Cell and Molecular Biology in Action
A series published by Prentice Hall

Edited by: Dr Ed Wood, Department of Biochemistry and Molecular Biology, University of
Leeds, UK

The series aims to provide introductions to key, exciting areas of cell and molecular
biology, stimulating students’ imaginations and initiative to bridge the gap between
memorising concepts and the active approach needed for research and literature review
projects. This active learning series also introduces students to experimental design and
information retrieval and analysis, including exploration of the World Wide Web.

Each text in the series will cover key theory concisely and use boxes to highlight
skills, techniques and applications of the theory covered. Each text will also have its own
Web page providing updates and usefut links to relevant sites.

For details of forthcoming titles in the series please visit the Pearson Education
World Wide Web site at http://www.pearsoneduc.com

£
i
&

CELL AND MOLECULAR BIOLOGY IN ACTION SERIES

Iqtroduction to
Bioinformatics

Teresa K. Attwood and
David J. Parry-Smith

Prentice

Hall

an imprint of Pearson Education
::rr;::: Eng::nm:wm:o"od‘:" K Nedeork - Reading, Massachusetts - San Francisco
- D ,» Ontario - Sydney - Tokyo - Singapore - Hong Kon
inei - N . - 3
Taipei - Cape Town : Madrid - Mexico City - Amsterdam - Munichg- Pari':: . MEI‘IJ:I:



Contents |

Pearson Education Limited
Edinburgh Gate, Harlow

Essex CM20 2JE

England

and A iated Companies through t the World

[ |

Visit us on the World Wide Web at:
http://www.pearsoneduc.com

© Addison Wesley Longman Limited 1999 : Preface .
. Overview xu
The r1'ght of Teresa K. Attwood ?ud David J. Parry-Smith 1 Introduction XV
to be identified as authors of this Work has been asserted 2 Informati xvi
by them in accordance with the, Copyright, Design and 3 mation l‘letv“lorks xvii
Patents Act 1088. Protein information resources -
4  Genome information resources xvil
All rights reserved; no part of this publication may be 5  DNA sequence analysis xvi
.reproduced, stored in any retrieval system, or trapsmltted 6  Pairwise alignment techniques X
in any form or by any means, electronic, mechanical, 7 Multiple sequence ali Xviil
photocopying, recording, or otherwise without either the prior 8  Secondary datab gnmer']t il
written permission of the Publishers or a licence permitting 9 condary database searching xviii
restricted copying in the United Kingdom issued by the Building a sequence search protocol :
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, 10 Analysis packages xix
London W1P OLP. xx
First published 1999 1 Introduction
1.1 Introduction L
ISBN 0 582 327881 1.2 The dawn of sequencing i
1.3 What is bioinformatics?
British Library Cataloguing in Publication Data : . i .. 2
A catalogue record for this book is i g Fg’e biological sequence/structure deficit 3
available from the British Library. > Genome projects 2
1.6 Status of the human genome project
Library of Congress Cataloging-in-Publication Data 1.7 Why is bioinformatics important? 6
A catalog entry for this title is 1.8 Pattern recognition and prediction 6
available from the Library of Congress. 1.9 The folding problem 7
098765453 1.10 The role of chaperones lg
04 03 02 01 00 111 Sequence analysis
1.12 Homology and analogy 10
Set by 30 in Concorde BE 1.13 The devil is in the detail 12
1.14 Summary ig

Produced by

Printed in Great Britain by Henry Ling Ltd,, at the Dorset Press, Dorchester, Dorset. 1.15 Further reading
N 16



SIUJU0) \ s

2 Information networks®

2.1
22
23
24
25
26
27
2.8
29

Introduction

What is the Internet?

How do computers find each other?

Facilities used on the Internet

What is the World Wide Web?

Web browsers

HTTP, HTML and URLs

The European Molecular Biology network - EMBnet

The National Center for Biotechnology Information- NCBI

2.10 Virtual tourism

2.11

Summary

2.12 Further reading
2.12 Web addresses

3 Protein information resources

Introduction

Biological databases

Primary sequence databases
Composite protein sequence databases
Secondary databases

Composite protein pattern databases
Structure classification databases
Summary

Further reading

3 10 Web addresses

4 Genome information resources

4.1
4.2
4.3
4.4
4.5
4.6

Introduction

DNA sequence databases
Specialised genomic resources
Summary

Further reading

‘Web addresses

5 DNA sequence analysis

5.1
52
53
54
5.5
5.6
5.7
58
5.9

Introduction

Why analyse DNA?

Gene structure and DNA sequences
Features of DNA sequence analysis

Issues in the interpretation of EST searches
Two approaches to gene hunting

The expression profile of a cell

c¢DNA libraries and ESTs )
Different approaches to EST analysis

5.10 Effects of EST data on DNA databases

69
69
69

78
78
80

5.11 A practical example of EST analysis
5.12 Summary
5.13 Further reading

6 Pmrmse alignment techniques

Introduction

6.2 Database searching

6.3 Alphabets and complexity

6.4 Algorithms and programs

6.5 Comparing two sequences - a simple case

6.6 Sub-sequences

6.7 Identity and similarity

6.8 The Dotplot

6.9 Local and global similarity

6.10 Global alignment: the Needleman and Wunsch algorithm

6.11 Local alignment: the Smith-Waterman algorithm
6.12 Dynamic programming

6.13 Pairwise database searching

6.14 Summary

6.15 Further reading

7 Multlple sequence alignment
Introduction
7.2 The goal of multiple sequence alignment
73 Multiple sequence alignment: a definition
74 The consensus
75 Computational complexity
76 Manual methods
7.7 Simultaneous methods
78 Progressive methods
79 Databases of multiple alignments
7.10 Searching databases with multiple alignments
711 Summary
7.12 Further reading

8 Secondary database searching
8.1 Introduction
8.2 Why bother with secondary database searches?
8.3 What’s in a secondary database?
8.4 Summary
8.5 FRurther reading

9 Building a sequence search protocol
9.1 Introduction
9.2 A practical approach

103
106
107

132
132
132
133
134
134
135
136
136
137
141
142
143

163
163
163

SJuaju0) I =



E

SUEMITy)

9.3 When to believe a result 178

9.4  Structural and functional interpretation 179
9.5 Summary 184
9.6  Further reading . : 184
10 Analysis packages 185
10.1 Introduction 185
102 What's in an analysis package? 185
10.3 Commercial databases 188
10.4 Commercial software 188
10.5 Comprehensive packages ’ 189
10.6 Packages specialising in DNA analysis 192
10.7 Intranet packages 193
10.8 Internet packages 194
10.9 Summary 197
10.10 Further reading 198
10.11 Web addresses 198
Glossary 199
Index 211

Further information for use with this book can be accessed via a link on
the publisher’'s Web site at http://www.booksites.net. The Web site offers
an interactive bioinformatics practical that aims to give a flavour of
protein sequence analysis. The practical begins with an ‘unknown’ DNA
fragment, which the user is invited to identify and characterise via searches
of sequence, pattern and fold classification resources. Chapter 9 of the
book is devoted to a werked example through this sequence search
protocol. Some of the supporting theory, and an up-to-date list of web
links, are also supplied in the practical, leading to a tight coupling of
book- and Web-based materials. We would encourage readers to use the

Web site regularly.

o

Dedication

In special memory of Professor John and Dr Jean Utting,



Acknowledgements

We are grateful for permission to reproduce material in the following
illustrations:

Figures 1.2, 9.18 and 9.19 from http://www.biochem.ucl.ac.uk/bsm/
pdbsum/ with permission from Dr R. Laskowski; Box 1.3 RUBE
GOLDBERG™ and © property of Rube Goldberg, Inc. Distributed by
United Media; Figure 2.4 Dr T. Etzold, European Bioinformatics Institute,
Hinxton, UK; Figure 2.5 in which the maps were originally created by Dr B.
Plewe for Virtual Tourist http://www.vtourist.com/webmap/maps.htm, and
from http://www.angis.org.au/ with permission from Dr T. Littlejohn;
Figures 3.3, 3.4, 3.8, 8.5 and 9.7 from hitp://www.expasy.ch/ with
permission from Dr A. Bairoch; Figures 3.6, 3.7, 8.4, 9.12, 9.13 and 9.14, and
Box 9.1 from http://www.blocks.fhcre.org/ with permission from Dr J.
Henikoff; Figures 3.9, 4.3, 7.2 and 9.9 from http://www.sanger.ac.uk/ with
permission from Dr R. Durbin; Figure 2.3 Dr R. Lopez, European
Bioinformatics Institute, Hinxton, UK; Box 8.1 and Figures 8.3, 9.10 and
9.11 from http:// www.biochem.ucl.ac.uk/cgi-bin/fingerPRINTScan/
fingerPRINTScan.cgi with permission from Mr P. Scordis, Department of
Biochemistry and Molecular Biology, University College London, UK;
Figure 9.15 from http://dna stanford edu/identify/ with permissionfrom

Dr C. Nevill-Manning; Figure 9.17 from http://www.biochem.ucl.ac.uk/
bsm/cath/ with permission from Dr C. Orengo, Department of
Biochemistry and Molecular Biology, University College London, UK; and
Figure 10.2 from http://www.mrclmb.cam.ac.uk:80/pubseq with permission
from Dr R. Staden.

We would especially like to acknowlege our gratitude to: Anne Parry-Smith
for her unfailing support, and much tea and sympathy, during interminable
weekends preparing the manuscript; Jeremy Packer at Cambridge Drug
Discovery, Cambridge, UK for help with proof-reading; Alex Seabrook

(who got us into this mess in the first place) and Kate Henderson (who
helpe:d get us out of it) at Addison Wesley Longman, whose patience (under
the circumstances) has been quite remarkable, and a model to us all; and
finally, the Sequence Group in the Biochemistry Department at Uni\’/ersit’y
qul.ege London (Phil Scordis, Julian Selley, Jane Mabey, Will Wright, and
affiliate member Maria Karmirantzou) for suffering my neglect, smilil;g
(mostly) at my bad temper, and always generously helping out whenever
technology, somewhat predictably, conspired to defeat me (usually just
before a deadline). Sincere thanks to you all.

syuswabpaimousy ‘ 3



Preface

The last decade has witnessed the dawn of a new era of ‘si]icon—bas.ed’ bio-
logy, opening the door, for the first time, to the possible investigation and
comparative analysis of complete genomes. In its broadest sense, genome
analysis (the quest to elucidate and characterise the genes and gene prod-
ucts of an organism) is underpinned by a number of pivotal concepts,
concerning, principally, the processes of evolution (c.livergence anc_l conver-
gence), the mechanism of protein folding, and, crucially, the manifestation
of protein function. o
Today, our use of computers to model such processes is limited by, and
must be placed in the context of, the current limits of our um.:lerstandmg of
these central themes. At the outset, it is important to recognise t}_xat we do
not yet fully understand the rules of protein folding;‘ we cannot invariably
say that a particular sequence or fold has arisen by d1vergent or gonver.gent
evolution; and we cannot necessarily diagnose pfot_em fl.mctlon, given
knowledge only of its sequence, or of its structure, in 1solat19n. Acc.eptmg
what we cannot do with computers plays an essential role in forming an
appreciation of what, in fact, we can do. Without this kind of understand-
ing, it is easy to be misled,as spurious arguments are often used to promote
perhaps rather overenthusiastic points of view about what particular pro-
grams and software packages can achieve. o
In the field of bioinformatics, the current research drive is to b.e able
to understand evolutionary relationships in terms of the expression of
protein function. Two computational approaches have }:een brf)ught to
bear on the problem, tackling the identification of protein func.tlon from
the perspectives of sequence analysis and of structure analysis respec-
tively. From the point of view of sequence analysis, we are concerned
with the detection of relationships between newly determined sequences
and those of known function (usually within a database). This may mean
pinpointing functional sites shared by disparate proteins (probably the

result of convergent evolution), or identifying related functions in similar
proteins (most commonly the result of divergent evolution).

Put like this, the identification of protein function from sequence
sounds straightforward, and, indeed, sequence analysis is usually a fruitful
technique; but there are two important caveats. First, in 1998, function
cannot be inferred from sequence for about one third of proteins in any of
the sequenced genomes, largely because biological characterisation cannot
keep pace with the volume of data issuing from the genome projects (large
numbers of database sequences thus either carry no annotation beyond the
parent gene name, or are simply designated ‘hypothetical proteins’).
Second, in some instances, closely related sequences, which may be
assumed to share a common structure, may not share the same function.
The classic example here is lysozyme, an enzyme that catalyses the hydro-
lysis of bacterial cell-wall polysaccharides, which shares around 50%
identity (70% similarity) with o-lactalbumin, a non-catalytic regulatory milk
protein whose presence is required for lactose synthase to transfer a galac-
tose molecule from UDPgalactose to D-glucose. In spite of this high level of
sequence similarity, and highly similar folds, the functions of the proteins
differ: the two key catalytic residues of lysozyme (glutamic and aspartic
acid) are not conserved in a-lactalbumin; and the acidic calcium-binding
motifs characteristic of a-lactalbumins are shared by only a few lysozymes.
The lesson here is not that sequence or structure analysis cannot be used as
a route to deducing function, but rather that neither technique can be
applied infallibly without reference to the underlying biology.

The sequence and structure of a protein are clearly different compo-
nents of its overall functionality ~ in mathematical terms, we might think of
function as being a convolution of sequence and structure. It is perhaps
useful to consider a protein fold as providing a basic scaffold, or architec-
ture, and that this framework may be modulated, or decorated, in different
ways with different sequences to confer different functions. By analogy,
think of a very simple architecture - let us say an empty room. Let us now
place within it a table and a chair. At this stage, we cannot tell exactly what
the room is for, except perhaps that it is unlikely to be a bedroom or a bath-
room. However, if we place a computer on the table, then we could say that
it is more likely to be a study, for example, than a dining room. But this is
not the full story. Supposing that the room might be a study has not given
us an insight into the environment of the room: the study could be a room
within a domestic house, where the computer is used largely, say, for keep-
ing accounts; or it could be an office in a company or college perhaps,
where the computer is used for running database searches. We only begin
to get a full appreciation of the function of the room when we understand,
first, how its basic framework is decorated with particular items of furniture
and key accessories, and then how its location provides a context for the
precise expression of its function,

At a simplistic level, we can think of proteins in much the same way. To
take a trivial example, a basic fold, such as a B-barrel (our room), may
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occur in many different protein environments, where it may have different
functions, depending on how the framework is modulated by a particular
protein sequence. In this case, the folding unit may simply be the conse-
quence of convergence to a stable architecture (a room is just a room). In
the case of lysozyme and a-lactalbumin, however, which are the result of
divergent evolution, both sequence and structure are similar (our room has
essentially the same furniture). Here, the different functions of the proteins
can only be resolved at the level of specific residues that mediate their dif-
ferent activities (i.e., the room’s accessories differ - e.g., the computer is a
powerful workstation rather than a PC).

The message here is that Nature has her own complex rules, which we
only poorly understand, and which we cannot easily encapsulate within
computer programs. No current algorithm can ‘do’ biology. Programs pro-
vide mathematical, and thegefore infallible, models of biological systems. To
interpret correctly whether sequences or structures are meaningfully simi-
lar, whether they have arisen by the processes of divergence or of
convergence, whether similar sequences, or similar folds, have the same or
different functions: these are challenging problems, even for the experi-
enced biologist. There are no simple solutions, and computers do not give
us the answers; rather, given a sea of data, they help to narrow the options
down so that we, the users, can begin to draw informed, biologically rea-
sonable conclusions.

The issues relating to sequence and structure analysis are many and
varied, and separately they constitute vast disciplines. Although, perhaps
ideally, investigation of protein function should draw on insights derived
from both sequence and structure, we will see that, at the present time,
the amount of available structural information is limited by comparison
with the quantity of available sequence data. It is clear that the three-
dimensional structure of proteins is more faithfully preserved, or
conserved, than is the underlying sequence. Thus, seemingly different
sequences may adopt remarkably similar folds; in studying evolutionary
relationships, this presents the sequence analyst with some daunting chal-
lenges. In light of the tidal wave of genome data now before us, these
challenges, far from diminishing, are growing in scale. This book therefore
considers the problems of detecting the distant relationships sequestered
in these oceans of data solely from the perspective of sequence analysis,
and, in this context, explores both the possibilities and the current limita-
tions of biology in silico.

»

Following our opening thoughts, let us now try to make two things clear:
first, what this book is not about, and second, how what it is about is struc-
tured, in order to give a better understanding of how to use the book and
what to expect from it.

) So, to begin with, this text is not about protein structure, structure analy-
sis or structure prediction (secondary or tertiary); there are already numerous
excellent and authoritative books in this area. Similarly, this is not a biology
text, although we stress at all times that results of sequence analysis, and
especially functional inference, must be placed in a proper biological context
(and, in the limit, can only be verified by direct experiment).

This book is about sequence analysis. It is an attempt to discuss what
realistically can and cannot be achieved with today’s computer programs in
today’s databases. Sequence analysis does not give black and white answers
regarding 3D molecular structure and function, and/or evolutionary rela-
tionships. Computational methods merely provide clues; the challenge is to
design analysis strategies that most effectively capture known biological
knowledge and hence can offer insights that might ultimately suggest partic-
ular experiments. Thus, wisely used, sequence analysis is a valuable tool in
the trade of modern molecular biology.

) The birth of genome projects, and the accompanying deluge of sequence
information, has placed sequence analysis firmly in the spotlight, as computa-
tional methods are now needed to try to infer biological information from
sequence data alone. The analysis approaches discussed in this book are con-
cerned with the ability to detect relationships with sufficient confidence that
structural or functional information about a known sequence may be sensibly
transferred to an uncharacterised one. Such relationships may be quite dis-
tant, and similarities between them confined to only small regions.
D.iscovering such islands of similarity between ancient evolutionary relatives
within the ocean of noise that biological databases contain is a major signal-
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to-noise issue. Consequently, many different techniques have been designed
to tackle this problem from a variety of different perspectives; to the new-
comer, these may seem rather bewildering. The aim of this book is not to
focus on any analysis method in particular, but rather to provide a guide to
some of the most popular databases and search tools currently available.
Hence, we encourage the would-be sequence analyst not to rely on specific
methods, but to explore different databases with different tools, and to try to
establish a consensus view from the various approaches.

The reasons for taking this stance are pragmatic: e.g., no database is yet
complete, so there is no ‘single’ database for the job; contents of similar
resources, in some cases, only partially overlap, so to omit one is possibly to
compromise the effectiveness of a given search; no database search or
sequence alignment tool is infallible, so different methods can usefully pro-
vide a ‘reality check’ on one’s results; some databases and pattern recognition
techniques are still very much at the research level and have not stood the
test of time - their availability is therefore not always guaranteed (because,
for example, financial support for a particular research project has ended).
The flavour of the book is therefore deliberately philosophical in places, in an
attempt to place emphasis on underlying concepts, knowing that, in this
rapidly developing area, the specifics will change very quickly.

Nevertheless, clearly many important methods and databases are
required as part of the sequence analyst’s armoury. The book therefore begins
by outlining, chapter by chapter, some of today’s most commonly used data-
bases, information resources and analysis methods. Although perhaps tedious
to encounter in quite this form, the essence of the approach is to provide suf-
ficient familiarity with the background material to be able to begin hands-on
practical sequence analysis. Building on the theory at the heart of the book,
we therefore delve into a real application, in the form of an interactive bio-
informatics practical on the World Wide Web. The book could therefore be
regarded as a detailed manual that accompanies the Web tutorial.

Figure i illustrates how the book is structured to pave the way to the
practical in Chapter 9; the contents of individual chapters are outlined
below. Broadly, there are four main themes: first, where and what are the
databases (protein and nucleic acid sequence), and what are their formats?
Second, what are the sequence alignment methods (pairwise and multiple),
and what are their strengths and weaknesses? Third, what are the pattern
recognition methods (single- and multiple-motif, profile, etc.), and what are
the pitfalls? And, finally, how do we combine these techniques within an
effective search protocol?

1. Introduction M

We begin at a basic level, exploring such questions as ‘What is bioinforma-
tics?’ and ‘Why is it important?’ To set these questions in context, some of
the historic developments that led from labour-intensive manual protein
sequencing to the current information revolution are outlined (where once

ionto ¢ li
bioinformatics protein & DNA

ive Web

pairwise & muitiple  practical

Internet EST protein analysis
& www analysis sequence  packages
analysis

Figure i Bfmk overview, illustrating the main themes of successive chapters, which pave the
wayt'o an interactive Web practical. Although aspects of all chapters ultimately bear on the
practical, they do not all carry the same weight — this difference of emphasis is highlighted by

means of the relative weights of the lines linking back to the referring chapters.

it took years to determine a complete protein sequence, new conceptual
translations are entering our databases at the now-alarming rate of one per
minute!). The ramifications of the biological sequence/structure deficit, and
the consequent imperative to analyse sequences as a route to deducing pro-
tein function, are discussed. The feasibility and status of protein secondary
and tertiary structure prediction are also briefly mentioned. Some funda-
mental definitions (e.g., homology vs. similarity) are given.

2. Information networks

The Internet, the World Wide Web, and the global network of biological
information and service providers are introduced. We refer to the browsers
that have made such information and facilities accessible, and to the soft-
ware tools that have been developed for linking and searching distributed
databases. Web addresses of some important bioinformatics organisations
are summarised.

3. Protein information resources

Now we focus on some of the most important protein databases accessible
via the Internet and the Web. The different levels of stored data (e.g., pri-
mary, secondary, tertiary) are discussed, and formats of the most widely
used primary and secondary resources (e-g, SWISS-PROT and PROSITE)
are explained in detail. Reasons for the evolution of composite databases
and of integrated database projects are also briefly mentioned.

4. Genome information resources

Here, we take a closer look at DNA sequence data repositories, including
the primary producers (GenBank, EMBL, DDBYJ) and a range of specialist
genome information resources (for obvious reasons, we can only hint at the
range of databases currently available, and readers are referred to the Web

-
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for more expansive lists). To provide a contrast with the kind of informau'o.n
available in protein sequence databases, the format of GenBank entries is
examined in detail.

5. DNA sequence analysis

We now discuss the specific motivations for, and issues involved with, the
analysis of DNA sequences. The concept of the hierarchy of genomic infor-
mation is introduced, leading to a discussion of Expressed Sequence Tags
(ESTs), derived from rapid sequencing of cDNA libraries. EST analysis pro-
vides the focus for this chapter, largely because of its growing importagce in
the contexts of gene- and drug target-discovery programmes. The particular
problems inherent in EST sequence analysis are therefore described_, and a
practical example is discussed. Three producers of EST data are profiled.

6. Pairwise alignment technigues

Pairwise comparison is a fundamental task in sequence analysis, providing
the basis of database search algorithms, which seek to determine wh?ther
sequences are significantly similar, and hence whether or not they are l'1ke1y
to be homologous. The concepts of identity and similarity are de§cnbe-d,
and we consider the definition of local and global similarity, examining in
some detail the algorithms that fall into these two categories.

7. Multiple sequence alignment

Seeking relationships between pairs of sequences (your query, say, and a
database sequence) is only a first step in the analysis process. Often, interest
hinges on groups of sequences that form gene families; in these cases, it is
desirable to be able to trace the connections within such groups, in prder to
identify conserved family characteristics. The process of multiple ahgnmer.n
effectively enhances the signal-to-noise ratio within se_ts of sequences, u.ltl-
mately facilitating the elucidation of biologically sigmﬁcar_xt motifs (which
may be diagnostic of structure or function). Here, we review some of the
different approaches to multiple alignment, including fully manual and
automatic techniques.

8. Secondary database searching

Building on the themes of primary database searching (pairwise .alignment)
and of multiple sequence alignment, we now review the analysis methods
that underpin secondary database searches. The format of secondary data-
bases was introduced in Chapter 3. Here, attention is turned to the typgs of
information stored in the major resources, including regular expressions,
profiles, fingerprints, blocks and Hidden Markov Model§. Thes_e‘ap;.)roa_ches
essentially use multiple alignments to characterise protein faml!les in dlffe'r-
ent ways, often with notably different levels of success. The main diagnostic

-

strengths and weaknesses of the techniques are therefore highlighted. We
advise that, in view of the fallibility of the different pattern recognition
methods, and given that the databases do not entirely overlap in content,
good analysis strategies should sensibly include them all.

9. Building a sequence search protocol

Now armed with the concepts of primary and secondary database search-
ing, we consider how to bring these ideas together within a generalised
sequence analysis protocol, with particular reference to an interactive
bioinformatics practical on the World Wide Web. The idea is to learn how
to interpret results of searching the different data types (inevitably, search
outputs are quite different - some are more opaque and difficult to fathom
than others!), and to appreciate the difference between biological and
mathematical significance ~ when, for example, is a hit not a hit? With
these issues in mind, the chapter is intimately linked with a Web tutorial,
which seeks to identify an unknown fragment of DNA via hands-on use of
the primary, secondary and structure classification databases. The practical
offers a step-by-step guide through a particular analysis protocol, with
embedded help, explanatory diagrams, and further information pages,
which themselves link back to this text. Once again, the principle is to pro-
vide general concepts and hence to provide the reader with confidence to
devise his or her own search strategy.

10. Analysis packages

Having discussed the seemingly bewildering array of biological databases,
the algorithms for searching them, and the kind of analysis strategy that
may be pursued via a simple Web interface, we briefly examine stand-alone
analysis suites. Popular packages from the commercial and public sectors
are reviewed (e.g., GCG, Staden), and the latest developments on the
WWW are highlighted (e.g., CINEMA); we touch on the types of facilities
offered, and consider why such packages have evolved, and what the future
might hold. Once again, in a book of this sort, we can only give a flavour of
the kinds of package currently available, and readers are referred to the
Web for more comprehensive lists. Issues relating to licensing are men-
tioned from both academic and commercial perspectives.

In light of the growing body of jargon associated with this field, a glossary is
provided at the end of the book; this will hopefully reduce frustrating, and
possibly fruitless, back-tracking to find prior definitions of seemingly unex-
plained words, phrases and abbreviations.

Finally, a few words to keep in mind while reading this book - some
ground rules if you like: (i) don’t always believe what databases tell you (the
information they contain may be misleading and is sometimes wrong —
recent estimates of genomic sequencing errors have been in the range

=,
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0.1-4.0% of nucleotides, affecting more than 5% of protein§, and ‘while
errors of annotation cannot sensibly be quantified, some scientlst's fear that
current automated methods for function assignment may be leading us to a
future error catastrophe); (ii) don’t always believe what programs tell you
(the results they provide may be misleading aru_i are sometimes ’wrong -
computer programmers do occasionally make mistakes); (iii) don't alwa_\ys
believe what Web servers tell you (the results they return may be misleading
and are sometimes wrong - authors of Web interfaces, even at the most
prominent of bioinformatics centres, also occasionally make nl.lstakes, as
we discovered while writing this book); and (iv) don’t .always _beheve every-
thing you read - mistakes abound, even in the published literature (a‘nd
even in some of the classic articles cited herein). In short, don’% bea na:We
user, but think about, question and, above all, be critical of the_ information
you gather. Where possible, try to make sense of the whole picture, 1father
than grasping at more palatable tiny parts. Only when a pattern begins fo
emerge from the noise, and starts to form coherent t.hread.s, can you begin
to be confident that your analysis is moving in the right direction and that
your conclusions might in fact be credible.

CHAPTER ONE

Introduction

1.1 Introduction

The purpose of this chapter is to describe what is meant by bioinformatics and
to explain its importance in modern molecular biology. We begin by outlining
some of the historic developments that led from labour-intensive manual pro-
tein sequencing, to today’s information deluge arising from the development of
fully automated DNA sequencing technologies. The chapter continues with a
description of the biological sequence/structure deficit, and the consequent
imperative to analyse sequences as a route to deducing protein function - in
this context, the current status of protein structure prediction is also briefly
mentioned. Important questions concerning the feasibility of protein tertiary
structure prediction are framed, with considerations of how much of the infor-
mation for folding resides in the primary structure, and the nature of the role of
molecular chaperones. Reminders of the definitions of primary, secondary, ter-
tiary and quaternary structure are given. Within the text, here and in all
subsequent chapters, terms first rendered in bold are defined in the Glossary.

1.2 The dawn of sequencing
1.2.1 Protein sequencing

The science of sequencing began slowly. The earliest techniques were based
on methods for separation of proteins and peptides, coupled with methods
for identification and quantification of amino acids. Prior to 1945, there
was not a single quantitative analysis available for any one protein.
However, significant progress with chromatographic and labelling tech-
niques over the next decade eventually led to the elucidation of the first
complete sequence, that of the peptide hormone insulin (Ryle ef al., 1955).
Yet it was a further five years before the sequence of the first enzgme was
complete - this was ribonuclease (Hirs et al, 1960). By 1965, around 20
proteins with more than 100 residues had been sequenced, and by 1980 the
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number was estimated to be of the order of 1500. Today, with mote than
300000 sequences available, it is hard to imagine such a slow awakening.

Initially, the majority of protein sequences were obtained by the manual
process of sequential Edman degradation-dansylation (Edman, 1950). A
key step towards the rapid increase in the number of sequenced proteins
was the development of automated sequencers, which, by 1980, offered a
104-fold increase in sensitivity relative to the automated procedure imple-
mented by Edman and Begg in 1967.

Advances in mass spectrometry also allowed significant progress, the
first complete protein sequence assignment by this method being achieved
in 1979. Mass spectrometry has the particular advantage that it can identify
post-translational modifications, which may be lost with other analytical
approaches. Thus, for example, the technique played a vital role in the dis-
covery of the amino acid y-carboxyglutamic acid, and its location in the
N-terminal region of prothrombin.

1.2.2 Nucleic acid sequencing

In the 1960s and 1970s, scientists struggled to develop methods to sequence
nucleic acids, but the first techniques to emerge were really only applicable
to RNA (ribonucleic acid), especially transfer-RNAs (tRNA). tRNAs were
ideal subjects for this early work, first, because they are short (typically
74-95 nucleotides in length), and second, because it is possible, if not easy,
to purify individual molecules.

DNA (deoxyribonucleic acid) is not like this. Human chromosomal
DNA molecules may contain between 55x10° and 250x10° basepairs (bp),
orders of magnitude largey, than RNAs. Assembling the complete nucleotide
sequence of an entire chromosomal DNA molecule is a huge task. Even if the
sequence can be broken into smaller components, purification remains a
problem. The longest fragment that can be sequenced in one experiment is
~500 bp. Analysis of a human chromosome could therefore yield ~0.5x10°
fragments. How then can a single fragment be separated from all others?

The advent of gene cloning and PCR provided the solution. With these
methods, it became possible to purify defined fragments of chromosomal
DNA, thus paving the way for the emergence of fast, efficient DNA
sequencing techniques. By 1977, two sequencing methods had emerged,
using chain termination and chemical degradation approaches. With only
minor changes, the techniques propagated to laboratories throughout the
world, and laid the foundation for the sequence revolution of the 1980s and
1990s, and the subsequent birth of bioinformatics.

1.3 What is bioinformatics?

During the last decade, molecular biology has witnessed an information revo-
lution as a result both of the development of rapid DNA sequencing
techniques and of the corresponding progress in computer-based technolo-
gies, which are allowing us to cope with this information deluge in

increasingly efficient ways. The broad term that was coined in the mid-1980s
to encompass computer applications in biological sciences is bioinformatics.
The term bioinformatics has been commandeered by several different
disciplines to mean rather different things. In its broadest sense, the term
can be considered to mean information technology applied to the manage-
ment and analysis of biological data; this has implications in diverse areas,
ranging from artificial intelligence and robotics to genome analysis. In the
context of genome initiatives, the term was originally applied to the compu-
tational manipulation and analysis of biological sequence data (DNA
and/or protein). However, in view of the recent rapid accumulation of
available protein structures, the term now tends also to be used to embrace
the manipulation and analysis of three-dimensional (3D) structural data.

1.4 The biological sequence/structure deficit

It is instructive to bear in mind the difference of scale in handling sequence
and structural information. At the beginning of 1998, in publicly available,
non-redundant databases, more than 300000 protein sequences have been
deposited, and the number of partial sequences in public (Boguski et al.,
1994) and proprietary Expressed Sequence Tag (EST) databases (see
Chapter 4) is estimated to run into millions. By contrast, the number of
unique 3D structures in the Protein DataBank (PDB) (Bernstein ef al., 1977)
is still less than 1500. Although structural information is far more complex to
derive, store and manipulate than are sequence data, these figures neverthe-
less highlight an enormous information deficit (see Figure 1.1); this situation

300

Number of database entries (K)
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o

1988 1993 1998
Date of database release

Figure 1.1 The protein sequence/structure deficit in 1998, The graph illustrates the
non-redundant growth of sequence data during the last decade (—) and the corresponding
growth in the number of unique structures (—).
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is likely to get worse as the various Genome Projects around the world be.gin
to bear fruit. Of course, the acquisition of structural data is also hastening,
and future large-scale structure determination enterprises could conceivably
furnish 2000 3D structures annually; but this is a small yield by compar.ison
with that of sequence datal%ases, which are doubling in size every year, with a
new sequence being added, on average, once a minute!

1.5 Genome projects

In the mid-1980s, the United States Department of Energy (DoE) initiated a
number of projects to construct detailed genetic and physical maps of the
human genome, to determine its complete nucleotide sequence, and to
localise its estimated 100000 genes. Work on this scale required the develop-
ment of new computational methods for analysing genetic map and DNA
sequence data, and demanded the design of new technique§ and mstrum_enta—
tion for detecting and analysing DNA. To benefit the public most eff(?cnve}y,
the projects also necessitated the use of advanced means of mformatu')n dis-
semination in order to make the results available as rapidly as possﬂ.)lt.a to
scientists and physicians. The international effort arising from this vast initia-
tive became known as the Human Genome Project (see Box 1.1).

BOX 1,1: GENOMES AND THE PATH TO HUMAN BENEFIT

:
H
]
H

Similar research efforts were also launched to map and sequence the
genomes of a variety of organisms used extensively in research laboratories
as model systems: these included the bacterium Escherichia coli, the yeast
Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the
fruit fly Drosophila melanogaster, the common weed Arabidopsis thalania,
and the domestic dog Canis familiaris and mouse Mus musculus. In April
1998, although the sequencing projects of only a small number of relatively
small genomes had been completed (see Table 1.1), and the human genome
is not expected to be complete until after the year 2000, the results of such
projects were already beginning to pour into the public sequence databases
in overwhelming numbers.

Table 1.1 Completed genomes in April 1998: there is only one complete eukaryotic
genome (S. cerevisiae), with 17 more in progress; and more than 20 complete
prokaryotic genomes, with 45 in progress. For more information see
http://www-fp.mes.anl.gov/~gaasterland/genomes.html

Organism Laboratory Genome size (megabases)
Saccharomyces cerevisiae Europe 16.0 (Goffeau et al., 1996)
Pseudomonas aeruginosa USA 5.9

Escherichia coli USA/Japan 4.6

Bacillus subtilis Europe/Japan 4.2

Synechocystis sp. PCC6803 Japan 3.5

Bacillus sp. C-125 Japan 4,2

Streptococcus pneumonige USA 2.5

Neisseria meningitidis Europe 2.2

Archaeoglobus fulgidus USA 2.2

Neisseria gonorrhea USA 2.2

Pyrococcus furiosus USA 2.1

Pyrococcus horikoshii Japan 2.0

Pyrobaculum aerophilum USA 1.9

Haemophilus influenzae USA 1.8 (Fleischmann et al., 1995)
Methanobacterium thermo. USA 1.8

Methanacoccus jannaschii USA 1.8 (Bult et al., 1996)
Streptococcus pyogenes USA 1.8

Helicobacter pylori USA 1.7

Aquifex aeolicus ’ USA/Europe 15 -

Treponema pallidum USA 1.1

Rickettsia prowazekii Europe 1.1

Borellia burgdorferi USA 1.0

Mycoplasma pneumoniae Europe 0.8

Ureaplasma urealyticum USA 0.8

Mycoplasma genitalium USA 0.6 (Fraser et al., 1995)
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1.6 Status of the human genome project

Up to about mid-1998, the vast publicly funded efforts to sequence the
human genome were predicting that sequencing would probably not be
complete until ~2003-2005. To date, a two-step process h;fs been used to
sequence the genome by analysing mapped clones covering the.human
chromosomes. The first step has been so-called ‘shotgm.l‘ sequencing and
assembly of random fragments from each clone; tlhxs is follo?ved by an
expensive, labour-intensive ‘finishing’ process, involving the closing of gaps
and resolution of ambiguities.

In May 1998, estimates for completing the genome were ‘shaken by t}_xe
announcement that the president of The Institute for Genomic Res‘earc‘h in
Rockville, Maryland, a leading figure in the field of genome sequencing, is to
form a company with Perkin-Elmer Corp.; the company plans to sequence
the genome in three years, using a whole-genome shotgun approach. This
venture involves breaking the genome into random unmapped f_ragm.ents for
sequencing. But there is doubt whether the entire genome, 70% of which con-
sists of highly repetitive sequences, can in fact be reassembled. )

Uncertainties surrounding this strategy, and fears of data-hoarding byla
private venture, inspired a renewed thrust to step up public efforts. :I‘h.e public
players thus proposed to create a ‘rough draft’ of the genome within thre_e
years, which would be ~95% complete. The new approach involves dramzitlc
acceleration of the shotgun phase, which is the simplest and cheapest (costing
~10 cents per base), and could provide a high—qua.lity.draft by 2001.

The rough draft is not intended to be a substlﬁute for t?le complete,
highly accurate finished sequence, but rather an lpter.medlate product.
Although there are fears that producing the draft Wlll. d.lstract sequencers
away from the primary goal (i.e., the finished whole)t it is x}everth_eless felt
that it will allow other scientists to proceed more rapldly with p‘rO]ect.s that
exploit newly determined sequence data (e:.g., from discovering disease
genes, to molecular characterisation of disease genes that_ have bi]e.ln
mapped but not yet identified). Whatever the eventual completion date, the

actual outcome will clearly be more sequence data, sooner.

1.7 Why is bioinformatics impertant?

In a field that has been dominated by structural biology for the last 20-30
years, we are now witnessing a dramatic change of chus towards sequence
analysis, spurred on by the advent of the genome pr01e<3ts. and the .res\_ﬂta;xt
sequence/structure deficit. The central challen.ge of Pxoxnft_)rmancs is the
rationalisation of the mass of sequence information, with a view nqt only to
deriving more efficient means of data storage, but a:lso to dfeslgmng more
incisive analysis tools. The imperative that drlve.s this z%nalytlcal Proces§ is
the need to convert sequence information into biochemical anc! biophysical
knowledge; to decipher the structural, functional and evolutionary clues
encoded in the language of biological sequences.

It is clear that mere acquisition of sequences conveys little more about
the intricate biology of the systems from which they are derived than a
company phone directory can reveal about the complexities of the com-
pany’s business. To extract biological meaning from sequence information is
an exacting science. In essence, we are faced with the task of decoding an
unknown language. This language may be decomposed into sentences (pro-
teins), words (motifs), and letters - its alphabet ~ (amino acids), and the
code may be tackled at a variety of these levels. By themselves, the letters
have no higher meaning, but their particular combination into words is
important. Sometimes, the most subtle of changes, a single letter within a
word perhaps, can change its meaning (e.g., hog - hag), and hence the
meaning of the entire sentence; so it is vital to decipher the code correctly.
Consider, for example, the single base change in the human haemoglobin A
chain codon for glutamic acid (GAA) to valine (GUA); in homozygous indi-
viduals, this minute difference results in a change from a normal healthy
state to fatal sickle cell anaemia.

Ultimately, our aim is to be able to understand the words in a sequence
sentence that form a particular protein structure, and perhaps one day to be
able to write sentences (design proteins) of our own. Today, application of
computational methods allows us to recognise words that form characteristic
patterns or signatures, but we do not yet understand the intricate syntax
required to piece the patterns together and build complete protein structures.

In investigating the meaning of sequences, two distinct analytical
themes have emerged: in the first approach, pattern recognition techniques
are used to detect similarity between sequences and hence to infer related
structures and functions; in the second, ab initio prediction methods are
used to deduce 3D structure, and ultimately to infer function, directly from
the linear sequence. The development of more powerful pattern recognition
and structure prediction techniques will continue to be dominant themes in
bioinformatics research while the number of experimentally determined
protein structures remains small.

1.8 Pattern recognition and prediction

At the outset, it is important to highlight the distinction between pattern
recognition and prediction. As mentioned above, these are the principal
analytical approaches in bioinformatics, and the concepts are often used
interchangeably. However, in terms both of what they attempt to achieve
and of what, in fact, they can achieve, these methods are really quite differ-
ent and should not be confused.

Pattern recognition methods, as the name suggests, are built on the
assumption that some underlying characteristic of a protein sequence, or of
a protein structure, can be used to identify similar traits in related proteins.
In other words, if part of a sequence or structure is preserved or conserved
(Whether because it is important to the activity of the protein, or because it
is critical to its fold), this characteristic may be used to diagnose new family
members. If such conserved traits are distilled from known protein families
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and stored in databases, then newly sequenced proteins may be rapidly
analysed to determine whether they contain these previously recognised
family characteristics. Searches of sequence pattern databases, and of fold
template databases, are now routinely used to diagnose family relationships,
and hence to infer structures and functions of newly determined sequences.

By definition, both sequence- and structure-based pattern recognition
methods demand that a particular sequence or structure has been ‘seen’
before, and that some characteristic of it can be housed in a reference data-
base. Sequence pattern recognition is far easier to achieve and is
considerably more reliable than is fold recognition (which tends to give
optimum results only in expert hands, and even then is still little better than
409% reliable). Nevertheldss, both approaches are the subject of intensive
research, and the methods continue to improve.

By contrast, prediction, the Holy Grail of bioinformatics, is still not pos-
sible, and is unlikely to be so for decades to come. Prediction stems from
the idea that a functional site, or indeed a complete structure, need not
have been ‘seen’ before, but can be deduced directly from the amino acid
sequence, as illustrated in Figure 1.2. This approach obviates the need to
create reference databases of functional site or structural templates, but
requires instead the design of sophisticated software capable of meaning-
fully addressing the folding problem.

TMITDSLAVVLQRRDWENPG
VTQLNRLAAHPPFASWRNSE
EARTDRPSQQLRSLNGEWRF
AWFPAPEAVPESWLECDLPE
ADTVVVPSNWQMHGYDAPIY
TNVTYPITVNPPFVPTENPT
GCYSLTFNVDESWLQEGQTR
IIFDGVNSAFHLWCNGRWYVG
YGODSRLPSEFDLSAFLRAG
ENRLAVMVLRWSDGSYLEDQ
DMWRMSGIFRDVSLLHKPTT
QISDFHVATRFNDDFSRAVL

Figure 1.2 The Holy Grail of bisinformatics: the direct prediction of protein three-
dimensional structure from the linear amino acid sequence.

1.9 The folding problem

The folding problem is a central theme of molecular biology. Simply stated,
given the primary structure of a protein (see Box 1.2), how does the linear
sequence of amino acids determine the final 3D fold? In 1961, Anfinsen
showed that ribonuclease could be denatured and refolded without loss of
enzymatic activity. This experiment suggested that all the information for a
protein to adopt its native conformation is encoded in its primary structure.
If this is really so, then it should theoretically be possible to derive the rules
for protein folding from analyses of sequences with known structures, and
hence to apply such rules to blind prediction of 3D structure, given only a
linear sequence of amino acids.

At first sight, considering the ever-growing databases available to us,
this might not seem to be an unrealistic expectation. However, in practice,
in spite of more than three decades of research, the rules of protein folding
have not been fully understood and structure prediction is still not possible
(Rost and O’Donoghue, 1997). In 1998, methods of secondary structure
prediction are little more than 50-60% reliable.

There are three main approaches to secondary structure prediction: (i)
empirical statistical methods that use parameters derived from known 3D
structures; (ii) methods based on physicochemical criteria (e.g., fold compact-
ness, hydrophobicity, charge, hydrogen bonding potential, etc.); and (iii)
prediction algorithms that use known structures of homologous proteins to
assign secondary structure (Kyngas and Valjakka, 1998). One of the standard
empirical statistical methods is that of Chou and Fasman, which is based on
observed amino acid conformational preferences in non-homologous proteins.
But in spite of being a ‘standard’ approach, like all other methods, its reliability
is poor (~65%). This is because the sizes of the datasets used to derive the con-
formational potentials of the amino acids have been inadequate; and it is clear
that they will remain inadequate for rigorous statistical analysis while the

LEVELS OF PROTEIN STRUCTURE
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numbers of known structures of non-homologous proteins are so few. By con-
trast, for prediction algorithms, the use of multiple sequence data can improve
matters, and may yield enhancements of several percent; but even a method
that might, through judicious use of sequence alignment information, be
claimed to be 70% reliable is of little practical value if, in a blind prediction, we
do not know which 70% is correct.

Tertiary structure prediction (especially methods that build on sec-
ondary predictions, which, in practice, many do) is still further beyond
reach. Indeed, as we learn more about the complexity of protein folding,
the goal appears to recede further over the horizon. In 1998, it is clear that
direct prediction of structure from sequence remains decades away.

1.10 The role of chg’perones

A commonly used, but erroneous, argument against the idea that the
linear amino acid sequence contains all the information necessary for
protein folding is the presence of molecular chaperones. These are helper
proteins that ensure that growing protein chains fold correctly (Hartl et
al., 1994). Chaperones are thought to block incorrect folding pathways
that would lead to inactive products, by preventing incorrect aggregation
and precipitation of unassembled subunits. They probably bind temporar-
ily to interactive surfaces that are exposed only during the early stages of
protein assembly. The point is, without their chaperones proteins still
fold, but with them, many potential folding pathway cul-de-sacs are
avoided, and hence they achieve their end-point with greater efficiency
and fidelity.

1.11 Sequence analysis

The exact nature of the information encoded in the primary structure is
unclear, and we still cannot read the language used to describe the final 3D
fold of a biologically active macro-molecule. Indeed, detailed folding studies
have revealed more and more complexities, making it clear that the
sequence-to-structure relation is a hard problem (Gross, 1998). Nevertheless,
there is a way forward. Using sequence analysis techniques, we can attempt
to identify similarities between novel query sequences (i.e., whose structures
and functions are unknown) and database sequences whose structures and
functions have been elusidated. This is straightforward at high levels of
sequence identity, where relationships are clear, but below 50% identity it
becomes increasingly difficult to establish relationships reliably.

1.11.1 The Twilight Zone

In general, analyses can be pursued with decreasing certainty towards the
Twilight Zone (Doolittle, 1986). This is a zone of sequence similarity (cor-
responding to ~0-20% identity) in which alignments may appear plausible

to the eye, but are no longer statistically significant (in other words, the

same alignment could have.arisen by chance). To penetrate deeper into the
Twilight Zone is the goal of most analytical methods. Many different
approa_tches have been devised: some of these involve database searches
with single sequences, others use characteristic chunks of sequence align-
ments; some weight database searches (using, say, mutation or hydropathy
information), and others use only observed amino acid sequence data. Each
method offers a slightly different perspective, depending on the type of
information used in the search; none should be regarded as giving the right
answer, or the full picture. The sensitivity ranges of some of these methods
are depicted in Figure 1.3.

Percent
Identity

Alignment
Methods

Automatic pairwlse
methods

Consensus methods

A

Twilight Zone

Profile methods

Midnight Zone

\J

Figure 1.3 Application areas of different analysis methods. The scale indicates percent
identity between two aligned Al of random can produce around
20% identity; less than 20% does not constitute a significant alignment. Around this
threshold is the Twilight zone, where alignments may appear plausible to the eye, but cannot
be proved by current methods. Beyond the Twilight Zone is the so-called Midnight Zone,
where sequence comparisons fail complietely to detect structural similarities.

Structure prediction
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Until analysis methods are more reliable, it is important to use a
range of techniques, slotting all the results together like pieces in a
jigsaw. While the algorithms that recognise folds reliably, or that can
predict structures, remain beyond our grasp, it is important to use the
sequence analysis tools we have at our disposal, but in an intelligent
way, always aware of their limitations. Chapter 8 discusses some of these
methods in more detail.
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1.12 Homology and analogy

Before moving on, it is important to define a concept that underpins the
application of most sequence analysis methods, i.e., homology. The term
homology, although easy to understand, is confounded and abused in the
literature. Simply, sequences are said to be homologous if they are related
by divergence from a common ancestor.

Understanding the meaning of homology allows us to appreciate the
concept of analogy; this is encountered in the context of, say, protein struc-
tures that share similar folds but have no demonstrable sequence similarity
(e.g., the ubiquitous B-barrel, found in such diverse proteins as the soluble
serine proteases and the integral membrane porins); or proteins that share
groups of catalytic residues with almost exactly equivalent spatial geomet-
ries, but otherwise have neither sequence nor structural similarity (e.g., the
His-Asp-Ser catalytic triad of the serine proteases, seen both in subtilisin, a
3-layer ofo sandwich, and in chymotrypsin, a 2-domain B-barrel protein).
Such relationships are believed to result from convergence to similar biologi-
cal solutions from different evolutionary starting points: e.g, it may be that
the B-barrel is a particularly stable architecture that has been re-invented in
different protein contexts to solve different problems; or that the charge
relay system is a particularly effective catalytic mechanism that has simply
been reused in different structural settings. In the latter case, where sequence
and structure are different, we can infer with a degree of confidence that the
triads result from convergent evolution (i.e., the active sites are analogous).
In the former case, however, where folds are similar but the sequences differ,
while such folds are usually considered to be analogues, it is sometimes diffi-
cult to rule out the existence of a common ancestor (i.e., homology) because
structures are more highly conserved than are sequences.

The essence of sequence analysis is the detection of homologous
sequences by means of routine database searches, usually with unknown or
uncharacterised query sequences. As already mentioned, the identification
of such relationships is relatively easy when levels of similarity remain high
(above 50%). But when sequences have diverged to such an extent that they
are only 20% identical, or if two sequences share less than 20% identity, it
becomes difficult or impossible to establish whether they might have arisen
through the evolutionary processes of divergence or of convergence.

Homology is not a measure of similarity, but an absolute statement that
sequences have a divergent rather than a convergent relationship. Thus,
phrases that quantify homology (e.g., ‘the sequences show 50% homology’
or ‘the sequences are highly homologous’) are meaningless and should be

avoided. .

1.12.1 Orthology and paralogy

Among homologous sequences, it is useful to distinguish between proteins
that perform the same function in different species (these are referred to as

orthologues) and those that perform different but related functions within
one organism (so-called paralogues).

Sequence comparison of orthologous proteins opens the way to the
study of molecular palacontology. In particular cases, construction of phy-
logenetic trees has revealed relationships, for example, between proteins in
bacteria, fungi and mammals, and between animals, insects and plants,
inferences that are only unearthed by investigations at the molecular level.
The study of paralogous proteins, on the other hand, has provided deeper
insights into the underlying mechanisms of evolution. Paralogous proteins
arose from single genes via successive duplication events. The duplicated
genes have followed separate evolutionary pathways, and new specificities
have evolved through variation and adaptation.

The mechanisms that resulted in the dispersal of paralogous proteins
within genomes are diverse and often poorly understood. An example
where multiple dispersal patterns are evident is the rhodopsin-like super-
family of G-protein-coupled receptors (Henikoff et al., 1997). These
proteins, which include light, olfactory, gustatory, hormone and neuro-
transmitter receptors, encompass a wide variety of functions. The
emergence of different specificities and functions following gene duplica-
tion events may be detected by protein sequence comparison. For example,
different visual receptors (opsins), which diverged from each other early in
vertebrate evolution, are stimulated by different wavelengths of light.
Human long-wavelength opsins (i.e., those sensitive to red and green light)
are more closely related to each other (with around 95% sequence iden-
tity) than either sequence is to the short-wavelength blue-opsins, or to the
rhodopsins (the achromatic receptors), with which they share an average
43% identity. The complexity that arises from the richness of such paralo-
gous, and of orthologous, relationships presents a significant challenge for
protein family classification.

1.13 The devil is in the detail

Much of the challenge of sequence analysis involves the marriage of biolog-
ical information with sequence data. This process is made more difficult by
the problem of orthology versus paralogy: following a database search, it is
often unclear how much functional information can be legitimately trans-
ferred to the query sequence from a matched homologue. Many erroneous
automatically derived functional annotations have now been incorporate
into, and subsequently propagated through, sequence databases, be
there is currently no quality assurance for functional annotation. In‘an era
of information overload, where the use of computational tools is essential,
this nevertheless highlights one of the dangers of reliance on fully auto-
mated procedures.

The analytical process is further complicated by the fact that, some-
times, sequence similarity is confined only to some part of an alignment.
This scenario is encountered, in patticular, when we study modular
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proteins. Modules may be thought of as a subset of protein domains; they
are autonomous folding units that are contiguous in sequence, and are fre-
quently used as protein building blocks. As building components, like
Lego™ bricks, they may be used to confer a variety of different functions on
the parent protein, either through multiple combinations of the same
module, or via combinations of different modules to form mosaics. In
genetic terms, the spread of modules cannot be explained simply by gene
duplication and fusion events, but is thought to be the result of genetic
shuffling mechanisms. Whatever the actual process, as elegantly described
by Jacob in 1977, it appears that Nature behaves rather like a tinker, using a
patchwork of existing components to produce a new, workable whole.
Evolution, it seems, does not produce novelties from scratch, but works
with old material, either transmogrifying a system to give it new functions,
or combining several systems to produce a more elaborate one.

Reuse and integration of simple components are key to creating new,
perhaps unexpected, functions in larger, more complex systems. The ques-
tion then arises, is it possible to make predictions at a higher level, on the
basis of what is known at a simpler one? The answer is that only limited
conclusions may be drawn, because while the properties of a system can be
explained by the propertié} of its components, they cannot be deduced from
them. For the biologist, it may thus be impossible to predict, or even make
an inspired guess at, the complex nature of a biochemical system from just a
piecemeal understanding of some of its underlying molecular interactions.

In thinking about predictability, we can begin to get an appreciation of
the difficulties ahead by considering a rather fantastic metaphor for biology
encapsulated by Rube Goldberg machines (see Box 1.3). These are machines
whose construction is so bizarre that an unknown 5% could not be deduced,
even if 95% of the machine was known. Biology could be considered as the
ultimate Goldberg machine. Jacob suggested that spare parts were grabbed
during evolution’s tinkering process and were misused (or adapted from their
original functions), and then frozen by chance as integral pieces within a
coherent and surviving organism. Traces, or echoes, of those earlier functions
are preserved over time, but the remnants may be useless in surmising the
new functions. Such ideas have important ramifications for today’s would-be
predictors, similarity searchers and detectors of evolutionary relationships.
Clearly, the crux of the problem is in understanding the biological details; this
is essential if we are to make sensible use of mathematics to infer relation-
ships between components within complex systems, and if we are to have a
hope of guessing at the bigger evolutionary picture.

In this book, we set out to describe some of the sequence comparison
methods currently used to detect homologous (orthologous and paralogous)
relationships, and examine some of the pitfalls. Notwithstanding the lessons
of Goldberg machines, identifying evolutionary links between sequences is
useful, as this often implies a share nction. At the level of the complete
genome, diagnosis of protein functién provides a vehicle by which the meta-
bolic systems of different o 4nisms can be compared, and as such is
considered to be of more jnfmediate value than is the prediction of protein

BOX 1.3: A METAPHOR FOR BIOLOGY

Seif-opening umbrella
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structure. However, it must be remembered that between distantly related
proteins, the 3D structures are more likely to be conserved than are the cor-
responding amino acid sequences. Indeed, many evolutionary relationships
are apparent only at the level of shared structural features; such similarities
cannot be detected even using the most sensitive sequence comparison meth-
ods (the region of identity where sequence comparisons fail completely to
detect structural similarity has been termed the Midnight Zone (Rost, 1998)).
Consequently, there is a theoretical limit to the effectiveness of sequence
analysis techniques. Nevertheless, with this caveat, the following chapters set
out to explain how to get the most from your protein sequence.

1.14 Summary

e The term bioinformatics is used to encompass almost all computer
applications in biological sciences, but was originally coined in the mid-
1980s for the analysis of biological sequence data.

® The quantity of known sequence data outweighs protein structural data
by ~100:1 and, by virtue of the genome projects, sequence databases
are doubling in size every year.

® A key challenge of bioinformatics is to analyse the wealth of sequence
data in order to understand the amassed information in terms of pro-
tein structure, functiog and evolution.

® There are two principal analytical approaches in bioinformatics: i.e.,
pattern-recognition and prediction. Considerable progress has been
made with pattern-recognition methods because of the availability of
reference databases of sequence patterns and fold templates.

e Our incomplete understanding of the protein folding problem (i.e., how
exactly the linear amino acid sequence determines the final 3D fold)
presents a barrier to current attempts to predict structure directly from
sequence.

e Homology is a central concept: sequences are said to be homologous if
they are related by divergence from a common ancestor. Homology is
not a synonym for similarity.

® The essence of sequence analysis is detection of homologous (ortholo-
gous (same function, different species) or paralogous (different but
related functions within one organism)) relationships by means of rou-
tine database searches. ’ c

e The term analogy is used in the context of similar protein folds that
share no detectable sequence similarity, or proteins that share groups of
catalytic residues with the same spatial geometries, but otherwise have
no sequence or structural similarity. Such relationships are thought to
result from the evolutionary process of convergence.

e Searches can be pursued with decreasing certainty towards the Twilight
Zone, where alignments are no longer statistically significant. In the

Midnight Zone, sequence comparisons fail completely to detect struc-
tural similarities.

® Wherever possible, a range of different analysis methods should be used,
and the results should be married with all available biological information.
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Information networks

2.1 Introduction

The purpose of this chapter is to introduce the Internet, the World Wide Web,
and the global network of biological information and service providers, the
interplay between which has made the bioinformatics revolution possible.
The chapter refers briefly to the advent of the browsers that have made such
information and facilities accessible, and to the software tools that have been
developed for linking and searching distributed databases. The Web addresses
of some important bioinformatics centres are summarised.

2.2 What is the Internet?

The Internet is a global network of computer networks that links govern-
ment, academic and business institutions. In order to work effectively, the
networks share a communication protocol, called Transmission Control
Protocol/Internet Protocol, better known as TCP/IP. Such a shared mech-
anism of communication means that different types of machine are able to
speak to each other in a common way.

Computers within the network are referred to as nodes, and these commu-
nicate with each other by transferring data packets. But packets do not
necessarily travel directly from one machine to another; they may pass through
several computers en route to their final destination. If any of the nodes on the
way are down, the network protocols are designed to find an alternative route.

2.3 How do computers find each other?

To f.acilitate communication between nodes, each computer on the Internet
is given a unique, identifying number (its IP address), which is encoded in
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a dotted-decimal format. So, for example, one node on the Internet might
have the IP address:

128.40.46.17

These numbers were design‘ed to be intelligible to computers, and, as a resuit,
are not at all people-friendly. But an alternative, hierarchical domain-name
system has also been implemented, which makes Internet addresses easier to
decipher. The name identifies, in turn, the particular machine, the site where
the machine lives, and the domain (and subdomain) to which the site belongs
(some of the various Internet domains and subdomains are listed in Table
2.1). For example, the above numerical address translates as:

bsmir30.biochemistry.ucl.ac.uk

This tells us that the machine is called bsmir30, which lives in the
Biochemistry Department at University College London (UCL), which
belongs to the academic (ac) subdomain of the UK country domain.

Table 2.1 Example Internet domains and subdomains

Country-based domains  Other domains Subdomains

Australia .au Educationat .edu Academic .ac
Denmark .dk Commercial .com Company .co
Finland fi Governmental .gov Other organisation  .org
France fr Military .mil General .gen
Germany .de

Greece .ar

Hungary hu

Ireland e .

Israel Al

Ttaly [t

Netherlands .t

New Zealand .nz

Poland .pl

Portugal .pt

South Africa .za

Spain .es

Sweden .se

Switzerland .ch

United Kingdom  .uk

USA .us

2.4 Facilities used on the Internet

It is interesting to discover what people most commonly use the Internet
for. The most familiar services include electronic mail (email), newsgroups,
file transfer and remote computing. The first of these concern communica-

tion between people, whether on a one-to-one basis, as with email, or at the
level of group discussions, via newsgroups. The other facilities are largely
concerned with remote computing, involving the use, for example, of the

' File Transfer Protocol (FIP) to transfer files between machines, and the

Telnet protocol, by which users may connect to computers at different sites
and use the machines as if physically present at the remote location.

Amongst the most exciting of Internet services are those that permit
communication between users in real-time. These include the UNIX talk
protocol (or VMS phone), which is analogous to holding a telephone con-
versation, but users ‘speak’ to each other by typing into a shared screen. An
extension of this concept is conferencing, whereby groups of people meet
and ‘talk’ to each other, again by typing into a shared interface (e.g., such as
provided by the WebBoard facility and/or the BioMoo MultiUser
Dungeon); this is reckoned to be the virtual analogue of meeting colleagues
for scientific discussions over coffee! Notwithstanding the excitement of
such virtual innovations, however, they can be cumbersome, confusing and
slow to use, and, like virtual coffee, are not quite as good as the real thing.
Thus, email remains one of the most popular of the Internet services.

2.5 What is the World Wide Web?

The World Wide Web (the Web, WWW or W3) was conceived and devel-
oped at CERN, the European Laboratory for Particle Physics, to allow
information sharing between internationally dispersed groups in the High
Energy Physics community. The concept of information sharing between
remote locations, and the ramifications for rapid data dissemination and
communication, found immediate applications in numerous other areas. As
a result, the Web spread quickly and is now making a profound impact in
the field of bioinformatics. Today, the WWW is the most advanced informa-
tion system deployed on the Internet.

The Web is a hypermedia-based information system. So popular and
powerful has it become that it is now almost synonymous with the Internet
itself. On the W3 Consortium home page, the Web is described as ‘the uni-
verse of network-accessible information, the embodiment of human
knowledge’ (a slightly exaggerated claim perhaps, but one that may well be
met in the new millennium).

2.6 Web browsers

The full potential of the Internet was only properly realised with the advent
of browsers, which for the first time allowed easy access to information at
different sites. Browsers are clients that communicate with servers, using a
set of standard protocols and conventions. The first point of contact
between a browser and a server is the home page. The default home pages
invoked by particular browsers tend to point to the software companies of
their respective manufacturers, but they may be easily customised to point
to more useful, frequently visited sites, or to the user's own home page.
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Once the browser has loaded its initial page, it then provides an easy-to-use
interface with which to retrieve documents, access files, search databases,
and so on. Some of the most commonly used browsers are outlined below.

2.6.1 Lynx

Lynx was developed in thg Academic Computing Services at the University of
Kansas, USA, as part of an effort to build a campus-wide information system.
It runs on UNIX or VMS operating systems, providing a text-only interface
via low-cost, dumb display devices, such as the ubiquitous VT100 terminal
(or emulator). It is probably the most widely used text-only browser on the
Internet. Although it may seem strange that a text-mode browser could be
preferred over a graphical interface (particularly in the era of the multimedia
environment), in some circumstances Lynx is more efficient than graphical
browsers, which use large amounts of computer resources (e.g., where a com-
paratively slow dial-up connection is in use).

2.6.2 Mosaic

Mosaic was developed in 1993 at the National Center for Supercomputing
Applications (NCSA), University of Illinois, Urbana-Champaign, USA. As a
hypermedia system designed for X-Windows, Apple Mac and Microsoft
Windows platforms, it provided a single, user-friendly interface to the
diverse protocols, data formats and information servers available through-
out the Internet. At an early stage, Mosaic was undoubtedly responsible for
the surge in popularity of the Web, and it was hard to imagine that such a
‘killer application, the utility that will bring the Internet to the masses’
could be dethroned. But the WWW is in a constant state of change, and the
tools that interact with it are developing at an incredible rate. As it turned
out, Mosaic's monopoly was short-lived.

2.6.3 Netscape Navigatoy

Netscape Navigator was developed in 1994 by Netscape Communications
Corporation, Mountain View, California, USA. It was designed as an alter-
native to Mosaic, and was almost an overnight success. It is now the most
popular package for browsing information on the Internet - it has been
estimated that more than 80% of Internet users browse the Web with
Netscape. Current versions of the software include facilities such as

Internet email, frames, real-time communication, audio and video support,

and the latest technology to support creation of visually exciting, fully inter-
active pages (e.g., with Java applets). An example Web page displayed
within the Netscape browser is shown in Figure 2.1.

2.6.4 Internet Explorer

Internet Explorer was developed in 1995 by Microsoft Corporation,
Redmond, USA. It was based on NCSA Mosaic and is designed to work

A taste of bivinformatics”

Preface
‘Welcome to our Bioinformatics Web practical,

This is en inferactive exercise that aims to provide a taste of

" ‘bioinformatics resources around the world. We hope to give a
g ﬂt‘wolw of sequence analysls, by introducing & range of
Bivinformatics widely~used analysis tools and databsses,

‘Wab Practical

In this tutorial, brief instructions are given in the headers; their
highlighted phrases control the contents of the left— and right~
hend frames. Commentaries in the right-hand frames provide
more detail. Please read these crsremlly. For further info, use;

The info icons offer a route to supporting text & diagrams that
form an adjunct to /atraduction to hioinformatics published by
Addison Wesley Longmen,

ﬁ wleady toga?

Figure 2.1 Web page displayed from the pe browser, ill
of frames to manage different aspects of a document in different windows. Also
illustrated is the use of hyperlinks to other documents or images via highlighted words and
phrases, the centring and customisation of the size and colour of text, the embedding of
images, and so on. The featured page is the home page of the interactive bioinformatics
practical that accompanies this text.

the use

with PC-based operating systems. It offers the familiar functionality of other
hypermedia browsers, including support for frames, Java and ActiveX.
Originally developed as a Windows95/NT product, current versions also
run on Sun's version of UNIX.
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2.7 HTTP, HTML and URLs

The documents that browsers display exploit hypertext and hypermedia
techniques to make Web browsing and publishing extremely easy.
Hypertext documents contain text with embedded links (so-called hyper-
links) to other documents. Hyperlinks are usually characterised by being
highlighted in some way, either using a different colour from the main body
of the text (see Figure 2.1), or by being boxed, etc.. Selecting a highlighted
link calls up the linked document, regardless of its location, whether on the
same server, or on a servey in a different country. Communication between
hyperlinks is transparent; the name given to the underlying communication
protocol used by Web servers is HyperText Transport Protocol, or HTTP.

Hypertext documents are written in a standard markup language
known as HyperText Markup Language, or HTML. Markup instructions
allow the Web author, for example, to render phrases in bold type (the <B>
symbol), to customise the size and colour of the font (the <FONT>
symbol), to insert horizontal rulers (KHR>), images (KIMG>), and so on
(note: each of these modes is switched off with the relevant </> symbol,
e.g. </B>). HTML is simple and quick to learn - one of the most effective
ways to gain experience is to view the ‘document source’ of particular Web
pages (an option provided by the browser), and thereby see directly which
HTML commands result in specific effects. HTML documents are charac-
terised by the .html or .htm file extensions (e.g., index.html). Figure 2.2
illustrates a section of a typical page of HTML.

<TITLE> BIOINFORMATICS PRACTICAL </TITLE>

<CENTER><H2>"A taste of bioinformatics" </H2></CENTER>
<P>

<HR>

<P>

<FONT COLOR="#FF0000" SIZE=+1><B>Welcome</B></FONT> to our Web practi-
cal on bioinformatics, a gentle introduction to global sequence and structure analysis
facilities. We hope the experience will reveal the power and potential both of W3 and
of bioinformatics, but most of‘ all we hope you have fun!

<P>

Highlighted phrases provide access either to additional pages within the tutorial, or to
"helpful” pictures that explain the text in more detail. Links to pictures are denoted by
a green blob <IMG SRC="http://www.biochem.ucl.ac.uk/bsm/ dbbrowser/c32/ablob.
gif"> - occasional very important pictures have a red blob <IMG SRC="http://www.
biochem.ucl.ac.uk/bsm/dbbrowser/c32/cblob.gif">.

<P>

<HR>

<P>

<A HREF=mailto:attwood@biochemistry.ucl.ac.uk><I>attwood@biochemistry.ucl.ac.
uk</I></A>

Figure 2.2 Excerpt from an HTML file, showing typical mark-up instructions, including
text centring, image insertion, etc. The extract is taken from the HTML document that
produced the original home page of the Web practical.

Documents are accessed, like computers themselves, by means of

- unique addresses, or Uniform Resource Locators (URLs). The URL con-

tains a number of distinct parts, which identify, in turn, the underlying

" “communication protocol, the Web server, often a directory path, and some-

times a file name. For example:

http://www.biochem.ucl.ac.uk/bsm/dbbrowser/jj/prefacefrm.html

“This URL identifies the communication protocol as HTTP, it points to

the Web server in the Biochemistry Department at University College
London, and gives the directory path that points to the hypertext docu-

" ment prefacefrm.html.

2.8 The European Molecular Biology network - EMBnet

Long before browsers made accessible, and consequently popularised, the

-Internet, organisations around the world saw the potential of the Internet

as a force for global communication and resource centralisation. This
became particularly important in the mid-1980s as hiological databases
were beginning to proliferate and users were demanding more efficient
means of access to more up-to-date data.

In 1988, a network was established to link European laboratories
that used biocomputing and bioinformatics in molecular biology

Argentina
Australia
China

Cuba

India

Israel
Russia
South Africa

PSS S T

Figure 2,3 The European Molecular Biology Network (EMBnet) of bioinformatics and
genomics centres. In 1998, EMBnet operates 20 National, eight Specialist and six
Associate Nodes.
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research. The network, known as EMBnet, was envisaged as a way of
providing information, services and training to users in dispersed
European laboratories, via designated nodes operating in their local lan-
guages - Figure 2.3. The establishment of such centralised national
facilities was an important step: as the field of computational biology
expanded, it removed the necessity for individual institutions to keep
up-to-date copies of a range of biological databases (and to buy the disk
space required to accommodate them), to install the corresponding
range of search tools, and/or to buy expensive licences to use commet-
cial software packages to access the data.

In 1998, 10 years after its inception, EMBnet operates 34 nodes, as
detailed in Table 2.2. Of these, 20 are designated National Nodes. These are
appointed by the governmgnts of their respective nations, and have a man-
date to provide databases, software and on-line services (including
sequence analysis, protein modelling, genetic mapping, etc.); to offer user
support and training; and to undertake research and development (such as
the design of the Sequence Retrieval System (SRS)).

A further eight EMBnet nodes are ‘Specialist’ sites. These are acade-
mic, industrial or research centres that are considered to have particular
knowledge of specific areas of bioinformatics. They are largely responsi-
ble for the maintenance of biological databases and software: e.g., the
EBI maintains the EMBL nucleotide database, the ICGEB maintains
the SBASE annotated domain database, and so on.

In adddition to National and Specialist Nodes, a further six sites have
been accepted within EMBnet as Associate Nodes. These are biocomputing
centres from non-European countries that accomplish for their user com-
munities the same kinds of service as might a typical National Node. Most
offer up-to-date access to sequence databases and analysis software,
together with a variety of tools for molecular modelling, genome manage-
ment, genetic mapping, and so on.

It is beyond the scope of this book to detail the activities of the
National EMBnet nodes, all of which share a common brief, namely, to
provide biocomputing services and resources to their local communities.
However, in view of their specific knowledge and their particular contribu-
tions to the fields of bioinformatics and genomics, a number of the
Specialist Nodes deserve to be highlighted. We will begin by looking at the
site of three of these - Hinxton Hall, a parkland site south of Cambridge.

»

2.8.1 Hinxton Hall

Hinxton Hall is home of the Wellcome Trust Genome Campus. The campus
is host to three different institutes: the Sanger Centre; the UK MRC Human
Genome Mapping Project Resource Centre (HGMP-RC); and an outstation
of EMBL, the European Bioinformatics Institute (EBI).

The Sanger Centre
The Sanger Centre is a genome research centre, established in 1992 by the
Wellcome Trust and the Medical Research Council. The overall role of the

Table 2.2 European and American bio-information providers.

n
~

EMBnet National Nodes
Vienna Biocenter
BEN
BioBase

cse
INFOBIOGEN
GENIUSnet
IMBB

HEN

INCBI

INN
IEN-ADR
CAOS/CAMM
Bio

188

16C
GeneBee
CNB-CSIC
BMC

SIB

SEQNET

EMBnet Specialist Nodes

Austria
Belgium
Denmark
Finland
France
Germany
Greece
Hungary
Iretand
Israel

Ttaly
Netherlands
Norway
Poland
Portugal
Russia
Spain
Sweden
Switzerland
UK

MIPS Germany
ICGEB Ttaly

" Pharmacia Upjohn Sweden
F.Hoffmann-La Roche  Switzerland
EBI UK
HGMP-RC UK
Sanger UK
UMBER UK
EMBnet Associate Nodes
IBBM Argentina
ANGIS Australia
CBL China
(1GB Cuba
CDFD India
SANBI South Africa
USA Information Providers
NCBI USA
NLM USA
NIH USA

http://www.at.embnet.org/
http://www.be.embnet.org/
http://biobase.dk/
http://www.fi.embnet.org/
http://www.infobiogen.fr/
hitp://genome.dkfz-heidelberg.de/biounit/
http://www.imbb.forth.gr/
http://www.hu.embnet.org/
http://acer.gen.ted.ie/
http://dapsas.weizmann.ac.il/bed/inn.html
http://bio-www.ba.cnr.it:8000/BioWWW/Bio-WWW.htm
http://www.caos.kun.nl/
http://www.no.embnet.org/
http://www.ibb.waw.pl/
http://www.igc.gulbenkian.pt/
http://www.genebee.msu.su/
http://www.es.embnet.org/
http://www.embnet.se/
http://www.ch.embnet.org/
http://www.seqnet.dLac.uk/

http://www.mips.biochem.mpg.de/
http://www.icgeb.trieste.it/
http://www.pnu.com/
http://www.roche.com/
http://www.ebi.ac.uk/
http://www.hgmp.mrc.ac.uk/
http://www.sanger.ac.uk/
http://www.bioinf.man.ac.uk/dbbrowser

http://sol.biol.unlp.edu.ar/embnet
http://www.angis.su.oz.au/
http://www.cbi.pku.edu.cn/
http://bio.cigh.edu.cu/
http://salarjung.embnet.org.in/
http://www.sanbi.ac.za

http://www.ncbi.nlm.nih.gov/
http://www.nlm.nih.gov/
http://www.nih.gov/
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Centre is to further our knowledge of genomes, focusing especially on map-
ping and sequencing the human genome. By 2002, the Centre hopes to
have obtained one sixth of the 3000 million base human genome sequence,
at a cost of £50 million. Completion of the sequence is expected to be
achieved by ~2005 via an international collaboration of sequencing centres.

As a pilot for the human genome project, the Centre has been involved
in a collaboration with the Genome Sequencing Center at Washington
University, St Louis, USA, aiming to sequence the complete genome of the
model organism Caenorhabditis elegans (this is 1/30 the size of the human
genome). The Centre is also sequencing DNA from various microorgan-
isms, including Saccharomyces cerevisiae, Schizosaccharomyces pombe and
human pathogens such as the tuberculosis bacterium.

The UK MRC Human Genome Mapping Project - Resource Centre

The HGMP-RC is funded by the UK Medical Research Council. It is active
in the Human and Mouse*Genome Projects, playing a role as both a materi-
als and a service provider. It also provides an online computing service,
offering user support and training courses. The specific brief of the Centre is
to provide data and services to the medical research community, and to
facilitate genomic research by providing centralised training resources. In
1999, the UK National node, SEQNET, which is currently hosted by the
Daresbury Laboratory in Warrington, will relocate to this site.

The European Bioinformatics Institute - EBI

Established in 1994, the European Bioinformatics Institute (EBI) (Emmert et
al., 1994) is an outstation of the European Molecular Biology Laboratory
(EMBL), an international research institute with its headquarters in
Heidelberg, Germany. One of the central activities of the EBI is development
and distribution of the EMBL Nucleotide Sequence Database, Europe’s pri-
mary nucleotide sequence data resource. This is a collaborative project with
GenBank (NCBI, Bethesda, USA) and DDBJ, the DNA Database of Japan
(Mishima, Japan), which ensures that all new and updated database entries
are shared between the groups on a daily basis. The EBI also collaborates
with the Swiss Institute of Bioinformatics to maintain and distribute the
SWISS-PROT protein sequence database. More than 30 additional specialist
molecular biology databases are also distributed through EBI releases and
network services.

2.8.2 MIPS

The Martinsried lnstitu‘te for Protein Sequences (MIPS) (Max-Planck
Institut fiir Biochemie, Germany) is the European partner of the PIR-
International Protein Sequence Database. The role of MIPS is to collect,
distribute and maintain up-to-date protein sequence data within Europe.
The Institute also provides access to a database of aligned protein families,
and to dynamic database search software for retrieval of homologues and
inspection of alignments. MIPS also plays an active role in the field

- of Genome Research in its guise as informatics co-ordinator for the
- Saccharomyces cerevisiae and Arabidopsis thaliana Projects of the

European Commission.

2.8.3 UCL

The Biomolecular Structure and Modelling (BSM) unit at University
College London is a biocomputing centre with expertise in two central
areas of bioinformatics, specifically in protein sequence and structure
analysis. In 1998, the unit was host to groups responsible for the mainte-
nance of the PRINTS protein fingerprint database; the PDBsum
database, which provides summaries and structural analyses of PDB

- data files; and the CATH protein structure classification resource. The

unit also makes a variety of analysis tools available from its FTP site,
including programs to plot schematic diagrams of protein-ligand inter-
actions; to calculate hydrogen- and non-bonded interactions; to analyse
protein structural motifs; and to check the stereochemical quality of pro-
tein structures. Other programs are available for direct use via the Web,

““including a variety of database search and sequence analysis tools, and
‘" interactive sequence alignment and structure visualisation software.

These facilities are provided via the DbBrowser Bioinformatics Web
server (Michie et al., 1996), which, by 1999, is expected to have relo-
cated to the University of Manchester.

2.8.4 The Sequence Retrieval System - SRS

* Although EMBnet has played a vital role in centralising data resources

for its national user communities, a problem that emerged was that there
was no effective, efficient way of interrogating all the resources gathered
together at a particular site, since there were no common formats among
the different database types. As a result, a research project was under-
taken within EMBnet to address the problems inherent in interfacing
complex environments. The resulting product was the Sequence Retrieval
System, SRS, a network browser for databases in molecular biology
(Etzold and Argos, 1993). SRS allows any flat-file database to be indexed
to any other. This has the advantage that the derived indices may be
rapidly searched, allowing users to retrieve, link and access entries from
all the interconnected resources. The system has the particular strength
that it can be readily customised to use any defined set of databanks.
Typically, the resource links nucleic acid, EST, protein sequence, protein
pattern, protein structure, specialist/boutique and/or bibliographic data-
bases, as shown in Figure 2.4. SRS is thus a very powerful tool, allowing
users to formulate queries across a range of different database types via a
single interface, without having to worry about underlying data structures,
query languages, and so on.
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Figure 2.4 Typical network of databases linked via the SRS Sequence Retrieval System,
illustrating the potential complexity of queries that may be built up via the labyrinth of_
relationships between biologicat and bibliographic databases. The ability to link such diverse
data types renders SRS an extremely powerfut database interrogation tool.

2.9 The National Center for Biotechnology Information -
NCBI

Having discussed the various European initiatives to maintain bio!ogical
data repositories and provide biocomputing services, it is appropriate to
mention the leading American information provider, the National Center
for Biotechnology Information (NCBI). The NCBI was established in 1988
as a division of the National Library of Medicine (NLM), and is located on
the campus of the National Institutes of Health (NIH) in Bethesdi},
Maryland. The NLM was chosen to host the NCBI because of its experi-
ence in biomedical database maintenance, and because, as part of the NIH,
it could establish a research programme in computational biology.

The role of the NCBI s to develop new information technologies to ai'd
our understanding of the molecular and genetic processes that underlie
health and disease. Its specific aims include the creation of automated sys-
tems for storing and analysing biological information; the developmell'xt. of
advanced methods of computer-based information processing; the facilita-

ion of user access to databases and software; and the co-ordination of
efforts to gather biotechnology information worldwide.

. Since 1992, one of the principal tasks of the NCBI has been the main-
tenance of GenBank, the NIH DNA sequence database. Groups of
“annotators create sequence data records from the scientific literature and,
together with information acquired directly from authors, data are
exchanged with the international nucleotide databases, EMBL and DDBJ.

2.9.1 Entrez

Just as in Europe the SRS system was designed to facilitate access to a range of

io-databanks, so at the NCBI the Entrez facility was developed to allow
retrieval of molecular biology data and bibliographic citations from NCBI's
integrated databases (Schuler ef al., 1996). Entrez uses a rather different and,
in some ways, slightly less flexible approach from SRS that does not allow cus-
omisation with an institution’s preferred databases. Nevertheless, perhaps its

ost valuable feature is its exploitation of the concept of ‘neighbouring, which
‘allows related articles in different databases to be linked to each other, whether
or not they are cross-referenced directly. Entrez typically provides access to
DNA sequences (from GenBank, EMBL and DDB]J); protein sequences (from
WISS-PROT, PIR, PRF SEQDB, PDB and translated protein sequences from
the DNA sequence databases); genome and chromosome mapping data; 3D
rotein structures from PDB; and the PubMed bibliographic database.

The development of facilities such as SRS and Entrez to integrate and
iaccess multiple databases is important: first, such systems include different
resources and hence allow different perspectives on the same, or similar,
queries; and second, the ‘traffic’ problems that have resulted from the popu-
larity of the Web often mean that remote servers are almost impossible to
icontact - at such times, to have different trans-Atlantic alternatives for
database interrogation is highly advantageous.

2.10 Virtual tourism

The very success of the WWW has, in recent years, posed serious problems
for those wishing to use it ‘seriously’. The Web is not only bearing the
burden of work-related traffic, but is now also carrying a more leisure-
related cargo. In short, the Information Superhighway is becoming clogged
with the caravans and RVs of the Virtual Tourist.

The consequences of virtual tourism are far-reaching. As the name suggests,
facilities are now available that permit information retrieval from anywhere in
the world. There is no end to the type of information available: from the
spheres of business, current affairs, education, entertainment, finance, shopping,
sport, travel, etc. Navigation to different corners of the virtual globe may be
effected by means of a variety of search engines, clickable maps, and so on.

One such facility is provided by The Virtual Tourist, which offers a geo-
graphic directory of WWW servers in the world. Here, information is
presented in the form of clickable world, country and state maps. For exam-
ple, to locate a particular biocomputing centre in Australia, the would-be
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tourist simply clicks on. the continent of Australia in the world map, which
leads to the Australia and Pacific map. Clicking on the continent yields an
interactive map of sites by state. Choosing New South Wales provides the
map for this territory, and clicking on the city of Sydney then offers a direc-
tory of all Web servers in Sydney. Within this directory, the tourist finds a
list of universities, and under the heading of the University of Sydney is
found the Australian National Genomic Information Service (ANGIS) -
the Australian node of EMBnet. Travel was never easier! Snapshots of this
Australian tour are shown in Figure 2.5.

For information about countries, states and regions, an alternative to the
Virtual Tourist is offered by City.Net which provides global tourist information.

Facilities like these make the Web so appealing that organisations and indi-
viduals alike have embraced the Information Age and the Internet with a

E Australian National Genomic Information Service

‘ANGIS Nowp: ANGIS NEWS < Deornher 1997

traltan Quesr Resowres Ditectors.

Figure 2.5 Snapshots showing highlights of a virtual trip to Australia, navigating by
means of clickable world, continent and state maps, and directories of Web servers,
until reaching the finat destination, ANGIS, the Australian National Genomic
Information Service. A

vengeance. But two specific problems arise from this popularity: (i) there is a
growing frustration for people in the workplace when their Internet excursions
meet ‘rush-hour’ traffic, as their trans-Atlantic counterparts wake up and the
Web literally grinds to a halt; and (i) a more sinister aspect is that ‘anything
- goes’ on the Internet, including pornography, which poses genuine problems for
. schools that wish to make use of Internet facilities, without risk to students.

In the late 1990s, we are still in a honeymoon period, when use of the
Internet is not regulated. But it is likely that this situation will not last forever,
- and we may eventually see regulation at some level. As private use of the
- Internet booms, some form of central control may have to be established,

- both to get government funds invested in increased bandwidth, and to estab-
~ lish a formal backbone structure for which the user, finally, must pay.

- 2.11 Summary

® The Internet is a global network of computer networks. Each computer,
or network node, has a unique address by which it can be identified
and can communicate with other nodes.

o The Internet provides many services, the most popular of which include
email, newsgroups, file transfer and remote computing.

® The World Wide Web (WWW) is the most advanced information
system on the Internet, and is so powerful that it has become almost
synonymous with the Internet itself.

® Browsers provide easy-to-use interfaces for accessing information on
the Web. The first point of contact between a browser and a Web server
is the home page.

® Documents that browsers display are accessed by means of unique
addresses, so-called Uniform Resource Locators, or URLs.

® EMBnet is a network of European biocomputing laboratories. Its
National Nodes provide on-line services, user support and training; its
Specialist Nodes provide databases and software. Three key Specialist
Nodes are the Sanger Centre, the HGMP-RC, and the EBI, home of the
EMBL, SWISS-PROT and TrEMBL databases.

® The SRS Sequence Retrieval System was developed within EMBnet to
allow information retrieval across a range of different database types via
a single interface.

® The leading American bio-information provider is the NCBI, home of
the GenBank database and the Entrez information retrieval system.

2.12 Further reading

The Internet
SWINDELL, S.R., MILLER, R.R. and MYERs, G.S.A. (eds) (1996) Internet for
the Molecular Biologist. Horizon Scientific Press.
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Information retrieval tools
ErzoLp, T. and ARGOS, P. (1993) SRS an indexing and retrieval tool for flat
file data libraries. Computer Applications in the Biosciences, 9, 49-57.

SCHULER, G.D., EPSTEIN, J.A., OHKAWA, H. and KANS, J.A. (1996) Entrez:
molecular biology database and retrieval system. Methods in Enzymology,
266, 141-162.

Bioinformatics WWW servers

APPEL, R.D., BAIROCH, A. and HOCHSTRASSER, D.F. (1994) A new genera-
tion of informatien-retrieval tools for biologists — the example of the
ExPASy WWW server. TiBS, 19(6), 258-260.

MIcHIE, A.D., Jones, M.L. and ArTwoon, T.K. (1996) DbBrowser: inte-
grated access to databases worldwide. TiBS, 21(5), 191.

Bioinformatics resource centres

EMMERT, D.B., STOEHR, P.J., STOESSER, G. and CAMERON, G.N (1994) The
European Bioinformatics Institute (EBI). Nucleic Acids Research, 22(17),
3445-3449.

2.13 Web addresses

WWWwW http://www.w3.org/

CERN http://w¥w.cern.ch/

Lynx http://lynx browser.org

ACS http://www.ukans.edu/ ~acs/

Mosaic hitp://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSA
MosaicHome.html

NCSA http://www.ncsa.uiuc.edu/ncsa.html

Netscape http://www.netscape.com/

EMBnet http://www.embnet.org/
Hinxton Hall  http://www.ebi.ac.uk/hinxton/hinxton.html
Sanger Centre http://www.sanger.ac.uk/Info/

HGMP-RC http://www.hgmp.mrc.ac.uk/HGMP.html
EBI http://www.ebi.ac.uk/ebi_home.html
EMBL http://www.embl-heidelberg.de/

ExPASy http://expasy.hcuge.ch/

MIPS hitp://www.mips biochem.mpg.de/

UcCL http://www.biochem.ucl.ac.uk/bsm/dbbrowser/
SRS hitp://srs.ebi.ac.uk/

NCBI http://www.ncbi.nlm.nih.gov/

Entrez http://www.ncbi.nlm.nih.gov/Entrez/
Virtual Tourist http://www.vtourist.com/webmap/
ANGIS http://www.angis.su.oz.au/

City.Net http://www.city.net/

APTER THREE

Protein information
resources

3.1 Introduction

The aim of this chapter is to provide an introduction to a range of biologi-
cal databases, highlighting the distinction between different data types and
indicating where some of the most important resources are maintained. The
‘chapter discusses primary sequence databases, the reasons for the develop-
ment of composite sequence databases, and the emergence of a variety of
secondary and tertiary pattern databases. Two structure classification

© resources are also briefly mentioned. Reminders of important definitions,
- and of the single- and three-letter amino acid codes, are given. Web
* ‘addresses are provided in a separate table.

3.2 Biological databases

In Chapter 1, we saw that current efforts to sequence the entire genomes of
a variety of organisms have given rise to a protein sequence/structure
deficit, essentially because it is much easier rapidly to produce vast amounts
of sequence information than it is to determine protein 3D structures in
atomic detail. If we are to derive the maximum benefit from the deluge of
sequence information, we must deal with it in a concerted way: this means
establishing, maintaining and disseminating databases; providing easy-to-
use software to access the information they contain; and designing
state-of-the art analysis tools to visualise and interpret the structural and
functional clues latent in the data.

The first step, then, in analysing sequence information is to assemble it
into central, shareable resources, i.e. databases. Databases are effectively
electronic filing cabinets, a convenient and efficient method of storing vast
amounts of information. There are many different database types, depend-
ing both on the nature of the information being stored (e.g., sequences or



w
o

$32N0S3J UOLIRIIOUL U1B}01d

structures, 2D gel or 3D structure images, and so on) and on the manner of
data storage (e.g., whether in flat-files, tables in a relational database, or
objects in an object-oriented database). Here we are concerned only with
the different types of biological data, rather than on particular storage or
management mechanisms.

In the context of protein sequence analysis, we will encounter primary,
composite and secondary databases. Such resources store different levels of
information in totally different formats. In the past, this has led to a variety
of communication problems, but emerging computer technologies are
beginning to provide solutions, allowing seamless, transparent access to dis-
parate, distributed data structures over the Internet.

Primary and secondary databases are used to address different aspects
of sequence analysis, because they store different levels of protein sequence
information (see Box 3.1). It is therefore essential to know when and how
to use them to build the most effective sequence analysis strategies. Some of
the most important resources (from both current and historical viewpoints)
are outlined in the following sections.

BOX 3.1: LEVELS OF PROTEIN SEQUENCE AND STRUCTURAL ORGANISATIO

primary
database

secondary
[AS]~[IL12-X[DE]-R- [FYWI2-H — @ o oce

primary sequence AVILDRYFH

secondary motif

structure
database

tertiary domain module ab,c @ #

3.3 Primary sequence databases

In the early 1980s, sequence information started to become more abundant
in the scientific literature. Realising this, several laboratories saw that there
might be advantages to harvesting and storing these sequences in cgntr.al
repositories. Thus, several primary database projects began to evolve in dl.f-
ferent parts of the world. Table 3.1 lists some of the most important nucleic

Protein

PIR

MIPS
SWISS-PROT
TrEMBL
NRL-3D

acid and protein sequence databases that arose from such initiatives. The

~databanks are described briefly below.

3.3.1 Nucleic acid sequence databases
- As shown in Table 3.1, the principal DNA sequence databases are

GenBank (USA), EMBL (Europe) and DDB]J (Japan), which exchange data
on a daily basis to ensure comprehensive coverage at each of the sites.
Further details of these resources, and the structure of their entries (taking

_ specific examples from GenBank), are discussed in Chapter 4. In the
- remainder of this chapter, we will be concerned with the different varieties

of protein sequence and pattern database.

- 3.3.2 Protein sequence databases

PIR

The Protein Sequence Database was developed at the National Biomedical
Research Foundation (NBRF) in the early 1960s by Margaret Dayhoff as a
collection of sequences for investigating evolutionary relationships among

" proteins. Since 1988, the Protein Sequence Database has been maintained

collaboratively by PIR-International (Barker et al., 1998), an association of
macromolecular sequence data collection centres: the consortium includes
the Protein Information Resource (PIR) at the NBRF, the International
Protein Information Database of Japan (JIPID), and the Martinsried
Institute for Protein Sequences (MIPS).

In its current form, the database is split into four distinct sections, des-
ignated PIR1-PIR4, which differ in terms of the quality of data and level of
annotation provided: PIR1 contains fully classified and annotated entries;
PIR2 includes preliminary entries, which have not been thoroughly
reviewed and may contain redundancy; PIR3 contains unverified entries,
which have not been reviewed; and PIR4 entries fall into one of four cat-
egories: (i) conceptual translations of artefactual sequences; (ii) conceptual

: -~ translations of sequences that are not transcribed or translated; (iii) protein

sequences or conceptual translations that are extensively genetically engi-
neered; or (iv) sequences that are not genetically encoded and not
produced on ribosomes. Programs are provided for data retrieval and
sequence searching via the NBRF-PIR database Web page.
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MIPS . :

The Martinsried Institute for Protein Sequences collects and processes
sequence data for the tripartite PIR-International Protein Sequence
Database project (Mewes et al., 1998). The database is distributed with
PATCHX, a supplement of unverified protein sequences from external
sources. Access to the database is provided through its Web server: results
of FastA similarity searches of all proteins within PIR-International and
PATCHX are stored in a dynamically maintained database, allowing instant
access to FastA results.

SWISS-PROT

SWISS-PROT is a protein sequence database which, from its inception in
1986, was produced collaboratively by the Department of Medical
Biochemistry at the University of Geneva and the EMBL; after 1994, the
collaboration moved to EMBL's UK outstation, the EBI (Bairoch and
Apweiler, 1998). In April 1998, further change saw a move to the Swiss
Institute of Bioinformatics (SIB); hence the database is now maintained
collaboratively by SIB and EBI/EMBL. The database endeavours to pro-
vide high-level annotations, including descriptions of the function of the
protein, and of the structure of its domains, its post-translational modifica-
tions, variants, and so on. SWISS-PROT aims to be minimally redundant,
and is interlinked to many other resources. In 1996, a computer-annotated
supplement to SWISS-PROT was created, termed TrEMBL, which is
described in more detail below. First, however, we will take a close look at
the structure of SWISS-PROT entries.

The structure of SWISS-PROT entries

The structure of the database, and the quality of its annotations, sets
SWISS-PROT apart from other protein sequence resources and has made it
the database of choice for most research purposes. By mid-1998, the data-
base contained ~70000 ehtries from more than 5000 different species, the
bulk of these coming from just a small number of model organisms (e.g.,
Homo sapiens, Saccharomyces cerevisiae, Escherichia coli, Mus musculus
and Rattus norvegicus).

An example entry is shown in Figure 3.1. Each line is flagged with a
two-letter code, which helps to present the information in a structured way.
Entries begin with an identification (ID) line and end with a // terminator.
Here, the ID line informs us that the entry name is OPSD_SHEEP, a pro-
tein with 348 amino acids. ID codes in SWISS-PROT have been designed
to be informative and people-friendly; they take the form PROTEIN_
SOURCE, where the PROTEIN part of the code is an acronym that
denotes the type of protein, and SOURCE indicates the organism name.
The protein in this example is clearly derived from sheep and, with the eye
of experience, we can deduce that it is a rhodopsin.

Unfortunately, ID codes can sometimes change, so an additional identi-
fier, an accession number, is also provided, which ought to remain static
between database releases. The accession number is provided on the AC

FT
FT
FT
FT
FT
FT
sQ

17

OPSD_SHEEP STANDARD; PRT; 348 AA.

P02700;

21-JUL-1986 (REL. 01, CREATED)

01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
01-NOV-1997 (REL. 35, LAST ANNOTATION UPDATE)
RHODOPSIN.

RHO.

OVIS ARIES (SHEEP).

EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
EUTHERIA; ARTIODACTYLA.

1

SEQUENCE.

PAPPIN D.J.C., ELIPOULOS E., BREIT M., FINDLAY J.B.C.;
INT. J. BIOL. MACROMOL. 6:73-76(1984).

4]

RETINAL BINDING SITE.

MEDLINE; 84178280. [NCBI, Geneva]

PAPPIN D.J.C., FINDLAY J.B.C.;

BIOCHEM. J. 217:605-613(1984).

—!~ FUNCTION: VISUAL PIGMENTS ARE THE LIGHT-ABSORBING MOLECULES THAT
MEDIATE VISION. THEY CONSIST OF AN APOPROTEIN, OPSIN, COVALENTLY
LINKED TO CIS-RETINAL.

-!- THIS RHODOPSIN HAS AN ABSORPTION MAXIMA AT 495 NM.

—!~ PTM: SOME OR ALL OF THE CARBOXYL-TERMINAL SER OR THR RESIDUES MAY
BE PHOSPHORYLATED.

—!~ TISSUE SPECIFICITY: ROD SHAPED PHOTORECEPTOR CELLS WHICH MEDIATES
VISION IN DIM LIGHT.

—!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN.

—!- SIMILARITY: BELONGS TO FAMILY 1 OF G-PROTEIN COUPLED RECEPTORS.
BELONGS TO THE OPSIN SUBFAMILY,

PIR; A30407; OOSH.

GCRDB; GCR_0194; -.

PROSITE; PS00237; G_PROTEIN_RECEPTOR.

PROSITE; PS00238; OPSIN.

PRODOM [Domain structure / List of seq. sharing at least 1 domain]

SWISS-2DPAGE; GET REGION ON 2D PAGE.

GPCRDB-Snakes; P02700.

PHOTORECEPTOR; RETINAL PROTEIN; TRANSMEMBRANE; GLYCOPROTEIN; VISTON;

PHOSPHORYLATION; LIPOPROTEIN; G-PROTEIN COUPLED RECEPTOR.

DOMATN i 36 EXTRACELLULAR.
TRANSMEM 37 &1 1 (POTENTIAL) .
DOMAIN 62 73 CYTOPLASMIC.

‘TRANSMEM 74 98 2 (POTENTIAL).
DOMAIN 99 113 EXTRACELLULAR .

TRANSMEM 285 309 7 (POTENTIAL) .

DOMAIN 310 348 CYTOPLASMIC.

CARBOHYD 2 2 BY SIMILARITY.

CARBOHYD 15 15 BY SIMILARITY.

BINDING 296 296 RETINAL CHROMOPHORE.

LIPID 322 322 PALMITATE (BY SIMILARITY).

LIPID 323 323 PALMITATE (BY SIMILARITY).

DISULFID 110 187 BY SIMILARITY.

MOD_RES 343 343 PHOSPHORYLATION (BY RK} (BY SIMILARITY).

SEQUENCE 348 AA; 38891 MW; A3BIF1AQ0 CRC32;

MNGTEGPNFY VPFSNKTGVV RSPFEAPQYY LAEPWQFSML AAYMFLLIVL, GFPINFLTLY
VTVQHKKLRT PLNYILLNLA VADLFMVFGG PTTTLYTSLH GYFVFGPTGC NLEGFFATLG
GEIALWSLYV LATERYVVVC KPMSNFRFGE NHAIMGVAFT WVMALACAAP PLVGWSRYIP
QGMOCSCGAL YFTLKPEINN ESFVIYMFVV HFSIPLIVIF FCYGQLVFTV KEAAAQQQES
ATTQKAEKEV TRMVIIMVIA FLICWLPYAG VAFYIFTHQG SDFGPIFMTI PAFFAKSSSV
YNPVIYIMMN KQFRNCMLTT LCCGKNPLGD DEASTTVSKT ETSQVAPA

Figure 3.1 Example entry from SWISS-PROT (dotted lines denote points at which, for
convenience, material has been excised).
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line, here P02700, which, although relatively uninformative to the human
user, is nevertheless computer readable. If several numbers appear on the
same AC line, the first, or primary, accession number is the most current.

Next, the DT lines provide information about the date of entry of the
sequence to the database, and details of when it was last modified. The
description (DE) line, or lines, then informs us of the name, or names, by
which the protein is known - here simply rhodopsin. The following lines
give the gene name (GN), fhe organism species (OS) and organism classifi-
cation (OC) within the biological kingdoms.

The next section of the database provides a list of supporting refer-
ences; these can be from the literature, unpublished information submitted
directly from sequencing projects, data from structural or mutagenesis stud-
ies, and so on. The database is thus an important repository of information
that is difficult, or impossible, to find elsewhere.

Following the references are found comment (CC) lines. These are
divided into themes, which tell us about the FUNCTION of the protein, its
post-translational modifications (PTM), its TISSUE SPECIFICITY, SUB-
CELLULAR LOCATION, and so on. Where such information is available,
the CC lines also indicate any known SIMILARITY or affiliation to particu-
lar protein families. In this example, we learn that rhodopsin is an integral
membrane ‘visual’ protein found in rod cells; it belongs to the opsin family
and to the type 1 G-protein-coupled receptor (GPCR) superfamily.

Database cross-reference (DR) lines follow the comment field. These
provide links to other biomolecular databases, including primary sources,
secondary databases, specialist databases, etc. For ovine rhodopsin, we find
links to the primary PIR source, to the GPCR specialist database, to the
PROSITE secondary database and to the ProDom domain database.

Directly after the DR lines is found a list of relevant keywords (KW),
and then a number of FT lines, which form what is known as a Feature
Table. The Feature Table highlights regions of interest in the sequence,
including local secondary structure (such as transmembrane domains, as
seen in the figure), ligand binding sites, post-translational modifications,
and so on. Each line includes a key (e.g., TRANSMEM), the location in the
sequence of the feature (e.g., 37-61), and a comment, which might, for
example, indicate the level of confidence of a particular annotation (e.g.,
POTENTIAL). For our rhodopsin example, the transmembrane domain

assignments result from the application of prediction software, and, there-
fore, in the absence of supporting experimental 3D structural data, can only
be flagged as potential.

The final section of the database entry includes the sequence itself, on
the SQ lines. For efficiency of storage, the single-letter amino acid code is
used (see Box 3.2), each line containing 60 residues. Sequence data in
SWISS-PROT correspond to the precursor form of the protein, before post-
translational processing, hence information concerning the size or
molecular weight will not necessarily correspond to values for the mature
protein. The extent of mature proteins or peptides may be deduced by refer-
ence to the Feature Table, which will indicate the region of a sequence that

THE SI

NGLE- AND THREE-LETTER AMINO ACID CODES

o

#  Glycine i Proline
% Aanine Ala % Valine \'7:;
# Leucine Leu #  Isoleucine lle
#  Methionine Met i  Cysteine Cys
I Phenylalanine Phe W Tyrosine Tyr
B Tryptophan Trp B  Histidine His
M Lysine Lys B Armginine Arg
#  Serine Ser H:  Threonine Thr
€  Asparagine Asn #  Glutamine Gin
#  Aspartic acid Asp # Glutamic acid Glu
B Asparagine/Aspartate Asx Z Glutamine/Glutamate  Glx

orresponds to the signal (SIGNAL), transit (TRANSIT) or pro-peptide
ROPEP) respectively. The keys CHAIN and PEPTIDE are used to
enote the location of the mature form.

The structure of SWISS-PROT makes computational access to the differ-
nt information fields both straightforward and efficient - for example, query
software need not search the full flat-file, but can be directed to those lines
that are specific to the nature of the query. For this reason, coupled with the
! uality of its biological annotations, SWISS-PROT has become probably the
‘most widely used protein sequence database in the world.

TEMBL
+TrEMBL (Translated EMBL) was created in 1996 as a computer-annotated
upplement to SWISS-PROT (Bairoch and Apweiler, 1998). The database
enefits from the SWISS-PROT format, and contains translations of all
coding sequences (CDS) in EMBL. TrEMBL has two main sections, desig-
. ated SP-TrEMBL and REM-TrEMBL: SP-TTEMBL (SWISS-PROT
TrEMBL) contains entries that will eventually be incorporated into SWISS-
PROT, but that have not yet been manually annotated; REM-TrEMBL
contains sequences that are not destined to be included in SWISS-PROT -
these include immunoglobulins and T-cell receptors, fragments of fewer
than eight amino acids, synthetic sequences, patented sequences, and
codon translations that do not encode real proteins. T'TEMBL was designed
to address the need for a well-structured SWISS-PROT-like resource that
would allow very rapid access to sequence data from the genome projects,
without having to compromise the quality of SWISS-PROT itself by incor-
porating sequences with insufficient analysis and annotation.

. NRL-3D
: (The NRL-3D database is produced by PIR from sequences extracted from
the Brookhaven Protein Databank (PDB) (Namboodiri et al., 1990). The
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titles and biological sources of the entries conform to the nomenclature
standards used in the PIR. Bibliographic references and MEDLINE cross-
references are included, together with secondary structure, acti.ve site,
binding site and modified site annotations, and details of experimental
method, resolution, R-factor, etc. Keywords are also provided. .

NRL-3D is a valuable resource, as it makes the sequence information in
the PDB available both for keyword interrogation and for similarity
searches. The database may be searched using the ATLAS retrieval system,
a multi-database information retrieval program specifically designed to
access macromolecular sequence databases.

3.3.3 An embarras de richesses

The proliferation of primary sequence databases gives rise to a number of
questions: do they all have the same format? Which is the most accurate?
Which is the most up-to-date? Which is the most comprehensive? Given
the choice, which should we use?

Of the protein sequence databases, NRL-3D is the least comprehensive
because it reflects only the contents of the PDB, yet it has the advantage of
relating directly to structural information; PIR(1-4) is the most comprehen-
sive resource, but the quality of its annotations is still relatively poor, even in
PIR1; SWISS-PROT, on the other hand, is a highly structured database (as
detailed in Figure 3.1) that provides excellent annotations, but its sequence
coverage is poor compared to PIR. Choosing the right database to search can
seem an impossible choice; so is it, perhaps, better to search them all?

3.4 Composite protein sequence databases

One solution to the problem of proliferating primary databases is to com-
pile a composite, i.e. a database that amalgamates a variety of different
primary sources. Composite databases render sequence searching much
more efficient, because they obviate the need to interrogate multiple
resources. The interrogation process is streamlined still further if the com-
posite has been designed to be non-redundant, as this means that the same
sequence need not be searched more than once.

Different strategies can be used to create composite resources. The final
product depends on the chosen data sources and the criteria used to merge
them; for example, a composite resource will be non-identical if it elimi-

. nates only identical sequence copies during the amalgamation process; but

if both identical and highly similar sequences are ejected (e.g., those entries
that differ by only one residue, such as a leading methionine residue), then
the resulting database will be more truly non-redundant.

The choice of different sources and the application of different redun-
dancy criteria have led to the emergence of different composites (see Table
3.2), each of which has its own particular format. The main composite data-

_ bases are outlined below.

3.4.1 NRDB

NRDB (Non-Redundant DataBase) is built locally at the NCBI. The database
is a composite of GenPept (derived from automatic GenBank CDS transla-
tions), PDB sequences, SWISS-PROT, SPupdate (the weekly updates of
SWISS-PROT), PIR and GenPeptupdate (the daily updates of GenPept). The
database is thus comprehensive and contains up-to-date information. However,
strictly speaking, it is not non-redundant, but non-identical, i.e., only identical
sequence copies are removed from the resource. This rather simplistic

.. approach leads to a number of problems: multiple copies of the same protein

are retained in the database as a result of polymorphisms and/or minor
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Table 3.2 Some of the available composite protein sequence databases, with details of
their primary data sources.

NRDB owL MIPSX SP+TrEMBL
PDB SWISS-PROT PIR1-4 SWISS-PROT
SWISS-PROT PIR MIPSOwn TrEMBL
PIR GenBank MIPSTrn
GenPept NRL-3D MIPSH
SWISS-PROTupdate PIRMOD
GenPeptupdate NRL-3D

SWISS-PROT

EMTrans

. GBTrans
Kabat
PseqIP

sequencing errors; incorrect sequences that have been amended in SWISS-
PROT are reintroduced when retranslated from the DNA; and numerous
sequences are incorporated as full entries of existing fragments, As a result, the
contents of NRDB are both error-prone and, in spite of its name, redundant.
NRDB is the default database of the NCBI BLAST service.

3.4.2 OWL

OWL is a non-redundant protein sequence database built at the University
of Leeds in collaboration with the Daresbury Laboratory in Warrington
(Bleasby et al., 1994). The database is a composite of four major primary
sources: SWISS-PROT, PIR1-4, GenBank (CDS translations) and NRL-3D.
The sources are assigned a priority with regard to their level of annotation
and sequence validation; SWISS-PROT has the highest priority, so all others
are compared against it during the amalgamation procedure. This process
eliminates both identical copies of sequences and those containing single
amino acid differences, leading to a compact (and efficient) resource for
sequence comparisons. Nevertheless, the database suffers from many of the
same problems as NRDB, which means that some sequencing errors and
retranslations of incorrect sequences in GenBank are retained; and since
OWL is only released on a 6-8 weekly basis, it suffers the further drawback
of not being up-to-date. BLAST services for OWL are available from the UK
EMBnet National Node, SEQNET, and from the UCL Specialist Node.

3.4.3 MIPSX

MIPSX is a merged database produced at the Max-Planck Institut in
Martinsried (Mewes et al., 1998). The database contains information from
the following resources: PIR1-4; MIPS preliminary entries, MIPSOwn;
MIPS/PIR preliminary entries, PIRMOD; MIPS preliminary translations,

MIPSTrn; MIPS yeast entries, MIPSH; NRL-3D; SWISS-PROT; EMTrans,
an automatic translation of EMBL; GBTrans, translated GenBank entries;
Kabat; and PSeqIP. The sources are assigned a priority as denoted hy their
‘order in Table 3.2, and sequences that are identical either within or between
them are removed, leaving only unique copies. In addition, all subsequences
(i.e., sequences completely contained within others) are removed.

3.4.4 SWISS-PROT+TrEMBL

At the EBI, the combination of SWISS-PROT and TrEMBL provides a
resource that is both comprehensive and ‘minimally’ redundant (Bairoch
and Apweiler, 1998). This database has the advantage of containing fewer
errors than do those mentioned above, yet it is still not truly non-redundant
(in mid-1997, it was estimated that around 30% of the combined total of
SWISS-PROT and TrEMBL was non-unique). To reduce error rates and
redundancy levels further will require increasing levels of human interven-
tion and/or the future development of expert database management
systems. SWISS-PROT and TrEMBL can be searched by means of the SRS
sequence retrieval system on the EBI Web server.

i 3.4.5 Another embarras du choix

. Just as the proliferation of primary databases has led to difficulties in choos-

ing the ‘best’ database for sequence analysis, the same difficult choices arise
with the creation of several composites: which contains the highest quality
data? Which is the most comprehensive? Which is the most up-to-date?

" Which should we use?

Ultimately, the choice of database depends on what factors are considered
most important for the job in hand (and possibly on whose Web server
responds most quickly!). Although not up-to-date, OWL has the advantage of

- being fully indexed. This means that the database has been designed for use

with a query language, which allows its contents to be rapidly interrogated and
manipulated in a variety of different ways. By contrast, NRDB is not available
for complex querying, but is useful for up-to-date sequence searches because it
contains daily updates of GenPept and weekly updates of SWISS-PROT.

Today, while Web access is still relatively easy, if sometimes a little slow,
it may be better to search a number of composites, just to be quite sure that
nothing obvious has been missed. Of course, this rather flies in the face of
the rationale for developing composite resources, but until the truly error-
free, non-redundant, comprehensive sequence database exists, this may be
the only practical solution. Alternatively, it is possible to create an in-house
custom composite database using the nr software from NCBIL

3.5 Secondary databases

In addition to the numerous primary and composite resources, there are
many secondary (or pattern) databases, so-called because they contain the
fruits of analyses of the sequences in the primary sources. Because there are
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several different primary databases, and a variety of ways of analysing pro-
tein sequences, the information housed in each of the secondary resources
is different - and their formats reflect these disparities. Designing software
tools that can search the different types of data, interpret the range of out-
puts, and assess the biological significance of the results is not a trivial task.

Although this appears to present the usual confusing picture, where noth-
ing is consistent and there are no standards, SWISS-PROT has emerged as
the most popular primary source, and many secondary databases now use it
as their basis. Some of the main secondary resources are listed in Table 3.3.

Table 3.3 Some of the major secondary ‘pattern’ databases: in each case, the primary
source is noted, together with the type of pattern stored. PRINTS is currently the only
secondary resource to be derived from a composite.

Secondary database Primary source Stored information

PROSITE SWINS-PROT Regular expressions (patterns)
Profiles SWISS-PROT Weighted matrices (profiles)
PRINTS owL* Aligned motifs (fingerprints)

Pfam SWISS-PROT Hidden Markov Models (HMMs)
BLOCKS PROSITE/PRINTS Aligned motifs (blocks)

IDENTIFY BLOCKS/PRINTS Fuzzy regular expressions (patterns)

*SWISS-PROT is OWL's highest priority source,

X\ 7

insertions

3.5.1 Why create secondary databases?

1t is clear from Table 3.3 that the type of information stored in each of the
secondary databases is different. Yet these resources have arisen from a
common principle: namely, that homologous sequences may be gathered
©_together in multiple alignments, within which are conserved regions that
show little or no variation between the constituent sequences. These con-
served regions, or motifs, usually reflect some vital biological role (i.e., are
- somehow crucial to the structure or function of the protein) - see Box 3.4.
- Motifs have been exploited in different ways to build diagnostic pat-
erns for particular protein families, as illustrated in Figure 3.2 (see also Box
:5). The idea is that an unknown query sequence may be searched against
library of such patterns to determine whether or not it contains any of the

" N fuzzy regular
S:thirdm” expression
s (IDENTIFY)

A

exact regular
expression
(PROSITE)

Full domain
alignment methods

profiles
(PROFILE LIBRARY)
N \
\ \ Hidden Markov Models
S EE0E
cyedggis
cyeeggit

cyhgdggs
cyrgdgnt,

identity matrices
(PRINTS)

'

weight matrices
(BLOCKS)

Muitiple motif
methods

Figure 3.2 Illustration of the three principal methods for
I i.e., using single motifs, multiple motifs and full domain atignments.

pattern d;
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BOX 3.5: TERMS USED IN SEQUENCE ANALYSIS METHODS

fingerprint

insertions

cydeggis
cyedggis

. frequenc weight matrix
cyeeggit equercy 9

matrix (block)

C-Y-x2-[DG] -G-x-[ST)
regular expression

predefined characteristics, and hence whether or not it can be assigned to a
known family. If the structure and function of the family are known,
searches of pattern databases thus offer a fast track to the inference of bio-
logical function. Because pattern databases are derived from m}xltip'le
sequence information, seatches of them are often better able to idermfly dis-
tant relationships than are corresponding searches of the primary
databases. However, none of the pattern databases is yet complete; they

should therefore only be used to augment primary database searches, rather

than to replace them. : .

Some of the major secondary databases are outlined in the following
pages. Details of the analysis methods that underlie their development and
use are given in Chapter 8.

3.5.2 PROSITE

The first secondary database to have been developed was PROSITE, which is
now maintained collaboratively at the Swiss Institute of Bioinformatics
{Bairoch et al,, 1997). The rationale behind its development was that protein
families could be simply and effectively characterised by the single most con-
served motif observable in a multiple alignment of known homologues, such
motifs usually encoding key biological functions (e.g., enzyme active sites,
ligand or metal binding sites, etc.). Searching such a database should, in prin-

ple, help to determine to which family of proteins a new sequence might

" belong, or which domain(s) or functional site(s) it might contain.

. Within PROSITE, motifs are encoded as regular expressions, often
simply referred to as patterns. The process used to derive patterns involves
the construction of a multiple alignment and manual inspection to identify
conserved regions. Sequence information within individual motifs is reduced
to single consensus expressions, and the resulting seed patterns are used to
search SWISS-PROT. Results are checked manually to determine how well
the patterns have performed: ideally, there should be only correct matches
{so-called true-positives), and no incorrect matches (false-positives) - see

" Box 3.6. Patterns whose diagnostic performance is compromised by matching

0 many false-positives are fine-tuned, and SWISS-PROT is re-scanned. This
process of adjustment is repeated until an optimal pattern is created.
Sometimes, a complete protein family cannot be characterised effectively

: by a single motif. In these cases, additional patterns are designed to encode

other well-conserved parts of the alignment; the iterative fine-tuning process
is then repeated until a set of patterns is achieved that is capable of capturing
all, or most, of the characterised family from the given version of SWISS-
PROT without matching too many, or any, false-positives.

The structure of PROSITE entries

Entries are deposited in PROSITE in two distinct files. The first of these
houses the pattern and lists all matches in the parent version of SWISS-
PROT; as shown in Figure 3.3, the data are structured in a manner
reminiscent of SWISS-PROT entries, where each field relates to a specific
type of information. The second is a documentation file, which provides
details of the characterised family and, where known, a description of the

. biological role of the chosen motif(s) and a supporting bibliography; as

shown in Figure 3.4, this is a free-format text file.

The structure of the data file is easy to understand. Like SWISS-
PROT, each entry contains both an identifier (ID), which is usually some
sort of acronym for the family, and an accession number (AC), which
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BOX 3.6: DETERMINING SIGNIFICANCE OF DATABASE MATCHES
S

True negatives

No. of matches

True positives

Score
False negatives False positives

Threshold

. ID
A
DT
- pE
PA

a

OPSIN; PATTERN.

P500238;

APR-1990 (CREATED); NOV-1997 (DATA UPDATE); NOV-1997 (INFO UPDATE) .
Visual pigments (opsins) retinal binding site.

[LIVMW] - [PGC] -x{3) ~ [SAC] -K- [STALIM] - [GSACNV] - {STACP] -x(2) - [DENF] - [AP] -

PA x(2)~[IY].
NR /RELEASE=32,49340;
| NR /TOTAL=53(53); /POSITIVE=53(53); /UNKNOWN=0(0); /FALSE_POS=0(0);
NR /FALSE_NEG=0; /PARTIAL=1:
CC /TAXO-RANG] ?E??; /MAX-REPEAT=1;
€C /SITE=S,retinal;
DR P06002, OPS1_DROME, T; P28678, OPS1_DROPS, T; P22269, OPS1_CALVI,
DR P08099, OPS2_DROME, T; P2867%, OPS2_DROPS, T; P04950, OPS3_DROME,
© DR P28680, OPS3_DROPS, T; P08255, OPS4_DROME, T; P29404, OPS4_DROPS,
. DR P17646, OPS4_DROVI, T; P35362, OPSD_SPHSP, T; P41591, OPSD_ANOCA,
DR P41590, OPSD_ASTFA, T; P02699, OPSD_BOVIN, T; P32308, OPSD_CANFA,
DR P32309, OPSD_CARAU, T; P22328, OPSD_CHICK, T; P28681, OPSD_CRIGR,
DR P08100, OPSD_HUMAN, T; P15409, OPSD_MOUSE, T; P35403, OPSD_POMMI,
DR P02700, OPSD_SHEEP, T; P29403, OPSD_XENLA, T; P22671, OPSD_LAMJA,
DR P31355, OPSD_RANPI, T; P24603, OPSD_LOLFO, T; P09241, OPSD_OCTDO,
DR P35356, OPSD_PROCL, T; P31356, OPSD_TODPA, T; P35360, OPS1_LIMPO,
DR P35361, OPS2_LIMPO, T; P32310, OPSB_CARAU, T; P28682, OPSB_CHICK,
DR P35357, OPSB_GECGE, T; P03999, OPSB_HUMAN, T; P28684, OPSV_CHICK,
DR P22330, OPSG_ASTFA, T; P22331, OPSH_ASTFA, T; P32311, OPSG_CARAU,
DR P32312, OPSH_CARAU, T; P28683, OPSG_CHICK, T; P35358, OPSG_GECGE,
DR P04001, OPSG_HUMAN, T; P41592, OPSR_ANOCA, T; P22332, OPSR_ASTFA,
DR P32313, OPSR_CARAU, T; P22329, OPSR_CHICK, T; P04000, OPSR_HUMAN,
DR P34989, OPSL_CALJA, T; P35359, OPSU_BRARE, T; P23820, REIS_TODPA,
DR P47803, RGR_BOVIN , T; P47804, RGR_HUMAN , T;
DR P17645, OPS3_DROVI, P;
DO PDOC00211;

17

Figure 3.3 Example regular expression entry from PROSITE, showing the data file for the
opsin pattern.

takes the form PS00000. The ID line also indicates the type of discrimi-
nator to expect in the file - the word PATTERN here tells us to expect a
regular expression. A title, or description of the family, is contained in the
DE line, and the pattern itself resides on PA lines. The following NR lines
provide technical details about the derivation and diagnostic perfor-
mance (or diagnostic power) of the pattern (for this reason, they are
probably the most important lines to inspect when first viewing a
PROSITE entry - large numbers of false-positive and false-negative
results are indicative of poorly-performing patterns). In the example
shown in Figure 3.3, we learn that the pattern was derived from release
32 of SWISS-PROT, which contained 49 340 sequences; it matched a
total of 53 sequences, all of which are true-positives - in other words, this
is a good pattern, with no false matches.

The comment (CC) lines provide information on the taxonomic range
of the family (defined here as eukaryotes), the maximum number of
observed repeats of the pattern (here just one), functional site annotations
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{PDOCO0211}
{PS00238; OPSIN}
{BEGIN}

* Visual pigments (opsins) retinal binding site *

Visual pigments [1,2] are the light-absorbing molecules that mediate vision. They
consist of an apoprotein, opsin, covalently linked to the chromophore cis-retinal.
Vision is effected through the absorption of a photon by cis-retinal which is
isometized to trans-retinal. This isomerization leads to a change of conformation of
the protein. Opsins are integral membrane proteins with seven transmembrane

regions that belong to family 1 of G-protein coupled receptors (see <PDOC00210>).

In vertebrates four different pigments are generally found. Rod cells, which mediate
vision in dim light, contain the pigment rhodopsin. Cone cells, which function in
bright light, are responsible for color vision and contain three or more color pig-
ments (for example, in mammals: red, blue and green).

In Drosophila, the eye is composed of 800 facets or ommatidia. Each ommatidium
contains eight photoreceptor cells (R1-R8): the R1 to R6 cells are outer cells, R7
and R8 inner cells. Each of the three types of cells (R1-R6, R7 and R8) expresses a
specific opsin.

Proteins evolutionary related to opsins include squid retinochrome, also known as
retinal photoisomerase, which converts various isomers of retinal into 11-cis retinal
and mammalian retinal pigment epithelium (RPE) RGR [3], a protein that may also
act in retinal isomerization. .

The attachment site for retinal in the above proteins is a conserved lysine residue in
the middle of the seventh transmembrane helix. The pattern we developed includes
this residue.

-Consensus pattern: [LIVMW]-[PGC]-x(3)-[SAC]-K- [STALIM] - {GSACNV] -
[STACP]-x(2) - [DENF] - [AP]-x(2) - [IY]
[K is the retinal binding site]

-Sequences known to belong to this class detected by the pattern: ALL.

-Other sequence(s) detected in SWISS-PROT: NONE.

-Last update: November 1997 / Paitern and text revised.

[ 1] Applebury M.L., Hargrave P.A.
Vision Res. 26:1881-1895(1986).

{ 2] Fryxell KJ., Meyerowitz E.M.
J. Mol. Evol. 33:367-378(1991).

[ 3] Shen D,, Jiang M., Hao W, Tao L, Salazar M., Fong HK.W.
Biochemistry 33:13117-13125(1994).

{END}

Figure 3.4 Example regular expression entry from PROSITE, showing the documentation
file for the opsin pattern shown in Figure 3.3.

(in this example, the retinal binding site is encoded in the fifth position of
the pattern), and so on. Following the comments are lists of the accession
numbers and SWISS-PROT identification codes of all the true matches to
the pattern (denoted by T), and any ‘possible’ matches (denoted by P),
which are often fragments. Although there are no false-positive or false-neg-
ative matches in this example, when these do occur, they are listed and are
denoted by the letters F and N respectively (the number of false and missed
matches is also documented in the NR lines). The final line of the file (DO)
points to the associated family documentation file.
The structure of the documentation file is much simpler. Each entry is
identified by its own accession number (which takes the form
PDOC00000), and provides a cross-reference to the accession number and
identifier of its data file. A free-format description of the family then fol-
lows, including details of the pattern and, where known, its biological
relevance. The file concludes with appropriate bibliographic references, as
shown in Figure 3.4. The database is accessible for keyword and sequence
searching via the EXPASy Web server.

3.5.3 PRINTS

From inspection of sequence alignments, it is clear that most protein families
are characterised not by one, but by several conserved motifs. It therefore
makes sense to use many, or all, of these to build diagnostic signatures of family
membership. This is the principle behind the development of the PRINTS fin-
gerprint database, which until 1999 was maintained in the Department of
Biochemistry and Molecular Biology at University College London (UCL)
(Attwood et al., 1998). Fingerprints inherently offer improved diagnostic relia-
bility over single-motif methods by virtue of the mutual context provided by
motif neighbours: in other words, if a query sequence fails to match all the
motifs in a given fingerprint, the pattern of matches formed by the remaining
‘motifs still allows the user to make a reasonably confident diagnosis.
Within PRINTS, motifs are encoded as ungapped, unweighted local
~ alignments. The process used to derive fingerprints differs markedly from
‘that used to create regular expressions. Here, sequence information in a set
of seed motifs is augmented through a process of iterative (composite) data-
base scanning. In brief, from a small initial multiple alignment, conserved
motifs are identified and excised manually for database searching (PRINTS
+* is currently derived from scans of OWL, but future releases will be built
- from searches of SWISS-PROT + SP-TrEMBL). Results are examined to
determine which sequences have matched all the motifs within the finger-
print; if there are more matches than were in the initial alignment, the
additional information from these new sequences is added to the motifs,
‘and the database is searched again. This iterative process is repeated until
no further complete fingerprint matches can be identified. The results are
then annotated for inclusion in the database.
Figure 3.5 illustrates three different aspects of a PRINTS entry. At the
~ top of the file (Figure 3.5(a)), each fingerprint is given an identifying code
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(a)
OPSIN OPSIN SIGNATURE

Type of fingerprint: COMPOUND with 3 elements
Links:

PRINTS; PR00237 GPCRRHDDOPSN; PR00247 GPCRCAMP; PRO0248 GECRMGR
PRINTS; PR00249 GPCRSECRETIN; PR00250 GPCRSTE2; PR00251 BACTRLOPSIN
PROSITE; PS00238 OPSIN; PS00237 G_PROTEIN_RECEPTOR

BLOCKS; BL00238

SBASE; OPSD_HUMAN

GCRDB; GCR_0085

Creation date 20-DEC-1993; UPDATE 2-JUL-1996

1. APPLEBURY, M.L. and HARGRAVE, P.A.
Molecular biology of the visual pigments.
VISION RES. 26 (12) 1881-1895 (1986).

(b)

SUMMARY INFORMATION
73 codes involving 3 elements
1 codes involving 2 elements

COMPOSITE FINGERPRINT INDEX
31 73 73 73
21 o 1 1

{c}

INITIAL MOTIF SETS

OPSIN1 Length of motif = 13 Motif number = 1
Opsin motif I - 1

PCODE ST INT
YVTVQHKKLRTPL OPSD_BOVIN 60 60
YVTVQHKKLRTPL OPSD_HUMAN 60 60
YVTVQHKKLRTPL OPSD_SHEEP 60 60
AATMKFKKLRHPL OPSG_HUMAN 76 76
AATMKFKKLRHPL OPSR_HUMAN 76 76
YIFATTKSLRTPA OPS1_DROME 73 73
VATLRYKKLRQPL OPSB_HUMAN 57 57
YIFGGTKSLRTPA OPS2_DROME 80 80

WVFSAAKSLRTPS OP§3 _DROME 81 81

WIFSTSKSLRTPS OPS4_DROME 77 77
YLFSKTKSLQTPA OPSD_OCTDO 58 58
YLFTKTKSLQTPA OPSD_LOLFO 57 57

OPSIN2 Length of motif = 13 Motif number = 2
Opsin motif II - 1

PCODE ST INT
GWSRYIPEGMQCS OPSD_BOVIN 174 101
GWSRYIPEGLQCS OPSD_HUMAN 174 101
GWSRYIPQGMQCS OPSD_SHEEP 174 101
GWSRYWPHGLKTS OPSG_HUMAN 180 101
GWSRYWPHGLKTS OPSR_HUMAN 130 101
GWSRYVPEGNLTS OPS1_DROME 187 101
GWSRFIPEGLQOCS OPSB_HUMAN 171 101
GWSAYVPEGNLTA OPS2_DROME 194 101
TWGRFVPEGYLTS OPS3_DROME 194 100
FWDRFVPEGYLTS OPS4_DROME 190 100
NWGAYVPEGILTS OPSD_OCTDO 174 103
GWGAYTLEGVLCN OPSD_LOLFO 173 103

Figure 3.5 Excerpt from the PRINTS database, illustrating three different aspects of an
entry, showing: (a) the general ID code and database cross-links; (b) a summary of the
diagnostic performance of the fingerprint; and (c) how fingerprints are stored as ungapped
aligned motifs.

(usually an acronym that attempts to describe the family), and a title that

gives the family name - here, the fingerprint, or signature, for the opsins is

identified by the code OPSIN. All entries also have unique accession num-
bers, which take the form PR00000 (not shown). An indication is then
given of the number of motifs in the fingerprint (here 3). Prior to the date
line, which indicates when the entry was added to the database and when it

~was last updated, a number of database cross-links are provided, allowing
- users to access additional information about the family in related biological

esources. The final parts of this initial section provide bibliographic infor-
mation, and a brief description .of the characterised family, coupled with
technical details concerning the derivation of the fingerprint (not shown).
‘Where possible, the description includes details of the structural and/or
functional relevance of the conserved motifs. ‘

. In the second section of the PRINTS entry, Figure 3.5(b), is found
information relating to the diagnostic performance both of the fingerprint
as a whole and of its constituent motifs. First, a summary lists how many
sequences matched all the motifs and how many made partial matches (i.c.,
failed to match one or more motifs) - in this example, we learn that 73
sequences matched all three elements of the fingerprint, and one sequence
matched only two motifs. The table that follows provides additional infor-
mation in support of these results, detailing how many sequences were
matched by each individual motif ~ here, the important information gained
is-that the reported partial hit failed to match motif 1.

In the final part of the entry, Figure 3.5(c), are listed the seed motifs
used to generate the fingerprint, followed by the final motifs (not shown)
that result from the iterative database scanning procedure. Each motif is
identified by its parent ID code plus a number that indicates which compo-

ent of the fingerprint it is: in this example, the three motifs in the OPSIN
fingerprint are designated OPSIN1, OPSIN2 and OPSIN3 (motif 3 is not
shown). After the code, the motif length is given, followed by a short
description, which indicates the relevant iteration number (for the initial
motifs, of course, this will always be 1). The aligned motifs themselves are
then provided, together with the corresponding source database ID code of
ach of the constituent sequence fragments (here only sequences from
SWISS-PROT were included in the initial alignment). The location in the
parent sequence of each fragment is then given, together with the interval
(i.e., the number of residues) between the fragment and its preceding neigh-
bour - for the first motif, this value is the distance from the N-terminus.

An important consequence of storing the motifs in this ‘raw’ form is
that, unlike with regular expressions or other such abstractions, no
sequence information is lost. This means that a variety of different scoring
methods may be superposed onto the motifs, providing different scoring
potentials for, and hence different perspectives on, the same underlying
ata. PRINTS may therefore provide the raw material for automatically
derived tertiary databases.

The database is accessible for keyword and sequence searching via the
DbBrowser Bioinformatics Web server, which in 1999 will have relocated
from UCL to the University of Manchester.
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PROSITE and PRINTS are set apart from other secondary databases by
virtue of the manually input family documentations, which help to place
conserved sequence infogmation in a structural or functional context. This
is vital for the end user, who not only wants to discover, for example,
whether a novel sequence has matched a predefined sequence motif, but,
more importantly, also needs to understand its biological significance.

The following sections briefly describe some related secondary and ter-
tiary databases that are generated using more automated procedures and, as
a consequence, provide little or no family annotation. Some of these use
PRINTS and PROSITE as their data sources.

3.5.4 BLOCKS

The diagnostic limitations of regular expressions led to the creation of a
multiple-motif database, based on protein families contained in PROSITE,
at the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle; this is
the BLOCKS database (Henikoff et al., 1998). In this resource, the motifs,
or blocks, are created by automatically detecting the most highly conserved
regions of each protein family: this is achieved via a method based, in its
initial stages, on the identification of three conserved amino acids (which
need not be contiguous in sequence). The resulting blocks, which are ulti-
mately encoded as ungapped local alignments, are calibrated against
SWISS-PROT to obtain a measure of the likelihood of a chance match.
Two scores are noted for each block: the first denotes the level at which
99.5% of matches are true-negatives; the second is the median value of the
true-positive scores, which, for the purpose of comparing the diagnostic
performance of individual blocks, is normalised by multiplying by 1000 and
dividing by the 99.5% score. The median standardised score for known
true-positive matches is termed strength.

The structure of BLOCKS entries

Figure 3.6 illustrates a typical block. The structure of the database entry is
compatible with that used in PROSITE, where each block is identified by a
general code (the ID line) and an accession number, which takes the form
BLO0000X (X is a letter that specifies which the block is within the family's
set of blocks, e.g., BL00327C is the third bacterial rhodopsin block).
Similarly, the ID line indicates the type of discriminator to expect in the file

- here, not surprisingly, the word BLOCK tells us to expect a block. The AC

line also provides an indication of the minimum and maximum distances of
the block from its preceding neighbour, or from the N-terminus if it is the
first in a set of blocks. A title, or description of the family, is contained in
the DE line. This is followed by the BL line, which provides an indication
of the diagnostic power and some physical details of the block: these
include the amino acid triplet (here RY-A), the width of the block and the
number of sequences it contains, the 99.5%-level score, and finally the
strength. Strong blocks are moye effective than weak blocks (strength less
than 1100) at separating true-positives from true-negatives. Following this

1D BACTERIAL_OPSIN_RET; BLOCK

AC BL00327C; distance from previous block=(2,4)

DE Bacterial rhodopsins retinal binding site proteins.

BL RYA motif; width=29; seqgs=6; 99.5%=1206; strength=1504
BAC1_HALS1 ( 144) LARYTWWLFSTICMIVVLYFLATSLRAAA 61

BAC2_HALS2 ( 143) LARYTWWLFSTIAFLFVLYYLLTSLRSAA 52

BACR_HALHA ( 145) SYRFVWWAISTAAMLYILYVLFFGFTSKA 73

BACT_NATPH ( 121) IERYALFGMGAVAFLGLVYYLVGPMTESA 100

BACH_HALSS ( 164) LLRWVWYAISCAFFVVVLYILLAEWAEDA 59
BACH_NATPH ( 174) LMRWFWYATSCACFLVVLYILLVEWAQDA 56
/7 :

Figure 3.6 Example entry from BLOCKS, showing the third block used to characterise the
bacterial rhodopsins.

nformation comes the block itself, which indicates the SWISS-PROT IDs
of the constituent sequences, the start position of the fragment, the
quence fragment itself, and a score, or weight, that provides a measure of
the closeness of the relationship of that sequence to others in the block
{100 being the most distant). Sequence fragments that are less than 80%
imilar are separated by blank lines.

Because the database is derived by fully automatic methods, the blocks
are not annotated, but links are made to the corresponding PROSITE
mily documentation file. The database is accessible for keyword and
quence searching via the Blocks Web server at the FHCRC.

Blocks-format PRINTS

In addition to the BLOCKS database, the FHCRC Web server provides a
version of the PRINTS database in BLOCKS format (Henikoff et al., 1998).
_dn this resource, the scoring methods that underlie the derivation of blocks
have been applied to each of the aligned motifs in PRINTS. Figure 3.7 illus-
rdtes a typical motif in BLOCKS format. The structure of the entry is
identical to that used in BLOCKS, with only minor differences occurring
‘on the AC and BL lines. On the AC line, the PRINTS accession number is
ven, with an appended letter to indicate which component of the finger-
int it is (in the example, PR00238A indicates that this is the first motif).
the BL line, the triplet information is replaced by the word ‘adapted’,
indicating that the motifs have been taken from another database.

~ Because BLOCKS-format PRINTS is derived automatically from
PRINTS, its blocks are not annotated. Nevertheless, family and motif docu-
entation may be accessed via links to the corresponding PRINTS entry.
e database is accessible for keyword and sequence searching via the
ocks Web server at the FHCRC.

A further important consequence of the direct derivation of the
OCKS databases from PROSITE and PRINTS is that they offer no
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ID  OPSIN; BLOCK

AC PR00238A; distance from previous block=(31,81)

DE OPSIN SIGNATURE y

BL adapted; width=13; segs=73; 99.5%=858; strength=1172;

OPSD_CHICK ( 60) YVTIQHKKLRTPL 11
OPSD_RANPI 60) YVTIQHKKLRTPL 11

579840 60} YVTIQHKKLRTPL 11
OPSD_BOVIN 60) YVTVQHKKLRTPL 11
OPSD_CANFA 60) YVIVQHKKLRTPL 11

(
(
(
(
OPSD_CRIGR ( 60) YVTVQHKKLRTPL 11
(
(
(

OPSD_HUMAN 60) YVTVQHKKLRTPL 11
OPSD_MOUSE 60) YVTVOHKKLRTPL 11
OPSD_SHEEP 60) YVTVQHKKLRTPL 11
OPSD_OCTDO 58) YLFSKTKSLQTPA 35
OPSD_LOLFO 57) YLFTKTKSLQTPA 38
OPSD_TODPA 56) YLFTKTKSLQTPA 38

OPSB_CHICK 67) FCTARFRKLRSHL 69

(
(
(
ASOPSIN ( 50) YLFTKTKSLQTPA 38
{
HMIORH2 ( 77) YLFNKSAALRTPA 100

1/

Figure 3.7 Example entry from BLOCKS-format PRINTS, showing the first block used to
characterise the opsin family.

further family coverage. Nevertheless, as different methods are used to con-
struct the blocks in each of the databases, it is worth searching both. Still
more, ~50% of families encoded in PRINTS are not represented in
PROSITE, so searches of both BLOCKS databases will be more compre-
hensive than searches of either resource alone.

3.5.5 Profiles

An alternative philosophy to the motif-based approach of protein family
characterisation adopts the principle that the variable regions between
conserved motifs also contain valuable sequence information. Here, the
complete sequence alignment effectively becomes the discriminator. The
discriminator, termed a profile, is weighted to indicate where insertions
and deletions (INDELs) are allowed, what types of residues are allowed
at what positions, and where the most conserved regions are. Profiles
(alternatively known as weight matrices) provide a sensitive means of
detecting distant sequence relationships, where only very few residues are
well conserved - in these circumstances, regular expressions cannot pro-
vide good discrimination, and will either miss too many true-positives or
catch too many false ones.

The limitations of regular expressions in identifying distant homologues
led to the creation of a compendium of profiles at the Swiss Institute for
Experimental Cancer Research (ISREC) in Lausanne. Each profile has sep-

arate data and family-annotation files whose formats are compatible with
PROSITE data and documentation files. This allows results that have been
annotated to an appropriate standard to be made available as an integral
part of PROSITE (Bairoch et al., 1997).

The structure of PROSITE profile entries

Figure 3.8 shows an excerpt from a profile data file. The structure of the file is
based on that of PROSITE, but with obvious differences. The first change is
seen on the ID line, where the word MATRIX indicates that the type of dis-
criminator to expect is a profile. Pattern (PA) lines are replaced by mairix
(MA) lines, which list the various parameter specifications used to derive and
describe the profile: they include details of the alphabet used (i.e., whether
nucleic acid {ACGT} or amino acid {ABCDEFGHIKLMNPQRSTVWYZ)),
the length of the profile, cut-off scores (which are designed, as far as possible,
_ to exclude random matches), and so on. The I and M fields contain position-
specific profile scores for insert and match positions respectively.

Profiles that have not achieved the standard of annotation necessary for
nclusion in PROSITE are nevertheless made available for searching via the
ISREC Web server.

ID SH3; MATRIX.

AC  PS50002;

DT NOV-1995 (CREATED); NOV-13%5 (DATA UPDATE) ; NOV-1995 (INFO UPDATE) .
Src homology 3 (SH3) domain profile.

/GENERAL_SPEC: ALPHABET=' ACDEFGHIKLMNPQRSTVWY ' ;

/CUT_OFF: LEVEL=0; SCORE=30; N_SCORE=7.0; MODE=1;

558

/M: SY='V';M=0,-4,-3,-4 3,-3,5,-3,3,3,-2,
=-1,-6,~3,-3,-1,-3,-2,2,-3,3,2,-2,-2,-2, -
,-6,3,3,-6,0,1,-3,2,-5,-2,2,-1,2,1,0,0,
/M: SY='K';M=-1,-6,0,0,-2,-1,0,-3,3,-4,-1,1,-1,0,1,0,0,
/M: SY='N';M=1,-4,1,1,-5,0,0,-2,0,-3,-2,1,1,0,-1,1,1,-1,-7,-5;
X'; M=0; D=-1;

/M: SY='W'iM=-7,-9,-! .0,-9,-4,-5,-5,-1,-4,-6,-7,-6,2 6,-6,18,-1;
/M: sY='K';M--1,-7,0,0,-3,-2,0,-2,2,-3,-1,1,-1,1,2,0,-1,-3,-5,-5;
/T: MI=0; I=-2; MD=0; /M: SY='X'; M=0; D=-2;

ESEEEEEESEEE

Figure 3.8 Excerpt from a PROSITE profile entry, illustrating part of the profile used to
characterise the SH3 domain.

3.5.6 Pfam

Just as there are different ways of using motifs to characterise protein fami-

ies (e.g., depending on the scoring scheme used), so there are different
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methods of using full sequence alignments to build family discriminators.

An alternative to the use of profiles is to encode alignments in the form of

Hidden Markov Models*(HMMs). These are statistically based mathemati-
cal treatments, consisting of linear chains of match, delete or insert states
that attempt to encode the sequence conservation within aligned families.

A collection of HMM:s for a range of protein domains is provided by
the Pfam database, which is maintained at the Sanger Centre (Sonnhammer

et al., 1998). The database is based on two distinct classes of alignment: -

hand-edited seed alignments, which are deemed to be accurate (these are

used to produce Pfam-A); and those derived by automatic clustering of

SWISS-PROT, which are less reliable (these give rise to Pfam-B).

The high-quality seed alignments are used to build HMMs, to which
sequences are automatically aligned to generate final full alignments. If the
initial alignments do not produce diagnostically sound HMMs, the seed is
improved and the gathering process iterated until a good result is achieved.
The methods that ultimately generate the best full alignment may vary for
different families, so the parameters are saved in order that the result can
be reproduced. The collection of seed and full alignments, coupled with
minimal annotations, database and literature cross-references, and the
HMMs themselves, constitute Pfam-A. All sequence domains that are not
included in Pfam-A are automatically clustered and deposited in Pfam-B.

The structure of Pfam entries

Figure 3.9 shows some of the information used to describe a Pfam-A entry. The
format is compatible with PROSITE, each entry being identified by both an
accession (AC) number (which takes the form PF00000) and an ID code (a
single keyword). DE lineg provide the title, or description, of the family, and
AU lines indicate the author of the entry. The methods used to create both the
seed and the full automatic alignment are noted on AL and AM lines respec-
tively. The source database suggesting that seed members belong to one family,
appropriate database cross-references, and the search program and cut-off used
to build the full alignment are given in the SE, DR and GA lines.

AC PF00001

ID 7tm

DE 7 transmembrane receptor (rhodopsin family)

AU Sonnhammer ELL

AL HMM_simulated_annealing

AM hmma -gR

SE Prosite

DR PROSITE; PDOC00210; [Expasy][SRS Japan|UK|USA|]
DR PROSITE; PDOC00211; [Expasy]{SRS Japan|UK|USA|]
GA Bic_raw 23.83 hmmfs 15

DR http://www.gcrdb.uthscsa.edu/

Figure 3.9 Excerpt from the 7TM Pfam entry, showing information used to build the seed
and full alignments.

Although entries in Pfam-A have an annotation file available (which
ay contain details of the method, a description of the domain, and links to
gther databases), for the majority of entries, extensive family annotations
e not yet in place.

- Pfam is accessible for sequence searching via the Web server at the
Sanger Centre on the Hinxton Genome Campus.

3.5.7 IDENTIFY

Another automatically derived tertiary resource, derived from BLOCKS
nd PRINTS, is IDENTIFY, which is produced in the Department of
ochemistry at Stanford University (Nevill-Manning et al., 1998). The pro-
am used to generate this resource, eMOTIF, is based on the generation of
nsensus expressions from conserved regions of sequence alignments.
However, rather than encoding the exact information observed at each
bsition in an alignment (or motif), eMOTIF adopts a ‘fuzzy’ approach in
hich alternative residues are tolerated according to a set of prescribed
oupings, as illustrated in Table 3.4. These groups correspond to various
biochemical properties, such as charge and size, theoretically ensuring that
e resulting motifs have sensible biochemical interpretations.

Although this technique is designed to be more flexible than exact regu-
lar expression matching, its inherent permissiveness brings with it an
fhevitable signal-to-noise trade-off: i.e., the resulting patterns not only have
the potential to make more true-positive matches, but they will conse-
quently also match more false-positives. However, when using the resource
for sequence searching, different levels of stringency are offered from which
to infer the significance of matches.

: IDENTIFY and its search software, eMOTIF, are accessible for use
via the protein function Web server from the Biochemistry Department
at Stanford.

. Table 3.4 Sets of amino acids and their properties as used in eMOTIF.

- Medium hydrophobic
- Adidic/amide
- Small/polar

.- Residue property Residue groups
= Small Ala, Gly
" Small hydroxyl Ser, Thr
¢ Basic lys, Arg
- Aromatic Phe, Tyr, Trp
' Basic His, Lys, Arg
Small hydrophobic Val, Leu, Ile

Val, Leu, Ile, Met
Asp, Glu, Asn, Gln
Ala, Gly, Ser, Thr, Pro
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While there is some overlap between them, the contents of the
PROSITE, PRINTS, profiles and Pfam databases are different. In 1998,
together they encode ~1500 protein families, covering a range of globular
and membrane proteins, modular polypeptides, and so on. It has been esti-
mated that the total number of protein families might be in the range 1000
to 10000, so there is still a long way to go before any of the secondary data-
bases can be considered to be complete. Thus, in building a search strategy,
it is good practice to include all available secondary resources, to ensure
both that the analysis is as comprehensive as possible and that it takes
advantage of a variety of search methods.

3.6 Composite protein pattern databases

If, today, comprehensive sequence analysis requires accessing a variety of
disparate databases, gathering the range of different outputs and arriving at
some sort of consensus view of the results, in the future, secondary data-
base searching will undoubtedly become more straightforward. The curators
of PROSITE, Profiles, PRINTS and Pfam are now co-operating with a view
to creating a unified database of protein families. The aim is to provide a
single, central family annotation resource in Geneva (based on existing
documentation in PROSITE and PRINTS), each entry in which will point
to different discriminators in the parent PROSITE, Profiles, PRINTS or
Pfam databases. This will simplify sequence analysis for the user, who will
thereby have access to a one-stop-shop for protein family diagnosis.

This effort is also supported by the curators of the BLOCKS databases,
who, realising the probleths associated with providing detailed family docu-
mentation, are developing a dedicated protein family Web site, termed
proWeb (Henikoff et al., 1996). This facility provides information about
individual families through hyperlinks to existing Web resources maintained
by researchers in their own fields. The curators of proWeb see its primary
utility as being similar to that of written reviews, but with the advantage
that it can be readily updated and can include, for example, animated mater-
ial, which is beyond the scope of print technology. ProWeb will greatly
facilitate the task of secondary database annotators, by providing con-
venient access to family information and obviating the need for annotators
themselves to become ‘expert’ on all proteins.

3.7 Structure classification databases

A chapter concerning the repertoire of biological databases that may be
used to aid sequence analysis would not be complete without some consid-
eration of protein structure classification resources. Of course, these are
currently limited to the relatively few 3D structures available from crystallo-
graphic and spectroscopic studies, but their impact will increase as more
structures become available.

Many proteins share structural similarities, reflecting, in some cases,
common evolutionary origins. The evolutionary process involves substitu-
tions, insertions and deletions in amino acid sequences. For distantly
related proteins, such changes can be extensive, yielding folds in which the
numbers and orientations of secondary structures vary considerably.
However, where, for example, the functions of proteins are conserved, the
.~ structural environments of critical active site residues are also conserved. In
- #n attempt to better understand sequence/structure relationships and the
- underlying evolutionary processes that give rise to different fold families, a
variety of structure classification schemes have been established.

The nature of the information presented by a structure classification
scheme is entirely dependent on the underlying philosophy of the approach,
and hence on the methods used to identify and evaluate structural similar-
ity. Structural families derived, for example, using algorithms that search
and cluster on the basis of common motifs will be different from those gen-
erated by procedures based on global structure comparison; and the results
of such automatic procedures will differ again from those based on visual
inspection, where software tools are used essentially to render the task of
classification more manageable.

Two well-known classification schemes are outlined below.

- 3.7.1 sCoP

~ The SCOP (Structural Classification of Proteins) database maintained at
. the MRC Laboratory of Molecular Biology and Centre for Protein
. Engineering describes structural and evolutionary relationships between
proteins of known structure (Murzin et al., 1995). Because current auto-
matic structure comparison tools cannot reliably identify all such
relationships, SCOP has been constructed using a combination of manual
inspection and automated methods. The task is complicated by the fact that
. protein structures show such variety, ranging from small, single domains to
- vast multi-domain assemblies. In some cases (e.g., some modular proteins),
it may be meaningful to discuss a protein structure at the same time both at
- the multi-domain level and at the level of its individual domains.

SCOP classification

Proteins are classified in a hierarchical fashion to reflect their structural and

evolutionary relatedness. Within the hierarchy there are many levels, but
- principally these describe the family, superfamily and fold. The boundaries

* reflect the clearest structural similarities.

.~ & Family. Proteins are clustered into families with clear evolutionary rela-
tionships if they have sequence identities = 30%. But this is not an
absolute measure - in some cases (e.g., the globins), it is possible to
infer common descent from similar structures and functions in the
absence of significant sequence identity (some members of the globin
family share only 15% identity).

. between these levels may be subjective, but the higher levels generally
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®  Superfamily. Proteins, are placed in superfamilies when, in spite of low
sequence identity, their structural and functional characteristics suggest
a common evolutionary origin.

Fold. Proteins are classed as having a common fold if they have the same
major secondary structures in the same arrangement and with the same
topology, whether or not they have a common evolutionary origin. In these
cases, the structural similarities could have arisen as a result of physical
principles that favour particular packing arrangements and fold topologies.

SCOP is accessible for keyword interrogation via the MRC Laboratory
Web server.

3.7.2 CATH

The CATH (Class, Architecture, Topology, Homology) database is a hierarchi-
cal domain classification of protein structures maintained at UCL (Orengo et
al., 1997). The resource is largely derived using automatic methods, but manual
inspection is necessary where automatic methods fail. Different categories
within the classification are identified by means of both unique numbers (by
analogy with the enzyme classification or E.C. system for enzymes) and
descriptive names. Such a numbering scheme allows efficient computational
manipulation of the data. There are five levels within the hierarchy:

® (lass is derived from gross secondary structure content and packing.
Four classes of domain are recognised: (i) mainly-o,, (ii) mainly-, (iii)
a~f, which includes poth alternating /B and a+§ structures, and (iv)
those with low secondary structure content.

® Architecture describes the gross arrangement of secondary structures,
ignoring their connectivities; it is currently assigned manually using
simple descriptions of the secondary structure arrangements (e.g.,
barrel, roll, sandwich, etc.).

® Topology gives a description that encompasses both the overall shape and
the connectivity of secondary structures. This is achieved by means of
structure comparison algorithms that use empirically derived parameters
to cluster the domains. Structures in which at least 60% of the larger pro-
tein matches the smaller are assigned to the same topology level.

®  Homology groups domains that share =35% sequence identity and are
thought to share a common ancestor, i.e. are homologous. Similarities
are first identified by sequence comparison and subsequently by means
of a structure comparison algorithm.

® Sequence provides the final level within the hierarchy, whereby struc-
tures within homology groups are further clustered on the basis of
sequence identity. At this level, domains have sequence identities >35%
(with at least 60% of the larger domain equivalent to the smaller), indi-
cating highly similar structures and functions.

PATH is accessible for keyword interrogation via UCL’s Biomolecular
structure and Modelling Unit Web server.

3.7.3 PDBsum

major resource for accessing structural information is PDBsum (Laskowski
al., 1997), a Web-based compendium maintained at UCL. PDBsum pro-
es summaries and analyses of all structures in the PDB. Each summary
1ves an at-a-glance overview of the contents of a PDB entry in terms of reso-
tion and R-factor, numbers. of protein chains, ligands, metal ions,
ondary structure, fold cartoons and ligand interactions, etc. This is vital,
ot only for visualising the structures concealed in PDB files, but also for
awing together in a single resource information at the 1D (sequence), 2D
motif) and 3D (structure) levels. Resources of this type will become more
nd more important as visualisation techniques improve, and new-generation
ftware allows more direct interaction with their contents.

PDBsum is accessible for keyword interrogation via UCLs Biomolecular
tructure and Modelling Unit Web server.

vances in computer technology will play a major role in simplifying the
k of sequence analysis in the future; developments such as CORBA,
hich facilitates distributed programming, and the Internet object-orien-
ted programming language Java are poised to create a new generation of
eractive tools that, for the first time, allow seamless integration of remote
formation systems at the desktop. Software that provides both ‘intelligent’
onsensus views of the results and access to the raw search data, will cater,
t the same time, for the less experienced and for the expert user. In addi-
on, interactive 1D, 2D and 3D visualisation tools will offer new ways of
teracting with dry computer outputs, helping to transform sequence, motif
and structure information into biological knowledge.

Databases are used to store the vast amounts of information issuing
from the genome projects. There are many different types of database,
but for routine protein sequence analysis, primary, secondary and com-
posite databases are initially the most important.

Primary databases contain sequence data (nucleic acid or protein).
SWISS-PROT is the most highly annotated protein sequence database.

Composite databases amalgamate a variety of different primary sources
and are hence efficient to search because they obviate the need to inter-
rogate multiple resources.

Different composite databases use different primary sources and differ-
ent redundancy criteria in their amalgamation procedures.

Secondary databases contain pattern data, i.e., diagnostic signatures for
protein families. These signatures encode the most highly conserved
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features of multiply aligned sequences, which are often crucial to the
structure or function of the protein.

® Different sequence analysis methods have given rise to different pattern
databases: the main approaches exploit single motifs (e.g., regular
expressions), multiple motifs (e.g., fingerprints) and full domain align-
ments (e.g., Hidden Markov Models).

® There is some overlap in content between the secondary databases, but
even their combined total is well short of the estimated 1 000-10 000
protein families. Pattern database growth is slow because the addition
of detailed family annotation is very time consuming. PROSITE and
PRINTS are the only comprehensively, manually annotated secondary
databases.

® To address the annotation bottleneck, the secondary database curators
are together creating a unified database of protein families known as
InterPro. It is hoped that InterPro will make sequence analysis more
straightforward in the future.

® Protein structure-related resources may provide a useful adjunct to the
databases available for sequence analysis, and will become increasingly
important as more 3D structures are solved.
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3.10 Web addresses : , CHAPTER FOUR

GenBank
EMBL
DDBJ

PIR .
MIPS
SWISS-PROT
NRL-3D
OWL
PROSITE
PRINTS
BLOCKS
Profiles
Pfam
IDENTIFY
proWeb
SCOP
CATH
PDBsum

»

http://www.ncbi.nlm.nih.gov/Genbank/GenbankOver
http://www.ebi.ac.uk/embl/index. html
http://www.ddbj.nig.ac.jp/

http://pir.georgetown.edu/
http://www.mips.biochem.mpg.de/
http://www.expasy.ch/sprot/sprot-top.html
http://pir.georgetown.edu/pirwww/dbinfo/nr13d.h
http://www.bioinf. man.ac.uk/dbbrowser/OWL/
http://www.expasy.ch/prosite/

http://www.bioinf. man.ac.uk/dbbrowser/PRINTS/
http://www.blocks.fherc.org/
http://www.isrec.isb-sib.ch/software/PFSCAN_for m.html
http://www.sanger.ac.uk/Software/Pfam/
http://dna.Stanford. EDU/identify/
http://www.proweb.org/kinesin/ProWeb.html
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.biochem.ucl.ac.uk/bsm/pdbsum/

enome information
resources

4.1 Introduction

In Chapter 3, we discussed several different types of biological database, focus-
ing on protein information resources and specifically on the structures of
particular database formats (e.g., taking SWISS-PROT as a model). Here, we
take a closer look at DNA sequence data repositories, including the primary
producers (GenBank, EMBL, DDBJ) and a range of specialist genome informa-
tion resources. As the format of EMBL entries is consistent with that already
described for SWISS-PROT, we examine instead the structure of GenBank.

4.2 DNA sequence databases

4.2.1 EMBL

EMBL, the nucleotide sequence database from the European Bioinformatics
Institute (EBI), includes sequences both from direct author submissions and
genome sequencing groups, and from the scientific literature and patent
applications (Stoesser ef al., 1998). The database is produced in collaboration
with DDB] and GenBank; the participating groups each collect a portion of
the total sequence data reported worldwide, and all new and updated entries
are then exchanged between the groups on a daily basis.

The rate of growth of DNA databases has been following an exponential
trend, with a doubling time now estimated to be ~9-12 months. In January
1998, EMBL contained more than a million entries, representing more than
15500 species, but with model systems predominating (Homo sapiens,
Caenorhabditis elegans, Saccharomyces cerevisiae, Mus musculus and
Arabidopsis thaliana together constitute more than 50% of the resource).

Information can be retrieved from EMBL using the SRS Sequence
Retrieval System (Etzold et al., 1996); this links the principal DNA and
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protein sequence databases with motif, structure, mapping and other spe-
cialist databases, and includes links to the MEDLINE facility. EMBL may
be searched with querysequences via the EBI's Web interfaces to the
BLAST and FastA programs.

4.2.2 DDB)

DDBJ is the DNA Data Bank of Japan, which began in 1986 as a collabora-
tion with EMBL and GenBank (Tateno et al., 1998). The database is
produced, maintained and distributed at the National Institute of Genetics;
sequences may be submitted to it from all corners of the world by means of
a Web-based data-submission tool. The Web is also used to provide stan-
dard search tools, such as FastA and BLAST.

4.2.3 GenBank

GenBank, the DNA database from the National Center for Biotechnology
Information (NCBI), incorporates sequences from publicly available
sources, primarily from direct author submissions and large-scale sequenc-
ing projects (Benson et al., 1998). To help ensure comprehensive coverage,
the resource exchanges data with both the EMBL Data Library and DDB].
The increasing size of the database (Box 4.1), coupled with the diversity
of data sources available, have made it convenient to split GenBank into
smaller, discrete divisions (17 to date); these are summarised in Table 4.1.

Table 4.1 The three-letter codes for each of the 17 divisions of GenBank.
»

Division Sequence subset

PRL Primate

ROD Rodent

MAM Other mammalian

VRT Other vertebrate

INV Invertebrate

PLN Plant, fungal, algal

BCT Bacterial

RNA Structural RNA

VRL Viral

PHG Bacteriophage

SYN Synthetic

UNA Unannotated

EST EST (Expressed Sequence Tags)
PAT Patent

STS STS (Sequence Tagged Sites)
GSS GSS (Genome Survey Sequences)

HTG HTG (High Throughput Genomic Sequences)

. EST . Genomic

1997

12%

. EST . Genomic Rest

1997

98%

Best

1992

T
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This somewhat artificial separation may be useful for a number of reasons:
for example, it facilitates fast, specific searches, by restricting queries to par-
ticular database subsets. More recently, divisions have been added to deal
with the varying types of data emerging from rapid sequencing programmes
and genome projects (e.g.,HTG, EST, STS and GSS); this allows searches
to be directed to the higher quality annotated sequence sections, avoiding
contamination of the results with lower quality high-throughput data. It is
nevertheless important to include this information within GenBank,
because there are circumstances (discussed in more detail in Chapter 5)
where it is necessary to search high-throughput or partial data.

Information can be retrieved from GenBank using the Entrez integrated
retrieval system; this combines data from the principal DNA and protein
sequence databases with information from genome maps and protein struc-
tures. Additional information on the sequences can be accessed via the
MEDLINE facility, which provides abstracts from the original published
articles. GenBank may be searched with user query sequences by means of
the NCBI's Web interface to the BLAST suite of programs (BLAST is
described in further detail in Chapter 6).

The structure of GenBank entries

A GenBank release includes the sequence files, indices created on various
database fields (e.g., author index, reference index, etc.) and information
derived from the database (e.g., GenPept, a database of translated coding
sequences in FastA format). Originally, GenBank was made available on
CD-ROM, which proved to be a convenient mechanism for widespread and
relatively inexpensive distribution. However, as the size of the database
grew, the number of CDs required to contain it became unwieldy (12 for
the last available CD release) both for the producers and for the users.
Today, GenBank is available solely via FTP.

Most commonly used,is the sequence entry file, which contains the
sequence itself and descriptive information relating to it. Since many Web-
based systems provide links back to this file, we now examine its structure
in some detail.

Each entry consists of a number of keywords, relevant associated sub-
keywords, and an optional Feature Table; its end is indicated by a //
terminator. The positioning of these elements on any given line is impor-
tant: keywords begin in column 1; sub-keywords begin in column 3; a code
defining part of the Feature Table begins in column 5. Any line beginning
with a blank character is considered a continuation from the keyword or
sub-keyword above.

In Figure 4.1, keywords include LOCUS, DEFINITION, ACCESSION,
NID, KEYWORDS, SOURCE, REFERENCE, FEATURES, BASE COUNT
and ORIGIN. The LOCUS keyword introduces a short label for the entry that
may suggest the function of the sequence (here, to the trained eye, HUMCY-
CLOX suggests a human cyclooxygenase); this line summarises other relevant
facts, including the number of bases, source of sequence data (mRNA), section
of database (PRI) and date of submission. The DEFINITION line contains a

Locus HUMCYCLOX 3387 bp mRNA PRI 31-DEC-1394
DEFINITION Homo sapiens cyclooxygenase-2 (Cox-2) mRNA, complete cds.
ACCESSION  M30100

NID 9181253
KEYWORDS  cyclooxygenase-2; prostaglandin synthasc.
SOURCE Homo sapiens umbilical veln cDNA to mRNA.

ORGANISM Homo sapiens
Eukaryotae; mitochondrial eukaryotes: Metazoa; Chordata;
Vertebrata; Futheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 3387)
AUTHORS Hla,T. and Neilson,K.
TITLE Human cyclooxygenase-2 cDNA
JOURNAL  Proc. Natl. Acad. Sci. U.S.A. 89 (16), 7384-7388 (1992)
MEDLINE 92366465
FEATURES Location/Qualifiers
source 1..3387
/organism="Homo sapiens"
/db_xref="taxon:9606"
/cell_type="endothelial®
/tissue_type="umbilical vein®
5‘UTR 1..97
/gene="Cox-2"
gene 1..3387
/gene="Cox-2*
cps 98..1912
/gene="Cox-2"
/EC_number=*1.14.99.17
/codon_start=1
/product="cyclooxygenase-2"
/db_xref="PID:g181254"
/translations“MLARALLLCAVLALSHTANPCCSHPCONRGVCMSVGFDQYKCDC
TRTGFYGENCSTPEFLTRIKLFLKPTPNTVHY L THFKGFWNVVNNIPFLRNALMSYV

EYRKRFMLKPYESFEELIGEKEMSAELEALYGDIDAVELY PALLVEKPRPDAIPGETH

1C )T INTASIQSLICNNVKGCPFTSF
SVPDPELTKTVTINASSSRSGLDDINPTVLLRKERSTEL"

Sig_peptide 98..148
/gene="Cox-2*

mat_peptide 149..1909

/gene="Cox-2"
/EC_number=+1.14.99.1*
/product="cyclooxygenase-2"

3'UTR 1913..3387
/gene="Cox-2*

polyA_signal  3369..3374

. /gene="Cox-2°
BASE COUNT 1010 a 712 c 633 g 1032 t

QRIGIN
1 t cgectectte tcagacagca
61 9 ccetgotget
121 gt te a gccatacage tgtt

3301 tacctgaact tttgcaagtt ttcaggtaaa cctcagetca ggactgotat ttagetecte
3361 ttaagaagat taaaaaaaaa aaaaaag
17 '

Figure 4.1 E: L entry ill ing the use of keyword: b-keywords and
the Feature Table to express information on the structure of the cDNA for Cox-2. Both the
protein translation in the Feature Table and the nucleotide sequence have been abbreviated
(...) for the figure.
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cyclooxygenase-2 (Cox-2) mRNA, complete cds).

Following this, the ACCESSION line gives the accession number, a
unique, constant code assigned to each entry (here M90100). The NID line
supplies a nucleotide identifier (g181253), intended to provide a unique refer-
ence to the current version of the sequence information; this allows the
sequence to be revised but still be associated with the same locus name and
accession number. Through a collaborative arrangement between the principal
DNA database providers, & new identifier (in the form ‘accession.version’),
which expresses the relationship between entry and sequence version more
explicitly, is being introduced; this will lead to the eventual phasing out of the
NID and associated protein identifier, PID.

The KEYWORDS line introduces a list of short phrases, assigned by the
author, describing gene products and other relevant information about the
entry (in this example, cyclooxygenase-2; prostaglandin synthase). The
SOURCE record provides information on the tissue from which the data
have been derived (here, umbilical vein); the sub-keyword ORGANISM
illustrates the biological classification of the source organism (here, Homo
sapiens, Eukaryotae, etc. - see figure). REFERENCE records indicate the
portion of sequence data to which the cited literature refers; sub-keywords
AUTHORS, TITLE and JOURNAL provide a structure for the citation; the
MEDLINE sub-keyword is a pointer to an online medical literature infor-
mation resource, which allows the abstract of a given article to be viewed.

The FEATURES keyword introduces a section that has its own
structure, and whose purpose is to desctibe properties of the sequence in
detail - this is the Feature Table. Within the table, links to other databases
are made through the ‘/db_xref qualifier (here, for example, we see links to
a taxonomic database (taxon:9606) and to a protein sequence database
(PID:g181254)); co-ordinates are given for the 5'-untranslated region
(1-97), for the coding sequence (98-1912), for the 3'-untranslated region
(1913-3387), the polyadenylation sequence (3369-3374), etc.; and the pro-
tein translation and location of the signal and mature peptides are also
given. This example is not exhaustive, but serves to indicate the level of
detail that can be represented in the Feature Table.

The entry continues with the BASE COUNT record, which details the fre-
quency of occurrence of the different base types in the sequence (here, 1010 A,

712 C, 633 G and 1032 T). The ORIGIN line notes, where possible, the loca-
tion of the first base of the sequence within the genome. The nucleotide
sequence itself follows, and the entry is terminated by the // marker.

4.2.4 dbEST

EST data are held in the dbEST database, which maintains its own format
and identification number system. The sequence data, together with a sum-
mary of the dbEST annotation, are also distributed as a sub-section of the
primary DNA databases. The dbEST release of 8 May 1998 contained more
than 1.6 million ESTs, including more than 1 million sequences from Homo
sapiens, and 300000 from Mus musculus and Mus domesticus.

4.2.5 GSDB

The Genome Sequence DataBase (GSDB) is produced by the National
Center for Genome Resources at Santa Fe, New Mexico. GSDB creates
maintains and distributes a complete collection of DNA sequences an(i
related information to meet the needs of major genome sequencing labora-
tories. The resource operates as an online, client-server relational database
offering facilities for large-scale producers to submit sequence data to it)
remotely. Data acquired in this manner are subjected to quality control
checks prior to distribution. )

The format of GSDB entries is consistent with that already described in
detail for GenBank (see Section 4.2.3 for keyword definitions). The princi-
pal difference between the two formats is the inclusion of the GSDBID
keyword, which implements the tracking mechanism for GSDB accessions,
as illustrated in Figure 4.2.

The database is accessible either via the Web, or using relational data-

. base client-server facilities; in both cases, familiarity with the database

access language, SQL (Structured Query Language), is useful.

4.3 Specialised genomic resources

In addition to the comprehensive DNA sequence databases, which cover

aspects of genomic data, from complete chromosomes to individual gene

products, there exist a variety of more specialised genomic resources (other-

. wise knqwn as boutique databases). These tend to be linked, to some
© extent, with the primary DNA databases from which they may derive their

data, and into which their results are usually fed. The purpose of these spe-
cialised resources is to bring a focus (a) to species-specific genomics, and
(b) to particular sequencing techniques. Sequence information per se may
not be the primary thrust of such databases - often the goal is to present a
more integrated view of a particular biological system (for example, the

. model organisms Saccharomyces cerevisiae, Caenorhabditis elegans,

Drosophila melanogaster, Arabidopsis thaliana, Helicobacter pylori, etc.),
in which sequence data represent just one level of abstraction, and higher
levels lead to an overall understanding of the genome organisation.

1t is difficult to overemphasise the impact the Internet has had on the

- ability of scientists to present and disseminate research results from the

genomic sciences. The following small selection of databases is indicative of
the scope of resources currently available, from eclectic Web sites to down-
loadable flat-files.

4.3.1 SGD

‘The Saccharomyces Genome Database (SGD) (Cherry et al., 1998) is an

online resource that acts as a clearing house, bringing together information
on the molecular biology and genetics of S. cerevisize (commonly known as
baker's, or budding, yeast). It provides Internet access to the complete

~
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R96180 355 bp mRNA EST 11-SEP-1995

Locus
DEFINITION yt84f11.r1 Homo sapiens cDNA clone 231021 §' eimilar to gb:M59979
PROSTAGLANDIN G/H SYNTHASE 1 PRECURSOR (HUMAN) ;.
@SDBID GSDB:$:319963
ACCESSION  R96180
NID 9981840
KEYWORDS EST.
SOURCE Homo sapiens (clone: 231021).
ORGANISM Homo sapiens
Eukaryotae; Metazoa; Eumetazoa; Bilateria; Coelomata;
Deuterostomia; Chordata; Vertebrata; Gnathostomata; Osteichthyes;
Sarcopterygii; Choanata; Tetrapoda; Amniota; Mammalia; Theria;
Eutheria; Archonta; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 {(bases 1 to 355)
AUTHORS  Hillier,L., Cla®k,N., Dubuque,T., Elliston,K., Hawkins,M.,
Holman,M., Hultman,M., Kucaba,T., Le,M., Lennon,G., Marra,M.,
Parsons,J., Rifkin,L., Rohlfing,T., Soares,M., Tan,F.,
Trevaskis,E., Waterston,R., Williamson,A., Wohldmann,F., Wilson,R.
TITLE The WashU-Merck EST Project
JOURNAL ~ Unpublished (1995)
COMMENT
Contact: Wilson RK
WashU-Merck EST Project
Washington University School of Medicine
4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108
Tel: 314 286 1800
Fax: 314 286 1810
Email: est@watson.wustl.edu
High quality sequence stops: 307
Source: IMAGE Consortium, LLNL
This clone is available royalty-free through LLNL ; contact the
IMACE Consortium (info@image.llnl.gov) for further informatiom.
10337-0-gland-001-1997-1.0 sequence R96180 comprises a
single-sequence cluster by mp_d2cluster in the SANBI clustering
of dbEST release 0804%6. This comment generated Fri Nov 14
14:28:48 1997
[Flatfile retrieved from GSDB Fri May 15 08:47:38 1998)
FEATURES Location/Qualifiers
mMRNA <1..>355
/gsdb_id="GSDB:F:404641"
/note="putative"
source 1..355
/organism="Homo sapiens’
/clone="231021*
BASE COUNT 75 a 89 ¢ 100 g 88 t 3 others
ORIGIN
1 gttctacctg gractqetee tt tg ccatccaaac tctatctttg gggagagtat
61 gatagagatt ggggcttect tttccctcaa gggtctecta gggaatccca tctgttetee
121 ggagtactgg aagccgagea catttggegg cgaggtggge tttaacattg tcaagacgge
181 cacactgaag aagctggtct gectcaacac caagacctgt coctacgttt cotteegtgt
241 g agtcaggatg tgtggageg: tccacag
301 cagcattctg ctttgtgett gtcattncag antge
12

Figure 4.2 Example EST sequence from dbEST, as retrieved from the GSDB server. Note

that an additional keyword, GSDBID, has been introduced to provide a tracking mechanism.

S. cerevisiae genome, its genes and their products, the phenotypes of its
mutants, and the literature supporting these data (this is important because
this was the first, and by mid-1998 the only, eukaryotic genome to have
been sequenced in its entirety). SGD aids researchers by incorporating
functions to perform sequence similarity searches, utilise Web-based gene
and sequence analysis resources, register a yeast gene name, display maps
of genomic data, examine 3D structural data, access primer sequences that
have been used successfully to clone yeast genes, and so on. The database
presents information using a variety of user-friendly, dynamically created
graphical displays illustrating physical, genetic and sequence feature maps.

4.3.2 UniGene

A primary goal of the Human Genome Project is to determine the complete
sequence of the human genome (estimated to contain about 3 billion base
pairs). However, only about 3% of the genome encodes protein, and the
biological significance of the remainder is currently unknown. A transcript
map is thus a vital resource in flagging those parts of the genome that are
actually expressed.

UniGene attempts to provide a transcript map by utilising sets of non-
redundant gene-oriented clusters derived from GenBank sequences. The
collection represents genes from many organisms (compare the HGI in
Section 5.9.3, which represents only human genes), each cluster relating to
a unique gene and including related information, such as the tissue type in
which the gene is expressed, map location, etc.

In addition to sequences of well-characterised genes, substantial num-
bers of novel ESTs have been included, which means that many of the
sequences are partial and the corresponding genes uncharacterised.
Consequently, a valuable role for the collection is in gene discovery.
UniGene has also been used by experimentalists to select reagents for gene-
mapping projects and large-scale gene expression analysis. The resource
can be accessed via NCBI’s home-page.

4.3.3 TDB

The TIGR database (TDB) provides a substantial suite of databases con-
taining DNA and protein sequence, gene expression, cellular role, and
protein family information, and taxonomic data for microbes, plants and
humans. Specifically, the resources include a microbial database that links
to worldwide and TIGR genome sequencing projects (e.g., A. fulgidus,
B. burgdorferi, H. influenzae, H. pylori, M. jannaschii and M. genitalium) a
parasite database (T. brucei and P. falciparum); human, mouse, rice, etc.,
gene index projects (see Section 5.9.3 for detailed discussion of the Human
Gene Index); an A. thaliana database; a human genomic dataset; and so
on. Some of the data are available for download via the FTP site, or may be
accessed via the TIGR home-page.

~
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4.3.4 ACeDB

ACeDB is ‘A C. elegans DataBase’ arising from the C. elegans genome project.
The resource includes restriction maps, gene structural information (introns,
exons, promoter sites, etc.), cosmid maps, sequence data, bibliographic refer-
ences, and so on. The software designed to organise and browse the
information, known as ACEDB, presents a graphical interface that enables the
user to view genomic data at different stages of resolution, from the level of a
complete chromosome down to the physical (sequence) level, as illustrated in
Figure 4.3. The use of ACeDB and ACEDB to refer to both the database and
the software can lead to confusion, so users should be aware of the distinction.

The software has been designed using object-oriented technology,
resulting in a system with sufficient flexibility and generality to be applied
easily to the analysis of data from other genome projects. It has, for exam-
ple, been used to analyse data from A. thaliana, S. cerevisiae and various
human chromosomes. In keeping with Web-based developments, a set of
CGI scripts and perl modules, collectively termed webace, has been created
to enable ACEDB databases to be accessed via the WWW (humace, for
example, provides the Web interface to the ACEDB database of human
sequence determined at the Sanger Centre).

4.4 Summary

e The principal nucleic acid sequence databases are GenBank, EMBL and
DDB]J, which each collect a portion of the total sequence data reported
world-wide, and exchange new and updated entries on a daily basis.

® GenBank, which is produced at the NCBI, is split into smaller, discrete
divisions. This facilitates fast, specific searches by restricting queries to
particular database subsets.

® During 1992-1997, the level of EST and STS data within GenBank
grew 10-fold. Nevertheless, the overall sequence information con-
tributed by such partial data was still less than that of the higher quality
sequences in the other major divisions.

® In addition to the comprehensive DNA sequence databases, there is a
variety of more specialised genomic resources. These so-called boutique
databases bring a focus to species-specific genomics and to particular
sequencing techniques.

® The scope of genomicyresources available on the Internet is immense
and has had an enormous impact on the ability of scientists to present
and disseminate research results.

4.5 Further reading

DNA sequence databases
BENSON, D.A,, BoGUsKI, M.S., LIPMAN, D.J., OSTELL, J. and OUELLETTE,
B.EE (1998) GenBank. Nucleic Acids Research, 26(1), 1-7.
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Figure 4.3 Using ACEDB to drill down through the data layers in a genome map. (a) The
top left frame shows the opening window of ACEDB, in which ‘Gene’ has been selected. This
opens the window beneath, labelled ‘Main KeySet’, which contains a scrolling tist of gene
names from which to choose (here, arl-3 was selected). The area corresponding to the locus
for arl-3 is shown in the right-hand window. Clearly, there are also other genes located in the
vicinity. By continuing to zoem in, at successively higher resolutions, we would end up with
the sequence for the arl-3 gene. (b) High-level view of the map data in ACEDB, indicating the
clones that were used to build the map (shown as overlapping horizontal lines, e.g. Y54D4).
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DNA sequence analysis

5.1 Introduction

This chapter presents the specific motivations for analysing DNA
sequences, as opposed to protein sequences. Terms in common use are
defined, and the genetic code is reviewed. The concept of the hierarchy of
genomic information is introduced, and the transcribed genome is exam-
ined in some detail, leading to a discussion of the Expressed Sequence Tag
(EST) as a unit of sequence data, derived from rapid sequencing of cDNA
braries. Gene discovery is presented in the context of drug target discov-
ry. Issues associated with manipulating this type of sequence information,
together with possible practical solutions, are presented. Finally, three
examples of producers of EST databases are profiled.

|
E
b

5.2 Why analyse DNA?

The most sensitive comparisons between sequences are made at the pro-
tein level; detection of distantly related sequences is easier in protein
translation, because the redundancy of the genetic code of 64 codons
(see Table 5.1) is reduced to 20 distinct amino acids, the functional build-
ing blocks of proteins. However, the loss of degeneracy at this level is
accompanied by a loss of information that relates more directly to the
evolutionary process, because proteins are a functional abstraction of
genetic events that occur in DNA. This is illustrated in the analysis of
silent mutations, as shown in Box 5.1.

Twenty years ago, the primary means of determining the order of amino
acids in a polypeptide chain was via the low-throughput technique of chem-
ical protein sequencing. This remains a powerful approach, for example in
confirming the sequence of an expressed protein from a genetically



82 Table 5.1 The genetic code.
o T C A G
=
> T | T Phe | TCT | Ser | AT | Ty | TeT | cys T
2 TIC TCC TAC T6C c
5 TA | Leu | TCA TAA | stop | TGA | Stop| A
5 6 76 TAG 66 | Trp 6
E c OT | Lew [ CCT | Pro | CAT | His | 6T | Arg T
= cTe cee CAC c6e c
Z. CTA CCA CAA | Gln CGA A
16 €6 CAG GG G
A | AT | Tle | ACT | The | AAT | Asn | AGT | Ser | ' T
ATC ACC AAC AGC C
ATA ACA AMA [ lys | AGA | Arg A
ATG | Met | ACG AAG AGG G
G 6TT | Val | 6CT | A | GAT | Asp | GGT | Gly T
6TC GCe GAC G6C C
GTA 6CA GAA | Gt | GGA A
GT6 6C6 GAG 666 G

engineered construct. However, the lack of scalability of the method is a
rate-determining step in generating large quantities of data. More recently,
the advent of high-throughput automated fluorescent DNA sequencing
technology has led to the rapid accumulation of sequence information, and
provides the basis for abundant computationally derived protein sequence
data. Analysis of DNA sequences underpins a number of aspects of
research: these include, for example, detection of phylogenetic relation-
ships; genetic engineering using restriction site mapping; determination of
gene structure through intron/exon prediction; inference of protein coding
sequence through open reading frame (ORF) analysis; etc.. Some of these
techniques are outlined in the following sections.

5.3 Gene structure and DNA sequences

There are certain key features of eukaryotic genes (see Box 5.2) that need to
be assimilated in order to understand the impact of gene structure on
sequence analysis: these include, for example, introns, exons, coding
sequences (CDS), untranslated regions, etc. (prokaryotic genes generally lack
introns and, consequently, have a somewhat simpler structure). DNA
sequence databases typically contain genomic sequence data, which includes
information at the level of the untranslated sequence, introns and exons,

BOX 5.1: FAMILY ANALYSIS AT THE DNA LEVEL

"

0.1 0.05 0
evolutionary distance

RNA, cDNA and translations. Thus it can be seen that so-called DNA data-
bases in fact contain a variety of different types of data that cannot all be
treated alike. These subtleties affect the manner in which search results must
be interpreted (for example, searching cDNA for intron-exon boundaries,
which only occur in genomic DNA, would be a rather futile exercise).

5.3.1 Untranslated regions

ntranslated regions (UTRs) occur in both DNA and RNA; they are portions
f the sequence flanking the CDS that are not translated into protein (see
0x 5.2). Untranslated sequence, particularly at the 3' end, is highly specific
both to the gene and to the species from which the sequence is derived.

.3.2 Conceptual translation

iven a piece of DNA sequence, and knowing the genetic code, it is possible
translate the DNA into protein by looking up successive codons in a
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genetic code table (see Table 5.1); this is termed the conceptual translation. It
_ is important to distinguish between sequences for which the translation has
some biochemical support, and those that are simply derived theoretically or
computationally; the use of the term ‘conceptual’ indicates that the specified
nslation is only theoretical and carries no experimental validation.

In an arbitrary DNA sequence, it is not known whether the first base
marks the start of the CDS, so it is always essential to carry out a six-frame
translation. There are three forward frames, which are achieved by beginning
to translate at the first, second and third bases respectively; the three reverse
- frames are determined by reversing the DNA sequence and again beginning on
the first, second and third bases. Thus, for any piece of DNA, the result of a six-
frame translation is six potential protein sequences, as shown in Figure 5.1.

5
5.4.1 Detecting open reading frames

.4 Features of DNA sequence analysis

- The question now arises, Which is the correct reading frame?’ This is normally
deemed to be the longest frame uninterrupted by a stop codon (TGA, TAA or
TAG - see Table 5.1). Such a frame is known as an open reading frame, or
ORF. Finding the end of an ORF is easier than finding its beginning. Usually,
the initial codon in the CDS is that for methionine (ATG); but methionine is
also a common residue within the CDS, so its presence is not an absolute indi-
cator of ORF initiation. Consequently, it is usually necessary to use additional
techniques to detect where the 5' untranslated sequence ends.

Several features may be used as indicators of potential protein coding
regions in DNA. As already mentioned, one of these is sufficient ORF
length (based on the premise that long ORFs rarely occur by chance).
Recognition of flanking Kozak sequences may also be helpful in pinpoint-
ing the start of the CDS (see Box 5.2). In addition, patterns of codon usage
differ in coding and non-coding regions. Specifically, the use of codons for
particular amino acids varies according to species, and codon-use rules
break down in regions of sequence that are not destined to be translated.
Thus, codon-usage statistics can be used to infer both 5' and 3' untranslated
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Query Sequence: .
10 20 30 40 50

0 TCCATTGAGC CTTATACCAG TAACATCTAC ACTCGAAGAT CTTGTCAGGG
50 GAATTTCAGA TTGTGAATCC TCACTTACTG AAAGATCTTA CTGAGCGGGG
100 CTTGTGGAAT GAAGAGATGA AAAATCAGAT TATTGCATGC AATGGCTCCA
150 TTCAGTTTTC CTTTTTCAGA GCATACCAGA AATTCCTGAT GACCTGAAGC
200 AACTCTATAA GACCGTGTGG GAAATCTCTC AGAAGACTGT TCTCAAGATG

Six-Frame Amino Acid Translation:

Forward 0
10 20 30 40 50
0 SIEPYTSNIY TRRSCQGNFR L!ILTY!KIL LSGACGMKR! KIRLLHAMAP
50 FSFPFSEHTR NS!!PEATL! DRVGNLSEDC SQD

Forward 1
10 20 30 40 50
0 PLSLIPVTST LEDLVRGISD CESSLTERSY !AGLVE!RDE KSDYCMQWLH
50 SVFLFQSIPE IPDDLKQLYK TVWEISQKTV LKM

Forward 2
10 20 30 40 50
0 H!ALYQ!HLH SKILSGEFQI VNPHLLKDLT ERGLWNEEMK NQITACNGST
50 QFSFFRAYQK FLMT!SNSIR PCGKSLRRLF SR

Reverse 0
10 20 30 40 50
0 HLENSLLRDF PHGLIELLQV IRNFWYALKK EN!MEPLHAI I!FFISSFHK
50 PRSVRSFSK! GFTI!NSPDK IFECRCYWYK AQW
A )
Reverse 1
10 20 30 40 50
0 ILRTVF!EIS HTVL!SCFRS SGISGML!KR KTEWSHCMQ! SDFSSLHSTS
50 PAQ!DLSVSE DSQSEIPLTR SSSVDVIGIR LNG

Reverse 2
10 20 30 40 50
0 S!EQSSERFP TRSYRVASGH QEFLVCSEKG KLNGAIACNN LIFHLFIPQA
50 PLSKIFQ!VR IHNLKFP!QD LRVIMLLV!G SM

Figure 5.1 A six-frame translation of an arbitrary DNA sequence. There are three forward
and three reverse translations, leading to six possible protein sequences, only one of which
is likely to be real. The challenge is to discover which of the translation products is correct.

‘1" denotes a stop codon.

regions, and to assist the detection of mistranslations, because there is an
uncharacteristically high representation of rarely used codons in these
regions. Table 5.2 illustrates the considerable variability in selection of
codons that different organisms employ for a particular amino acid.

In addition to their characteristic pattern of codon usage, many organ-
isms show a general preference for G or C over A or T in the third base
(wobble) position of a codon. The consequent bias towards G/C in this
base can further contribute to diagnosis of ORFs.

Table 5.2 Percentage use of codons for serine in a variety of model organisms. As shown,
there are six possible codons for serine, which in principle could be used with equal
frequency whenever serine is specified in a CDS. In practice, however, organisms are highly
selective in the particular codons they use. The characteristic differences in usage
reflected here can be used to help diagnose regions of DNA that may code for protein.

Codon E.coli  D. melanog H. sapie Z. mays S. cerevisiae
AGT 3 1 10 3 5
AGC 20 23 . 34 30 4
TC6 4 17 9 22 1
TCA 2 2 5 4 6
TCI' 34 \ 9 13 4 52
TCC 37 48 28 37 33

Finally, in the region upstream of the start codon of prokaryotic genes,
detection of ribosome binding sites, which help to direct ribosomes to the
correct translation start positions, is considered to be a powerful ORF indi-
ator. But, ultimately, perhaps the surest way of predicting a gene is by
alignment with a homologous protein sequence.

5.4.2 Understanding the effect of introns and exons

The genes of eukaryotes are characterised by regions that contribute towards
the CDS, known as exons, and those that do not, known as introns (see Box
5.2). One consequence of the presence of exons and introns in eukaryotic
genes is that potential gene products can be of different lengths, because not
all exons may be represented in the final transcribed mRNA (although the
order of exons that are included is preserved). When the mRNA editing
process results in different translated polypeptides, the resulting proteins are
known as splice variants or alternatively spliced forms. Thus, results of
database searches with cDNA or mRNA (transcription-level information)
that appear to indicate substantial deletions in matches to the query sequence
- could, in fact, be the result of alternative splicing,

5.4.3 DNA sequence assembly

One further aspect of the analysis of DNA sequences is the process of
determining the nucleotide sequence of a clone. In an experiment to clone
a specific gene whose sequence is already known (for example, where
quantities of a gene product are required for use in a biochemical assay), it
is necessary to check that the cloned sequence is indeed identical to the
published one. If this should turn out not to be so, experiments must be
designed to correct the sequence. Cloning errors can arise, for example, as
a result of using incorrect primers for the cloning step, or the use of a low-
fidelity enzyme in a polymerase chain reaction (PCR) experiment.

-]
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A cDNA clone is synthesised using mRNA as a template. The clone is
then sequenced by designing primers to known oligonucleotides present in
the cloning vector flanking the inserted DNA. When the primers hybridise
to the corresponding sequences, they are extended in a chain synthesis
reaction using the inserted sejuence as template, as shown in Figure 5.2.

§' Terminated chain ddGTP
INTTTTTTTTITTTITTT0|
3 TemplateDNA 5
b) 5' ddGTP
5 ddGTP
5' ddGTP
C ddGTP
3 [o] C cc 5
Figure 5.2 Template DNA sequencing: (a) chain synthesis and termination by incorporation
of ddGTP; (b) the family of chains terminated at different positions by ddGTP. Since G pairs
with C the template sequence contains C at each of these positions.

The reaction is terminated by the incorporation of a dideoxynucleotide
(ddATP, ddTTP, ddGTP or ddCTP). Not all the chains terminate at the
same base, however, as normal bases (dATP, dTTP, dGTP or dCTP) are also
present in the reaction mixture. The result is a series of fragments for each
primer, all of different lengths because they have been terminated at differ-
ent base positions. The generated fragments are run on standard radioactive
sequencing gels, or fluorescent sequencing machines, as appropriate, to
determine the order of bases in the sequence. It is unusual to be able to
sequence a complete CDS in one run, so overlapping fragments are built up
in a multiple alignment, a process known as sequence assembly.

The assembler program builds a consensus sequence for the clone,
according to a weighting given to each nucleotide position in the sequence.
Parameters are set in the assembler for the number of mismatches allowed
per position. Normally, a degree of redundancy in sequence coverage is
required; for example, at least two base reads per position on each strand
(plus and minus) give a high level of confidence in the resulting sequence,
as illustrated in Figure 5.3. Conversely, part of a consensus derived from a
single read on one strand (i.e., no overlapping fragments) would give only a
low level of confidence in the assembled sequence.

Sequencing and degree of confidence are the result of time and
patience, especially where automated fluorescent sequencing systems are
employed for high throughput (see Box 5.3). Ultimately, good-quality fin-
ished sequence requires a skilled analyst, many hours of interpretation of

AACCGTTTACGAAACCAGGTGC
AACCGTTTACGAAACCAGGTGCGCGCCCGCGGCGAAT
AACCGTTTACGAACCCAGGTGC
AACCGTTTACGAA2CCAGGTGCGCGCGCGCGGGAATCCTAAAAA
CGCGCGCGCGGGAATCCTAAAAA
TGCGCGCGCGAGGGAATCCTAAAAA

. Figure 5.3 Example of three plus-strand and two minus-strand reads contributing to a
consensus DNA sequence as a result of sequence assembly. Here, there are two positions
where mismatches have resulted in lower confidence in the consensus base. Further reads are
- required, and/or visual inspection of the sequencing chromatogram, to resolve the
ambiguities. Normally, for fully validated sequence confirmation, complete reads on the ptus
and minus strands are expected.

thromatogram data, and a reliable assembly program. Understanding the
imitations of the sequencing protocol, effects of GC-rich regions (resulting
high secondary structure and consequently awkward reads), repetitive
sequence, etc., all make sequence assembly a highly skilled pursuit.

.5 Issues in the interpretation of EST searches

‘The major aspects of the analysis of full-length DNA sequences were intro-
duced in Section 5.4. However, we do not always have the luxury of
full-length information; indeed a large part of currently available DNA data
made up of partial sequences, the majority of which are Expressed
Sequence Tags (ESTs). The manner in which ESTs are created is discussed
lin Section 5.8; here, we consider the essential properties of ESTs, and their
mpact on sequence interpretation. In analysing ESTs the following points
hould be borne in mind:

The EST alphabet is five characters: ACGTN.
There may be phantom INDELS resulting in translation frameshifts.

® The EST will often be a sub-sequence of any other sequence in the
database.

® The EST may not represent part of the CDS of any gene.

.5.1 The EST alphabet

The EST production process is normally highly automated and, typically,
nvolves use of a fluorescent laser system that reads the sequencing gels.
The resulting sequences are downloaded, often with little human interven-
ion, to a computer system for further analysis. Although the gel analysis
oftware is very sophisticated, it is sometimes unable to make a decision as
o which base is present at a particular position in the sequence. When this
1appens, the base-calling software inserts an ambiguous base - this is
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BOX 5.3: FLUORESCENT SEQUENCING CHROMATOGRAM INTERPRETATION
. -

S

able 5.3 List of base-ambiguity symbols as defined by the IUB-IUPAC.

UB symbol Represented bases

[Nl 4

T T

M AorC

R AorG

w AorT

S CorG

Y CorT

K GorT

v AorCorG
H AorCorT
AorGorT
CorGorT
X/N GorAorTorC

normally an N, but it could be one of the other IUPAC base ambiguity sym-
bols, as shown in Table 5.3. The consequence is a sequence in which a
proportion of the symbols will be Ns.

. Normal quality-control criteria in a good laboratory are expected to
keep the number of Ns in a production sequence to less than 5% of the
total length; the beginning and end of the sequence are trimmed to reduce
ambiguity further. A typical EST will be between 200 and 500 bases in
ngth, with modern technical advances increasing the theoretical length
resulting from a single run to 1000 bases or more.

GATAGGGCG

.5.2 Insertions, deletions and frameshifts

In naive terms, automated base-calling software simply looks for the fluor-
escent peaks of the four sequencing reactions in a lane on a sequencing gel.
- In order to increase the likelihood of finding peaks, and hence of calling
bases accurately, bases are assumed to be called at regular intervals. If the
physical properties of the gel, or other conditions, affect the flow across it,
base calling may not actually be regular. While there is some tolerance in
the software, sometimes bases are called too soon or are not called at all,
resulting in phantom INDELSs. At the level of subsequent DNA sequence
comparisons, these have ramifications for the underlying alignment algo-
rithms, which must consequently insert spurious INDELSs into the database
sequence to which the EST is being aligned. More sensitive searching tech-
niques at the protein level are similarly hampered, the INDELSs resulting in
either spurious stop signals, or incorrect translation in all six frames. Such
issues increase the complexity of the interpretation task.
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5.5.3 Splice variants .

The concept of alternatively spliced forms of a single gene was introduced
earlier in the context of full-length sequence analysis. The existence of
splice variants (Figure 5.4) has particular consequences for database
searches with EST queries. As we have seen, alternative forms are charac-
terised by deletions arising from the non-inclusion of all exons within a
transcribed mRNA; and ESTs are noisy sequences that, as a result of
sequencing errors, may not only contain ambiguous bases but also be miss-
ing bases. When searching a sequence database with an EST query, one of
the difficulties of interpretatidn lies in determining whether a partially good
match is the result of a sequencing error in the EST, or whether it is the
reflection of a genuine genetic event, resulting from a match to an alterna-
tive form (although, in general, splice variants are usually characterised by
larger deletions than are manifested by sequencing errors in ESTs).

Perhaps a more serious problem arises when an EST is sufficiently short
that it falls wholly within a particular exon. In these circumstances, if alter-
native forms exist in the database, and both contain this exon, then there is
no way of knowing which of the forms the EST represents.

(@ —

+ Exon boundary
pR— UTR
CDs
—— EST

Figure 5.4 EST analysis with splice variants. An mRNA is shown, with three exon boundaries
marked. Two matches are shown: (a) an EST that shows similarity to exons 1, 3 and 4, indicating
that it is missing exon 2 and could thus be a splice variant; and (b) an EST that falls entirely
within one exon (3), and thus we cannot be certain that it does not represent a splice variant.

5.5.4 Non-coding region ESTs

The question most often asked of an EST is ‘Does this EST represent a new
gene?’ To answer this question, a DNA database search is usually per-
formed. If the result shows a significant similarity to a database sequence,
the normal procedure for classifying the hit will determine whether a novel
gene has been found. If, however, the result shows no significant similarity,
we cannot immediately assume that a new gene has been discovered; it may
be that the EST represents non-coding sequence, for a known gene, that
simply is not in the database.

Many mRNAs (especially human ones) have long untranslated regions
at the 5' and 3' ends of the CDS. It is quite possible for an EST to be

ntirely from one of these non-coding regions. If we are lucky, the section
of untranslated (non-coding) sequence will already be in the database. If it
is, a direct match will be found, as untranslated regions are highly con-
served and specific to their coding gene. If we are unlucky, no match will be
found, indicating one of two possibilities: either (i) the EST represents a
CDS for which there is no similar sequence in the database (still a distinct
possibility), or (ii) it represents a non-coding sequence that is not in the
database. It is critical to the interpretation of EST analysis that a distinction
is made between these two situations.

5.6 Two approaches to gene hunting

In recent years, substantial financial resources have been expended in the
arch for new genes that may be linked to particular types of disease. The
im is to develop new therapies with which to combat a wide variety of
prevalent disorders, such as breast cancer, asthma and neuro-degenerative
diseases, to name but a few. There are two main strategies for discovering
proteins that may represent suitable molecular targets, whether for small
molecule drug discovery, or for gene therapy.

5.6.1 Positional cloning

- The first approach for discovering disease-related genes is the technique of
positional cloning. Here, the chromosome linked to the disease in question is
established by analysing a population of subjects, some of whom exhibit the
disease. Once a link to a chromosomal region has been established, a large
part of the chromosome in the vicinity of this region (known as a locus) is
sequenced, yielding several megabases of DNA. Such a locus can contain
many tens of individual genes, only one of which is likely to be involved in
ome way in the disease process. Sequence searching and gene prediction
echniques can be used to increase the efficiency of gene identification in the
ocus, but ultimately several genes will need to be expressed, and further
~ experimentation (or validation) will be required to confirm which gene is
actually involved in the disease. Although genes discovered in this way can be
-~ very illuminating from an academic point of view, they do not necessarily
~represent good drug targets (or points of therapeutic intervention). The whole
process is lengthy, time-consuming and labour intensive.

- 5.6.2 RNA transcript analysis

. The alternative approach to gene discovery, requiring much less sequencing
ffort and relying more heavily on the powerful search capabilities of cur-
rent computer systems, examines the genes that are actually expressed in
- healthy and discased tissue. This allows a comparison to be performed
between the two states, and a process of reasoning applied to arrive at a
potential drug target in a more direct way. This process analyses the
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mRNAs, which are used by the cellular machinery as a template for the
construction of the proteins themselves.

5.6.3 The hierarchy of genomic information

The human genome is complex, consisting of about 3 billion basepairs (bp) of
DNA. Yet only 3% of the DNA is coding sequence (i.e., that part of the
genome that is transcribed and translated into protein). The rest of the
genome consists of areas necessary for compact storage of the chromosomes,
replication at cell division, the control of transcription, and so on. A large
part of the work of sequence analysis is centred on analysing the products of
the transcription/translation machinery of the cell, i.e., protein sequences and
structures (where the latter ar® available). Recently, however, much industrial
emphasis has been placed on the study of mRNA; this is partly because a
conceptual translation into protein sequence can be generated readily, but the
main reason is that mRNA molecules represent the part of the genome that is
expressed in a particular cell type at a specific stage in its development. Thus,
in simple terms, we have three levels of genomic information:

e the chromosomal genome (or simply the genome) — the genetic infor-
mation common to every cell in the organism;

o the expressed genome (or transcriptome) - the part of the genome that
is expressed in a cell at a specific stage in its development;

® the proteome - the protein molecules that interact to give the cell its
individual character.

These are the three basic levels, but others could be envisaged (e.g., the
metabolome). For each level, different analytical tools and interpretative
skills are required. Tools appropriate for the discovery of intron/exon
boundaries in genomic DNA may be interpreted in misleading ways when
applied to mRNA data; sequence visualisation at the DNA, RNA and pro-
tein levels are distinct analytical techniques sharing some common threads,
but again, correct interpretation of the results is paramount. The skill lies
both in choosing the right tool for the job at hand, and in understanding the
subtleties of the various analysis outputs.

5.7 The expression profile of a cell

Clearly, one of the goals of the genome projects is to sequence all the genes in
the genome of a variety of different organisms. One way to do this is to
sequence large sections of chromosomes, using either manual or automated
sequencing techniques. The first chromosome from a eukaryotic organism to be
sequenced in this manner was chromosome 111 from Saccharomyces cerevisiae,
in an international collaboration completed in 1992. Predictions for comple-
tion of the human genome sequencing effort have been estimated to lie
anywhere between 2001 and 2005, with the mouse not far behind, in 2008.

Having complete sequences and knowing what they mean are, however,
two distinct stages in understanding any genome. In sequencing everything,

e do not discriminate between the CDS, which we know will be trans-
formed into a protein at some point, and all the rest of the sequence, whose
precise function we can only guess at for the present.

Alternatively, we can focus on those parts of the genome that are tran-
ribed and ultimately translated into protein. Sequences that are translated
in this way make up the expressed genome for a specific cell type. Cells
express a different range of genes at various stages in their development and
ctioning. This characteristic range of gene expression is the expression
rofile of the cell. By capturing the cell’s expression profile, we can build
up a picture of what levels of gene expression may be normal, or abnormal,
and what the relative expression levels are between different genes within
the same cell. This process also provides a rapid approach to gene discov-
ry that complements full-blown genome sequencing projects.

5.8 cDNA libraries and ESTs

The procedure for capturing an expression profile is straightforward. First, a
ample of cells is obtained (this is usually the most difficult and time-
onsuming step, depending on the source of cells); then RNA is extracted
rom the cells, and is stabilised by using reverse transcriptase to run off
DNA from the RNA template. The cDNA is transformed into a kibrary (a
NA library) suitable for use in rapid sequencing experiments. A sample
of clones is selected from the library at random - e.g, 10000 from a library
with a complexity of 2 million clones. A substantial automated sequencing
peration is required to produce 10000 sequencing reactions, and then to
run these on automated sequencers. The resulting data are downloaded to
omputers for further analysis.
The ideal result is a set of 10000 sequences, cach between 200 and 400
ases in length, represeriting part of the sequence of each of the 10000
lones. In reality, some sequencing runs will fail altogether, some will fail to
roduce sufficient sequence data, and some will fail to produce data of
appropriate quality. The sequences that emerge successfully from this
rocess are called ESTs. The properties of ESTs and issues of interpretation
e discussed in Section 5.5.
It is important to understand the statistics of library production to be
confident in handling EST data. The number of clones in the library reflects
he efficiency of mRNA extraction from the source of cells. Good libraries
- contain at least 1 million clones, and probably substantially more. Some tis-
_sues and cell types are difficult to deal with (usually the more interesting
mes!) and the resulting libraries tend to be less representative. The actual
umber of distinct genes expressed in a cell may be a few thousand; the
umber varies according to cell type, with the most complex human cells
-expressing up to ~15000 different genes (brain) and the simplest ~2000
(gut). Thus we have a small number of different genes (‘the expressed
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genome’) represented in a pool of 1 million clones. We then take a rela-
tively small single random sample of clones for sequencing, rather than
multiple samples. The relationships between these figures must be borne in
mind when analysing quantitative differences between the expression levels
of genes in different samples.

5.9 Different approaches to EST analysis

Various approaches to establishing libraries of ESTs for academic analysis
or commercial exploitation have been developed. Here, we highlight three
major sources of EST information. Much of the publicly available data are
collected together into the EST sections of the EMBL Data Library and
GenBank (dbEST).

Suppliers of EST information subject their data to rigorous filtering
processes prior to database submission, owing to the poor quality of EST
sequences. TIGR provides detailed information on its protocol, which is
outlined in Section 5.9.3.

5.9.1 Merck/IMAGE

In 1994, Merck & Co. funded a research project, based at the University of
Washington, to sequence 300 000 ESTs from a variety of normalised
libraries. By choosing to use normalised libraries, quantitative information
on levels of gene expression in the source tissue was sacrificed in an
attempt to increase the sampling of different genes. The libraries chosen
represent a broad cross-section of tissue types of interest to a wide variety
of researchers. A representative selection of libraries sequenced is given in
Table 5.4. Once identified, licensing of clones for use as reagents in further
molecular biological experiments is a straightforward and cheap task. For
many years Merck has sponsored the production of a drug index; this initia-
tive has become known as the Merck Gene Index. As of May 1997, 484 421
ESTs had been submitted by the project to dbEST.

5.9.2 Incyte

Incyte Pharmaceuticals Inc. produces a database, LifeSeq, that emphasises
the quantitative information derived by sequencing standard cDNA
libraries. The goal here is to provide information on relative copy numbers
of transcribed genes in healthy and diseased tissues, to facilitate the eluci-
dation of potential therapegtic targets. Library sample sizes tend to be
small, reflecting the desire to find the essential difference in gene expression
between samples, rather than searching for every last gene by EST analysis
(Incyte has other approaches to solve that problem, but discussion of them
is beyond the scope of this volume). In April 1998, the size of LifeSeq was
2.5 million ESTs, representing 80 000-120000 different genes.

Incyte’s products are available on a commercial basis and tend to be
licensed by large organisations. The approach taken is of interest, however,

ble 5.4 Examples of libraries sequenced as part of the Merck/WashU EST project.
oares = Bento Soares; Stratagene = Stratagene Corp. -

ource of library Tissue Identification
ares placenta Nb2HP
‘Soares retina N2b4H
ares breast 2NbHBst
ares adult brain N2b4HB55Y
ares melanocyte 2NbHM
ratagene liver ~ #937224
ratagene . lung #937210
ratagene ovary #937217
ares parathyroid tumour NbHPA
oares senescent fibroblasts NbHSF
ares ovary tumour NbHOT
ares pineal gland N3HPG
Stratagene colon #937204
Stratagene corneal stroma 937222
Stratagene pancreas 937208
Stratagene fibroblast 937212
Stratagene neuro-epithelium 937231
ratagene ovarian cancer 937219
Stratagene colon HT-29 937221
Stratagene endothelial cell 937223
Stratagene skeletal muscle 937209
Stratagene lung carcinoma 937218
Soares germinal B-cell NbHTGBC
Soares testis NHT

because this is a prime example of a ‘biology in silico’ company capitalising
on genome informatics as a source of revenue.

5.9.3 TIGR

The Institute for Genomic Research (TIGR) is a not-for-profit research
organisation with interests in structural, functional and comparative analy-
sis of genomes and gene products; the range of organisms covered includes
viruses, eubacteria, pathogenic bacteria, archaea and eukaryotes (both plant
and animal).

TIGR Human Gene Index

An important aspect of the work at TIGR is the Human Gene Index (HGI).
This Index integrates results from human gene research projects around the
world, including data from dbEST and GenBank. The aim of the project is
to create a non-redundant view of all human genes, and information on
their expression patterns, cellular roles, functions and evolutionary relation-
ships. The data in the HGI are freely available.

1
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TIGR's approach has been to identify all the different human genes as
rapidly as possible. To this end, it has sequenced more than 100000 ESTs,
from over 300 ¢cDNA libraries, plus data from dbEST, and combined this
information with non-redundant human transcript (HT) information, using
the technique of sequence assembly, to generate Tentative Human
Consensus (THC) sequences.

‘When performing an analysis on this scale, it is crucial to prepare the
data thoroughly beforehand so that the risk of incorporating non-human
data is minimised. For example, sequencing vectors are microbial in origin
and there is a possibility that some of the vector sequence could contami-
nate the results, unless steps are taken to identify and remove it. In
preparing data for the Index, ESTs were consequently subjected to quality-
control screening to remove vector contamination, together with any
poly-A, poly-T and poly-CT sequences. The minimum EST length accepted
was 100 bp, with less than 3% N base calls. Additional sequences incorpo-
rated from dbEST were subjected to the same screening criteria.

The HTs were collated by removing the non-coding sequences from the
Homo sapiens set within the primate division of GenBank. The cDNAs and
CDSs were saved and redundant entries for the same gene were removed,
leaving only a link to the accession number.

The TIGR assembler was used to assemble the cleaned ESTs and non-
redundant HTs into contigs. TIGR define THCs as consensus sequences
based on two or more ESTs (and possibly an HT) that overlap for at least
40 bases, with at least 95% sequence identity. THCs may contain ESTs
derived from different tissues (TIGR’s Expressed Gene Anatomy Database,
EGAD, contains information on tissue localisation of ESTs).

In Figure 5.5, a mouse transferrin (accession number P20233) has been
searched against the TIGR Gene Index. The search has been performed in
translation, as the query sequence is a peptide. The output contains a
graphical alignment of all the THCs that match the query sequence (in
accordance with the search criteria). Notice that some THCs match in the
forward orientation and others in the reverse, depending on the direction
of the arrow. In the text alignment, matches are denoted by dots, and mis-
matches by the letter corresponding to the mismatched residue. This
facilitates rapid visualisation of the extent of matches, as illustrated in the
figure. Clearly, many THCs exhibit similarity with the query; some form
clusters that map to different parts of the sequence; but no individual THC
maps with a high degree of similarity. Note that THCs themselves repre-
sent nucleotide sequence, and it is the conceptual translation that is shown
in the alignment.

The TIGR Website offers facilities for searching the index, finding out
about new features added to the index, and clone ordering (via the ATCC -
American Type Culture Collection). A UNIX-compressed FastA format file
containing the compléte, minimally redundant index is also available for
transfer via anonymous FTP.

@ r T TTT LI T T
e - 100 200 300

P20233 € >
TBLASTN
THC168921 B> THC168921 BPTHC168921 el
THC168921 M THC168921 MMM THC168921 ey
THC168921 mEm> THG168921 P> THC168921 M-

THC168921 THC165921 Iu—p-
THC168921 M THC168921 MMM THC168921 EEEE-
THC168921 M
THC168921 P
THC169302 My THC169302 > THC169302 P
THC169302 M THC169302 M THC 169302 i THC169302
THC169302 memlp  THC169302 M THC189302 =
THC169302 THC169302 >
THC169302 B> THC169302 My
THC169302 P>
THC169302 Iy
THC151150 M THC151150 W
THC151150 My
THC151150 me>
THC153132 < THC150079 Emd>
THC153132 <8 THC150978 B
THC178704 T—=> THC15097¢ Bl
THC161890 > THC214907 s
THC161880 THC214907 e
THC155109 <=3 THC150448 iz
THC150449 <
THC150450 st
THC150450 <
THC208451 Sy
THC208451 wiauiis
THC189129C==>  THC161197 C—=>
THC171868 =
b) Text alignment
T T T T T T T T T 1
10 20 30 40 50

P20233 >2]
THC168921 > GJSS
THC168921 > 1374
THC168921 > 1449
THC168921 > 454
THC168302 >143
THC169302 > 1156
THC169302 > 1230
THC168302 >245
THC153132 <433
THC178704 >1213

RRRRS.Q..AV.QP.AT..
RRAR.V..AVGEQ..R.

D.T....AV.EH.AT..QSFR.HM.S
.P.K..AL.HH.RL..DE

M.CSED....T.IJKQ.IK.KSG5.IS5.G.GN.TI.SS

Figure 5.5 Result of searching the TIGR HGI database (March 1998 version 3.3) with part

of a mouse transferrin sequence. (a) Graphical view, in which a summary of the hits in the
HGI database is presented at a high level of abstraction. Arrows indicate the direction in

_ which part of a THC has matched the query sequence, while colours aid the eye by grouping
together disparate matches made by the same THC (for example, dark blue arrows at the top
of the diagram all refer to THC168921 matches). The program used in the search (TBLASTN) is

* also indicated. (b) Text view of the same search, presented as an alignment (truncated for

the figure). Dots represent identicat matches with the query; non-identical residues are
explicitly written out. The THC identification code is followed by a match direction indicator,
> or <, and then the position of the start of the match.

QKEKQVRWCVKSNSELKKCKDLVDTCKNKEIKLSCVEKSNTDECSTAIQE

.GSVT.SS5A.T.ED.IALVLK
V..IRKRDSPIQ.IQ..A.

IE..SAET.ED.IAK.MN
VA..K.ASYLD.IR..AA
.IE..SAET.ED.IAK.MN
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5.10 Effects of EST data on DNA databases

ESTs, by their very nature, are incomplete and, to a certain degree, inaccu-
rate. Their sole importance lies in the possibility that a match may be found
with another EST, or more complete piece of information in the available
databases. DNA databases now contain such a rich variety of sequence data
(ranging from full-length CDSs to genomic sequences and ESTs) that
adding EST data may not seem to constitute a problem. However, when
EST data were first incorporated in the public datasets, some consternation
was expressed that the quality and validity of these resources was being
compromised. This consternation probably arose as a result of unfamiliarity
with the techniques required to analyse this new form of data, mixed with a
degree of concern that ESTs were a shortcut - and perhaps a rather under-
hand one at that - to developing a complete gene set, a goal that ought
properly to belong to the Human Genome Project.

Whatever the political sensitivities, ESTs do add a factor of noise to
databases, if only because there is always some degree of uncertainty as to
the accuracy of the single pass sequence. On the positive side, ESTs enrich
the DNA sequence databases by adding partial sequence representations of
some genes that are not otherwise available in those resources, whether
coding or non-coding. N

5.10.1 EST analysis tools

There are many tools available for the analysis of ESTs: some of these are
only available commercially (e.g., the Incyte LifeTools) and will not be dealt
with here. The publicly available tools fall into three categories:

® sequence similarity search tools
® sequence assembly tools

® sequence clustering tools

Sequence similarity search tools
The theory underlying sequence similarity search tools is dealt with in
Chapter 6. Here we consider the tools as they relate to ESTs.

Current programs are generally designed to cope with ESTs, whether as
the search query itself or as a component of the search database. The
BLAST series of programs has variants that will translate DNA databases
(TBLASTN), translate the input sequence (BLASTX), or both (TBLASTX).
(Note that these terms apply to the version 2 BLAST programs; subsequent
versions may implement these searches in a different way - bioinformatics
programs are rapidly developing!) These options give the widest latitude in
dealing with the inherent fuzziness of EST database searches. FastA pro-
vides a similar suite of options.

Sequence assembly tools

When a search of the databases reveals several ESTs matching with a probe
sequence, normally the ESTs must be aligned with each other to reveal the
consensus sequence (see Chapter 7). Usually, further rounds of searching
with the consensus identify additional ESTs that should be incorporated
into the alignment. This type of iterative sequence alignment is called
sequence assembly. There are various tools available to help with this
process, e.g, the Staden assembler, the TIGR assembler, Phrap, etc.

Sequence clustering tools

Sequence clustering tools are programs that take a large set of sequences and
divide them into subsets, or clusters, based on the extent of shared sequence
identity in a minimum overlap region. A reliable and effective mechanism for
clustering ESTs will reduce redundancy in the dataset, and save database
search time and analysis effort. Such tools are particularly valuable when, for
example, large numbers of ESTs have been generated and we need to esti-
mate how many different genes are represented by the set. The use of EST
clustering to address this problem is outlined in Figure 5.6. .

One approach to clustering uses known genes to guide the partitioning
of the ESTs. The ESTs ark searched against a comprehensive range of DNA
and protein sequence databases, and the hits are then sorted into sets (often
called buckets), representing individual genes. This approach normally

EST library - Al ———
Er——
Clustering B
/0 ==

X c -— 3
/ -—a
—

— Plus sense EST
~«———— Minus sense EST

Figure 5.6 Clustering an EST tibrary. A small library of ESTs is illustrated, which, following
clustering, is partitioned into four sets, A-D: set A contains three members that exhibit a short
overlap, two ESTs overlapping in the plus sense, the third in the minus sense (indicated by
arrows); set B contains two members with a substantial overlap in the same sense; set C contains
four members, where the two plus-sense ESTs do not overlap with each other, but do averlap with
the consensus formed by the two minus-sense members (the first and fourth members also do
not overlap with each other, but clearly beong to the same sequence cluster, whose integrity
hinges around the third member); and finally, set D is a singleton, having only one member that
shares no significant identity with any other EST in the library. The sense of the ESTs is synbolic
only - the actual sense can only be determined by database comparison.
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yields groups of ESTs that do not match any of the database sequences.
Typically, the proportion of ESTs from a given library that remains
unmatched following database comparison is ~40%, a value that will
decrease as more information becomes available from genome sequencing
projects. These remaining sequences must be clustered on the basis of over-
lapping identities, as illustrated in Figure 5.6.

The alternative strategy is to cluster all the ESTs, generate a consensus
sequence representing each cluster, and then perform database searches
using only the cluster consensus sequences. This is the ideal solution, as it
significantly reduces the number of database similarity searches that have
to be performed. However, the success of this strategy depends on how
reliably ESTs can be clustered, which in turn depends on the quality of
the EST data.

A further complication arises if we wish to estimate the number of
genes represented in a library of ESTs, because the unmatched ESTs may
not all represent different genes. Two cases should be considered. In the
first case, illustrated in Figure 5.7(a), a cluster (C in the figure) might map
to an uncharacterised portion of a gene, the characterised portion of which
has already been matched by a set, or sets, of ESTs (A and B) (e.g., the 3'
UTR is often incomplete in database entries, or a gene sequence may be
only a partial sequence entry). In this case, counting the unmatched EST
cluster as a representative of a separate gene will bias the gene count
towards too high a number. In the second case, illustrated in Figure 5.7(b),
it is possible that two or more unmatched clusters could map to different
regions of the same gene, again resulting in too high an estimation of gene
representation if all unmatched clusters are counted independently.

(@

@
o

(b)

D E

Gene sequence in database
Gene sequence not in database
EST

Figure 5.7 Interpretation of EST clusters mapping to gene sequences: (a) llustrates the
situation in which EST clusters A and B match an incomplete database entry, and cluster C
falls in the uncharacterised region; (b) illustrates the situation in which clusters D and E

both map to the same gene, but in a region that has not yet been sequenced and entered

into the database.

5.11 A practical example of EST analysis

In this example, we ask the following question of the dbEST EST sequence
database: ‘Given the availability of the human sequences for cyclooxy-
gena}se—l (COX-1) and cyclooxygenase-2 (COX-2), are there any other close
family members?’ The drug discovery context for such a question is that
non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin, cause gas-
tric lesions and other, less common, side effects when used in long-term
therapy. This results from interference of NSAIDs with cyclooxygenase, an
enzyme involved in regulation of the gastric mucosa. The subsequent discov-
ery that there are two cyclooxygenases, designated COX-1 (which protects
the gastric mucosa) and COX-2 (which is involved in inflammatory

N
Al

Given COX-1 and COX-2 can a
putative COX-3 be identified?

¥

Text search for COX-3 (and
suitable alternative forms)

]

Acquire COX-1 and COX-2
human sequences

X

Search for sequence similarities Search for similarities in an
in a full-length sequence database EST database

N\ '

Merge the results of the fuli-
length and EST searches

ESTs virtually identical to ESTs similar, but not
COX-1/2? identical to COX-1/2?
¥ ¥

May provide tissue Search ESTs back against
localisation information full-length databases

L] ]

Strong similarities with Is it highly simitar to
other genes indicate COX-1, COX-2 or both?

close relationship of COX Is it only weakly similar?
family to another gene If so, might it be more
family — probably with a similar to something else,
different function a putative COX-37

Figure 5.8 Flowchart indicating a possible scheme for identifying a new member of a
known gene family.
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responses throughout the body), has led to the development of compounds
that selectively inhibit one enzyme or the other (for a review see Needleman
and Isakson, 1998). A potential therapeutic opportunity would exist if a
third member of the COX family were to be cloned, because it may be easier
to target a putative COX-3 and avoid interacting with COX-1 altogether.

As sequence analysts, we can begin exploring by bringing together the
sequences for human COX-1 and COX-2, and performing database
searches on (a) a database of full-length sequences (e.g., GenBank), and (b)
a database of ESTs (e.g., dbEST). It is in the newly sequenced ESTs that dis-
coveries are likely to be made {(full-length sequences are often well
characterised by the authors prior to database submission). It is also wise,
in such a strategy, to perform a text query with the term COX-3 (and appro-
priate variants) in case COX-3 really has been cloned! A suitable strategy is
outlined in Figure 5.8.

PGH1_HUMAN MSRSLLLRFLLFLLLLPPLPVLLADPGAPTPVNPCCYYPCQHQGICVRFGLDRYQCDCTR
PGH2_HUMAN - ALSHTANPCCSHPCONRGVCMSVGFDQYKCDCTR
SE o ke ok T T L POr TF YU .
PGH1_HUMAN TGYSGPNCTIPGLWTWLRNSLRPSPSFTHFLLTHGRWFWEFVN~ATFIREMLMRLVLTVR
PGH2_HUMAN ~ TGFYGENCSTPEFLTRIKLFLKPTPNTVHYILTHFKGFWNVVNNIPFLRNATMSYVLTSR
B T T R T 7T PR v
PGHl_HUMAN  SNLIPSPPTYNSAHDYISWESFSNVSYYTRILPSVPKDCPTPMGTKGKKQLPDAQLLARR
PGH2_HUMAN SHLIDSPPTYNADYGYRKSWEAFSNLSYYTRALPPVPDDCPTPLGVRGKKQLPDSNEIVGK
Kk RARERNL L K NKR L KAKRAKRE KA KR RAKRE LA RRAARERE .
)
PGH1_HUMAN Al VDAFSRQIAGRII HHILHVAVDVI] LQPFNEYRKRFGMKPYTSFQE
PGH2_HUMAN QFVESFTRQIAGRVAGGRNVPPAVQKVSQASIDQSRQMKYQSFNEYRKRFMLKFYESFEE
LRLNLKRERARL MRNNL o ki K i KAiR; R KRARXARE [AX® KKK
PGH1_HUMAN LVGEKEMAAELEELYGDIDALEFYPGLLLEKCHPNSIFGESMIEIGAPFSLKGLLGNPIC
PGH2_HUMAN LTGEKEMSAELEALYGDIDAVELYPALLVEKPRPDAIFGETMVEVGAPFSLKGLMGNVIC
T L S T
PGH1_HUMAN SPEYWKPSTFGGEVGFNIVKTATLKKLVCLNTKTCPYVSFRVPD-—--~---—--~--, ASQ-
PGH2_HUMAN SPAYWKPSTFGGEVGFQIINTASIQSLICNNVKGCPFTSFSVPDPELIKTVTINASSSRS
e I T .
PGH1_HUMAN --DDG~PAVERP--STEL
PGH2_HUMAN GLDDTINPTVLLKERSTEL
PR *xk
Figure 5.9 Part of the pairwise alignment between human C0X-1 and COX-2 (for
. . . o
convenience, the centrat portion of the alignment has been excised, as denoted by ‘....").
This has been constructed using a dynamic programming method, derived ultimately from the
Needleman and Wunsch algorithm, incorporating an additional gap extension parameter.
Identities are denoted by * and similarities (according to BLOSUM62) are indicated by *:".
The two sequences are similar along most of their length, with the most obvious insertions
and deletions occurring at the N- and C-termini.

The COX-1 and COX-2 human sequences are shown as a pairwise
alignment in Figure 5.9. It is worth becoming familiar with the overall
distribution of identities and similarities between two sequences in a
family (or, if sufficient data are available, constructing a multiple
sequence alignment (see Chapter 7)) before attempting to interpret data-
‘base search results.

If we follow the strategy outlined in Figure 5.8, and we discover no
text-based matches with ‘COX-3’ and find no full-length sequence
matches in GenBank, then we turn to EST searches. When performing
these searches, we can restrict the target dataset to human ESTs in the
first instance; only when these have been exhausted do we need to turn to
another organism, since the presence of a COX-3 candidate in, say, mouse

_is a strong indicator for its presence in the human genome. Variation in
igene sequence between species, however, makes the task of detecting new
amily members very difficult. -

Consider a strong match to a human sequence, as illustrated in Figure
5.10. The match is identical over its entire length except for two residues
near the beginning, where Pro-Gly in the query has been replaced by Leu-
Val in the EST. In considering whether this difference is significant, we
should take into account the spread of identities and similarities between
COX-1 and COX-2; in this region, the sequences are similar, but not identi-
cal; yet in the retrieved match, the sequences are virtually identical. The
location of the difference is also significant, occurring as it does close to the
beginning of the EST (ESTs generally have lower-quality sequence removed

om either end, and it could be that this difference is due to poor-quality

quence remaining). In addition, for each of the substitutions, single base
changes would result in the differences between the human and the
observed EST read (i.e., Pro to Leu, Gly to Val).

Although it is conceivable that a new family member could be discov-
ered with a very high level of identity to only one member of that family, it
is more likely that the sequence we are searching for will have the same
overall level of similarity as currently known members. One possibility is

>gb|R96180IR96180 yt84£11.71 Homo sapiens cDNA clone 231021 5' similar to gh:M59979
PROSTAGLANDIN G/H SYNTHASE 1 PRECURSOR (HUMAN) ;.
Length = 355

Score = 203 bits (511), Expect = 4e-51
Identitles = 96/98 (97%), Positives = 96/98 (97%)

Query: 502 FYPGLLLEKCHPNSIFGESMIE: F LGNPICSPEYWKPST IVKTA 561
FY LLLEKCHPNSIFGESMIEIGAPFSLKGLLGNPICSPEYWKPSTFGGEVGFNTVKTA
Sbjct: 2 FYLVLLLEKCHPNSIFGESMIEIGAPFSLKGL ICSPEYWK] 'NIVKTA 181

Query: 562 TLKKLVCL 'YVSFRVPDASQDI TEL 599
TLKRLVCLNTKTCPYVSFRVPDASQDDGPAVERPSTEL
Sbjct: 182 TLXKLVCLNTKTCPYVSFRVPDASQDDGPAVERPSTEL 295

Figure 5.10 Human EST match with human COX-1. Note the difference of two residues near
the beginning of the match,
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>gb1T29235|T29235 EST73861 Homo eapiens cDNA 5' end similar to cyclooxygenase 2
(HT:264) .
Length = 257

Score = 109 bits (270), Expedt = Te-23
Identities = 45/71 (63%), Positives = 56/71 (78%)

Query: 513 PNSIFGESMIEIGAPFSLKGLLGNPICSPEYWKPSTFGGEVGFNIVKTATLKKLVCLNTK 572
P++IFGE+M+E G+PFS KGL+GN IC P YWKPSTFGGEVGF I+ T + + L+C N K
Sbjct: 3 PDATFGET KGLMGNVICXPAYWKPST QIINTXSXQSLICNNVK 182

Query: 573 TCPYVSFRVPD 583
CP+ SF VeD
Sbjct: 183 GCPFTSFSVPD 215

{b)

>gb(T292351T29235 EST73861 Homo saplens cDNA 5' end similar to cyclooxygemage 2
(HT:264) .
Length = 257

Score = 166 bits (415), Expect = 7e-40
Identities = 78/85 (91%), Positives = 80/85 (93%)

Query: 500 PDATFGETMVEVGAPFSLKGLMGNVICSPAYWKPST JIINTASIQSLICNNVK 559
PDAIFGETMVE G+PFS KGLMGNVIC PAYWKPSTFGGEVGFQIINT S QSLICNNVK
Sbjct: 3 PDAIFGET KGLMGNVICXPAYWK DTINTXSXQSLICNNVK 182

Query: 560 GCPFTSFSVPDPELIKTVTINASSS 584
GCPFTSFSVPDPELIKTVTI+ASSS
Sbjct: 183 GCPFTSFSVPDPELIKTVTISASSS 257

Figure 5.11 EST hit interpretation. Comparison of a human EST hit with (a) human COX-1
and (b) human COX-2.

that the EST represents a polymorphism. It seems, then, that we can prob-
ably disregard this match. Agother human match in the hitlist seems more
promising at first sight, but turns out to be an EST with known similarity to
COX-2, as illustrated in Figure 5.11.

Clearly, searching for new members of known gene families is a
painstaking process and this section has only scratched the surface of what
can be done. Experience in examining alignments returned from database
searches is ultimately the best guide.

5.12 Summary

® Sequence comparisons are more sensitive at the protein level, because
the redundant genetic code is reduced to a unique set of amino acids;
but this loss of degeneracy means that information that relates directly
to evolutionary processes is lost.

® DNA sequence databases include genomic sequence data, and hence con-
tain an assortment of data types that cannot be treated alike (e.g.,
untranslated sequences (UTRs), introns and exons, mRNA, cDNA and
translations). This affects the manner in which searches must be interpreted.

UTRs flank coding regions of RNA or DNA, but are not themselves
translated. Translation of DNA to protein via a genetic code table is
termed conceptual, indicating that it carries no experimental validation.

In an arbitrary length of DNA, it is not known which base marks the
start of the coding sequence (CDS), so a six-frame translation must be
carried out. The challenge is then to determine which is the correct
reading frame.

Features used to indicate possible coding regions in DNA include: suffi-
cient ORF length; presence .of flanking Kozak sequences; patterns of
codon usage; third base preference; and presence of ribosome binding
sites (Shine-Dalgarno sequences) upstream of the start codon.

The presence of introns and exons in eukaryotic genes can give rise to
gene products of different lengths, because not all exons may be
included in the final transcript. Resulting proteins are known as splice
variants or alternatively spliced forms.

Complete CDSs are rarely sequenced in one reaction, so variable-
length, overlapping fragments are aligned in order to build a consensus
- this is sequence assembly. Multiple base reads per position in the
sequence give higher confidence in the result.

A substantial proportion of currently available DNA data comes from
Expressed Sequence Tags (ESTs), which are partial sequences. EST produc-
tion is highly automated and results are often contaminated with ambiguous
or missing bases. This gives rise to difficulties in sequence interpretation.

The hierarchy of genomic information (the chromosomal genome, the
expressed genome, the proteome, etc.) requires different analytical tools
and interpretative skills to be brought to bear at each level.

Various approaches to establishing EST libraries have been developed
for academic or commercial exploitation. Suppliers of EST information
include Merck/IMAGE, Incyte and TIGR.

Publicly available tools for EST analysis include those for sequence
searching, assembly and clustering.

5.13 Further reading
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Pairwise alignment

techniques

6.1 Introduction

This chapter introduces the concepts of sequence identity, similarity and
homology as they apply to the comparison of two sequences, be they protein,
DNA or RNA. Pairwise comparison is a fundamental process in sequence
analysis, underpinning, as it does, database search algorithms, which seek out
relationships based on sequence properties, rather than on simple interroga-
tion of textual annotation. We consider the definition of local and global
similarity, and examine the algorithms that fall into these two categories.

6.2 Database searching

Database interrogation can take the form of text queries (for example, ‘dis-
play all the human adrenergic receptors’) or sequence similarity searches
(for example, ‘given the sequence of a human adrenergic receptor, display
all similar sequences in the database’). This is a useful exercise to try, if the
reader has little experience in database interrogation, as these two ques-
tions produce quite different results!

Text-based querying has its place in the armoury of sequence analysis
software and should certainly not be overlooked in any worthwhile analy-
sis. However, research problems typically take the form of a fragment of
sequence that bears no textual annotation with which to frame a query. It is
the purpose of this section to describe how the relationships between a
query sequence (commonly termed the probe) and another sequence (often
termed the subject) can be quantified and their similarity assessed.

In order to identify an evolutionary (homologous) relationship between a
newly determined sequence and a known gene family, we need to assess the
extent of shared similarity. Where the degree of similarity is low, the relation-
ship must remain putative, until additional evidence has been gathered (for

~

example, through the assessment of biological data or the use of a phylogeny
package, or both). Family relationships are important because they allow us
to find some order in the apparent chaos that constitutes the genome. From
that order derives our ability to make predictions regarding the completeness
of families; specifically, if, in a gene family, 10 members are known in rat and
only seven have been identified in human, it is highly likely that at least three
human members still remain to be discovered. From a pharmacological point
of view, this is very valuable information, because it can be used to bolster the
evidence for some known biological response, but for which no receptor has
yet been identified. From a molecular biological point of view, it represents an
opportunity for the cloning of novel human receptors (albeit in a known gene
family) using the rat data as template.

In order to be able to assess effectively the results of database searches,
we need to have a firm understanding of the way in which the tools work.

6.3 Alphabets and complexity

A sequence consists of letters selected from an alphabet. The complexity of
the alphabet is defined to be the number of different letters it contains. For
example, the complexity of the alphabet of the English language is 26; for
DNA, the complexity of the alphabet is 4; for EST work, 5; and for pro-
teins, 20. Sometimes additional characters are used in an alphabet to
indicate a degree of ambiguity in the identity of a particular residue or base.
For example, X is a frequent additional character in protein sequences,
indicating an unknown residue; B denotes either asparagine or aspartate
(Asx), and Z denotes either glutamine or glutamate (Glx). Some alignment
programs will deal with these characters as they stand; others will simply
replace such ambiguities with a dummy character, reintroducing the ambi-
guity before printing the result; and still others fail completely to run with
this type of input. For the remainder of the chapter, we will focus on pro-
tein sequences with a standard 20-character alphabet.

6.4 Algorithms and programs

It is important to note the difference between an algorithm and a program:
the former is a set of steps that define some computational process at an
abstract level; the latter is the implementation of an algorithm. There may
be many different implementations of the same algorithm, but these should
give the same results, if the algorithm has been clearly defined. However,
like recipes, algorithms are open to interpretation, and those published in
scientific papers are no exception.

6.5 Comparing two sequences - a simple case

We are now in a position to consider how to develop an algorithm (a
recipe) for determining the similarity between two sequences, each selected
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from an alphabet of complexity 20. The naive approach is to line up the
sequences against each other and insert additional characters to bring the
two strings into vertical alignment, as shown in Figure 6.1.

Unaligned
Sequence 1 (query) AGGVLIIQVG
[ARARE

Sequence 2 (subject) AGGVLIQVG

Aligned
Sequence 1 (query) AGGVLIIQVG
(ARREEREEN]

Sequence 2 (subject) AGGVL-IQVG

Figure 6.1 Illustration of the use of a gap character ‘-’ to bring two sequences into
alignment; vertical bars denote identical matches - six in the first alignment, nine in
the second.

At this point, the task is complete. We could score the alignment by
counting how many positions match identically at each position; here, the
unaligned score is 6, while the aligned score is 9.

In this elementary example, we can see that the score increases when more
identical residues have been aligned. But this is only a simple illustration: the
sequences are very short (most protein sequences would be 200 to 500 residues
long, or more); the sequences are almost the same length (this is rarely the case
in real examples); and the sequences are nearly identical anyway (no other
arrangement of residues is possible that achieves the optimal score).

The process of alignment can be measured in terms of the number of
gaps introduced and the number of mismatches remaining in the alignment.
A metric relating such parameters represents the distance between two
sequences (the so-called edit distance). Several metrics exist, and different
implementations of similar algorithms may use different distance measures
to compute and score alignments.

AJ

6.6 Sub-sequences

Consider a more realistic pair of sequences. Sequence A is 400 residues
long and B contains 650 residues. If sequence A is in its entirety identical to
any portion of sequence B, then A is said to be a sub-sequence of B. Gaps
simply need to be inserted, as required, to bring A into register with B, as
shown in Figure 6.2(a).

Now consider that sequence A has two extended regions that show
identity to sequence B. We would need to identify these regions and then
insert gaps into A to bring them into alignment with B, as seen in Figure
6.2(b). Our algorithm could stop at that point, having found the highest
scoring sub-sequences between A and B. This is an example of a simple

A —
B
(@
A - — e
B
b) h
Figure 6.2 Il tion of the ali of a sub e A with a full-length sequence

B, showing: (a) the situation where A is identical to one part of B, and insertion of one block
of gaps allows complete alignment of the two sequences; and (b) the situation where A is
identical to different parts of B, so that more than one block of gaps must be inserted to
bring the sequences into register.

heuristic algorithm that is straightforward to implement, where the regions
of identity are obvious.

6.7 Identity and similarity

I sequence comparison depended only on finding regions of strict identity
between two sequences, we could develop this method into a reasonable
program. However, generally, alignment is not restricted to sub-sequence
‘matching, but involves comparison of full-length sequences. A comprehen-
sive alignment must account fully for the positions of all residues in both
sequences. This means that many residues may have to be placed at posi-
tions that are not strictly identical. In this case, the positioning of gaps in
the alignment becomes more complex to compute. We could simply max-
imise the number of identical matches by inserting gaps in an unrestricted
manner. However, although achieving the optimum score, the result of such
a process would be biologically meaningless. Instead, scoring penalties are
introduced to minimise the number of gaps that are begun (opened), and
extension penalties are then incurred when a gap has to be extended. The
total alignment score is then a function of the identity between aligned
residues and the gap penalties incurred.

In calculating the score for an alignment, we have, thus far, only con-
sidered residue identities. Essentially, we have been using a unitary matrix,
i.e, one that weights identical residue matches with a score of 1 (see Table
6.1). Such a matrix is termed sparse, as most of its elements are zero. This
means that its diagnostic power is relatively poor, because all identical
matches carry equal weighting. In order to improve diagnostic performance,
we want to be able to enhance the scoring potential of the weak, but bio-
logically significant, signals so that they can contribute to the matching
process, but without also amplifying noise. This strikes at the very heart of
sequence analysis - the imperative to distinguish between high-scoring
matches that have only mathematical significance and lower-scoring
matches that are biologically meaningful.
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Table 6.1 Unitary scoring matrices: (a) DNA and (b) protein - the amino acids are
grouped according to their physicochemicat properties.
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To address this problem, scoring matrices have been devised that weight
matches between non-identical residues, according to observed substitution
rates across large evolutionary distances. Judicious use of such tools may
increase the sensitivity of the alignment process, especially in situations where
abselute sequence identity is low. However, it must be appreciated that similarity
matrices are inherently noisy, because they indiscriminately weight relationships
that may be inappropriate in the context of any particular sequence comparisen
(this means that scores of random matches are boosted along with those of
weak signals). It is beyond the scope of this book to discuss exhaustively the
numerous matrices available. Instead we focus on two of the most popular
series: the original Dayheff mutation data (MD) and BLOSUM matrices.

6.7.1 The Dayhoff Mutation Data Matrix

The MD (Dayhoff et al., 1978) score is based on the concept of the Point
Accepted Mutation (PAM). An evolutionary distance of 1 PAM indicates the
probability of a residue mutating during a distance in which 1 point mutation
was accepted per 100 residues. Mutation probability matrices corresponding
to larger intervals of evolutionary distance can be obtained by repeatedly
multiplying the original matrix by itself. The 250 PAM matrix gives similarity
scores equivalent to 20% matches remaining between twe sequences.

For general sequence comparison, it is useful to employ a matrix
whose elements reflect the ratio of the probability of an amino acid
exchange to the probability of the two amine acids occwrring at random.
These ratios are expressed by the elements of the relateds odds matri
When one protein is compared with another, position by position, the
odds for each position are multiplied to calculate a score for the entire
alignment. However, it is computationally more convenient to add the
logarithms of the odds. Thus, the MD matrix contains the logs of the ele-
ments of the 250 PAM odds matrix (a log odds matrix). As'shown in Table
6.2, within the matrix, values greater than 0 indicate likely mutations,
values equal to 0 are neutral (random), and values less than 0 indicate
unlikely mutations.

Table 6.2 Mutation Data Matrix for 250 PAMs. The amine acids are arranged by assuming
that positive values represent evolutionarily conservative replacements. The amine acids
are ranked here according to groups based on their physicochemical properties.
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Our aim in sequence analysis is to identify relationships in the Twilight
Zone (see Chapter 1). The MD for 250 PAMs has thus become the default
matrix in many analysis packages, because it reflects identities at the 20%
level. However, in principle, it is more effective to use a matrix that corre-
sponds to the actual evolutionary distance between the sequences being
compared (see Figure 6.3) - this makes sense, but is limiting because it
requires a priori knowledge of that distance (in other words, it requires us
to know in advance what we are looking for!). It is therefore good practice
to establish a strategy in which applications are run, and results assessed,
using a range of different PAM matrices.

OBSERVED %
DIFFERENCE

EVOLUTIONARY
DISTANCE (PAMs)

Figure 6.3 Correspondence between observed residue {dentity differences and
lutionary di: ( d in PAMs).

6.7.2 The BLOSUM matrices

Matrices based on the Dayhoff model of evolutionary rates are of limited
value because their substitution rates are derived from alignments of
sequences that are at least 85% identical. However, as we have seen, the
most common task in sequence analysis is the detection of more distant
relationships, which are only inferred from the Dayhoff model.

Recognising these limitatjons, Henikoff and Henikoff (1992) derived a
set of substitution matrices from blocks of aligned sequences in the
BLOCKS database, in order to represent distant relationships more expli-
citly. In deriving the matrices, any bias potentially introduced by counting
multiple contributions from identical residue pairs is removed by clustering
sequence segments on the basis of minimum percentage identity. For each
cluster, the average contribution at each residue position is calculated, so
that effectively the clusters are treated as single sequences. Different matri-

es then emerge by setting different clustering percentages. Thus, for exam-
ple, sequences clustered at greater than or equal to 80% identity are used to
generate the BLOSUM 80 matrix (BLOcks SUbstitution Matrix — pro-
ounced blossom); those in the 62% or greater cluster contribute to the
LOSUM 62 matrix, and so on.
Figure 6.4 illustrates pairwise comparisons carried out using the PAM 250
and BLOSUM 62 matrices, where it can be observed that different residue
_ relationships are considered to be significant when the alternative matrices are
in operation. For example, at the start of these alignments, PAM 250 considers
a K/E substitution unlikely, whereas BLOSUM 62 favours the match; within
the body of the alignments, G/A and G/S substitutions considered favourable
by PAM 250 are not scored by BLOSUM 62; and at the end of the alignments,
an E/K substitution, disregarded by PAM 250, results in an extension of the
alignment by one residue when BLOSUM 62 is used. These are scemingly triv-
ial differences, because we are comparing two highly similar sequences, but
may be crucial considerations in the Twilight Zone, where the enhancement
and ultimate detection of the weakest of signals is all-important.

(a)
Identities = 36/52 (69%), Positives = 47/52 (90%)

Query: 214 KMGPGFTKALGHGVDLGHIYGDNLERQYQLRLFKDGKLKYQVLDGEMYPPSV 265
GP+FTK+ HGVDIAHIYG++LERQ +LRLFKDGK+KYQ+++GEMYPP+V
Sbjct: 97 ERGPAFTKGKNHGVDLSHIYGESLERQHKLRLFKDGKMKYQMINGEMYPPTV 148

(b)
Identities = 36/53 (68%), Positives = 47/53 (89%)

Query: 214 KMGPGFTKALGHGVDLGHIYGDNLERQYQLRLFKDGKLKYQVLDGEMYPPSVE 266

+ GP FTK  HGVDL HIYG++LERQ++LRLFKDGK+KYQ#++GEMYPP+V+
Sbjct: 97 ERGPAFTKGKNHGVDLSHIYGESLERQHKLRLFKDGKMKYQMINGEMYPPTVK 149
Figure 6.4 Pairwise comparisons using different scoring matrices: (a) PAM 250, and (b)
BLOSUM 62. The overall results are similar, but differ in the details of which particular
residue relationships are considered to be significant. Likely substitutions are indicated by +
signs. The ‘Identities’ keyword indicates the number of identical residue matches in relation
to the match length; the ‘Positives’ keyword considers bath identities and similarities.

6.7.3 Statistical measures of alignment significance

When performing sequence alignment computationally, we are really creat-
ing a match between two sequences according to a mathematical model.
The model describes, in general terms, the concept of alignment of two
sequence strings, and the fine detail (gap penalties, impact of sequence
length differences, effect of alphabet complexity, and so on) is dealt with
through the use of parameters. Appropriate choice of parameters will min-
imise the number of gaps, while relaxing the parameters will, theoretically,
allow alignment of any arbitrary sequences. The fact that a program pro-
duces an alignment between two sequences should not be taken as proof in
itself that any relationship exists between them.
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Any standard program will produce some statistical value indicating the
level of confidence that should be attached to an alignment. The statistics
quoted in BLAST for pairwise comparisons are probability (p) or expected
frequency (E) values. The p-value relates the score returned for an alignment
to the likelihood of its having arisen by chance: in general, the closer the
value approaches to zero, the greater the confidence that the match is real;
conversely, the nearer the value is to unity, the greater the chance that the
match is spurious. The E-value (or Expect value) describes the number of hits
one can ‘expect’ to see by chance (in other words noise) when searching a
database of a particular size. For example, an E-value of 1 assigned to a hit
can be interpreted as meaning that, in the current search, one might expect to
sec one match with a similar score simply by chance; conversely, a value of
zero indicates that no matches would be expected by chance.

Inspection of the alignment in Figure 6.5 indicates a high level of
sequence similarity (90%) and a correspondingly low E-value (7e-34),
showing that this alignment is unlikely to be a random match.

>bbs 169040 70 kda Cyclnoxygenese—related protein [mice, Peptide Partial, 80 aal

Score = 145 bits (362), Expect = 7e-34
Identities = 66/80 (82%), Positives = 73/80 (90%)

Query: 294 LPGLMLYATLWLREHNRVCDLLKAEHPTWGDEQLFQTTRLILIGETTKIVIEEYVQOLSG 353
+PGLM+YAT+WLREHNRVCDLLK EHP WGDEQLFQT+RLILIGETIKIVIE+YVQ LSG
Sbjct: 1 VPGLMMYATIWLREHNRVCDLLKQEHPEWGDEQLFQTSRLILIGETIKIVT. EDYVQHLSG 60

Query: 354 YFLQLKFDPELLFGVQFQYR 373
Y +LKFDPELLF QFQYV+
Sbjct: 61 YHFKLKFDPELLFNQQFQYQ 80

Figure 6.5 Part of a hitlist from a database search indicating the scoring data for one
pairwise comparison. Here, the calculated score is shown in bits and the E-value is denoted
by ‘Expect’.

6.8 The Dotplot

Perhaps the most basic method of comparing two sequences is a visual
approach knewn as a dotplot. Consider two sequences, A and B, whose
lengths can be different, but in the ideal case are fairly similar. We proceed by
creating a rectangular matrix in which the residues of A are mapped along
the x-axis, and those of B along the y-axis. Initially, the matrix is filled with
zeros. Each of its cells, x;y; (where i varies between 1 and the sequence
length of A, and j varies between 1 and the length of B), is considered in turn
and is assigned a value indicating the level of similarity between the two
residue positions (A; and Bjp In the simplest scheme, all cells remain zero,
unless A; = Bj, in which case the element is assigned the value 1.

Such a matrix can be visualised quite simply for short sequences, for
example by printing out the matrix in a fixed-pitch font, as shown in

Table 6.3; or for longer sequences, by using an appropriate graphics pro-
ram, as shown in Figure 6.6. The plot is characterised by some
apparently random dots (noise) and a central diagonal line, where a high
ensity of adjacent dots (the signal) indicates the regions of greatest simi-
arity between the two sequences (for clarity, dots are marked in Table
6.3 as Xs). The dotplot is effectively a signal-to-noise landscape, which
ffers a tangible, graphic expression of the challenge of discriminating
ignal from noise. It is often helpful to recall this image when interpret-
ing database search results.

Within a dotplot, two identical sequences are characterised by a single
unbroken diagonal line across the plot, as shown graphically in Figure
6.6(2). Note that, for full-length sequences, a plot must be reduced in size in

~order to be able to visualise the complete comparison - in so doing, the Xs

shown in the magnified section shown in Table 6.3 are reduced to dots
(hence dotplot), which, at sufficiently low magnification, will ultimately
merge into lines.

' By contrast with identical sequences, two similar sequences will be
characterised by a broken diagonal, the interrupted region indicating the

Table 6.3 Illustration of the manner of construction of the dotplot matrix, using a
simple residue identity matrix to score an ‘X’ where a pair of identical residues is
observed.

MTFRDLLSVSFEGPRPDSSAGGSSAGG
M X
T X
F X X
R X X
D X X
L X X
L X X
S X X X X X X
v X
H X X X X X X
F X X
E X
6 X XX X X
P X X
R X X
P X X
D X X
S X X X X X X
S X X X X X X
A X X
[ X X X X X
G X X X X X
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Figure 6.6 Graphical rep ion of dotplots, showing comparisons of (a) two identicat
sequences; (b) two highly similar sequences; and (c) two different, but related sequences.

location of sequence mismatches, as shown in Figure 6.6(b). A pair of dis-
tantly related sequences, with fewer similarities, has a much noisier plot; in
this case, diagonal clusters of dots are observed, parallel to the central diag-
onal, separated by a distance that represents the number of insertions
required to bring the sequences into the correct register - see Figure 6.6(c).

Until now, we have been discussing the construction of dotplots using a
unitary matrix. More sophisticated dotplots exploit advanced scoring
schemes for calculating cell scores. For example, the score for each pair of
residues may be assigned with reference to different types of similarity
matrix, which might allow comparison on the basis of evolutionary related-
ness, structural similarity, physicochemical properties, and so on. In such
cases, it becomes more important to filter out noise, because the plots no
longer simply result from the application of a sparse matrix, and off-diag-
onal components are receiving higher weighting through amplification of
both signal and background noise. The practical solution to this is to
implement a sliding window calculation, as a smoothing function, to
improve the signal-to-noise patio.

6.9 Local and global similarity

We have already seen that alignments are simply mathematical models
whose behaviour can be modified through the use of parameters. Different
models exist, which are designed to encapsulate a variety of physical char-
acteristics of biological sequences, including, for example, their structural,
functional and/or evolutionary relatedness. In this context, we should
therefore be aware that there is no right or wrong alignment, but rather dif-
ferent models reflecting different biological perspectives.

Two general models view alignments in rather different ways: the first
considers similarity across the full extent of the sequences (a global align-
ment); the second focuses on regions of similarity in parts of the sequences
. only (a local alignment). It is important to understand these distinctions, to
appreciate that sequences are not uniformly similar, and that there is there-
fore no value in performing a global alignment on sequences that have only
local similarity.

Some of the publicly available implementations of pairwise comparison
programs (e.g., BLAST and FastA) are fast because they look for local align-
ments, and are made to run even faster by incorporating heuristics.

The rationale for local similarity searching is that functional sites (e.g.,
catalytic sites of enzymes) are localised to relatively short regions, which
are conserved irrespective of deletions or mutations in intervening parts
of the sequence. Thus, a search for local similarity may produce more bio-
logically meaningful and sensitive results than a search attempting to
optimise alignment over the entire sequence lengths. It should be noted
that it does not follow that small similar sequence fragments necessarily
- have the same 3D fold.

* 6.10 Global alignment: the Needleman and Wunsch
algorithm

Having discussed some general concepts, we now turn to the Needleman
- and Wunsch algorithm for computing a global alignment between two
sequences. Conceptually, this method is similar to a dotplot that has been
nterpreted computationally. In this approach, a maximum match between
two sequences is defined to be the largest number of amino acids from one
protein that can be matched with those of another protein, while allowing
for all possible deletions. A penalty is introduced, to provide a barrier to
arbitrary gap insertion. '

As before with the diagonal plot, sequences are compared by constructing
a 2D matrix. Needleman and Wunsch (1970) proposed a maximum-match
pathway that can be obtained computationally by applying a straightforward
* algorithm. In its simplest form, cells representing identities are scored 1, and
. cells representing mismatches are scored 0; the 2D array is thus populated
with these values. An operation of successive summation of cells then com-
© mences. This process examines each cell in the matrix, the maximum score
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along any path leading to the cell is added to its present contents, and the
summation continues. When this process has been completed, the maximum-
match pathway is constructed. An alignment is generated by working through

the matrix, starting at the highest-scoring element at the N-termini, and fol-

lowing the pattern of high scores through to the C-termini. Leaps to
non-adjacent diagonal cells in the matrix indicate the need for gap insertion,
to bring the sequences into register, as long as the gap penalty barrier permits

opening a gap at that point. If the barrier does not permit gap insertion, a

lower-scoring pathway may have to be taken.

Let us consider what this means in more detail by comparing two short
sequences, ADLGAVFALCDRYFQ’ and ‘ADLGRTQNCDRYYQ'. Following
the algorithm through, step by step, we first construct a 2D matrix and popu-
late it with scores representing the residue identities between the two
sequences, as shown in Table 6.4.

Table 6.4 Identity matrix used to initiate the Needleman and Wunsch alignment
procedure for the sequences shown. Identical residue pairs are scored 1 in the
appropriate matrix cell.

AD L 6 A V F A L CD R Y F @
A t 0 0 0 1 o 0 1 0 0 0 O O O O
D 6 1.0 0 0 0 0 0 0 0 1 0 0 0 O
L o 0 1 0 0 0 0 O 1 0 0O 0 0 0 O
G 60 0 1 0 0 0 O 0 O ©0 0O O 0 O
R 6 0 0 0 0 ® 0 0 0 O O 1 0 0 ©
T 6 0 0 6 0 0 0 0 O O O O 0 0 ©
Q 6 0 0 0 0 0 0o 0 0 0 O 0 O O 1
N 6 0o 6 0 0 0 0 0 O O O 0 O O O
C o 0 6 o 0 0 0 0 0 1 0 O 0 0 O
] 6 1 0 0 0 0 0 0 O 0 1 0 0 0 O
R 6 0o 0 0 0 0 O O O 0 O 1 0 0 O
Y 6 0o 0 0 0 0 O O O O0 0 0 1 0 O
Y 6 0 o 0 ¢ 0 0 0 0 O 0 0 1 0 O
1} 6 0o 0 6 0 0 0 0 0 O O O 0 0 1

Successive summation of cells begins at the last cell in the matrix,
which we term the leading cell. In this implementation, the leading cell pro-
gresses up the last column, which simply contains the values from the
equivalent column of the identity matrix (hence there are two 1’s where
there are coincident glutamine residues). The program continues from the
bottom of the previous column, which starts with a 0 (because F and Q are
non-identical); the next cell represents the Y-F pair, which are also non-
identical, yet the algorithm scores a 1 because the only path leading to it
has a maximum score of 1. The same condition holds for all positions in
this column. Moving to the third column, 0 appears in the Q-Y position
(because these residues are non-identical); in the Y-Y position, the existing
value is 1 because the residues are identical, to which is added the value 1,

»

om the Q-Q position, because this is the maximum value from the only
th (the so-called sub-path) leading to it. Hence the score of this Y-Y cell
15 2, as shown in Table 6.5.

ble 6.5 Partially complete maximum-match matrix. The operation is about to be
rried out on the highlighted cell 1-L, by adding the highest value (5 at position C-C)
m the two sub-paths leading to it, to give a value of 6.

A DL 6 AV FALCDTR RY F @
1 00 0 1 0 0 1 0 4 3 2 1 1 0
010 0 6 0 0 0 0 4 4 2 1 1 0
6 0 1 0 0 0o 0 o0 [1]4 3 2 1 1 o0
6 0 0 1 0 0 0 0 5|43 2 1 1 0]
0 0 0 0 0 0 0 0 5[4/3 3 1 1 0
0 0 0 0 0 0 0 0 5[4/ 3 2 1 1 0
0 0 0 0 0 0 0 0 5(4/3 2 1 1 1
000 0 0 0 0 0 0 5|4 3 2 1 1 0
0 0 0 0 0 0 0 0 4([5/3 2 1 1 0
001 0 0 06 0 0 0 3|3/ 4 2 1 1 0
© 0 0 0 0 0 0 0 2|2[2 3 1 1 0
0 0 0 0 0 0 0 0 2[2{2 2 2 1 0
6 00 0 0 0 0 0 1|1/ 1 1[Z]1 o0
0 0 0 0 0 06 0 0 o0f|0fo o oh

In this way, the algorithm proceeds from column to column, moving
deeper into the matrix, and gathering two sub-paths from which to select
the highest value to add to the leading cell. By the time we get to the sev-
énth column, in considering the highlighted L-L position, the existing value
is 1, and the highest value from either of the two sub-paths is 5; thus, the
value of the leading cell here becomes 6 (see Table 6.6). The remainder of
the matrix is populated in a similar manner, to give the final matrix illus-
trated in Table 6.6.

From the complete matrix, a path is traced back from the highest-
scoring position (which, by definition, must occur at the N-termini, because
of the cumulative nature of the summation process) to the origin. In this
example, there is a break in continuity of the path, which can only be rec-
onciled by the insertion of a gap between Asn and Cys in the shorter
{vertical) sequence. Piecing together the alignment from this process yields
the result depicted in Figure 6.7.

' Note that using this scoring scheme, the maximum match value (9),
observed at the matrix origin, represents the number of identities lying
along the match pathway.

From this description, it is clear that the Needleman and Wunsch algo-
rithm produces an alignment that takes into account all residues of the input
sequences. The starting point of the maximum-path traceback is always at the
N-termini, and is calculated from a scoring process that commences at the C-
termini. For this reason, the method results in a global alignment.
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Table 6.6 Completed matrix in which the value being calculated in Table 6.5 is-boxed,
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and the maxi -match pathway giving the highest scoring alignment is highlighted.
AD L 6 AV FALTCTDRTYF Q
Al 9 7 6 6 7 6 6 7 5 4 3 2 1 1 o
] 7 8 6 6 6 6 6 6 5 4 4 2 1 1 0
L 6 6 7 5 5 5 5 5 [ 4 3 2 1 1 o
G 5 5 5 6 5 § 5 5 5 4 3 2 1 1 0
R 5 5 5 5 5 5 5 5 5 4 3 3 1 1 0
T 5 5 5 5 5 5 5 5 5 4 3 2 1 1 0
Q 5 5 5 5 5 &5 &5 5 5 4 3 2 1 1 1
N 5 5 5 5 5 5 5 5 5 4 3 2 1 1 0
[ 4 4 4 4 4 4 4 4 4 5 3 2 1 1 0
D 3 4 3 3 3 3 3 3 3 3 4 2 1 1 0
R 2 2 2 2 2 2 2 2 2 2 2 3 1 1 0
Y 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0
Y 1 1 1 1 1 1 1 1 1 1 1 1 2 10
Q 0 6 0 0 0 0 0 0 0 0 0 0 0 0 1
ADLGAVFALCDRYFQ
e [RRRE
ADLGRTON-CDRYYQ
Figure 6.7 Final gapped al Iting from an impl tion of the i
and Wunsch algorithm.

]

6.11 Local alignment: the Smith-Waterman algorithm

The Needleman and Wunsch algorithm just described works well for
sequences that show similarity across most of their lengths. Consider, how-
ever, two sequences that are only distantly related to each other; they will,
even so, exhibit small regions of local similarity, although no satisfactory
overall alignment can be found. In 1981, Smith and Waterman described a
method, commonly known as the Smith-Waterman algorithm, for finding
these common regions of similarity. Like the technique of Needleman and
Wunsch, this is a matrix-based approach, and backtracking is used to
reconstruct the gapped alignments. The Smith-Waterman method has been
used as the basis for many subsequent algorithms, and is often quoted as a
benchmark when comparing different alignment techniques. It is certainly a
sensitive technique, but it should be remembered that when using any
implementation of it, the function of the algorithm is to find small, focally
similar regions.

A key feature of the Smith-Waterman algorithm is that each cell in the
matrix defines the end point of a potential alignment, whose similarity is
represented by the value stored in the cell. The algorithm thus begins by fill-

ing the edge elements with 0.0 values, as illustrated in Table 6.7, because
these cells represent the ends of alignments of length zero and, conse-
. quently, their similarity score is zero. Note that, here, cells in the matrix are
populated with floating-point values, rather than integers, which are char-
acteristic of the Needleman and Wunsch method described above ; however,
there is no reason why either method could not be implemented using inte-
gers or floating-point values.

Table 6.7 The starting point for the Smith-Waterman algorithm in which the edge
elements are initialised to 0.0. The symbol ‘X’ is used as a placeholder, because the first
- row and first column cannot be the endpaint of any alignment.

x A D L 6 A V F A L € b R Y F @

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0

The next step is to populate the remaining cells in the matrix. This is
achieved by evaluating three functions and choosing the maximum of the
: three values, or zero if a negative value would result. These functions con-
sider the possibilities for ending an alignment at any particular cell. First,
the similarity score (e.g., 1.0 for a match, —0.333 for a mismatch) for the
diagonal predecessor of the cell under consideration is added to that cell's
score (see Table 6.8); then the maximum value is calculated for a deletion
 represented along (a) the current row of the matrix, and (b) along the cur-
rent column of the matrix. Finally, if a negative score would result, 0.0 is
substituted, to indicate that there is no alignment similarity up to the cur-
rent cell position.
Once the matrix is complete, the highest score is located (representing
- the endpoint of the highest scoring alignment between the two sequences),
nd the other elements leading to this cell are determined using a back-
tracking procedure, as illustrated in Table 6.9. i necessary, we can search
 the matrix for lower-scoring local alignments simply by finding other high
cores that do not form part of a previous traceback.
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Table 6.8 Calculation of first set of diagonal similarity scores in the Smith-Waterman
algorithm.

x A D L G A V F A L C DR Y F a

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
00 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.0 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.3 0.0 1.0 0.3 0.0 0.7 0.0 0.0 0.0
0.0 0.0 0.0 0.0 40 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.3 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0B 0.0 0.0 0.0 23 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 3.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 40 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 3.7 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 4.7

o< Dvonzp-Hmoror>»x

Table 6.9 The endpoint of the Smith-Waterman algorithm after calculation of all
scoring parameters. A traceback from the highest score is highlighted.

x A D L 6 A V F A L €C D R Y F a

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.0 0.7 0.3 0.0 0.7 0.0 0.0 0.7 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.7 3.0 1.7 1.3 1.0 0.7 0.3 1.0 03 0.0 0.7 0.0 0.0 0.0
0.0 0.0 0.3 1.7 4.0 27 23 20 17 1.3 1.0 07 03 0.3 0.0 0.0
00 00 0.0 1.3 27 3.7 23 20 17 13 1.0 0.7 1.0 0.0 0.0 0.0
00 00 0.0 1.0 23 23 33 20 17 13 1.0 0.7 03 0.7 0.0 0.0
0.0 0.0 0.0 0.7 2,0 2.0 2.0 3.0 1.7 1.3 10 0.7 0.3 0.0 0.3 1.0
0.0 00 0.0 03 1.7 1.7 17 17 27 1.3 1.0 07 03 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.3 1.3 1.3 13 1.3 23 1.0 07 03 0.0 0.0 0.0
0.0 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 0.7 0.3 0.0 0.0
0.0 0.0 0.0 07 07 07 0.7 0.7 0.7 0.7 07 17 3.0 1.7 1.3 10
0.0 0.0 0.0 0.0 0.3 O_I;l 03 03 03 0.3 03 03 1.7 4.0 2.7 23
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 27 3.7 23
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.3 23 4.7

OD<<xunNnzpo—-Imor-orx

The essential difference between the two algorithms we have examined
so far is that, in the Smith-Waterman case, the matrix contains a maximum
value that may not be at the N-termini of the sequences. It represents the
endpoint of an alignment such that no other pair of segments with greater
similarity exists between the two sequences. Hence, this is a local, rather
than a global, alignment method.

6.12 Dynamic programming

The methods outlined in the preceding sections fall into the general cat-
egory of dynamic programming algorithms. This is a programming
technique in which we build a solution to a problem by solving smaller but
-similar sub-problems. As we have discovered, between two sequences that
are more than trivially different, there is not simply one (correct) alignment,
but often several possible alignments. Finding a good solution using
dynamic programming usually involves the technique of backtracking and
testing different paths to high-scoring alignments, guided by the various
parameters (gap penalties, etc.) available to the algorithm. The best of ail
paths (i.e., the one that most effectively links together the sub-problems into
an optimal solution) is then selected as the final alignment.

6.13 Pairwise database searching

Performing a comparison of one sequence against a database of many thou-
sands can be viewed as simply an extension of pairwise alignment.
Achieving a database search in an efficient manner is not trivial, and, as
datasets get larger, more effort is being spent to try to improve efficiency. To
perform a Needleman and Wunsch, or Smith-Waterman, alignment is prac-
ticable for small numbers of sequences, but for large database searches the
methods can become prohibitively time-consuming.

Implementations of the Smith~Waterman algorithm have been developed
for specialised computer hardware (for example, MPSrch running on the
massively parallel MasPar supercomputer); however, these systems are expen-
sive and rapidly become obsolete as hardware architectures develop and
move on. Speed of execution is certainly an issue for database searching, and
for both algorithms described so far, speed depends critically on the length of
the query sequence and on the size of the database searched. The FastA and
BLAST programs are essentially local similarity search methods that concen-
trate on finding short identical matches, which may contribute to a total
match, using implementations that address issues of execution speed, without
resorting to the use of specialised computer hardware.

6.13.1 FastA

The FastA algorithm, described by Lipman and Pearson in 1985, is based
around the idea of identifying short words, or k-tuples, common to both
sequences under comparison. K-tuple sizes of 1 or 2 residues are used in
protein searches, while larger k-tuples (up to 6 bases) are used in DNA
searches. Comparison of k-tuples, and their relative offsets between the two
' sequences, can be viewed as focusing on diagonal matches in a dynamic
programming matrix. FastA uses a heuristic approach to join k-tuples that
lie close together on the same diagonal. The regions formed in this way
contain mismatches lying between matching k-tuples (FastA regions are
analogous to segment pairs in BLAST, described below). If a significant
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FASTA version 3.0t82 November 1, 1987
Please cite: W.R. Pearson & D.J. Lipman PNAS (1988) 85:2444-2448

>gil631066|pir||JC2331 adrenergic receptor alpha 1A - human, 572 bases
Vs SWISS-PROT Protein Sequence Database (rel35) library

25083768 residues in 69113 seguences

statistics extrapolated from 50000 to 68413 sequences

Expectation_n fit: rho(ln(x))= 6.3487+/-0.000531; mu= 6.8138+/- 0.030;
mean_var=205.1722+/-43.131, Z-trim: 515 B-trim: 2588 in 1/63

FASTA (3.08 July, 1997) function (optimized, blosum matrix) ktup: 2
join: 37, opt: 25, gap-pen: -12/ -2, width: 16 reg.-scaled
Scan time: 12.420

The best scores are: initn initl opt z-sc E(68413)

SW:A1AA_HUMAN P25100 homo sapiens (human ( 572) 3836 3836 3836 2695.2 1.8e-143
SW:ALAA_RAT P23944 rattus norvegicus (ra { 561) 2691 2259 3156 2220.5 4.9e-117
SW:A1AB_RAT P15823 rattus norvegicus (ra { 515) 1618 1019 1617 1146.5 3.2e-57
SW:AIAB_HUMAN P35368 homo sapiens (human { 519) 1620 1011 1615 1145.0 3.9e-57
SW:AlAB_MESAU P18841 mesocricetus auratu ( 515) 1618 1015 1608 1140.2 7.3e-57
S 1AC_HUMAN P35348 homo sapiens {(human ( 466) 1423 935 1464 1040.1 2.7e-51
St 1AC_RAT P43140 rattus norvegicus (ra ( 466) 1439 933 1458 1035.9 4.7e-51
S 1AC_BOVIN P18130 bos taurus (bovine) ( 466) 1417 922 1443 1025.4 1.Be-50
i 1AA_ORYLA Q91175 oryzias latipes (me ( 470) 1413 956 1434 1019.1 4e-50
(

SW:A1AB_CANFA P11615 canis familiaris (d 417) 1372 772 1366 972.2 1.7e-47
A )

>>SW:Al1AA_RAT P23944 rattus norvegicus (rat). alpha-la a (561 aa)
initn: 2691 initl:; 2259 opt: 3156 Z-score: 2220.5 expect{} 4.9e-117
smith-Waterman score: 3156; 85.315% identity in 572 aa overlap

20 30 40 50 60
gil631 MTFRDLLSVSFEGPRED!

PG-ATGGGAVVGTG

40
70 80 30 100 110 120
gil631 SGI VNGTAAVGGLVVSAQG FLAAF ILMAVAGNLLVILS
SW:AlA SGEDNC 'GEPGAA- AVGGLVVSAQ FLAAFILTAVAGNLLVILS
60 70 80 90 100
130 140 150 160 170 180
gil631 VACNRHLOTVTNYFIVNLAVADLLLSATVLPFSATMEVL FCDVWAAVDVLCC
SW:AlA \-IACNRHLQ'I VINYFIVNL DLLL JLPFSATMEVL TFCDVWAAVDVLCC
120 130 140 150 160
180 200 210 220 230 240

gil631 TASILSLCTISVDRYVGVRHSLKYPAIMTERKAAAILALLWVVALVVSVGPLLGWKEPVP

490 500 510 520 530 540

SW:AlA AVSLNVPQDGAEAVICQAYEPGDYSNLRETDI
53 560

Figure 6.8 Excerpt from a typical FastA output (----- denotes excised material).

number of matches is found, FastA uses a dynamic programming algorithm
to compute gapped alignments that incorporate the ungapped regions.

A typical output from a FastA search is presented in Figure 6.8. The
name and version of the program are given at the top of the file, with the
appropriate citation to use in any published results arising from use of the
program. The query sequence is indicated (here, human alpha-1A adrener-
gic receptor), together with the name and version of the search database (in
this case, SWISS-PROT release 35). This information is followed by a print-
out of a range of parameters used by the algorithm and the run-time of the
progtam (12.42 seconds). .

Following the program statistics come the results of the database search
itself, commencing with a list of a user-defined number of matches with the
query sequence (for convenience, only 10 hits are shown, but normal
searches would seek at least the top 50). This list contains a source data-
base identifier (here, for example, SW denotes SWISS-PROT), and the
database ID code, accession number and title of the matched sequences.
The length (in amino acid residues) of each of the retrieved matches is indi-
cated in brackets. This information continues with various initial and
optimised scores calculated by the program, and, most importantly, an
Expect- or E-value (see Section 6.7.3) that allows the user to assess the like-
lihood of the match being true (an E-value approaching zero indicates that
virtually no matches with a similar score would be expected simply by
chance). In this example, the top 10 hits all have very low E-values, indicat-
ing that they are all likely to be real.

After the search summary, the output presents the complete pairwise
alignments of a user-defined number of hits with the query sequence (users
may request to see more or fewer alignments than are specified in the
search summary, or may opt not to view any alignments at all - the tree-
friendly option!). Within the alignments, identities are indicated by the
character, and similarities by a * (inspection of the program parameters at
the top of the file indicates that the scoring matrix used here was one of the

BLOSUM series). Rulers above and below the alignments denote absolute

residue numbers for the sequences (i.e., ignoring gaps).

6.13.2 BLAST

The BLAST (Basic Local Alignment Search Tool) algorithm was described
by Altschul et al. in 1990. It has become popular largely because implemen-
tations of it have been very efficient, and it has been optimised to work
with parallel UNIX architectures from an eatly stage. These characteristics
result in rapid turnaround of sequence searches from public servers.

The algorithm itself is straightforward, the important concept being that
of the segment pair. Given two sequences, a segment pair is defined as a
pair of sub-sequences of the same length that form an ungapped alignment.
BLAST calculates all segment pairs between the query and the database
sequences, above a scoring threshold. The algorithm searches for fixed-
length hits, which are then extended until certain threshold parameters are
achieved. The resulting high-scoring pairs (HSPs) form the basis of the un-
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gapped alignments that characterise BLAST output; four HSPs are illus-
trated in the example output shown in Figure 6.9.

The name and version of the program are given at the top of the file,
with the appropriate citation to use in any published results arising from
use of the program. The query sequence is indicated (again, human alpha-
1A adrenergic receptor), together with the name of the search database (in
this case, a non-redundant version of SWISS-PROT).

Following the header information come the results of the database
search, commencing with a list of a user-defined number of matches with
the query sequence (again, only 10 hits are shown, but normal searches
would seek at least 50). This list contains a source database identifier (here,
sp denotes SWISS-PROT), and the database accession number, ID code
and title of the matched sequences. The information continues with the
highest score of the set of matching segment pairs for the given sequence
(the number of HSPs is given by the parameter N). Importantly, there then
follows a probability- or p-value (see Section 6.7.3) that allows the user to
assess the likelihood of the match being true (a p-value approaching zero
indicates that the probability of this match having arisen by chance is virtu-
ally zero). In this example, ¢he top 10 hits all have very low p-values,
indicating that they are all likely to be real.

After the search summary, the output presents the ungapped pairwise
alignments of the HSPs for each of a user-defined number of hits with the
query sequence (as with FastA, users may request to see more or fewer align-
ments than are specified in the search summary, or may take the
forest-friendly option not to view the alignments at all). For each aligned
HSP, the beginning and end locations within the sequence are marked, and
identities between them are indicated by the corresponding amino acid
symbol. In this example, the program SEG has been implemented as part of
the BLAST routine. The purpose of SEG is to mask out so-called low-
complexity regions (i.e., regions within a sequence that have high densities of
particular residues, e.g. GAPGAPGAPGAP... such as occurs in repetitive,
often tightly structured sequences such as collagen), which would otherwise
result in large numbers of spurious high-scoring matches swamping the hitlist.
Regions masked by SEG are denoted by strings of Xs in the query sequence.

Gapped BLAST

The original BLAST program, described above, suffers from the limitation
that it can only produce ungapped alignments. Experience shows that often
several ungapped non-overlapping alignments result from a match to a
single database sequence (see, for example, the number of HSPs given by
the N parameter in Figure 6.9, which for these top 10 hits is greater than 1).
Intuitively, we know that these alignments may be linked together into a
larger (and perhaps biologically more realistic) alignment, in which the reli-
able HSPs are sewn together By less reliable gapped regions.

To address this shortcoming, a modification of the algorithm has been
introduced for generating gapped alignments (Altshul ef al., 1997). The new
algorithm seeks only one, rather than all, ungapped alignments that make
up a significant match, and hence speeds the initial database search.

BLASTF 1.4.11 [24-Nov-97) [Build 24-Nov-97)

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David

J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol. 215:403-10.
Query= gi16310661pir{|JC2331 adrenergic receptor alpha 1A - human (572 letters)
Database: Non-redundant SwissProt (74,037 sequences: 26,661,674 total letters)

SeArChINg. vt ettt e e done
Smallest
sum

High Probability
Sequences producing High-scoring Segment Pairs: Score PB{(N) N
5p|P25100 |A1AD_HUMAN ALPHA-1D ADRENERGIC RECEPTOR (ALPHA ... 1513 5.5e-266 4
8p|002666|A1AD_RARTT ALPHA-1D ADRENERGIC RECEPTOR (ALPHA ... 1465 3.9e-242 4
sp|P23944]AIAD_RAT  ALPHA-1D ADRENERGIC RECEPTOR (ALPHA ... 1416 2.0e-228 5
sp|P97714 |ALAD_MOUSE ALPHA-1D ADRENERGIC RECEPTOR (ALPHA ... 1411 5.le-220 3
6p|P15823(A1AB_RAT  ALPHA-1B ADRENERGIC RECEPTOR (ALPHA . 650 9.2e-130 2
sp|P18841|A1AB_MESAU ALPHA-1B ADRENERGIC RECEPTOR (ALFHA . 650 9.2e-13C 2
sp|P35368|ALAB_HUMAN ALPHA-1B ADRENERGIC RECEPTOR (ALPHA . 643 B.8e-129 2
sp|P97717 |ALAB_MOUSE ALPHA-1B ADRENERGIC RECEPTOR (ALPHA . 629 B.2e-127 2
sp|P35348 |ALAA_HUMAN ALPHA-1A ADRENERGIC RECEPTOR (ALPHA . 589 4.2e-118 2
sp10028241A1AA RABIT ALPHA-1A ADRENERGIC RECEPTOR (ALPHA ... 591 1.le-117 2

8plP25100|A1AD_HUMAN ALPHA-1D (ALPHA 1 'BPTOR) Length

Score = 89 (41.7 bits), Expect = 5.5e-266, Sum P(4) = 5.5e-266
Identities = 17/17 (100%), Positives = 17/17 (100%)

Query: 1 MTFRDLLSVSFEGPRPD 17
MTFRDLLSVSFEGPRED
sbjct: 1 MIFRDLLSVSFEGPRPD 17

Score = 1513 (708.4 bits), Expect = 5.5e-266, Sum P{4) = 5.5e-266
Identities = 299/348 (85%), Positives = 299/348 (85%)

Query: 63 EDNRXX XT WVGGLVVSAQGY FLAAFTLMAVAGNLLVILSVA 122
EDNR DVNGIAAVGGLVVSAQGVGVGVFLAAF TLMAVAGNLLVILSVA
sbict: 63 EDI LVVSAQ AAFILMAVAGNLLVILSVA 122

Query: 123 CNRHLQTVINYFIVNLAVADLLLSATVL! DVWAAVDVLCCTA 182
CNRHLOTVTNYPIVNLAVADLLLSATVLPFSATMEVLGFWAFGRAFCDVWAAVDVLCCTA
Sbjct: 123 CNRHLQTVTNYFIVNLAVADLLLSATVLPFSATMEVLGFWAFGRAFCDVWAAVDVLCCTA 182

Query: 183 SILSLCTISVDRYVGVRHSLKYPAIMTERK: KXRXXXKX PPD 242
STLSLCTTSVDRYVGVRHSLKYPAIMTERK GWKEPVPPD
Sbict: 183 SILSLCTISVDRYVG KYPAIMTERKAAATLALLWVVALVVSVGPLLGWKEPVPPD 242

Query: 243 ERFCGITEEACYAVFSSVCSFYL XXX T 302
ERFCGITEEAGYAVFSSVCSFYLPM STTRSLEAGVKRERGKASEV
Sbjet: 243 ERFCGITEEAGYAVFSSVCSFYLPMAVIVVMYCRVYVVARSTTRSLEAGVKRERGKASEV 302

Query: 303 VLRIHCRGA RSSLSVRLLKF ARTLATVVGVEVLCWF 362
VLRIHCRGAATG: ‘RSSLSVRLLKF SREKKAAKTLATVVGVFVLCWE
Shjct: 303 VLRIHCI 'RSSLSVRLLKFSREKKAAKTLAIVVGVFVLCWF 362

Query: 363 PFFFVLPLGSLFPOLKPSEGVFKVIFWLGYFNSCVNPLIVPCSSREFR 410
PFFFVLPLGSLFPQLKPSEGVFRVIFWLGYFNSCVNPLIYPCSSREFK
Sbjct: 363 PFFFVLPLGSLFPQLKPSEGVFKVTFWLGYFNSCVNPLIYPCSSREFK 410
Score = 101 (47.3 bits), Expeét - 5.5e-266, Sum P(4) = 5.58-266
Identities = 17/17 (100%), Positives = 17/17 (100%)
Query: 433 VYGHHWRASTSGLRQDC 449
VYGHHWRASTSGLRODC
Sbjct: 433 VYGHHWRASTSGLRODC 449
Score = 387 (181.2 bits), Fxpect = 5.5e-266, Sum P(4) = 5.5e-266
Identities = 78/93 (83%), Positives = 78/93 (83%}

RRPTTQLRAKVSSLSHKIPXXX X

Query: 480 MQAPVA! EPSAF XSEV 539
MOJ SRRKPPSAF LGPFRRPTTQLRAKVSSLSHKI SEV
Sbjct: 480 MQAPVASRRKPPSAFREWRLLGPFRRPTTQLRAKVSSLSHKIRAGGAQRAEAACAQRSEV 539

Query: 540 EAVSL CQAYELADYSNLRETDI 572
EAVSLGVPHEVAEGATCQAYELADYSNLRETDI
Sbjct: 540 EAVSLGVPHEVAEGATCQAYELADYSNLRETDI 572

= 572

Figure 6.9 Excerpt from a typical BLAST output (----- denotes excised material).
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Dynamic programming is used to extend a central pair of aligned residues
in both directions to yield the final gapped alignment. Having dropped the
requirement to find all ungapped alignments independently, the new algo-
rithm is three times faster than its. predecessor. Further extensions to
BLAST, which effectively provide a hybrid of pairwise and multiple align-
ment methods, are discussed in the following chapter.

6.14 Summary

® Database interrogation can take the form of text queries or sequence
similarity searches. To identify an evolutionary relationship between a
newly determined sequence and a known gene family, the extent of
shared similarity must be assessed.

® An algorithm is a set of steps that define a computational process; a
program is an implementation of an algorithm. There may be different
implementations of the same algorithm, which ought to (but may not!)
give the same results.

® The simplest way to compare two sequences is to align them by insert-
ing gap characters to bring them into vertical register. Counting the
matched character positions gives a naive alignment score.

® Computing alignment Scores is more exacting for long, dissimilar
sequences with disparate lengths. Scoring penalties are employed to
minimise the number and length of gaps, and matrices are used to score
both identical and similar residues.

® Identity matrices are sparse (most matrix elements score zero) and so have
poor diagnostic power. Similarity matrices weight non-identical residue
matches according to observed substitution rates across large evolutionary
distances. Such matrices are noisy because they boost both random
matches and weak signals. Distinguishing low-scoring biological signals
from high-scoring noise is a central challenge of sequence analysis.

® Scores in the Dayhoff Mutation Data Matrix are based on the concept
of the Point Accepted Mutation (PAM). An evolutionary distance of
250 PAMs gives similarity scores equivalent to 20% matches remaining
between two sequences. This is the Twilight Zone, hence PAM 250 is
often used as the default matrix in comparison programs.

e Scores in the BLOSUM matrices are derived from observed substitu-
tions in blocks of aligned sequences from the BLOCKS database. They
were designed to detect distant similarities more reliably than the
Dayhoff matrices, which can only infer distant relationships because
their substitution rates were derived from highly similar sequences.

e That a program may align two sequences is not proof that a relationship
exists between them. Statistical values are used to indicate the level of
confidence that should be attached to an alignment; for pairwise align-
ments, these are usually formulated as probability (p) values or
expected frequency (E) values.

A basic method of comparing two sequences is the dotplot. This is a
graph in which the sequences lie on the x- and y-axes, and crosses/dots
are plotted at all positions where identical residues are observed. Bor
identical sequences, this leads to an unbroken diagonal line across the
plot, while similar sequences give rise to broken diagonals.

Alignments are models that reflect different biological perspectives. One
model is therefore no more right or wrong than another. Two general
approaches consider similarity (a) across the full extent of sequences (global
alignment - the Needleman and Wunsch algorithm) and (b) across only
parts of the sequences (local alignment - the Smith-Waterman algorithm).

The Needleman and Wunsch and Smith-Waterman algorithms exploit
dynamic programming, whereby a solution to a problem is built by solv-
ing smaller, tractable sub-problems. The optimal alignment is chosen
from a set of high-scoring alternatives. Such methods are prohibitively
time-consuming for large numbers of sequences.

The FastA and BLAST programs are local similarity search methods that
concentrate on finding short identical matches, which may contribute to
a total match. Speed issues are addressed using heuristics. A recent, faster
implementation of BLAST is able to generate gapped alignments.

6.15 Further reading

Alignment methods
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USA, 89, 10915-10919.
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CHAPTER SEVEN

Multiple sequence
alignment

7.1 Introduction

Pairwise comparison is fundamental to sequence analysis. However, analy-
sis of groups of sequences that form gene families requires the ability to
make connections between more than two members of the group, in order
to reveal subtle conserved family characteristics. The process of multiple
alignment can be regarded a% an exercise in enhancing the signal-to-noise
ratio within a set of sequences, which ultimately facilitates the elucidation
of biologically significant motifs. In this chapter, we review a range of differ-
ent approaches to multiple alignment, from fully manual methods to widely
used automatic techniques.

7.2 The goal of multiple sequence alignment

The goal of multiple sequence alignment is to generate a concise, informa-
tion-rich summary of sequence data in order to inform decision-making on
the relatedness of sequences to a gene family. Sometimes, indeed, multiple
alignments may be used to express the dissimilarity between a set of
sequences. Alignments should be regarded as models (in both a mathemati-
cal and a biological sense) that can be used to test hypotheses. Just as we
saw that there is nothing inherently correct, or incorrect, about any particu-
lar pairwise alignment, we see here that the same maxim holds for multiple
alignments. The question always to ask of an alignment is ‘Does this model
accurately reflect the known biological evidence?’

In order to address this question, the sequence analyst needs a number
of tools; in addition to tried-and-tested automatic programs, arguably the
most important of these is a good manual multiple sequence editor.

It should be appreciated that alignment models may be generated from
many different starting points, reflecting not only the choice of alignment

»

tool (e.g,, whether manual or automatic), but also, just as importantly, the

nderlying biological basis. for the comparison. Essentially, there are two
main perspectives on the construction of alignments: the first approach is
guided by the comparison of similar strings of amino acid residues (for
example, taking into account physicochemical properties, mutability data,
etc.); the second results from comparison at the level of secondary or tertiary
structure, where alignment positions are determined solely on the basis of
structural equivalence. Alignments generated from these rather different
viewpoints often show significant disparities, begging the all-too-familiar
question, ‘Which is correct?’ The answer is that both are equally valid; each
is a model that reflects a specific view of the known biology.

Both sequence- and structure-based alignments are imperfect models, as nei-
ther can reflect all of the evidence. This should not be surprising, as
protein sequences are closer to DNA, where on-going genetic events actually
occur, whereas protein structure reflects a biological state after post-translational
modification, and other molecular interactions, have lent a protein its stable
native fold. Criticisms of purely sequence-based alignments are usually framed by
~ comparison with corresponding structural alignments, which are often assumed
to be ‘correct. Obviously, if structural data are available, they may be helpful in
guiding the analysis. However, the more usual situation is that no reliable struc-
tural data exist (i.e., from a physical experiment). Here, the analyst must rely on
sequence similarity, together with biochemical evidence, in order to build a satis-
factory multiple sequence model.

7.3 Multiple sequence alignment: a definition

A multiple sequence alignment is a 2D table, in which the rows represent
individual sequences, and the columns the residue positions. Sequences are
. laid onto this grid in such a manner that (a) the relative positioning of
- residues within any one sequence is preserved, and (b) similar residues in
. all the sequences are brought into vertical register (see Table 7.1). We call
the residue position in an unaligned sequence, the absolute position (for
example, if residue 3 in sequence I is Glycine, then absolute position I3 is

Table 7.1 Definition of multiple sequence atignment. Here, a small alignment of five
short sequences (I-V) is presented. The sequences have been arranged so that the most

- similar residues are brought into vertical register, through the use of gaps (-’ characters),
- while the order of residues in each sequence.is preserved.

1 2 3 4 5 6 7 8 9 10
1 Y D G G A v - E A L
I Y D G G - - - E A L
m F E G G I L v E A L
I\ F D - G I L v Q A v
v A E G G A v v Q A L
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always Glycine - a chemical bond would need to be broken to change it),
By contrast, we call the aligned residue position, the relative position. Alj
residues in any single colunm of an alignment will have the same relative
position and, almost certainly, different absolute positions (unless all the
sequences are identical!). This may seem perverse, but all that needs to be
considered is that the absolute position is a property of the sequence, while
the relative position is a property of the alignment.

7.4 The consensus

The alignment table can be summarised in a single line - a pseudo-sequence
- normally added at the end of the alignment. This pseudo-sequence consists
of symbols that summarise the character of the alignment at each vertical
position, or column, as shown in Table 7.2.

Table 7.2 Multiple alignment and the consensus sequence. The consensus is shown on
the last line of the alignment table. Here, the consensus has been calculated using the
following rules: if only one residue symbotl is present, use an uppercase letter in the
consensus; if the majority of symbols are one letter, use a lowercase letter; if equal
numbers of different residues are present, show all residues in the consensus.

1 2 3 4 5 6 7 8 9 10
1 y D G 6 A v - 3 AL
m|oy D G G - - - E AL
m| F E G 6 1 L v E AL
V| F D - G 1 L v a AV
v Y E G G A v v a AL

y d G 6 M VL oV e AL

The consensus need not take the form of a single sequence line, how-
ever. Some methods use a weight matrix approach to summarise the whole
alignment (e.g., profiles - see below). Other methods automatically seek out
conserved, ungapped blocks of residues within alignments, which are then
converted to position-specific scoring matrices (e.g., blocks). Finally, highly
specific, relatively short ungapped motifs are manually extracted from align-
ments and used to generate unweighted scoring matrices (e.g., fingerprints).
Profiles, blocks and fingerprints are discussed in detail in Chapters 3 and 8.

7.5 Computational complexity

Pairwise alignment techniques generally use processing time and memory
space related to the product of the lengths of the sequences being compared
(O(m,m,), where O is known as the order of the time taken by the algorithm,
and m, and m, are the sequence lengths). By extending pairwise comparison to
three dimensions (by adding another axis to the 2D scoring matrix) we have a
time complexity of O(m, m,ms), where m, is the length of the third sequence.

When considering more sequences, the time complexity becomes
mym,s...m), where m is the length of the last sequence in the compari-
son set, or more concisely O(n"), where 7 is the number of sequences and
mis the length of the sequences. Thus, the time taken to compute an align-
ment rises exponentially the more sequences there are to be aligned.

Various methods have been developed that use heuristics to reduce the
ime to find good (not necessarily optimal) alignments (e.g., using algo-
ithms that exploit sub-sequences, trees, consensus sequences, clustering
nd templates). Some approaches combine dynamic programming with
euristics. Such techniques include aligning all pairs of sequences, aligning
ach sequence with one specific sequence, aligning sequences in arbitrary
order, or aligning sequences following the branching order of a phylo-
senetic tree. The results of such approaches tend not to be optimal, and
ormally require at least 7 — 1 pairwise alignments, where # is the number

f sequences in the set to be aligned.

7.6 Manual méthods

Manual methods tend to be glossed over in the literature because the
- results of human tinkering with sequences are regarded as being subjective.
However, we should not be blind to the bias introduced into scientific
nalysis of a set of sequences by relying entirely on one computational
method. Ultimately, to combine the results of tried-and-trusted programs
~ with biological evidence gleaned from experiment or from examination of
- the literature, does necessitate manual intervention.

Numerous sequence analysis packages have been developed, some of
hich offer manual alignment editors (the best offer a choice of manual
editing facilities coupled with popular automatic algorithms). To facilitate
' interactive alignment, colour is often used to assist the eye in spotting simi-
larities. Many editors use non-intuitive colouring schemes to depict amino
~acid properties, resulting in the loss of much of the useful information
sequestered in the alignment. Appropriate choice of colour, however, allows
user-defined properties to be depicted in an immediately informative way,
no matter how large the alignment; and it offers a rapid and informed
means of selecting residues suitable for mutagenesis studies by revealing
regions crucial to the structure or function of a protein (e.g., critically con-
served residues, or residue groups, can be seen at a glance; unusual
mutations may stand proud against a smooth backdrop of conservation;
and mutational hotspots can be readily pinpointed). Although the actual
choice of colour is ultimately a subjective one, schemes that are consistent
with standard physical modelling components and 3D graphics packages
tend to be the most helpful. An example colour scheme is given in Table 7.3.

Another important feature of alignment programs is the ability to derive
a quantitative evaluation of the relatedness of all sequence pairs (e.g.,
through calculation of residue identities, or of combined identities and simi-
larities). This allows an at-a-glance summary of the evolutionary distances
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Table 7.3 Typical amino acid property groupings and example alignment colouring
scheme, broadly consistent with modelling components and 3D graphics packages.

Residue Property . Colour
Asp, Glu ‘Addic red
His, Arg, Lys Basic blue
Ser, Thr, Asn, Gln Polar neutral green
Ala, Val, Leu, Ile, Met Hydrophobic aliphatic white
Phe, Tyr, Trp Hydrophobic aromatic purple
Pro, Gly Special structural properties brown
Cys Disulphide bond former yellow

between aligned sequences, and may help to assess alignment quality (e.g.,
if similarity values appear unexpectedly low, either the sequences are truly
distant relatives, or the alignment contains errors).

Point-and-click windowing interfaces are common in recent packages,
where, for example, the alignment editor sits at the centre of a range of
sequence analysis tools (such packages are discussed in more detail in
Chapter 10).

As we will see, in Section 7.9, alignment quality from automatic methods
tends to be greatest when similar sequences of similar length are being com-
pared, and poorest when aligning distantly related sequences.with disparate
lengths. Manual alignment editors are thus essential tools for polishing the
output from automatic programs. Besides, it is always good working practice
to use different methods for sequence analysis, and to combine results of the
different approaches. As a learning aid, the student should therefore take
every opportunity to work with sequences in a good manual alignment
system and compare results with several automated methods.

7.7 Simultaneous methods

The essence of simultaneous methods is to align all the sequences in a given
set at once, rather than taking a progressive approach and aligning pairs of
sequences, or building sequence clusters. The basic idea is an extension of
the 2D dynamic programming matrix, presented in Chapter 6, to three or
more dimensions; the number of dimensions in the matrix reflects the
number of sequences to be aligned. These methods tend to have exacting
computer system resource requirements and, as a result, work best on small
sets of short sequences.

7.8 Progressive methods

In this category, probably the best known program is Clustal, which has its
roots in the 1987 method of Feng and Doolittle. As we have seen, using a

multi-dimensional dynamic programming matrix is not practical for calculat-
ing alignments on realistic sets of data. Most programs use heuristics to arrive
- at an alignment in a timely and cost-efficient manner. The Clustal approach
exploits the fact that similar sequences are likely to be evolutionarily related.
Thus, the method aligns sequences in pairs, following the branching order of
a family tree. Similar sequences are aligned first, and more distantly related
sequences are added later. Once pairwise alignment scores for each sequence
relative to all others have been calculated, they are used to cluster the
sequences into groups, which are then aligned against each other to generate
the final multiple alignment. As.part of its operation, the program can pro-
duce information required to produce a phylogenetic tree.

Clustal has been through various revisions; ClustalW, described by
Thompson et al. in 1994, uses the positioning of gaps in closely related
sequences to guide the insertion of gaps into those that are more distant.
Similarly, information compiled during the alignment process about the
variability of the most similar sequences is used to help vary the gap penal-
ties on a residue and position-specific basis.

Since Clustal is widely and freely available, it is frequently used in
- sequence analysis, together with a variety of other tools. Thus, Clustal
accepts alignments in several formats; EMBL/SWISS-PROT, NBRF/PIR,
Pearson/FastA, GCG/MSEF, and Clustal’s own format. Output may be
requested in Clustal format or in formats compatible with the GDE, Phylip

or GCG packages.

: Part of a typical alignment of a set of adrenergic G-protein-coupled
receptors (GPCRs) is illustrated in Figure 7.1; the alignment was generated
using default parameters, but toggling the output to GCG/MSF format, as
shown. The sequences are clearly highly similar and of similar lengths,
resulting in a high-quality alignment. From the region depicted, it is evident
that there are two short gapped regions: in the two A2AA receptors, each
has a three-residue insertion (GPQ and GQQ) relative to the other
sequences, hence the region of gaps at the end of the first paragraph; and in
the two A2AB receptors, each has a single residue insertion, resulting in the
gaps at the end of the second paragraph.

7.9 Databases of multiple alignments

The power of multiple sequence analysis lies in the ability to draw together
related sequences from various species and express the degree of similarity
in a relatively concise format. The wealth of information presented in align-
ments can also be used to enhance the sensitivity of database searches (see
Section 7.10); hence, demand for readily available, high-quality alignments
has led to the production of multiple alignment databases.

Today, there are numerous alignment databases accessible via the Web:
© some of these result from automated approaches to cluster the primary
sequence resources into families; others result from endeavours to produce
gene family discriminators for inclusion in secondary databases, via manual
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A1AA_HUMAN SLKYPAIMTE RKAAAILALL WVVALVVSVG PLLGWKEPVP P
AlAA RAT SLKYPAIMTE RKAAAILALL WAVALVVSVG PLLGWKEPVP
A1AB_HUMAN SLQYPTLVTR RKAILALLSV WVLSTVISIG PLLGWKEPAP
AlAB_RAT SLOYPTLVTR RKAILALLSY WVLSTVISIG PLLGWKEPAP
AlAC_HUMAN PLRYPTIVTQ RRGLMALLCV WALSLVISIG PLFGWRQPAP
AlAC_RAT PLRYPTIVTQV RRGVRALLCY WVLSLVISIG PLFGWRQPAP e
A2AA_HUMAN AIEYNLKRTP RRTKAIIITV WVISAVISFP PLISIEKKGG GGGPQPAEPR
A2AA_RAT AIEYNLKRTP RRIKAIIVTV WVISAVISFP PLISIEKKGA GGGQQPAEPS

Hwa 2z

A2AB_HUMAN ALEYNSKRTP RRIKCITTTV WLIAAVISLP PLIYKGDQGP QP...RGRPQ
A2AB_RAT ALEYNSKRTP CRIKCIILTV WLIAAVISLP PLIYKGDQRP DA...RGLPQ
A2AC_HUMAN AVEYNLKRTP RRVKATIVAV WLISAVISFP PLVSLYRQPD G....AAYPQ
A2AC_RAT AVEYNLKRTP RRVKATIVAV WLISAVISFP PLVSFYRRPD G....AAYPQ
A2AD_HUMAN AVEYNLKRTP RRVKATIVAV WLISAVISFP PLVSLYRQPD G....AAYPQ

AlAA _HUMAN CGITEEAGYA VFSSVCSFYL PMAVIVVMYC RVYVVARST. TRSLEAGVKR
AlAA_RAT  CGITEEVGYA IFSSVCSFYL PMAVIVVMYC RVYVVARST. TRSLEAGIKR
A1AB_HUMAN CGVTEEPFYA LFSSLGSFYI PLAVILVMYC RVYIVAKRT. TKNLEAGVMK
A1AB_RAT CGVTEEPFYA LFSSLGSFYI PLAVILVMYC RVYIVAKRT. TKNLEAGVMK
A1AC_HUMAN CQINEEPGYV LFSALGSFYL PLAIILVMYC RVYVVAKRE. SRGLKSGLKT
CQINEEPGYV LFSALGSFYV PLAIILVMYC RVYVVAKRE. SRGLKSGLKT
A2AA_HUMAN CEINDQKWYV ISSCIGSFFA PCLIMILVYV RIYQIAKRR. TRVPPSRRGP
CKINDQKWYV ISSSIGSFFA PCLIMILVYV RIYQIAKRR. TRVPPSRRGP
A2AB_HUMAN CKLNQEAWYI LASSIGSFFA PCLIMILVYL RIYLIAKRSN RRGPRAKGGP
A2AB_RAT CELNQEAWYI LASSIGSFFA PCLIMILVYL RIYVIAKRSH CRGLGAKRGS
A2AC_HUMAN CGLNDETWYI LSSCIGSFFA PCLIMGLVYA RIYRVAKRR. TRTLSEKRAP
A2AC_RAT CGLNDETWYI LSSCIGSFFA PCLIMGLVYA RIYRVAKLR. TRTLSEKRGP
A2AD_HUMAN CGLNDETWYI LSSCIGSFFA PCLIMGLVYA RIYRVAKLR. TRTLSEKRAP

Figure 7.1 Typical multiple alignment output from ClustalW (in MSF format). The result
shows part of an alignment of adrenergic receptors, the sequences of which are highly similar
and of similar lengths. The output is read from left to right, in paragraphs of 50 residues,
formatted in 10-residue chunks; gaps are denoted by the *." character. Two small insertions
are highlighted.

or automatic methods. It is beyond the scope of this book, and perhaps of
little value, to attempt to describe all such resources; but it is perhaps
instructive to reflect on the quality we might expect from manually and
automatically derived alignments.

Let us return to the example of the adrenergic GPCRs discussed in
Section 7.8. The GPCRs constitute a superfamily that, in addition to the
adrenergic receptors, includes many other receptor families (e.g., dopamin-
ergic, muscarinic, olfactory, gustatory, visual, cannabinoid, opioid, and
many more). There are now more than 1000 GPCR sequences known,
encompassing a large spread of the evolutionary tree; creating alignments
of such large numbers of diverse sequences is a non-trivial task. Consider,
then, an excerpt from an alignment provided by one of the automatically
derived multiple alignment databases (Pfam), shown in Figure 7.2. The
figure focuses on a portion of the alignment that includes several adrenergic
receptors, together with receptors for dopamine and octopamine, and
depicts precisely the same region as illustrated in Figure 7.1.

A1AA_HUMAN - +AILALL.WVV.AL.VVSVGP.LLG. . .WKEPV. . PPDE. , . .RF
ALAA_RAT + +AILALL.WAV.AL.VVSVGP.LLG. . .WKEPV. . PPDE. . . .RF
AlAB_CANFA - -LALLGV.WVL.ST.VISIGP.LLG. . .WKEPA. .
A1AB_HUMAN - -LALLSV.WVL.ST.VISIGP.LLG...WKEPA

A1AB_MESAU « +LALLSV.WVL.ST.VISTGP.LLG. . .WKEPA. .

AlAB_RAT +.LALLSV.WVL.ST.VISIGP.LLG. . .WKEPA. .
AlAC_BOVIN + .MALLCV.WAL.SL.VISIGP.LFG. . .WRQPA. .
AlAC_HUMAN - -MALLCV.WAL.SL.VISIGP.LFG. . .WRQPA. ,

ALAC_RAT +RALLCV.WVL. SL.VISIGP.LFG. . .WRQPA. .

OAR_DROME -.LLISGV.WLL.SL.LISSPP.LIG. ..W.NDW. .
DIDR_CARAU - -VMISGA.WIL.SV.LISFIPVQLK. . .WHKAQ. .
DIDR_FUGRU - .LMISVA.WTL.SV.LISFIPVQLN. . .WHKAQ. .
DADR_DIDMA .. ILISVA.WTL.SV,LISFIPVQLN. . .WHKARPLSSPDG, . NVS
AlAA_HUMAN

AlAA_RAT

A1AB_CANFA

AlAB_HUMAN

ALlAB_MESAU

AlAB_RAT

A1AC_BOVIN

A1AC_HUMAN

AlAC_RAT

OAR_DROME .

D1DR_CARAU .. .DLPTDNC.

D1DR_FUCRU . .LPPDNCD. .

DADR_DIDMA . .SQDE. . .TMDNCD. .

A1AA_HUMAN .. LEMAVIV.VMY.CRV.

ALAA_RAT - LEMAVIV.VMY.CRV.

A1AB_CANFA . IPLAVIL.VMY,CRV.

A1AB_HUMAN . IPLAVIL.VMY.CRV.

AlAB_MESAU . IPLAVIL.VMY.CRV.

AlAB_RAT « IPLAVIL.VMY.CRV. . P
A1AC_BOVIN . VPLTIIL.VMY.CRV. . .ESRGLKS . GLKT
A1AC_HUMAN - LPLATIL.VMY.CRV. . .ESRGLKS . GLKT
AlAC_RAT - VBLAIIL.VMY.CRV, . . ESRGLKS . GLKT
OAR_DROME . IPLAINT, IVY.IEI. . . .RLRERA. .RANK
D1DR_CARAU - IPVAIMI,VTY.TQI.YRI....AQK..QIRRIS. .ALER
D1DR_FUGRU . IPVAIMT ,VTY.TRI.YRI. «.QIRRIS..ALER
DADR_DIDMA .. IPVAIMI.VTY.TRI.YRI....AQK..QIRRIS..ALER

Figure 7.2 Excerpt from an atignment of 597 G-protein-coupled receptors (GPCRs) taken
from the Pfam database. The result depicts the same part of the alignment as shown in
Figure 7.1, but the alignment has been extended to include other members of the GPCR
superfamily; for convenience, the bulk of the alignment has been excised, as indicated by
“....." at the end of each paragraph. The centre of the atignment (highlighted) is

poorly defined; the algorithm has not coped sensibly with the numerous gaps arising from
insertions accumulated in other family members (not shown), and consequently leaves many
residues and residue pairs stranded in a meaningless sea of gaps.

By contrast with the family of closely related adrenergic receptors
(Figure 7.1), within the superfamily, sequences are highly divergent and
are of disparate lengths. Consequently, large numbers of gaps are needed
to bring equivalent residues into the correct register; where insertions
have occurred “in excised sequences relative to those shown, the
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alignment shows ‘apparently’ redundant gaps. From the paragraphs
depicted, it is clear that the receptors have accumulated many insertions,
especially in the centre of the alignment, producing a considerably
extended output by comparison with Figure 7.1. Automatic alignment
algorithms cannot easily resolve such fuzzy regions, and therefore tend to
leave many single residues and residue pairs stranded, or widowed, from
the well-aligned core, as illustrated by the highlighted region spanning the
second and third paragraphs. Such over-zealous gap insertion is the
hallmark of automatic methods, leading to ill-defined regions within
alignments, with little or no biological meaning.

This result particularly spwtlights the danger of using unsupervised, itera-
tive automatic alignment procedures (the basis of the Pfam approach); with
each iteration, results have the potential to include false-positive matches,
which with successive iterations produce more and more corrupt alignments;
eventually a point is reached where random sequences will make equally
good, or better, matches than distantly related true-positive family members.

Let us now consider an alignment of the same superfamily, this time taken
from a database of manually derived alignments (the seed alignments for the
PRINTS database). For comparison, Figure 7.3 depicts the same region of the
GPCR alignment shown in Figures 7.1 and 7.2 (again focusing on a portion that
largely includes adrenergic receptors, together with receptors for dopamine and
octopamine). By contrast with the automatically derived alignment illustrated
in Figure 7.2, this hand-edited result endeavours to constrain gap insertion in
such a way that residue widows are avoided and the integrity of the alignment
core is not compromised. The resulting alignment is therefore more compact
and, hopefully, conveys greater biological meaning.

Compare, for example, the well-conserved region highlighted in the
second paragraph. The equivalent region is similarly highlighted in Figure
7.2, where it looks strikingly different, fragmented as it is by so many inser-
tions. Thus, while it is evident that the alignment shown in Figure 7.3 is
characterised by two highly conserved domains (which, in fact, are mem-
brane-spanning, and probably a-helical), it is difficult to draw similar
conclusions from Figure 72 - although there are two regions where gap
insertion is less abundant, nevertheless no ungapped motif longer than
seven residues can be found. !

The differences seen in these alignments are extremely important. The
contrasting results shown in Figures 7.1 and 7.2 demonstrate that automatic
alignment of similar sequences is generally reliable, but that once distantly
related sequences are included, the ability to produce faithful biological repre-
sentations is compromised. This conclusion is supported by the striking
differences observed between the alignments shown in Figures 7.2 and 7.3,
where it is clear that the most reliable route to a biologically sensible result is
via manual editing. This has important consequences for secondary database
derivation, when we consider that the illustrated alignments are drawn from
publicly available pattern databases, both of which purport to provide reliable

’7 OAR_DROME ~ PINYAQ...KRTVGRVLLLISGVWLLSLLISSP.PLIG.WND. .. .. WPDEFTSATP. . .
D2DR_RAT PMLYNTR. . YSSKRRVTVMIAIVWVLSFTISCP -LLFG.LNN. ..T,DQNE

D3DR_RAT  PVHYQHGTGQSSCRRVALMITAVWVLAFAVSCP.LLFG.FNT. . TGDBSI. ........
DADR_RAT PFQYER. . . KMTPKAAFILISVAWTLSVLISFI , PVOLSWHKAK . PTWPLDGNFTSLEDT
DBDR_RAT  PFRYER...KMT WTLSILISFI.FVQL QGOEGLLSNGTFH
AlAB_RAT SLQYPT. .. LVTRRKAILALLSVWVLSTVISIG.PLLG.WKE. . .. .. PAPNUDKE. ...
B1AR_RAT PFRYQS. . . LLTRARARALVCTVWATSALVSFL . PLLMHWW. . , . . RAESD. EARRCYND
B2AR_HUMAN PFKYQS. ..LLTKNKARVITLMUWIVSGLTSFL.PIQMHWY. . . . .RATHO. EAINCYAN
B2AR_RAT  PFKYQS...LLTKNKARVVILMVWIVSGLTSFL.PIQMHWY. .. ..RATHK.QATDCYAX
B3AR_RAT PLRYGT. . . LVTKRRARAAVVLVWIVSATVSFA . PTMSQWW. . . . . RVGADAEAQECHSN
SHTA_RAT PIDYVN. . KRTPRRAAALISLTWLIGFLISIP.PMLG.WRTPEDRSDPDA. . . . ... ..

SHTD_RAT  ALEYSK...RRTAGHAAAMTAAVWAISICISTP.PLF..WRQ..ATAHEEMSD. .-
SHT2_RAT  PIHHSR...FNSRTKAFLKIIAVWTISVGISMPIPVFG.LODDSKVFKEGS.........

OAR_DROME CELTSQRG. . , « - YVIYSSLGSFFIPLAIMITVYIETFVATRRRLRERARANK
D2DR_RAT +CIIANEA. -FVVYSSIVSFYVPFIVILLVYIKIYIVLRKRRKR, . - ...
D3DR_RAT .. - ..CSISNPD +FVIYSSVVSFYVPFGVTVLVYARIYIVLRORORK .
DADR_RAT  ED..,.....DNCDTRLSRT -YAISSSLISFY TPVATMIVTYTSIYRIAQKQIRR.
DBDR_RAT  EEGWELEGRTENCDSSLNRT YATSSSLISFYIPVAIMIVTYTRIYRIAQVOIRR.

ALAB_RAT -+ .CALFCSLGSFY IPLAVILVMYCRVY IVAKRTTEN .
BLAR_RAT - - .YATASSVVSFYVPLCIMAFVYLRVFREAQKQVKK .
B2AR_HUMAN -+ . YATASSIVSFYVPLVIMVFVYSRVFQEAKRQLOK .
B2AR_RAT - . .YATASSIVSFYVPLVVMVFVYSRVFQUAKRQLOK .
B3AR_RAT « . .YALLSSSVSFYLPLLVMLEVYARVEVVAKRQRRF .
SHTA_RAT « - .YTIYSTFGAFY IPLLIMLVLYGRIFRAARFRIRK .
SHTD_RAT « .YTIYSTCGAFY IPSILLITLYGRIYVAARSRILN.

SHT2_RAT FVLIGSFVAFFIPLTIMVITYFLTTKSLOKEATL.

Figure 7.3 Excerpt from an alignment of 687 G-protein-coupled receptors (GPCRs) taken
from the PRINTS database. The result depicts the same part of the alignment as shown in
Figures 7.1 and 7.2, but the alignment has been extended to include other members of the
GPCR superfamily; for convenience, the bulk of the alignment has been excised, as indicated
by“....." at the end of each paragraph. Part of the figure, corresponding to the centre of the
alignment shown in Figure 7.2, is highlighted: although this appears to be a poorly defined
region in the automatically generated result, here it is evident that this region is in fact well
conserved. Manual editing clearly allows sensible, restrained gap insertion, and helps to
preserve the biological integrity of the alignment.

gene family discriminators. On the evidence of these alignments, the power of
discrimination from the automatically generated alignment must be doubtful.

7.10 Searching databases with multiple alignments

In the previous chapter, we ended by considering different methods of
searching a database for similarities to a single sequence query.
Comparable approaches may be taken with multiple sequence alignments,
which, as we have seen, may be processed into concise family descriptors
or patterns (such as regular expressions, profiles, blocks, fingerprints or
HMMs). Various computational techniques are used to search these com-
plex data structures against a database, some of which are described in
more detail in Chapter 8.

The advantage of using representations of multiple sequence alignment
data in database searches is that more information is used, resulting in
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higher sensitivity (improved signal-to-noise ratio) compared with pairwise
searches. The disadvantage, or trade-off, is that such searches take longer to
run and the results are often more difficult to interpret.

In fact alignment searches tend to be performed only when pairwise
searches have either returned already-known gene family members or pro-
vided no plausible leads at all. Alignment or pattern searching is then the
next logical step to finding biologically significant matches in the Twilight
Zone of sequence similarity.

7.10.1 PSI-BLAST

A recent, hybrid approach, incorporating elements of both pairwise and
multiple sequence alignment methods, is Position-Specific Iterated or
PSI-BLAST (Altschul et al., "1997). While it is generally recognised that
motif searches are the most sensitive and selective, able to detect weak
but biologically meaningful similarities, their principal drawback is that
methods to derive diagnostic family motifs can be very time-consuming
and demand levels of understanding that render them inappropriate for
general use. The innovation of the PSI-BLAST extension is that, follow-
ing an initial database search, it allows automatic creation of
position-specific profiles from groups of results that match the query
above a defined threshold. Running the program several times can fur-
ther refine the profile and increase search sensitivity.

As with other iterative methods, however, PSI-BLAST is not a complete
solution, but has disadvantages as well as its many advantages. For exam-
ple, unless low-complexity segments are masked, automated iterative
searches have a tendency to degenerate to compositionally biased
sequences (such as collagen, homopolymers, etc.), leading to profile dilu-
tion (Holm, 1998). Essentially, once a false sequence has crept into a
profile, the search will thereafter be biased to accept many more unrelated
sequences (see Section 79). It is therefore essential to inspect and validate
homology relationships inferred from unsupervised iterative profile
searches in order to be able to eliminate erroneous matches.

In Chapters 6 and 7, we have examined individual methods for pairwise
and multiple sequence alignment, and have seen some of the pitfalls of blind
reliance on purely automated approaches. In the following chapter, we
review, in more detail, how muiltiple sequence information can be used to
generate potent descriptors of family relationships, once again considering
the relative pros and cons of both manual and automatic approaches.

7.11 Summary

® Analysis of groups of sequences that form gene families requires the
ability to make connections between more than two family members.
Multiple alignments are used to reveal conserved family characteristics.

Multiple, like pairwise, alignments are simply models. There is nothing
mherer}tly.correct or incorrect about a particular alignment. The impor-
tant point is whether the model accurately reflects known biological data.

Sequence- and structure-based alignments are both imperfect models,
since neither can reflect all levels of biological information. Both
approaches are valid representations of particular aspects of biology,
and neither should therefore be considered to represent some ultimate
truth or gold standard.

A multiple alignment can be defined as a 2D table in which the rows rep-
resent individual sequences, and the columns the residue positions. A
residue position within an unaligned sequence is termed the absolute
position, while the aligned residue position is termed the relative position.

The time taken to compute an alignment rises exponentially with the
number of sequences to be aligned. Some methods use heuristics to
reduce the time to find good (not necessarily optimal) alignments.

Manual methods are often dismissed as being subjective. However, the
resghsl of automatic alignment programs almost invariably require manual
polishing, and hence alignment editors have become essential tools.

Simultaneous multiple alignment methods align all sequences within a
set at once, and hence are very time-consuming; they work best on
small sets of short sequences.

Progressive multiple alignment methods align sequences in pairs, fol-
lowing the branching order of a family tree. The most similar are
aligned first, and more distantly related sequences are added later. By
exploiting likely evolutionary relationships, such methods can handle
more realistic data-sets in a timely and cost-effective manner.

There are numerous alignment databases accessible via the Web. These
result from different approaches: e.g., the application of automated
methods to cluster the primary sequence resources into families, or
from endeavours to produce gene family discriminators for inclusion in
secondary databases.

Alignments produced by purely automatic (especially iterative) methods
should be handled with care, especially in cases where sequence simi-
larity is low; they often result in over-zealous gap insertion and can
produce misalignments.

Various computational techniques have evolved to search primary
sequence databases using alignment-based data structures. A recent
hybrid approach, incorporating elements of both pairwise and multiple
alignment methods, is Position-Specific Iterated or PSI-BLAST.
Although fast to run, it has the disadvantage that the automated itera-
tive search may degenerate and lead to profile dilution.
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Alignment methods

FENG, D.-F. and DooLITTLE, R.F. (1987) Progressive sequence alignment as
a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution,
25, 351-360.

FENG, D.-F. and DooLITTLEs R.F. (1996) Progressive alignment of amino
acid sequences and construction of phylogenetic trees from them. Methods
in Enzymology, 266, 368-382.

THOMPSON, J.D., HicGiNs, D.G. and GissoN, TJ. (1994) CLUSTAL W:
Improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Research, 22(22), 4673-4680.

Secondary database
searching

8.1 Introduction

Building on the themes of primary database searching and multiple sequence
alignment, this chapter deals with the analysis methods that underlie sec-
ondary database searches. We introduced secondary databases in a general
way in Chapter 3, highlighting aspects of database content and format. Here,
we describe in more detail the types of information stored in the major
resources, including regular expressions, profiles, fingerprints, blocks and
Hidden Markov Models. The aim is to provide an understanding of the prin-
cipal diagnostic strengths and weaknesses of the different techniques, which
_must always be borne in mind when interpreting search results.

8.2 Why bother with secondary database searches?

Before further exploring secondary database diagnostic methods, in light of
the significant advances in primary database search technology (such as
BLAST, and especially its iterative extension, PSI-BLAST), it is worth
reflecting for a moment why secondary searches might still be useful.

As we have seen, primary databases are growing at an alarming rate; and
much of current research is focused on the ability to deduce functional fea-
tures in the wealth of their as yet uncharacterised sequences by recognising
relationships with known ones. Primary database search tools are effective
for identifying sequence similarities, but analysis of output is sometimes diffi-
_cult and cannot always answer some of the more sophisticated questions of
-sequence analysis. There are many reasons for this: e.g,, in 1998, GenBank
“eontained more than a million sequences from more than 18000 organisms,
resulting in complex and redundant search outputs; unless masking devices
are used, results can be dominated by irrelevant matches to low-complexity
equences; the presence of highly repetitive, modular sequences can also
eatly complicate interpretation; similarly, with multi-domain proteins, it
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may not be clear at what level a match has been made (e.g., at the level of a
single domain, of several domains, or of the whole protein); truncated
description lines of matched database sequences may be uninformative or, at
worst, ambiguous, leading to possible errors when making functional infer-
ences; and, given database size and increasing levels of noise, similarity
between orthologous sequences may not be as high as that between
sequences that do not belong to the same gene family, and related sequences
may hence fail to attain significant scores.

Orthology provides an important layer of information when considering
phylogenetic relationships between genes. We are thus beginning to see a
change of emphasis in sequence analysis, from attempts simply to infer
homology, to the more exacting task of recognising orthology (Huynen and
Bork, 1998). Secondary databases may offer a small step in this direction.
Depending on the type of analysis method used, relationships may be eluci-
dated in considerable detail, including superfamily, family, subfamily, and
species-specific sequence levels. The ability to distil sequence information
in such precise ways makes secondary database searching a useful and
often powerful adjunct to routine primary searches,

»

8.3 What's in a secondary database?

In Chapter 3, we introduced a number of secondary databases and men-
tioned the different types of information they contain. It is important not
only to understand the different data types, but also to know how to search
them, how to interpret the range of different outputs, and how to assess the
biological significance of the results.

You will recall that the underlying principle behind the development of
secondary databases is that within multiple alignments can be found con-
served motifs that reflect shared structural or functional characteristics of the
constituent sequences — see Figure 8.1. Such conserved motifs, or indeed the
complete parent alignments, may be used to build characteristic signatures
that aid family and/or functional diagnoses of newly determined sequences.

Different secondary databases have evolved as a result of the different
analysis methods used in the derivation of family signatures. Some of the
main approaches are outlined below.

8.3.1 Regular expressions

The simplest approach to pattern recognition is to characterise a family by
means of a single conserved motif, and to reduce the sequence data within
the motif to a consensus or regular expression pattern. Regular expressions,
then, discard sequence data, retaining only the most conserved or signifi-
cant residue information, as shown in Table 8.1.

The expression derived from the motif shown in Table 8.1 indicates that
positions 2, 4, 10, 12 and 15 are completely conserved; positions 1, 11, 13
and 14 allow one of two possible residues (i.e., residues specified within
square brackets are allowed at that position); position 3 allows one of three
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Table 8.1 Derivation of a regular expression from a conserved motif.

Alignment Regular expression

ADLGAVFALCDRYFQ

SDVGPRSCFCERFYQ [AS]-D-[IVL]-G-x4-{PG}-C-[DE]-R~[FY]2-Q
ADLGRTONRCDRYYQ

ADIGQPHSLCERYFQ

possible residues; positions 5 to 8 can be anything (as denoted by x4); and
position 9 can be anything except proline or glycine (i.e., residues specified
within curly brackets are disallowed at that position).

In order to reduce the likelihood of a pattern making too many incorrect
matches, the software that makes use of regular expressions often does not tol-
erate similarity, and searches are thus limited in scope to the retrieval of
identical matches. For example, let us suppose that a query sequence matches
the expression in Table 8.1 at all but the second position, where it has a glu-
tamic acid conservatively substituting for the prescribed aspartic acid. Such a
sequence, in spite of being 99% identical to the expression, will nevertheless be
rejected as a mismatch, even though the mismatch is a conservative, biologi-
cally feasible replacement. Alternatively, a sequence matching all positions of
the pattern, but with an additional residue inserted in the non-conserved region
following the glycine, will again fail to match, because the expression does not
cater for sequences with more than 4 ‘linking’ residues at this point. Searching a
database in this way thus results in either an exact match, or no match at all.

The strict binary outcome of this type of pattern searching has severe
diagnostic limitations. Creating a regular expression that performs well in
database searches is always a compromise between the tolerance that can
be built into it, and the amount of noise it will match: the fuzzier the pat-
tern, the noisier its results, but the greater the hope of finding distant
relatives; while the stricter the pattern, the cleaner its results, but the
greater the chance of missing true-positive matches not catered for within
the defined expression.

A further limitation of this approach hinges on the philosophy of using
single motifs to characterise entire protein families. For best results, this
effectively requires us to know in advance what is the most conserved
region of a sequence alignment. In some cases, as with enzyme active sites,
for example, the choice may be clear-cut. However, for families where this
kind of information is not available, there may be a number of conserved
regions, only one of which, let us say, is chosen to create a regular expres-
sion. The problem is that the parent alignment in which the conserved
motifs are identified is a reflection only of the sequences in the current pri-
mary sources. As the source databases grow, and new sequences become
available, these alignments are likely to evolve. As a result, in some cases,
the region of the alignment originally used to characterise the particular
protein family may have changed considerably, and is ultimately less con-
served than neighbouring nfotifs. Under these circumstances, the diagnostic
performance of the regular expression will fall off with time, and the pattern

_ must be modified (or changed completely) to more accurately reflect the
contents of the primary databases.

Rules

Regular expressions are used to best effect when a particular protein family
can be characterised by a highly conserved motif (typically 10-20 residues
in length), which may perhaps be diagnostic of some core piece of the pro-
tein architecture or of some critical functional role. Often, however, it is
possible to identify much shorter, generic patterns within sequence align-
ments that are not associated with specific protein families.

Sequence features of this sort are believed to be the result of convergence
to a common property: e.g., they may denote sugar attachment sites, phos-
phorylation or hydroxylation sites, and so on. Sucki patterns, which may be as
short as 3~4 residues in length (see Table 8.2), cannot be used for family diag-
nosis, and do not provide good discrimination: this is because the shorter the
motif, the greater the chance of random matches to it. For example, in
OWL29.6 there were 71 exact matches to the sequence motif Asp-Ala-Val-Ile-
Asp (DAVID), and 1088 exact matches to the shorter form Asp-Ala-Val-Glu
(DAVE). Thus, short motifs are diagnostically unreliable (because they are
non-specific), and matches to them, in isolation, are relatively meaningless.
Realistically, short motifs can only be used to provide a guide as to whether a
certain type of functional site might exist in a sequence, which information
must be verified by experiment. Such patterns are termed rules to distinguish
them from family-specific regular expressions.

Table 8.2 Example functional sites with the regular expression rules used to detect them.

Functional site Rule

N-glycosylation site

JProtein kinase C phosphorylation site
Casein kinase II phosphorylation site
Asp and Asn hydroxylation site

N-{P}-[ST]-{P}

[ST]-x~-[RK]

[8T1-x(2)~-[DE]
C-x~-[DN]-x(4)-[FY] -x-C-x-C

Regular expressions (patterns and rules) are the basis of the PROSITE
database. The diagnostic problems outlined above have recently led to the
inclusion into this database of alternative discriminators where patterns are
‘most likely to fail. These are profiles, which are discussed in more detail later.

uzzy regular expressions

ne response to the strict nature of regular-expression pattern matching is to
build an element of tolerance or fuzziness into the patterns. As we saw in
Chapter 3, one approach is to consider amino acid residues as members of
groups, as defined by shared biochemical properties: e.g., FYW are aromatic,
HKR are basic, ILVM are hydrophobic, and so on (see Table 3.4 and Figure 8.2).
Taking such biochemical properties into account, the motif depicted in
‘Table 8.1 yields the more permissive regular expression shown in Table 8.3.
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Aliphatic

Hydrophobic

Figure 8.2 The overlapping range of amino acid properties, which can be described by
linked fields of a Venn diagram.

Table 8.3 Fuzzy reqular expression representation of a conserved motif.

Alignment Fuzzy reqular expression

ADLGAVFALCDRYFQ ®

SDVGPRSCFCERFYQ  [ASGPT]-D-[IVLM]-G-X5-C-[DEND]-R- [FYW]2-Q
ADLGRTONRCDRYYQ

ADTGQPHSLCERYFQ

Expressions of this type are exploited by the eMOTIF system, which takes
as its data sources alignments in the BLOCKS and PRINTS databases. It
should be clear from this simple example that such patterns are more relaxed,
accepting a wider range of residues at particular positions. This has the poten-
tial advantage of being able to recognise more distant relatives, but has the
inherent disadvantage that it will also match many more sequences simply by
chance. For example, let us return for a moment to the motif DAVID, which
we saw had 71 exact matches in OWL29.6 (see Table 8.4). If we introduce one
fuzzy position (e.g., let us say that the final D may belong to the group DEQN),
then we find 252 matches in this version of the database; with two fuzzy posi-
tions, we retrieve 925 matches; with three, the number increases to 2739; and
with tolerance at all five positions, 51506 matches are retrieved! Clearly, the
more tolerant each position within a motif with regard to the types of residue
allowed, the more permissive the resulting regular expression; and the shorter
the motif (as with PROSITE rules), the worse the situation becomes.

Because a pattern effectively represents the minimum expression of an
aligned motif, sequence information is lost and parts of it become ill-defined.
The more divergent the aligned sequences, the fuzzier the pattern becomes,

A

* Table 8.4 Illustration of the effects of introducing fuzziness into regular expressions,
and of motif length, on the number of matches retrieved from sequence database
- searches.

Regular expression No. of exact matches (0WL29.6)
D-A-V-I-D 71
D-A-V-I-[DENQ] 252
[DENQ]-A-V-I-[DENQ] 925
[DENQ]-A-[VLI]-I-[DENQ] - 2739
[DENQ]-[AG]-[VLI]2-[DENQ] 51506
D-A-V-E 1088

and the more likely the expression is to make false-positive matches. Results of
. searching with regular expressions must therefore be interpreted with care - if
a query sequence matches an expression, there is no guarantee that the match
is biologically meaningful; conversely, if a sequence fails to match an expres-
sion, it does not necessarily mean that the query is not a family member (as we
- have seen, it may simply be that it deviates from the pattern by a single
residue). In other words, matches to regular expressions are not necessarily
. true, and mismatches are not necessarily false. To address some of the diagnos-
- tic limitations of patterns, more sophisticated approaches have been devised to
mprove diagnostic performance and separate out biologically meaningful
matches from the sea of noise that large databases effectively represent.

8.3.2 Fingerprints

Within a sequence alignment, it is usual to find not one, but several motifs
hat characterise the aligned family. Diagnostically, it makes sense to use
many, or all, of the conserved regions to create a signature or fingerprint, so
hat, in a database search, there is a higher chance of identifying a distant
elative, whether or not all parts of the signature are matched. In one such
approach, groups of motifs are excised from alignments, and the sequence
information they contain is converted into matrices populated only by the
residue frequencies observed at each position of the motifs, as illustrated in
Table 8.5. This type of scoring system is said to be unweighted, in the sense
that no additional scores (e.g., from mutation or substitution matrices) are
used to enhance diagnostic performance.

In the example shown in Table 8.5(a), the motif is 13 residues long and 12
equences deep. The maximum score in the resulting frequency matrix (Table
8.5(b)) is thus 12. Rapid inspection of the matrix indicates that positions 7, 9
nd 12 are completely conserved, corresponding to Lys, Leu and Pro residues
espectively. Any residue not observed in the motif takes no score - the matrix
s thus sparse, with few positions scoring and most with zero score.

The use of raw residue frequencies has not been a popular approach
ecause their scoring potential is relatively limited and, for motifs contain-
ng only few sequences, the ability to detect distant homologues is
ompromised because the matrices do not contain sufficient variation.
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Table 8.5 Example illustrating (a) an ungapped, aligned motif; and (b) its
corresponding frequency matrix, based on residues observed at each position in the
motif (each motif column ccrrespgnds to a row in the matrix).
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Nevertheless, frequency matrices have been used to good effect as part of
the fingerprinting technique used as the basis for the PRINTS database.

As discussed in Chapter 3, in creating a fingerprint, discriminating power
is enhanced by iterative database scanning. The motifs therefore grow and
become more mature with each database pass, as more sequences are
matched and further residue information is included in the matrices. In real
terms, this successively shifts the seed frequencies towards more representa-
tive values as the fingerprint incorporates additional family members. For
example, after four iterations, the motif shown in Table 8.5(a) has grown to a
depth of 73 sequences; as seen in Table 8.6(a), at the end of this process, only
position 9 remains conserved, and more variation is observed in the matrix as
a whole. Nevertheless, although clearly more densely populated than the ini-
tial frequency matrix, this matrix is still relatively sparse - there are still more

Table 8.6 (a) The frequency matrix derived from the initial motif shown in Table 8.5(a)
after four database iterations; and (b) the PAM-weighted matrix derived from the same
motif.

(a)
TCAGNSPFLYHOQVEKDTETIWR RM BX 2
00400008 434 0015 00017 0000 0
0 415 0 0 0 0 07 0 0 037 0 0 010 00 000 0
5 00003018 000O0O0O0GO0GO0OD0GO0O 02000
3012 2180360001 00015207000
9222110000 125 02 06 00 4000 O
4 0 200 4 014 08310000000 O0O00O0O0 0
00100000 O0O0O0O0O07 0O0GO0CO0 2000 0
0 021017 00000005 000O0TO0T1000 0
0 000O0O0COO073 000000000 0O0GO0O00O00O0
6 0 00O0OO0OOOOOS50T00U0TO 0068 000 O
4 0 0 0 0 6 000 01221 0 6 0 0 0 0 0 000 O
00100069 0 003000 O0O0O0O00O0G CO00O0 0
2 011 007 005 0000O0O0O0O0G06O0GO0O0O0 0
(b)

60 12 24 12 0 -12 -60 -36 ~48 0 12 -24 60 O 0 -24 -36 36 O
30 0 -6 12 12 0 -48 -36-42 -6 0-18 30 0 0 -18 -30 18 -12

=6 ~44 -2 -18 -16 -10 -12 -10 22 -24 -18 -14 10 -22 -24 -18 6 —40 -26 16

zero than there are scoring positions. In database searches, therefore, this
matrix will perform cleanly (with little noise) and with high specificity.

This is to be contrasted with a situation where, for example, a PAM matrix
is used to weight the scores, in order to allow more distant relationships to be
recognised. The effect of weighting the initial matrix in this way is illustrated in
Table 8.6(b). As can be seen, the PAM-weighted result, even though based on
the initial sparse matrix, is highly populated. Consequently, in database
searches, experience shows that such a matrix will perform with high levels of
noise and relatively low specificity. A distant relative might well achieve a
higher score with this approach, but so inevitably will random matches, as
residues that are not observed in the initial (or indeed in the final) motifs are
given significant weights. Compare, for example, the ninth motif position,

[
w
w

édseqeiep Aiepuodss e ut sjeypm



ey
"
-

Bulydieas aseqejep Aiepuodag

which even after four database iterations had remained conserved; in the
PAM-weighted matrix, this position is no longer completely conserved, four
other residues (Phe, Val, Ile and Met) being assigned large positive scores.
Because of the poor signal-to-noise performance of weighted matrices,
the technique of fingerprinting has adhered to the use of residue frequencies
alone. Diagnostic performange is enhanced through the iterative process, but
the full potency of the method is gained from the mutual context provided
by motif neighbours. This is important, as the method inherently implies a
biological context to motifs that are matched in the correct order in a query
sequence, with appropriate intervals between them (see Box 8.1). This
allows sequence identification even when some parts of a fingerprint are
absent. Thus, for example, a sequence that matches only four of seven motifs
may still be diagnosed as a true match if the motifs are matched in the cor-
rect order and the distances between them are consistent with those
expected of true neighbouring motifs. This situation is illustrated in Figure
8.3, in which graphs are plotted for (a) a complete match, and (b) a partial,
but nevertheless true, match to the G-protein-coupled receptor fingerprint,

8.3.3 Blocks

As mentioned above, the constituent motifs of a fingerprint are unweighted,
which sometimes compromises diagnostic performance. Nevertheless, bear-
ing in mind signal-to-noise issues, it is possible to build alternative motif
representations by applying different weighting schemes.

One such approach is embodied in the BLOCKS database. Here, con-
served motifs, or blocks, are located by searching for spaced residue triplets
(e.g., Ala-x-x-x-Val-x-x-Cys, where x represents any amino acid), and a block
score is calculated using the BLOSUM 62 substitution matrix. The validity of
blocks found by this method is confirmed by the application of a second
motif-finding algorithm, which searches for the highest-scoring set of blocks
that occur in the correct order without overlapping. Blocks found by both
methods are considered to be more reliable and are entered in the database.

A typical block is shown in Figure 8.4. Sequence segments that comprise
the block are clustered to reduce multiple contributions to residue frequen-
cies from groups of closely related sequences. This is particularly important
for very deep motifs (i.e., with contributions from tens or hundreds of
sequences), which can be dominated by numerous virtually identical
sequences, reflecting the innate bias in the primary databases. With this
approach, each cluster is treated as a single segment, each of which is
assigned a score that gives a measure of its relatedness. The higher the weight,
the more dissimilar the segment is from other segments in the block; the most
distant segment is given a weight of 100. Sequence fragments that are less
than 80% similar are separated by blank lines, as shown in Figure 8.4.

In a manner analogous to protein fingerprinting, blocks may be used to
search sequence databases to find additional family members. Blocks within a
family are converted to position-specific substitution matrices (PSSMs - pro-
nounced possums), which are used to make independent database searches.
The results are compared and, where more than one block detects the same

% Identity

Residue number
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BOX 8.1: CONTINUED
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Figure 8.3 Graphs used to visualise protein fingerprints. The horizontal ?xis represents the
query sequence, the vertical axis the % score of each motif (0~100 per motif), an.d‘ each block a
residue-by-residue match in the sequence, its leading edge marking the first position of the
match. The profiles depict rhodepsin-like GPCR fi ints of ovine rhodopsin and of a C.
elegans hypothetical protein. Solid blocks appearing in a systematic order along the sequence
and above the level of noise indicate matches with the constituent motifs. Ovine rhodopsin is a
known true-positive family member, matching all seven motifs; the (. elegans sequence fails to
make a complete match, but can still be identified with the GPCR superfamily because of the

di tic fr k provided by the five well hed motif neighbours.

CCKR_HUMAN ( 362) SSCVNPTIYCFMNKRFR
CCKR_RAT ( 378) SSCVNPIIYCFMNKRFR

]

éoseqesep A1epuodas e ut s jeym

FML2_HUMAN ( 294) NSCLNPMLYVFVGQDFR 4
FMLR_HUMAN ( 293) NSCLNPMLYVFMGQDFR 4
FMLR_MOUSE ( 304) NSCLNPMLYVFMGQDFR 4
FMLR_RABIT ( 295) NSCLNPMLYVFMGQDFR 4
GASR_CANFA ( 388) SACVNPLVYCFMHRRFR 5
GASR_HUMAN ( 382) SACVNPLVYCFMHRRFR 5
GASR_PRANA ( 385) SACVNPLVYCFMHRRFR 5
GASR_RABIT ( 387) SACVNPLVYCFMHRRFR 5

GASR_RAT ( 387) SACVNPLVYCFMHRRFR 5
ETIR_BOVIN ( 361) NSCINPIALYFVSKKFK 9

ET1R_RAT ( 361) NSCINPIALYFVSKKFK 9
ETBR_BOVIN ( 377) NSCINPIALYLVSKRFK 9
ETBR_HUMAN ( 378) NSCINPIALYLVSKRFK 9

ETBR_PIG ( 379) NSCINPIALYLVSKRFK 9

ETBR_RAT ( 378) NSCINPIALYLVSKRFK 9
OPSD_LOLFO ( 307) SAIHNPMIYSVSHPKFR 12
OPSD_OCTDO ( 308) SAIHNPIVYSVSHPKFR 12

OPSD_TODPA ( 306) SATHNPMIYSVSHPKFR 12

P2UR_HUMAN ( 296) NSCLDPVLYFLAGQRLV 13
P2UR_MOUSE 298) NSCLDPVLYFLAGQRLV 13
P2UR_RAT ( 297) NSCLDPVLYFLAGQRLV 13

SH6_RAT ( 312) NSTMNPIIYPLFMRDFK 16
EDG1_HUMAN ( 302) NSGTNPIIYTLTNKEMR 21
EBI2_HUMAN ( 300) NCCMDPFIYFFACKGYK 23
OXYR_HUMAN ( 321) NSCCNPWIYMLFTGHLF 24

OXYR_PIG ( 323) NSCCNPWIYMLFTGHLF 24
V1AR_HUMAN ( 340) NSCCNPWIYMFFSGHLL 18
VIAR_RAT ( 346) NSCCNPWIYMFFSGHLL 18

PER3_BOVIN ( 337) NQILDPWVYLLLRKILL 35
PER3_HUMAN ( 338) NQILDPWVYLLLRKILL 35

YN84_CAEEL { 331

SCVAYPLIFTLLNRGIR 100

Figure 8.4 Part of a block, in which sequence are cl d and
according to their relatedness - the most distant sequence within the block scores 100.

sequence, and the distances between the blocks are consistent with known
family members, a probability (P) value is calculated for the multiple hit.

For a given sequence, as with a fingerprint, the more blocks matched, the
greater the confidence that the sequence belongs to that family, provided the
blocks are matched in the correct order and have appropriate distances
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between them. However, as with other weighting schemes, there is a diagnos-
tic trade-off between the ability to capture all true-positive matches with a set
of blocks, and the likelihood of making false-positive matches. A further com-
plication arises with the assessment of significance of high-scoring individual
blocks versus lower-scoring multiple-block matches. With the blocks
approach, it is possible for high-scoring, biologically meaningless hits to score
above lower-scoring, but nevertheless biologically significant, true-positive
matches. Care is therefore required in the interpretation of BLOCKS search
output, as the top hit is not necessarily always the correct one.

8.3.4 Profiles »

By contrast with motif-based pattern recognition techniques, an alternative
approach is to distil the sequence information within complete alignments
into scoring tables, or profiles. Profiles define which residues are allowed at
given positions; which positions are highly conserved and which degener-
ate; and which positions, or regions, can tolerate insertions. The scoring
system is intricate, and may include evolutionary weights and results from
structural studies, as well as data implicit in the alignment. In addition,
variable penalties may be specified to weight against INDELSs occurring
within core secondary structure elements.

An example profile is shown in Figure 8.5. The I and M fields contain
position-specific scores for insert and match positions respectively. They
take the form:

/I: [ SY=charl; parameters; ]

/M: [ SY=char2; parameters; ]

where:
e charl is a character representing an insert position in the parent alignment;

e char? is a character representing a match position in the parent align-
ment; and

® parameters is a list of specifications assigning values to various position-
specific scores (details of these parameters are outside the scope of this
book, but they include initiation and termination scores, state transition
scores, insertion/match/dtletion extension scores, and so on).

In this example, we can see that the profile contains three conserved blocks
separated by two gapped regions. Within the conserved blocks, although small
insertions and deletions are not totally forbidden, they are strongly impeded by
large gap penalties defined in the DEFAULT data block: MI = -26, 1 = -3,
MD = -26, D = -3 (Ml is a match-insert transition score, I is an insert exten-
sion score, MD is a match-delete transition score and D is a deletion extension
score). These penalties are superseded by more permissive values in the two
gapped regions (e.g, in the first, MI=0,1=-1, MD =0, etc.).

The inherent complexity of profiles renders them highly potent discrim-
inators. They are therefore used to complement some of the poorer regular
expressions in PROSITE, and/or to provide a diagnostic alternative where
extreme sequence divergence renders the use of patterns inappropriate.

/DEFAULT: MI=-26; I=-3; IM=0; MD=-26; D=-3; DM=0;

/M: SY='F'iM=-2,-3,-3,-4,2,-3,-2,1,-2,0,-1,-2,-3,-3,-4,-2,-1,0,-5,2;
/M: SY='1';M=-1,-5,-2,-3,-2,-3,0,1,1,-1,1,-1,-2,-1,1,-1,0,1, -4, -4;
/M: SY='A';M=2,-3,1,0,-5,2,-2,-1,-1,-3,-2,1,1,0,-2,2,2,0,-8,-5;

/M: SY='L';M=-3,-8,-5,-4,2,-6,-2,2,-4,6,4,-3,-3,-2,-3,-3,-2,1, -3, 0;

/M: SY='Y';M=-4,-2,-6,-6,9,-7,0,-1,-5,-1,-3,-3,-6,-5,-6,-4,-4, -4, -1,11;
/M: SY="D ,-6,3,3,~7,0,0,-2,-1,-4,-3,2,0,1,-2,0,0,-2,-9, -6;

™ -5,-3,-6,-6,10,-7,-1,-1,-2,-1,-2,-3,-6,-5,-5,-4,-4,-4, -1, 11;
/M2 -1,-6,1,1,-4,-2,0,-2,2,-3,-1,1,-1,1,1,0,0,-3,-7, -6;

/M: (~4.1,0,-5,1,-1,-1,0,-3,-1,1,0,0,0,1,1,-1,-7,-6;

/M: .-5,0,0,-5,-1,0,-1,1,-3,-1,1,0,1,1,0,0,-2,-5,-5;

/M -5,1,1,-6,0,1,-2,1,-4,-2,1,0,1,2,1,0,-2,-5,-5;

/M: SY='E';M=1,-6,2,2,-6,0,0,-2,-1,-4,-2,1,1,1,-1,0,0,-3, -8, -6;

/™ -6,2,2,-6,0,1,-3,0,-5,-3,2,-1,2,-1,0,0,-4,-7,-4;

/M: SY='D';M=0,-8,4,3,-6,0,0,-2,-1,-3,-2,2,-2,2,-2,0,-1,-3,-9,-6;
/M: SY='L'; -8,-5,-5,2,-5,-3,3,-4,7,5,-4,-3,-3,-4,-3,-2,3,-4,-2;
/M: 8Y='S*; 4,1,1,-5,1,0,-2,1,-4,-2,1,0,0,0,1,1,-2,-6,-5;

/M: SY='F'; +-7,-6,-6,6,-5,-3,3,-2,5,3,-4,-5,-4,-5,-4,-3,1,-3,3;
/M: SY="Q' .-6,0,0,-3,-2,1,-1,1,-2,0,0,-1,1,1,-1,0, -6,-4;
/M: SY='K' -8,0,1,-3,-2,0,-2,3,-3,0,1,0,2,2,0,0,-3, - 67

/M: 8Y='G';M=2,-5,1,0,-7,7,-3,-4,-2,-6,-4,1,-1,-2,-4,2,0,-2,-10,-8;
/M: 8Y='D';M=1,-7,5,4,-8,1,1,-3,0,-5,-3,2,-1,2,-2,0,0,-4,-10,-6;

Mz 0,-5,-1,-2,-2,-2,-1,2,0,0,1,-1,-2,0,0,-1,0,1,-6,-5;

/M: -2,-6,-5,-5,3,-5,-3,4,-3,6,4,-4,-4,-3,-4,-3,-2,3,-5,0;
s 2,0,0,0,-2,-1,0,-1,0,0,-1,0,-1,-6,-3;
/M: 3,-3,5,-3,3,3,-2,-2,-2,-3,-2,0,5,-8,

/M L';M=-1,-6,-3,-3,~1,-3,-2,2,-3,3,2,-2,-2,-2,-3,-2,-1,2,-5,-3;
/M: D';M=0,-6,3,3,-6,0,1,-3,2,-5,-2,2,-1,2,1,0,0,-4,-7,-5;

/M: SY='K';M=-1,-6,0,0,-2,-1,0,~3,3,-4,-1,1,-1,0,1,0,0,-3,-6,~4;
1,-4,1,1,-5,0,0,-2,0,-3,-2,1,1,0,-1,1,1,-1,-7,-5;
/I M i -1; MD=0; /M: SY='X'; M=0; D=-1;
G';M=1,-5,0,0,-5,1,-2,-1,-2,-3,-2,0,0,-1,-2,0,0,-1,-8, -6;
G';M=1,-6,3,3,-7,3,0,-4,-1, 4,2,-1,1,-2,1,0,~3,-10,-6;
-9,-12,-9,-11,1,-11,-4,-8,-5,-3,-6,-6,-8,-7,3,-4,-8,-9,26,0;
W';M=-7,-9,-9,-9,0,-9,-4,-5,-5,-1,-4,-6,-7,-6,2,-3,-6, 6,18, -1;
K';M=-1,-7,0,0,-3,-2,0,-2,2,-3,-1,1,-1,1,2,0,-1,-3,-5,-5;
G';M=2,-3,0,-1,-6,3,-3,-2,-3,-4,-3,0,0,-2,-3,1,0,0,-10, -6;
-2,-6,0,0,-3,-3,1,-2,0,-2,-1,0,-2,1,1,-1,-1,-3,-5, -
I=-2; MD=0; /M: SY='X'; M=0; D=-2;
4,0,~2,0,-1,-2,0,0,-1,-1,-1,0,1,0,-7,-5;
T ;m=0,-5,0,0,-3,-1,-1,-1,1,-3,-1,1,-1,0,0,1,1,-1,-6, -4;
G';M=0,-5,0,-1,-5,3,-2,-3,-1,-5,-3,0,-1,-1,-1,1,0,-2,-7,-6;
='K';M=0,-6,1,1,-5,-1,1,-2,2,-4,-1,1,-1,2,2,0,0,-3,-6
/M: SY='R';M=-1,-6,-1,-1,-5,-3,1,-1,1,-3,-1,0,-1,1,3,-1,-1,
/M: §Y='G';M=1,-5,0,0,-6,6,-3,-3,-3,-5,-4,0,-1,-2,-4,1,0,-2,-10, -6
/M: SY='W';M=-5,-5,-5,-5,2,-6,-2,-2,-4,-1,-3,-3,-6,-5,-3,-3,-4,-4,4,3;
: SY='F';M=-3,-5,-6,-6,6,-5,-3,4,-1,3,2,-4,-4,-5,-4,-3,-2,2,-4,3;
P';M=2,-4,-1,-1,-7,-1,0,-3,-2,-4,-3,-1,8,0,0,1,0,-2,-8,-7;
G';M=1,-3,0,0,-4,2,-1,-2,0,-3,-2,0,0,-1,-1,1,1,-1,-6, -5;
iM=1,-5,2,1,-5,0,1,-2,1,-4,-2,2,0,0,0,1,1,-2,-7,-4;
¥';M=-5,-1,-7,-7,10,-8,-1,-1,-5,-1,-3,-3,-7,-6,-6,-4,-4,-5,0,13;
0,-3,-3,-5,-2,-2,-3,5,-3,2,2,-2,-2,-3,-4,-1,0,5,-8,-5;
iM=1,-6,2,3,-6,0,0,-2,1,-4,~2,1,0,2,0,0,0,-3,-8,-6;
/M: 8Y='P';M=0,-5,-1,-1,-2,-2,-1,-2,-1,-3,-2,0,1,-1,-2,8,-1,-2,-6,-3;

Figure 8.5 Example PROSITE profile, showing position-specific scores for insert and match
positions. Gap penalties within insert positions are highlighted: in these regions, the values
are more permissive, or tolerant, of INDELs by comparison with the high gap penalties for
match positions set by the DEFAULT parameter line.
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8.3.5 Hidden Markov Models

A variation on the theme of profiles is to encode an alignment in the form of
a Hidden Markov Model (HMM). HMM:s are probabilistic models consisting
of a number of interconnecting states: they are essentially linear chains of
match, delete or insert states, which can be used to encode sequerce conser-
vation within alignments. A match state is assigned to each conserved
column in a sequence alignment; an insert state allows for insertions relative
to the match states; and delete states allow match positions to be skipped.
Thus, building an HMM from a multiple sequence alignment requires each
position within the alignment to be assigned to either match, delete or insert
states; this process is illustrated in the linear HMM depicted in Figure 8.6.

HMMs are the basis of the Pfam database. In addition to the HMMs, Pfam
also provides the seed alignmgnts used to generate the HMM discriminators,
and the final alignments resulting from the iterative sequence gathering
process. The alignments are presumed to represent evolutionarily conserved
structures that have functional implications. However, unlike the collection of
essentially hand-crafted profiles that augment PROSITE patterns, some of the
methods that underpin the creation of Pfam are fully automatic. As a result, the
iterated group of gathered sequences may become corrupt, i.e., the identified
sequences may not all be related. Consequently, the quality of the final align-
ments, which are not hand-checked, may be quite poor, and any structural and
functional implications should be inferred with caution.

We have now examined some of the different pattern recognition methods
that underlie the major secondary databases. There are other resources
available, but many of these are smaller (e.g., Schultz et al’s SMART
domain database) or are less well validated than those chosen for review
here (e.g., Smith and Smith’s pattern database generated automatically
using the PIMA software, or Sonnhammer and Kahn’s automatically. gener-
ated domain database, ProDom, which exploits the DOMAINER program).

Figure 8.6 Linear Hidden Markov Model, illustrating the possible relationships a sequence
may have in matching a multiple alignment; i.e., for each position, or column, of the
alignment, a residue may be assigned as a match (M) or an insertion (I), or the position may
represent a deletion (D).

Once we understand the differences between the techniques and have
appreciated their diagnostic strengths and weaknesses, and provided we
keep biologicgl context uppermost in our minds, and appreciate the signifi-
cance of matching a paralogue, an orthologue, a module, etc., and do not
transfer information blindly from a database match to our query, then we
can begin to think rationally about how to approach the practical analysis
of novel sequences. The following chapter discusses the design of a gener-
alised approach to sequence analysis, with particular reference to an
interactive tutorial available on the WWW.

8.4 Summary

® The emphasis of sequence analysis is changing from attempts simply to
infer homology, to the more exacting task of recognising orthology.
Pattern databases help this process, because they encode different levels
of family and species-specific relationships.

The simplest pattern recognition approach characterises families using
single motifs, reducing the sequence data to regular expressions. This is
limited because sequences that contain even one residue difference are
not matched; conversely, exact matches are not necessarily true, and no
context is provided with which to assess their significance.

Rules are short generic patterns that are not associated with specific
families. They are not diagnostic and can only suggest whether a partic-
ular functional site might exist.

Fuzzy regular expressions assign residues to groups with shared bio-
chemical properties. Their tolerance should allow identification of more
distant relationships; but the fuzzier the pattern, the greater the chance
of making false matches.

Groups of conserved motifs can be used to create family fingerprints,
These are diagnostically potent because of the mutual context provided
by motif neighbours, allowing sequence identification even when parts
of the signature are absent. Fingerprints do not use scoring matrices to
enhance diagnostic power, but most methods do. With all weighting
schemes, there is a diagnostic trade-off between the ability to capture
true matches and the chance of making more false ones.

Profiles encapsulate full domain alignments by defining which residues
are allowed, which positions are conserved or degenerate, and which
positions can tolerate insertions.

HMMs are linear chains of interconnecting match, delete or insert
states that encode full domain alignments. They have similar limitations
to other automated iterative approaches, where false matches may cor-
rupt the final discriminators.
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CHAPTER NINE

Building a sequence

‘search protocol

9.1 Introduction

This chapter brings together the concepts of primary and secondary data-
base searching within a generalised protocol for sequence analysis. The aim
is to gain an understanding of how to interpret results of searching the dif-
ferent data types, and to shed light on the difference between bielogical and
mathematical significance. With this in mind, the chapter shows how to
build a search protocol for novel sequences. Application of the protocal is
illustrated with reference to an interactive Web tutorial, which seeks to
identify an unknown fragment of DNA using the primary, secondary and
structure classification databases,

9.2 A practical approach

One of the central goals of bioinformatics is the prediction of protein func-
tion, and ultimately of structure, from the linear amino acid sequence.
Given a newly determined sequence, we want to know: what is my protein?
To what family does it belong? What is its function? And how can we
explain its function in structural terms?

Today, although we don't yet have all the answers, we can at least begin
to address some of these questions. By searching secondary databases,
which house abstractions of functional and structural sites characteristic of
particular proteins, we may recognise patterns that allow us to infer rela-
tionships with previously characterised families. Similarly, by searching fold
libraries, which house templates of known structures, it is possible to recog-
nise a previously characterised fold.

Given the size of current sequence databases, it is increasingly likely
that searches with new sequences will uncover homologues; and, with the
expansion of sequence pattern and structure template databases, our
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chances of being able to assign functions and to infer possible fold families
are also improving. However, these advances in sequence and fold pattern
recognition methods have not yet been matched by similar advances in pre-
diction techniques. .

So, if we cannot predict function or structure directly from sequence,
but can identify homologues, and recognise sequence and fold patterns that
have already been seen, given the bewildering array of databases to search,
how do we use this information to build a sensible search protocol for
novel sequences?

One practical approach is presented in Figure 9.1. Essentially, we start
by checking for identical matches and then move on to search for closely
similar sequences in the primary databases. The strategy then involves
searching for previously characterised sequence- and, where possible, fold-
patterns in a variety of pattern databases. The deciding step is the

if DNA sequence

Six-frame translation
Yields potential protein
product {the probe)

¥

Primary protein sequence
database identity search
E.g., for short fragments, pinpoints
identical matches to probe - may
identify correct reading frame

¥

Primary protein sequence
database similarity search
(e.g., nrdb, OWL, SP+SPTrEMBL)
Identifies homologues to probe

]

Secondary protein "pattern”
database search (e.g., PROSITE,
profiles, PRINTS, BLOCKS, Pfam}

Identifies family relationships or pinpoints
key structural or functional sites

Known structure No known structure
¥ N\
Protein structure classification F‘ro_tein fold pattern
database query (e.g., SCOP, CATH) ) library sear_ch
Provides details of structural class, Identifies compatible folds
secondary structure, for the probe sequence

ligand-binding information, etc.
D)

Figure 9.1 Building a sequence search protocol.

integration of results from all these searches to build a consistent
family/functional/structural diagnosis. This protocol is described in detail
in the following pages and is accompanied by an interactive WWW tutorial,
known as BioActivity (Attwood, 1997), at:

hitp:/ /www.bioinf.man.ac.uk/dbbrowser/bioactivity/

Before attempting this tutorial, it is important to appreciate that bioinformatics
is a fast-moving field and that Web resources change rapidly. The particular
databases offered within the protocol, and the forms available to search them,
are therefore likely to change with time. The following description of the tutor-
ial can therefore only provide a general guide, with emphasis on how to
assimilate resulis into a coherent picture, rather than focusing on the minutiae
of how to use particular Web forms for searching particular databases, etc.

9.2.1 Searching the primary databases

To illustrate the steps in building up a search protocol, we will begin by
considering an ‘unknown’ fragment of DNA. This is fragment G in the Web
tutorial, which can be found in the Materials section at:

http:/ /www.bioinf.man.ac.uk/dbbrowser/bioactivity/nucleicfrm.htmi

ccgtactacaactacgctggtgcat tcaag

Figure 9.2 Example ‘unk DNA fi

The fragment is shown in Figure 9.2. It is translated by inserting it into the
six-frame translator provided on the same page:

hitp://www.bioinf.man.ac.uk/dbbrowser/bioactivity/nucleicfrm.html

This process yields three forward and three reverse translations, as shown
in Figure 9.3. We now have to discover which of these is the cotrect reading
frame, i.e. which encodes a real peptide.

Identity searching
The first and fastest test of an unknown protein sequence fragment is to per-
form an identity search, preferably of a composite sequence database. As
mentioned in Chapter 3, OWL is a composite resource that can be queried
directly by means of its query language. Identity searches, which are suitable
for peptides up to 30 residues in length, are possible via a Web interface; this
provides an easy-to-use form that conveniently shields the user from the syntax
of the query language. An identity search will reveal in a matter of seconds
whether an exact match to the unknown peptide already exists in the database.
In this exercise, each of the translations shown in Figure 9.3 is taken in
turn and used to search the composite database (the ‘OWL database search
by sequence’ option of the same page:

hitp://www.bioinf.man.ac.uk/dbbrowser/bioactivity/nucleicfrm.himl)

yseoidde jedrpoesd y ’ 2
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Forward 0
10
0 PYYNYAGAFK

Forward 1
10
0 RTTTTLVHS

Forward 2
10
0 VLOQLRWCIQ

Reverse 0
10
0 LECTSVVVR

Reverse 1
10
0 LNAPA!L!Y

Reverse 2

10
0 !MHORSCST
Figure 9.3 Forward and reverse lations of the DNA fi
)

In doing this, we find that, with one exception, all of the translations fail to
retrieve matches from the database: the query peptide PYYNYAGAFK
makes exact matches with two sequences, which are revealed to be trans-
ferrins from the African clawed frog, Xenopus laevis - Figure 9.4.

Inspection of the ID codes shows that the first match comes from the
SWISS-PROT database and the second is a translation from GenBank,
which probably contains frameshift errors (hence the duplication of this
sequence in OWL - see Section 3.4.2).

Matches for SEQ probe PYYNYAGAFK are:

No. of matches = 2

AGIKEHKCSRSNNE PYYNYAGAFK CLQDDQGDVAFVKQ
AGIKEHKCSRSNNE PYYNYAGAI'K CLQDDQGDVAFVKQ

TRFE_XENLA 207
XLTRSFER 207

WORKLIST ENTRIES (2):

TRFE_XENLA TRANSFERRIN PRECURSOR - XENOPUS LAEVIS (AFRICAN CLAWED FROG)
XLTRSFER X.laevis mRNA for transferrin - African clawed frog.

Figure 9.4 Result of an identity search of OWL with a short query sequence. The two
matches come from different source databases: TRFE_XENLA is a SWISS-PROT sequence, and

XLTRSFER is from GenBank. N

Similarity searching

If an identity search fails to find a match, all is not lost. The next step is to
look for similar sequences, again preferably in a composite database. For best
results, it is recommended to perform similarity searches on peptides that are
longer than ~30 residues (otherwise, the shorter the peptide, the greater the
likelihood of finding chance matches that have no biological relevance).

In our example, although we have identified that our peptide is a trans-
ferrin, at this stage we do not know whether a wider set of similar
sequences exists in the database. The second stage of the search protocol is
thus to perform a similarity search. The most rapid and simple option here
is to use one of the many Web interfaces to BLAST (or FastA), the actual
choice probably depending on geographical location and Web traffic.

In most applications, where practicable, as much sequence information
as possible should be used in a BLAST search (although this can lead to
complications in interpreting output from searches with multi-domain or
modular proteins). For the purpose of our tutorial, to save network traffic,
only the first 180 residues of the transferrin sequence were used: the full
sequence (TRFE_XENLA) was retrieved from the primary database using
the ‘OWL database search by ID code’ option of the ‘Protein sequence
analysis - Primary database searches’ page:

http://www‘bioinf.man.ac.uk/dbbrowser/bioactivity/proteinfrm.html

and the N-terminal chunk was cut and pasted into the BLAST input facility
on the same page (options are provided here to search both the OWL and
NRDB composite databases).

The restilt of searching OWL29.4 is shown in Figure 9.5. There are sev-
eral important features to note in the BLAST output. First, we are looking
for matches that have high scores with correspondingly low probability
values. A very low probability indicates that a match is unlikely to have
arisen by chance. As the probability values approach unity, they are consid-
ered more and more likely to be random matches. The second feature of
interest is whether the results show a cluster of high scores (with low prob-
abilities) at the top of the list, indicating a likely relationship between the
query and the family of sequences in the cluster.

In this example, our transferrin sequence is revealed to belong to an
extended family that includes closely related milk lactoferrins, egg white
ovotransferrins, blood serotransferrins, membrane-associated melanotrans-
ferrins, and saxiphilins. This family is found to cluster towards the top of
the hitlist, with high scores and low p-values. Probability values tending to
1.0 indicate random matches and sequences to which the program could
not assign a significant score.

Heuristic search tools like BLAST do not always give clear-cut answers.
Frequently the program will not be able to assign significant scores to any
of its retrieved matches, even if a biologically relevant sequence appears in
the hitlist. Such search tools do not have the sensitivity always to fish out
the right answer from the sea of sequences in the primary databases; rather,
they cast a coarse net, and it is then up to the user to pick out the best
prizes from the general catch.
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BLASTP 1.4.9MP [26-March-1996] [Build 16:16:54 Mar 28 1996]

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W.Myers, and
David J.Lipman (1990). Basic local alignment search tool. J.Mol.Biol.215:403-
10.

Query= unknown
(180 letters)

Database: owl29_d.fasta
198,742 sequences; 62,935,258 total letters.

Searching.
Smallest
Sum

High Probability
Sequences producing High-scoring Segment Pairs: Score P(N) N
TRPE_XENLA TRANSFERRIN PRECURSOR. - XENOPUS LAEVIS (AFRIC... 960 3.9e-130 1
XLTRSFER XLTRSFER NID: g65158 ~ African clawed frog. 873 1.5e-116 1
SAX_RANCA SAXIPHILIN PRECURSOR (SAX). - RANA CATESBETANA... 263 2.8e-60 2
D89084 D8S084 NID: gl694683 - Oncorhynchus kisutch cD... 228 7.3e-54 3
TRFE_CHICK OVOTRANSFERRIN PRECURSOR (CONALBUMIN) (ALLERGE... 429 1.4e-53 1
TRF1_SALSA SEROTRANSFERRIN T PRECURSOR (STDEROPHILIN I). ... 232 7.le-53 3
NRL_1DOT duck ovotransferrin - duck 401 1.2e-49 1
TRFL_HUMAN LACTOTRANSFERRIN PRECURSOR (LACTOFERRIN). - HO... 269 6.le-45 4
NRL_IHSE lactoferrin n-terminal half-molecule mutant H2... 274 3.0e-44 4
NRL_1DSN lactoferrin n-terminal lobe residues 1 333 mut... 268 1.1e-43 4
TRFE_RABIT SEROTRANSFERRIN PRECURSOR (SIDEROPHILIN) (BETA... 277 2.5e-43 4
TRFE_HUMAN SFROTRANSFERRIN PRECURSOR (SIDEROPHILIN) (BETA... 282 2.6e-43 4
NRL_1LFH Lactoferrin (apo form) - human 274 2.3e-42 4
NRL_LLFI Lactoferrin (copper form) - human 274 2.3e-42 4
NRL_1LFG Lactoferrin (diferric) - human 274 2.3e-42 4
TRFE_HORSE SEROTRANSFERRIN PRECURSOR (SIDEROPHILIN) (BETA... 327 2.6e-42 2
NRL_1LCF Lactoferrin (copper end oxalate form) - human 272 4.3e-42 4
TRFL_BOVIN LACTOTRANSFERRIN PRECURSOR (LACTOFERRIN). - BO... 266 1.3e-41 4
TRFL_MOUSE LACTOTRANSFERRIN PRECURSOR (LACTOFERRIN) (FRAG... 267 2.8e-41 3
TRFE_PIG SEROTRANSFERRIN (SIDEROPHILIN) (BETA-1-METAL B... 282 3.6e-41 3
TRFL_PIG LACTOTRANSFERRIN PRECURSOR (LACTOFERRIN). — SU... 187 4.7e-39 5
TRFM_HUMAN MELANOTRANSFERRIN PRECURSCR (MELANOMA-ASSOCIAT... 161 9.9e-33 4
TRF_BLADI TRANSFERRIN PRECURSOR. - BLABERUS DISCOIDALIS ... 105 6.3e-29 4
NRL_1OVB Ovotransferrin (18 kda fragment, domain ii fro... 212 3.9e-24 1
TRF_MANSE TRANSFERRIN PRECURSOR. — MANDUCA SEXTA (TOBACC... 82 2.3e-12 5
568986 transferrin - flesh fly (Sarcophaga peregrina) 82 2.7e-08 3
S67218 S67218 NID: g456777 — Mus sp. placenta. 98 5.3e-07 1
B28438 transferrin — mouse (fragment) 62 0.0058 2
CER0O1E66 CERO1E6 NID: g1082133 - Caenorhabditis elegans. 51 0.70 2
Jc2221 major surface glycoprotein 1 - Pneumocystis ca... 50 0.73 3
PARS1C PARS1C NID: g159974 - P.tetraurelia DNA. 53 0.80 3
CELF10G25 CELF10G2 NID: gl458253 - Caenorhabditis elegan... 63 0.95 1
YLJ5_CAEEL HYPOTHETICAL CALCIUM-BINDING PROTETN C50C3.5 I... 45 0.97 2
802145 transferrin - horse (fragment) 52 0.996 1
CEF35G122 CEF35G12 NID: g559423 - Caenorhabditis elegans. 44 0.997 4
808031 nucleocapsid protein - human coronavirus 61 0.998 1
10KD_VIGUN 10 KD PROTEIN PRECURSOR (CLONE PSAS10). - VIGN... 42 0.999 2
GDIB_MOUSE RAB GDP DISSOCIATION INHIBITOR BETA (RAB GDI B... 42 0.9991 3
PHY4_AVESA PHYTOCHROME A TYPE 4 (AP4). - AVENA SATIVA (OAT). 41 0.9992 3
NCAP_CVH22 NUCLEOCAPSID PROTEIN. - HUMAN CORONAVIRUS (STR... 60 0.9998 1
CELF55C122 CELFS55C12 NID: gl086791 - Caenorhabditis elega... 60 0.9999 1

Figure 9.5 Part of a BLAST output from a search of OWL with the query sequence
TRFE_XENLA. A family of transferrins and related sequences is found to cluster towards the
top of the hitlist. Probability values tending to 1.0 indicate random matches and sequences
to which the program could not assign a significant score. —

In these circumstances, where no individual high-scoring sequence, or
" cluster of sequences, is found, the third feature to consider is whether there
are any observable trends in the type of sequences matched, i.e., do the
annotations suggest that several of these are from a similar family? If there
are possible clues in the annotations, the next step is to try to confirm these
possibilities both by reciprocal BLAST searches (do retrieved matches iden-
tify your sequence in a similarity search?), and by comparing results from
searches of the secondary databases.

9.2.2 Searching the secondary databases

- Searching PROSITE

For the sake of our tutorial, although a family of sequences was identified
by the BLAST search, we will continue on and search the secondary data-
bases in order to discover if our query sequence contains any known
characteristic conserved motifs from which we may glean further clues as to
its structure or function.

The first secondary database to consider is PROSITE. Within the tutor-
ial, this is accessible for searching via the ‘Protein sequence analysis -
Secondary database searches’ page:

Scan of TRFE_XENLA (P20233)

TRANSFERRIN PRECURSOR.
XENOPUS LAEVIS (AFRICAN CLAWED FROG) .

[1] PDOC00182 PS00205 TRANSFERRIN_ 1
Transferrins signature 1

Number of matches: 4

111-120 YYAVAVVRKS
112-120 YAVAVVKKS
443-452 YYAVAIVKKG
444-452 YAVAIVKKG

NI

[2] PDOC00182 PS00206 TRANSFERRIN_ 2
Transferrins signature 2

Number of matches: 2
1 211-227 YAGAFKCLQDDQGDVAF
2 539-554 YSGAFRCLVEKGQVGF

[3] PDOC00182 PS00207 TRANSFERRIN_3
Transferrins signature 3

Number of matches: 2
1 240-270 DYELLCPDNTRKSIKEYKNCNLAKVPAHAVL
580-610 DFELLCPDGSRAPVTDYKRCNLAEVPAHAVV

Figure 9.6 Results returned from a search of PROSITE with the sequence TRFE_XENLA via
the ScanProsite WWW interface.

[y
h
w

yoroidde jeaoeid y



[y
~
o

102030.d yoiess souanbas e buipjing

http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/protein1frm. html

The database code (TRFE_XENLA) is simply supplied to the relevant part
of the form, and the option to exclude patterns with a high probability of
occurrence (i.e., rules) is switched on. -

The result, shown in Figure 9.6, indicates that three regular expression
patterns have been matched, designated TRANSFERRIN_1, TRANSFER-
RIN_2 and TRANSFERRIN_3. Each of the patterns is correctly matched
twice by the query sequence; judging by the similarity of these matches, this
is presumably the result of domain duplication. The first pattern makes an
additional match, one residue out of register with the first - this is possible
because the pattern tolerates an insertion at the second position of the
motif, as denoted by the range 0-1:

Y-x(0,1) - [VAS]-V- [IVAC] - [IVA] - [IVA] - [RKH] - [RKS] - [GDENSA]

Searching the profile library

The next step in the protocol is to search the ISREC profile Library. In addi-
tion to the profiles that have already been incorporated into the main body of
PROSITE, the Web server offers a range of pre-release profiles that have not
vet been sufficiently documented for release through PROSITE. Searching
the complete collection of profiles is achieved, once again, by simply supply-
ing the database code to the Web form, remembering to change the format
button from the default (plain text) to accept a SWI1SS-PROT ID:

http://www.bicinf.man.ac.uk/dbbrowser/bioactivity/protein1frm.html

Sequence: TRFE_XENLA was searched against PROSITE pre-release profiles
library, the sensitivity wasyset to default

In addition to the raw score, the normalized NScore is reported. Note
that if you searched the Pfam bitscaled database, the normalized score
shown is identical to the original HMMER bitscore.

Hits coming from PROSITE Profiles are color-coded in red

Hits coming from PROSITE Patterns in magenta

Hits coming from Pfam in blue ~
Hits coming from Gribskov collection in green

Significant matches are labeled with a red *!" in the first column.
If no match is found, the list below remains empty

normalized raw from - to Profile | Description

For a graphical display of the hitlist, use the SEView Applet

Figure 9.7 Results of searching the PROSITE and pre-release profile library with sequence
TRFE_XENLA. As indicated, when there are no matches to a profile, the results hox remains
empty, as witnessed here,

The result of searching the profiles collection is illustrated in Figure 9.7.
No matches were found in this resource; but, in fact, later inspection
reveals that there is no transferrin profile in this version of the library, so
we could not have expected a positive result anyway.

Searching Pfam

~ Another important resource to search is the Pfam collection of Hidden
Markov Models. Searching is achieved via a Web interface that requires the
query sequence to be supplied to a text box:

http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/proteinl frm.html

but the sequence must be in FastA format, which means that the query
must be preceded by the > symbol and a suitable sequence name, as shown
in Figure 9.8.

>TransferrinQuery

MDFSLRVALCLSMLALCLAIQERKERQVRWCYV
S SELKKCKDLVDTCKNEKEIKLSCVERKSN
TDECSTAIQEDHADAICVDGGDVYKGSLOQP
YNLKPIMAENYGSHTETDTCYYAVAVVEKKS
SKFTFDELKDKKSCHTGIGRKTAGWNIIIGL
LLERKLLKWAGPDSETWRNAVSEKFFEKASCYV

Figure 9.8 Exan;i)le of a query sequence in FastA format.

The result of the Pfam search is shown in Figure 9.9. This analysis iden-
tifies three regions with significant alignments, the first spanning the first
domain revealed by the PROSITE search, the second and third regions
lying within the second domain.

Sequence TransferrinQuery - Domain organisation

Domain Start End Bits Alignment
transferrin 26 341 669.51 Align
transferrin 354 484 123.16 Align
transferrin 493 686 186.64 Align

Figure 9.9 Results returned from a search of Pfam with the query sequence TRFE_XENLA.

Searching PRINTS

Another key secondary resource is PRINTS, which provides a bridge
between single-motif search methods, such as the one used to compile
PROSITE, and domain-alignment/profile methods, such as those embodied
in the profile library and Pfam.

yoeoudde jedpoeid y
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PRINTS is accessible for searching via the ‘Protein sequence analysis ~
Protein fingerprinting’ page:

http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/protein2frm.html

The results of searching PRINTS are illustrated in Figure 9.10. The output
is divided into distinct sections: first, the program offers an intelligent
‘guess’ based on the occurrence of the highest-scoring complete or partial
fingerprint match, or matches; it then provides an expanded table that
shows the top 10 best-scoring matches - clearly, these include the intelli-
gent result from the previous table, but the additional matches are provided
to highlight why the best guess was chosen, and to allow a different choice,
if the guess is considered either to be wrong or to have missed something;
the remaining sections of output provide more of the raw data, again allow-
ing the user to search for anything that might have been missed.

In the result shown in Figure 9.10, we see that the intelligent guess is a

(@)

The scoring rprints a

Figure 9.10 Results returned from a search of PRINTS with the query sequence
TRFE_XENLA: (a) the program’s ‘best guess’; (b) the extended hitlist from which the ‘guess’

match with the TRANSFERRIN fingerprint. Examination of the .
table highlights the quality of this match compared with all othelsma
in terms of the number of motifs matched, the average scores; and 5o on. 1
is clear from this extended hitlist that the program’s guess w;s a gngdanvne
and that transferrin is indeed the best match.

A particularly valuable aspect of this software is the facili visuaki
individual fingerprint matches by clicking on the ‘graphic’ boxtg;;ome‘ ;ig;f:
hand side of the table. The result is illustrated in Figure 9.11: in the graph,
the x-axis denotes the sequence, and the y-axis, which is divided into thé
number of motifs that make up the fingerprint, denotes percent identity
of the match (0-100 per motif). Filled blocks mark the positions of the
highest-scoring matches between particular motifs and the query sequence.
In the example shown, the five motifs of the TRANSFERRIN fingerprint
are scanned along the TRFE_XENLA query sequence, each motif making a
strong match, as denoted by the series of blocks matching in order from the
N- to the C-terminus.

was deduced. .

100 | TRFE_XENLA
5
il Ll g o i bbstaidy "
4
b i bt sl E L bl Lk
3
Lot %.J L e al, e Ay
2
g
ES
1
0 il Al i I ,
800

Residue number

Figure 9.11 Graphical result returned from a search of the query sequence TRFE_XENLA
with the TRANSFERRIN fingerprint. Filled blocks appearing in the correct order along the
query sequence mark a strong match between the query and the given fingerprint.
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Searching the BLOCKS databases :
The next secondary resources to be searched in this protocol are the
BLOCKS databases, derived from PROSITE and PRINTS. If results
matched in PROSITE and/or PRINTS are true-positive, then we would
expect these to be confirmed by the BLOCKS search results.

Within the tutorial, the BLOCKS databases are searched by supplying
the query sequence to the input box of the relevant Web form:

http:/ /www.bioinf.man.ac.uk/dbbrowser/bioactivity/proteinlfrm.html

remembering in each case to 3witch to the required database. The results of
these database searches are illustrated in Figures 9.12 and 9.14.

At first sight, the output may appear daunting, but one or two pointers
make it easier to understand. First, it is clear from the Description line that the
sequence has been identified as a transferrin. The accession codes (BL00205) in
the Block column indicate that there are five motifs, labelled A to E; matches to
these motifs are ranked according to score. The ‘rank’ of the best-scoring block,

. the so-called anchor block, is reported - in this example, the score for block B

falls in the 100th percentile of scores for shuffled queries. Where additional
blocks support the anchor block by matching with high scores in the correct
order, a probability value is calculated, reflecting the likelihood of these
matches appearing together in this order by chance - in this example, the
p-value is very small, indicating that this result is statistically significant.

Often results are littered with matches with high-scoring individual
blocks. These matches are usually the result of chance, and p-values are not
calculated.

The information content of particular blocks can be visualised by exam-
ination of the sequence logo (see Box 9.1). As shown in Figure 9.13, block
B for the transferrin family, the anchor block, is highly conserved, being
characterised by 14 completely conserved positions.

By repeating the query with the database switched to BLOCKS-format
PRINTS, we see a very similar result - again, only the first result is shown
from a hitlist of 10, in Figure 9.14. The output format is exactly the same as
that described for the BLOCKS database. Here again, the search confirms
that our query sequence is a member of the transferrin family, matching in
this case five motifs (A to E) of the transferrin fingerprint (accession code
PR00422). Here, motif A provides the highest ranking, anchor block.

Searching IDENTIFY
The final resource in our protocol is IDENTIFY, which is searched by sup-
plying the query sequence to the relevant Web form:

http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/protein1frm.html

The results of searching IDENTIFY are illustrated in Figure 9.15 - output is
normally given at several stringency levels, but for convenience only the top
level is shown here.

BOX 9.1: SEQUENCE LOGOS

w
|

Information content (bits)
N
|
e —

-
|

Residue number

Clearly, this resource also confirms that the query sequence belongs to
the transferrin family. The first match corresponds to PROSITE pattern
TRANSFERRIN_1, and the following five to PRINTS motifs TRANSFER-
RIN1-5.
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1.

Block Rank Frame Score Strength Location (aa) Description

BL00205A 7 ¢ 1596 1778 128- 151 Transferrins proteins.
BLO0205A 8 0 1565 1778 460- 483 Transferrins proteins.
BL00205B 1 o 1743 1815 206- 233 Transferrins proteins.
BL00205B 10 0 1148 1815 534~ 561 Transferrins proteins.
BL00205C 2 0 1709 1855 241- 272 Transferrins proteins.
BL00205C 6 0 1606 1855 581~ 612 Transferrins proteins.
BL00205D 3 0 1686 1875 456~ 483 Transferrins proteins.
BL00205D 5 a 1629 1875 124~ 151 Transferrins proteins.
BLO020SE 4 o 1675 1781 534- 548 Transferrins proteins.
BL0O020SE 9 0 1360 1781 206- 220 Transferrins proteins.

1743=100.00th percentile of anchor block scores for shuffled queries
P<8.4e-15 for BL00205C BL00205D BLOO20SE BL0020SA in support of BL0O020SB
Maximum number of repeats (fromprosite MAX-REPEAT) = 2
non-overlapping repeats in support of BL0O0205A
non-overlapping repeats in support of BL00205B
non-overlapping repeats in support of BL00205C
non-overlapping repeats in support of BL00205D
non-overlapping repeats in support of BL0020SE

}--- 180 amino acids
.BBBB:.CCCC

-

o e

BLO00205 AAA::

Unknown <AAA: BBB:CCCC:
Unknown <
Unknown DDDD EE
BLO0205A  <->A (110,130) : 127
TRF1_SALSA 121 LRGKKSCHTGLGKSAGWNIPIGTL
R e et ey
Unknown 128 LkdKRSCHTGiGKTAGWNTiIGLL
460 LRGVKtCHTavGRTAGWNI PVGL1

BL00205B A<->B (47,54) :54

TRFE_HORSE 204 EPYFGYSGAFKCLADGAGDVAFVKHSTV
(RN A R R R I R RN AR ]

Unknown 206 EPYYnYAGAFKCLODDGGDVAFVKQSTV
534 EaYYGYSGAFrCLvEkgqvgfakht TvE

BL00205C B<->C (7.12):7

TRF1_SALSA 231 YELLCKDGTRASIDSYKTCHLARVPAHAVVSR
[ N O N O A N R AR R |

Unknown 241 YELLCPDNTRKSIKEYKNCNLAKVPAHAV1tR
581 fELLCPDGSRAPVtDYKrCnLAeVPAHAVVEL

BL00205D C<->D (178,190) =183

TRFE_HUMAN 459 TWDNLKGKKSC TPMGLL
[ R PEEREREREELD

Unknown 456 sWSNLrGvKtCHTAVGRTAGWNI PVGLI

124 TfDeLKDKKSCH’&Gin’I‘AGWNIiiGLL

BL0O0205E D<->E (42,50):50

TRF1_SALSA 518 EQYYGYTGAFRCLVE
ot e

Unknown 534 EaYYGYSGAFRCLVE
206 EpYYnYaGAFkCLgd

Figure 9.12 Results returned from a BLOCKS search with the query sequence TRFE_XENLA,
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BLO0205B (TRANSFERRIN_1;) 8 sequences

Figure 9.13 Sequence logo for transferrin block B, hightighting the most conserved
positions within the block.

1. -
Block Rank Frame Score Strength Location (aa) Description

PRO0422A 1 0 1701 1587 208- 229 TRANSFERRIN SIGNATURE
PRO0422A 8 0 1198 1587 536- 557 TRANSFERRIN SIGNATURE
PRO0422B 4 0 1563 1362 398~ 417 TRANSFERRIN SIGNATURE
PRO0422B 13 0 1109 1362 73- 92 TRANSFERRIN SIGNATURE
PRO0422C 2 0 1658 1566 460- 480 TRANSFERRIN SIGNATURE
PR00422C 5 0 1538 1566 128- 148 TRANSFERRIN SIGNATURE
PRO0422D 3 0 1597 1388 572- 590 TRANSFERRIN SIGNATURE
PRO0422D 10 0 1118 1388 232- 250 TRANSFERRIN SIGNATURE
PRO0422E 6 0 1429 1331 599- 615 TRANSFERRIN SIGNATURE
PROC422E 7 0 1275 1331 259~ 275 TRANSFERRIN SIGNATURE

1701=100.00th percentile of anchor block scores for shuffled queries
P<5.1e-13 for PR00422C PRO0422D PRO0422B PRO0422E in support of PROGA22A
|--- 188 amino acids---}

ti:

PRO0422 AAA:::
Unknown AAA:::
Unknown <

Unknown < DDD EE

PRO0422A  <->A  (149,352) :207

TRFE_XENLA 208 YYNYAGAFKCLODDQGDVAFVK
PECRRVRLLTE I bty

Unknown 208 YYNYAGAFKCLQDDQGDVAFVK

PRO0422B  A<->B  (163,186):168

TRFE_XENLA 398 ADAVTLDGGYMYTAGLCGLY
PELELETEL e

Unknown 398 ADAVTLDGGYMYTAGLCGLV

PRO0422C  B<->C (32,45):42

TRFE_XENLA 460 LRGVKTCHTAVGRTAGWNIPV
RNy

Unknown 460 LRGVKTCHTAVGRTAGWNIPY

PRO0422D C<->D  (83,111):91

PRO0422E D<->E (8,9):8
TRFE_XENLA 572 WAKDLKSEDFELLCPDGSR TRFE_XENLA 599 CNLAEVPAHAVVTLPDK

PEEEREEEErrenent RARAARARERARER]
Unknown 572 WAKDLKSEDFELLCPDGSR  Unknown 539 CNLAEVPAHAVVTLPDK

Figure 9.14 Results from a search of BLOCKS-format PRINTS with the query sequence
TRFE_XENLA.

-
~
~

yaeosdde jearpoesd y



[y
~
o

1020304d yoaeas souanbas e bulpying

At a stringency of at least one in 1010 (no false positives expected)
Name Description Motif

TRANSFERRIN 1Transferrins y(fyl.y(aslgaf.cl. (de]..gdvaf [iv] (kr].. [ast}{1v]
positions

207-233
GTKEHKC QD XQST SYELLCEDN. . .
TRANSFERRIN TRANSFERRINS [fy]....ga(fly].cl....g.valfwy]
SIGNATURE
positions
207-227 .. .AGIKEHKC YNYAGAFKCLQDDQGDVAFVKQST E...
TRANSFERRIN TRANSFERRIN  adaliimv].[iiv][de]....y.a..cqllilv}
SIGNATURE
positions
397-417 .. . ASTAEECIVQIL L TAGLCGLVPVMGEYYDQDDLTEC. . .

TRANSFERRIN TRANSFERRIN [ilv] [ekar].. [kr} [st]ch[ast}. [filvy])...agw.{iv]Ip[ilmVv]

SIGNATURE A

positions

459-480 . . . AVATVKKGTQVSWSNLRGVKTC {PVGLITSETANCDFASY. . .
TRANSFERRIN TRANSFERRIN wlast]..1l...[dn}[€y].[ilv]lec. [dn]

SIGNATURE

positions

571-587 . . \HTTVFENTDGKNPAGWARDLKSEDF ELLCPDGSRAPVTIDYKRCNLA . - -
TRANSFERRIN TRANSFERRIN  c.l(as].[iv]p...[iv]vt..[de]

SIGNATURE

positions

598-614 . . . LCPDGSRAPVTDYKRCNLAEVPAHAVVTLEDKREQVAKTVVNQOSL. . .

Figure 9.15 Results returned from a search of IDENTIFY with the sequence TRFE_XENLA.

9.3 When to believe a result

The results of these primary and secondary database searches are sum-
marised in Table 9.1. Taken together, the emerging picture is that our
sequence evidently belongs to the transferrin family. This diagnosis is sup-
ported by all but one method, where, at the time of the search, there was
clearly no information available for the family.

As an example of the application of this type of search protocol, the
transferrins are straightforward; the diagnosis is clear. The real need for
such a strategy arises when query sequences do not have obvious homo-
logues in the database, i.e., do not return positive identifications following
sequence identity or similarity searches of the primary databases. Under
these circumstances, compdsing a diagnostic picture from searches of a
range of secondary databases is essential. If two or more of these make twi-
light matches, this builds confidence in making a diagnosis.

9.4 Structural and functional interpretation

Application of this sequence search protocol to our unknown 30-base frag-
ment of DNA, at a superficial level, has told us little more than that the

Table 9.1 Summary of search protocol results. All but one method returned a positive
diagnosis for the query sequence. Asterisked resources are those that provide family
annotations.

Method Diagnosis

OWL ID SEARCH TRANSFERRIN SEQUENCE
BLAST TRANSFERRIN FAMILY
PROSITE* TRANSFERRIN FAMILY
PROFILES - NO MATCH

PFAM TRANSFERRIN

PRINTS* TRANSFERRIN FAMILY
BLOCKS TRANSFERRIN FAMILY

BLOCKS-PRINTS
IDENTIFY

TRANSFERRIN FAMILY
TRANSFERRIN FAMILY

protein product is a member of the transferrin family. Thus far, we have
only scratched the surface; we have learned nothing of what a transferrin
protein might do, or what it might look like.

To glean this kind of information, it is necessary to delve into the anno-
tations or documentations provided by some of the secondary databases.
PROSITE and PRINTS are manually annotated resources - they alone pro-
vide family descriptions, and, where possible, details of the significance and
locations of the conserved motifs encoded in the databases. So, what more
can we learn about transferrins?

9.4.1 What do transferrins do?

Inspection of the PROSITE result allows us to follow links back to the
family documentation file (PDOC00182). Here, we learn that transferrins
are eukaryotic iron-binding glycoproteins that function to control the level
of free iron in biological fluids. The proteins, which bind two atoms of ferric
iron in association with an anion (usually bicarbonate), transport iron from
sites of absorption and haem degradation to those of storage and utilisation.

Transferrins are believed to have evolved through duplication of a 340-
residue iron-binding domain, in which each iron atom is bound by four
conserved residues: an aspartic acid, two tyrosines and a histidine. The cys-
teines in both domains form intra-domain disulphide bonds. Each of the
three PROSITE patterns includes an iron-binding ligand: a tyrosine in the
first two patterns, and a histidine in the third.

Following the link to the PRINTS documentation file (PR00422), we
find similar information, and we learn that the first motif of the fingerprint
has been drawn from the same region of the alignment as has PROSITE
pattern TRANSFERRIN_2, which encodes the conserved iron-binding
tyrosine and a cysteine residue involved in disulphide bond formation.
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9.4.2 What do transferrins look like?

A further important feature emerges from the PROSITE and PRINTS trans-
fetrin entries - each provides cross-references to other biological databases,
which in this instance indicate that co-ordinates of the 3D structure are
available (e.g., PDB file 1tfd). We can find out more about the structure,
either by following the links embedded in the PROSITE and PRINTS trans-
ferrin entries, or by supplying a relevant PDB code to the query forms of
the structure classification resources (such as SCOP and CATH).

scop
In this tutorial, SCOP is accessible for searching via the ‘Protein structure
analysis - Structure classification resources’ page:

http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/structurefrm.html

The relevant PDB code is simply supplied to the input box of the Web form.
The results of querying SCOP with code 1tfd are illustrated in Figure 9.16.

.
Protein: Transferrin from rabbit (Oryctolagus cuniculus)
Lineage:

1.Root: scop
2.Class: Alpha and beta (a/b)
Mainly parallel beta sheets (beta-alpha-beta units)
3.Fold: Periplasmic binding protein-like I
consists of two similar intertwined domain with 3 layers (a/b/a) each: duplication
mixed beta-sheet of 5 strands, order 21354; strand 5 is antiparallel to the rest
4.Superfamily: Periplasmic binding protein-like IT
Similar in architecture to the superfamily I but partly differs in topology
5.Family: Transferrin
further duplication: composed of two two-domain lobes
6.Protein: Transferrin
N-terminal lobe
7.Species: rabbit (Oryctol cuniculus)

g

PDB Entry Domains:

1.1tfd
complex with carbonate --; fe(iii) ion

Figure 9.16 Query results from the SCOP database for PDB code 1tfd.

The results returned from this query reveal that the structure whose co-
ordinates are available is rabbit transferrin, a two-domain a~B protein, with
each domain forming a three-layer (oo} sandwich structure.

CATH
The CATH resource is queried by supplying the desired PDB code to the
relevant form on the same Web page:

hitp:/ /www.bioinf.man.ac.uk/dbbrowser/bioactivity/structurefrm.html

The results of querying CATH with code 1tfd are illustrated in Figure 9.17,
The database splits the sequence into two domains, which are assigned
CATH numbers 3.40.400.10 and 3.40.190.10 respectively, indicating that
both folds are three-layer (afo) sandwiches from the o-B class, which is
consistent with the information gathered from SCOP.

Name: Transferrin (n-terminal half-molecule)
Source: Rabbit (Oryctolagus cuniculus) serum

Summary:
PDB Code | Chain | Status
1tfd - In CATH

2 assigned domains

Domain 1: residues 6 to 84, 250 to 303

Goto CATH entry
Class 3 Alpha Beta
Architecture 40 | 3-Layer(aba) Sandwich
Topology 400 | Phosphate-Binding Protein, domain 1

Homologous superfamily | 10 | 1lcf domain 1

Domain 2: residues 85 to 249
Goto CATH entry

Class 3 Alpha Beta
Architecture 40 | 3-Layer(aba) Sandwicl
Topology 190 | D-Maltodextrin-Binding Protein, domain 2

Homologous superfamily | 10 | 1dmb domain 2

Figure 9.17 Query results from the CATH database for PDB code 1tfd.

PDBsum

Clicking on the hyperlinked PDB code in the CATH summary takes us to the
PDBsum resource, a Web-based collection of information for all PDB struc-
tures. Here, wenare able to view pictures of the overall fold and secondary
structure of the molecule, together with images of the carbonate ligand and of
its interactions with the protein; for example, see Figures 9.18 and 9.19.

Using this pictorial information, we can begin to rationalise the results of
our secondary database searches in terms of structural and functional features of
the 3D molecule, essentially by superposing the motifs matched in PROSITE,
PRINTS and BLOCKS onto the sequence. Doing this, we discover that the
three PROSITE patterns were drawn from regions in the first domain that are
clearly duplicated in the second. Looking at the PRINTS motifs, however, we
find that only motif A lies in the first domain, motifs B to E falling in different
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Figure 9.18 Part of the PDBsum entry for PDB code 1tfd, showing different
representations of the overall protein fold.
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Figure 9.19 Part of the PDBsum entry for PDB code 1tfd, showing the secondary structures
of the protein mapped onto the sequence.

regions of the second domain. For BLOCKS, we find that blocks A, B and C fall
within the first domain, while blocks D and E are effectively the analogues of
blocks A and B in the second domain. This helps us to understand another fea-
ture of the BLOCKS search output, in which strings of alphabetic characters
(corresponding to the block‘s) are depicted along a ruler, which represents the
sequence (see Figures 9.12 and 9.14). It is immediately apparent from this sketch
that blocks A, B and C cluster towards the N-terminus of the sequence, and

blocks D and E towards the C-terminus, and moreover that there is a correspon-
dence both between blocks D and A and between blocks E and B. Regions
corresponding to the locations of the motifs are highlighted in Figure 9.20.

VRWCAVNDHEASKCANFRDSMKKVLPEDGPRIICVKKASYLDCT KATAAHEADAVTLDAG

- e

LVHEAGLTPNNLKPVVAEFYGSKENPKTFYYAVALV&KGBNFQLNELQGKKSCHTGLGRS

o
AGWNIPIGLLYCDLPEPRKPLEKSAVASFFGSCVPCADGADF PQLCQLCPGCGCSSVQPY

FGYSGAFKCLKDGLGDVAFVKQETIFENLP: SKDERDQYELLCLDNTRRPVDEYEQCHLAR
y -

VPSHAVVARSVDGKEDLIWELLNQAQEHFGKDKSGDFQLFS SPHGKNLLFKDSAYGFFK

Figure 9.20 Illustration of regions of sequence from which motifs have been drawn to
develop characteristic signatures for the transferrins. The main secondary structures are
shown: grey arrows denote strands; blue ribbons represent helices. Regions marked in bold
show where motifs from most of the secondary databases lie, and can be seen to correspond
with conserved secondary structures. The region marked blue is the most highly conserved,
and spans the helix and strand encoded by all three secondary databases.

While there is clearly some overlap between the motifs identified within
the different databases, there is not an exact correspondence. The only region
of the sequence at which all methods converge is that encoded by PROSITE
pattern TRANSFERRIN_2 (PS00206), PRINTS motif PRO0422A and block
BL00205B (recall that these were the highest-ranking, anchor blocks in the
BLOCKS database searches). This is a highly conserved region and compari-
son with the structure reveals that it spans part of a p-strand and o-helix 6,
which supports both a conserved iron-binding tyrosine residue and a cysteine
involved in disulphide bond formation. PROSITE pattern TRANSFERRIN 1
(PS00205) also encodes a B-strand, and four strands are spanned by pattern
TRANSFERRIN_3 (PS00207) and block BL00205C (the first of these
strands falls within PRINTS motif PR00422D and the second two within
motif PRO0422E). Finally, both block BL00205A and motif PR00422C span a
region that includes a short B-strand and a-helix 4.

That there are differences between the results is not surprising; as we have
seen, the analysis methods that underlie the different databases are themselves
different, those used to construct PROSITE and PRINTS being essentially
manual, those used to derive BLOCKS being fully automatic. In the final
analysis, what is important is to achieve a general consistency between results,
and to exploit all available annotations to yield the most detailed structural,
functional and evolutionary picture possible for any given query.

So far, our investigation has dealt only with the use of static Web forms
as an interface to searching various primary and secondary databases, and
to querying the structure classification resources. Where 3D co-ordinates
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D
are available, as in this example, we can take the analysis a step further
using software packages that allow visualisation and interactive manipula-
tion of sequence and structural information. Examples of such packages
form the subject of the following chapter.

9.5 Summary

® In trying to characterise a newly determined sequence, we want to
know what the protein is, to what family it might belong, what its func-
tion is, and how we can explain its function in structural terms. No
database or software yet exists that can answer these questions directly.
1t is thus sensible to build a range of techniques into a search protocol.

® One practical approach is outlined in an on-line interactive tutorial at:
http://www.bioinf.man.ac.uk/dbbrowser/bioactivity/ The principal
steps include:

® Identity searching of a composite database - this is the first and fastest
test of whether the exact sequence already exists in the public databases.

® Similarity searching - this will show whether the query belongs to an
extended family. For example, in BLAST output, look for matches with
high scores and low p-values, consider also whether there are clusters
of high scores at the top of the hitlist, otherwise look for trends in the
type of sequences matched.

e Pattern database searching - this will indicate whether the query con-
tains any known characteristic motifs that may be suggestive of
particular aspects of its structure or function. There are several major

resources to search; detailed family information may be gleaned by -

delving into the annotations provided by PROSITE and PRINTS.
® Fold classification database querying - once a consensus diagnosis has

been reached, further information might be accessible (i.e., if a structure. '

is known) by interrogating the fold class databases, or by examining the
summary information provided by PDBsum.

® Only by using a range of tools and databases can you gain the most
from your sequence analysis, because none of the databases is com-
plete, and none of the search methods is infallible. By marrying results
together, like pieces in a jigsaw, a more complete structural, functional
and evolutionary picture of your protein should begin to emerge.

9.6 Further reading

Attwoop, T.K. (1997) BioActivity: An interactive bioinformatics practical
on the WWW. Life Sciences Educational Computing, 8(3), 10~13.
Baxevanis, A. and OUueLLETTE, B.E.E, Eds (1998) Bioinformatics: A Practical
Guide to the Analysis of Genes and Proteins. John Wiley and Sons.

SALTER, H. (1998) Teaching bioinformatics. Biochemical Education,
26, 3-10.

Analysis packages

10.1 Introduction

In previous chapters, we have discussed the seemingly bewildering array of
biological databases, the algorithms that have been devised to search them,
and the kind of analysis protocol that may be pursued via a simple Web
interface. This chapter deals briefly with stand-alone analysis packages,
touching on the types of facilities they offer and why there was a need to
create them. Popular packages from both the commercial sector and the
public domain are outlined (e.g., GCG, Staden), and the latest develop-
ments on the WWW are highlighted (e.g., CINEMA). Issues relating to
software development and licensing are mentioned from both academic and
commercial perspectives.

10.2 What's in an analysis package?

In Chapter 9, we saw that in the course of analysing a protein sequence,
several search methods need to be applied. But homology searching is only
one aspect of the analysis process. Numerous other research tools are also
available; including hydropathy profiles for the detection of possible trans-
membrane domains and/or hydrophobic protein cores (see Figure 10.1 and
Box 10.1); helical wheels to identify putative amphipathic helices (see Box
10.2); sequence alignment and phylogenetic tree tools for charting evolu-
tionary relationships; secondary structure prediction plots for locating
o-helices and B-strands; and so on.

Because of the need to employ a range of techniques for effective
sequence analysis, software packages have been developed to bring a variety
of these methods together under a single umbrella, obviating the need to use
different tools with different interfaces, with different input requirements and
different output formats. We will start by considering commercial databases
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Hyd. Index
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Figure 10.1 Illustration of different tools used in the analysis of protein sequences. (a)
Hydropathy profiles, for pinpointing potential b ing regions or hydrophobi
protein cores — here, three different scales are shown (Eisenberg, Kyte and Doolittle, and a
‘transmembrane’ index). Peaks penetrating above the dotted lines indicate possible
transmembrane (TM) domains. Clearly, there is overall similarity between the graphs, but
there are differences in detail regarding the number and extent of the potential hydrophabic
regions. Where there is a consensus between the methods, there is a greater chance that the
predictions are reliable. In this case, for example, there is a measure of canfidence that six
TM regions might exist, but considerable ambiguity regarding the presence of a possible
seventh domain. (b) Helical wheel showing the sequence of an amphipathic ot-helix. The
separation of hydrophobic and charged residues is clear; the direction of the hydrophebic
moment corresponding to this is shown by the arrow.
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and software, because there are different issues to be considered when buying
a package, whether for company or academic use, as opposed to download-
ing freely available resources from the Internet.

10.3 Commercial databases

If the majority of biological databases are available from publicly accessible
servers on the Internet, why bother with commercial databases? The answer
lies in the industrial approach to information technology: i.e., the desire to
purchase solutions to well-defined problems, rather than the more
exploratory academic approach. In industry, if services exist to develop and
maintain databases, and can be purchased, finance and manpower can then
be released for the more exacting scientific task of searching and analysing
the data. As only large, or highly specialised, organisations support substan-
tial bioinformatics divisions, the use of scientists’ time is carefully scrutinised.

Major releases of DNA and protein sequence databases occur every three to
four months. In the meantime, newly determined sequences are'added to daily-
update files. To keep an in-house database up-to-date, synchronised FTP scripts
are used (e.g, using scheduling software such as cron under UNIX). With such a
system, it is relatively simple to track individual databases, but it becomes
unwieldy when several databases (e.g., GenBank, EMBL, SWISS-PROT, PIR)
have to be monitored and merged with proprietary information. Further, if new
databases evolve, and it is considered advantageous also to bring them in-house,
existing scripts must be updated to incorporate the new resources.

One answer to these problems is to find a good database service provider,
who will either supply up-to-date databases or, alternatively, offer easily
maintainable software for database updating.

10.4 Commercial software

Given that virtually all sequence comparison algorithms are published, and
implementations of them are freely available, why go to the expense of pur-
chasing commercial licences?

In an industrial environment, the requirement for software licences is
often simply a matter of legal probity - although commercial releases from
academic institutions are often identical to their freely available academic
counterparts, it is reasonable that software used for commercial purposes
should attract a fee. Sometimes public-domain code is provided with com-
mercial suites in order to allow integration of a range of algorithms within
the proprietary package framework (the GCG suite is an example where
this approach seems to work especially well).

Finally, commercial organisations usually require some level of support
to be assured. For example, they might want to know whether a technical
helpline is available; whether and when new versions, with updated fea-
tures, will be available; or whether the interface can be customised for use
with a company firewall for access to the Internet; etc. These can be signifi-
cant issues in a large company.

Another significant concern lies with company use of the Internet for
database searching; the act of performing a database search with a propri-
etary sequence on a public server is tantamount to publication. Such a
disclosure could prejudice a subsequent patent proposal, for example, and
hence limit the subsequent utility of the sequence in a commercial environ-
ment. Such important security issues provide the incentive for companies to
license packages whenever possible and bring them in-house.

10.5 Comprehensive packages

In the following sections, we outline 4 number of well-known packages that
offer a fairly complete set of tools for both DNA and protein sequence
analysis. These suites have evolved and grown to be fairly comprehensive
over a period of years; other packages may compete in terms of coverage of
tools in the coming years.

}
10.5.1 GCG \

The most widely known, commercially available sequence analysis software
is the GCG suite (Oxford Molecular Group). This was developed by the
Genetics Computer Group at Wisconsin (575 Science Drive, Madison,
Wisconsin, USA 53711) (Devereux ef al., 1984), primarily as a set of analy-
sis tools for nucleic acid sequences, but which in time included additional
facilities for protein sequence analysis.

Within GCG, many of the frequently used sequence databases can be
accessed (e.g., GenBank, EMBL, PIR and SWISS-PROT), as can a number of
motif and specialist databases (such as PROSITE; TFD, the transcription factor
database; and REBASE, the restriction enzyme database). A particular strength
of the system is that it can also be relatively easily customised to accept addi-
tional, user-specific databases. Within the suite, EMBL and GenBank are split
into different sections, allowing users to minimise search time by directing
queries only to relevant parts of the databases. Thus, for example, sequences in
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GenBank and EMBL may be searched either collectively, separately, or by
defined taxonomic categories (e.g., viral, bacterial, rodent, etc.).

As we have seen, the sequence databases have their own distinct for-
mats, so these must be converted to GCG format for use with its programs.
Likewise, all data files imported to the suite for analysis must adhere to the
GCG format. Many components of the package are thus simply format con-
version scripts, to allow, for example, sequences from different databases to
be used within the suite and/of, conversely, for GCG-format sequences to
be exported and used within different programs or packages.

The complete list of facilities offered by GCG cannot be described in
detail here. However, the options include tools for pairwise similarity
searching, multiple sequence alignment, evolutionary analysis, motif and
profile searching, RNA secondary structure prediction, hydropathy and
antigenicity plots, translation, sequence assembly (based on Staden’s
method (see below)), restriction site mapping, and so on.

The initial implementation of GCG was on a mini-computer under the
VMS operating system, and its command-line interface reflects this history.
More recent developments have seen the provision of a windowing interface
under UNIX, making the package easier to use. Use of all versions of the
software, whether command-line, X-windows or Web-based, requires a
licence, which for individuals may appear to be relatively expensive. Until
recently, however, group licences have been made available at discretionary
rates for organisations with extensive user communities. Thus, for example,
EMBnet nodes, which offer remote login facilities to their respective
national user bases, have been able to offer access to GCG, obviating the
need for each user to obtain an independent licence. However, this situation
may not prevail, and academic users may soon turn increasingly towards
cheaper, more flexible and up-to-date, non-commercial alternatives.

From the point of view of protein sequence analysis, GCG tools are fairly
primitive. For primary database searching, standard FastA and BLAST rou-
tines are offered, but for more incisive analysis and sensitive pattern
recognition, facilities are only provided to search PROSITE and profiles.

A )

EGCG

Extended GCG, or EGCG, began life at EMBL in Heidelberg as a collec-
tion of programs to support EMBL's research activities. Since 1988,
through a collaboration of groups within EMBnet and elsewhere, further
additions have been made to the suite in order to provide support both for
core analysis activities at the Sanger Centre, and for the entire user base of
EMBnet national nodes.

There are more than 70 programs in EGCG, covering themes such as
fragment assembly, mapping, database searching, multiple sequence analy-
sis, pattern recognition, nucleotide and protein sequence analysis,
evolutionary analysis, and so on. The original collection of extension pro-
grams were merged and released with GCG 7.0 as ‘unsupported’ software
for their licensed VMS users, and was subsequently ported to UNIX for dis-
tribution with GCG 72.

In 1997, various licensing issues arose that meant that it was no longer
possible to distribute academic source code that used GCG libraries. As a
result, EGCG 9.1, which was due for release in early 1998, was considered
obsolete. In November 1997, the EGCG developers therefore set out to
design a completely new generation of academic sequence analysis soft-
ware, free from licensing complications (essentially by releasing the package
under a version of the GNU General Public Licence). This effort has
become known as the EMBOSS project (see Section 10.8.2).

10.5.2 Staden -

The Staden Package is a set of tools for DNA and protein sequence analysis
(Staden, 1988). It does not provide databases, but the software works with the
EMBL database (as distributed by CD-ROM) and other databases in a similar
format. The package has a windowing interface for UNIX workstations.
Amongst its range of options, the suite provides utilities to define and to
search for patterns of motifs in proteins and nucleic acids (for example, specific
individual routines allow searching for mRNA splice junctions, E. coli promot-
ers, tRNA genes, etc., and users may define equally complex patterns of their
own). Patterns may be defined in many different ways, and the search algo-
rithms operate both on individual queries and on whole libraries of sequences.
A particular strength of the Staden Package lies in its support for DNA
sequence assembly. It provides methods for all the pre-processing required
for data from fluorescence-based sequencing instruments, including trace
viewing (TREV), quality clipping (PREGAP4) and vector removal

Figure 10.2 Screen dump illustrating some of the features of the graphical user interface
to the Staden package. The figure shows the Contig Comparator containing a variety of
search results, the Template Plot and Quatity Plot, the Contig Editor, and the Traces windows.
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(PREGAP4, VECTOR_CLIP); a range of assembly engines; and powerful
contig. editing and finishing algorithms (GAP4). The most recent addition
(Bonfield et al., 1998) is a new method for detecting point mutations
(TRACE_DIFF, GAP4). For analysis of finished DNA sequences, the pack-
age includes NIP4, and for comparing DNA or protein sequences, SIP4;
these routines also provide an interface to the sequence libraries. The new
interactive programs TREV, PREGAP4, GAP4, NIP4 and SIP4 have graph-
ical user interfaces (e.g., see Figure 10.2), but the package also contains a
large number of older, but still useful, programs that are text based.

The package is available on CD subject to completion of the necessary
licence agreements. Purther information is available at the Web address
given at the end of the chapter. ®

10.5.3 Lasergene

Lasergene is a PC-based package that provides facilities for coding analysis,
pattern and site matching, and RNA/DNA structure and composition
analysis; restriction site analysis; PCR primer and probe design; sequence
editing; sequence assembly and contig. management; multiple and pairwise
sequence alignment (including dotplots); protein secondary structure pre-
diction and hydropathy analysis; helical wheel and net creation; and
database searching. The package allows use of the clipboard to export
results to graphics or word-processing programs for publication purposes.

Lasergene is available for Windows or Macintosh, for single users or for
networked-PC environments (but the provision of databases and their
updates can be problematic on distributed networks). The package is modu-
lar, which allows custom building of the suite, without having to purchase
the full range of functions available.

10.6 Packages specialising in DNA analysis

There are numerous other packages available, which tend to concentrate on
particular areas of sequence analysis. For example:

® Sequencher is a sequence assembly package for the Macintosh, used by
many laboratories engaged,in large-scale sequencing efforts. The pack-
age takes raw chromatogram data and converts it into contig.
assemblies; other functions include restriction site and ORF analysis,
heterozygote analysis for mutation studies, vector and transposon
screening, motif analysis, silent mutation tools, sequence quality estima-
tion, and visual marking of edits to ensure data integrity.

e VectorNTI, for Windows 3.1 supported by the American Type Culture
Collection (ATCC) and InforMax, Inc., is a knowledge-based package
designed to expedite cloning applications. It can automatically optimise
the design of new DNA constructs and recommend cloning steps. The
user can specify preferences for processes such as fragment isolation,
modification of termini, and ligation. The system incorporates ~3000
rules for genetic engineering.

® MacVector is a molecular biology system that exploits the Macintosh
user interface to create an easy-to-use environment for manipulation
and analysis of DNA and protein sequence data. The package imple-
ments the five BLAST search functions, and includes ClustalW for
sequence alignment, and an icon-managed sequence editor that is inte-
grated with the program’s molecular biology functions (e.g., translation,
restriction analysis, primer and probe analysis, protein structure predic-
tion, and motif analysis). Facilities are also provided to compute
predicted sequence-based melting curves for DNA and RNA structures.

There are, of course, many other commercial packages that specialise in
DNA and protein sequence analysis, but it is beyond the scope of this book
to deal with them all here. Further, more complete, information may be
readily obtained by interrogating the World Wide Web.

10.7 Intranet packages/’

The future for commercial solutions lies in providers understanding the key
issues facing the large industrial user. Most companies now have intranets
and support the use of HTTP and Internet Inter-ORB Protocol (IIOP).
Bioinformatics solutions must fit as seamlessly as possible into this environ-
ment. Most companies need to implement integration throughout the
research operation, and this is especially so in terms of genomic information.

Most industrial bioinformatics teams devote some resources to develop-
ment and maintenance of internal Web servers that replicate the services
available at public bioinformatics sites. It is frequently necessary to take this
approach for security reasons, but also in order to enable integration of
standard bioinformatics tools with in-house software, developed for specific
industrial applications. Two companies, NetGenics Inc. and Pangea
Systems Inc., provide bioinformatics systems that offer the prospect of ser-
vice integration via the intranet.

10.7.1 SYNERGY

SYNERGY, developed by NetGenics Inc., Cleveland, Ohio, is an object-
oriented approach using Java, CORBA, and an object-oriented database, to
implement a flexible environment for managing bioinformatics projects. SYN-
ERGY integrates standard tools into its portfolio through the use of CORBA
‘wrappers’, which present a streamlined interface between the tool and the
SYNERGY system. In this way, the developers are able to incorporate a
number of standard programs very rapidly, and users of the system are able to
incorporate their own tools by implementing CORBA wrappers in-house.

The object-oriented learning curve is steep, however, and including
CORBA adds a further layer of complexity. Although an elegant solution,
the time may not be ripe for such leading-edge technology to be adopted in
all industrial environments. Defining interfaces (i.e., specifications for wrap-
pers) for objects in bioinformatics is under active discussion, and a Special
Interest Group (SIG) of the Object Management Group (OMG) has been
formed in the life sciences to address the issue. Standardising interfaces to
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programs and databases should make the deployment of object-oriented
systems much more achievable in the future.

10.7.2 GeneMill, GeneWorld, GeneThesaurus

GeneMill, GeneWorld and GeneThesaurus are the developments of Pangea
Systems Inc., Qakland, California. These are Web-based tools that are
back-ended by a relational database. The overall system is aimed at high-
throughput sequencing projects, and other large-scale industrial genomics
projects, including, for example, GeneMill, a sequencing workflow database
system for managing sequencing projects; GeneWorld, a tool for analysis of
DNA and protein sequences; and GeneThesaurus, a sequence and annota-
tion data subscription service, allowing access to public data and integration
with proprietary data. The system is modular and allows interfaces to in-
house software to be built seaglessly, using an open programming interface,
PULSE (Pangea’s Unified Life Sciences Environment).

As already mentioned, NetGenics’ and Pangea’s products have been devel-
oped for the intranet environment. We now briefly review some packages
that are freely available over the Internet (but which could equally be
implemented on corporate intranets).

10.8 Internet packages
10.8.1 CINEMA

As we have seen, central to sequence analysis is the multiple alignment.
Consequently, a vital tool for the sequence analyst is an alignment editor.
Several automatic alignment programs are now available, either in a stand-
alone form (such as ClustalW) or as components of larger packages (such as
Pileup in GCG). But automatically calculated alignments almost invariably
require some degree of manual editing, whether to remove spurious gaps, to
rescue residue widows, or to correct misalignments. This often presents prob-
lems, as there is currently no standard format for alignments. Consequently,
swapping between alignment programs is almost impossible without the use
of ad hoc scripts to convert between disparate input and output formats.

The advent of the object-oriented network programming language, Java
(Gosling and McGilton, 1995), addresses some of these problems. Java-
capable browsers may run applets on a variety of platforms - applets are
small applications loaded from a server via HTML pages; the software is
loaded on-the-fly from the server, and cached for that session by the browser.

CINEMA is a Colour Interactive Editor for Multiple Alignments, written
in Java (Parry-Smith et al.,, 1998): the program allows creation of sequence
alignments by hand, generation of alignments automatically (e.g., using
ClustalW), and visualisation and manipulation of sequence alignments cur-
rently resident at different sites on the Internet. In addition to its special
advantage of allowing interactive alignment over the Web, CINEMA provides
links to the primary data sources, thereby giving ready access to up-to-date
data, and a gateway to related information on the Internet.

RHODOPSIN View aliqmment RHODOBSIN 8T
Type of fingerprint: COMPOUND with 6 e
nKe:
PRINTS;
PRINTS

BLOCKS; / ]
PRODOM; 17508; 12504; 1251%; 12482;

SBASE;
GCRDB; GCR s GCR 0412; GCR_0085)
Creation date 11-SEP-1996

1. APPLEBURY, M.L. and HARGRAVE, P.H
Molecular biology of the visual pigu
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Figure 10.3 The CINEMA colour interactive editor for multiple alignments. The figure
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CINEMA is more than just a tool for colour-aided alignment prepara-
tion. The program also offers facilities for motif identification; database
searching (using BLAST); 3D-structure visualisation (where co-ordinates
are available), allowing inspection of conserved features of alignments in a
3D context (see Figure 10.3); generation of dotplots and hydropathy pro-
files; six-frame translation; and so on. The program is embedded in a
comprehensive help file (written in HTML) and is accessible both as a
stand-alone tool from the DbBrowser Bioinformatics Web Server, and as an
integral part of the PRINTS protein fingerprint database.

Exploitation of such technologies revolutionises the way users may inter-
act with databases in the future: bioinformatics centres need not just provide
data, but are now able to offer the means by which information is visualised
and manipulated, without the requirement for users to install code.

10.8.2 EMBOSS

The European Molecular Biolpgy Open Software Suite (EMBOSS) is an
integrated set of packages and tools for sequence analysis being specifically
developed for the needs of the Sanger Centre and the EMBnet user com-
munities. Applications of the package are planned to include, for example:

® EST clustering

e Rapid database searching with sequence patterns
® Nucleotide sequence pattern analysis

o Codon usage analysis

® Gene identification tools

® Protein motif identification

The first application of EMBOSS was a file format conversion tool, called
‘seqret, which simply reads an input sequence and writes it out to a specified
format (i.e., it is the equivalent function to the publicly available ‘readseq’). In
concert with the development of specific applications, the EMBOSS project
also aims to provide easy integration of other public-domain packages,
including several of those previously incorporated within EGCG, but exclud-
ing any for which there is no GCG-free version of source code available.

10.8.3 Alfresco

Alfresco is a visualisation tool that is being developed for comparative genome
analysis, using ACEDB for data®torage and retrieval. The program compares
multiple sequences from similar regions in different species, and allows visuali-
sation of results from existing analysis programs, including those for gene
prediction, similarity searching, regulatory sequence prediction, etc.

By using available analysis programs relevant to comparative genome
sequence analysis, the developers are free to focus on designing an intuitive
graphical user interface for combining the results of the different applica-

tions. The program is being developed using Java for use via the WWW, but
will also function as a stand-alone application. :

The range and scope of analysis packages available, and the variety of analysis
tools they each offer, are considerable and we cannot do proper justice to them
here. Nevertheless, we hope to have given a flavour of some of today’s most
popular packages. For more up-to-date information on sequence analysis pack-
ages we would recommend querying the World Wide Web via one of the
standard search engines (AltaVista, LookSmart, Infoseek, NetSearch, etc.).

10.9 Summary

® Because of the need to employ a range of techniques for sequence
analysis, software packages have been developed to bring several meth-
ods together under a single umbrella. This removes the burden of
learning how to use different tools, with different interfaces, with differ-
ent input requirements and different output formats.

®  Although most biological databases are in the public domain, there is a
market for commercial databases. Companies usually wish to purchase
complete solutions to well-defined problems - e.g., if services to
develop and maintain databases can be bought, manpower can be
released to support research.

® Although most sequence analysis software is in the public domain, for
various reasons, companies tend to prefer to purchase commercial
licenses - e.g., because of the need for technical support, or the desire
to keep information behind company firewalls.

® There are several comprehensive packages for sequence analysis avail-
able. These include the GCG suite (which can be customised to accept
user-specific databases), the Staden package (whose particular strength
is in support for DNA sequence assembly), and the PC-based Lasergene
(a modular package that allows custom building of the suite).

® Other packages tend to concentrate on particular areas of sequence
analysis, including Sequencher (for large-scale sequencing), VectorNTI
(designed to expedite cloning applications), and MacVector (exploits
the Macintosh interface to create an easy-to-use environment for DNA
and protein sequence analysis).

® As most companies now have intranets, several bioinformatics applica-
tions have been designed to offer service integration via the intranet -
e.g, SYNERGY is an object-oriented approach using Java, CORBA and
an object-oriented database; and GeneMill, 'GeneWorld and
GeneThesaurus are Web-based tools that exploit a relational database.

® Some packages are freely available over the Internet ~ e.g., CINEMA is
a Java alignment editor that integrates facilities for database searching,
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motif recognition, structure visualisation, etc.; EMBOSS is an inte-
grated set of tools for sequence analysis being developed at the Sanger
Centre; and Alfresco is a visualisation tool that is being developed for
comparative genome analysis.

10.10 Further reading

Sequence analysis tools
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387-395.
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10.11 Web addresses

GCG http://www.geg.com/
ECGC http://www.sanger.ac.uk/Software /EGCG/
Staden http://www.mrc-Imb.cam.ac.uk/pubseq/
NetGenics http://www.netgenics.com/
Pangea Systems http://www.pangeasystems.com/
CINEMA http://www.bioinf. man.ac.uk/dbbrowser/CINEMAZ2.1
EMBOSS http://www.sanger.ac.uk/Software/EMBOSS/
Alfresco http://www.sanger.ac.uk/Users/nic/alfresco.html
»

Glossary

Accession number: A unique number or code given to mark the entry of a
sequence (protein or nucleic acid) or pattern (regular expression, finger-
© print, profile) to a primary or secondary database. Accession numbers
should remain static between database updates, and hence in theory pro-
vide a mechanism for reliably identifying a particular entry in subsequent
. database releases.

Algorithm: The logical sequence of steps by which a task can be performed.
Alternatively spliced form: See Splice variant.

Amino acid: The fundamental building block of proteins. There are 20 nat-
urally occurring amino acids in animals and around 106 more found only
in plants.
- Amphipathic helix: A helix that displays a characteristic charge separation in
terms of the distribution of its polar and non-polar residues on opposite faces.
Their ‘sidedness’ allows such helices to sit comfortably at polar/apolar inter-
faces, such as at the surfaces of globular proteins (where their hydrophilic
sides point towards the solvent, and their hydrophobic sides point towards
the protein core), or within membranes (whete their hydrophobic sides point
towards the lipid environment, and their hydrophilic sides point towards the
protein interior).
Analogues: Non-homologous proteins that have similar folding architec-
_ tures, or similar functional sites, which are believed to have arisen through
convergent evolution.

Applet: Small software applications loaded from a server via HTML pages.

Assembly: The process of aligning overlapping sequence fragments into a
contig. or series of contigs.

~ Basepair (bp): Any possible pairing between bases in opposing strands of
DNA or RNA. Adenine pairs with thymine in DNA, or with uracil in RNA;
and guanine pairs with cytosine.
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Bioinformatics: The application of computational techniques to the man-
agement and analysis of biological information.

Block: An ungapped, aligned motif consisting of sequence segments that
are clustered to reduce multiple contributions from groups of highly similar
or identical sequences.

Browser: A computer program (commonly known as a Web client) that
permits information retrieval from the Internet and the WWW.

¢DNA library: A gene library composed of cDNA inserts synthesised from
mRNA using reverse transcriptase.

Central dogma: A fundamental principle of molecular biology, first
expounded by Francis Crick in 1958, essentially stating that the transfer of
information from nucleic acid to nucleic acid, or from nucleic acid to pro-
tein, is possible, while transfer from protein to nucleic acid or from protein
to protein is impossible. A shorthand expression of the dogma gives the uni-
directional relation: DNA > RNA > protein.

Chaperone: A protein that assists the correct non-covalent assembly of
folding proteins in vivo; chaperones do not themselves form part of the
structures they help to assemble.

Chromosomes: The paired, self-replicating genetic structures of cells that
contain the cellular DNA; the nucleotide sequence of the DNA encodes the
linear array of genes. .

Client: Any program that interacts with a server (Lynx, Mosaic and
Netscape are examples of client software).

Clone: A copied fragment of DNA, maintained in circular form, identical to
the template from which it is derived.

Cloning: The process of generating identical copies of a DNA fragment
(that may encode a complete gene) from a single template DNA.

Cloning vector: A DNA molecule originating from a virus, a plasmid, or
the cell of a higher organism into which another DNA fragment can be
integrated without compromising the vector's capacity for self-replication.
Coding sequence (CDS): A region of DNA or RNA whose sequence deter-
mines the sequence of amino acids in a protein.

Command line: The basic level at which a computer prompts the user for input.
Communication protocol: An agreed set of rules for structuring communi-
cation between programs (allowing, for example, data exchange between
nodes on the Internet).

Complementary DNA (cDNA): DNA that is synthesised from a messenger
RNA template using the enzyme reverse transcriptase.

Composite database: A database that amalgamates a number of primary
sources, using a set of defined criteria that determine the priority of inclu-
sion of the different sources and the level of redundancy retained (e.g.,
NRDB is a non-identical composite protein sequence database and OWL is
a non-redundant composite).

Conceptual translation: The computational process of interpreting the
sequence of nucleotides in mRNA via the genetic code to a sequence of
amino acids, which may or may not code for protein.

Consensus sequence: A pseudo-sequence that summarises the residue
information contained in a multiple alignment.

Conserved sequence: A sequence of bases in a DNA molecule (or an
amino acid sequence in a protein) that has remained essentially unchanged
during evolution.

Contig.: Sequences of clones, representing overlapping regions of a gene,
presented as an assembly or multiple alignment.

Dansylation: A method used to add dansyl groups to free amino groups in
protein end-group analysis. The dansyl amino acids, isolated after hydroly-
sis of the protein, are fluorescent and may be detected in nanomolar
quantities. f

Diagnostic performance (diagnostic power): A measure of the ability of a
discriminator to identify true matches, either in an individual query
sequence or in a database.

Discriminator: A mathematical abstraction of a conserved motif, or set of
motifs (e.g, a regular expression pattern, a profile or a fingerprint), used to
search either an individual query sequence or a full database for the occur-
rence of that same, or similar, motif(s).

DNA (deoxyribonucleic acid): The molecule that encodes genetic informa-
tion. DNA is a double-stranded molecule held together by weak bonds
between basepairs of nucleotides. The four nucleotides in DNA contain the

~ bases: adenine (A), guanine (G), cytosine (C) and thymine (T). In nature,

basepairs form only between A and T and between G and C; thus the base
sequence of each single strand can be deduced from that of its partner.

DNA sequence: The linear sequence of base pairs, whether in a fragment
of DNA, a gene, a chromosome or an entire genome. '

Domain: A compact, local, semi-independent folding unit, presumed to
have arisen via gene fusion and gene duplication events. Domains need not
be formed from contiguous regions of an amino acid sequence: they may be
discrete entities, joined only by a flexible linking region of the chain; they
may have extensive interfaces, sharing many close contacts; and they may
exchange chains with domain neighbours. The combination of domains
within a protein determines its overall structure and function.

Down: State of a computer when it is non-operational and hence unavail-
able for normal use.

Dumb: A dumb terminal is a desktop display device that is not capable of
local processing, this being entirely carried out by the central computer. Such
terminals (e.g., VT52, VT100, etc.) do not support windowing applications.
E.C. system: The systematic classification and naming of enzymes by the
Enzyme Commission, whereby enzymes are denoted by the letters E.C,, fol-
lowed by a set of four numbers separated by dots. The first number
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indicates one of six main functional divisions (oxidoreductases; trans-
ferases, hydrolases, lyases, isemerases and ligases); the following numbers
denote different subclasses, as defined by donor group, acceptor, substrate,
isomet, etc., the final digit being a serjal number for the particular enzyme
(e.g., E.C.1.1.1.1 for alcohol dehydrogenase, E.C.3.5.3.15 for protein-
arginine deiminase, etc.).

Edman degradation: A method used in sequencing polypeptides, whereby
amino acid residues are removed sequentially from the N-terminus by reac-
tion with phenyl-isothiocyanate, to form phenylthiocarbamyl-peptide
(PTC-peptide). This is cleaved in anhydrous acid, releasing a thiazolinone
intermediate and the remainder of the peptide.

Enzyme: A protein that acts as a catalyst, speeding the rate at which a bio-
chemical reaction proceeds but not altering the direction or nature of
the reaction.

Enzyme Classification System: See E.C. system.

Eukaryote: Cell or organism with membrane-bound, structurally discrete
nucleus and other well-developed subcellular compartments. Eukaryotes
include all organisms except viruses, bacteria and blue-green algae.

Exons: The protein-coding DNA sequences of a gene.

Expressed Sequence Tag (EST): A partial sequence of a clone, randomly
selected from a cDNA library and used to identify genes expressed in a particu-
lar tissue. ESTs are used extensively in projects to map the human genome.
Expression profile: The characteristic range of genes expressed at different
stages of a cell’s development .and functioning.

False-negative: A true match that incorrectly fails to be recognised by a dis-
criminator.

False-positive: A false match incorrectly recognised by a discriminator.

File Transfer Protocol (FIP): A method of transferring files to remote
computers.

Fingerprint: A group of ungapped motifs excised from a sequence align-
ment and used to build a characteristic signature of family membership by
means of iterative searching of a primary (or composite) database.

Firewall: A mechanism for protecting a proprietary computer network (or
intranet), allowing internal users to access the Internet, while preventing
external Internet users from penetrating the intranet.

Flat-file: A human-readable data-file in a convenient form for interchange
of database information. Flat-files may be created as output from relational
databases, in a format suitable for loading into other databases.

Folding problem: The problem of determining how a protein folds into its
final 3D form given only the information encoded in its primary structure.
Frameshift: An alteration in the reading sense of DNA resulting from an
inserted or deleted base, such that the reading frame for all subsequent
codons is shifted with respect to the number of changes made (e.g., if a

sequence should read UCU-CAA-AGG-UUA, and a single U is added to the
beginning, the new sequence would read UUC-UCA-AAG-GUU, etc.).
Frameshifts may arise through random mutations, or via errors in reading
sequencing output.

Gene: The fundamental physical and functional unit of heredity. A gene is
an ordered sequence of nucleotides located in a particular position on a
particular chromosome that encodes a specific functional product (ie., a
protein or RNA molecule).

Gene cloning: See Cloning.

Gene duplication: A genetic alteration in which a segment of DNA is
repeated. Duplications may appear anywhere, but where the duplicated seg-
ment is adjacent to the original one, this is terméd a tandem duplication.

Gene expression: The process by which a gene's coded information is con-
verted into the structures present and operating in the cell. Expressed genes
include those that are transcribed into mRNA and then translated into pro-
tein and those that are transcribed into RNA but not translated into protein
(e.g., transfer and ribosomal RNAs).

Gene families: Groups of closely related genes that encode similar protein
products.

Gene product: The protein resulting from the expression of a gene. In some
cases, the gene product may be an RNA molecule that is never translated.
Genetic code: The rules that relate the four DNA or RNA bases to the 20
amino acids. There are 64 possible three-base (triplet) sequences, which are
known as codons. A single triplet uniquely defines one amino acid, but an
amino acid may be coded by as many as six codons. The code is thus said to
be degenerate.

Genome: All the genetic material in the chromosomes of a particular
organism, its size is generally given as its total number of basepairs.
Genome projects: Initiatives (often via international collaboration) to map
and sequence the entire genomes of particular organisms. The first com-
plete eukaryotic genome to have been sequenced is that of the yeast S.
cerevisiae; the human genome is expected to be finished by roughly
2003-2005; and mouse by around 2008. The majority of genomes com-
pleted to date are those of prokaryotes.

Helical wheel: A circular graph depicting five turns of helix, around which
the residues of a protein sequence are plotted. Helical potential is recog-
nised by the clustering of hydrophilic and hydrophobic residues in distinct
polar and non-polar arcs.

Hidden Markov Model (HMM): A probabilistic model consisting of a
number of interconnecting states. Like profiles, HMMs encode full domain
alignments. They are essentially linear chains of match, delete or insert
states: a match state denotes a conserved column in an alignment; an insert
state allows insertions relative to match states; and delete states allow
match positions to be skipped.
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Home page: The HTML document that acts as the first contact-point
between a browser and a server.

Homology: Being related by the evolutionary process of divergence from a
common ancestor. Homology is not a synonym for similarity.

Hybridisation: The process of Joining two complementary strands of DNA
or one each of DNA and RNA to form a double-stranded molecule.
Hydropathy: Having the property of hydrophobicity, a low affinity for
water.

Hydropathy profile: A graph in which hydropathy values are calculated
within a sliding window and plotted for each residue in a protein sequence.
Such graphs show characteristic peaks and troughs, corresponding to the
most hydrophobic and hydrophilic regions of the sequence respectively.
Hydrophobicity: See Hydropathy.

Hyperlink: An active HTTP cross-reference that links one Web document
to another document on the Internet.

Hypermedia: Formatted Web documents containing a variety of informa-
tion types, including text, image, movie and audio.

Hypertext: Text that contains embedded links (hyperlinks) to other
documents.

HyperText Markup Language (HTML): The syntax governing the way doc-
uments are created so that they can be interpreted and rendered by Web
browsers.

HyperText Transport Protocol (HTTP): The communication protocol used
by Web servers.

INDEL: An INsertion/DELetion in a DNA or protein sequence.

Internet: The international ngtwork of computer networks that connect
government, academic and business institutions.

Internet Inter-ORB Protocol (IIOP): The communication protocol used
by object-request brokers to communicate over the Internet.

Intranet: Computer network isolated from the Internet by means of a fire-
wall but that offers similar facilities to the local community (e.g., Web
servers, mail, etc.).

Introns: The sequence of DNA bases that interrupts the protein-coding
sequence of a gene; these sequences are transcribed into RNA but are
edited out of the message before it is translated into protein.

IP address: Internet Protocol address - a unique identifying number
assigned to each computer on the Internet to allow communication
between them.

Java: An object-oriented, network programming language that permits cre-
ation of either stand-alone programs, or applets that are launched via links
on Web pages. In theory, Java programs run on any machine that supports
the Java run-time environment (including PCs and UNIX workstations).

Kilobase (Kb): Unit of length for DNA fragments equal to 1000 nucleotides.
Library: An unordered collection of clones (i.e., cloned DNA from a particu-
lar organism), generated from genomic DNA or cDNA.

Locus (pl. loci): The position on a chromosome of a gene or other chromo-
some marker; also, the DNA at that position. The use of locus is sometimes
restricted to mean regions of DNA that are expressed.

Megabase (Mb): Unit of length for DNA fragments equal to 1 million
nucleotides.

Midnight Zone: Region of sequence identity where sequence comparisons
fail completely to detect structural similarity.

Model system: A biological system used to represent other, often more
complex, systems, in which similar phenomena either do, or are thought to,
occur (e.g., D. melanogaster, M. musculus, S. cerevisiae, C. elegans, E. coli).
Module: An autonomous folding unit, believed to have arisen largely as a
result of genetic shuffling mechanisms. Modules are contiguous in sequence
and are often used as building blocks to confer a variety of complex func-
tions on the parent protein. They may be thought of as a subset of protein
domains. Examples of modules include Kringle domains (named after the
shape of a Danish pastry), which are autonomous structural units found
throughout the blood clotting and fibrinolytic proteins; the ubiquitous
DNA-binding zinc fingers, which are small self-folding units in which zinc
is a crucial structural component; and the WW module (characterised by
two conserved tryptophan residues, hence its name), which is found in a
number of disparate proteins, including dystrophin, the product encoded by
the gene responsible for Duchenne muscular dystrophy.

Mosaic: A mosaic protein is a modular protein that, rather than including
multiple tandem repeats of the same module, is composed of a number of
different modules, each conferring different aspects of the parent protein’s
overall functionality (e.g., the calcium independent latrotoxin receptor, a
mosaic of EGF-like and laminin G-like modules).

Motif: A consecutive string of amino acids in a protein sequence whose
general character is repeated, or conserved, in all sequences in a multiple
alignment at a particular position. Motifs are of interest because they may
correspond to structural or functional elements within the sequences they
characterise.

Multiple alignment: See Sequence alignment.

Mutation: Any change in DNA sequence.

Normalised library: cDNA library generated such that all the genes in the
library are represented at the same frequency.

Nucleotide: A molecule consisting of a nitrogenous base (A, G, T or C in
DNA; A, G, U or C in RNA), a phosphate moiety and a sugar group
(deoxyribose in DNA and ribose in RNA). Thousands of nucleotides are
linked to form a DNA or RNA molecule.
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Object-oriented database: A database in which data are stored as abstract
objects, with abstract relationships between them. The data representations
are potentially very varied, including, for example, character strings, digi-
tised images, tables, etc.. An object may subsume many other objects, and
the database allows retrieval of the objects as a whole. The flexibility of
data representation, and the ability to group objects together, renders
object-oriented databases potentially very powerful systems.

Open reading frame (ORF): A’series of DNA codons, including a 5' initia-
tion codon and a termination codon, that encodes a putative or known gene.
Operating system: A program, or suite of programs, that controls the entire
operation of the computer, handling input/output operations, interrupts,
user requests, etc. (e.g., UNIX, VMS, Windows NT, etc.).

Orthologues: Homologous proteins that perform the same function in dif-
ferent species.

Packet: A self-contained message, or component of a message, comprising
address, control and data signals, which may be transferred as a single
entity within a communications network.

Paralogues: Homologous proteins that perform different but related func-
tions within one organism,

Pattern: See Regular expression.

Pattern database: See Secondary database.

Penalties: Scores, or weights, used by programs in the computation of
sequence alignments; such scores are normally supplied as parameters to
the programs and thus may be modified by the user.

Phantom INDELs: Spurious insertions or deletions that arise when physi-
cal irregularities in a sequencing gel cause the reading software either to
call a base too soon, or to miss a base altogether.

Phylogenetic analysis: Study of the evolutionary relationships between a
species and its predecessors (e.g,, using phylogenetic trees).

Phylogenetic tree: A graphical representation of the putative evolutionary
relationships between groups of organisms, e.g. as calculated from multiple
protein or nucleic acid sequence alignments.

Polymerase chain reaction (PCR): A method for amplifying a DNA base
sequence using a heat-stable polymerase and two primers, one complementary
to the (+)-strand at one end of the sequence to be amplified and the other com-
plementary to the (~)-strand at the other end. The faithfulness of reproduction
of the sequence is related to the fidelity of the polymerase. Errors may be intro-
duced into the sequence using this method of amplification.

Post-translational modification: An enzyme-catalysed alteration to a protein
made after its translation from mRNA (e.g., glycosylation, phosphorylation,
myristoylation, methylation).

Primary database: A database that stores biomolecular sequences (protein
or nucleic acid) and associated annotation information (organism, species,

function, mutations linked to particular diseases, functional/structural pat-
terns, bibliographic, etc.). -

Primary structure: The linear sequence of amino acids in a protein molecule.
Primer: A short polynucleotide chain to which new deoxyribonucleotides
can be added by DNA polymerase.

Probe: A DNA or protein sequence used as a query in a database search.
Profile: A position-specific scoring table that encapsulates the sequence infor-
mation within complete alignments. Profiles define which residues are allowed
at given positions; which positions are conserved and which degenerate; and
which positions, or regions, can tolerate insertions. In addition to data implicit
in the alignment, the scoring system may include evolutionary weights and
results from structural studies. Variable penalties are specified to weight against
insertions and deletions occurring in secondary structure elements.
Prokaryote: An organism lacking a membrane-bound, structurally discrete
nucleus and other subcellular compartments. Bacteria are prokaryotes.
Promoter: A site on DNA to which RNA polymerase will bind and initiate
transcription.

Protein: A molecule composed of one or more chains of amino acids in a
specific order; the order is determined by the base sequence of nucleotides
in the gene coding for the protein. Proteins are required for the structure,
function and regulation of cells, tissues and organs, each protein having a
specific role (e.g., hormones, enzymes and antibodies).

Quaternary structure: The arrangement of separate protein chains in a
protein molecule with more than one subunit.

Quinternary structure: The arrangement of separate molecules, such as in
protein—protein or protein-nucleic acid interactions.

R-factor: In X-ray crystallography, this parameter is used to express the extent
of agreement between theoretical calculations and the measured data; the
lower the R-factor, the better the fit (R means either Residual or Reliability).
Regular expression: A single consensus expression derived from a con-
served region of a sequence alignment, and used as a characteristic
signature of family membership. Synonymous terms: rule, pattern.
Regulatory regions or sequences: A DNA base sequence that controls gene
expression.

Relational database: A database that uses a relational data model, in which
data are stored in two-dimensional tables. The tables embody different
aspects or properties of the data, but contain overlapping information.
Resolution: The extent to which closely juxtaposed objects can be distin-
guished as separate entities. The degree of resolution is dependent on the
resolving power of the system; the fineness of detail with which objects may
be visualised is determined by the wavelength of electromagnetic radiation
used. X-rays, for example, have wavelengths in the range 10-8m to 10-'*m
and hence can be used to resolve structures at the atomic level. Structures are
thus said to be determined, for example, to 3 A resolution, 5 A resolution, etc.
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RNA (ribonucleic acid): A molecule chemically similar to DNA that plays
a central role in protein synthesis. The structure of RNA is similar to that of
DNA but it is inherently less stable. There are several classes of RNA mole-
cule, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal
RNA (rRNA), and other small RNAs, each serving a different purpose.

Rule: A short regular expression (typically 4-6 residues in length) used to iden-
tify generic (non-family specific) patterns in protein sequences. Rules tend to
be used to encode particular functional sites: e.g., sugar attachment sites, phos-
phorylation, hydroxylation, sulphation sites, etc. However, their small size
means that the patterns do not provide good discrimination, and can only give
a guide as to whether a certain functional site might exist in a sequence.
Secondary database: A database that contains information derived from
primary sequence data, typically in the form of regular expressions (pat-
terns), fingerprints, blocks, profiles or Hidden Markov Models. These
abstractions represent distillations of the most conserved features of multi-
ple alignments, such that they are able to provide potent discriminators of
family membership for newly determined sequences.

Secondary structure: Regions of local regularity within a protein fold (e.g.,
o-helices, B-turns, B-strands).

Sequence alignment: A linear comparison of amino (or nucleic) acid
sequences in which insertions are made in order to bring equivalent posi-
tions in adjacent sequences into the correct register. Alignments are the
basis of sequence analysis methods, and are used to pinpoint the occur-
rence of conserved motifs.

Sequence Tagged Site (STS): Short (200 to 500 basepairs) DNA sequence
that has a single occurrence in the human genome and whose location and
base sequence are known. Detectable by polymerase chain reaction (PCR),
STSs are useful for localising and orienting the mapping and sequence data
reported from many different laboratories and serve as landmarks on the
developing physical map of the human genome. Expressed sequence tags
(ESTs) are STSs derived from cDNAs.

Sequencing: Determination of the order of nucleotides (base sequences) in
a DNA or RNA molecule, or the order of amino acids in a protein.

Server: A computer or software system that communicates information via
the Internet to a client.

Shotgun method: Cloning of DNA fragments randomly generated from a
genome.

Silent mutation: A nucleotide substitution that does not result in an amino
acid substitution in the translation product, because of the redundancy of
the genetic code.

Six-frame translation: Translation of a stretch of DNA taking into account
three forward translations and three reverse translations, arising from the
three possible reading frames of an uncharacterised stretch of DNA.

Sparse matrix: A matrix in which most of the elements or cells have zero scores.

Splice variants: Proteins of different length that arise through translation of
mRNAs that have not included all available exons in the template DNA.
Subject: A DNA or protein sequence matched by a query sequence in a
database search.

Subunit: A distinct polypeptide chain within a protein that may be sepa-
rated from other chains (whether identical or different) without breaking
covalent bonds.

Super-secondary structure: The arrang t of a-helices and/or p-strands
in a protein sequence into discrete folded structures (e.g., B-barrels, p-o-p
units, Greek keys, etc.).

Telnet protocol: A method of communication between remote computers
that allows users to log on and use the distant machines as if physically pre-
sent at the remote location.

Tertiary database: A database derived from information housed in sec-
ondary (pattern) databases (e.g., the BLOCKS and eMOTIF databases,
which draw on data stored within PROSITE and PRINTS). The value of
such resources is in providing a different scoring perspective on the same
underlying data, allowing the possibility to diagnose relationships that
might be missed using the original implementation.

Tertiary structure: The overall fold of a protein sequence, formed by the
packing of its secondary and/or super-secondary structure elements.
Transcription: The synthesis of an RNA copy from a sequence of DNA (a
gene); the first step in gene expression.

Translation: The process in which the genetic code carried by mRNA
directs the synthesis of proteins from amino acids.

Transmembrane domain: A region of a protein sequence that traverses a
membrane; for o-helical structures, this requires a span of 20-25 residues.
Transmission Control Protocol/Internet Protocol (FCP/IP): The rules
that govern data transmission between two computers over the Internet.

True-negative: A false match that correctly fails to be recognised by a dis-
criminator.

True-positive: A true match correctly recognised by a discriminator.
Twilight Zone: A zone of sequence similarity (~0-20% identity) within
which alignments appear plausible to the eye but are not statistically signifi-
cant (i.e., could have arisen by chance).

Uniform Resource Locator (URL): The address of a source of information.
The URL comprises four parts - the protocol, the host name, the directory
path and the file name (e.g., http://www.biochem.ucl.ac.uk/bsm/dbbrowser
/prefacefrm.html).

Up: The status of a computer system when it is operational.

Upstream: Further back in the sequence of a DNA molecule, with respect
to the direction in which the sequence is being read.
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Weight matrix: See Profile.

Widow: Amino acid residues isolated from neighbouring residues by spuri-
ous gaps, usually the result of over-zealous gap insertion by automatic
alignment programs. .

World Wide Web: The information system or network on the Internet that
uses HTTP as the primary communications medium.
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