Confirmatory clinical frials: Analysis of continuous

efficacy dato

11.1 Introduction

As we have seen, several summary measures of
central tendency can be used for continuous
outcomes. The most common of these measures
is the mean. In clinical trials we calculate sample
statistics, and these serve to estimate the
unknown population means. When developing
a new drug, the estimated treatment effect is
measured by the difference in sample means for
the test treatment and the placebo. If we can
infer (conclude) that the corresponding popula-
tion means differ by an amount that is consid-
ered clinically important (that is, in the positive
direction and of a certain magnitude) the test
treatment will be considered efficacious.

In Chapter 10 we saw that there are various
methods for the analysis of categorical (and
mostly binary) efficacy data. The same is true
here. There are different methods that are appro-
priate for continuous data in certain circum-
stances, and not every method that we discuss is
appropriate for every situation. A careful assess-
ment of the data type, the shape of the distribu-
tion (which can be examined through a relative
frequency histogram or a stem-and-leaf plot),
and the sample size can help justify the most
appropriate analysis approach. For example, if
the shape of the distribution of the random vari-
able is symmetric or the sample size is large
(> 30) the sample mean would be considered a
“reasonable” estimate of the population mean.
Parametric analysis approaches such as the two-
sample ¢ test or an analysis of variance (ANOVA)
would then be appropriate. However, when the
distribution is severely asymmetric, or skewed,
the sample mean is a poor estimate of the popu-
lation mean. In such cases a nonparametric
approach would be more appropriate.

It should be emphasized at this point that the
term “nonparametric” is not a quality judgment
compared with the term “parametric.” The
nomenclature simply serves to delineate two
types of analyses. Nonparametric tests are not
“less good” than parametric tests. Indeed, if
it were appropriate to use a nonparametric
approach in a certain circumstance, that test
would have higher statistical power than a para-
metric approach. We respectfully feel that the
differentiation between parametric and nonpara-
metric approaches in many introductory Statis-
tics textbooks is misleading, and does tend to
imply that nonparametric tests are naturally
inferior to the other: Nonparametric tests are
commonly discussed separately, often toward
the end of the book, leaving the reader feeling
that the books’ authors regarded these discus-
sions as unwanted but obligatory. We encourage
you as your first step to consider what valid and
appropriate analyses there are for a given situa-
tion, and then to select the most efficient
analysis method from among them. We have
reinforced this notion by including nonpara-
metric analysis approaches side by side with
parametric approaches.

11.2 Hypothesis test of two means:
Two-sample t test or independent
groups f test

A common measure of central tendency of
continuous outcomes is the mean. In clinical
studies employing measurement of continuous
variables such as blood pressure, the typical
response among participants in a treatment
group is represented by this summary descriptive
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statistic. As we have seen, sample statistics, by
definition, vary from sample to sample. When
developing new drugs we would like to make an
inference about the magnitude of the difference
between two population means, typically repre-
sented by the symbol p, one for a test treatment
and the other for a control. If the difference in
means exceeds the typical variability that would
be expected from sample to sample, we can
conclude that the difference is unlikely to be due
to chance. More specifically, when comparing
two population means, we are interested in
testing the null hypothesis,

Hy:py —u, =0.
If the null hypothesis is rejected the following

alternate hypothesis is better supported by the
data:

Hy:p, —p,#0.

Treatment group 1 is represented by n; observa-
tions, X;;, X;5 Xq3, - - - Xy Similarly, treatment
group 2 has n, observations, X, X,), X,3, - « -, X, .
For this statistical test these two groups must be
independent. The population means, p, and p,,
are estimated by the sample means from each

group, X, and X,:
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Assuming that the two populations have the

same, albeit unknown, population variance, an
average or pooled estimate of the sample
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variances is an estimator of the unknown popu-
lation variance. The pooled variance, sﬁ, is
obtained as:
2 — 2 —
,  Sin — D +s5m,— 1)
s, = > .
n +n,—

Finally, the pooled standard deviation, Sy is the
square root of the variance:

= [s2
S, = \s3.

The estimator for the difference in population
means is the difference in sample means, that is,
X, — X,. The standard error of the estimator,
SE(X, — %,), is calculated as:

- 1 1
SE(x,— X,) = S, 0 + P
1 2

The test statistic for the two-sample ¢ test is:
X —X
=
SE(X,— X,)

Under the null hypothesis of equal population
means, the test statistic follows a t distribution
with n, +n, — 2 degrees of freedom (df),
assuming that the sample size in each group is
large (that is, > 30) or the underlying distribu-
tion is at least mound shaped and somewhat
symmetric. As the sample size in each group
approaches 200, the shape of the t distribution
becomes more like a standard normal distribu-
tion. Values of the test statistic that are far away
from zero would contradict the null hypothesis
and lead to its rejection. In particular, for a two-
sided test of size o, the critical region (that is,
those values of the test statistic that would lead
to rejection of the null hypothesis) is defined by
E<tomim2 OL L1 oo o Note that as t
distributions are symmetric, |t ,|=t,_,. If the
calculated value of the test statistic is in the
critical region, the null hypothesis is rejected
in favor of the alternate hypothesis. If the
calculated value of the test statistic is outside the
critical region, the null hypothesis is not
rejected.

As there are an infinite number of t distribu-
tions there is no concise way to display all
possible values that may be encountered.
However, as can be seen in Table 11.1, the value
of the t distribution that cuts off the upper 2.5%



area of the distribution becomes smaller with
increasing sample sizes (and therefore increasing
df). Tabled values in Appendix 2 are provided for
other values of a.

Table 11.1  Sample values from t distributions for a
two-sided fest of o = 0.05

Degrees of freedom (n, + n, — 2) f7
10 2.2281
30 2.0423
50 2.0086

100 1.9840

200 1.9719

The use of the two-sample t test is illustrated
here with sample data from a clinical trial of an
investigational antihypertensive drug.

The research question

Does the test treatment lower SBP more than
placebo?

Study design

In a randomized, double-blind, 12-week study,
the test treatment, one tablet taken once a day,
was compared with placebo (taken in the same
manner). The primary endpoint of the study was
the mean change from baseline SBP. The primary
analysis will be based on a two-sample t test
with a = 0.05 (two-sided).

Data

In the placebo group (146 individuals) the mean
change from baseline was —3.4 mmHg with a
standard deviation of 17.4 mmHg. In the test
treatment group (154 individuals) the mean
change from baseline was —19.2 mmHg with a
standard deviation of 16.9 mmHg.

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:
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Ho' gsr = Mppaceso = 0-
A* Mpgst — Mppaceso 7 0-

The pooled sample variance is calculated as:

17.4%(145) + 16.9%(153)
146 + 154 — 2

= 293.95.

2
SP

It follows from this that the pooled standard
deviation is:

s, = J293.95 =17.1.

The estimate of the difference in mean change
from baseline is:

Rppsy — X -19.2 — (-3.4) = —15.8.

PLACEBO

The standard error of the difference is calculated
as:

— > 1 1
SE _ — 17_1\/: = 1.98.
Krest — Xpraceso) 146 154

The test statistic is then calculated using these
values:
~ —15.8

t= =-7.98
1.98

Under the null hypothesis of no difference in
population means, and assuming somewhat
symmetric distributions, the test statistic follows
a t distribution with 298 (that is, 146 + 154 — 2)
df. Therefore the critical region (values of the test
statistic that lead to rejection) is defined as
t < —1.968 and t > 1.968. Note that this partic-
ular entry is not in Appendix 2, but the closest is
for 300 df.

Interpretation and decision-making

As —7.98 < —-1.968, the null hypothesis is
rejected in favor of the alternate one. The mean
change from baseline for the test treatment
group is significantly different from the placebo
group’s at the o = 0.05 level. To determine the p
value associated with this test, we need statistical
software or an extensive look-up table. Given the
large sample size in this example, we can use the
percentiles of the standard normal distribution
to approximate the p value. These study results
allow us to conclude that the test treatment is
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efficacious. The difference between treatments in
the magnitude of the change in SBP was unlikely
to be the result of chance. Therefore the sponsor
can submit these data as substantial statistical
evidence of the test treatment’s efficacy.

11.3 Hypothesis test of the location of
two distributions: Wilcoxon rank sum
test

The two-sample t test is useful on many occa-
sions, but there are occasions when its use is not
justified. One reason is that the sample size is
small (< 30 per group). Although small studies
are certainly encountered frequently in clinical
research, most confirmatory efficacy studies are
sizable, and so this reason is not applicable here.
A second reason is, however, applicable. The
most common reason why a two-sample ¢ test
would not be appropriate is a heavily skewed
distribution, whether or not the sample size is
large.

The sample mean is a poor measure of central
tendency when the distribution is heavily
skewed. Despite our best efforts at designing
well-controlled clinical trials, the data that are
generated do not always compare with the
(deliberately chosen) tidy examples featured in
this book. When we wish to make an inference
about the difference in typical values among two
or more independent populations, but the distri-
butions of the random variables or outcomes
are not reasonably symmetric, nonparametric
methods are more appropriate. Unlike para-
metric methods such as the two-sample ¢ test,
nonparametric methods do not require any
assumption about the shape of a distribution for
them to be used in a valid manner. As the
next analysis method illustrates, nonparametric
methods do not rely directly on the value of the
random variable. Rather, they make use of the
rank order of the value of the random variable.

It is appropriate to note here that performing
an analysis on an assigned rank instead of on the
raw data results in a loss of information. Think
of the related example of receiving a grade A on
an assignment. If a grade A is given for any mark
between 90% and 100%, the grade alone does
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not tell you how well you have actually done on
the assignment: A score of 91% is assigned the
same grade as a score of 100%. If the mark for
this assignment is the first one of several in a
course that will ultimately be combined to yield
your final grade in some manner, you may very
legitimately be interested in your actual (raw)
score. Nevertheless, in clinical trials there can
be a sound rationale for not using raw data in
certain circumstances.

When rather extreme departures from
required assumptions are noted, our choice of an
appropriate statistical method should be one of
first validity and second efficiency. The
difference between an extreme departure from
required assumptions and any departure from
required assumptions is again a matter of
judgment. It should be noted that many of the
parametric methods in this book are robust to
departures from distributional assumptions,
meaning that the results are valid under a
number of conditions. This is especially true
with the larger sample sizes encountered in ther-
apeutic exploratory and confirmatory trials. We
should also note that all the methods described
in this book require that observations in the
analysis are independent. There are statistical
methods to be used for dependent data, but they
are not described in this book.

In our opinion, therefore, nonparametric
methods should be chosen when assumptions
(such as normality for the f test) are clearly not
met and the sample sizes are so small that there
is very little confidence about the properties of
the underlying distribution. The nonparametric
method discussed in this section is a test of a
shift in the distribution between two popula-
tions with a common variance represented by
two samples, and it will always be valid when
comparing two independent groups.

The two-sample t test was based on the
assumption that the two samples were drawn
from an underlying normal population with the
same (assumed) population variance. A rejection
of the null hypothesis in the setting of the two-
sample f test would imply that the two popula-
tions from which the samples were drawn were
represented by two normal distributions with
the same variance (shape), but with different
means. The Wilcoxon rank sum test does not
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require the assumption of the normal distribu-
tion, but does require that the samples be drawn
from the same population. The Wilcoxon rank
sum test tests a similar hypothesis such that, if it
is rejected, the two populations from which the
samples were drawn had the same shape (not
necessarily normal or otherwise symmetric), but
differed by some distance. That is, a rejection of
the null hypothesis in the setting of Wilcoxon's
rank sum test would imply that the two popu-
lation distributions were shifted, that is, not
overlapping.

Although this approach has its advantages,
one disadvantage is that no single numerical
estimate, either a point estimate or an interval
estimate, can convey the extent to which the
populations differ because the test of the loca-
tion shift is based on relative rank and not the
original scale.

Using the Wilcoxon rank sum test, interest is
in a location shift between two population
distributions so the following null hypothesis is
tested:

H,: The location of the distribution of the
random variable in population 1 does not differ
from the location of the random variable for
population 2.

If the null hypothesis is rejected the following
alternate hypothesis is better supported by the
data:

H,: The location of the distribution of the
random variable in population 1 is different
from the location for population 2.

Treatment group 1 (representing population 1) is
represented by n, observations measured on a
continuous scale, x,;, X;,, X3, - - ., Xy, Similarly,
treatment group 2 (representing population 2)
has n, observations measured in a continuous
scale, x,,, X)), X,3, . . ., X,, . The total sample size
of the two groups is n, + n,. The first step in
calculating the test statistic is to order the values
of all observations from smallest to largest,
without regard to the treatment group. Then, a
rank is assigned to each observation, starting
with 1 for the smallest value after sorting, then
2, and so on for all n; + n, observations. If two
or more observations are tied, the assigned rank
will be the average of the ranks that would have
been assigned if there were no ties. For example,
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if the third, fourth, and fifth sorted observations
were all tied, the assigned rank for each of the
three observations would be [3 + 4 + 5]/3 = 4.
The next largest value would then be assigned a
rank of 6.

At this stage, we now have n, ranks for treat-
ment group 1, 7,,, 1y, I3, - oy 1 Similarly, treat-
ment group 2 has n, ranks, r,;, 1,,, Ihs, - - - Ty
The test statistic for the Wilcoxon rank sum test

is the sum of the ranks in group 1:

111

Sl=2r1i.

i=1

Only the ranks from group 1 are required
because, if the values from group 1 tend to be
smaller than those from group 2, the sum of
ranks will be small, leading to rejection of the
null hypothesis. Similarly, if the values from
group 1 tend to be larger than those from
group 2 the sum or ranks will be a large number
and will also lead to rejection.

The null hypothesis will be rejected if the test
statistic is less than or equal to or greater than or
equal to cut points obtained from a table (which
need not be provided here) - that is, the null
hypothesis will be rejected if S, = W, or §; = W,
Other authors (Schork and Remington, 2000)
have suggested a large sample approximation,
which is possible because the test statistic,
S, is approximately normally distributed
with mean [n,(n, +n,+ 1)]/2 and variance
[n,n,(n, + n, + 1)]/12. The derivation of these
two parameters is beyond the scope of this text.
Applying a familiar mathematical operation
(standardization of a normally distributed
random variable), we obtain an alternate test
statisticc, which has an approximate standard
normal distribution:

nm, +n,+1)
e e L
2
\/”1”2(”1 +n, + 1)
12

7 =

Values of this test statistic can then be compared
with the more familiar critical values of the stan-
dard normal distribution.

To illustrate this method, consider the
following example that (deliberately) has a small
dataset.
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The research question

Does the test treatment lower SBP more than
placebo?

Study design

In a randomized, double-blind, 6-week study, the
test treatment (one tablet taken once a day) was
compared with placebo. The primary endpoint
of the study was the mean change from base-
line SBP. Given the small sample size of the study,
the primary analysis is based on the Wilcoxon
rank sum test with o = 0.05 (two-sided).

Data

Each value listed below represents change from
baseline SBP for a participant in a clinical trial
comparing a new antihypertensive treatment
with placebo. Lower values indicate a greater
reduction in blood pressure from baseline, the
favored outcome.

Test treatment (n = 10):

-8, -1,0, 2, —20, —18, —12, —17, —14, —11.
Placebo (n = 10):
-9,0, -4, -4,-3,1,-7,1,2, -3.

Statistical analysis

After ordering all observations from highest to
lowest within the two groups, we have the
following:

Test -20 -18 -17 -14 -12 -11 -8 -1 0 2
Placebo -9 -7 -4 -4 -3 -3 0 1 12
Then ranking each observation across groups,
accounting for ties as described above, we obtain
the following ranks:

1 2 3 4 S 6 8 14 15.5 19.5
7 9 10.5 10.5 12.5 12.5 15.517.5 17.5 19.5

Test
Placebo

The test statistic is computed as the sum of the
ranks for the test treatment group:
S, = 1+2+43+4+5+6+8+14+15.5+19.5 = 78.

When testing the null hypothesis at the two-
sided o = 0.05 level and a sample size of 10 in
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each group, the critical region is any value of
S, =78 or =132.

Interpretation and decision-making

As the value of the test statistic is in the rejection
region (only just, but still in it), the null hypoth-
esis is rejected. The conclusion is that the distri-
butions of the two populations from which the
samples were selected differ in their location.
The test treatment is associated with a greater
reduction in SBP than placebo.

Alternately, if we were to use the test statistic
based on a normal approximation, it would be:

10(10 + 10 + 1)
78 —
Z= 2 = —2.007.

\/10 *10(10 + 10 + 1)

12

Under the null hypothesis, this test statistic
follows a standard normal distribution. The
null hypothesis is rejected because the test
statistic falls in the rejection region for a two-
sided test of o = 0.05 based on the standard
normal distribution (Z < —1.96 or Z > 1.96).

11.4 Hypothesis tests of more than two
means: Analysis of variance

The t tests are extremely helpful, commonly
used tests, but they do have one noteworthy
limitation: They can address only the equality of
two means. In the present context, they can
compare only the results from two treatment
groups. Situations that require us to test the
equality of more than two means occur quite
frequently, and so a test that can be used with
two or more groups is needed.

In many instances in drug development, two
or more doses may seem to be promising based
on results from earlier phases of clinical devel-
opment. The question of interest therefore
becomes: Of all the doses studied, which has the
greatest beneficial effect? Confirmatory efficacy
studies aim to answer this question. As in other
study designs that we have discussed, the
sponsor would like to minimize the chance of
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committing a type I or II error. We therefore
need an appropriate statistical method that can
identify the best dose (among a number of
them), while accounting for the inherent vari-
ability in the data and limiting the chances of
committing an error in the final decision-
making process. Analysis of variance (ANOVA) is
well suited to this task.

Assume that there are k independent groups
(k > 2), each of which represents populations of
interest, for example, individuals given a partic-
ular treatment. An important objective of many
clinical trials is to determine if there is any differ-
ence among the treatments administered with
regard to the underlying population means. The
null hypothesis for such an objective is:

Hypy =, =...=p

If there is sufficient evidence to conclude that
the null hypothesis should be rejected, the
alternate hypothesis that would be favored is
that there was at least one difference among all
[k(k — 1)]/2 pairs of population means:

Hyp, #py,or..op#p0r. . # .

Each treatment groupj (j =1, 2, .. ., k) is repre-
sented by n, observations, x, i Xojp Xap v e Xy The
sample sizes for each of the groups need not be

equal. For each group the population mean, W, is
estimated by the sample mean, X:

n.
]

2%

- _ =1
j n.
j

We can calculate the mean of all values across
the k groups, the grand mean, as:

k n;
220
- j=1 i=1
¥ =—,
. n

where
k
n= E n,
j=1

]

the overall sample size. The total variability
across alln = n, + n, + ... n, observations is the
sum of the squared difference between each
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observation and the grand mean divided by the
number of df:

k m;
>3-
j=1i=1

Vi = n-1

The sum of the squared deviations of each obser-
vation from the overall mean (the numerator) is
also called the “total sums of squares.”

The population variance for each group, o7, is
estimated by the sample variance:

n/

— v)2

D= %)
, =1

j _
nil

N

While the notation here is a little more compli-
cated than we have seen before (because of the
addition of the subscript j) the basic principle is
exactly the same. All we have done to this point
in this example is to calculate the sample means
and variances for each group in the study.

An estimate of the average variance over all
k groups represents the “typical” spread of data
over the entire study or experiment. This vari-
ability is often referred to as random variation or
noise. In the ANOVA strategy this number is
called the within-group variance (or mean
square error), and is calculated as a weighted
average of the sample variances:

k
Z(ni - Ds?
Within-group variance (V) = 2= Pa—
The denominator - that is, the df — in this calcu-
lation may be puzzling at first, but, again, the
principle is the same as we have seen before.
Recall that, when estimating the sample vari-
ance, the df value is n — 1. This is because the
sum of deviations has to equal 0. Given knowl-
edge of n — 1 observations in the sample, we can
determine the last observation: It is the value
that will ensure that the sum of all deviations
adds to 0. In this case, the “minus 1” is applied
for all k groups. This leads to:

mn,-—D+m-DH+...(n,—-1)=
(n,+n,+...n)—k=n—-k
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As there are also k sample means, each repre-
senting an estimate of the typical value of the
population (that is, the population mean), those
estimates may also vary from sample to sample.
The variance of the means across all groups is
called the among-group variance (or the mean
square among groups), and is calculated as a
weighted average (weighted by the sample size)
of the squared differences of each sample mean
from the grand mean:

Among-group variance (V,) = L

where

k 7

)

j=1 i=

g=21101

Xii
1

’

the grand mean, as before. The total variability
in the data can be split or partitioned as the
within-group variability (the background vari-
ability) and the among-group variability of
means (how much the sample means vary from
the overall mean):

V=V, + V.

As we have seen with a number of methods so far
(most notably, the two-sample ¢ test) the extent
to which point estimates differ is measured
against the typical variability of means from
sample to sample. In the case of an ANOVA, we
have an analogous method by which we can
evaluate the extent to which the means differ. If
the variance among the samples greatly exceeds
the typical variance of the data in general there
is an indication that the typical difference in
means is not the result of random variation, but
of systematic variation. If the variance among
the samples is similar to the variance of the data
in general such a result suggests that, whatever
the difference in means, it is just like what
happens by chance alone.

The test statistic (F) for this comparison in the
ANOVA takes the form of a ratio of the among-
sample variance to the within-sample variance:
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This test statistic is not well defined in all cases,
which means that a rejection region is not auto-
matically defined from a known distribution.
However, if some assumptions are made about
the distribution of the random variable X, the
distribution of the test statistic can be defined.
The following assumptions are required for an
appropriate use of ANOVA:

e FEach group represents a simple random
sample from each of k populations and the
observations are statistically independent.

e The random wvariable, X, is normally
distributed within each population.

e The variance of the random variable, X, is
equal among all k populations.

Given these assumptions the test statistic, F,
follows an F distribution with (k — 1) numerator
df and (n — k) denominator df. This is written in
shorthand as F,_,, ,. Although we do not
describe this distribution in detail, its essential
characteristics are that it is a two-parameter
distribution (that is, the numerator and denom-
inator df) and it is asymmetric. As you might
imagine, this distribution is not nearly as
convenient to work with as the standard normal
distribution. Defining the critical region for a
given situation is best accomplished using
statistical software because there are countless
F distributions, each requiring a table. Similarly,
calculating the sums of squares is best left to soft-
ware (it can certainly be done by hand, but the
required calculations are tedious).

ANOVA can be extended to situations where
the experimental units (in our context, study
participants) are classified on a number of
factors. When they are classified on the basis of
one factor, it is referred to as a one-way ANOVA.
The result of partitioning the total variance into
its components, in this case among and within
samples defined by one factor, is displayed in
Table 11.2.

The F distribution with (k — 1) numerator df
and (n — k) denominator df is used to define the
rejection region for a test of size a. The critical
region may be obtained from a table of values or
provided by statistical software. Tabled F values
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Table 11.2  General one-way ANOVA table

Source Sum of squares Degrees of freedom  Mean square F
Among samples k k=1 k Vi
D% - %) Dol -2y
=1 i=1
= SSA k—1
=V,
Within samples k n—k k
Z(ni— 1)s2 Z(ni— 1)s2
=1 =1
= SSW n—k
=V,
Total kon n—1 ko n
by = %2 by~ )2
=1 =1 j=1 i=1
= SST n—1
= VT

for a number of combinations of o, numerator
and denominator df are provided in Appendix 4.
The null hypothesis of no difference among
means will be rejected only if the value of the
test statistic, F, is larger than the cut point speci-
fied from the parameters of the distribution.
Therefore, the test is inherently one sided - that
is, the rejection region is any value F = F, ) ..

Rejection of the null hypothesis means only
that there is at least one difference among all
pairwise comparisons of means. This conclusion
is hardly satisfactory in the world of drug devel-
opment because the decisions to be made typi-
cally require the selection of a dose or treatment
regimen for purposes of designing another study
or proposing a dose for marketing approval.

11.5 A worked example with a small
dataset

Since, as noted, the calculations involved in
ANOVA are fairly tedious, we illustrate the
method using an overly simplistic example with
a small dataset. This example is for illustrative

purposes: In reality, datasets for which ANOVA is
most appropriate have large sample sizes and are
analyzed using statistical software. However,
once you have a conceptual understanding of
ANOVA you can interpret ANOVA tables for a
wide variety of study designs.

The research question

Does the reduction in SBP differ among three
doses of an investigational antihypertensive
drug?

Study design

A clinical study was conducted to investigate
three doses of an investigational antihyperten-
sive drug. Fifteen participants were recruited
(five per group), and randomized to three treat-
ment groups: 10 mg, 20 mg, and 30 mg. Each
treatment was taken once a day. SBP was
measured 5 min before the administration of the
drug (baseline) and again 30 min after. A
“change from baseline score” was calculated for
each participant by subtracting the baseline
value from the post-treatment value.
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Data

The change from baseline scores for the 15
participants are displayed below:

¢ 10 mg treatment group: —6, —5, -6, =7, —6
¢ 20 mg treatment group: —8, —9, =8, =9, -6
¢ 30mgtreatment group: —10, —8, —10, =8, —9.

Statistical analysis

A one-factor ANOVA is the appropriate analysis
here assuming that the data are normal: The
only factor of interest is the dose of drug given.
There are three levels of this factor: 10, 20, and
30 mg. Following convention, the results of an
ANOVA are displayed in an ANOVA summary
table such as the model in Table 11.3. In the
following calculations the values are presented
without their units of measurement (mmHg)
simply for convenience. At the end of the calcu-
lations, however, it is very important to
remember that the numerical terms represent
values measured in mmHg. The calculations
needed are as follows.

1. Calculate the group means and the grand
mean:

-30

¢ 10 mg group mean = X,, = — = -6
—40

¢ 20 mg group mean = X,, = — = -8
_ —45

¢ 30 mg group mean = X,, = — =-9

6+ (=8 + (=9

= —7.67.

e grand mean = X = 3
2. Calculate the group sample variances:

¢ 10 mg group sample variance =

2

_((=6) — (=6))* + ((=5) — (=6))* + ((=6) —
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3. Calculate the total sums of squares (SST): The
total sums of squares is the variability of
observations across all three groups. It is
calculated by summing the squared difference
of each observation (in this case 15 of them)
from the grand mean, — 7.67. For brevity, the
calculation is not written out here. We suggest
that you verify the calculations with software:

e SST = 35.33.

4. Calculate the among-sample sums of squares
(SSA):

SSA = 5((— 6) — (= 7.67))% + 5(( — 8) —
(= 7.67)2 + 5((— 9) — (— 7.67))> = 23.33.

5. Calculate the within-sample sums of squares
(SSW):

o SSW = (4)(0.50) + (4)(1.50) + (4)(1.00) = 12.

As expected, the total sums of squares is the
sum of the among-sample sums of squares
and the within-sample sums of squares.

6. Calculate the df:

e Total: We started with 15 scores. To get
the same grand mean, 14 of these can
vary, but number 15 cannot. Therefore,
there are (n — 1) df:

df (total) = 15 — 1 = 14.

e Among samples: There are three groups,
and thus three sample means. These must
also average to the grand mean. Once two
have been determined, the third can be
only one value (that is, it cannot vary).
Again, therefore, there are (k — 1) df:

(=6)* + ((=7) = (=6))* + ((=6) — (=6))* _

2

T 2 0.50
¢ 20 mg group sample variance =
(=8) = (=8)? + ((=9) = (=8))* + ((=8) = (=8))* + ((=9) = (=8))> + ((=6) — (=8))?
2 n = 1.50
¢ 30 mg group sample variance =
_ (10 — (=92 + (=8) — (=9* + (-10) = (=9 + (=8) = (=9 + (=9) — (=9)* _ 1.00

s2

30 4
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df (among) =3 - 1= 2.

e  Within samples: By exactly the same logic
that we saw for the within-groups sums of
squares, we can calculate these df as:

df (within) = df (total) — df (among) =
14 — 2 =12.

(Note: There is also another way to think
of this. Within each sample there are five
values. Therefore, there are four df per
sample. There are three samples. The total
within-samples df is the total of the df
within each sample, or 4 + 4 + 4 = 12.)

7. Construct the ANOVA table: Having calcu-
lated the total sums of squares from all
sources of variation, along with their degrees
of freedom, we can now start to construct the
ANOVA table. The only other calculations
required are the mean squares for among-
samples and within-samples (divide each
sums of squares by its associated df) and the
test statistic, F (divide among-samples mean
square by within-samples mean square). All of
this information is shown in the partial
ANOVA table presented as Table 11.3.

8. Determine if the test statistic is in the rejec-
tion region: As always, we need to determine
if the test statistic F falls in the rejection
region. So far, we have not determined the
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rejection region for this test. As noted earlier,
the F distribution has two parameters that
determine its shape and, therefore, the F
values that cut off tail areas of the distribu-
tion. The two parameters are the numerator
df (associated with the numerator of the F
ratio or the among-sample source of varia-
tion) and the denominator df (associated with
the denominator of the F ratio or the within-
samples source of variation). In this case, the
numerator df is 2 and the denominator df is
12. This is written as:

F(2,12) = 11.67.

Tables with values of F for several distributions
are used to determine the significance of this
result, or the critical values can be obtained from
statistical software. We have provided a table in
Appendix 4. For a test of size a = 0.05, the crit-
ical value associated with 2 numerator df and 12
denominator df that cuts off the upper 5% of the
distribution is 3.89. Although tabled values are
helpful at identifying nominal p values (for
example, = 0.01) statistical software is required
to report the specific p value. Using statistical
software, you will find that the actual p value is
0.002. Table 11.4 shows the completed ANOVA
table for this example. You will see that the
p value is commonly included in a complete
ANOVA table.

Table 11.3  One-way ANOVA table for the SBP study (partially complete)

Source Sum of squares Degrees of freedom Mean square [F
Among samples 23.33 2 11.67 11.67
Within samples 12.00 12 1.00

Total 35.33 14

Table 11.4  Completed one-way ANOVA table for the SBP study

Source Sum of squares Degrees of freedom  Mean square F p value
Among samples 23.33 2 11.67 11.67 0.002
Within samples 12.00 12 1.00

Total 35.33 14
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It is important to recognize that the actual p
value, not simply p < 0.05, is stated in the table.
Regulatory reviewers and journal editors prefer
this practice, because the actual value provides
more information than simply a statement that
the value is less than 0.05.

Interpretation and decision-making

As the value of the test statistic, 11.67, is in the
rejection region for this test of size a = 0.05 (that
is, 11.67 > 3.89), the null hypothesis is rejected in
favor of the alternate, which means that at least
one pair of the population means is not equal.
Recall the original research question: Does the
reduction in SBP differ among three doses of a
new antihypertensive? The results of the one-
way ANOVA that we have conducted so far are
interpreted in the following manner:

e There is evidence at the a = 0.05 level that
the levels of the factor “dose of drug” differ.
Therefore, there is a statistically significant
difference in SBP change scores between the
groups. (The p value of 0.002 indicates that
the null hypothesis would also have been
rejected at smaller a levels, for example, at the
a = 0.01 level.)

The above statement by itself does not, however,
tell us anything about which group showed the
greatest change score, or indeed how any specific
group compared with any of the other groups.
Consideration of the group means is necessary to
do this. These means, with the associated units
of measurement reinserted, are:

¢ 10 mg group = —6 mmHg
e 20 mg group = —8 mmHg
¢ 30 mg group = —9 mmHg.

Therefore, we can now state that the 30 mg
group showed the greatest mean decrease in SBP,
the 20 mg group the second greatest mean
decrease, and the 10 mg group the least mean
decrease. However, a full answer to the research
question has still not been supplied, at least not
in terms of determining possible statistical
differences between specific pairs of dose levels.

The ANOVA test statistic revealed that, overall,
the groups differed statistically significantly, but,
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as there are more than two groups, it cannot
reveal the precise pattern of statistical signifi-
cance. For any three groups (call them D, E, and
F) there are Cj;=3 possible comparisons
between pairs of groups: D can be compared
with E; D can be compared with F; and E can be
compared with F. These three comparisons can
lead to the following patterns of outcomes:

e All groups differ statistically significantly
from each other.

e None of the groups differs statistically
significantly from any other group.

e D and E both differ statistically significantly
from F, but do not differ statistically
significantly from each other.

e D and F both differ statistically significantly
from E, but do not differ statistically
significantly from each other.

e E and F both differ statistically significantly
from D, but do not differ statistically
significantly from each other.

To determine which pattern of outcomes
occurred in any given situation, an additional
statistical test is needed. In situations such as
this, where we have a partial answer to our orig-
inal research question, multiple comparisons are
performed. These are tests that allow us to
compare the means of each pair of groups to see
which pairs (if any) differ statistically signifi-
cantly from each other. Multiple comparisons
therefore provide a more detailed understanding
of our data than the overall test (referred to as
the omnibus test) provided by the ANOVA. If the
omnibus test yields a nonsignificant result,
multiple comparisons are not necessary, because,
in fact, none of them would be significant. In
the case of a significant omnibus test, the second
option above is not actually a possible outcome,
whereas all of the others are. This means that we
need a method of determining which of the
other possibilities is the case — that is, we need a
statistical methodology that will allow us to
conduct multiple comparisons, and to use this
methodology before we can provide the full
answer to our original research question. The full
answer is provided in Section 11.10, but first we
need to look at another issue.
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11.6 A statistical methodology for
conducting multiple comparisons

In clinical studies, the probability of declaring a
treatment efficacious when in reality it is not effi-
cacious is termed o. This is the probability of
detecting a false positive, or committing a type I
error. As we have seen, the probability of commit-
ting a type I error should be limited to a specific
value so that erroneous conclusions are not made
very often. For a sponsor, committing a type I error
could result in investing significant amounts of
money on a drug that really does not work. For a
regulatory agency, committing a type I error
(approving a drug that is not efficacious) could
result in many people taking a drug that does not
offer a meaningful treatment benefit and may
carry some risk (every drug has a side-effect
profile). It is therefore important to constrain the
probability of committing a type I error to an
acceptable level. Traditionally, this acceptable
level has been and is still regarded as the a = 0.05
level, but, as noted before, we can choose other
values when we consider them appropriate.

The important point to note here is that the
o = 0.05 level is deemed appropriate when a
single test is being conducted. Multiple compar-
isons, by definition, mean that more that one test
is being conducted. When testing a number of
pairwise comparisons — for example, after an
ANOVA where the null hypothesis has been
rejected — it is not acceptable to test each pairwise
comparison at the a = 0.05 level because of the
potential inflation of the overall type I error rate.

When three treatment groups are evaluated in
a clinical study, there are three possible pairwise
comparisons of means (D vs E, D vs F, and E vs
F). If each mean is tested at the a = 0.05 level,
and assuming that they are mutually exclusive,
the probability of declaring at least one of the
pairs significantly different is equal to 1 minus
the probability of accepting all three (by the
complement rule). Assuming that the compar-
isons are independent, the probability of
accepting all three null hypotheses is the proba-
bility of accepting the first null hypothesis
multiplied by the probability of accepting
the second multiplied by the probability of
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accepting the third. When testing each at the
a = 0.05 level, this probability becomes:

P (incorrectly rejecting at least one hypothesis)
=1 - (0.95)(0.95)(0.95) = 1 — 0.95% = 0.14.

That is, instead of a type I error rate of o = 0.05,
this analysis has resulted in a higher probability of
committing a type I error, just by chance alone.

In fact, the comparisons made here cannot be
thought of as independent because each group is
compared with two others in this case. It is more
correct to use an inequality sign to say that the
probability is no more than 0.14, that is, = 0.14.
However, this technicality is of little comfort
because, to make sound decisions, we would
really like to limit that probability to a reason-
able level. In general, if C comparisons are each
made at the o level, the probability of rejecting
at least one by chance alone is:

P (rejecting at least one of ¢ hypotheses)
=1-1-w)
Table 11.5 lists the probability of rejecting at
least one hypothesis for a number of values of C,
the number of hypothesis tests performed at the
conventional a = 0.05 level.

Table 11.5  Maximum probability of committing a
type | error when each hypothesis is tested at o = 0.05

Maximum probability
of type | error

C: No. of hypotheses
tested at @ = 0.05

0.050
0.098
0.143
0.185
0.226
0.265
0.302
0.337
0.370
10 0.401
15 0.537
20 0.642

W NO O hNWN —

O

Suppose that a clinical trial has to evaluate
four doses of a test treatment and a placebo (a
total of five groups) on relieving headache pain.
The study was carefully designed and conducted,
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and the data are now ready for the statistical
analysis. A one-way ANOVA is conducted, and
the conclusion from the omnibus F test (compar-
ison of the among-sample variance with the
within-sample variance) is that the population
means are not all equal. Five treatment groups
give rise to C} = 10 pairwise group comparisons.
Suppose that one of the researchers failed to get
input from the trial statistician, and hurriedly
(and mathematically correctly) analyzed all 10
pairwise comparisons of means performed using
10 two-sample  tests. The researcher takes his or
her results to the study director and the rest of
the study team and points out with tremendous
excitement that the pairwise comparison of the
lowest dose with the placebo yielded a p value of
0.023, a statistically significant result at the
a = 0.05 level. A surge of positive energy fills the
room as everyone but the statistician declares,
“We have found our lowest effective dose! On to
the confirmatory trial!”

As you have probably realized by now, there
would actually be little reason for enthusiasm, as
the study statistician would very soon point out.
The problem is this: While each of the 10 two-
sample t tests had been conducted mathemati-
cally correctly, it is not appropriate statistical
methodology to use 10 two-sample t tests in this
setting. The analytic strategy employed did not
limit the type I error rate to 0.05. Rather, as seen
in Table 11.5, when 10 such pairwise compar-
isons are made — that is, 10 hypotheses are tested
— the probability of rejecting at least one of the
hypotheses is limited to 0.401, a value consider-
ably greater in magnitude than 0.05. In other
words, use of this naive analytic strategy has
resulted in an inflated type I error. There is up to
a 40% chance of being misled by one test with a
nominal p value = 0.05.

The issue of type I error inflation caused by
multiple testing appears in many guises in the
realm of new drug development. This issue is of
great importance to decision-makers, and we
discuss this topic again later in the chapter. For
now, we have not yet provided a full answer to
our research question; our description of analysis
of variance is incomplete without a discussion of
at least one analysis method that controls the
overall type I error rate when evaluating pairwise
comparisons from an ANOVA.
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11.7 Bonferroni’s test

Bonferroni’s test is the most straightforward of
several statistical methodologies that can appro-
priately be used in the context of multiple
comparisons. That is, Bonferroni's test can
appropriately be used to compare pairs of means
after rejection of the null hypothesis following a
significant omnibus F test. Imagine that we have
¢ groups in total. Bonferroni’s method makes use
of the following inequality:

PR, orR,orR;or... orR)
=PR) + PR, +PR;) + ... +PR).

This means that the probability of rejecting at
least one of ¢ hypotheses is less than or equal to
(thus the term “inequality”) the sum of the prob-
abilities of rejecting each hypothesis. This
inequality is true even if the events, in this case
rejecting one of ¢ null hypotheses, are not inde-
pendent. Recall from Section 6.2 that, when
events are not independent, the probability of
intersecting events should be subtracted. Using
Bonferroni’s method, testing each pair of means
with an o level of o, = % will ensure that the
overall type I error rate does not exceed the
desired value of a. It follows that the probability
of rejecting at least one of ¢ null hypotheses can
be expressed as follows:

p(rejecting at least one of ¢ hypotheses at o, level)= ¢ (%) =a.
It is important to note that the researcher in our
scenario in Section 11.6 who hurriedly
conducted 10 pairwise comparisons using 10
two-sample t tests and rejoiced in one particular
finding was not completely out of line in the
analytic strategy chosen. It is indeed possible to
approach this situation (the need for 10 pairwise
comparisons) with the intent to conduct 10 two-
sample t tests. However, a correction must be
made to the o level used to determine statis-
tical significance. In the scenario as told in
Section 11.6 the researcher did not perform this
critical step.

In practice, then, we can carry out each of a
series of pairwise comparisons of means using a
two-sample t test for each comparison, but the
a level must be modified accordingly. When
deciding whether or not to reject the null
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hypothesis associated with each comparison, we
need to use an a level of a, = % instead of the
naive choice of o. Note that this is equivalent to
defining a rejection region for each test as:

t< tu/Zc,nfk ort> tlf(u/Zc),nfk

which makes sense as the tail areas in the left
and right of the t distribution are smaller than
those obtained using the two-sided test of size o.

Consider the two-sample t-test statistic again:

()Zl - Xz)

A

1 2
In an ANOVA involving more than two groups,
we estimate the underlying variability from
more than two samples, and yet we are inter-
ested in the extent to which (only) two of the
means differ from each other. Therefore, when
comparing the means of two samples, the pooled
standard deviation from the two-sample case, Sy
is replaced by an estimate that captures the vari-
ability across all groups in the analysis — the
mean square error or the within-samples mean
square. Recall from Section 11.4 that this quan-
tity has the same interpretation as the pooled
standard deviation, the typical spread of data
across all observations.

When using Bonferroni’s method, the null
hypothesis associated with a pairwise com-
parison is rejected if the calculated test statistic,
that is,

t=

1,1
Vo =+
L)

is in the rejection region defined as t <f_,,
Oor t>1_ ok

Remember that V comes from the ANOVA
table and it is the mean square error, which has
also been referred to as the within-samples vari-
ability or, more informally, the background
noise. This is analogous to 513 in the two-sample
case. As we assume equal variances, we use the
estimator that uses the most data and therefore
gives the most precise estimate.

The critical value can be determined from a

table or software (using a two-sided test of size
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a/c). The estimate of the underlying variability,
V., comes from the ANOVA table, and the
sample sizes for each group are known and equal.
Then we can define a quantity, the minimally
significant difference (MSD), which is the
smallest difference (in absolute value) between
any two sample means that could be considered
statistically significant at the a level. (Note that
when sample sizes are not equal the MSD is not
defined, but there are other methods available.)

1 1
MSD =t 0. \/V (_+_).
1—(a/2¢c),n—k w ”1 ”z

Once the value of MSD has been determined, the
absolute value of the difference in means will be
compared with the MSD. If the absolute value of
the difference in means, |(X; — %,)|, is greater
than or equal to the MSD the null hypothesis
will be rejected.

11.8 Employing Bonferroni’s test in our
example

Having introduced Bonferroni’s test, we can
now return to our earlier example to see how to
apply Bonferroni’s method to our pairwise
comparisons of treatment group means.

Statistical analysis

The significant result of the omnibus F test led
to the rejection of the null hypothesis of no
significant differences, thereby revealing the
presence of a significant difference between at
least one pair of means. It is now of interest to
determine precisely which pair or pairs of
means are significantly different.

Given that the decisions made from this
trial could result in sizeable further investment
in the development of the investigational
antihypertensive drug, the company would like
to minimize its chances of committing a type I
error. That is, it would like to maintain an overall
type I error of 0.05. As we have just seen in
Section 11.7, one analysis that will maintain this
desired type I error of 0.05 is Bonferroni’s
method.



162 Chapter 11

In our example of three treatment groups
there are three pairwise comparisons of interest.
Therefore, each pairwise comparison will be
tested at an o level of 0.05/3 = 0.01667. This o
level will require defining a critical value from
the t distribution with 12 (that is, 15 — 3) df that
cuts off an area of 0.00833 (half of 0.01667) in
the right-hand tail. Use of statistical software
reveals that the critical value is 2.77947. From
inspection of the ANOVA table presented as
Table 11.4 the within-samples mean square
(mean square error) can be seen to be 1. The final
component needed for the MSD is:

\/i = /0.4 = 0.632.
n, n,

Then the MSD is equal to:
MSD = (2.77947)(1)(0.632) = 1.757.

The mean values for each group are —6 mmHg
(10 mg), —8 mmHg (20 mg), and —9 mmHg
(30 mg). The absolute values of the three
differences in means are displayed in Table 11.6.

Table 11.6  Absolute values of differences in means

20 mg 30 mg
treatment treatment
group group
10 mg treatment group 2 8
20 mg treatment group 1

Each cell represents the differences in means
for the groups represented by each row and
column. The differences between the 10 mg and
20 mg groups and the 10 mg and 30 mg groups
were both greater than the MSD (1.757). There-
fore, these differences are considered statistically
significant at the a = 0.05 level. The difference
between the 20 mg and 30 mg groups was not
significant, however, because it was less than the
MSD.

Interpretation and decision-making

We are now in a position to provide a full
answer to our research question of interest as
expressed at the start of Section 11.5: Will the
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reduction in SBP differ among three doses of an
investigational antihypertensive drug?

The first step in our analytical strategy was to
conduct an ANOVA. This ANOVA tested the null
hypothesis that there were no differences among
the three means. The null hypothesis was tested
at an a level of 0.05, and was rejected on the
basis of the significant omnibus F test.

The second step in our analytical strategy was
to determine which of the pairs of means were
significantly different from each other. Testing
each of the three hypotheses at an o level of
0.05 would have resulted in a probability of
committing a type I error possibly > 0.05 (the
desired level). Bonferroni’s inequality was there-
fore used to test each of the three hypotheses at
an a level of 0.05/3 = 0.01667. Using the crit-
ical value for this a level resulted in two pairs of
means being declared significantly different at
the 0.05 level.

The full interpretation of the study, therefore,
is that the magnitude of the reduction in SBP
does indeed differ according to different dose
levels. The 20 mg and 30 mg doses both resulted
in a statistically significantly greater SBP reduc-
tion than the 10 mg dose. There was insufficient
evidence to claim that there is a statistically
significant difference between the 20 mg and
30 mg doses.

What are the implications of this interpreta-
tion? First, if we decided that it would be useful
to continue the clinical development program
with another trial, it would be salient to note
that, in terms of efficacy, the 10 mg dose was
inferior to the other two. Therefore, if contin-
uing, it is likely that we would not include the
10 mg dose in further trials. What else would
help us to decide to continue with the clinical
development program? The safety and tolera-
bility of the 20 and 30 mg doses would need to
be examined and deemed acceptable. Examining
the safety and tolerability data from the partici-
pants in these two treatment groups would
provide the evidence on which to base this deci-
sion (the safety and tolerability data from parti-
cipants in the 10 mg treatment group would not
be informative at this point). If there were no
safety or tolerability concerns with the 20 or
30 mg doses, the next stage in development
could be to continue to investigate both of these
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doses. Another possible
discussed in Section 11.10.

interpretation is

11.9 Tukey’s honestly significant
difference test

Bonferroni’s method that we have just discussed
is perhaps one of the most easily understood
methods to maintain an overall type I error,
which is one of its advantages. In addition,
Bonferroni’s method does indeed control the
overall type I error rate well, such that it is guar-
anteed to be = a. However, like many items that
we discuss in this book, it has its disadvantages
as well as its advantages.

Bonferroni’s test is overly conservative, in that
the critical values required for rejection need not
be as large as they are. In other words, using a
less conservative method may result in more
null hypotheses being rejected. The reason that
Bonferroni’s method is so conservative is that it
does not in any way account for the extent of
correlation among the various hypotheses being
tested. If a method could take into account
the overlap, or lack thereof, of the wvarious
hypotheses, the critical values would not need to
be defined as narrowly as with Bonferroni’s. In
this section, we therefore discuss another analyt-
ical strategy for multiple comparisons, Tukey’s
honestly significant difference (HSD) test.

Bonferroni’s method for testing pairs of means
(maintaining an overall type I error rate of o)
involved comparing the absolute differences in
means to the MSD, which was defined as a
function of:

¢ the critical value from a t distribution with a
combined area of a/c in the tails of the
distribution

e the within-samples variability

e the sample sizes in each group.

Once a value of the MSD was determined each
difference in means was calculated and
compared with the MSD. Any difference that was
equal to or greater than the MSD was considered
statistically significant. Tukey’s HSD test is
carried out in a similar manner. A value called
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the honestly significant difference is determined
as a function of three things:

1. The critical value from the studentized range
statistic

2. The within-samples variability

3. The sample sizes in each group.

The studentized range statistic, called g in the
following description of the test, has a limited
use for us now and we shall not spend any addi-
tional time characterizing it, except to say that
the value of g does account for the relative size of
differences among the normalized means,
resulting in a test with an overall type I error of
exactly 0.05. The value, g, is often provided in
tables and to look it up we need to know the
number of groups (k from the ANOVA descrip-
tion), and the number of df associated with the
within-samples mean square (n — k). Statistical
software packages also supply this number. The
HSD (or, equivalently, the MSD, for minimum
significant difference — Tukey) is defined as:

VW
HSD = MSD, = q | —.
n

In this expression n represents the per-group
sample size which, for the moment, we require
to be equal.

Once the value of HSD has been determined,
the absolute value of the difference in means is
compared with it. If the absolute value of the
difference in means, |(X; — %,)|, is greater than or
equal to the HSD the null hypothesis is rejected.

The quantity represented by the letter “q” is
determined from a table of values used just
for this test. Two characteristics are needed to
determine the appropriate value of g each
time that it is used. These characteristics are
represented by the letters “a” and “v.” The
letter a represents the number of groups,
which in this example is 3. The letter v
represents the df, which in this test is the df
associated with the within-samples mean
square. In this case, the value of v is 12, as
calculated for and shown in the ANOVA
summary table in Table 11.4. From the table
of g values for Tukey’s test (provided in
Appendix 5) the value of g associated with an
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(a, v) value of (3, 12) is 3.77. HSD is then
calculated as follows:

HSD = 3.77\/% = 1.686.

The absolute values of the three differences in
means were displayed in Table 11.6. The differ-
ences between the 10 mg and 20 mg groups and
the 10 mg and 30 mg groups were both greater
than the HSD (1.686). Therefore, these differ-
ences are considered statistically significant at
the 0.05 level. The difference between the 20 mg
and 30 mg groups was not significant, however,
because it was less than the HSD.

Although Tukey’s method does not require
equal sizes among the groups, imbalanced group
sizes do require a different calculation of HSD.
When the sample sizes are unequal among all
groups being compared, there is not one
common value of HSD because this value relies
on the sample size per group. For the compar-
ison of any two means with group sample sizes
of n, and n,, the value of HSD corresponding to
that particular comparison is:

HSD = 4 |V, (—+—).
V2

In the case that n, and n, are equal this expres-
sion simplifies to the one we originally
presented.

Interpretation and decision-making

Having gone through the calculations necessary
for Tukey’s test, we can look at how these results
would lead to decision-making, and also
compare the interpretation and decision-making
with those that followed from using Bonferroni'’s
methodology on the same dataset.

The statistical interpretations of these results
are the same as with Bonferroni’s method. The 20
and 30 mg doses both resulted in a statistically
significantly greater SBP reduction than the 10 mg
dose. There was insufficient evidence to claim
that there is a statistically significant difference
between the 20 mg and the 30 mg doses.
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11.10 Implications of the methodology
chosen for multiple comparisons

The most important lesson to be learned from
our discussions of various analytic methodolo-
gies for multiple comparisons is that the method
chosen can have a major impact on the risk of
making incorrect decisions.

Consider the absolute difference in any two
means that was required to reject a null hypoth-
esis of Hy: u, —u, =0 after rejection of the
omnibus F test. In the case of the naive
approach, which was to test each pair of means
separately and use an o level of 0.05 in each case,
the minimum significant difference would be
1.126, but the overall type I error could be guar-
anteed to be bounded only by 0.143 (see
Table 10.5). The use of Bonferroni’s method
resulted in a minimum significant difference of
1.757, but it is overly conservative and the
overall type I error rate would be guaranteed to
be < 0.050. Tukey’s method, which accounts for
the actual distribution of differences through g,
resulted in a minimum significant difference of
1.686 and guaranteed that the overall type I
error rate = 0.050, resulting in a more powerful
test than Bonferroni’s method. Given their
importance, these characteristics are summarized
in Table 11.7.

Lastly, it is important to note that differences
such as these underscore the importance of
declaring the primary analysis approach in a
study protocol or statistical analysis plan.
Committing to the most appropriate analysis
from first principles is not only good scientific
discipline, it is also necessary to withstand
regulatory scrutiny.

It should be noted that these are not the only
acceptable methods applicable to multiple
comparisons from an ANOVA. In each individual
case, the choice among possible approaches is
largely dependent on the study design. For
example, Dunnett’s test can be used when the
only comparisons of interest are each test treat-
ment versus a control (for example, in a placebo-
controlled, dose-ranging study). Like Tukey’s
test, Dunnett’s method is more powerful than
Bonferroni’s. In general, other methods gain
power compared with Bonferroni’s method by
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Table 11.7  Characteristics of the methods to test the three pairwise comparisons of means in the ANOVA example

Method

Minimally significant

Overall type | error rate: P(rejecting

difference at least one null hypothesis)
Naive approach (incorrect) 1.126 =0.143
Bonferroni’s test (correct but 1.757 < 0.050
conservative)
Tukey’s HSD test (correct, and more 1.686 = 0.050

powerful than Bonferroni’s)

using methods that account for the correlation
of tests (for example, Tukey’s HSD test) or by
reducing the number of tests about which we
would like to make an inference (for example,
Dunnett’s test). When conducting these types of
analyses, it is theoretically possible (although
not common) to report a significant overall F
test, but not declare any pairwise comparison as
statistically significant as a result of the multiple
comparison procedure.

Consideration of the possible clinical interpre-
tation of these results is also worthwhile. The
interpretations given in the above sections are
the full statistical interpretations from the statis-
tical analyses that were performed on the data
collected in this study. In real clinical trials, these
results are also interpreted clinically, that is, their
clinical significance is discussed. Making these
clinical efficacy interpretations is the province of
the clinicians on the study team. As we empha-
sized earlier in this book, we are not clinicians,
and these “hypothetical comments” concerning
the potential clinical significance of hypothet-
ical data must be regarded in this light.

First, the clinical significance of a decrease in
SBP of 6 mmHg versus a decrease of 8 or 9
mmHg would need to be considered. As these
numerical values are all relatively close, let us
create some hypothetical values that conform
to the same overall pattern of significance but
are more different from each other. Suppose
that these mean decreases in SBP were
observed using the same doses of a different
antihypertensive drug:

¢ 10 mg group mean = —6 mmHg
e 20 mg group mean = —18 mmHg
¢ 30 mg group mean = —19 mmHg.

Suppose also that Tukey’s test provided evidence
of the same pattern of statistical significance:

e 10 versus 20 mg = —6—(—18) = 12; p < 0.05

e 10 versus 30 mg = —6—(—19) = 13; p < 0.05

e 20 versus 30 mg = —18—(—19) = 1, not
significant (ns).

In this scenario, the clinical significance of a
decrease in SBP of 6 mmHg versus a decrease of
18 or 19 mmHg would need to be considered.
Suppose that decreases of 18 and 19 mmHg are
both considered to be much more clinically
significant than a decrease of 6 mmHg. Suppose
also that the 20 mg dose had a good (and there-
fore acceptable) safety profile, whereas the safety
profile of the 30 mg dose was not so good. Of
relevance in this scenario is that there was not a
statistically significant difference in efficacy
between these two dose groups. It is true that the
mean decrease in the 20 mg group was numeri-
cally less than the mean decrease in the 30 mg
group, but it was not statistically significantly
less. Therefore, it might be the case that, when
input had been received from all members of the
study team, including statisticians and clini-
cians, a decision would be made to progress only
the 20 mg dose to further trials: The 10 mg dose
is statistically significantly less effective, and
the 30 mg dose has a less desirable safety profile
while also not being statistically significantly
more effective (see Turner, 2007).
This scenario illustrates several key points:

e Decision-making is not necessarily straight-
forward.

e The empirical evidence from our clinical
trials provides the basis for rational decision-
making.
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e In most cases many members of the study
team, including statisticians and clinicians,
are needed to make the optimum decision.

In real life, clinical interpretations are vital to
balance the relative weight of safety and efficacy
considerations. If a higher dose of a given drug is
considerably more efficacious than a lower dose
and leads to only a minimal increase in very
mild side-effects, a clinician may decide that, on
balance, it is worth recommending the higher
dose. Conversely, if a higher dose of a given drug
is only minimally more efficacious than a lower
dose and leads to a considerable increase in
moderate or severe side-effects, a clinician may
recommend the lower dose.

11.11 Additional considerations about
ANOVA

Before completing our discussions of ANOVA,
there are several additional points that we would
like to address, because these questions may
have occurred to you as you have read the
preceding descriptions of the use of ANOVA and
multiple comparisons in this chapter.

11.11.1 ANOVAs with only two groups

A one-way ANOVA containing three levels was
used as the worked example in this section
because a t test cannot address a design with
more than two levels. However, the one-way
ANOVA can certainly be used in situations
involving only two levels. A reasonable question,
therefore, is: In situations involving only two
levels, where the only possible comparison is
between one level and the other, is there any
advantage in using the one-way ANOVA instead
of the t test?

The answer is no. In cases where there are
only two levels, either test is applicable. The
values obtained in the calculations of the respec-
tive tests will be different, but the tests will give
precisely the same answer in terms of the degree
of statistical significance obtained by the respec-
tive test statistic. That is, the t value and F value
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will not be the same (the F-test statistic will be
square of the t-test statistic), but the associated
p values will be identical. The advantage of the
ANOVA lies with its ability to address situations
involving more than two levels, which are very
common in clinical research.

11.11.2 Only collect data that you intend
to analyze

Consider a scenario where a series of possible
comparisons exists, but the investigator is
genuinely interested only in one of these compar-
isons. Such a hypothetical scenario might involve
a study employing four groups, with participants
in each group receiving one of four dose levels (1,
2, 3, and 4) of a particular drug, and primary
interest lay with comparing dose levels 1 and 4 -
that is, out of the possible six comparisons,
interest lay only with the comparison of dose
levels 1 and 4. A question that arises here is: Is it
possible to argue that this one comparison could
be made without having to adopt a more conser-
vative approach? The correct answer from a
purely statistical computational viewpoint is yes,
this argument can successfully be made. The indi-
vidual test may be undertaken using a ¢ test at the
a = 0.05 level, that is, without adopting a more
conservative approach, because this one partic-
ular comparison of interest was specified from
first principles. However, this is not the final
answer here.

Although this argument is perfectly satisfac-
tory from a purely computational view, another
question begs to be asked: If the investigator was
interested only in comparing dose levels 1 and 4,
why were dose levels 2 and 3 included in the
study? This question is pertinent in several ways.
It costs a lot of time and money to collect such
clinical data, and the costs associated with
participants in two of the four experimental
groups would be wasted. Much more important
than the unnecessary costs, however, would be
that the participants in the dose level 2 and 3
treatment groups would have taken part in the
study for no useful reason, a gross violation of
experimental ethics.

A much more realistic scenario is one in which
four doses are included in such a study because



the investigator does not have clear logical ideas
(hypotheses) about the relative merits (perhaps
relative efficacy) of the doses. In this case, an
original omnibus analysis such as the one-factor
ANOVA provides a very efficient initial test for
differences among the groups. If a statistically
significant result is given by the ANOVA, the
investigator can then proceed to comparing pairs
of groups in formal (and appropriate) multiple
comparison testing.

11.12 Nonparametric analyses of
continuous data

There are times when the required assumptions
for ANOVA, a parametric test, are not met. One
example would be if the underlying distributions
are non-normal. In these cases, nonparametric
tests are very useful and informative. For
example, we saw in Section 11.3 that a nonpara-
metric analog to the two-sample t test, Wilcoxon's
rank sum test, makes use of the ranks of obser-
vations rather than the scores themselves. When
a one-factor ANOVA is not appropriate in a
particular case a corresponding nonparametric
approach called the Kruskal-Wallis test can be
used. This test is a hypothesis test of the location
of (more than) two distributions.

11.13 The Kruskal-Wallis test

All that is required for this test to be employed is
that the observations classified into k groups are
independently sampled from populations and
the random variable is continuous with the same
variability across the populations represented by
the samples. Importantly, no assumption about
the shape of the underlying distribution is
required, making this test suitable for
non-normal underlying distributions.

In the Kruskal-Wallis test the original scores
are first ranked and an ANOVA analysis is then
carried out on the ranks. As with Wilcoxon’s
rank sum test, ranking of the observations must
deal with ties. The sums of squares are based on
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these ranks, and the test statistic is based on a
ratio of the among-samples variability in ranks
and the within-samples variability in ranks.

All observations, X, are assigned ranks, T and
therefore the usual sums of squares can be calcu-
lated for the rank scores, Iy For brevity, the
expressions for each are provided in Table 11.8, a
general one-way ANOVA table, on the basis of
ranks.

The quantities in the ANOVA table based on
ranks represent similar quantities as the ANOVA
table based on the original scores:

r; is the rank for individual i in group j
n; is the sample size for group j
K

n :Z n; is the total sample size
j=1

7, is the average rank for group j

II/,
—_ 7)2
207
g2 =1

; is the variance of ranks in group j.
n. —

]
7 is the average rank over all groups (the grand

mean rank), which can be simplified as:

- _n+1
2

The omnibus test statistic, X2, follows a y? distri-
bution with k — 1 df. If the omnibus test is
rejected the pairs of groups can be evaluated
using a Bonferroni-type approach. This requires
the assumption that the ranks are normally
distributed. As with the parametric one-way
ANOVA, a minimally significant difference in
ranks can be calculated for this purpose as:

1 1

MSD = Zl*(a/Zc) \/VV\l,ranks (71 + ”_z)

For the sake of this example, we use the data
from the parametric ANOVA example to illus-
trate the Kruskal-Wallis test. If it seems at all
strange to use the same data for both examples,
a parametric analysis and a nonparametric
analysis, it is worth noting that a nonparametric
analysis is always appropriate for a given dataset
meeting the requirements at the start of the
chapter. Parametric analyses are not always
appropriate for all datasets.
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Table 11.8  General one-way ANOVA table for ranks (Kruskal-Wallis test)

Source Sum of squares Degrees of freedom  Mean square X?
Among samples k k-1 k
- _ v V,
zn[(r,’ - r.)z Eni(r[ —F )2 A,ranks/ W, ranks
=1 =1
= SSAranks k=1
= VA, ranks
Within samples k n—k k
Z(ni - 1)s? Z(ni - 1)s?
=1 =1
= SSWronks n—k
= VW, ranks
Total ko n=1 -
>3 >3
=1 i=1 =1 =1
= SSTrcnks n—1
= VT, ranks
Statistical analysis 2, = 4.63
2 =
The analysis begins with ordering all 15 observa- Sy = 12.18

tions. Note that statistical software packages
order and rank the observations and do the
ANOVA for you. The ordered observations from
lowest to highest across the three groups are as
follows:

10 mg
20 mg
30 mg —10-10 -9

-7 -6 -6 -6 -5
-9 -9 -8 -8 -6
-8 -8

Then ranking each observation, accounting for
ties as described for the one-way ANOVA, the
following ranks are obtained:

10 mg 10 12,5 125 125 15
20 mg 4 4 7.5 7.5 12.5
30mg 1.5 1.5 4 7.5 7.5

The within-samples average ranks are:

o =12.5
=71
Fhp = 4.4

And the grand mean rank:
P =8.

The within-samples variances (of ranks) are:

T

nll

s%, = 9.05.

The among-samples mean square is calculated
as:

5(12.5 — 8)> + 5(7.1 — 8)> + 5(4.4 — 8)2

A,ranks = 2 = 85.05.

The within-samples mean square (mean square
error) is calculated as:

4(3.13) + 4(12.18) + 4(9.05
VWranks = ( ) ( ) ( ) =8.12.
’ 12

Finally, the test statistic is the ratio of these two:
85.05/8.12 = 10.48.

We note that the test statistic is greater than the
critical value of 5.991 (2 df with an o level of
0.05), so the null hypothesis is rejected.

The next step is to decide which groups (three
comparisons) are different with respect to their
location. For this purpose the MSD is calculated
as:

MSD = 7, .[8.12 (% + ;—) =241 [8.12 (—; + —;) =434,
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The differences in mean ranks are displayed in
Table 11.9. Differences in mean ranks that are
greater than the MSD are considered significantly
different.

Table 11.9  Absolute differences in mean ranks

20 mg 30 mg
10 mg 5.4 8.1
20 mg 2.7

Interpretation and decision-making

As the difference in mean ranks exceeds the MSD
for the comparison of 10 vs 20 mg and 10 vs
30 mg, we can conclude that these distributions
differ in location. This testing procedure ensured
that the overall type I error did not exceed 0.05.
To interpret the clinical relevance of the differ-
ences detected by the test requires some addi-
tional point estimates. As the initial procedure
was a nonparametric one, the differences in
sample means are not appropriate. A more
reasonable choice would be to compare the
medians as an estimate of the treatment effect.

The nonparametric one-way ANOVA can be
quite useful in a number of settings. The most
obvious is when reasonable judgment does not
allow you to conclude that the distributional
assumptions for the one-way parametric ANOVA
will hold. Another instance is when the data
available for analysis are only ordinal (for
example, like a rank) such that the difference
between two values does not hold the same
meaning as an interval scaled random variable.

There are a number of nonparametric analysis
methods dealing with continuous data. The last
statistical method included in this chapter is to
be used when the continuous outcome is time to
an event.

11.14 Hypothesis test of the equality of
survival distributions: Logrank test

In Chapter 8 we described analyses to estimate
the survival distribution of time to an adverse
event. The survival function is the probability
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that an individual survives (that is, does not
experience the event) longer than time ¢

S(t) = P(individual survives longer than f).

In Chapter 10 the use of this method was
discussed in terms of estimating the median
survival time for participants in a clinical trial.
The median survival time can be helpful as a
single summary statistic that defines a typical
survival time. However, survival distributions
may deviate at various points in time. In this
section we present the logrank test, which can
be used to test the equality of two or more
survival distributions. This is not the only test
that can be used for this purpose, but it is a
natural extension of a method that we have
already described and so we have chosen to
discuss it.

A test of the equality of two survival distribu-
tions would be expressed in terms of the null
hypothesis:

Hy: S,(t) = S,(6).

If there is sufficient evidence to reject the null
hypothesis the alternate hypothesis would be
favored:

H,: S,(t) # S,(t).

If, in the context of the survival distribution we
consider all of the times at which an event
occurred and index them as (1) < t(2) < t(3)
... < t(H), it is possible to create a 2 X 2 classifi-
cation table for event times t(h), where h = 1, 2,
3, ..., H in which the numbers of individuals
with and without the event of interest are
displayed for each group. Table 11.10 is a sample
cross-classification table for time h.

Table 11.10 Cross-classification table of treatment
and event at time h

Event? Group 1 Group 2 Total

Yes m, m,, m,,

No Mp = My Noh = My n, —mg,
M Mah Ny,

Given the familiar set-up of this contingency
table it may not surprise you that we can use the
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methods of the stratified (Mantel-Haenszel) y?
test to define a test statistic. Each of the distinct
event times is treated as a stratum, just as we
treated investigative centers as strata earlier. The
test statistic for the logrank test is:

»

h=1

2
My My

n, (Pm - ﬁhz))

2 =
XLR

H
} : nhl nhZ = =

nh_l Phqh
h=

1

As before, the proportion of observations with
the characteristic of interest at time h for the two
independent groups is denoted by p,, and p,,,
respectively. The overall proportion of individ-
uals with the characteristic of interest within
each time h is denoted by f,. The overall propor-
tion of individuals without the characteristic of
interest within each time h is denoted by
Gy =1= P

When the sample size is reasonably large
(n > 30), the test statistic X2, follows a x> distri-
bution with 1 df. Values of the test statistic that
lie in the critical region are those with
Xix > 13, thatis, values of x> with 1 df that cut
off the upper tail area of a.

To illustrate an example, we use the data from
Chapter 9 with some modifications. Although
the event of interest in that case was an adverse
event, a safety parameter, we can treat it this
time as an efficacy parameter.

Event of interest

The event of interest is return to a state of
normal blood pressure (by some measure). The
treatment administered to the group demon-
strating earlier event times would be considered
the better treatment.

Design

In this 10-day study of a novel antihypertensive,
hypertensive study participants were randomly
assigned to test treatment or placebo (10 in each
group). They were monitored once a day (in the
evening) to measure their resting SBP. The
primary endpoint of the study was the time
(days) to return to a normal blood pressure.
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Data

The event times for the placebo and active
groups are provided below (“C” indicates a
censored observation):

10(C) 10(C) 10(C) 10(C)

Placebo: 3(C) 4 8
3 4 10(C) 10(C) 10(C) 10(C).

58 8
Active: 2 3 4 4
The unique times at which events occurred (not
censored observations) are on days 2, 3, 4, 5,
and 8. Table 11.11 represents the required

contingency tables for the logrank test.

Table 11.11  Contingency table of treatment by event
at each event time

Day 2:
Normal SBP? Active Placebo Total
Yes 1 0 1
No 9 10 19
10 10 20
Day 3:
Normal SBP?2 Active Placebo Total
Yes 2 0 2
No 7 10 17
9 10 19
Day 4:
Normal SBP?2 Active Placebo Total
Yes 3 1 4
No 4 8 12
7 9 16
Day 5:
Normal SBP?2 Active Placebo Total
Yes 0 1 1
No 4 7 11
4 8 12
Day 8:
Normal SBP?2 Active Placebo Total
Yes 0 3 3
No 4 4 8
4 7 11




Note that on day 2 there were 10 participants
at risk for the event in the active group. On day
2 one participant in the active group had the
event of interest and is therefore removed from
the number at risk at later time points. At day 3
there were nine remaining in the active group,
two of whom experienced the event, leaving
seven in the “risk set” for later times. On day 3
one placebo participant was censored, meaning
that day 3 was the last known time at which the
participant had not experienced the event. This
person is removed from the risk set for later
times. The tables are filled out in a similar
manner for all times at which the events
occurred. The important thing to remember with
these contingency tables is that the number in
each group decreases forlater time pointswhen the
individual either had the event or was censored.

The test statistic can be computed by hand, but
software is the ideal method, especially for more
than a handful of event times. The numerator
part of the test statistic would be calculated as:

2

(010 — 0) + —— (0.22 — 0) + .

(10)(10) <>< 0) (><7><0 0.43)
20

= 1.90.
The denominator would be calculated as:

(10)(10) O )( ) S )( )

2 (0.05)(0.95) + 2 (0.11)(0.89) + . . . + —~ (0.27)(0.73)

= 2.286.

The test statistic is calculated as the ratio of the
two:

1.90
2.286

W= =0.831.

Interpretation and decision-making

As we saw in Table 10.5, the critical value for the
test at an a level of 0.05 is 3.841. As the value of
the test statistic 0.831 < 3.841 there is not
enough evidence to reject the null hypothesis.
Small studies such as this can be difficult to
interpret. There is a suggestion that the times to
response may be shorter with the active treat-
ment, but the hypothesis test did not suggest
that the variation seen was attributable to
anything but chance given the sample size.
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11.15 Review

1. In a therapeutic exploratory trial comparing a
single dose of a new analgesic to placebo, 17
individuals were treated with the new analgesic
(test treatment) and 15 were treated with the
placebo (control). The participants reported the
severity of their pain 6 hours after dental surgery
using a visual analog scale (VAS). Pain scores on
this scale range from O to 100, where O = “no
pain” and 100 = “very severe pain.”
(SD) pain score in the test treatment group
(n=17) was 18 (7). The mean (SD) score in the
control group (n = 15) was 24 (8). Investigators
would like to know if the mean VAS pain score is
different between the two populations assumed to
be represented by the two samples of study
participants.

The mean

(a)  What are the null and alternate hypotheses?

(b) Assume o = 0.05. What are the values of the
rejection region?

(c) What assumptions are necessary for the use
of the f fest?

(d) What is the value of the test statistic?

(e) What is your interpretation of the hypothesis
teste

2. This ANOVA table represents data from a study of

an analgesic. The variable of interest is a pain
score (higher values mean greater pain).

Source SS df MS

drug 99.89459 2 * *
Error * 30 *

Total 338.57355 82

(a) Write in the missing values of the ANOVA
table (denoted with *).

(b) In this study, how many treatments were
tested?

(c) What are the null and alternate hypotheses?

(d) How many individuals were studied?

(e} What is the critical region for a test with
o = 0.052

() What is the statistical conclusion and
interpretation of the hypothesis test?

3. Consider an ANOVA with four treatment groups

(30 participants in each), placebo, and three
doses of an investigational drug: Low, medium,
and high.
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Additional statistical considerations in clinical trials

12.1 Introduction

The previous chapters have provided you with
an introduction to statistical methods and
analyses that are commonly used in pharmaceu-
tical clinical trials, with an emphasis on thera-
peutic confirmatory trials. Although we certainly
have not covered all of the analyses that can be
conducted in these trials, those that we have
discussed have given you a solid foundation that
will also enable you to understand the basics of
other analyses.

Throughout our discussions we have illus-
trated the importance of selecting the appro-
priate analytical strategy that best serves the
objective of a given trial. There is hardly a
single statistical method that always applies to a
given study design or type of data: Rather, the
choice of the analytical strategy for a given trial
is the result of statistical considerations, clinical
judgments, and regulatory standards.

In this chapter we highlight additional statis-
tical considerations relevant to therapeutic
confirmatory trials, and other study designs that
also provide important information upon which
to base decision-making. These additional
insights and information build upon the mater-
ial presented so far. As this chapter is largely
conceptual rather than computational, we have
included a number of references to guide your
further reading.

12.2 Sample size estimation

An important part of study design is the “deter-
mination” of the required sample size. Before
starting, we should note that we prefer the term

“estimation” to the terms “determination” and
“calculation” of a sample size. Although a math-
ematical calculation is certainly performed here,
the values that are put into the appropriate
formula are chosen by the researcher.

It is also appropriate to note that not all clin-
ical trials utilize formal sample size estimation
methods. In many instances (for example, FTTH
studies) the sample size is determined on the
basis of logistical constraints and the size of the
study thought to be necessary to gather suffi-
cient evidence (for example, pharmacokinetic
profiles) to rule out unwanted effects. However,
when the objective of the clinical trial (for
example, a superiority trial) is to claim that a
true treatment effect exists while at the same
time limiting the probability of committing type
I or II errors (o and B), there are computational
methods used to estimate the required sample
size. The use of formal sample size estimation is
required in therapeutic confirmatory trials, this
book’s major focus, and strongly suggested in
therapeutic exploratory trials.

12.2.1 Sample size for continuous
outcomes in superiority trials

Consider the simple case of a superiority trial of
an investigational drug (the test treatment)
being compared with placebo with respect to a
continuous outcome (for example, change from
baseline SBP). The null hypothesis typically
tested in such a trial and its complementary
alternate hypothesis are:

H
H

0* Mrst — Mpraceso = A

A Mppst — Hppaceso # A
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There are a number of values of the treatment
effect (delta or A) that could lead to rejection of
the null hypothesis of no difference between the
two means. For purposes of estimating a sample
size the power of the study (that is, the proba-
bility that the null hypothesis of no difference is
rejected given that the alternate hypothesis is
true) is calculated for a specific value of A. In the
case of a superiority trial, this specific value
represents the minimally clinically relevant
difference between groups that, if found to be
plausible on the basis of the sample data through
construction of a confidence interval, would be
viewed as evidence of a definitive and clinically
important treatment effect.

Another way of stating this is that, if the true
difference in population means is as large as a
specific value of A proposed as clinically impor-
tant, we would like to find the sample size such
that the null hypothesis would be rejected
(1 —B)% of the time. The sample size must also
be chosen so that o is maintained at an acceptably
low value.

The sample size formula required to test (two-
sided) the equality of two means from random

variables with normal distributions is:
26%(Z

2
1-a/2 + ZB)

AZ

n per group =

In this equation:

e 1 is the sample size per group

¢ o2 is the assumed variance

. Zku/2 is the value of the Z distribution that
defines an area of size a/2 in the upper tail of
the Z distribution

* Z; is the value of the Z distribution that
defines an area of size § in the lower tail of the
Z distribution

e A is the difference in means that we would
like to detect, if it exists, by virtue of rejecting
the null hypothesis.

Both o and B are design parameters, and are
chosen at the discretion of those designing the
trials. In confirmatory trials, o is 0.05 and B is
typically 0.10 or 0.20 (meaning that the study
has 90% or 80% power, respectively). The
choices of ¢ and A are not quite as straightfor-
ward, because the range of possible values is
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outside the direct control of the study planner.
The standard deviation ¢ must be estimated
using (any) available data, and the value of the
treatment effect A is determined using clinical
judgment.

It is important to note that, all other things
being equal, the following statements are true:

e The required sample size increases as the vari-
ance increases.

¢ The required sample size increases as the size
of the treatment effect decreases.

e The required sample size increases as a
decreases.

e The required sample size increases as the
power (1 —p) increases.

This sample size formula can be illustrated with
the following example. Suppose that, in
exploratory therapeutic trials of a new anti-
hypertensive, the standard deviation for the
between-treatment difference in mean change
from baseline SBP was estimated to be 50 mmHg.
After reviewing the literature and consulting
with regulatory authorities, it is agreed that a
between-treatment group difference in mean
change from baseline (that is, the treatment
effect) of at least 20 mmHg would be considered
a clinically important benefit of a new drug to
treat hypertension. The study sponsor is plan-
ning a confirmatory trial comparing the test
drug with a placebo and would like to have an
excellent chance (90%) of claiming that the
treatment effect is not zero if the drug is as effi-
cacious as they believe. From the expression
above, the sample size required per group is:

2(50)%(1.96 + 1.645)?
n =
202
= 133 per group for a total of 266 individuals.

This sample size estimate would be described in
the study protocol in this manner:

A total of 266 participants (133 per group) will
be randomized in this study in a 1:1 ratio to test
and placebo. Assuming a common standard
deviation of 50 mmHg, this sample size will
provide 90% power to detect a between-group
difference in mean change from baseline of at
least 20 mmHg using a two-sided test of size a =
0.05.



The power of the study is the probability of
rejecting the null hypothesis of no difference in
means, assuming that the true difference is at
least 20 mmHg and the estimated variance is
correct. As we have seen in this book, all esti-
mates have sampling variation associated with
them. Therefore, it can be helpful to see how the
power to detect a difference of 20 mmHg varies
as a function of sample size using three different
values of the standard deviation. The impact of
these two factors on the power can be seen in
Figure 12.1, a graphical display called a power
curve. Figure 12.1 is a compelling illustration of
the importance of the assumed value of the stan-
dard deviation. Consider that, in the design of
the study in our worked example, the assumed
standard deviation of 50 mmHg led to a sample
size of 133 per group for a power of 90% to
detect the important difference of 20 mmHg. If
the standard deviation was underestimated such
that it was really 70 mmHg, the study would
really only have 64% power to detect the differ-
ence that was considered important. Of course,
this cannot be known in advance of a trial, but a
post hoc examination of the study data, and a
possible re-estimation of the standard deviation,
can better inform future trials and increase the
probability that they will be successful.
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12.2.2 Sample size for binary outcomes in
superiority trials

We have encountered a number of statistical
methods used to test the difference between two
population proportions. Suppose that we are
interested in estimating the sample size for a
superiority trial of an investigational drug (the
test treatment), which will be compared with
placebo with respect to a binary outcome, for
example, proportion of individuals attaining a
goal SBP. The null hypothesis and its comple-
mentary alternate hypothesis typically tested in
such a trial are:

Hy: Prest = Prraceso = 0
H,: Presr = Priaceso # 0-

As in Chapter 10, the population proportions for
each of two independent groups are represented
by prpsr and ppacpso- Just as for the case of
continuous outcomes, the power of the study is
calculated for a specific value of A = pro —
Priacesoy @ Value that is considered the minimally
clinically relevant difference (CRD).

The sample size formula required to test (two-
sided) the equality of two population propor-
tions used here is cited from Fleiss et al. (2003).

T
200 300 400

Sample size per group

Figure 12.1

Power curve (A = 20 mmHg) as a function of sample size (n) for 6 = 30 mmHg, 50 mmHg, and 70 mmHg
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The calculation involves two parts. The first
makes use of a normal approximation:

n = (Zy_0p V209 + ZglPresifrest t Prracesoderaceso)
)

4y

where:

A = Prgst — Prracesor

- pTEST + pPLACF,BO'

2 ’
q_ =1- P_ ’
Grgst = 1 = Prysr
and

qPLACEBO =1- pPLACEBO'

Note that the sample size depends not only on
the value of A, but also on the individual propor-
tions themselves. The implication of this is that
the sponsor must make a reasonable estimate of
the response in the placebo group (that is,
Priaciso) @and then postulate a value of A that is
clinically relevant. The corresponding value of
Prpsr €an be obtained by subtraction. This first
sample size estimate (n') can be improved
through the use of a continuity correction,
which gives more accurate results when a
discrete distribution (in this case the binomial
distribution) is used to approximate a contin-
uous distribution (in this case the normal). The
sample size formula with continuity correction
is:

n' 4 ?
n per group = T (1 + 1+n’\AI) .

In a confirmatory efficacy trial the study sponsor
would like to evaluate a test treatment (an anti-
hypertensive) versus placebo with respect to a
binary outcome of attaining a goal SBP = 140
mmHg. After reviewing several sources of data
the sponsor estimates that the placebo response
will be around 0.20 (that is, 20% of individuals
will attain the goal without medical therapy).
The sponsor would like to estimate the sample
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size required to detect a difference in response
rates of 0.20 — that is, the postulated value of the
response for test treatment is 0.40. As the study
is a confirmatory trial, 90% power is recom-
mended and the test will be a two-sided test with
a = 0.05.

Substituting these values into the formula for
the per-group sample size, we obtain:

(1.96,2(0.30)(0.70) + 1.645(0.40)(0.60) + (0.20)(0.80)2 30
n = = 306
(0.20)%

With a continuity correction the result is:

2
) = 316 individuals per group.

LTI
4 V' 306(0.20)

This sample size estimate would be described in
the study protocol in this manner:

A total of 632 individuals (316 per group) will be
randomized in this study in a 1:1 ratio to the test
treatment and the placebo treatment. Assuming
a placebo response rate of 20%, this sample size
will provide 90% power to detect a between-
group difference in response rates of 20% using
a two-sided test with a = 0.05.

As for continuous data, a power curve can be
generated for a number of scenarios for binary
outcomes. As seen in Figure 12.2, the power of a
test of proportions (for a fixed value of A) is quite
sensitive to the particular assumed value of the
response rate in the control (for example,
placebo) group.

12.2.3 o and B reconsidered using Bayes’
theorem

After a study has been completed, a statistical
analysis provides a means either to reject or to
fail to reject the null hypothesis. The statistical
conclusion will, in part, be used to justify
whether or not further investment is made in
the development of a test product. A sound busi-
ness strategy would dictate that further invest-
ment be made only if objective information
from the study suggests it. Inferential statistics
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Figure 12.2  Power curve (A = 0.10) as a function of sample size (n) for preg; = 0.05, presr = 0.20, and pys; = 0.40

(for example, a hypothesis test) is the appro-
priate means to differentiate a real effect from a
chance effect. For the remainder of this section
we investigate the wisdom of adopting such a
policy, using an approach similar to that
described by Lee and Zelen (2000). In particular,
the remainder of this section will address the
following two questions:

1. How likely is the sponsor to be misled by the
result of the statistical conclusion from a
hypothesis test with design parameters o
and p?

2. What is the role of accumulating evidence
about the true treatment effect on the
credibility of results from a hypothesis
test?
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Throughout this book we have emphasized the
role of Statistics in designing and analyzing
studies that enable sponsors to make decisions
about the future development of new drugs.
When developing a new drug, information is
accumulated over time, with each step
informing the next. As studies are completed
through various stages of clinical development
(FTIH studies, therapeutic exploratory studies,
and one or more therapeutic confirmatory
studies) evidence is gathered that supports the
efficacy of the new drug. This is true only if new
studies are planned because such a promise
exists. Hence we assume over time, with the
accumulation of new information, that various
scientists involved in the development program
could make an informed guess about the
probability that the drug works (that is, that the
alternate hypotheses considered in Sections
12.2.1 and 12.2.2 really represent the truth). Let
us call this probability, t (tau).

T = probability that A # 0.

However, as additional studies would be
conducted only if the accumulating evidence
suggested that there was a treatment benefit, t
represents the probability that the treatment is
truly effective. We can think of © = O as repre-
senting a molecule that has just been discovered,
for which no evidence has been generated about
its ultimate effect on a clinical outcome of
interest. At the other extreme a value of T = 0.8
represents a drug for which a great deal of infor-
mation has been collected and most of the data
support a beneficial effect of the treatment.
Values of t around 0.5 may represent a drug for
which some (or limited) data support a treat-
ment benefit.

Consider the following probabilities, which
express the likelihood of the true state of affairs
given the statistical conclusion at the end of the
study:
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a* = P(Null is true|Reject null)
B* = P(Alternate is true|Fail to reject the null).

The value o* is the probability that a rejected
null hypothesis (for example, p value = o) is
misleading. That is, it represents the chance that,
having rejected the null hypothesis of no effect,
the treatment is not efficacious. Its complement,
(1 —a*), is the probability that the rejected null
hypothesis is consistent with the truth (that is,
the treatment is efficacious).

Similarly, the value B* is the probability that
failure to reject the null hypothesis (for example,
p value > o) is misleading. It represents the
chance that, having failed to reject the null
hypothesis of no effect (and acting as if the null
is true), the treatment really is efficacious. The
complement, (1 —B*), is the probability that our
inability to reject the null hypothesis is consis-
tent with the truth (that is, the treatment is not
efficacious).

If we are to adopt a policy of using inferential
statistics to make decisions in the light of uncer-
tainty, we would like to minimize these proba-
bilities, o* and B*, as they directly lead to wasted
investment in the former case or a lost commer-
cial opportunity in the latter.

Using Bayes’ theorem (recall our discussions in
Chapter 6), the probability,

a* = P(Null is true|Reject null),
can be written as:

P(Null is true)

a* = P(Reject null | Null is true) ———.
P(Reject null)

Recall also from Chapter 6 that the marginal
probability of an event can be expressed as a
series of conditional probabilities as long as
the conditional events are mutually exclusive
and exhaustive. This allows us to express the
probability,

P(Reject null) = P(Reject null) | Null is true) P(Null is true) + P(Reject null) | Alternative is true)P(Alternative is true).

Finally, putting this entire expression together we have:

P(Reject null) | Null is true)P(Null is true)

*

o

P(Reject null) | Null is true)P(Null is true) + P(Reject null) | Alternative is true)P(Alternative is true).



This probability can then be expressed as a func-
tion of the design parameters, a and B, and the
estimated probability that the alternative is
true, t:

. _ a(l — 1)
al —1) + (1 - B)t

Bayes’ theorem and algebra can be used in a
similar fashion to obtain the following expres-
sion for p*:

Pt

v o v g

We can use these two expressions to answer the
questions posed at the beginning of this section.
The first of these is:

How likely is the sponsor to be misled by the
result of the statistical conclusion from a
hypothesis test?

The short answer is that it depends on the power
(and therefore the sample size) of the study. To
illustrate this, assume that the value of the
design parameter o is dictated by regulatory
concerns, which is reasonable especially in
confirmatory trials. Further, before a new study
is completed there is still some doubt as to
whether the new treatment is efficacious, such
that the value of t is conjectured to be 0.5.
Resulting values of the error rates, o* and p*, are
presented in Table 12.1 as a function of the
power (or, equivalently, B) of the study.

The key message from Table 12.1 is that the
probability of both errors decreases with
increases in statistical power. A study planned
with power of 0.5 and a statistical decision to
reject the null (for example, because p value =
0.05) yields a probability of 0.09 that the two
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treatments are not significantly different. In
contrast, a study with power 0.9 and the same
outcome (to reject the null) yields a probability
of 0.05 that the two treatments are really signif-
icantly different. Even though the statistical test
has indicated that further investment should be
considered because the test treatment appears to
be efficacious, the underpowered study leads to
an unwise decision 1.8 times (0.09/0.05) more
often than the conventionally powered study.
Similar statements can be made about unwisely
abandoning an efficacious product by exam-
ining the values of B*. Another way of stating
this is that the greater the statistical power for a
study, the more reliable the decisions made as a
result.
Now consider the second question:

What is the role of accumulating evidence about
the true treatment effect on the credibility of
results from a hypothesis test?

To address this question, the error rates, o* and
B*, are presented in Table 12.2 as a function of 1
(a measure of the likelihood the treatment is effi-
cacious) with power 0.9 and a = 0.05, typical
values for highly powered studies. An examina-
tion of a couple of cases will help to answer this
question.

When t = 0 there is a great deal of uncertainty
about the probability that the treatment is effi-
cacious. This situation may apply when there is
no experience with the test treatment or some
experience with mixed or poor results. When a
statistically significant result leading to rejection
of the null hypothesis has been observed in this
situation, the sponsor will be misled into
thinking that the drug is effective when it really
is not with probability 0.33. On the other hand,

Table 12.1  Error rates a* and f* as a function of g (a = 0.05 and = = 0.5)

B 1 — B (power) a* 1 —a* B* 1 - p*
0.5 0.5 0.09 0.91 0.34 0.66
0.4 0.6 0.08 0.92 0.30 0.70
0.3 0.7 0.07 0.93 0.24 0.76
0.2 0.8 0.06 0.94 0.17 0.83
0.1 0.9 0.05 0.95 0.10 0.90
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Table 12.2  Error rates a* and f* as a function of ¢
(a=005and 1 — = 0.9)

T a* 1 —a* B* 1 - p*
0.1 0.33 0.67 0.01 0.99
0.3 0.11 0.89 0.04 0.96
0.5 0.05 0.95 0.10 0.90
0.7 0.02 0.98 0.20 0.80
0.9 0.01 0.99 0.49 0.51

failure to reject the null hypothesis in this situa-
tion will mislead the sponsor who abandons
development with probability 0.01.

Once some studies have been completed and
evidence has been gathered to support the effi-
cacy of the new treatment, the value of T may be
around 0.5. This value represents at least
moderate evidence that the treatment is truly
efficacious. When a statistically significant result
leading to rejection of the null hypothesis has
been observed in this situation, the sponsor will
be misled into thinking that the drug is effective
when it really is not, with probability only 0.0S.
This reflects previous experience, which has
shown that the treatment provides a benefit.
Failure to reject the null hypothesis will mislead
the sponsor who then abandons development as
a result, with probability 0.10. Again, this proba-
bility reflects previous experience because the
new evidence contradicts the prior belief that
the treatment is efficacious so that acting on the
new study result may be misleading.

The case where t = 0.9 represents nearly
certain knowledge. It is hard to understand why
any additional data would be required in this
instance. However, an examination of the error
rates o* and B* in this situation is illuminating.
Rejection of the null hypothesis would come as
no surprise so that such a result would rarely be
misleading. Failure to reject the null hypothesis
would come as a surprise because it is almost
known with certainty that the null is false. Thus,
this information is too bad to be true and acting
on it is unwise.

The probability t is analogous to the under-
lying prevalence of disease in a population. In
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the setting of diagnostic testing, o* and p* refer
to the positive and negative predictive values of
a test. As illustrated in Chapter 6, when evalu-
ating a diagnostic test, even high values of sensi-
tivity and specificity can lead to skepticism
about a positive test when the prevalence of the
underlying disease is low.

In a similar manner, t should serve to temper
the enthusiasm of study sponsors who have
observed a new positive study result, especially
early in development programs. It can be used to
calibrate the credibility of statistical results.
Without sufficient prior information about the
treatment even a statistically significant result
can lead to poor (and expensive) business deci-
sions. When a sponsor desires either to continue
or to discontinue development of a new drug as
a result of a study, the results in this section
point to the importance of power. Despite their
other benefits, exploratory therapeutic trials,
which tend to be small in size (and therefore
have low power), are poor studies on which to
make business decisions. Small, early clinical
studies may provide some evidence on which to
base future research, including t. However, once
that is done, there is no substitute for definitive,
highly powered studies in appropriate popula-
tions, using acceptable clinically relevant
endpoints. In short, power, a statistical design
parameter, has a direct bearing on the quality of
decision-making. We believe that recognition of
this relationship is very much underappreciated,
and that it has a profound bearing on the way
sound business decisions should be made.

12.2.4 Importance of collaboration in
sample size estimation

Sample size estimation requires the input of a
number of specialists involved with the develop-
ment of new drugs. The estimate of the standard
deviation can be informed by exploratory thera-
peutic trials of the same drug or by literature
reviews of similar drugs. Synthesis of these data
from a number of sources requires statistical and
clinical judgments. As was seen in Figure 12.1
the estimate of the standard deviation has an
important effect on the sample size. Study teams
should understand the sources of variability in



the response variable and attempt to minimize
unwanted variability.

The definition of the minimally clinically rele-
vant difference of interest involves clinical,
medical, and regulatory experience and judg-
ments. The appropriate sample size formula
depends on the test of interest and should take
into account the need for multiple comparisons
(either among treatments or with respect to
multiple examinations of the data). The project
statistician provides critical guidance in this area.

It is appropriate to note here that in some
instances the sample size may not be completely
dictated by the statistical requirements for a
given power calculation. The ICH has published
a guidance document (ICH Guidance E1, 1994)
applicable to drugs given chronically. This guid-
ance specifies the minimum number of individ-
uals who should be exposed for certain periods
of time so that potential adverse events (AEs)
may come to light before the drug is marketed.
The need for a larger safety database may super-
sede the sample size required to demonstrate a
statistically significant and clinically relevant
treatment effect.

In summary, sample size estimation requires
the input of a number of disciplines involved in
the design of clinical trials.

12.3 Multicenter studies

A certain number of participants need to be
recruited for any given trial. In Section 12.2 we
discussed sample size estimation, which takes
into account a number of considerations that are
important not only to the statistician but also to
the clinical scientist and the regulator. Once
determined, the value produced by this process
of estimation is incorporated into the study
protocol.

We have seen that relatively small numbers of
participants are recruited for early phase trials
(perhaps 20-80 in FTIH studies and 200-300 in
early Phase II studies), and relatively larger
numbers are recruited for therapeutic confirma-
tory trials (perhaps 3000-5000). It is relatively
easy to recruit between 20 and 80 participants at
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a single investigational site. Indeed, as we noted
in Section 7.3, conducting a FTIH study at a
single center enhances consistency with respect
to management of participants, study conduct,
and assessment of AEs, and provides for
frequent and careful monitoring of study partic-
ipants. However, it is not feasible to recruit
3000-5000 participants at a single investiga-
tional site, so multicenter studies are typical at
this stage of clinical development programs.

As for so many of the topics that we have
discussed, multicenter studies have both advan-
tages and disadvantages. Let us consider the
disadvantages first and then focus on the advan-
tages. The major disadvantage relates to the
logistic demands of coordinating a multicenter
trial. The rarer the medical condition of interest
in the trial, the more sites that will probably
be needed because fewer individuals will likely
be available at each site. It is not unusual to
have between 50 and 100 investigational sites
participating in some trials. These sites may be
scattered across a country and, increasingly,
they may be scattered across several countries
and continents. This occurrence has many
consequences, including:

e All investigational sites must obtain approval
from their investigational review board (IRB)
to conduct their portion of the trial.

e The drug products used in the trial must be
shipped to all sites, which may entail dealing
with customs and import/export controls.

e If some sites speak different languages, all
relevant issues must be addressed (for
example, translating the informed consent
form into each language).

e All principal investigators (one from each site)
and certain members of their staff must receive
training that will attempt to ensure consis-
tency of all methodology used in the trial.
Investigator meetings are held accordingly.

e Multicenter studies benefit from (rely on) the
use of central labs to analyze certain samples
taken during the trial (for example, blood
samples). This is a complex shipping
problem, especially when samples must be
transported to the central laboratory under
certain conditions and very quickly from
distant locations.
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Each of the above considerations adds
considerably to the total cost of a multicenter
trial.

From a statistical point of view, while every
attempt is made to standardize the implementa-
tion of study methodology at all sites, perfect
standardization is not a realistic expectation.
Although simpler is usually better, study proto-
cols often become complex during their devel-
opment, and different investigational sites will
likely differ in their implementation of some
procedural aspects. This occurrence introduces
extraneous variability into data collected and
analyzed. Extensions of some of the analysis
methods described in this book can be used
to account for center-to-center variability,
including multi-way ANOVA models for contin-
uous variables, stratified x? tests for categorical
variables, and stratified log-rank tests for time-
to-event analyses. Various other methodological
controls can be introduced in an attempt to
minimize such extraneous variability, but the
success of any control strategy is unlikely to be
perfect.

For these and other reasons, we believe that, if
it were possible to conduct a trial requiring
3000-5000 participants at a single investiga-
tional site, sponsors would do so, even though
this statement is at odds with the commonly
cited major advantage of multicenter trials,
which is that they enable greater generalization
of results obtained from the trial. It is statistically
possible to assess the treatment effect at each
investigational site as well as assessing it using
the data from all sites, although a given site
needs to have reasonable enrollment for the
treatment effect calculated from its participants
to be meaningful. If similar treatment effects are
observed at sites that tended to enroll relatively
older individuals, relatively younger ones, ethni-
cally homogeneous samples, ethnically hetero-
geneous samples, with less or more experience of
treating the designated indication, and so forth,
it is reasonable to have a certain degree of faith
that the treatment effect is generalizable to the
eventual patient population if and when the drug
is approved for marketing.
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12.4 Analysis populations

Various analysis populations for clinical trial
data can be defined and are used in statistical
analyses, including:

e The intent-to-treat (ITT) population: This
comprises all participants in a clinical trial
who were randomized to a treatment group,
regardless of whether any data were actually
collected from them.

e The safety population: This is a subset of the
ITT population, defined as the population of
participants who received at least one dose of
a study treatment.

e The per-protocol population (also known as
the efficacy or evaluable population): This is
also a subset of the ITT population, and
comprises individuals whose participation
and involvement in the trial were considered
to comply with significant requirements and
activities detailed in the study protocol.
Participants would typically be excluded from
the per-protocol population if they exhibited
poor dosing compliance, missed a number of
clinic visits, or used prohibited medications
that may interfere with the evaluation of the
test treatment.

Both the ITT and the safety populations can be
used in the analysis of safety data. The ITT and
per-protocol population are typically used in the
analysis of efficacy data.

12.4.1 Using both ITT and per-protocol
populations in efficacy analyses

In therapeutic confirmatory trial efficacy, the
same analyses are typically conducted twice,
using data from the ITT population and data
from the per-protocol population (see Turner,
2007). The analyses conducted using the ITT
population are considered to be the primary
analyses because ITT analysis provides a conser-
vative strategy in the sense that it tends to bias
against finding the results that the researcher



“hopes” for, particularly in the case of superi-
ority trials. The conservative nature of ITT
analysis is deemed particularly appropriate when
attempting to demonstrate the efficacy of an
investigational drug because these data do not
favor the desired outcome. Then, if there is
compelling evidence of the drug’s efficacy, this
evidence will be particularly noteworthy. The
ITT population is the most appropriate sample
population from which to make inferences to
the population of patients who may receive the
drug if and when it receives marketing approval.

Having conducted primary analyses using the
ITT population it is then appropriate to conduct
secondary analyses using the per-protocol popu-
lation, the subset of participants whose partici-
pation in the trial was compliant with the study
protocol. This analysis is regarded as less conser-
vative than ITT analysis because analysis of the
per-protocol population may maximize the
opportunity to demonstrate efficacy: The per-
protocol population is the population in which
the treatment is likely to perform best.

Regulatory authorities are encouraged if the
results from the ITT efficacy analysis and the
per-protocol efficacy analysis are similar, and
their overall confidence in the trial results is
increased. However, if they are not similar, ques-
tions may be raised as to why they are not. Some
of these questions are (Turner, 2007):

e s the per-protocol population a lot smaller
than the ITT population (it will almost
certainly be somewhat smaller)?

e If so, were there a lot of major protocol
violations?

e Were a lot of participants removed for the
same protocol violation?

e Were many of the participants with protocol
violations enrolled at the same investigative
site?

e Are there any systematic problems in the
conduct of the trial?

All of the issues addressed by these questions
can reduce the regulatory reviewers’ overall
confidence in the trial’s findings.
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12.4.2 Proper and improper subgroup
analysis

Investigators may be interested to examine
potential differences among groups of partici-
pants according to some characteristic. For
example, there may be differences in the response
to treatment according to age. An analysis to
investigate such a phenomenon could involve
separate analyses for participants aged 18-34,
35-54, 55-74, and 75 years and older. Similar
analyses could be presented in which partici-
pants are grouped according to some measure of
disease severity. Results such as these should be
interpreted with caution because the more
subgroups that are examined the greater the
chance of discovering a false positive (recall our
earlier discussions of multiple comparisons).

Although we have not discussed this topic,
differences in treatment effects may be tested to
see if they are homogeneous across the various
subgroups. This test is called a test of the
treatment-by-subgroup (for example, treatment
by age) interaction. It is useful because it can rule
out, using a hypothesis test, apparent differences
among subgroups of subgroups that really repre-
sent random variation. Citing from the ICH
Guidance E9 (1994, p 27):

The treatment effect itself may also vary with
subgroup or covariate — for example, the effect
may decrease with age or may be larger in a
particular diagnostic category of subjects. In
some cases such interactions are anticipated or
are of particular prior interest (e.g. geriatrics),
and hence a subgroup analysis, or a statistical
model including interactions, is part of the
planned confirmatory analysis. In most cases,
however, subgroup or interaction analyses are
exploratory and should be clearly identified as
such; they should explore the uniformity of
any treatment effects found overall. In general,
such analyses should proceed first through the
addition of interaction terms to the statistical
model in question, complemented by additional
exploratory analysis within relevant subgroups
of subjects, or within strata defined by the
covariates. When exploratory, these analyses
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should be interpreted cautiously; any conclusion
of treatment efficacy (or lack thereof) or safety
based solely on exploratory subgroup analyses
are unlikely to be accepted.

These cautions having been noted, some unex-
pected subgroup findings may actually reveal
important findings that should be further inves-
tigated in additional studies. This can be espe-
cially important when there is evidence of
different safety profiles among subgroups.
Matthews (2006) distinguished between two
sorts of subgroup formation, and hence analysis:

e a limited number of subgroups identified a
priori with an apparent biological/clinical
reason for the difference of interest

e subgroups whose apparent importance is
retrospective, and arises only as a result of
doing analyses.

If the treatment effect appears to differ across
subgroups identified in the first way, the
phenomenon “should be taken much more seri-
ously” than if the subgroups came to light via
the second process (Matthews, 2006, p 171).

12.5 Dealing with missing data

For various reasons there are often participants
in a trial for whom a complete set of data is not
collected. This is the province of missing data.
When conducting efficacy analyses we need to
address this issue, and the way(s) in which it is
addressed can influence the regulatory reviewers’
interpretation of the analyses presented. The
issue of missing data is problematic in clinical
research because humans have complex lives.
Human participants may choose to leave a study
early or be unable to attend a specific visit, both
situations leading to missing data. Nonclinical
research involves tighter experimental control in
which the subjects (animals) do not have the
ability voluntarily to leave the study early.

Piantadosi (2005) observed that there are only
three generic analytic approaches to addressing
the issue of missing data:

1. Disregard the observations that contain a
missing value.
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2. Disregard a particular variable if it has a high
frequency of missing values.

3. Replace the missing values by some appropriate
value.

The last of these approaches is called imputation
of missing values. As Piantadosi (2005, p 400)
commented, although this approach sounds a
lot like “making up data,” when done properly it
may be the most sensible strategy. While tech-
niques for addressing missing data can be tech-
nically difficult, one commonly used, simple
imputation method is called last observation
carried forward (LOCF). In a study with repeated
measurements over time, the most recent
observation replaces any subsequent missing
observations (Piantadosi, 2005).

An assumption of such an imputation strategy
is that the future course of the individual’s
condition can reasonably be predicted by the last
known state. If participants in the test group
drop out of the study more often than those on
placebo because the test treatment has failed,
such an assumption may not be realistic. It is
possible that participants who dropped out for
treatment failure actually got worse than when
they left the study. A commonly proposed
strategy is to use a number of imputation
methods and see how the analysis results change
as a result. If the results of this sensitivity
analysis suggest that the overall conclusion
remains the same, it is less important how the
missing data are managed.

Differential rates of loss to follow-up among
groups or high rates in any single group compli-
cate the management of missing data. Strategies
that minimize the chance that participants will
leave a study prematurely should be considered
at the design and protocol writing stage, and
incorporated in the protocol as appropriate.

A number of approaches to dealing with
missing data are described by Molenberghs and
Kenward (2007).

12.5.1 The importance of study conduct
and study monitoring

While there are widely accepted methodologies
for dealing with missing data, it is certainly
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preferable to have as many “actual” data as
possible. This simple point underscores the crit-
ical nature of study conduct. All procedures
detailed in the study protocol need to be
followed, and all data required need to be
collected to the greatest degree possible (there
will always be occasional genuine reasons why
this was not possible in a specific situation).

This need for as complete a dataset as possible
underscores the importance of the clinical
monitor. Two related and critical responsibilities
of clinical monitors are to ensure that all sites in
the trial follow the study protocol, and to check
that the required data are recorded as and when
they should be. A good monitor will spot the
absence of recorded data sooner rather than
later, which considerably increases the likeli-
hood of locating and subsequently recording
those data.

12.6 Primary and secondary objectives
and endpoints

A given trial is conducted to collect optimum
quality data with which to answer an identified
and important research question. The data
collected are intended to provide the most accu-
rate answers to the research questions posed. A
study protocol will often include both primary
and secondary objectives, and also the associated
primary and secondary endpoints.

12.6.1 The primary objective and
endpoint

Turner (2007) noted that, in a very real sense, all
the clinical studies that are conducted before a
therapeutic confirmatory trial is undertaken
have one purpose: To allow the primary objec-
tive in the therapeutic confirmatory trial to be
stated as simply as possible. An objective that
can be stated simply can be tested simply, that is,
in a straightforward and unambiguous manner.
This is a highly desirable attribute in a primary
objective.

By the time a therapeutic confirmatory trial is
appropriate it should be possible to state a single
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primary objective (or perhaps two if the sponsor
really feels that this is appropriate) that is clini-
cally relevant and biologically plausible. Having
stated this primary objective, deciding upon the
primary endpoint should be straightforward.
Deciding on the appropriate study design and
the associated statistical analyses should also be
straightforward. Throughout this book we have
focused on the development of a new antihyper-
tensive drug. The primary objective of a thera-
peutic confirmatory trial in this therapeutic
area will be to determine if the investigational
drug does indeed lower blood pressure, and the
associated endpoint(s) may be a certain magni-
tude reduction in systolic blood pressure (SBP),
diastolic BP (DBP), or both.

At the analysis stage of the trial this endpoint
provides the focus for rigorous statistical analysis
and interpretation (Machin and Campbell, 2005).
Formal hypothesis testing will be employed to
determine the presence or absence of a statisti-
cally significant difference between the mean
decrease seen in the drug treatment group and
that seen in the control group. In addition, the
clinical significance of the treatment effect will
be addressed.

Having a single primary objective has an addi-
tional advantage in a study. It means that
sample-size estimation can be based on that
objective and the associated estimated treatment
effect of interest (recall our discussion of sample-
size estimation in Section 12.2). Having multiple
primary endpoints requires adjustments for
multiplicity and can be difficult to interpret if
only one of multiple primary endpoints is found
to have a statistically significant effect.

12.6.2 Secondary objectives and
endpoints

In addition to the primary objective, a study may
have a small number of secondary objectives. A
secondary endpoint will be associated with each
secondary objective. For example, assessments
of quality of life may fall under the category of
secondary objectives. (In some studies quality
of life may be the primary objective: It is simply
used here as a realistic example.) Quality of life
(Qol) is an extremely important consideration,
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and particularly so in long-term pharmaceutical
therapy. Even if a disease or condition cannot be
cured, keeping the symptomatology at accept-
able levels can be considered a tremendous
success.

Formal hypothesis testing is less likely to occur
for secondary endpoints. Descriptive statistics
are more likely to be presented. It is also possible
that findings of particular interest may lead to a
primary objective in a subsequent trial. That is,
these data are more suited to hypothesis forma-
tion than hypothesis testing. It is important to
emphasize here that data leading to the forma-
tion of a hypothesis cannot be used to test that
hypothesis: As just noted, a new dataset must be
generated.

12.6.3 How many objectives should we
list?

The number of objectives that should be incor-
porated in any clinical trial is often a topic of
considerable debate among study teams (Turner,
2007). Some members will likely argue that,
while taking all the trouble to conduct the trial,
why not collect as much data as possible and ask
as many questions as possible? This approach
leads to a large number of study objectives,
sometimes broken down into primary objectives,
secondary objectives, and even tertiary objec-
tives. It is certainly legitimate in some studies to
be interested in more than one primary
endpoint and possibly in several secondary
endpoints. However, from a statistical point of
view, increasing the number of objectives leads
to serious problems, and it can compromise the
weight of any particular piece of evidence that is
eventually presented to regulatory agencies.

In Chapter 11 we discussed the issue of
multiple comparisons and multiplicity in the
context of pairwise treatment comparisons
following a significant omnibus F test. When we
adopt the 5% significance level (o = 0.05), by
definition it is likely that a type I error will occur
when 20 separate comparisons are made. That is,
a statistically significant result will be “found”
by chance alone. The greater the number of
objectives presented in a study protocol, the
greater the number of comparisons that will be
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made at the analysis stage, and the greater the
chance of a type I error. Machin and Campbell
(2005) commented: “If there are too many
endpoints defined, the multiplicity of compar-
isons then made at the analysis stage may result
in spurious statistical significance.”

The concern of multiplicity can also apply to
studies in which data are examined during the
study at interim time points. Interim analyses
are discussed in Section 12.9.

12.7 Evaluating baseline characteristics

It is common practice in analyses of clinical data
to inspect the distributions of baseline character-
istics — for example, demographics and measures
of disease severity — through the use of descrip-
tive summary statistics. This is an important
analysis because it helps to describe the sample
representing the target population of interest. If
the sample is representative of the target popula-
tion the inferences drawn from the study will be
considered relevant.

Sometimes the baseline homogeneity of these
characteristics is assessed using a hypothesis test,
for example, an omnibus F-test from a one-way
ANOVA testing for differences in age. If a “signif-
icant” result is found, some researchers might
offer this as evidence that something went awry
with the randomization process. However, this
view has two problems: One is that multiple
hypothesis tests can lead to spurious findings or
“false positives;” the second is that, on any given
single instance, a proper randomization cannot
ensure that this possibility does not occur. What
randomization can ensure is that, on average,
over all possible randomizations, distributions of
baseline characteristics will be homogeneous
across groups. This result is all that is required for
proper statistical inferences. Senn (1997) empha-
sized that “inferential statistics calculated from a
clinical trial make an allowance for differences
between patients and that this allowance will be
correct on average if randomization has been
employed.” It is worth noting that standard
errors represent such allowances.

When there is evidence to suggest a baseline
imbalance with respect to a characteristic that
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may influence an important outcome of the
study, such as the primary efficacy endpoint,
some investigators choose to examine the effect
of this factor in additional statistical analyses.
Possible approaches to this would include
ANOVA or analysis of covariance (ANCOVA) in
which a continuous variable (for example, age) is
adjusted for in assessing the main effect of
interest, that is, the treatment effect for the
primary outcome variable.

Such a step is not required from a statistical
point of view, as a result of the role of a properly
executed randomization process, but it can be
comforting if it supports the clinical relevance of
the effect after adjustment for the baseline
covariate. If there are specific explanatory factors
that are suspected of having an effect on the
outcome of interest at the start of a study, it is
advisable to incorporate them into the overall
study design (for example, through stratified
randomization). A brief discussion of this topic
has been published by Roberts and Torgerson
(1999). The EMEA CPMP has also published a
guidance document on baseline covariates
(EMEA CPMP 2003).

12.8 Equivalence and noninferiority
study designs

The goal of equivalence trials is to demonstrate
that a new (test) drug (T) and an active
comparator drug (C) are “equivalent” or have a
similar effect. This means that, in the best-case
scenario, the test treatment is trivially better
than the reference treatment and, in the worst, it
is tolerably worse.

Equivalence trials are important when it
would be unethical to compare the test treat-
ment with an inactive control, and when
comparing the test with the control for equiva-
lent efficacy with a superior safety profile for
the test drug. The difference between groups
that we believe to be “trivially better” or “toler-
ably worse” is called the equivalence margin.
Defining the equivalence margin is not an easy
task and requires input from regulatory authori-
ties. The definition of the equivalence margin is
required in estimating a sample size for such a
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study and it must be decided upon in advance of
the study and detailed in the study protocol.
Noninferiority trials are very similar to equiva-
lence trials in the manner of their statistical
approach. In noninferiority trials the objective is
to demonstrate that the test drug is no worse
than - that is, not inferior to — the control.
Assuming that the test drug had some other
benefit, such as better tolerability or safety or
cost, a claim of noninferiority could mean that
the effect for the test drug is trivially worse than
the control. The design, including the choice
of the noninferiority margin, must be agreed to
with regulatory authorities and provided in the
study protocol. A guidance document published
by the EMEA CPMP (2000) addresses issues
related to interpreting data from superiority
studies for noninferiority claims, although it is
our opinion that such a practice is rarely justified.

12.8.1 Why the hypothesis-testing
strategies are different in these designs

The research questions in equivalence and
noninferiority trials are different from those
used in superiority trials. Hypothesis testing
strategies that are so frequently used in superi-
ority trials do not serve the needs of these
designs well. As Matthews (2006, p 199)
commented: “Failing to establish that one treat-
ment is superior to the other is not the same as
establishing their equivalence.” In other words,
obtaining a nonsignificant p value in a superi-
ority trial does not demonstrate that the two
treatments are the same. As we shall see, conven-
tional p values have no role in establishing
equivalence or noninferiority.

12.8.2 Use of confidence intervals for
inferences

Given that the research questions in these trials
are different from those used in superiority trials,
the formats of the null and alternate hypotheses
are also different. The research question associ-
ated with an equivalence trial is: Does the test
drug demonstrate equivalent efficacy compared
with the comparator drug? The null hypothesis,
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stated in terms of differences in population
means, is:

. — >
Hy: | Brgsr = Beonmror | = B, quivalence-

The alternate hypothesis is:

Hyt | Bogsr = Beonror | < Bequivalence’

If the null hypothesis is rejected in this case, the
conclusion would be that the two population
means were within 8., .inc. units of each other.
The equivalence margin would be selected such
that the two treatments were considered equiva-
lent. If two antihypertensive therapies were
compared in this manner, an equivalence
margin might be 5 mmHg (a trivial difference).
The inferential statistical analysis for equiva-
lence trials typically involves the calculation of a
(1 —a)% confidence interval for the difference in
population means. If the lower and upper
bounds of the confidence interval are both
within the equivalence margin, the conclusion is
that we are (1 —a)% confident that the true
difference in population means does not exceed
8equivaleme. The conclusions that can be drawn
from an equivalence trial are displayed in Figure
12.3.

considerations in clinical trials

The research question for a noninferiority trial
is stated as: Is the test drug not inferior to the
control? The null hypothesis to be tested in this
study is:

H

. - =
0* Mrest — HeontroL = Ononinferiority”

If the null hypothesis is rejected, the following
alternate hypothesis will be favored:

Hy: Bypsr = Beonmror < Ononinferiority”

If the null hypothesis is rejected in this case, the
conclusion would be that the population mean
for the control treatment did not exceed that for
the test group by more than 8, . oy The
inferential statistical analysis for noninferiority
trials typically involves the calculation of a one-
sided (1 —a)% confidence interval for the differ-
ence in population means. If the upper bound
of the confidence interval is within the non-
inferiority margin, the conclusion is that we
are (1 —a)% confident that the true difference
in population means is less than & . ciority-
The conclusions that can be drawn from a
noninferiority trial are displayed in Figure 12.4.

Equivalence and noninferiority trials may be
the only viable means to test a new drug in

Ho: Test is superior to Ha: Test is equivalent fo Ho: Test is inferior to
control control control

Test better than control

Test worse than control

\
1
1
|

- 8equivc:|ence 0
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Htest — W control

Figure 12.3 Conclusions to be drawn from the difference in

population means from an equivalence trial

Ha: Test is non-inferior to
control

Ho: Test is inferior to
control

Test better than control

Test tolerably
worse than control

Test appreciably worse than control

0

anoninferioriry

Hiest — Hcontrol

Figure 12.4  Conclusions to be drawn from the difference in population means from a noninferiority frial



certain circumstances. One important considera-
tion in equivalence trials with a single active
comparator is to consider what it means to
conclude that the test drug is equivalent to the
comparator. Not all marketed drugs are effica-
cious in every study. If the test drug were shown
to be equivalent to the control, the test drug
would be either efficacious or not efficacious.
Which of these outcomes represents the truth
depends on how the comparator would have
performed had it been tested against a placebo.
The ability to establish that a study can distin-
guish effective treatments from ineffective ones
is called assay sensitivity. One way to establish
this for equivalence trials is to select a comparator
that had demonstrated consistent superiority to
a placebo. Another option for equivalence trials
in some instances is to include a third placebo
arm. This is not possible when the ethics of the
situation preclude this possibility. This is yet
another illustration of the complexity of
designing trials for which the outcomes have
universally meaningful interpretations.

12.9 Additional study designs

Other appealing design features in new drug
development include those that allow for moni-
toring of data while the trial is ongoing, and
those that permit adaptations during a trial.

12.9.1 Interim analyses

Analyses conducted during a study are called
interim analyses. Common uses of interim
analyses are as follows:

e re-estimate the study sample size

e evaluate whether or not a study has accumu-
lated sufficient data to stop early for definitive
evidence of efficacy, for evidence of harm, or
definitive evidence that the trial is unlikely to
be successful in terms of its originally planned
objectives.

A number of methodologies are available to
assist in the quantification of evidence
(accounting for type I and II errors) that enable

Additional study designs 189

early stopping of trials. Jennison and Turnbull
(1999) provide a detailed description of sequen-
tial designs in which data are evaluated periodi-
cally for evidence of benefit, harm, or futility.
Sequential designs typically involve the use of
boundaries for the test statistic that define each
of these outcomes.

One complicating factor of interim analyses is
that they require the use of a data monitoring
committee (DMC), which is independent of the
study sponsor and others involved in the study.
This is intended to protect the integrity of the
clinical trial and to avoid any influence that
knowledge of results may have on the future
course of the trial. The work of the DMC is
dictated by a specific protocol, or charter, written
for the purpose of listing responsibilities of
all parties and measures undertaken to protect
the integrity of the trial. Ellenberg et al. (2003)
have written a valuable reference outlining
the complex issues associated with DMC
involvement in trials.

12.9.2 Adaptive designs

Adaptive designs have become a topic of great
interest, as evidenced by a recent Pharmaceutical
Research and Manufacturers of America
(PhRMA) working group convened to discuss
adaptive designs methods. Dragalin (2006)
provided an excellent overview of these studies.
The ability to modify a study in midcourse may
offer significant advantages to pharmaceutical
companies, especially given the tremendous
investment of time and money required for
developing new drugs.

However, the logistical aspects of monitoring
data at several points during a study are not
trivial. An important concern with interim
analyses is to ensure that knowledge of the
results, however vague, does not unduly influ-
ence or bias the study. Hung et al. (2006, p 572)
stated: “When the adaptation in confirmatory
trials is extensive, the key hypothesis tested
becomes unclear, protection of trial integrity is
difficult, the infrastructure that is needed for
logistics may be impossible to establish, and
evaluation by regulatory agencies may be impos-
sible.” Summarizing the opportunities and the
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challenges of adaptive designs on behalf of the
PhRMA working group, Gallo and Krams (2006,
p 423) stated that: “We feel that the potential
benefits for all involved parties suggested by
adaptive designs are too enticing not to make
every effort to find out if their promise can be
realized.” These designs represent an area for
emerging research.

12.10 Review

1. Consider a design for an exploratory therapeutic
trial of a new antihypertensive drug compared with
placebo. It has been agreed that a between-
treatment group difference in mean change from
baseline (that is, the treatment effect) of at least
20 mmHg in SBP would be considered clinically
meaningful. The primary hypothesis must be tested
with o = 0.05.

(a) If the standard deviation for the between
difference in mean change from baseline SBP
is 40 mmHg, what is the required sample size
for a test with power of 80%2 What is the
required sample size for a test with 90%
power?

(b) If the standard deviation for the between
difference in mean change from baseline SBP
is 60 mmHg, what is the required sample size
for a test with power of 80%2 What is the
required sample size for a test with 90%
power?

(c) How is the estimate of the standard deviation
obtained?

2. What are some advantages and disadvantages of
using multiple investigational centers in clinical
trialse

3. In what ways are noninferiority trials different from
superiority trials?
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