
5.1 Introduction

Selecting an appropriate study design to best
address the study objectives is just the first step
towards answering the questions of interest.
When most people think about Statistics they
are probably thinking about data. Unfortunately,
statisticians are not infrequently assigned the
nickname “number crunchers,” a name that
accentuates the numerical aspects of the use of
statistics but completely ignores the design,
methodology, and interpretation aspects of the
discipline of Statistics. Number crunching (and
computational accuracy) is certainly a necessary
component of Statistics, but it is important to
bear in mind that it is far from sufficient. 

Having reviewed the concepts of study design
we now turn our attention to data. We are inter-
ested in various questions relating to data, such
as: What are data? How might we classify
different types of data? How are data used to
answer questions arising during clinical trials?
This last question is, perhaps, the most impor-
tant one for this book. We start to answer it first
in conceptual terms before turning our attention
to more specific points.

5.2 Populations and samples

It is of considerable interest in new drug devel-
opment to assess the effects of a drug in a partic-
ular population, the population containing
individuals who may be prescribed the drug if
and when it is approved. This population is
known as the target population. Not all the
adults in the USA and the UK would be ideal

candidates for a therapeutic confirmatory trial
because of the presence of other conditions or
the use of other drugs, or for logistical reasons
because they do not live close enough to a center
that participates in clinical studies. Therefore,
another population of interest is all adults in the
USA and the UK who meet the specific eligibility
criteria (including a precise definition of hyper-
tensive) of a study. This group of individuals is
considered the study population. 

As study populations are often very large,
however, it is not possible to administer the drug
to every member of the population, so a sample
from the study population is chosen and the
effects of the drug in that sample are determined
in a clinical study. In clinical trials, samples are
typically considered or assumed to be simple
random samples from the study population. A
simple random sample is a sample in which each
observational unit (for example, study partici-
pant) has the same probability of selection from
the population. In other fields in which Statistics
are used (most notably population surveys)
samples need not be selected in this manner. 

A clinical trial provides numerical state-
ments of the drug’s effects in the specific
sample employed, but the investigator and the
regulatory agency are really interested in the
drug’s (likely) effect in the whole population.
Therefore, statistical procedures have been
developed to allow numerical assessments of
the likely effects in the study population
based on the evidence collected from the
sample that participated in the trial.

There are important limitations to the useful-
ness of generalizing the effects from a series of
clinical trials to the patient population as a
whole. The population from which clinical trial
participants are sampled, the study population,
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may not truly be representative of the population
(the target population) about which we would
like to make conclusions. The target population
may be sicker, have greater needs for concomitant
medications, and have more chronic illnesses
than the relatively homogeneous population
from which the study sample arose. This point is
well expressed by Senn (1997, p 28):

In a clinical trial the primary formal objective is
to assess what effects the treatments did have on
the patients studied in order to say what effects
they may have. To say what effects the treat-
ments will have or even will probably have,
requires arguments which go well beyond any
formal examination of the data.

The following discussions address statistical
methods that are applied to data from a sample
of study participants with the objective of
making an inference about the study population.
By including relevant populations in studies and
carefully documenting the methodology that
gave rise to the study sample in regulatory docu-
ments and clinical communications, reviewers
and physicians can judge for themselves the
extent to which the results from the study can be
inferred to the clinical situation. 

5.3 Measurement scales

Data are anything that is measured. Examples of
data encountered in clinical studies include
height, weight, plasma concentration of a drug
in a sample, days from the start of a study to a
particular adverse event, the presence or absence
of a characteristic of interest, and the gender of a
study participant. Some of these examples may
be surprising because we often think of data as
numbers, but data may also be non-numeric. 

Data can generally be classified into one of 
the following scales of measurement: nominal,
ordinal, interval, or ratio. 

5.3.1 Nominal scale

Nominal measurement scales involve names 
of characteristics. Characteristics frequently

encountered in clinical studies that are measured
on the nominal scale include gender (female or
male), occurrence or not of an adverse event, a
coded adverse event (for example, headache,
asthenia, nausea), and race or ethnicity. Data
measured on a nominal scale cannot be operated
on arithmetically. We could not, for example,
compare the values of females and males and
come up with a meaningful result. An important
caution is worth noting at this point. It is not
uncommon to encounter data measured on the
nominal scale to be represented as numbers or
codes in electronic databases. An example would
be when, in a database of a clinical study, the
presence or absence of an adverse event (for
example, headache) is represented as 0 (absent)
or 1 (present). Before we undertake a statistical
analysis of any sort it is necessary to understand
fully the nature of the data. 

5.3.2 Ordinal scale

This scale is best defined as one in which an
ordering of values can be assigned. Examples of
data from clinical studies measured on an
ordinal scale include: severity of an adverse event
classified as mild, moderate, or severe; age cate-
gorized as � 65, 65–70, 71–75, and � 75 years.
The ordinal nature of the measurement scales
means that we can say that a mild headache is
less severe than a moderate headache, which 
is less severe than a severe headache. However,
we cannot say that the difference between mild
and moderate is the same as the difference
between moderate and severe. 

5.3.3 Interval scale

In contrast, differences between any two values
measured on the interval scale do have meaning.
Temperature measured on the Celsius or Fahren-
heit scale is an example of an interval scale. For
example, the difference between 32°F and 64°F is
the same as the difference between 64°F and
96°F. On the interval scale, a value of zero is not
a true zero (meaning absence of heat) because a
value of �1°F is colder still. We can perform
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addition and subtraction on interval scaled data
but, because the value of zero is meaningless, we
cannot perform multiplication or division and
obtain a meaningful result. 

5.3.4 Ratio scale

Data measured on the ratio scale have all of the
characteristics of interval scaled data with the
exception that, in this case, a value of zero does
represent a true zero. Height, which is measured
on the ratio scale, has a true zero. A height of
zero centimeters or inches means that there is no
height. Likewise, a weight of zero kilograms or
pounds means that there is no weight. An
important characteristic of ratio scaled data is
that the ratio of two values can be computed. For
example, a study participant who weighs 220
pounds weighs twice as much as one who weighs
110 pounds. 

The importance of identifying these scales of
measurement is that not all statistical analysis
approaches are appropriate for each of them. It is
important to note that, although a particular
characteristic may be measured on one scale, it
may be reported using another. For example, age
at the time of study entry may be measured on a
ratio scale, but reported using an ordinal scale
(for example, � 25, 25–64, � 64 years).

5.4 Random variables 

Many individuals are involved in clinical trials
and a number of characteristics of these partici-
pants are recorded. As characteristics such as
age, systolic blood pressure, and gender can
vary from individual to individual, they are
generally classified as random variables (or,
simply, variables). A common convention in
statistics is to represent a particular random
variable as a letter, such as x. A particular real-
ization, or value, of a random variable for a
particular individual (participant i in this case)
is often denoted using a subscript such as xi. We
use these conventions in this chapter and
throughout the text.

5.5 Displaying the frequency of values
of a random variable

Since a random variable such as age can take on
a number of values for a group of study partici-
pants it is of interest to know something about
the relative frequency of each value. The relative
frequency is the count of the number of obser-
vations with a specific value (for example, the
number of 30-year-old participants) divided by
the total number in the sample. An informative
first step in a statistical analysis is to examine
characteristics of the relative frequency of values
of the random variable of interest, which can
also be called the empirical distribution of the
random variable. This knowledge is an essential
part of selecting the most appropriate statistical
analysis. Statistical software packages offer a
number of methods to describe the relative
frequency of values including tabular frequency
displays, dot plots, relative frequency histograms,
and stem-and-leaf plots. 

An example of a frequency table is provided in
Table 5.1, in which the frequency of age values
in a sample of 100 study participants is
displayed. The left-hand column is the value of
age for which frequency information is
provided. The column labeled “Frequency” is the
count of the number of participants with the
particular value of age. The column “Percentage”
is the count of the number of participants with
the particular value of age divided by the total
number of observations in the sample and multi-
plied by 100 to express this figure as a percentage
of the total. The next column “Cumulative
frequency” represents the total count of age
values less than or equal to the age value on a
certain row. Similarly, “Cumulative percentage”
is the cumulative frequency count of age values
as a percentage of the total. As seen in Table 5.1
there is one 40-year-old individual (1% of the
total) and there are five who are 40 and younger
(5% of the total). A frequency table allows us to
see how common all values are, but it can be
difficult to see whether or not certain values
tend to cluster together. 

Another helpful way of displaying the relative
frequency of observed values is to group values
into equally spaced intervals and display the
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resulting frequency in a histogram. There is no
single width of each interval, or bin, that can be
recommended. However, one might consider
the quantity W as a starting point for the
width:

Maximum value � Minimum value
W � ––––––––––––––––––––––––––––––––––

n

It is typically desirable to have at least 5 bins
and no more than 10, although less or more may
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Table 5.1 Frequency table of age values

Age (years) Frequency Percentage Cumulative frequency Cumulative percentage

31 1 1.00 1 1.00
35 1 1.00 2 2.00
39 2 2.00 4 4.00
40 1 1.00 5 5.00
43 3 3.00 8 8.00
45 1 1.00 9 9.00
48 2 2.00 11 11.00
49 4 4.00 15 15.00
50 4 4.00 19 19.00
51 2 2.00 21 21.00
52 2 2.00 23 23.00
53 2 2.00 25 25.00
55 3 3.00 28 28.00
57 3 3.00 31 31.00
58 3 3.00 34 34.00
59 5 5.00 39 39.00
60 2 2.00 41 41.00
61 6 6.00 47 47.00
62 4 4.00 51 51.00
63 2 2.00 53 53.00
64 1 1.00 54 54.00
65 1 1.00 55 55.00
66 3 3.00 58 58.00
67 4 4.00 62 62.00
68 3 3.00 65 65.00
69 2 2.00 67 67.00
70 3 3.00 70 70.00
71 4 4.00 74 74.00
72 3 3.00 77 77.00
73 4 4.00 81 81.00
74 1 1.00 82 82.00
75 3 3.00 85 85.00
76 1 1.00 86 86.00
77 3 3.00 89 89.00
78 3 3.00 92 92.00
79 1 1.00 93 93.00
80 2 2.00 95 95.00
81 2 2.00 97 97.00
82 1 1.00 98 98.00
83 1 1.00 99 99.00
88 1 1.00 100 100.00



be informative. Once the number and width of
the bins have been determined the next step is to
count the number of observations that fall into
each interval and display the frequency of each
grouping with contiguous bars. It is important
that the intervals or bins are defined such that
each observation can be assigned to only one
interval. Using the 100 age values in the previous
example, a histogram, displayed in Figure 5.1, has
been constructed from the following categories:
30–39, 40–49, 50–59, 60–69, 70–79, 80–89. Note
that each bar is centered over the interval
midpoint. For example, the bar centered at 54.5
represents the relative frequency of age values in
the interval 50–59.

By grouping the 100 age values (that is, the
100 participants in the indicated age groups)
into categories, much of the detail evident in
Table 5.1 has been lost. A display that retains the
graphical nature of the histogram and the detail
of the tabular frequency is a stem-and-leaf plot.
A stem-and-leaf plot displays the first significant
digit of the value of random variable as a “stem”
and the subsequent significant digit as a “leaf.”
The stems are ordered from lowest to highest so
that the relative frequency of each value can be

surmised in one concise display. A stem-and-leaf
plot of 100 individuals’ age values is provided in
Figure 5.2. To assist in your interpretation of this
display, the youngest participant in this study
was 31, the oldest was 88, and there were four 50
year olds. 

The shape of the overall distribution in this
case could be called somewhat bell shaped,
as characterized by relatively fewer observations
at either extreme than in the middle. Some
distributions are symmetric, whereas others are
asymmetric. Those that are asymmetric are said to
be skewed. If fewer observations are at the upper
end of the distribution (that is, the long tail is
toward the right or higher values) the distribu-
tion’s shape is called positively skewed. If the
long tail is pointing toward the left, or lower
values, the distribution is called negatively
skewed. In the case of this particular example,
turning Figure 5.2 on its side so it has lower values
on the left reveals that the distribution of age
values is somewhat negatively skewed. Although
the stem-and-leaf display in Figure 5.2 has more
detail (that is, more bins) than the histogram in
Figure 5.1, the histogram retains the basic shape
elements of the stem-and-leaf display.
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5.6 Central tendency

One fundamental idea in the development of
new pharmaceutical products is that pharmaceu-
tical companies (sponsors) would like to demon-
strate that participants who receive a test
treatment tend to fare better than those who
receive some alternate therapy. This alternate
therapy could be an inactive control (a placebo)
or some other approved therapy (an active
control). We said “tend to fare better” because
participants will not all respond in the same way
to the same test treatment. It is also true that, if
and when the drug is approved for marketing
and prescribed for patients, some patients will do
better on the drug than others, but it is still very
useful to clinicians to know how patients will
tend to respond.

When we flip a fair coin ten times, we do not
always expect to observe five heads and five tails.
If we do several series of ten flips, we know that,
by chance, we will observe six heads and four
tails sometimes, and even more lopsided results
would not be all that surprising. The same
phenomenon happens with the response to test
treatments in clinical studies. When doctors
prescribe a new medicine to a patient it would be
helpful to know what kind of response could be
expected. Although we might expect that a fair
coin flipped ten times will result in five heads,
we also would expect that four or three heads
could be observed. The determination of values
that might be expected is the next topic in this
chapter, that is, measures of central tendency.

Once we have assembled individual observa-
tions in a sample from a clinical study, our
ability to understand the nature of those obser-
vations as a whole is limited by our ability to
synthesize several disparate pieces of observation
into an overall impression. Imagine that you
have observed the following 10 observations of
age of study participants in an early exploratory
therapeutic clinical trial: 45, 62, 32, 38, 77, 28,
25, 62, 41, and 50. 

Regulatory authorities are concerned about
how well study participants match those in the
general population of patients with the condi-
tion. How might such a question be answered?
There are several strategies here.

5.6.1 The mode

One possible way to answer this question is to
report that the most common value of age is 62.
There are two such observations with this value
of age. This measure of central tendency is
known as the mode. The mode is most
commonly used with non-numeric data (for
example, most of the study participants were
female), but it may also be useful for numeric
data if there are only a few unique values. Unfor-
tunately, the choice of the mode as the typical
value in this case is a little misleading. Although
there are two 62-year-olds in the study, most
study participants (seven of them) are younger
than that. 

A question that comes to mind here is: What
would the mode have been if all values of age
were unique? The answer is that there would
have been no mode – all values occurred equally
as frequently. Likewise, suppose that there had
also been two observations with the value of age
of 32: In this case there would not be one value
of the mode, but two. These two properties of
the mode – that is, it is undefined in some
instances and it may have multiple values in
others – are considerable drawbacks to its use. 

5.6.2 The median

Another reasonable choice for the typical value
of age would be the value of age that is right in
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the middle of all values. This middle value is
called the median. Citing the median would
ensure that there were as many participants
younger than the typical value as there were
participants older. In this case, as there are 10
values there is no single middle value because
there are an even number of values. The fifth
and sixth greatest values of age are 41 and 45. To
obtain the median value with an even number of
observations, we simply split the difference
between the two middle values. In this case the
median is calculated as:

(41 � 45)
––––––––– � 43.

2

A quick check to know that we got it right is to
see that exactly 5 observations are less than 43
and exactly 5 observations are greater than 43.
When there is an odd number of observations,
the median is the value of the middle observa-
tion after ordering them from the smallest to the
largest. Unlike the mode, the median for a set of
observations is unique: There is only one value
and it is always defined. 

5.6.3 The arithmetic mean

The last measure of central tendency that we
consider is the most commonly encountered.
The arithmetic mean is the sum of the individual
observations divided by the total number of
observations. Using mathematical notation the
mean is calculated as:

n

R xi

i � 1x̄ � –––—–
n

where R stands for the addition of the values of
each observation in the sample (n of them), that
is:

n

R xi � x1 � x2 � . . . � xn.
i � 1

For our sample of 10 values of age, the mean is
46 (verification of this calculation is left to you).
The arithmetic mean, commonly called the
average, is the value that balances the weight of
the distribution. 

Some noteworthy characteristics of the mean
are that, like the median, it is unique and always
defined for a set of observations. However, the
mean is sensitive to extreme observations – that
is, if there is a single observation that is much
higher or lower than the rest, the mean will be
heavily influenced by that single observation. 

One of the primary goals of Statistics is to use
data from a sample to estimate an unknown
quantity from an underlying population, called
a population parameter. In general, we typically
use the arithmetic mean as the measure of
central tendency of choice because the sample
mean is an unbiased estimator of the population
mean, typically represented by the symbol l.
The main conceptual point about unbiased esti-
mators is that they come closer to estimating the
true population parameter, in this case the popu-
lation mean, than biased estimators. When
extreme observations influence the value of the
mean such that it really is not representative of a
typical value, use of the median is recommended
as a measure of central tendency.

Returning to the query posed by the regulatory
authorities, we came up with the following
responses. The typical value of age in our sample
using the mode is 62, using the median is 43,
and using the mean is 46. Suppose that the
authorities are satisfied with that response
initially and then pose the following question.
“So was your study among middle-aged adults
with the condition?” You refer once again to the
list of 10 observations and realize that it is not
that simple. There actually were some younger
adults in your study and it would be ideal to
quantify the extent to which the mean does not
tell the whole story. It is no surprise that not all
values of age in the study are the same. Fortu-
nately there are ways to quantify the extent to
which they vary from participant to participant. 

5.7 Dispersion

Dispersion refers to the variety or “spread” of
individual observations in a sample. As for
central tendency there are various measures of
dispersion.
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5.7.1 The range

A quick way to reflect the variety of values in a
sample is to cite the lowest and highest values,
the minimum and maximum. Calculating the
difference between these two (calculated as
maximum minus minimum) yields a value
called the range:

Range � xmax � xmin.

Although the range is informative in that it
conveys the difference between the two most
extreme values, it does have a deficiency: It
really does not adequately reflect the extent to
which observations are similar or dissimilar.
Imagine a study in which 99 of the 100 partici-
pants are aged between 20 years and 29 years,
and one is 60 years old. The range is quite large
(40 years), but the value of this range does not
give any indication about how close together
most age values in the sample are to each other.

5.7.2 The variance

In contrast, the variance of a sample does indi-
cate how close together most values in a sample
are. The sample variance is calculated as the sum
of squared deviations of each observation from
the sample mean divided by the sample size
minus 1:

n

R (xi � x̄)2

i � 1s2 � –––––––––—–.
n � 1

A calculation of this sort ensures that the measure
of dispersion is positive (squaring the deviations
ensures that) and dividing by (n � 1) results in a
quantity that represents an average of sorts. The
sample variance is the “typical” or “average”
squared deviation of observations from the
sample mean. The use of the (n � 1) in the
denominator may seem confusing, but the reason
why this is done is that calculating the sample
variance in this manner yields an unbiased esti-
mator of the population variance, which is repre-
sented by the symbol r2. (The exact mathematical

demonstration that s2 is an unbiased estimator of
r2 is beyond the scope of this text.)

5.7.3 The standard deviation

Although very useful in some ways, the sample
variance has the unfortunate characteristic that
it is expressed in terms of squared units that are
typically nonsensical. From our earlier example
of 10 ages, we would calculate the sample vari-
ance as 282 “squared years.” To overcome the
significant drawback of squared units we can
take the square root of the sample variance to
obtain the standard deviation (s):

s � �
__
s2 .

The standard deviation represents an average
(of sorts) deviation of each observation from the
sample mean. Again, the only reason why we do
not call this quantity the average deviation
without qualification is that there really are n
deviations from the sample mean, but the stan-
dard deviation is calculated using the denomi-
nator of (n � 1) instead of n. The sample
standard deviation is an unbiased estimator of
the population standard deviation. For our
previous example of 10 age values, the value of
the sample standard deviation is 16.8 years (we
leave confirmation of this to you).

The sample standard deviation captures a great
deal of information about the spread of the data.
The value of the standard deviation is helpful
across a number of datasets because of the results
of what is called Tchebysheff’s theorem. A simple
way of thinking of Tchebysheff’s theorem is that
most values lie close to the sample mean.
According to this theorem, no matter what the
shape of the distribution is:

• 25% (1–4 � 1–22) or less of observations lie outside
of 2 standard deviations away from the mean

• 11% (1–9 � 1–32) or less of observations lie outside
of 3 standard deviations away from the mean

• 6% ( 1––16 � 1–42) or less of observations lie outside
of 4 standard deviations away from the mean. 

Applying Tchebysheff’s theorem to our sample
of 10 ages, we can say to the regulatory agency that
the study really is not just among middle-aged
adults.
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5.7.4 Variability and the coefficient of
variation

A commonly asked question among investiga-
tors is: How do I know if I have a lot of or a little
variability in my study results? There is no
straightforward answer to this question: The
magnitude of the variance (or synonymously the
standard deviation) can be called a lot or a little
only when it is compared with some other
quantity – that is, it is relative. 

In Chapter 11 we discuss an analytical strategy
called analysis of variance (ANOVA) in which
one variance is compared with another. For now,
another useful measure of relative dispersion is
the coefficient of variation (CV), calculated as
the ratio of the sample standard deviation to the
sample mean:

sCV � ––.
x̄

The coefficient of variation is useful when
comparing the magnitude of variability between
two or more different random variables. 

To illustrate the coefficient of variation,
consider the following (extremely simple and
artificial) example. Imagine that there are two
random variables in an early therapeutic
exploratory clinical trial. One random variable is
pulse (ranging from 50 to 80) and the other is
age, which in this case is pulse minus 20. We can
see that, from this example, values of pulse and
age are just as disperse, but what differs between
them is the mean. Hence, when we calculate the
standard deviation, one random variable will
appear to have more or less dispersion, but, after
re-scaling the standard deviation with the
sample mean, the measure of dispersion is the
same. 

5.7.5 Percentiles

Another descriptive measure of variability or
dispersion is the percentile. The Pth percentile is
the value of the random variable, X � X P––100

, such
that:

• P% of values of X are � X P––100
• 100 � P% of values of X are � X P––100

.

For example, the 75th percentile is the value of
X below which 75% of the values lie and above
which 25% lie. The 50th percentile is synonymous
with the median. Likewise the 25th percentile is
the value of X below which 25% of the values lie
and above which 75% lie. The difference between
the 75th and 25th percentiles is called the
interquartile range, which can be a useful measure
of dispersion when the distribution of the random
variable is heavily skewed or asymmetric.

5.8 Tabular displays of summary
statistics of central tendency and
dispersion

As we discuss in more detail in Chapter 6, one of
the primary goals of studies in a clinical devel-
opment program is to describe the effect that the
test treatment had on study participants so that
some inference can be made about the drug’s
effects on patients who may receive the drug 
in the future. Summary descriptive statistics of
central tendency and dispersion give us 
better understanding of the typical effect of the 
test treatment and how varied participants’
responses were. 

In our experience the mean and the standard
deviation are the most commonly used summary
statistics for these purposes. However, other
measures can be useful to reviewers when inter-
preting data from clinical studies. We encourage
researchers to present the following statistics:
The sample size, the mean, the median, the stan-
dard deviation, and the minimum and the
maximum. Presenting all these values for a given
random variable provides a reviewer with two
measures of central tendency and two measures
of dispersion. For clinical studies that are
comparative in nature, such as therapeutic
confirmatory trials, it is our recommendation
that summary statistics – for example, the mean
and standard deviation – be formatted in a
report so that the primary comparison of interest
is read across columns (left to right). In clinical
studies this is typically treatment groups or dose
groups. Secondary comparisons of interest – for
example, time points of observation – should be
arranged as separate rows. 
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5.9 Review

1. What scale are each of the following participant
characteristics measured on:

(a) eye color
(b) body mass index (kg/m2)
(c) number of cerebrovascular events diagnosed in

the past 5 years
(d) days from study entry to last follow-up visit
(e) concentration of test drug in plasma (ng/mL) 
(f) blood pressure classification: Normal;

prehypertension; stage 1 hypertension; stage 2
hypertension.

2. Using the histogram in Figure 5.1 and the stem-
and-leaf plot in Figure 5.2, comment on the
appropriateness of each of the following measures
of central tendency:

(a) mean
(b) median
(c) mode.

3. From the frequency table of age values in Table 5.1,
calculate:

(a) the median or 50th percentile
(b) the 25th percentile
(c) the 75th percentile.



6.1 Introduction

A common goal of pharmaceutical clinical trials
is to establish with some high degree of confi-
dence that the test treatment is superior to a
control with respect to some measurable effect. If
we are able to say that the expected effect of the
test treatment tends to be superior (by some
amount) to the expected effect of the control,
we could conclude that the test treatment was
superior to the control. 

To accomplish this objective, sponsors design
studies that allow them to attribute any differ-
ence in the response of interest to the test treat-
ment itself. This is accomplished through the
use of randomization, a carefully selected study
population, treatment blinding, careful data
collection, and other measures that minimize
the possibility that other factors may have influ-
enced the outcome of the study. However, if too
few study participants are studied any difference
observed might have been caused by chance. A
chance, or spurious, result is one that may not be
repeatable or, to put it another way, a chance
result is not reliable. Provision of a high degree
of confidence that a new drug is beneficial
requires sponsors to demonstrate that effects
observed from a new treatment are reliable. This
chapter discusses the statistical concepts that
allow researchers to make the conclusion that
the effect seen in a study was unlikely to be
the result of chance. 

6.2 Probability

The statements at the end of the previous section
can be expressed differently, and more quantita-

tively, in the language of Statistics. We noted
that provision of substantial evidence that a new
drug is beneficial requires sponsors to demon-
strate that effects observed from a new treatment
are reliable. This chapter discusses the statistical
concepts that allow researchers to make the
conclusion that the effect seen in a study is reli-
able, that is, it is unlikely to be the result of
chance. 

The statistical techniques that can be used to
rule out chance events require us first to consider
some concepts of probability. Many outcomes in
life are inherently uncertain, and others can be
considered certain. If you play the lottery, it is
uncertain whether you will win on any given
occasion (it is also incredibly unlikely). If you
drop an apple, it is certain that it will fall to the
ground. Other outcomes fall in the middle of
the range. It is useful to be able to quantify the
degree of certainty, and conversely the degree
of uncertainty, associated with a particular
occurrence. This is the realm of probability.

Like the word significance, the concept of
probability is used in everyday language as well
as in the discipline of Statistics. As Turner (2007)
noted, the statement “I’ll probably be there on
Saturday” involves a probabilistic statement, but
there is no degree of quantification (if you know
the individual making this statement, past expe-
rience may lead you to have an informed
opinion concerning the relative meaning of
“probably,” but this is a subjective judgment).

As for many aspects of statistical analysis,
there are axioms in probability that make it a
very useful tool. In the context of Statistics,
probability can be defined in quantifiable terms.
A probability is a numerical quantity between
zero and one that expresses the likely occurrence
of a future event. A probability of 0 denotes that

6
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the event will not occur. A probability of 1
denotes that the event will undoubtedly occur.
Any numerical value between 0 and 1 expresses
a relative likelihood of an event occurring. 

A probability value can be represented as a
fraction or as a decimal value. In addition, it is
common in some aspects of Statistics to multiply
the decimal expression of a particular probability
by 100 to create a percentage statement of likeli-
hood. A probability of 0.5 would thus be
expressed as a 50% chance that an event would
occur. Percentage statements of likelihood are a
central component of hypothesis testing, which
is introduced later in the chapter. 

The probability of an event (E) can be repre-
sented as P(E) and we use this notational
convention. In general, the probability of either
of two events (A or B) occurring is calculated as:

P(A or B) � P(A) � P(B) � P(A and B).

In other words, the probability of either event
occurring is the sum of the probabilities of each
event minus the probability of both occurring
together (or jointly). 

Consider the cross-tabulation of the gender
and age of participants in a clinical trial as
presented in Table 6.1. As seen there were 200
participants, 100 of whom were male and 100
female. There were 65 participants aged 45 years
or younger, 90 between 46 and 64 years, and 45
who were aged 65 years or older. We illustrate
several of the axioms of probability using 
Table 6.1. For example, the probability of
selecting at random a participant from this
group who was male or aged 65 years or older:

P(maleor�65) � P(male) � P(�65) � P(maleand�65) �

100 45 15 130
P(male or � 65) � –––– � –––– � –––– � –––– � 0.65.

200 200 200 200

In the special case that the events A and B
cannot occur at the same time, they are said to
be mutually exclusive, meaning that P(A and B)
� 0. Hence, for mutually exclusive events A
and B:

P(A or B) � P(A) � P(B).

A randomly selected participant cannot be
both “� 45” and “� 65.” The events of selecting
a participant aged 45 years or younger and one

65 years or older are mutually exclusive. This
result is generalizable to more than two events of
interest. 

If one or more events, E1, E2, . . . En, represent
all unique and mutually exclusive outcomes in 
a particular circumstance, the probability of
observing at least one of the events sums to one:

P(E1 or E2 or . . . or En) � P(E1) � P(E2) � . . . � P(En) � 1.

This result can be used to calculate the proba-
bility of one or more events of interest. For any
event E1 among n mutually exclusive and
exhaustive events:

P(E1) � 1 � {P(E2) � . . . � P(En)}.

This expression is called the complement rule
and will be referenced throughout this book.

The probability of selecting a male at random
can be calculated by adding the probabilities for
the events “male � 45 years,” “male 46–64
years,” and “male � 65 years,” because these are
all mutually exclusive events. The probability
can be calculated as follows:

P(male) � P(male � 45 years) �
P(male 46–64 years) � P(male � 65 years)

35 50 15
� –––– � –––– � ––––

200 200 200
100 1

� –––– � –– .
200 2

The probability of an event B given that A has
been observed is called a conditional probability
and is defined as:

P(A and B)
P(B | A) � ––––––––––,

P(A)

where the vertical bar signifies “given.”
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Table 6.1 Cross-tabulation of age and gender

Age (years) Male Female

� 45 35 30 65
46–64 50 40 90
� 65 15 30 45

100 100 200



The probability of selecting a participant � 45
years of age, given that a male has been
selected, is:

P(� 45 years and male)
P(� 45 years | male) � –––––––––––––––––––––

P(male)

35––––
P(� 45 years and male) 200 35
–––––––––––––––––––––– � –––– � –––– .

P(male) 100 100
––––
200

It follows that the probability of two events
occurring jointly is calculated as:

P(A and B) � P(A)P(B|A).

One important use of conditional probabilities
occurs in Bayes’ theorem. The conditional
probability of an event A given an event B is:

P(B | A)P(A)
P(A | B) � ——————.

P(B)

Note that throughout this book we have
adopted a standard mathematical notation for
the product of two or more terms. In the expres-
sion above the numerator is the product of the
two terms, P(B|A) and P(A), that is, these two
quantities are multiplied. Please keep this
standard in mind when you encounter other
mathematical expressions.

It is also possible to state the probability of an
event, A, as a function of two or more condi-
tional events. If the events B and C are mutually
exclusive and exhaustive – for example, they
represent male and female – the probability of
event A can be expressed as:

P(A) � P(A | B)P(B) � P(A | C)P(C).

This expression can be extended to more than
two conditional events.

A common application of Bayes’ theorem is in
estimating the probability of a participant
having a disease, given a positive test for that
disease. These concepts are important in their
own right with regard to the development of
diagnostic tests. As the clinical trials discussed in
this book are for the purposes of developing new
pharmaceutical interventions rather than testing
for the existence of a disease or condition, this
issue may not seem directly relevant. However,

these concepts are discussed in Chapter 12 in a
different light, and we would therefore like to
establish these concepts at this earlier stage. 

For simplicity, in the notation used in this
example we define the following events using
the symbol “�” which means “is equivalent to”:

• D� � participant has the disease of interest
• D� � participant does not have the disease of

interest
• T� � participant tests positive for the disease
• T� � participant tests negative for the disease.

When developing a diagnostic test, investigators
identify two groups: One is known (by some
gold standard testing procedure) to have the
disease; the other is known (also by a gold stan-
dard testing procedure) not to have the disease.
Then all participants in both these groups are
given the new diagnostic test. The accuracy of a
new diagnostic test is measured by two criteria:

1. Sensitivity is the probability that a new test
will have a positive result among those who
are known to have the disease. This is denoted
by: P(T�|D�).

2. Specificity is the probability that a new test
will have a negative result among those who
are known not to have the disease. This is
denoted by: P(T�|D�).

Once a new diagnostic test has been developed it
may be considered for a public health screening
program. Evaluating the utility of a proposed
new diagnostic test in a population involves the
following two criteria:

1. The true positive rate is the probability that a
participant has the disease given that she or
he has tested positive. This is denoted by
P(D�|T�) and is also referred to as predictive
value positive. The complement, 1 � P(D�|T�)
� P(D�|T�), is the false-positive rate.

2. The true-negative rate is the probability that a
participant does not have the disease given
that she or he has tested negative. This is
denoted by P(D�|T�) and is also referred to 
as predictive value negative. The complement,
1 � P(D�|T�) � P(D�|T�), is the false-
negative rate. 

If the true-positive rate is low (or the false-
positive rate high) a number of participants will
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needlessly incur the expense and anxiety of
further medical investigations. If the true-
negative rate is low (or the false-negative rate
high) a number of them will carry on undiag-
nosed. The goal would be to adopt a screening
tool that had high rates of true positives and true
negatives. Bayes’ theorem can be used to show
that the rates of true positives and true negatives
are a function of the sensitivity and specificity of
the diagnostic test itself and the prevalence of
the disease in the population of interest. 

We illustrate this concept for the true-positive
rate, which is:

� P(D� | T�)

P(T� | D�)P(D�)
� ––––––––––––––––– by Bayes’ theorem.

P(T�)

Bayes’s theorem is applied again to obtain:

P(T� | D�)P(D�)
� –––––––––––––––––––––––––––––––––––.

P(T� | D�)P(D�) � P(T� | D�)P(D�)

Noting that P(T� | D�) � 1 � P(T� | D�) we
have the desired result.

P(T� | D�)P(D�)
� ––––––––––––––––––––––––––––––––––––––––.

P(T� | D�)P(D�) � [1 � P(T� | D�)]P(D�)

Note that P(D�) is often called the prevalence of
the disease in a population. Its complement is
P(D�) � 1 � P(D�). Prevalence of a disease is
estimated through the use of epidemiologic
studies and not clinical trials. Thus, to fully eval-
uate the utility of the new diagnostic test, we
must have an estimate of the prevalence of
the disease, the sensitivity of the test, and the
specificity of the test.

Two events are said to be statistically indepen-
dent if the probability of one occurring does not
depend on the other. If A and B are independent
events the joint probability is given by:

P(A and B) � P(A)P(B).

If we sample from our 200 study participants
“with replacement” – that is, after each selection
the participant is available for selection again –
the probability of selecting a male does not
depend on previous selections. The probability
of selecting two males in a row is given by:

P(two males in a row) � P(male)P(male)

1 1
� ( –– ) ( –– )2 2

1
� –– � 0.25.

4

The probability of selecting four males in a
row is:

P(four males in a row) �
P(male)P(male)P(male)P(male)

1 1 1 1
� ( –– ) ( –– ) ( –– ) ( –– )2 2 2 2

1
� –– � 0.0625.

16

These basic principles and characteristics of
probability are referred to throughout subse-
quent chapters.

6.3 Probability distributions

In Chapter 5 we described a number of ways to
examine the relative frequency distribution of a
random variable (for example, age). An important
step in preparation for subsequent discussions is
to extend the idea of relative frequency to proba-
bility distributions. A probability distribution is a
mathematical expression or graphical representa-
tion that defines the probability with which all
possible values of a random variable will occur.
There are many probability distribution func-
tions for both discrete random variables and
continuous random variables. Discrete random
variables are random variables for which the
possible values have “gaps.” A random variable
that represents a count (for example, number of
participants with a particular eye color) is consid-
ered discrete because the possible values are 0, 1,
2, 3, etc. A continuous random variable does not
have gaps in the possible values. Whether the
random variable is discrete or continuous, all
probability distribution functions have these
characteristics:
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• All possible values of the random variable
must be represented by the distribution
function.

• The probability of each value of the random
variable occurring is bounded by 0 and 1,
inclusive.

• The probabilities of values of the random
variable occurring must sum to 1 (in the
case of a discrete random variable) or inte-
grate to 1 (in the case of a continuous
random variable).

A simple example of a discrete probability
distribution is the process by which a single
participant is assigned the active treatment
when the event “active treatment” is equally
likely as the event “placebo treatment.” This
random process is like a coin toss with a
perfectly fair coin. If the random variable, X,
takes the value of 1 if active treatment is
randomly assigned and 0 if the placebo treat-
ment is randomly assigned, the probability
distribution function can be described as
follows:

1
P(X � x) � ––, where x � 0 or 1.

2

This probability distribution function has the
characteristics defined previously:

• The random variable can take on only values
of 0 or 1. 

• The probability distribution function is
defined for both values. 

• The probability of each value is between 0
and 1, inclusive. It is, in fact, half for both
values.

• Finally, the sum of the probability of all
mutually exclusive outcomes is equal to one,
that is, P(X � 0)�P(X � 1) � 1. 

6.4 Binomial distribution 

The first probability distribution function that we
discuss in detail is the binomial distribution,
which is used to calculate the probability of
observing x number of successes out of n observa-
tions. As the random variable of interest, the

number of successes, is discrete (as are all counts),
the binomial distribution is called a discrete
random variable distribution. The binomial
distribution is applicable when the following
conditions apply:

• Each of n observations results in only one of
two outcomes (one is typically called a success
and the other failure).

• The probability of a success, p, is the same
from observation to observation.

• Each observation is independent of the
others. 

The probability of observing x successes out of n
observations under these conditions (called a
Bernoulli process) can be expressed as:

P(X � x; p, n) � Cn
xpx(1 � p)n�x.

The left part of this expression can be read as
“the probability of the random variable, X,
taking on a particular value of x, given parame-
ters p and n.” The quantity (1 � p) is the proba-
bility of failure for any trial. The notation Cn

x is
shorthand to represent the number of combina-
tions of taking x successes out of n observations
when ordering is not important. This quantity
can be calculated as:

n!
Cn

x � –––––––––.
x!(n � x)!

The expression n! is read as “n factorial” and is
calculated as n(n � 1)(n � 2) . . . (1). 

The mean of the binomial distribution func-
tion is:

Mean � np.

The variance of the binomial distribution is:

Variance � np(1 � p).

A simple example of the use of the binomial
distribution is the result of four random assign-
ments to either the active or the placebo treat-
ment group when each outcome is equally likely.
What is the probability of observing 0, 1, 2, 3, or
4 assignments to the active treatment group out
of 4 random treatment assignments when the
probability of assigning to active or placebo is
equally likely? We must assume that the
outcome of one assignment does not impact the
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outcome on subsequent assignments, that is,
they are independent. There are only two
possible outcomes on any given trial: Assign-
ment to active or placebo. The probability of
each outcome, the number of “successes” or
assignments to active, can then be calculated
using the binomial probability distribution
function. 

The probability of each outcome of four
random treatment assignments is displayed in
Table 6.2. In some instances, we may be inter-
ested in knowing what the probability of
observing x or fewer successes would be, that is,
P(X � x). This cumulative probability is also
displayed for each outcome in Table 6.2. For a
discrete random variable distribution, the sum of
probabilities of each outcome must sum to 1, or
unity. 

As you might expect, the most probable
outcome is 2 actives (probability 0.375) and the
least probable outcomes are 0 and 4 actives (each
with a probability of 0.0625). We can use the
cumulative probability distribution to answer
other probability questions of interest. For
example, what is the probability of observing 3
or fewer actives? This probability is denoted as
P(X � 3) � 0.9375. We can use the complement
rule from Section 6.2 to calculate the probability
of observing 2 or more actives, P(X � 2), as:

1 � P(X � 1) � 1 � 0.3125 � 0.6875.

The binomial distribution is discussed later in
the chapter to illustrate concepts of hypothesis
testing. 

6.5 Normal distribution

Similar probability models can be used for
continuous random variables. The most
common, and arguably the most important of
these in Statistics, is the normal distribution. As
it is encountered so frequently in this book, we
spend some time describing its characteristics
and uses. 

The normal distribution is a particular form of
a continuous random variable distribution. The
relative frequency of values of the normal distri-
bution is represented by a normal density curve.
This curve is typically described as a bell-shaped
curve, as displayed in Figure 6.1.

More precisely, it is one specific kind of symmet-
rical curve. The precise nature of this curve can be
described mathematically by a formula that
contains both the mean, l, and the standard
deviation, r, of the population that is being
represented graphically by the normal curve:

(x��)2

1 � ––––––
2r2

f (x ; l, r) � –––––– e .
r�

___
2p

The term “population” is defined in detail later
in the chapter. Until then we can think of a
population as the largest group of experimental
units (for example, study participants) about
which we would like to make a conclusion.

As we need to know two parameters – that is,
the mean, l, and the standard deviation, r, to
fully characterize this distribution – it is consid-
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Table 6.2 Distribution of the number of assignments to active from four random assignments when the probability
of assignment to active and placebo is equal (p�0.5)

Outcome Probability of the Cumulative probability
(no. of actives, x) outcome P(X � x) P (X � x)

0 C4
00.50(0.5)4 � 0.0625 0.0625

1 C4
10.51(0.5)3 � 0.2500 0.3125

2 C4
20.52(0.5)2 � 0.3750 0.6875

3 C4
30.53(0.5)1 � 0.2500 0.9375

4 C4
40.54(0.5)0 � 0.0625 1.0000



ered to be a two-parameter distribution. This fact
is also conveyed by the use of the symbols l and
r on the left side of the expression. The mean
specifies the distribution’s location, whereas the
standard deviation specifies the spread of the
distribution. If a random variable X has a normal
distribution with mean l and variance r2, this is
written as X ~ N(l,r2). Note that most practical
applications involve the use of r rather than r2,
but it is conventional to describe the normal
distribution in terms of its mean and variance.

Figure 6.2 displays three normal density curves
with the same mean (location) but different
standard deviations (spread). Several characteris-
tics of the normal distribution are very helpful in
developing the statistical tests introduced in this
book: 

• The highest point of the normal curve occurs
for the mean of the population, l. 

• The shape of the curve (relatively narrow or
relatively broad) is influenced by the standard
deviation, r. The sides of the curve descend
more gently as the standard deviation
increases.

• At a distance of 2 standard deviations from
the mean, the slope of the curve changes from
a relatively smooth downward slope to a
curve that technically extends out to infinity,
that is, the curve technically never reaches
(touches) the x axis of the graph. This concept

is analogous to starting a certain distance
away from a fence and taking steps that
always cover half the distance between you
and the fence. As your next step always covers
only half the remaining distance, theoreti-
cally you never reach the fence. However,
after a certain number of steps, you are, to all
practical purposes, at the fence. In the same
manner, the curve is regarded as intercepting
the axis at a distance of 4 standard deviations
from the mean.

• The area under the curve is 1.0. This can be
demonstrated formally using integral
calculus, which is beyond the scope of this
book: A simpler demonstration is provided by
Turner (2007, pp 94–5). That the area under
the curve is equal to 1 is analogous to the
statement that the probability of all mutually
exclusive events must sum to 1.

The precise mathematics of the normal distribu-
tion allows quantitative statements of the area
under the curve between any two points on the
x axis. Of most interest here is the area under the
curve between two points that are equidistant
from the mean. 

These points, equidistant from the mean on
either side, can be represented by statements of
the form:

l � distance.
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It can be shown for any normal distribution that: 

• 68.3% of the area under the curve lies in the
range l � r

• 95.4% of the area under the curve lies in the
range l � 2r

• 99.73% of the area under the curve lies in the
range l � 3r.

As the area under the entire density curve equals
1 the statements above also imply by the
complementary rule that:

• 31.7% of the area under the curve lies outside
l � r

• 4.6% of the area under the curve lies outside
l � 2r

• 0.27% of the area under the curve lies outside
l � 3r.

Expressing a similar concept in terms of pertinent
“round number” percentages:

• The central 90% of the area lies in the range 
l � 1.645r

• The central 95% of the area lies in the range 
l � 1.960r

• The central 99% of the area lies in the range 
l � 2.576r. 

You may recall from Chapter 5 that by using
Tchebysheff’s theorem we could estimate the
probability with which observations fall within 
k standard deviations for any distribution. You
are encouraged to compare the results from
Tchebysheff’s theorem and those cited above for
the normal distribution. Although values of any
percentage of interest can be determined from
statistical tables of normal distributions, the 95%
and 99% values are of particular importance in
the context of this book.

It is important to note here that the areas
under the curve of a continuous random variable
distribution can be thought of as probabilities.
Assume that we know that age in a population of
study participants is normally distributed with a
mean of 40 and variance of 100 (standard devia-
tion of 10). This normal distribution is displayed
in Figure 6.3 with vertical lines marking 1, 2, and
3 standard deviations from the mean.

It is then possible, using the results above and
similar ones from statistical tables, to estimate
the probability that a participant randomly
selected from the population of study partici-
pants would be aged 	 50 or 
 30. The answer is
0.32 or 32% – that is, the proportion or

64 Chapter 6 • Probability, hypothesis testing, and estimation

f (
x)

�100 0 100 200 
x

0.00

0.02

0.01

0.04

0.03

0.07

0.06

0.05

0.09

0.08

0.11

0.10

0.13

0.12

Figure 6.2 Three normal density curves with the same mean (location) but different standard deviations (spreads)



percentage of the area under the curve translates
directly in to the percentage of participants (or
other observational units) whose age values fall
outside of the two identified points. 

6.5.1 The standard normal (Z) distribution

One unique and important normal distribution
is the standard normal distribution, or Z distrib-
ution, which has a mean of 0 and a variance of
1. If a random variable X is distributed as stan-
dard normal with mean 0 and variance 1, it is
written as X ~ N(0,1). To use some of the general
results from normal distributions provided
earlier, we can make the following statements for
the standard normal distribution:

• The central 90% of the area lies between 
� 1.645

• The central 95% of the area lies between 
� 1.960

• The central 99% of the area lies between 
� 2.576.

The standard normal or Z distribution is used
extensively in Statistics and throughout this

book. For later reference, the standard normal
distribution is provided in Figure 6.4. Note that
the area under the curve to the left of the value
�1.96 is 0.025 (or 2.5%). As the distribution is
symmetric, the area under the curve to the right
of the value 1.96 is also 0.025. Another way of
stating this is that, if we were to randomly select
a value from the distribution, there is a 95%
chance that the value would be between �1.96
and �1.96. One can also think of the values
�1.96 and �1.96 as the 2.5th and 97.5th

percentiles, respectively. 
Values of the Z that define areas under the

standard normal curve in the left tail, the right
tail, and the symmetric central region are
provided in Appendix 1. 

6.5.2 Transforming a normal distribution
to the standard normal distribution

One helpful method possible with a random
variable that has a normal distribution with
mean, l, and variance, r2, is to transform values
of the random variable so that they have the
scale of the standard normal distribution. This
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makes it possible to answer a number of proba-
bility questions using statistical tables that
provide the areas under the standard normal
curve. In general, for a random variable X ~
N(l,r2), the random variable:

X � �
Z � ––––––

r

is normally distributed with mean 0 and 
variance 1. 

We can use the example from earlier in Section
6.5 to illustrate this method. If age in a popula-
tion of study participants is normally distributed
with a mean of 40 and variance of 100 (standard
deviation of 10), what is the probability that a
participant randomly selected from the popula-
tion of study participants would be aged 	 50 or

 30?

First we are interested in the probability that a
randomly selected participant will be 	 50 years
of age. The transformed value for X � 50 is:

50 � 40
Z � –––––––– � 1.

10

As a result of this transformation, P(X 	 50)
corresponds to P(Z 	 1). The probability, 
P(Z 	 1), can be obtained from Appendix 1, the
look-up table for areas under the standard

normal distribution curve. As seen in Appendix
1, the area under the standard normal
distribution curve for Z 	 1 is 0.159. 

Then we would like to know what the proba-
bility is that a randomly selected participant will
be 
 30 years of age. The transformed value for
X � 30 is:

30 � 40
Z � –––––––– � �1.

10

As above, P(X 
 30) is equal to P(Z 
 �1). Using
Appendix 1 as a reference, the area under the
standard normal distribution curve for Z 
 �1 is
0.159. 

The probability of interest is obtained by
summing the two probabilities associated with
P(Z 	 1) and P(Z 
 �1) because the two events
are mutually exclusive. That is, a participant
cannot be both 
 30 and 	 50, so the probability
of interest is 0.159 � 0.159 or 0.318. 

At first glance it may seem that this transfor-
mation method is useful only in a few instances
(when the random variable is known to have a
normal distribution) and contrived ones at that.
However, it is actually useful in many instances.
Many random variables can be shown to have
approximately normal distributions. The reason
for this is given shortly. It turns out that, if a
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random variable has an approximate normal
distribution, for which the mean and variance
are known, a transformation results in a random
variable that has an approximate standard
normal distribution. 

6.6 Classical probability and relative
frequency probability

Before concluding the first part of this chapter
on the fundamentals of probability it is impor-
tant to point out that there are two ways to esti-
mate a probability. To contrast these two types of
probability we consider the question: “What is
the probability of observing a ‘head’ when
tossing a coin?” 

The first type of probability, termed by some
“classical” probability, is based on an assumption
about the state of the experiment and some basic
mathematical expressions. For example, we
would begin answering this question by
assuming that the coin was fair. Further, we
would note to ourselves that a fair coin has two
sides, the only two outcomes of a coin toss are
“heads” and “tails,” and only one of these two
outcomes is the one of interest. The probability of
observing a head from a single toss of a fair coin
is therefore 1⁄2 or 0.5. The most straightforward
way to solve classical probability problems is to
write out all of the unique possible outcomes, the
sample space, and then identify the number of
times that the outcome of interest would occur. In
this case the sample space is “heads” or “tails.”
The event of interest, observing heads, is repre-
sented by just one of these events, so the proba-
bility of interest is 1⁄2. The use of the binomial
distribution to calculate the probability distribu-
tion of observing the number of assignments to
active is another example. In that case we knew
(by design) that the probability of assignment
to active was exactly half.

Many Statistics students have suffered
immensely over the years by having to solve
classical probability problems. Marilyn vos
Savant (1997) stumped many readers with the
following classical probability problem: 

A woman and a man (unrelated) each have two
children. At least one of the woman’s children is

a boy, and the man’s older child is a boy. Do the
chances that the woman has two boys equal the
chances that the man has two boys? 

vos Savant (1997, p 15)

What is your answer? We leave it to you to
conduct an online search to investigate the
controversy surrounding this problem. We do
not dwell any further on this method of esti-
mating probabilities because we also dislike
them, and the second type is more useful for us
anyway. 

The second type of probability, relative
frequency probability, is calculated by repeating
an experiment a large number of times (say n)
and counting the number of times out of n that
the outcome of interest (say m) occurred. The
probability of the event is then calculated as:

m
P(event) � –––.

n

The calculated probability is simply an estimate
of the true probability (which remains
unknown). 

Using a relative frequency approach to esti-
mating the probability of observing a head we
would toss the coin a number of times (for
example, 10), count the number of times a head
landed face up (for example, 4 times), and then
calculate the probability as 4/10 or 0.4. It is
perhaps not surprising that the estimated proba-
bility here is not exactly 0.5. We were only one
head shy of 5/10, so the relatively small number
of coin tosses may have had an impact. You can
imagine tossing the coin 100 times and
observing 46 heads for a probability of 0.46. That
would be much closer to the classical probability
solution. Another possible reason that only four
heads came up could be that the coin really was
not fair at all. For the classical probability solu-
tion to this problem we would need to assume
that the coin was fair or be told that it was. The
relative frequency solution has the advantage of
not requiring the assumption of a fair coin, but
has the disadvantage of possibly being limited by
the number of experiments. 

Our initial probability estimate of 0.4 from 10
coin tosses does not seem to be that far off
because we might reason that observing 4, 5, or
6 heads would be expected from 10 tosses of a
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fair coin. You may be intuitively thinking that, if
we were to repeat the 10 coin tosses, we would
probably count 4–6 heads again. Your intuition
would be correct, and there is a statistical
concept that explains how results from experi-
ments vary from sample to sample. The magni-
tude of expected differences from sample to
sample enables us to estimate a quantity that we
can never really know, one that represents the
truth. In the case of the coin-tossing experiment,
our goal would be to infer whether or not the
true probability of observing a head was 0.5. 

6.7 The law of large numbers

In clinical trials we do not know what the proba-
bility of observing a particular serious adverse
event is, but we observe a large number of
outcomes (for example, participants exposed to a
new treatment) to estimate it. As the sample size
increases the estimate becomes more precise (that
is, closer to the truth). An illustration of the “law
of large numbers” is provided in Figure 6.5.
Suppose that a relatively uncommon adverse

event is represented by the chance event of two
thrown dice landing with a total of two (or “snake
eyes”). The classical probability solution to esti-
mating the probability of this event is (1/6)2 �

0.02778. The relative frequency solution can be
obtained by rolling two dice a large number of
times (n), counting the number of times “snake
eyes” occurs (m), and estimating the probability
as m/n. The most convenient means to conduct
this experiment is using computer simulation.
As seen in Figure 6.5, the estimates of the prob-
ability (denoted by the oscillating curve) vary
quite a bit from the truth (represented by the
horizontal reference line) until the sample size is
around 10 000. The implication of the law of
large numbers for clinical trials of new drugs is
that the unknown quantities of interest are more
precisely estimated with larger samples. These
would include the mean change in SBP (systolic
blood pressure) or the proportion of partici-
pants experiencing a serious adverse event. Given
the limited size of most clinical development
programs, the most precise estimates of risks of
new therapies become evident only once a new
drug has been marketed and used by many
thousands of patients.
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6.8 Sample statistics and population
parameters

The unknown quantities of interest described in
the previous section are examples of parameters.
A parameter is a numerical property of a popula-
tion. One may be interested in measures of
central tendency or dispersion in populations.
Two parameters of interest for our purposes are
the mean and standard deviation. The popula-
tion mean and standard deviation are repre-
sented by l and r, respectively. The population
mean, l, could represent the average treatment
effect in the population of individuals with a
particular condition. The standard deviation, r,
could represent the typical variability of treat-
ment responses about the population mean. The
corresponding properties of a sample, the sample
mean and the sample standard deviation, are
typically represented by x� and s, which were
introduced in Chapter 5. Recall that the term
“parameter” was encountered in Section 6.5
when describing the two quantities that define
the normal distribution. In statistical applica-
tions, the values of the parameters of the normal
distribution cannot be known, but are estimated
by sample statistics. In this sense, the use of
the word “parameter” is consistent between the
earlier context and the present one. We have
adhered to convention by using the term
“parameter” in these two slightly different
contexts. 

An expression that defines how individual
observations are used to derive a numerical esti-
mate is called an estimator (much like a formula
is used to calculate a number). The sample mean, 

n

R xi

i � 1x̄ � –––—–,n

is considered an estimator for the population
mean, l. When individual observations are
applied to the estimator, the result is a numeric
value or estimate. When a single value is calcu-
lated, it represents a best guess of sorts, and is
called a point estimate. No single estimate could
be expected to be perfect so “interval estimates”
are commonly used to reflect more accurately a
range of plausible values. 

Inferential statistics comprises two distinct,
although closely related, procedures. In each
case observations from a sample are used to:

• calculate an interval estimate that includes
the unknown population parameter with
some degree of confidence; in clinical trials, it
is common practice to use a 95% confidence
interval

• test whether or not a sample statistic is consis-
tent with or contrary to a hypothesized value
of the population parameter. 

Inferences about a population are made on the
basis of a sample taken from that population.
The process of inferential statistics requires:

• identification of a representative sample of
participants from a population of interest

• collection of individual observations
• calculation of sample statistics from the indi-

vidual observations
• a statistical method to relate the sample

statistic to the parameter of interest; this can
be done in one of two ways:

– estimation of plausible values of the
parameter

– testing a hypothesis of a proposed value
of the parameter.

We discuss the former method, confidence
intervals, first, after a necessary introduction to
the concept of sampling variation. The latter
method (hypothesis testing) is discussed later.
First, however, it is useful to introduce a few
other ideas.

6.9 Sampling variation

If we take a sample of 100 numbers from a popu-
lation of 100 000 numbers, that sample’s mean,
which is precisely known, will provide an esti-
mate of the population mean. The same is true
for the standard deviation, that is:

• x� is an estimate of l
• s is an estimate of r.

If we replaced the first sample of 100 numbers
and then took another sample of 100 numbers,
it is likely (effectively guaranteed) that the
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numbers would not be identical to those in the
first sample, and that the calculated sample
mean would be different from the first one. This
logic applies to any number of means taken.
Suppose that we were to repeat this process a
number of times (in a simulated manner using
computer software) and, at the end of each repli-
cation, tabulate the values of the sample mean or
plot their relative frequencies. The shape of the
resulting distribution of values would be recog-
nizable. We would notice that a typical value
would be apparent (the population mean l), as
would a symmetrical bell-shaped distribution. In
short, the sample statistic from a sample of size n
(in this case the sample mean) varies from
sample to sample and its distribution has a mean
and a standard deviation. Such a distribution is
called a sampling distribution. An important
general result for the sampling distribution of
the sample mean is as follows:

• For any continuous random variable X which
has a distribution with population mean, �,
and variance, r2, the sampling distribution of
the mean for samples of size n has a distribu-
tion with population mean, l, and variance,
r2/n. 

The square root of the variance, 

___
r2 r�––– � ––– ,
n �

__
n

is the population standard error of the mean,
which describes the typical variability of sample
means around the population mean. If we know,
or can assume, that the random variable X has a
normal distribution with population mean, l,
and variance, r2, the sampling distribution of
the mean of samples of size n will also have a
normal distribution with population mean, l,
and variance, r2/n. Using the notation described
earlier, this result can be summarized in this
manner: 

r2
If X ~ N(l,r2) then X̄n ~ N(l,–––).n

6.10 Estimation: General considerations

It is not possible to know whether any single
sample estimate, like the sample mean, is a good
estimate of the population parameter that it is
intended to estimate. However, it is possible to
use the fact that most estimates of the sample
statistic (for example, sample mean) are not too
far removed from the population parameter, as
specified by the shape of the sampling distribu-
tion, to define a range of values of the popula-
tion parameter (for example, population mean)
that are best supported by the sample data. 

As exact knowledge of the population para-
meter is not possible, we must settle for a range
of values that, with some specified probability or
confidence, are most plausible. In other words,
we would like to know the lower limit (LL) and
upper limit (UL) of the most probable range of
values of the true population parameter. In the
case of the population mean, we seek two values,
LL and UL, such that:

P(LL 
 � 
 UL) � 1 � a.

The quantity a is the probability that the interval
estimate does not include the value of the para-
meter of interest – that is, l in this case. In most
cases small values of a are desirable (for example,
0.10 or 0.05). Depending on the importance of
the decision to be made on the basis of the
interval estimate defined by LL and UL, very
small values of a may be desirable (for example,
0.01 or 0.001). 

When conducting a clinical trial, we do not
know if our sample was representative of the
population or not. We have only data from a
sample and the statistics calculated from the
sample data. Yet, our ultimate interest is not in
the sample but in the population. In this chapter
we consider the sample statistics for the mean
and the standard deviation, x̄ and s. A clinical
trial represents a situation in which we can take
only one sample from a population. Given that,
what degree of certainty can we have that the
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mean of that sample represents the mean of the
population? Before we answer this question fully
we define a confidence interval for the sample
mean in a special case. This special case will serve
as our starting point for more realistic and
common cases.

6.10.1 Confidence interval for the
population mean when the population
variance is known

Assume that the random variable X has a normal
distribution with an unknown population mean,
l, and with a known population variance, r2. For
a sample size of n, the sampling distribution of
the sample mean has a normal distribution with
population mean, l, and variance, r2/n. The
implication of this result is that, for example:

• 90% of the sample mean values lie between 

l � 1.645 
r–

�
–n

• 95% of the sample mean values lie between 

l � 1.960 
r–

�
–n

• 99% of the sample mean values lie between 

l � 2.576 
r–

�
–n.

In general, the following statement is true: For
samples of size n, (1 � a)% of sample means x̄ lie
in the range:

r
l � z1�a/2

–––
�
__
n

where z1�a/2 is the value from the standard
normal distribution that defines the upper and
lower tail areas of size a/2. Note that z1�a/2 is a
particular example of a reliability factor. As the Z
distribution is symmetric it is also true that the Z
value on the negative side that cuts off an area of
size a/2 in the lower tail is equal to the Z value
on the positive side (change in sign) that cuts off
an area of size a/2 in the upper tail. Equivalently,
in mathematical terms, this means:

|za/2| � z1�a/2.

We can therefore express a two-sided (1 � a)%
confidence interval for the population mean as:

r r
P(x̄ � z1�a/2 ––– 
 l 
 x̄ � z1�a/2 –––) � 1 � a.

�
__
n �

__
n

This expression for a two-sided (1 � a)% confi-
dence interval can be shortened in the following
manner:

x̄ � z1�a/2 (r/�
__
n ).

The assumption of a normal distribution for the
random variable X is somewhat restrictive.
However, for any random variable, as the sample
size increases, the sampling distribution of the
sample mean becomes approximately normally
distributed according to a mathematical result
called the central limit theorem. For a random
variable X that has a population mean, l, and
variance, r2, the sampling distribution of the
mean of samples of size n (where n is large, that
is, 	 200) will have an approximately normal
distribution with population mean, l, and vari-
ance, r2/n. Using the notation described earlier,
this result can be summarized as: 

r2

X̄n → N(l, –––)n

when n is large. This is an important result,
because it holds no matter the shape of the orig-
inal distribution of the random variable, X. The
reader is encouraged to search for online refer-
ences that illustrate, through animation, this
important theorem. 

Therefore, the expression written above for the
confidence interval for the population mean also
applies to any continuous random variable as
long as the sample size is large (as just noted, of
the order of 200 or more). The other rather
restrictive assumption required for this confi-
dence interval is that the population variance be
known. Such a scenario is neither common nor
realistic. 

We now apply the fundamental concept of the
confidence interval as developed here to the case
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where the population variance is not known, but
there is interest in defining a confidence interval
for the population mean.

6.10.2 Confidence interval for the
population mean when the population
variance is unknown

A reasonable suggestion for devising a confi-
dence interval for the population mean would be
to substitute the sample estimate, s, for the corre-
sponding population parameter, a and proceed
as described earlier in Section 6.10. However,
when the sample size is small (particularly 
 30)
the use of the Z distribution is less appropriate.
William S Gossett, writing anonymously as
“Student” while employed at Guinness Brewery,
proposed the following statistic as an alternative.
When X is a normally distributed variable and
the sample size is small, the statistic

x̄ � �
t � ––––––

s/�
__
n

follows a t distribution (“Student’s t”). The single
parameter defining its shape is (n � 1) degrees of
freedom (df), the sufficient number of observa-
tions needed to estimate the sample mean. The 

t distribution is symmetric about its mean (zero)
and looks like a normal distribution with, in
cases of sample sizes 	 200, heavier “tails.” 

Three density functions are plotted for t distri-
butions with 5, 30, and 200 df in Figure 6.6. The
greater the number of df, the “flatter” the tails.
In the figure, the two curves that are closest
together are associated with 30 and 200 df. It is
interesting to note (and a convenient fact) that
the area under the density curve between any
two points for the case with 30 df is not appre-
ciably different from the case with 200 df. 

As was the case with the normal distribution,
the shape of the t distribution can be used to
find two values that define a central area under
the density curve of size (1 � a). It can be shown
that, once a value of t associated with an area of
interest is determined, the difference between
the sample mean x– is within t(s/�

__
n ) of the

population mean, l. This enables us to calculate
a confidence interval for the population 
mean when the sample size is small and the
population variance unknown.

The interval estimate of the population mean,
the two-sided (1 � a)% confidence interval for
the population mean, is:

x̄ � t1�a/2,n�1(s/�
__
n ).
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As in Section 6.10, the confidence interval has
three components:

1. point estimate
2. standard error
3. reliability factor.

The point estimate in this case is the sample
mean, which represents the best estimate of the
population mean. 

The second component is the standard error of
the mean, which quantifies the extent to which
the process of sampling has mis-estimated the
population mean. The standard error of the
mean has the same meaning as in the case for
normally distributed data – that is, the standard
error describes the degree of uncertainty present
in our assessment of the population mean on the
basis of the sample mean. It is also the standard
deviation of the sampling distribution of the
mean for samples of size n. The smaller the stan-
dard error, the greater the certainty with which
the sample mean estimates the population
mean. When n is very large the standard error is
very small, and therefore the sample mean is a
very precise estimate of the population mean. As
we know the standard deviation of the sample, s,
we can make use of the following formula to
determine the standard error of the mean, SE:

sSE � –––.
�
__
n

At this point, it is worth emphasizing the
difference between the terms “standard error”
and “standard deviation,” which, despite the
same initial word, represent very different
aspects of a data set. Standard error is a measure
of how certain we are that the sample mean
represents the population mean. Standard devia-
tion is a measure of the dispersion of the original
random variable. There is a standard error asso-
ciated with any statistical estimator, including a
sample proportion, the difference in two means,
the difference in two proportions, and the ratio
of two proportions. When presented with the
term “standard error” in these applications the
concept is the same. The standard error quanti-
fies the extent to which an estimator varies over
samples of the same size. As the sample size
increases (for the same standard deviation) there

is greater precision in the estimate of the popu-
lation mean because the standard error becomes
smaller as a result of the division of the square
root of the sample size. 

The third component of the interval estimate
is a reliability factor, which represents the
number of standard deviations required to
enclose (1 � a)% of the sample means from the
sampling distribution. It is used to quantify how
close we would like our estimate to be to the real
population mean or, in short, how reliable it is.
The particular value of the reliability factor
chosen above, t1�a/2,n�1, is the value of t with
(n � 1) df that “cuts off” an area of a/2 in the
upper tail. As the t distribution is symmetric it is
also true that the t value on the negative side
that cuts off an area of size a/2 in the lower
tail is equal to the same t value but with a
change in sign that cuts off a/2 in the upper tail.
Equivalently, in mathematical terms, this means
that |ta/2,n�1| � t1�a/2,n�1. Values of t1�a/2,n�1 are
provided in Appendix 2 for various values of a.

For a sample size of 100 (99 df) the reliability
factors for two-sided 90%, 95%, and 99% confi-
dence intervals are 1.66, 1.98, and 2.63. The
implication of these three values is that, all other
things being equal (that is, x–, s, and n), requiring
greater confidence in the interval estimate
results in wider interval estimates. The more
confidence that is required, the less reliable is the
single sample estimate, and therefore greater
numerical uncertainty is expressed in the
interval estimate. This very important point is
illustrated in the following example. 

The following values of age (n � 100) were
examined using a stem-and-leaf display in
Chapter 5: 

53, 69, 72, 48, 60, 61, 49, 71, 43, 31, 62, 51,
58, 61, 70, 66, 78, 39, 75, 63, 59, 53, 49, 61,
50, 88, 51, 80, 68, 75, 78, 81, 57, 70, 68, 66,
43, 60, 57, 35, 75, 61, 71, 45, 50, 82, 52, 65,
61, 77, 80, 58, 50, 59, 55, 59, 50, 39, 78, 72,
71, 79, 48, 55, 52, 55, 62, 59, 68, 63, 81, 69,
67, 67, 58, 57, 70, 73, 49, 43, 76, 73, 71, 77,
61, 62, 72, 73, 67, 62, 64, 40, 66, 74, 77, 67,
49, 83, 73, 59.

Assuming that these observations represent a
simple random sample from the population of
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interest and that the age values in the popula-
tion are normally distributed, the task is to
calculate the two-sided 90%, 95%, and 99%
confidence intervals for the population mean
age.

The sample mean age is 62.6 and the standard
deviation 12.01. The standard error of the mean
is calculated as:

SE � 12.01/�
____
100�1.20.

With these numbers calculated, all that is left to
compute the three confidence intervals are the
reliability factors associated with each. For the
90% confidence interval, the value of the relia-
bility factor will be the value of t that cuts off the
upper 5% of the area (half the size of a) under
the t distribution with 99 df. This value is 1.66
and can be verified from a table of values or from
statistical software. Note that the t value of
�1.66 is the value of t that cuts off the lower 
5% of the area (half of the size of a) under the 
t distribution with 99 df. The reliability factors
listed previously for the two-sided 95% and 99%
confidence intervals can also be used to compute
the following interval estimates:

• 90% CI � 62.6 � (1.20)(1.66) � (60.6, 64.6)
• 95% CI � 62.6 � (1.20)(1.98) � (60.2, 65.0)
• 99% CI � 62.6 � (1.20)(2.63) � (59.4, 65.8).

Note that the two values that comprise the lower
and upper limits of the confidence interval are
typically placed in parentheses. The width of the
confidence intervals (the difference between the
upper and lower limits) increases because greater
confidence (corresponding to smaller values of
a) is required. 

A statistical interpretation of these results is to
say that we are 90% confident that the mean age
of the population from which this sample was
selected is enclosed in the interval 60.6–64.6
years. If greater confidence is required, we can
say that with 99% confidence the mean age of
the population is enclosed in the interval
59.4–65.8 years. Another interpretation of these
confidence intervals is that they represent the
most plausible values of the population mean. It
is important to note that the lower and upper
limits of the confidence interval are random
variables. The population mean is considered to

be an unknown fixed quantity for which the
confidence interval serves as an estimate. 

To summarize, the computational aspects of
confidence intervals involve a point estimate of
the population parameter, some error attributed
to sampling, and the amount of confidence (or
reliability) required for interpretation. We have
illustrated the general framework of the compu-
tation of confidence intervals using the case of
the population mean. It is important to empha-
size that interval estimates for other parameters
of interest will require different reliability factors
because these depend on the sampling distri-
bution of the estimator itself and different
calculations of standard errors. The calculated
confidence interval has a statistical interpretation
based on a probability statement.

Another useful interpretation of confidence
intervals is that the values that are enclosed
within the confidence interval are those that
are considered the most plausible values of the
unknown population parameter. Values outside
the interval are considered less plausible. All
other things being equal, the need for greater
confidence in the estimate results in wider
confidence intervals, and confidence intervals
become narrower (that is, more precise) as the
sample size increases. This last fact is explored
in greater detail in Chapter 12 because it is
directly relevant to the estimation of the
required sample size for a clinical trial. The
methods to use for the calculation of confi-
dence intervals for other population parame-
ters of interest are provided in subsequent
chapters.

6.11 Hypothesis testing: General
considerations 

As this book focuses on clinical trials our primary
interest is in providing you with relevant exam-
ples of hypothesis testing in that arena.
However, it is useful initially to lay some concep-
tual foundations with simpler examples. As for
many other examples in statistics and proba-
bility, we illustrate these concepts first with flips
of a coin. 
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Imagine the following scenario. You are
holding a half-dollar coin. Our question to you
is: Do you think this coin is fair or not? You
examine it and hold it and with no other infor-
mation you decide that you really cannot tell
without more information. You propose to flip
the coin twice. Flipping it twice, you get the
following results: Heads (H) and heads (H). If we
forced you to answer our question at this time,
you may guess, based on these two observations,
that the coin is not fair. After all, if the coin were
really fair you would “expect” one head (H) and
one tail (T). However, you are not at all confi-
dent with your answer because you note that the
probability of observing two heads is not that
small. It is (0.5)(0.5) � 0.25. This means that an
outcome like this results 25% of the time that
you conduct such an experiment. Accordingly,
you wisely recognize that it would be better to
have additional data before making your guess,
because with just two heads observed out of two
flips there is a non-trivial chance that you have
guessed incorrectly. 

Suppose you then revise the experiment and
request that the results from 10 flips of the coin
be recorded. You reason that, if the coin were
fair, you would expect five heads and five tails. If
you were to observe that only one or as many as
nine heads came up out of ten tosses, you would
conclude that the coin was not fair. Your logic is
that, by chance alone, a fair coin would not very
likely yield such a lopsided result. If you were to
observe an event with even more extreme result,
that is, 0 or 10 heads out of 10 tosses, you would
also have concluded, perhaps with even more
confidence, that the coin was not fair. 

The rule that you intuitively arrived at was
that if you observed as few as 0 or 1 or as many
as 9 or 10 heads out of 10 coin flips, you would
conclude that the coin was not fair. How likely is
it that such a result would happen? In other
words, suppose you repeated this experiment a
number of times with a truly fair coin. What
proportion of experiments conducted in the
same manner would result in an erroneous
conclusion on your part because you followed
the evidence in this way? This is the point where
the rules of probability come into play. You can
find the probability of making the wrong
conclusion (calling the fair coin biased) by

following such a decision rule using the bino-
mial distribution.

Using the binomial distribution, the proba-
bility of observing 9 heads out of 10 when
the probability of observing a head with each
trial is 1⁄2 is 0.00977. Likewise, the probability of
observing 10 heads out of 10 is 0.00098. So the
probability of observing either 9 or 10 heads is
the sum of these two (we sum them because
these are mutually exclusive outcomes). That
probability is 0.01075 (around 1%). We note that
the probability of observing 0 or 1 heads is the
same as for observing 9 or 10. Therefore the
probability of observing a result as extreme as 1
or fewer or 9 or more heads is around 0.02. If
after 10 coin flips, we have observed 1 or fewer
heads or 9 or more heads, we would conclude
that the coin was biased because a fair coin
would yield such a result only with probability
around 2% (not very often). Put another way, if
we conducted this experiment many times and
used such a rule when we have observed such a
result, we would be incorrect in 2% of the exper-
iments. That seems like an acceptable risk to
take. Besides, in this scenario, there seems to be
no adverse consequence to being wrong except
for a bit of damaged pride.

This rather simple example is an illustration of
the conceptual components of hypothesis
testing. The basis of hypothesis testing is “proof
by contradiction.” We use the word “proof”
rather liberally here because the scientific stan-
dard for establishing proof is more rigorous than
a single trial or set of trials could possibly
provide. Hypothesis testing is a statistical
method in which we use data (evidence) to
choose between two decisions, each with their
own course of action and related implications.
The real world implication of making either deci-
sion depends on the field of study. In the world
of new drug development, these decisions could
be to decide that a drug is not efficacious at any
dose studied, and is therefore not worth
studying further. Another decision could be to
select one particular dose (among many studied)
for further development in confirmatory trials. 

The process of testing a hypothesis usually
begins with the statement of the hypothesis
that we would like to conclude as a result of
the research (we refer to this as the alternate
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hypothesis). There is another hypothesis that we
need to define and it is referred to as the null
hypothesis. The null hypothesis can be viewed
as a “straw man” hypothesis, one that we would
like to knock over by collecting evidence that
contradicts it in favor of the alternate hypoth-
esis. One important consideration in the state-
ment of the two hypotheses is that they should
represent all possible outcomes. In the context 
of our coin-tossing illustration, the alternate
hypothesis would be that the coin is biased and
the null hypothesis would be that the coin is fair.
In that experiment, we counted the number of
heads and were looking for evidence that would
contradict the null hypothesis and compel us to
conclude that the alternate hypothesis was true.
Evidence that contradicted the null hypothesis
would be a very high or very low proportion of
heads because a fair coin would yield approxi-
mately the same number of heads as tails. Impor-
tantly, these two hypotheses cover the only two
possible outcomes: The coin is either fair or
biased.

The next part of the hypothesis-testing process
is to decide on a numerical result (a test statistic)
that, if observed, would sufficiently contradict
the null hypothesis such that the null hypoth-
esis would be rejected in favor of the alternate
hypothesis. As we discovered with our coin-
tossing example, some results would not be all
that rare by chance alone. Therefore, our deci-
sion rule should be defined such that erroneous
conclusions are not made more often than we
are willing to tolerate. 

You will recall that we might have chosen
other results before we concluded that the coin
was biased, but we chose results that would
rarely be expected by chance alone. In fact, the
decision rule is based on our chosen probability
of rejecting the null hypothesis when it is really
true. For the coin example, this is the probability
of claiming that the coin is biased when it is
really fair. When asked to take part in this exper-
iment the fairness of the coin remains unknown
to us, but we choose a decision rule that is
consistent with results that would not be
expected by chance very often. 

6.11.1 Type I errors and type II errors

Rejecting the null hypothesis when it is true is
called a type I error. The probability of making a
type I error is called alpha (a). There is another
kind of error that we might commit by using
data from our sample (in this case, 10 coin
tosses) to make an inference about the state of
nature. This second kind of error is called a type II
error and results from failing to reject the null
hypothesis (suppose we observed seven heads)
when, in fact, the alternate hypothesis is true
(that is, the coin was biased). We would then act
as if the coin were fair – perhaps taking part in a
new challenge that involved wagering a lot of
money. 

When making decisions of any type, whether
they are as inconsequential as our coin-tossing
experiment or as important and costly as devel-
oping a new drug, we would like to minimize the
chances that we make the wrong decision. In
planning a new study or experiment, such as a
clinical trial, it is worthwhile to consider mini-
mizing the probability of committing each of
these errors. The two types of errors are
presented in Table 6.3. In clinical trials a type I
error is committed when we claim that the new
antihypertensive is superior to placebo but it
really is similar. A type II error is committed
when we fail to claim the new antihypertensive
is superior to placebo but it really is. In reality we
cannot know the truth, but the study design,
including the sample size and the statistical
analyses used to evaluate the trial, will enable us
to limit the probability of committing each of
these errors. 

6.11.2 Probability of type I and II errors

An important aspect of study design is defining
the probabilities of committing each of these
two kinds of errors. A type I error could mean
that a new drug is approved for marketing but
really does not provide a benefit. Ideally, the
probability of committing a type I error of this
type would be fairly small. Committing a
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type II error in a superiority trial of a new anti-
hypertensive is not appealing for a study
sponsor because it could lead to discontinua-
tion of a development program for a new treat-
ment that is actually efficacious. Therefore, it is
desirable to limit the probability of committing
a type II error as well. We have more to say
about these two probabilities in subsequent
chapters, but for now it is sufficient to identify
them formally.

The probability of committing a type I error is
the probability of rejecting the null hypothesis
when it is true (for example, claiming that the
new treatment is superior to placebo when they
are equivalent in terms of the outcome). The
probability of committing a type I error is called
a, which is sometimes referred to as the size of
the test. The probability of committing a type II
error is the probability of failing to reject the null
hypothesis when it is false. This probability is
also called beta (b). The quantity (1 � b) is referred
to as the power of the statistical test. It is the
probability of rejecting the null hypothesis (in
favor of the alternate) when the alternate is true.
As stated earlier it is desirable to have low error
probabilities associated with a test. As we would
like a and b to be as low as possible the quanti-

ties (1 � a) and (1 � b) are typically fairly large.
These probabilities are provided in Table 6.4.

6.11.3 Hypothesis testing and research
questions

Statistical hypothesis testing represents a means
to formulate and answer the research question in
a quantitative manner. The null hypothesis is
the hypothesis that is tested. If quantitative data
are produced that are not consistent with the
null hypothesis, it is rejected. 

Beforeproceedingwith this statistical approach,
a researchquestionmustbeposed,whichwill then
prompt the design of a study that will lead to the
collection of data and an appropriate statistical
analysis. A simple research question from a drug
development program, as stated in Chapter 3, is
“Does the investigational drug lower blood pres-
sure?” A way to answer this research question is to
design a study to estimate the mean change from
baseline in SBP. If the mean change from baseline
is negative, the answer to the research question
would be that the investigational drug does lower
blood pressure. This example will be used to
illustrate the concept of hypothesis testing.
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Table 6.3 Two possible errors in hypothesis testing

Truth about null hypothesis

Decision based on test statistic True False 
Fail to reject null hypothesis Correct Type II error
Reject null hypothesis Type I error Correct 

Table 6.4 Probabilities of outcomes (conditional on the null hypothesis) in hypothesis testing 

Truth about null hypothesis

Decision based on test statistic True False 
Fail to reject null hypothesis 1 � a b

Reject null hypothesis a 1 � b (i.e., power)



6.12 Hypothesis test of a single
population mean

Suppose our interest is in testing whether the
population mean was equal to a particular
hypothesized value, l0. A hypothesis testing
process typically starts with a statement of the
null and alternate hypotheses. The null hypoth-
esis can be stated in the following manner:

H0: � � l0.

If data are found to contradict the null hypoth-
esis, it will be rejected in favor of the alternate
hypothesis:

HA: � � l0.

The alternate hypothesis is two sided in the
sense that values clearly less than l0 would be
consistent with it as would values that were
clearly greater than l0. Rejection of the null
hypothesis because l0 

 l (l is much greater
than the hypothesized value l0) may lead to one
decision (for example, continue with the devel-
opment of the new drug with a larger study)
whereas rejection of the null hypothesis because
l0 		 l (l is much less than the hypothe-
sized value l0) may lead to a completely different
decision (for example, to stop development of
the new drug because it has no effect on SBP or
actually increases SBP). What is important is
that, a priori, either outcome is possible.

The next step of the hypothesis testing process
is to identify a numeric criterion by which the
plausibility of the null hypothesis is tested. This
numeric criterion is called the test statistic, and
we use it to decide if the value that resulted from
the study contradicts the null hypothesis or not.
The test statistic to be used in this case is:

x̄ � �0t � –––––– .
s/�

__
n

If the null hypothesis is true – that is, the popu-
lation mean is the hypothesized value, l0 – the
value of the test statistic will be close to 0. The
further the test statistic value is from 0 (either
negative or positive) the less plausible is the
hypothesized value, l0 – that is, the null hypoth-
esis should be rejected in favor of the alternate.

The next step of hypothesis testing is to deter-
mine those values of the test statistic that would
lead to rejection of the null hypothesis, that is,
to determine the critical region.

Assuming that the random variable is
normally distributed (or approximately so if the
sample size is 	 30) and if the null hypothesis is
true, the test statistic just defined has a t distrib-
ution with (n �1) df. Referring to Figure 6.6 you
will see that most values of a random variable
that follow a t distribution fall in the range �1 to
�1. A value in this range would be expected just
by chance alone. However, values 
 �2 or 	 �2
occur much less frequently, that is, there is less
area to the left of �2 and to the right of �2. We
would like to define a critical region that is asso-
ciated with small tail areas because values in the
tail do not occur frequently, whereas values in
the center of the distribution are very common.
In other words, we would like to define the test
so that we do not reject the null hypothesis very
often when in fact it is true – that is, we would
like to define a critical region so that the proba-
bility of committing a type I error, a, is small. 

In most scientific endeavors the choice of a is
0.05. We are willing to accept a 1 in 20 chance
that, at the end of the study, it is concluded that
the population mean is not the hypothesized
value when in fact it really is. It is important to
remember that the choice of a is part of the
study design, and not a result of a study. Also, it
is important to note here that there is nothing
special about the value of 0.05. Depending on
the stage of development or the severity or
importance of the disease for which we wish to
develop the drug, we may choose a value of a
that is higher or lower than 0.05. What is impor-
tant in the choice of a are the implications (for
sponsors, regulatory bodies, clinicians, and
patients) of committing a type I error. Having
alerted you to the possibility of choosing other
values for a, and the fact that this choice has
various implications, we adopt the conventional
value of a of 0.05 in subsequent discussions. 

Knowledge of the distribution of the test
statistic enables us to define a critical region that
would erroneously lead to rejection with proba-
bility of 0.05. In the case of the current test, the
critical region will be any value of the test
statistic such that: 
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t 
 ta/2,n�1 or t 	 t1�a/2,n�1.

Similarly to the case of the standard normal
distribution, the critical values can be obtained
from a series of tabulated values or from statis-
tical software. A number of percentiles of various
t distributions are provided in Appendix 2. It is
important to note that there is not just one 
t distribution; there are many of them, and their
shapes are determined by the number of degrees
of freedom. As either low or high values of the
test statistic could lead to rejection, the hypoth-
esis test is considered a two-sided test. The prob-
ability of committing a type I error is 0.05, but,
because the critical region is evenly split
between low values and high values, the proba-
bility of committing a type I error in favor of one
direction (for example, large values of t) is a/2. 

Once the critical region of the test has been
defined, the next step of hypothesis testing is to
calculate the value of the test statistic from the
sample data. The test statistic is calculated as:

x̄ � �0t � ––––––
s/�

__
n

where x̄ is the sample mean, l0 the hypothesized
value of the population mean, s the sample
standard deviation, and n the sample size. 

If the value of the test statistic is in the critical
region the null hypothesis is rejected and the
conclusion is made that the population mean is
not equal to l0. When the null hypothesis is
rejected, such a result is considered “statistically
significant” at the a level, meaning that the
result was unlikely (with probability no greater
than a) to have been observed by chance alone.
If the value of the test statistic is not in the crit-
ical region we fail to reject the null hypothesis. It
is important to emphasize the fact that we
cannot claim that the population mean is equal
to l0, but simply that the data were not sufficient
to conclude that they were different. 

The use of this method, the one-sample t test,
is appropriate when:

• the observations represent a simple random
sample from the population of interest

• the random variable is continuous 
• the random variable is normally distributed

or approximately normally distributed

(mound shaped) with a sample size of at
least 30.

This hypothesis test is illustrated with the
following simple example. 

Imagine that, having identified a promising
new investigational antihypertensive drug, a
pharmaceutical company would like to admin-
ister it to a group of 10 hypertensive individuals
to see if the drug has the desired effect. For
simplicity we assume that there is no control
group. The first study of the new antihyperten-
sive will be a single-dose, nonrandomized,
uncontrolled trial in 10 participants. SBP was
recorded at the start of the study before initia-
tion of treatment (baseline) and at the end of 4
weeks (end of study). The research question of
interest is: Does the new drug lower SBP? The
scientists designing the trial would like to main-
tain a type I error of 0.05, that is, a � 0.05. As the
test conducted is two sided, the probability of
making a type I error in favor of the drug having
a beneficial effect (one side of the critical region)
is 0.025.

The null hypothesis is:

H0: � � 0.

And the alternate hypothesis is:

HA: � � 0.

The one-sample t test will be used to test the
null hypothesis. As there are 10 observations and
assuming the change scores (the random vari-
able of interest) are normally distributed, the test
statistic will follow a t distribution with 9 df. A
table of critical values for the t distribution
(Appendix 2) will inform us that the two-sided
critical region is defined as t 
 �2.26 and t 	

2.26 – that is, under the null hypothesis, the
probability of observing a t value 
 �2.26 is
0.025 and the probability of observing a t value
	 2.26 is 0.025. 

Baseline and end-of-study values of SBP are
presented for the 10 participants in Table 6.5,
along with their respective change scores. 

The mean change score is �7 and the standard
deviation is 7.1. (We leave it to you to verify
this.) The test statistic is therefore calculated as:

� 7 � 0
t � –––––––––– � �3.10.

7.1/�
_____
10
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As this calculated test statistic is in the critical
region (t � �3.10 
 �2.26) the null hypothesis is
rejected. The result is considered statistically
significant at the a � 0.05 level because there
was less than a 5% chance of such a result being
observed by chance alone. The conclusion from
the study is that the new drug did lower SBP by
a mean of 7 mmHg. Scientists from the sponsor
company may use this information as sufficient
preliminary evidence to continue with the
development of the new drug. 

6.13 The p value

One shortcoming of the hypothesis testing
approach is the arbitrary choice of a value for a.
Depending upon our risk tolerance for commit-
ting a type I error, the conventional value of 0.05
may not be acceptable. Another way to convey
the “extremeness” of the resulting test statistic is
to report a p value. 

A p value is the probability that the result
obtained or one more extreme (in favor of the
alternate) would be observed by chance alone.
We know from the definition of the critical
region that a value of the test statistic t 
 �2.26
or t 	 2.26 would have occurred with probability
� 0.05 by chance alone. In fact, the test statistic
value was �3.10 which lies to the left of �2.26.
A value of �3.10 led to rejection, as would values

 �3.10 or 	 3.10. The p value in this case is the

area under the t-distribution density curve with
9 df associated with values of t 
 �3.10 or 	 3.10
and is equal to 0.01. This means that there is
only a 1% chance of observing a value of the test
statistic as large as 3.10 (in absolute magnitude)
or larger by chance alone. The difference
between a (a design parameter) and the p value
(a study result) can be seen in Figure 6.7, where
the areas to the left and right of the dashed lines
represent a and the areas to the left and right of
the solid line represent the p value.

The p values can be estimated from a table of
values from the appropriate t distribution (for
example, by finding the tail areas associated with
a particular value of the test statistic). More
commonly, however, statistical software is used
for all statistical analyses and p values are
included in the results. The following is a helpful
way to interpret p values:

• Hypothesis tests are rejected if the calculated
p value � a. 

• Hypothesis tests are not rejected if the
calculated p value 	 a. 

It is not uncommon for results of hypothesis
tests to be represented simply by the p value.
However, it is not a wise practice to rely solely on
them. Recall that increasing the sample size
reduces the standard error, which increases the
size of the test statistic and therefore reduces the
p value. This serves as a reminder that it is not
just the statistical significance of the result (that
is, the p value) that counts. The clinical rele-
vance of the size of the effect (for example, the
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Table 6.5 Systolic blood pressure (SBP) values and change scores

Study participant Baseline SBP End-of-study SBP Change in SBP 
(mmHg) (mmHg) (mmHg)

1 143 147 4
2 152 144 �8
3 162 159 �3
4 158 157 �1
5 147 131 �16
6 149 133 �16
7 150 145 �5
8 148 144 �4
9 154 150 �4

10 149 132 �17



confidence interval for the parameter of interest)
is probably more important than the p value, as
we argue in the following section. 

6.14 Relationship between confidence
intervals and hypothesis tests 

Confidence intervals can be used to test a
number of hypotheses. This is illustrated using
the study data from the previous example in
Section 6.12. 

Scientists from the pharmaceutical company
believe that reporting a 95% confidence interval
for the population mean change in SBP may
prove helpful. Following the confidence interval
defined in Section 6.10, a 95% confidence
interval for the population mean is: 

� 7 � 2.26(7.1/�
_____
10) � (�12.1, �1.9).

The scientists can report from this study that
they are 95% confident that the true population
mean change in SBP is within the interval
(�12.1, �1.9). One interpretation of this interval
is that the scientists are 95% confident that the
drug works by reducing SBP, as evidenced by an
upper limit of the confidence interval that is less
than 0. Another less favorable interpretation is
that the drug does not work all that well – after
all, the confidence interval does not rule out
some very minor reductions in SBP (upper limit
of �1.9 mmHg). It is true that, had the scientists
hypothesized a value of the population mean
outside of the values of this 95% confidence
interval, the null hypothesis would have been
rejected at the a � 0.05 level. For example, the
following null hypotheses would have been
rejected:

H0: � � 2
H0: � � �15.
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Figure 6.7 The t distribution with 9 degrees of freedom, critical region (dashed line) and p value (solid line). Note that
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the tail areas to the left and right of the solid lines



Conversely, the following null hypotheses would
not have been rejected:

H0: � � �8
H0: � � �2.

This relationship can be stated more generally as:

• All values outside the (1 � a)% confidence
interval for a parameter of interest would be
rejected by a hypothesis test (of size a) of the
parameter.

• Values within the (1 � a)% confidence interval
for a parameter of interest would fail to be
rejected by a hypothesis test (of size a) of the
parameter. 

In this example, l represents the population
mean change from baseline SBP. If the upper
limit of the 95% confidence interval excludes 0,
negative values of population mean are most
plausible, implying that the drug lowered SBP. If
the lower limit of the 95% confidence interval
excludes 0, positive values of the population
mean are most plausible, implying that the drug
actually increased SBP. If 0 is enclosed in the 95%
confidence interval, negative and positive values
of the mean are most plausible, implying that we
cannot rule out the possibility that the drug had
no effect. These three scenarios are displayed in
Figure 6.8.

As confidence intervals can be used to test a
number of hypotheses simultaneously, they
convey much more information than a single 
p value resulting from a hypothesis test. In addi-
tion to being able to test various hypotheses (the
null hypothesis of zero change from baseline was
rejected) the confidence interval allows regula-
tory agencies and physicians who review the
data to interpret the clinical relevance of the
magnitude of the values within the confidence
interval. 

6.15 Brief review of estimation and
hypothesis testing 

This chapter started with an introduction to the
concepts of probability and random variable
distributions. The role of probability is to assist
in our ability to make statistical inferences. Test
statistics are the numeric results of an experi-
ment or study. The yardstick by which a test
statistic is measured is how extreme it is. The
term “extreme” in Statistics is used in relation to
a value that would have been expected if there
was no effect, that is, the value that would be
expected by random chance alone. Confidence
intervals provide an interval estimate for a popu-
lation parameter of interest. Confidence intervals
of (1 � a)% can also be used to test hypotheses,
as seen in Chapter 8. 

The process of hypothesis testing is carried
out using the following steps, which will be
highlighted in subsequent chapters:

• State the null and alternate hypotheses. It is
sometimes easier to state the alternate
hypothesis first because that is what we 
would like to conclude at the end of the
study. The null hypothesis then covers the
remainder of values of the population para-
meter. The specific statements of the null and
alternate hypotheses depend on the type of
study and the analysis approach used. We
cover many different examples in later
chapters. 

• Determine the test statistic appropriate for the
method used. Choosing the appropriate test
statistic depends on the analysis method and
the assumptions that we must make. 

• Select a value of a (as noted earlier, our
standard for this book is 0.05).
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H0: Drug had no effect
on SBPHa: Drug lowered SBP Ha: Drug increased SBP

No change from baseline

0
lendpoint minus baseline

SBP reduced from baseline SBP increased from baseline

Figure 6.8 Conclusions to be drawn from the population mean change from baseline



• Calculate the value of the test statistic under
the null hypothesis and the corresponding 
p value. Compare the p value with the value
of a. 

• State the statistical decision either to reject or
to fail to reject the null hypothesis. 

Statistical inference is one way to use data to
make a decision in the presence of uncertainty.
The resulting decisions are not perfect. The
commission of either a type I or a type II error
can have significant impacts on drug companies,
study participants, patients, and public health.
Therefore, minimizing the probability that each
might occur is an important part of the study
design, including the manner in which data are
analyzed and interpreted. 
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6.16 Review

1. Using Table 6.1, calculate the probability of
selecting a participant who is:

(a) female
(b) female and � 65 years of age
(c) � 65 years of age
(d) female given that the participant is � 65 years

of age.

2. Show that the true negative rate of a diagnostic
test is a function of the sensitivity and specificity of
the test and the prevalence of the disease.

3. Assume that SBP among all adults aged 30 years
and older in the UK has a normal distribution with
mean 120 mmHg and variance 100 mmHg. What
proportion of participants in this population has:

(a) SBP 
 90 mmHg?
(b) SBP 
 120 mmHg?
(c) SBP 
 100 mmHg or SBP 	 140 mmHg?
(d) SBP 	 160 mmHg?

4. What is the difference between standard
deviation and standard error?

5. What is a? How does a researcher decide on a
value for a?

6. What is b? How does a researcher decide on a
value for b?

7. What are the three components of a confidence
interval?

8. What is a two-sided hypothesis test?

9. The one-sample t test is being used for a two-
sided test of the null hypothesis, H0: l � 0. For
each of the following scenarios, define the
rejection region for the test:

(a) n � 10; a � 0.10
(b) n � 10; a � 0.01
(c) n � 30; a � 0.05
(d) n � 30; a � 0.001.

10. For each of the following 95% confidence
intervals for the population mean, would a two-
sided test of the null hypothesis, H0: l � 0, be
rejected or not rejected?

(a) (�4.0, 4.0)
(b) (�2.0, �1.0)
(c) (22.3, 44.6)
(d) (�12.7, 0.01).




