessary but not sufficient conditions for suc-
cessful structure prediction. One test is to take the right answer—an experimen-
tally determined protein structure—as a starting conformation, and minimize
the energy starting from there. In general most energy functions produce a min-
imized conformation that is about 1 A (root-mean-square deviation) away from
the starting model. This can be thought of as a measure of the resolution of the
force field. Another test has been to take deliberately misfolded proteins and
minimize their conformational energies, to see whether the energy value of the
local minimum in the vicinity of the correct fold is significantly lower than that
of the local minimum in the vicinity of an incorrect fold. Such tests reveal that
multiple local minima cannot be reliably distinguished from the correct one on
the basis of calculated conformational energies.

Attempts to predict the conformation of a protein by minimization of the con-
formational energy have so far not provided a method for predicting protein
structure from amino acid sequence. In order to overcome the problems both of
getting trapped in local minima, and of the absence of a good model for protein-
solvent interactions, molecular dynamics models have been developed. The pro-
tein plus explicit solvent molecules are treated—via the force field—by classical
Newtonian mechanics. It is true that this permits exploration of a much larger
segment of phase space. However, as an a priori method of structure prediction,
it has still not succeeded consistently. However, these are calculations that are
extremely computationally intensive and here, perhaps more than anywhere else
in this field, advances deriving from the increasing ‘brute force’ power of proces-
sors will have an effect.

In the meantime, molecular dynamics, if supplemented by experimental
data, regularly makes extremely important contributions to structure determi-
nations by both X-ray crystallography (usually) and nuclear magnetic resonance
{(always). How is molecular dynamics integrated into the process of structure
determination? For any conformation, one can measure the consistency of the
model with the experimental data. In crystallography, the experimental
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data are the absolute values of the Fourier coefficients of the electron density
of the molecule. In nuclear magnetic resonance, the experimental data provide
constraints on the distances between certain pairs of residues. But in both
X-ray crystallography (almost always) and nuclear magnetic resonance, the
experimental data underdetermine the protein structure. To solve a structure
one must seek a set of coordinates that minimizes a combination of the devia-
tion from the experimental data and the conformational energy. Molecular
dynamics is successful at determining such coordinate sets: the dynamics pro-
vides adequate coverage of conformation space, and the bias derived from the
experimental data channels the calculation towards the correct structure.

ROSETTA

ROSETTA is a program by D. Baker and colleagues that predicts protein structure
from amino acid sequence by assimilating information from known structures.
In recent CASP programmes, ROSETTA showed consistent success on targets in
the Novel Fold categories. At present, it leads the field.

ROSETTA predicts a protein structure by first generating structures of frag-
ments using known structures, and then combining them. First, for each con-
tiguous region of 3 and 9 residues, instances of that sequence and related
sequences are identified in proteins of known structure. For fragments this
small, there is no assumption of homology to the target protein. The distribu-
tion of conformations of the fragments serves as a model for the distribution
of possible conformations of the corresponding fragments of the target
structure.

ROSETTA explores the possible combinations of fragments using Monte Carlo
calculations (see Box). The energy function has terms reflecting compactness,
paired B-sheets and burial of hydrophobic residues. The procedure carries out
1000 independent simulations, with starting structures chosen from the frag-
ment conformation distribution pattern generated previously. The structures
that result from these simulations are clustered, and the centres of the largest
clusters presented as predictions of the target structure. The idea is that a struc-
ture that emerges many times from independent simulations it is likely to have
favourable features.

Figure 5.13 shows successful predictions by ROSETTA of two targets from the
2000 CASP programme.

ROSETTA is available by License or as a webserver.*

LINUS

LINUS (Local Independently Nucleated Units of Structure) is a program for pre-
diction of protein structure from amino acid sequence, by G. D. Rose and
R. Srinivasan. It is a completely a priori procedure, making no explicit reference
to any known structures or sequence-structure relationships. LINUS folds the

*  http://depts.washington.edu/bakerpg
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{b)

Fig. 5.13 Predictions by ROSETTA of (a) H. influenzae, hypothetical protein,

(b) The N-terminal half of domain 1 of human DNA repair protein XRCC4. Part b
shows a selected substructure containing a 55-residue N-terminal segment (out of a
total of 116 residues). Experimental structures, black; predicted structures, red.

polypeptide chain in a hierarchical fashion, first producing structures of short
segments, and then assembling them into progressively larger fragments.”

An insight underlying LINUS is that the structures of local regions of a
protein—short segments of residues consecutive in the sequence—are controlled
by local interactions within these segments. During natural protein folding,
each segment will preferentially sample its most favourable conformations.
However, these preferred conformations of local regions, even the one that will
ultimately be adopted in the native state, are below the threshold of stability.
Local structure will form transiently and break up many times before a suitable
interacting partner stabilizes it. But in the computer one is free to anticipate
the results. In a LINUS simulation, favourable structures of local fragments, as
determined by their frequent recurrence during the simulation, transmit their

* LINUS is freely available from www.roselab jhu.edu
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Monte Carlo algorithms

Monte Carlo algorithms are used very widely in protein structure calcula-
tions, to explore conformations efficiently, and also in many other optim-
ization problems, to search for the minimum of a complicated function.
Simple minimization methods based on moving ‘downhill’ in energy fail
because the calculation gets trapped in a local minimum far from the native
state.

In general, Monte Carlo methods make use of random numbers to solve
problems for which it is difficult to calculate the answer exactly. The name
was invented by J. von Neumann, referring to the applications of random
number generators in the famous gambling casino.

To apply Monte Carlo techniques to find the minimum of a function of
many variables—for instance, the minimum energy of a protein as a function
of the variables that define its conformation—suppose that the configuration
of the system is specified by the variables x, and that for any values of these
variables, we can calculate the energy of the conformation, &(x). (x stands for
a whole set of variables—perhaps the set of atomic coordinates of a protein,
or the mainchain and sidechain torsion angles.)

Then the Metropolis procedure (invented in 1953, allegedly at a dinner
party in Los Alamos) prescribes:

1. Generate a random set of values of x, to provide a starting conformation.
Calculate the energy of this conformation, € = g(x).

2. Perturb the variables: x — x', to generate a neighbouring conformation.
3. Calculate the energy of the new conformation, &(x’)

4. Decide whether to accept the step: to move x — x', or to stay at x and try a
different perturbation:

(a) If the energy has decreased; that is, € = g(x) > &{x')—in other words
the step went downhill—always accept it. The perturbed conformation
becomes the new current conformation: set x’ — x and € = g(x').

(b} If the energy has increased or stayed the same; that is g(x) < g(x'}—
in other words the step goes uphill—sometimes accept the new con-
formation. If A = g(x') — &{(x), accept the step with a probability
exp[—A/(kT)], where k is Boltzmann's constant, and T is an effective
temperature.

5. Return to step 2.

It is step 4b that is the ingenious one. It has the potential to get over barri-
ers, out of traps in local minima. The effective temperature, T, controls the
chance that an uphill move will be accepted. T is not the physical tempera-
ture at which we wish to predict the protein conformation, but simply a
numerical parameter that controls the calculation. For any temperature, the
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-
higher the uphill energy difference, the less likely that the step will be
accepted. For any value of g, if T is low, then &(x)/(kT) will be high, and
exp|—&(x)/(kT)] will be relatively low. If T is high, then g(x)/(kT) will be low, and
exp|—e&(x)/(kT)] will be relatively high. The higher the temperature, the more
probable the acceptance of an uphill move.

This relatively simple idea has proved extremely effective, with successful
applications including but by no means limited to protein structure
calculations.

Simulated annealing is a development of Monte Carlo calculations in
which T varies—first it is set high to allow efficient exploration of conforma-
tions, then it is reduced to drop the system into a low-energy state.

preferred conformations as biases that influence subsequent steps. The proce-
dure applies the principle of a rachet to direct the calculation along productive
lines.

LINUS begins by building the polypeptide from the sequence as an extended
chain. The simulation proceeds by perturbing the conformations of a succession
of randomly-chosen three-residue segments, and evaluating the energies of the
results. Structures with steric clashes are rejected out of hand; other energetic
contributions are evaluated only in terms of local interactions. A Monte Carlo
procedure (see Box) is used to decide whether to accept a perturbed structure or
revert to its predecessor. LINUS performs a large number of such steps. It period-
ically samples the conformations of the residues, to accumulate statistics of struc-
tural preferences.

Subsequent stages in the simulation assemble local regions into larger frag-
ments, using the conformational biases of the smaller regions to guide the
process. The window within the sequence controlling the range of interactions is
progressively opened, from short local regions, to larger ones, and ultimately to
the entire protein.

The LINUS representation of the protein folding process is realistic in essential
respects, although approximate. All non-hydrogen atoms of a protein are mod-
elled, but the energy function is approximate and the dynamics simplified. The
energy function captures the ideas of: (1) steric repulsion preventing overlap of
atoms, (2) clustering of buried hydrophobic residues, (3) hydrogen bonding, and
(4) salt bridges.

Currently LINUS is generally successful in getting correct structures of small
fragments (size between supersecondary structure and domain), and in some
cases can assemble them into the right global structure. Figure 5.14 shows
the LINUS prediction of the C-terminal domain of rat endoplasmic reticulum
protein ERp29.




ASSIGNMENT OF PROTEIN STRUCTURES TO GENOMES

Fig. 5.14 A LINUS prediction of the C-terminal domain of rat endoplasmic reticulum
protein ERp29. Experimental structure, black; prediction, red.

Assignment of protein structures to genomes

A genome sequence is the complete statement of a potential life. Assignment of
structures to gene products is a first step in understanding how organisms imple-
ment their genomic information.

We want to understand the structures of the molecules encoded in a genome,
their individual activities and interactions, and the organization of these activ-
ities and interactions in space and time during the lifetime of the organism. We
want to understand the relationships among the molecules encoded in the
genome of one individual, and their relationships to those of other individuals
and other species.

For individual proteins, knowing their structure is essential for understanding
the mechanism of their function and interactions. For entire organisms, knowing
the structures tells us how the repertoire of possible protein folds is used, and
how it is distributed among different functional categories in different species.
For interspecies comparisons, protein structures can reveal relationships invis-
ible in highly-diverged sequences.

Several methods have been applied to structure assignment:

+ Experimental structure determination. The best way of all!

+ Detection of homology in sequences. Sophisticated sequence comparison
methods such as PSI-BLAST or Hidden Markov Models can identify relationships
between proteins, both within an organism and between species. If the struc-

ture of any homologue is known experimentally, at least the general fold of the
family can be inferred.

+ Fold-recognition methods can assign folds to some proteins even in the
absence of evidence for homology.

¢ Specialized techniques detect membrane proteins, and coiled-coils.
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The results of structure assignments provide partial inventories of proteins in the
different genomes, and, for the subset of proteins with sufficiently close relatives
of known structure, detailed three-dimensional models. The degree of coverage
of assignments is changing very fast, primarily because of the rapid growth of
sequence and structural data. The table contains a current scorecard.

Species Number of Structures %
sequences assigned

E. coli 4289 916 21

Mjannasch; G sy .

S G e -

o elanogaster .......... ey g -

(From: GeneQuiz, http://jura.ebi.ac.uk:8765/ext-genequiz/)

What do these results tell us about the usage of the potential protein reper-
toire? At present, proteins of known structure fall into approximately 750 fold
classes, out of an estimated total of 1000. A comparison of folds deduced from the
genomes of an archaeon Methanococcus jannaschii, a bacterium Haemophilus influenzae,
and a eukaryote Saccharomyces cerevisiae, revealed that out of a total of 148 folds,
45 were common to all three species—and by implication, probably common to
most forms of life. The archaeon, M. jannaschii, had the fewest unshared folds (see
Fig. 5.15).

An inventory of the structures common to all three species showed that the five
most common folding patterns of domains are: (1) the P-loop-containing NTP hydro-
lase fold, (2) the NAD-binding domain, (3) the TIM-barrel fold, (4) the flavodoxin fold,

Haemophilus influenzae

Methanococcus jannaschii ~ Saccharomyces cerevisiae

Fig. 5.15 Shared protein folds in an archaeon Methanococcus jannaschii, a bacterium
Haemophilus influenzae, and a eukaryote Saccharomyces cerevisiae. (From: Gerstein, M.
(1997), A structural census of genomes: comparing bacterial, eukaryotic, and archaeal
genomes in terms of protein structure, J. Mol. Biol,, 274, 562-576.)
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and (5) the thiamin-binding fold. Plate VI shows the structure and a simplified
schematic diagram of the topology of the last of these (see also Weblems 5.3 and 5.4).
All are of the o/f type.

3

Prediction of protein function

The cascade of inference should ideally flow from sequence — structure —
function. However, although we can be confident that similar amino acid
sequences will produce similar protein structures, the relation between structure
and function is more complex. Proteins of similar structure and even of similar
sequence can be recruited for very different functions. Conversely, very widely
diverged proteins may retain similar functions. Moreover, just as many different
sequences are compatible with the same structure, proteins with different folds
can carry out the same function.
As proteins evolve they may:

k.

. retain function and specificity,
2. retain function but alter specificity,

3. change to a related function, or a similar function in a different metabolic
context,

4. change to a completely unrelated function.

People often ask: How much must a protein sequence or structure change
before the function changes? The answer is: Some proteins have multiple func-
tions, so they need not change at all!

¢ In the duck, an active lactate dehydrogenase and an enolase serve as crystallins
in the eye lens, although they do not encounter the substrates in situ. In other
cases crystallins are closely related to enzymes, but some divergence has
already occurred, with loss of catalytic activity. (This proves that the enzymatic
activity is not necessary in the eye lens.)

+ A protein from E. coli, called Do or DegP or HtrA, acts as a chaperone (catalysing
protein folding) at low temperatures, but at 42 °C turns into a proteinase. The
rationale seems to be: under normal conditions or moderate heat stress the
goal is to salvage proteins that are having difficulty folding; under more severe
heat stress, when salvage is impossible, to recycle them.

¢ We have mentioned already the E. coli enzyme lipoate dehydrogenase that is
also an essential subunit of pyruvate dehydrogenase, 2-oxoglutarate dehydroge-
nase and the glycine cleavage complex.

These examples of structure-function relationships are at the extreme end of a
spectrum that can include a wide range of behaviour.

One problem is that it is not easy to define the idea of difference in function quan-
titatively. When are two different functions more similar to each other than two
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other different functions? In some cases altered function may conceal similarity of
mechanism. For example, the enolase superfamily contains several homologous
enzymes that catalyse different reactions with shared mechanistic features. This
group includes enolase itself, mandelate racemase, muconate lactonizing enzyme I,
and D-glucarate dehydratase. Each acts by abstracting an « proton from a carboxylic
acid to form an enolate intermediate. The subsequent reaction pathway, and the
nature of the product, vary from enzyme to enzyme. These proteins have very simi-
lar overall structures, a variant of the TIM-barrel fold. Different residues in the active
site produce enzymes that catalyse different reactions.

Divergence of function: orthologues and paralogues

The family of chymotrypsin-like serine proteinases includes closely-related
enzymes in which function is conserved, and widely diverged homologues that
have developed novel functions. Trypsin, a digestive enzyme in mammals, catalyses
the hydrolysis of peptide bonds adjacent to a positively-charged residue, Arg or Lys.
(A specificity pocket, a surface cleft in the active site, is complementary in shape
and charge distribution to the sidechain of the residue adjacent to the scissile
bond.) Enzymes with similar sequence, structure, function, and specificity exist
in many species, including human, cow, Atlantic salmon, and even Streptomyces
griseus (Fig. 5.16). The similarity of the S. griseus enzyme to vertebrate trypsins
suggests a lateral gene transfer. For the three vertebrate enzymes, each pair of
sequences has =64% identical residues in the alignment, and the bacterial
homologue has =30% identical residues with the others; all have very similar
structures. These enzymes are called orthologues—homologous proteins in dif-
ferent species. (Other bacterial homologues are very different in sequence.)

Evolution has also created related enzymes in the same species with different
specificities. Chymotrypsin and pancreatic elastase are other digestive enzymes
that, like trypsin, cleave peptide bonds, but next to different residues:
Chymotrypsin cleaves adjacent to large flat hydrophobic residues (Phe, Trp) and
elastase cleaves adjacent to small residues (Ala). The change in specificity is effected
by mutations of residues in the specificity pocket. Another homologue, leukocyte
elastase (the object of database searching in Chapter 3} is essential for phagocyto-
sis and defence against infection. Under certain conditions it is responsible for
lung damage leading to emphysema.

Homologous proteins in the same species are called paralogues. Trypsin, chy-
motrypsin and pancreatic elastase function in digestion of food. Another set of
paralogues mediates the blood coagulation cascade. Although all are proteinases,
the requirements for activation and control are very different for digestion and
blood coagulation, and the families have diverged and become specialized for
these respective roles.

Some homologues of trypsin have developed entirely new functions:

+ Haptoglobin has lost its proteolytic activity. It acts as a chaperone, preventing
unwanted aggregation of proteins. Haptoglobin forms a tight complex with




‘(uondadxa ay3 st aduanbas snasud 's 3yl sased |je Jou ING ISOW Ut)
sa>uanbas 1noj ay3 Jo 3213 Ul PaAIISUOD SANPISaI AIBIIPUI 519113| ISEIIIMO]| PUR SANPISAL PAAIISUOD A[9IN|0sqe aledipul 513119] asedsaddn
‘SY20]q Y3 JOPUN S3UI| Y3 U} 'snasti8 sadAuioldalls pue UoWes d1IUB[IY ‘MO ‘Uewiny wiol) suisdAl jo sasuanbas jo Juawudipy 91°s “Si4

e 3 Ta AX3IXADd YOO 9MSA 5b1 B oaAgd®d5sandDEAADD °1 O dIum 2

—TILYVYYSYIVYSYALSATIAADAADAIVIDAOMSAIDADIMIAYNAIYANADDSADDIIAADDIAIADYDIIINY

—XASYRISLTIMANAIDANVAADANDJAVODAOMSAADDTE———— ONDAAdDDHSAHDISAADD-ITADYDINYNL

—NSYILOIIMSAZNDANIXAAODAAINADVYOOSOMSAIDNDTA————— DSDAAdDDHSADVISAADD—TTADYDINNSL

mdeﬂBZMH3M>NZﬂ>MBN>U&MZWOﬂUUQUZm>ﬂ00AO IIIII ﬂZU>>&UUmQﬂOUmQMUUINﬂhU>UhEZmB
oee oze [h %4 ooz 06T 08T OLT

T B dX o] ST 4 1I° 1 Bgs upmps o 3b 1dt A u ® TIIT®TIQU

ATINDAYSIDYVASAIdA— NYITTAYOOSODHUNVYVOMOVYALALOONAVILIVINTLAd ———ONIdOVIAITVYMANADLOD——
INO—dXASNNDASASTIdINIDDTIN-SAVISSHINOMODSALORIOVAYDSLIATYAdADAXINTIVANSTAITHIANAINAS
IO dAY¥SADOSSASTIdYITIONTAAAASIOSSAINOMODSITODIOVYSYISLATSISVAUSNISYYSHATIITHIANNTLINS
IXO—dASYEOAVYDSTAdYATIODTIAdAAYOSSVYINOMOSITOAIOILVYAdVYIATSILISAYYNIAVESSTIITRIANNTLIY

09T 0ST ovT 0ET 0zT OTT 00T 06

X 44 F A T3be De A TU O6TIA 8YADHE ¥sAAM u TeppDIULpsugsab d o AppaAT
NADAVDTANLSYANAYVYOSOTAAADDIVYIISINNOSOSADHYVYILTAIADOVYXIVOODD———OHNSTIARIAITODYVYIAILOODAA
SANABEYIAYSSSIADISOTIANINEIOTUATA ——USAXDEYYSAAMNINATSOODAHAODSNISADHYDSAVYADHADOAT
NXSAHAISASVYSIADINOTIAANINGIOTEADI———9OSAXDHVYVYSAAMDSNITSOODABRADSNISADAJAINYODIADDAI
AXADdHYIIAVYNIADINO TS TASINHIDTIADI-——ASAXDOHOVYSAAMDIENIISOODABAOSNTISADAXAASNITONAODOAL

| _ | | _ , | _

08 oL 09 [ o¥ (X3 oz 0T

snestIb ‘g
uowTes OTIUBTIY
M0D

ueuny

snastab g
uomyes OSTIUETIV
mop

uewny

snegtab ‘g
uowres o>TIURTIY
MoD

ueumy




268

5 PROTEIN STRUCTURE AND DRUG DISCOVERY

haemoglobin fragments released from erythrocytes, with several useful effects
including preventing the loss of iron.

+ The serine proteinase of rhinovirus has developed a separate, independent
function, of forming the initiation complex in RNA synthesis, using residues on
the opposite side of the molecule from the active site for proteolysis. This is not
a modification of an active site—it is the creation of a new one.

¢ Subunits homologous to serine proteinases appear in plasminogen-related
growth factors. The role of these subunits in growth factor activity is not yet
known, but it cannot be a proteolytic function because essential catalytic
residues have been lost.

+ An antifreeze glycoprotein in Antarctic fish is homologous to trypsinogen.

¢ The insect ‘immune’ protein scolexin is a distant homologue of serine proteinases
that induces coagulation of haemolymph in response to infection.

In the chymotrypsin family we see a retention of structure with similar functions
in closely-related proteins, and progressive divergence of function in some but
not all distantly-related ones.

The message is that the overall folding pattern of a protein is an unreliable
guide to predicting function, especially for very distant homologues. For correct
prediction of function in distantly-related proteins it is necessary to focus on the
active site. For example:

¢ ]J. F. Bazan and R. Fletterick, and, independently, P. Argos, G. Kamer,
M. J. Nicklin, and E. Wimmer, recognized that viral 3C proteinases are homo-
logues of chymotrypsin, despite the fact that the serine of the catalytic triad is
changed to cysteine.

+ W. R. Taylor and L. Pearl recognized the distant homology between retroviral
and aspartic proteinases from conserved Asp, Thr, and Gly residues.

Like motif libraries such as PROSITE, such approaches go directly from signature
patterns of active-site residues in the sequence to conserved function, even in the
absence of an experimental structure.

In focussing on the active site, there is opportunity to use methods similar to
those used in drug design in designing ligands, to predict ligands that might bind
to the proteins. It is important to make use of other experimental information
available, such as tissue distribution patterns of expression, and catalogues of
proteins that interact. Attempts to measure function directly, for instance by
means of ‘gene knockouts’, will sometimes provide an answer, but are unproduct-
ive if the knockout phenotype is lethal or if there are multiple proteins that share
a function.

It seems likely that the contribution of bioinformatics to prediction of protein
function from sequence and structure will not be a simple algorithm that pro-
vides an unambiguous answer (as there is hope will someday be the case for
prediction of structure from sequence). More reasonable aims are to suggest
productive experiments and to contribute to the interpretation of the results.
These are not unworthy goals.
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Drug discovery and development

It is a sobering experience to ask a classroom full of students how many would be
alive today without at least one course of drug therapy during a serious illness.
(This ignores diseases escaped through vaccination.) Or to ask the students how
many of their surviving grandparents would be leading lives of greatly reduced
quality without regular treatment with drugs. The answers are eloquent. They
engender fear of the new antibiotic-resistant strains of infectious micro-organisms.
Other drugs target human proteins, to deal with protein dysfunction or to adjust
regulatory controls. It is necessary to develop new drugs, which, in combination
with genomic information that can improve their specificity, will extend and
improve our lives.

However, it is not easy to be a drug. For a chemical compound to qualify as a
drug, it must be:

1. safe

2. effective

3. stable—both chemically and metabolically

4. deliverable—the drug must be absorbed and make its way to its site of action
5. available—by isolation from natural sources or by synthesis

6. novel, that is, patentable

Steps in the development of new drug are summarized in the Box. The process
involves scientific research, clinical testing to prove safety and efficacy, and very
important economic and legal aspects involving patent protection and estimation
of returns on the very high required investment.

Steps in the development of a new drug

1. Understanding the biological nature and symptoms of a disease. Is it
caused by:

+ an infectious agent—bacterium, virus, other?
+ a poison of nonbiological origin?
+ a mutant protein in the patient?
2. Developing an assay. Given a candidate drug, can you test it by:
o its effect on the growth of a micro-organism?
o its effect on cells grown in tissue culture?

o its effect on animals that suffer the disease or an analogue?

« its binding to a known protein target?
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-

3.

10.

11.

12.

13.

14.

Steps in the development of a new drug (continued)

Is an effective agent from a natural source known from folklore/tradition?
If so, go to 6.

. Identify a specific molecular target, usually a protein. Determine its

structure experimentally or by model-building.

. Get a general idea of what kind of molecule would fit the site on the

target. Is there a known substrate or inhibitor?

Identification of a lead compound: a chemical that shows the desired
biological activity to any measurable extent. A lead compound is a
bridgehead; finding lead compounds and subsequently modifying them
are quite different kinds of activities.

. Development of the lead compound: Extensive study of variants of the

compound, with the goal of building in all the desired properties and
enhancing the biological activity.

. Preclinical testing, in vitro and with animals, to prove effectiveness and

safety. At this point the drug may be patented. (In principle, one wants
to delay patenting as long as possible because of finite lifetime of the
patent, and many lengthy steps still remain before the drug can be sold.)

. In the USA: submission of an Investigational New Drug Application to

the Federal Drug Administration (FDA). This is followed by three phases
of clinical trials.

Phase I clinical trials. Test the compound for safety on healthy volunteers.
Determine how the body deals with the drug—how it is absorbed, dis-
tributed, metabolized, excreted. The results suggest a safe dosage range.

Phase II clinical trials. Test the compound for efficacy against a disease on
approximately 200 volunteer patients. Does it cure the disease or allevi-
ate symptoms? Calibrate the dosage.

Phase III clinical trials. Test approximately 2000 patients, to demonstrate
conclusively that the compound is better than the best known treatment.
These are randomized double-blind tests, either against a placebo or
against a currently-used drug. These trials are very expensive; it is not
uncommon to kill a project before embarking on this step, if the phase II
trials expose side effects or unsatisfactory efficacy.

File a New Drug Application with the FDA, containing supporting data
proving safety and efficacy. FDA approval allows selling the drug. Only
now can the drug generate income.

Phase IV studies, subsequent to FDA approval and marketing, involve
continued monitoring of the effects of the drug, reflecting the wider experi-
ence in its use. New side effects may turn up in some classes of patients,
leading to restrictions on the use of the drug, or even possibly its recall.
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To develop a drug, first you must choose a target disease. You will want to
study what is known about its possible causes, its symptoms, its genetics, its
epidemiology, its relationship to other diseases—human and animal—and all
known treatments. Assuming that the potential utility of a drug justifies the
major time, expense, and effort required to develop one, you are now ready to
begin.

From the target disease, you must select a target protein. About 500 proteins
are the targets of known drugs.

You must develop a suitable assay with which to detect success in the initial
phase. If a known protein is the target, binding can be measured directly.
A potential anti-bacterial drug can be tested by its effect on growth of the
pathogen. Some compounds might be tested for effects on eukaryotic cells grown
in tissue culture. If a laboratory animal is susceptible to the disease, compounds
can be tested on animal subjects. However, compounds may have different
effects on animals and humans. For example, tamoxifen, now a drug used widely
against breast cancer, was originally developed as a birth-control pill. In fact it is
a fine contraceptive for rats but promotes ovulation in women.

The lead compound

A goal in the early stages of drug development is identification of one or more
lead compounds. A lead compound is any substance that shows the biological
activity you seek. It demonstrates that a compound exists that possesses at least
some of the desired properties.

There are a number of ways to find lead compounds:

1. Serendipity: penicillin is the classic example.

2. Survey of natural sources. ‘Grind and find’ is the medicinal chemist’s motto.
Sometimes traditional remedies point to a source of active compounds. For
example, digitalis was isolated from leaves of the foxglove, which had been
used for congestive heart failure. (Why not just continue to use the traditional
remedy? Isolation of the active principle makes it possible to regulate dosage,
and to explore variants.) Approximately half the drugs in current use are
based on natural products.

3. Study what is known about substrates, inhibitors, and the mechanism of
action, and select potentially active compounds from these properties.

4. Consider drugs effective against similar diseases.

5. Large-scale screening. Techniques of combinatorial chemistry permit parallel
testing of large sets of related compounds. A special technique applicable to
polypeptides is phage display.

6. Occasionally, from side effects of existing drugs. Minoxidil (2,4-diamino-
6-piperidino-pyrimidine-3-oxide), originally designed as an antihypertensive,
was found to induce hair growth. Viagra, originally developed as heart medicine,
is another example.

271



272

5 PROTEIN STRUCTURE AND DRUG DISCOVERY

7. Experimental screening. The US National Cancer Institute has screened tens
of thousands of compounds. (Screening of variants is also very important after
a lead compound has been found.)

8. Computer screening and ab initio computer design.

Discovery of a lead compound triggers other kinds of research activities. Many
variants of the lead compound must be tested to improve its effectiveness, and to
build in other essential properties. For instance, a compound that binds to its tar-
get in vitro is no good as a drug unless it can get to the target in vivo. Deliverability
of a drug to a target within the body requires the capacity to be absorbed and
transported. It requires metabolic stability, and ‘shelf’ stability. It requires the
proper solubility profile—a drug must be sufficiently water-soluble to be
absorbed, but not so soluble that it is excreted immediately; it must (in most
cases) be sufficiently lipid-soluble to get across membranes, but not so lipid-
soluble that it is merely taken up by fat stores. There must be a reasonable syn-
thetic route to produce the compound in quantity.

Improving on the lead compound: Quantitative Structure-Activity
Relationships (QSAR)

For any compound with pharmacological activity, similar compounds typically
exhibit related activity but vary in potency and specificity. Starting with a lead com-
pound, chemists must survey large numbers of related molecules to optimize
desired pharmacological properties. To search systematically, it would be very use-
ful to understand how the variation in structural and physicochemical features in
the family of molecules is correlated with pharmacological properties. The prob-
lem is that there are very many possible descriptors for characterizing molecules.
These include structural features such as the nature and distribution of sub-
stituents; experimental features such as solubility in aqueous and organic solvents,
or dipole moments; and computed features such as charges on individual atoms.

Quantitative Structure-Activity Relationships (QSAR) provide methods for pre-
dicting the pharmacological activity of a set of compounds from the relationship
between molecular features and pharmacological activity, based on test cases.
The method was developed by C. Hansch and colleagues in the 1960s, and has
been of very widespread use.

C. Hansch, J. McClarin, T. Klein and R. Langridge applied QSAR methods to
study inhibitors of carbonic anhydrase. Carbonic anhydrase is an enzyme that
catalyses the reaction CO, + H,O0=H" + HCO;. Clinical applications of car-
bonic anhydrase inhibitors include diuretics, treatment of high interocular pres-
sure in glaucoma by supressing secretion of aqueous humour (the fluid within
the eye), and anti-epileptic agents. High-altitude climbers take carbonic anhy-
drase inhibitors for relief of symptoms of acute mountain sickness.

Measurements of carbonic anhydrase binding of 29 phenylsulphonamides:

X
SO,NH,
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(X stands for a set of substituents on the ring that are variable in both structure
and position} showed that the binding constant was related to the Hammett elec-
tronic substituent constant ¢, a measure of the electron-withdrawing or -donating
strength of the substituent; the octanol-water partition coefficient P of the union-
ized form of the ligand; and the location (ortho or meta) of the substitution:

log K = 1.550 + 0.65 log P — 2.07I; + 3.281, + 6.94

in which K = binding constant, I, = 1if X is meta and 0 otherwise, and I, = 1 if X is
ortho and 0 otherwise. The substituents X were of the form -alkyl, or -COO-alkyl,
or —-CONH-alkyl.

This type of correlation has two implications:

1. A large number of compounds can be screened in the computer and those
predicted to be the best tested experimentally.

2. It is possible to visualize the binding site from analysis of the parameters:

+ The positive coefficient of o, implying that electron-withdrawing substituents
are favoured, suggests that the ionized form of the -SO,NH, moiety binds to
the Zn ion in the carbonic anhydrase active site.

» The positive coefficient of log P suggests a hydrophobic interaction between
the protein and ligand.

+ The negative coefficients of I, and I, suggest steric clashes with substituents
in the meta or ortho positions.

Structures of ligated carbonic anhydrase confirm these conclusions (see
Weblem 5.9).

Bioinformatics in drug discovery and development

Computing and information retrieval contribute to several steps in drug
discovery and development projects. These include: target identification; design,
analysis, and enhancement of ligands; and selection and in silicio screening of
libraries. Information systems are also important in the organization of the theoret-
ical predictions, the experimental designs, and analysis of the data. D. Searls has
called the intimate interplay between theory and experiment ‘wet-dry cycles’.

Target selection

To develop a drug against a disease, it is necessary to select a protein linked to
the disease in a way that suggests that it would be therapeutically useful to affect
its function or expression. New high-throughput data sources, particularly of
genome sequences and protein expression patterns, provide a rich source of
material for identifying potential drug targets. Differential genomics and pro-
teomics, the comparisons of healthy and diseased humans or animals, can pin-
point which particular protein is missing, dysfunctional, improperly regulated,
or expressed only in affected cells. Information about protein-protein complexes
make it possible to target not just a single protein, but a specific protein-protein
interaction.
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Knowledge of prokaryotic and viral genomes supports identification of targets
for drugs against infectious disease. Of particular interest are metabolic pathways
specific to micro-organisms, and the proteins that participate in them. A drug
affecting such a target is less likely to interact with a human homologue, with
consequent side effects. Proteins with sequences similar across bacterial clades
offer the possibility of broad-spectrum antibiotics. Conversely, gene duplications
warn of potential redundant functions, with concomitant insensitivity to inacti-
vation of the target. Knowledge of the relative speed of evolution of different
proteins, including horizontal gene transfer rates, indicates the expected stability
of a therapy against development of resistant strains.

Commitment to a target by a large pharmaceutical company involves a very
heavy investment of resources. The profit expected to flow from a successful
drug exerts a very important influence on the choice of targets actively pursued.
Analysis of the history of drugs that currently yield high profits suggests that
prediction of economic returns is not a very precise science. Now, even generously-
supported bioinformatics efforts are much less expensive than laboratory work.
The possibility that calculations will improve predictions and enhance profit is
behind the espousal of bioinformatics by the pharmaceutical industry, in addi-
tion to the purely scientific contributions of bioinformatics to drug discovery.
This contribution to economic forecasting is especially important when a company
considers high-risk projects, such as those aimed at developing a drug against a
new class of targets. Such projects must compete with lower-risk activities such
as trying to improve on a competitor’s success.

Prediction of a lead compound

Methods for predicting ligands suitable as lead compounds for drug discovery can
be divided into inductive and deductive approaches.

Inductive methods depend on correlations between known affinities of some
test set of compounds, and molecular features characterizing entire libraries of
potential ligands. These features include structural properties such as size, geom-
etry, charge distributions and specific functional groups including hydrogen-
bond donors and acceptors. They include general ‘drug-like’ qualities such as
solubility in aqueous and organic solvents, easy route of administration, appro-
priate distribution in body tissues and metabolic turnover rate. Medicinal
chemists apply an equivalent of the duck test: if it walks like a drug, swims like a
drug and quacks like a drug, then maybe it will be a drug. The relevant character-
istics of compounds are compiled into a feature vector used to compare the over-
all match between compounds of known affinity and a complete library. The
requirements for organization, encoding, storage, and searching of information
about small molecules has created a new field, chemoinformatics, which com-
plements bioinformatics in applications to drug discovery.

Deductive methods are applicable if the binding site on the target protein
is known or can be inferred. However, because binding affinity and specificity are
only two requirements for a lead compound—admittedly essential ones—it
is necessary to combine deductive methods with the correlation to desirable
properties as in the purely inductive approach. Binding assays on purified systems
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give little idea of the behaviour of a compound as a drug in its biological context.
Bioinformatics has a contribution to make in integrating the information avail-
able from molecular and cell biology, and physiology and pharmacology, to help
bridge the gap between in vitro experiments and therapeutic activities.

Molecular modelling in drug discovery

A central problem in drug discovery is the identification of a compound that will
bind tightly and specifically to a target protein. Tight binding is necessary for
efficacy at low concentrations. Specificity is necessary to minimize side effects.

If the structure of the target is known from experiment, it is possible to apply
molecular modelling directly to ligand design. If the structure of the target is
unknown, a picture of the binding site must be created from indirect evidence,
and ligand design is correspondingly more difficult. Ligand design without the
target structure is like trying to catch a bank robber from eyewitness descrip-
tions; ligand design to a target of known structure is like trying to catch the bank
robber from a clear image on a CCTV videotape.

Goals of molecular modelling applied to drug design include:

¢ Ideally: suggestion of a lead compound that already shows reasonable affinity
and specificity. This is a rare achievement.

¢ Analysis of compounds known to bind to the target. Understanding the important
interactions serves as a guide to design and testing of potential ligands, and for
selecting structural features to build into combinatorial synthesis of libraries.
In the case of antibacterial or antiviral projects, a model of the protein-ligand
complex can give some idea of how easy it would be for the pathogen to develop
resistance by mutations that lower the affinity.

+ Pharmacophore identification is the extraction of common substructures of
many compounds that share a pharmacological activity, or at least that bind to
the same site on a protein. The hypothesis is that there is some common constel-
lation of atoms within the structures that is responsible. The computational
problem of extracting the pharmacophore from a set of compounds is similar to
that of structural alignment of a set of homologous proteins. However, although
typical ligands are much smaller than proteins, the combinatorial problems are
more severe because one has lost the linear ordering of the residues in proteins.
(see page 235.) Inferred pharmacophore properties are integrated with QSAR
methods to filter libraries of compounds for candidate ligands.

« Insilicio screening: predicting of affinities, even qualitatively, suggests candidate
ligands from a library of chemical structures. The results can be used either for
setting priorities in experimental tests, or be integrated into broader approaches
to computer screening of libraries on the basis of features correlated with
favourable chemical and pharmacological properties. Many readers will be
aware of the harnessing of screensavers worldwide to search for potential
drugs.t At present, over 2.6 million computers have joined this project. They
have contributed a cumulative total of over 320 000 years of CPU power.

T http://www.chem.ox.ac.uk/curecancer.htmi
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Lead compound improvement: Once a compound is identified that binds to a
target protein, albeit with low affinity and specificity, interactive modelling can
suggest modifications that are expected to enhance the fit. Synthesis and testing
of compounds predicted to show enhanced affinity, and even solution of crystal
structures of their complexes, can guide the search for improved compounds.
The modelling is usually coupled with combinatorial chemistry and experi-
mental screening of libraries of compounds.

Docking: prediction of ligand geometry and affinity

Docking is prediction of ligand binding. In includes prediction both of
binding of small molecules to proteins, and of protein-protein binding. The
goals of docking are (1) to identify the binding site on the protein, and deter-
mine the position and orientation of the ligand, and (2) to estimate the
affinity.

(1) Identification of mode of binding Docking of small molecules to pro-
teins requires matching of the ligand to a site on a protein of known struc-
ture. The binding site may be known in advance, or it may be necessary to try
many different modes of apposition of the ligand and protein to predict the |
optimal binding site. |

The basis for docking is the identification of complementarity in size,
shape, and distribution of charge, polarity, and potential for hydro-
phobic and hydrogen-bonding interactions. A complication is the possibility
of flexibility in both partners. Small organic molecules containing many single
bonds have a high degree of conformational flexibility. (Drug designers love
structures with rings and bridges.) Many proteins show conformational
changes upon binding ligands. Therefore the experimental structure of
an unligated protein cannot be assumed to serve as a rigid target for dock-
ing. However, allowing for flexibility complicates docking calculations
substantially.

Water molecules at interfaces present another difficulty. They can con-
tribute to the surface complementarity, and provide bridging hydrogen
bonds.

(2) Estimation of affinity It is difficult to estimate absolute affinities.
However, comparative docking can provide useful information about relative
affinities. A suitable scoring function, that can predict the ranking of different |
ligands in approximate order of affinity, allows selectivity, and setting of
priorities, in experimental testing. Such scoring schemes can be ab initio—
based on the kinds of force fields described on pages 257-258—or empirical.
Conversely, comparative docking of one ligand to many proteins can predict
the specificity of the interaction.

_)
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—>
Compare:
Docking calculation Information provided
1 ligand -1 protein mode of binding, estimate of
affinity
many ligands —1 protein ranking of affinities of a series of

potential ligands

1 ligand - many proteins prediction of specificity

Docking and scoring are important steps in the filter between a full
potential library and testing at the bench. A typical narrowing of the funnel
might run as follows:

overall library size 10'2 compounds
.af..té.r..gér.].é.ré.l.f.ilters g
dockmg o g
Scormg e

visusl  10-100 for experimental testing

Two case studies illustrate the range of chemical and molecular-biological
techniques involved in drug development, and show some interesting similarities
and contrasts. They concern two well-known families of analgesic drugs—
colloquially, ‘pain-killers’—typified by morphine and aspirin. The two groups of
compounds have different mechanisms of actions, different potencies, and
different spectra of side effects.

Case Study 5.1: Development of analgesic drugs based on morphine!

Morphine and codeine are natural alkaloids contained in the latex of the
opium poppy (Papaver somniferum) (Fig. 5.17). The pharmacological effects
have been known since antiquity. Modern chemistry has explored and devel-
oped many variants. Heroin was synthesized in 1874 (Fig. 5.17). More
hydrophobic than the natural compounds, heroin traverses the blood-brain
barrier more readily, giving it a more rapid onset of action.

Both codeine and heroin are metabolized to produce morphine, the active
form. Codeine is therefore a natural example of a prodrug, an inactive agent
that is converted to an active one. The conversion depends on a cytochrome,
CYP2D6, which is absent in 5-10% of Caucasians and 1-3% of Afro-Americans
and Asians, in whom codeine is ineffective.

Morphine and codeine have been applied in medicine and surgery as anal-
gesics, drugs to relieve severe pain. Side effects include passivity and euphoria,

1 Coop, A. & MacKerell, A. D. Jr. (2000), The future of opioid analgesics, Amer. j. Pharm. Educ., 66,
153-156.
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Case Study 5.1 (continued)
CHj !
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Fig. 5.17 Morphine, codeine and heroin have structures differing only in
substituents at two positions:

Compound R R’
Morphine -H -H
o _CH3 TR
o _COCH3 RS _COCH3

and physical dependence and addiction. Drug developers have therefore long
sought a compound that would relieve pain without the harmful side effects.
Of course there was no guarantee that this would be possible.

Synthetic variants of morphine allow correlation of biological effects with
chemical structure.

One approach is to try to simplify the structure. The goals are (1) to
infer the minimal pharmacophore required for activity, and (2) if possi-
ble, to dissect the parts of the structure that relieve pain from those
causing addiction. Morphine, codeine and heroin are rigid compounds
containing five fused rings. Levorphanol differs from morphine by loss of
the bridging oxygen (removal of the tetrahydrofuran ring) and one of
the hydroxyl groups (Fig. 5.18). It is a more potent analgesic than mor-
phine but still addictive. Benzomorphan, cyclazocine and pentazocine
break the cyclohexene ring (Fig. 5.19). The addictive effects of these com-
pounds are lesser than those of morphine and levorphanol. Demerol,
which opens the cyclohexene ring, and methadone, which has no fused
rings, retain analgesic activity, sharing even smaller common substruc-
tures with morphine.

From these structures, one can infer the pharmacophore shown in Fig. 5.20.

In contrast to simplifying the molecule to identify a pharmacophore,
attempts to enhance specificity have retained the pharmacophore but made
the molecule more complex. Some success has been achieved. Etorphine and
buprenorphine, discovered in the 1960s, are far more powerful analgesics

_)
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%

than morphine (etorphine is used for sedation of large animals), and have
lower addictive potential (see Fig. 5.21). Indeed, the most important clin-
ical use of buprenorphine is in treatment of drug addiction, rather than in
analgesia.

CH3

\

N

h N

HO

OH
Fig. 5.18 The structure of levorphanol.
R
L CH,
CHjy
OH

Fig. 5.19 The structures of benzomorphan: R = CH; cyclazocine: R = CH,-cp
(cp = cyclopropane); pentazocine: R = CH,CH= C(CH,),.

C<i3
[— N
OR’

OR

Fig. 5.20 Pharmacophore (red) derived fram structural comparisons among
morphine derivatives. (After A. D. MacKerell, Jr.)
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Case Study 5.1 (continued)
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Fig. 5.21 The strucures of etorphine: R = CH,, R" = C;H,; buprenorphine:
R = CH,-cp (cp = cyclopropane), R" = t-butyl.

This exploration of variants went on before the natural receptors were
identified. We now know that the natural targets of action of morphine and
related molecules are receptors for endogenous peptides called endorphins.
These include:

g-endorphin YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE
dynorphin YGGFLRRIRPKLKWDNQ

and their cleavage products:

Met-enkephalin YGGFM
Leu-enkephalin  YGGFL

Morphine is therefore a natural peptidomimetic, a non-peptide that shares a
structure and activity with a peptide.

Several classes of receptors are known, including p, k, and 3 types, and a
recently-discovered fourth type, called ORL-1 (ORL = opiate-receptor like).
Their sequences are about 50-70% identical at the residue level. They are
G-protein-coupled receptors, similar in structure to bacteriorhodopsin (see
Fig. 4.7). Different ligands—natural and synthetic—have different affinity to
different receptors, and different kinetics of binding and dissociation. The
natural targets of morphine are p receptors. It is thought that p. receptors
tend to be more involved in physical dependence and addiction than « recep-
tors, although this statement of the situation is extremely oversimplified.
Nevertheless, it suggests that to produce a drug that provides analgesia with
reduced side effects one should look at the distribution of affinities of
compound for the different types of receptor.
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Case Study 5.2: Computer-aided drug design: specific inhibitors of

prostaglandin cyclooxygenase 2

Prostaglandins are a family of natural compounds that mediate a wide variety
of physiological processes. Pharmacological applications include the use of
prostaglandins themselves, and, conversely, drugs that block prostaglandin
synthesis. Prostaglandin E, (dinoprostone) is used in obstetrics to induce
labour. Aspirin, ibuprofen, acetaminophen (tylenol), and other nonsteroidal
anti-inflammatory drugs (NSAIDs) are effective against arthritis and related
diseases (see Box, page 283). They achieve this effect by inhibiting enzymes in
the pathway of prostaglandin synthesis, specifically, prostaglandin cyclooxyge-
nases. A well-known side effect of aspirin is bleeding from the walls of the
stomach. This occurs because prostaglandins (the production of which aspirin
inhibits) suppress acid secretions by the stomach and promote formation of a
mucus coating protecting the stomach lining.

Aspirin and other NSAIDs inhibit two closely-related prostaglandin cyclooxy-
genases, called COX-1 and COX-2. (Unfortunately the same abbreviations are
used for cytochrome oxidases 1 and 2.) COX-1 is expressed constitutively in
the stomach lining. COX-2 is inducible, and up-regulated in response to
inflammation. This suggests that a drug that would inhibit COX-2 but not
COX-1 would retain the desired activity of NSAIDs but reduce unwanted side
effects. [Note added at time of going to press: some COX-2 inhibitors have
recently been implicated in increased risk of cardiovascular disease.|

The amino acid sequences and crystal structures of COX-1 and COX-2 are
known. (These proteins have 65% sequence identity.) Figure 5.22 shows part of
the structure of COX-1, acetylated by the aspirin analogue 2-bromoacetoxy-
benzoic acid (aspirin brominated on the methyl group of the acetyl moiety).
The salicylate moiety binds nearby. The effect is to block the entrance to the
active site. Most NSAIDs bind but do not covalently modify the enzyme.

Fig. 5.22 The binding site in COX-1 for an aspirin analogue, 2-bromoacetoxybenzoic
acid. The ligand has reacted with the protein, transferring the bromoacetyl group to
the sidechain of serine 530. The protein is shown in skeletal representation, in black.
The aspirin analogue is shown in ball-and-stick representation, in red.

—_—

281



282 5 PROTEIN STRUCTURE AND DRUG DISCOVERY

_)

Case Study 5.2 (continued)

Figure 5.23 shows the same figure with the corresponding region of COX-2
superposed. Can you see regions of structural difference, that could be clues
to the design of selective drugs? Figure 5.24 shows the region of COX-2 with
the selective inhibitor SC-558 (1-phenylsulphonamide-3-trifluoromethyl-
S-parabromophenylpyrazole, made by Searle). From Fig. 5.25 we can see why
SC-558 cannot inhibit COX-1. There would be steric clashes with the isoleucine
sidechain, which corresponds to a valine in COX-2.

Fig. 5.23 The binding site in COX-1 for an aspirin analogue, 2-bromoacetoxybenzoic
acid, in black, and the homologous residues of COX-2, in red. Can you see what
unoccupied space exists in the site that could accommodate a farger ligand? Can you
see any sequence differences that might be exploited to design an inhibitor that
would bind to COX-2 (red) but not to COX~1 (black)?

Fig. 5.24 The binding site in COX-2 (black) for a selective inhibitor of COX-2, SC-558
(1-phenylsulphonamide-3-trifluoromethyl-5-parabromophenylpyrazole) (red).
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Fig. 5.25 SC-558 and the residue in COX-1 (black, isoleucine) and COX-2 (red,
valine) that appears to produce the selectivity. SC-558 cannot bind to COX-1
because there would be steric contacts between it and the isoleucine.

Aspirin

Aspirin is one of the oldest of folk remedies and newest of scientific ones. At
least 5000 years ago Hippocrates noted the effectiveness of preparations of |
willow leaves or bark to assuage pain and reduce fever. The active ingredient,
salicin, was purified in 1828, and synthesized in 1859 by Kolbe. The mecha-
nism of its action was unknown, and indeed remained unknown until, in the
1970s, J. Vane and colleagues discovered that aspirin acts by blocking
prostaglandin synthesis. Not knowing the mechanism of action was never an
impediment to its use.

A century ago, sodium salicylate was used in the treatment of arthritis.
Because stomach irritation was a serious side effect, F. Hoffman sought to
reduce the compound’s acidity by forming acetylsalicylic acid, or aspirin.
Aspirin was the first synthetic drug, which started the modern pharmaceu-
tical industry. (The name salicin comes from the Latin name for willow, salix,
and the name aspirin comes from ‘a’ for acetyl and ‘spir’ from the spirea
plant, another natural source of salicin.)

Aspirin has the effect of reducing fever, and giving relief from aches and
pains. In high doses it is effective against arthritis. Aspirin is also used for
prevention and treatment of heart attacks and strokes. The applications to
cardiovascular disease depend on inhibition of blood clotting by suppressing
prostaglandin control over platelet clumping. The many applications of
aspirin reflect the many physiological processes that involve prostaglandins.

Aspirin’s many uses

Small doses Medium doses  Large doses

Interferes with Fever/pain Reduces pain and inflammation
blood clotting of arthritis and related diseases
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20, 478-480. [Describes DALI and its applications to structural alignment.]
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Exercises, Problems, and Weblems

Exercises

5.1 The heat of sublimation of ice = 51 k] mol~1 at the freezing point. In the
solid state, each molecule of H,0 makes two hydrogen bonds. What is the energy
of a single water-water hydrogen bond?

5.2 Which pairs are orthologues, which are paralogues, and which are neither?
(a) Human haemoglobin « and human haemoglobin B.

(b) Human haemoglobin a and horse haemoglobin a.

(c) Human haemoglobin a and horse haemoglobin .

(d) Human haemoglobin « and human haemoglobin ¢

(e) The proteinases human chymotrypsin and human thrombin.

(f) The proteinases human chymotrypsin and kiwi fruit actinidin.

5.3 On a photocopy of Plate VI, indicate the locations in the structure that corres-
pond to X, Y and Z in the following diagram.

N

JeNC RN

f
l X Y

z

5.4 On a photocopy of Fig. 5.8b, highlight the region of 3,, helix that was not
predicted to be helical.

5.5 Which of the following shows the correct topology—correct strand order in
the sequence and orientation—of the p-sheet in Fig. 5.8b?
@TTTT @®mTLTL @©@TTLT

1234 3421 1324

5.6 In the structure prediction of the H. influenzae hypothetical protein, Fig. 5.11:
(a) What are the differences in folding pattern between the target protein and the
experimental parent or template? (b) What are the differences in folding pattern
between the prediction by A. G. Murzin and the target? (c) What are the differ-
ences in folding pattern between the prediction by A. G. Murzin and the experi-
mental parent? In what respects is Murzin’s prediction a better representation of
the folding pattern than the experimental parent?

5.7 Draw the chemical structures of aspirin and 2-bromoacetoxy-benzoic acid.

5.8 Many proteins from pathogens have human homologues. Suppose you had a
method for comparing the determinants of specificity in the binding sites of two

285
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homologous proteins. How could you use this method to select propitious targets
for drug design?

5.9 In the neural network illustrated on page 246 (lower figure), how many
parameters—variable weights and thresholds—are available to adjust, assuming a
linear decision procedure?

5.10 What is the geometrical interpretation of a neuron that accepts two inputs
x and y and ‘fires’ if and only if x + 2y = 2?

5.11 Sketch a neuron with two inputs x and y each of which may have any numer-
ical value, that will emit 1 if and only if the value of the first input is greater than
or equal to that of the second. What is the geometric interpretation of this neuron?

Problems

5.1 In the table of aligned sequences of ETS domains (see Problem 1.1): (a) Which
are the most similar and which the most distant members of the family? (b)
Suppose that an experimental structure is known only for the first sequence. For
which others would you expect to be able to build a model with an overall r.m.s.
deviation of =1.0 A for 90% or more of the residues?

5.2 Sketch a neural network that accepts 8 inputs, each of which has value O or 1,
with the interpretation that the 8 inputs correspond to the residues in a sequence
of 8 amino acids, and that the value of the ith input is 0 if the ith residue is
hydrophilic and 1 if the ith residue is hydrophobic. The network should output 1
if the pattern appears helical—for simplicity demand that it be PPHHPPHH where
H = hydrophobic (uncharged) and P = polar or charged—and 0 otherwise.

5.3 Write a more reasonable set of patterns to identify helices from the
hydrophobic/hydrophilic character of the residues in a 10-residue sequence. Your
patterns might include ‘wild cards’—positions that could be either hydrophobic
or hydrophilic, or correlations between different positions. Generalize the previous
problem by sketching neural networks to detect these more complex patterns.

5.4 We, and computers, can do logic with arithmetic. Define: 1 = TRUE and
0 = FALSE. Sketch simulated neurons with two inputs, each of which can have
only the values 0 or 1, and a linear decision process for firing, for which (a) the
output is the logical AND of the two inputs and (b) the output is the logical OR of
the two inputs. (c) What is the simplest neural network, with each neuron having
a linear decision process for firing, that produces as its output the EXCLUSIVE OR
of the two inputs (the EXCLUSIVE OR is TRUE if either one of the inputs is TRUE,
FALSE if neither or both of the inputs are TRUE.) Can this be done with a single
layer? If not, what is the minimum number of layers in the network required?

5.5 Modify the PERL program for drawing helical wheels (pages 232-233) so that
different amino acids are all represented in the same font, but appear in different
colours, as follows: GAST, cyan; CVILFYPMW, green; HNQ, magenta, DE, red; and
KR blue.

5.6 Hydrophobic cluster analysis. Suppose a region of a protein forms an «-helix.
To represent its surface, imagine winding the sequence into an a-helix (even if in
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fact it forms a strand of sheet or loop in the native structure). Then ‘ink’ the surface
of this helix, and roll it onto a sheet of paper, to print the names of the residues.
By rolling the helix over twice, all faces are simultaneously visible.

From such a diagram, hydrophobic patches on surfaces of helices can be ident-
ified. In this way it is possible to try to predict which regions of the sequence
actually form helices in the native structure. Comparisons of hydrophobic clusters
can also be used to detect distant relationships.

Write a PERL program to produce such diagrams.

5.7 In the 2000 Critical Assessment of Structure Prediction (CASP4), one of the
targets in the category for which no similar fold was known was the N-terminal
domain of the human DNA end-joining protein XRCC4, residues 1-116.

The secondary structure prediction by B. Rost, using the method PROF: profile-
based neural network prediction, is as follows (An H under a residue means that
that residue is predicted to be in a Helix, an £ means that that residue is predicted
to be in an Extended conformation, or strand, and - means Other):

1 2 3 4 5 6
0 0 0 0 0 0
Sequence MERKISRIHLVSEPSITHFLQVSWEKTLESGFVITLTDGHSAWTGTVSESEISQEADDMA
Prediction ---EEEEEEE----- HHHHHH~HHHHHHH --EEEEEE------ EE---HHHHHHHHHHHH
1 1
7 8 9 0 1
0 0 0 0 0
Sequence MEKGKYVGELRKALLSGAGPADVYTFNFSKESCYFFFEKNLKDVSFRLGSFNLEKV
Prediction HHH-HHHHHHHHHHHH----- EEEEEE----- EEEEE----—- EEEE-----| HHHH

The experimental structure of this domain, released after the predictions were
submitted (PDB entry [1ruU1]), is shown here:

HUMAN XRCC4 [1fu1] domain1 HUMAN XRCC4 [1fu1] domain1

The secondary structure assignments from the PDB entry are:

Secondary Structure Residue ranges
Helix 27-29, 49-59, 62-75
Sheet 1 2-8, 18-24,31-37, 42-48, 114-115

Sheet 2 84-88, 95-101, 104-111
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(a) Calculate the value of Q3, the percentage of residues correctly assigned to
helix (H), strand (E) and other (-).

(b) On a photocopy of the picture of XRCC4, highlight, in separate colours, the
regions predicted to be in helices and strands.

{c) From the result of (b): How many predicted helices overlap with helices in the
experimental structure? How many strands overlap with strands in the exper-
imental structure?

5.8 In CASP4, the group of Bonneau, Tsai, Ruczinski and Baker made a prediction
of the full three-dimensional structure of protein XRCC4, residues 1-116. The
secondary structure prediction derived from their model is as follows (H = helix,

E = strand (extended), - = other):
1 2 3 4 5 6
0 0 0 0 0 0
Sequence  MERKISRIHLVSEPSITHFLQVSWEKTLESGFVITLTDGHSAWTGTVSESEISQEADDMA
Prediction ----E--EEEE---EEEE--EHHEHHHHH----EEEE--EEEE--~-- HHHHHHHHHHHH
7 8 9 0 1
0 0 0 0 0
Sequence  MEKGKYVGELRKALLSGAGPADVYTFNFSKESCYFFFEKNLKDVSFRLGSFNLEKV
Prediction HHH---HHHHHHHHHHH----- EEEEEEE--EEEEEEE-—---- HHHH----HHHH

(a) What is the value of Q3 for this prediction? (b) In this case, which method
gives the better results, as measured by Q3, for the prediction of secondary struc-
ture: the neural network that produces only a secondary structure prediction, or
a prediction of the full three-dimensional structure?

5.9 Write and test PERL programs that implements the neural networks shown
on page 247.

5.10 Suppose that you are trying to evaluate, using a threading approach,
whether a sequence of length M is likely to have the folding pattern of a protein of
known structure of length N > M. (a) How many different alignments of the
sequences are possible. (b) Suppose that half the residues of the known protein
form a-helices, and no gaps within helical regions are permitted. How many
different alignments of the sequences are now possible? (c) How many alignments
are there, under each of these assumptions, if N = 200, and M = 150?

5.11 Write a PERL program to calculate approximate values of w by a Monte
Carlo method, as follows: The square in the plane with corners at (0, 0), (1,0),
(0, 1), and (1,1) has area 1. Compute a series of pairs of random numbers (x, y) in
the range (0, 1] to generate points distributed at random in this square. Count the
number of points that lie within a circle of radius 0.5 inscribed in the square. The
ratio of the number of points that fall within the circle to the total number of
points = the ratio of the area of the circle to the area of the square = /4.

Determine the average relationship between the number of points chosen and
the number of correct digits in the calculated value of 7. Estimate the number of
points required to determine = correctly to 50 decimal places.

5.12 To convert the output of a neuron from a step function to a smooth function
(see page 248), one can replace a statement of the form ‘Let X be some weighted
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sum of the inputs; then output 1 if X > 0 else output 0’ with ‘Let X be some
weighted sum of the inputs; then output 1/(1 + ¢=X).” (a) Verify that as X - —oo,
1/1+e¢ X 50,as X > +», 1J(1 + e %) 5 1, and that if X =0, 1/(1 + ¢ X} = 0.5.
(b) Suppose the network for determining whether a point lies within a triangle
(page 247, bottom) is so altered, so that the output of each neuron is described by
the smooth function 1/(1 + e X) rather than a step function, and that a point is
considered inside the accepted area if the output of the network is >0.5. Write
a PERL program to determine what area is then defined.

Weblems

5.1 The bacterium Pseudomonas fluorescens and the fungus Curvularia inaequalis
each possess a chloroperoxidase, an enzyme that catalyses halogenation reac-
tions. Do these enzymes have the same folding pattern?

5.2 Check the prediction of transmembrane helical segments in bacterio-
rhodopsin from the secondary structure assignments in the experimental struc-
ture in the Protein Data Bank.

5.3 Plate VI showed the structure of a thiamin-binding domain, identified
by M. Gerstein as one of the five most common folding patterns appearing in
archaea, bacteria and eukarya. Using facilities available in SCOP, draw pictures of
the four other structures.

5.4 Using either the results of Weblem 5.3, or pictures available in Introduction
to Protein Architecture: The Structural Biology of Proteins, draw simplified topology
diagrams analogous to the one in Plate VI for the other four structures.

5.5 Does the human 6, globin gene encode an active globin? Or is it really
a pseudogene? Send the amino acid sequence of human 6; globin to SWISS-
MODEL, including a request for a WhatCheck report on the result. What can you
conclude from the result about the status of human 6, globin?

5.6 Compare the number of entries in SCOP, in different categories, listed on
page 240, with the number that SCOP contains now.

5.7 Align the sequences of y-chymotrypsin and S. aureus epidermolytic toxin
A using pairwise sequence alignment methods. Compare the result with the
structural alignment shown in the text.

5.8 Align the sequences of human neutrophil elastase and C. elegans elastase.
(a) In the optimal alignment, how many identical resdues are there? (b) Would it
be reasonable to build a model of C. elegans elastase starting from the structure of
human neutrophil elastase?

5.9 S. Chakravarty and K. K. Kannan solved the structures of carbonic anhydrase
with a benzenesulphonamide ligand (Protein Data Bank entry 1czm.) Draw
pictures of the binding site showing the nature of the interactions between the
protein and ligands. Describe the nature of the interactions in terms of the
conclusions drawn from the QSAR analysis.
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