
7.1 Introduction

As we noted in Section 1.11, this book focuses on
teaching you the statistical methodologies and
analyses that are employed in the therapeutic
confirmatory clinical trials conducted before a
sponsor applies for marketing approval for the
drug that they have been developing. We also
noted that there are other clinical trials that
precede therapeutic confirmatory trials. Two
other categories of preapproval trials mentioned
are Phase I (human pharmacology) trials and
Phase II (therapeutic exploratory) trials. There-
fore, before focusing on therapeutic confirma-
tory trials in Chapters 8–11, it is appropriate to
provide an overview of human pharmacology
and therapeutic exploratory trials.

The usefulness of numerical information from
clinical trials in decision-making is an ongoing
theme in this book. The first few clinical studies
for new drugs are important because they
provide information relevant to the critical deci-
sions that must be made with regard to
continued investment in the development
program. Ideally, studies are designed to answer
research questions, the answers to which provide
sufficient information to inform the next step of
development, that is, either to go forward (a
“go” decision) or not to go forward (a “no-go”
decision). The answer to these critical early ques-
tions must be “go” if we are to reach the later
stages of clinical development. For example, we
need to have reasonable confidence that the
drug is safe enough to progress to therapeutic
exploratory trials in which it will be adminis-
tered for the first time to participants with the
disease or condition of interest. 

In addition, we need to have reasonable confi-
dence that a particular selected route of adminis-

tration will prove successful for administering
the drug to patients if and when the drug is
approved. Although many other questions must
be addressed during later-stage clinical develop-
ment, these critical early phase questions have
significant bearing on the ultimate safety and
efficacy attributes of the product, as well as
commercial implications (for example, route or
schedule of administration). 

Discussions in this chapter emphasize statis-
tical considerations in early phase clinical trials.
These include study designs employed, the
types of data collected, and the usefulness and
limitations of these data.

7.2 A quick recap of early phase
studies

Human pharmacology studies are pharmacolog-
ically oriented trials that typically look for the
best range of doses to employ. These trials typi-
cally involve healthy adults. Comparison with
other treatments (such as a placebo or a drug
that is already marketed) is not typically an aim
of these trials, which are undertaken in an
extremely careful manner in very controlled
settings, often in residential or inpatient medical
centers. Typically, between 20 and 80 healthy
adults participate in these relatively short
studies, and participants are often recruited from
university medical school settings where trials
are being conducted. The main objectives are to
assess the safety of the investigational drug,
understand the drug’s pharmacokinetic profile
and any potential interactions with other drugs,
and estimate pharmacodynamic activity. A range
of doses and/or dosing intervals is typically
investigated in a sequential manner. 

7
Early phase clinical trials



From a statistical viewpoint, the design of
human pharmacology studies has certain impli-
cations. They include a relatively small number
of participants, but a lot of measurements are
collected for each participant. This strategy has
both advantages and limitations. The extensive
array of measurements made allows the drug’s
effects to be characterized reasonably thor-
oughly. However, as so few participants partici-
pate in these studies, generalizations to the
general participant population are relatively
more tenuous than for studies with larger sample
sizes. 

7.3 General comments on study
designs in early phase clinical studies

A disappointing result in early clinical studies, as
a result of either a real liability of the investiga-
tional drug or chance alone, can doom the
prospects for the new drug ever entering the
market. No-go decisions are a logical conse-
quence of such disappointing results. To provide
optimum quality data and the associated
optimum quality information upon which to
base go and no-go decisions, early clinical
studies are very well controlled, thereby limiting
extraneous sources of variation as much as
possible. Early clinical studies, especially FTIH
(first-time-in-human) studies, are typically
conducted at a single investigative center. As a
relatively small number of participants are
studied in such early phase trials, a single center
can feasibly accommodate the study by itself. It
can recruit enough participants at that single
location, and provide all the necessary resources
for investigators at that site to conduct all the
study procedures documented in the study
protocol. Conducting a study at a single center
ensures greater consistency with respect to parti-
cipant management, study conduct, and assess-
ment of adverse events, and provides for frequent
and careful monitoring of study participants.

Participants in early clinical studies are usually
healthy adults whose health status is carefully
documented at the start of the study through
physical examinations, clinical laboratory tests,
and medical histories. Limiting early studies to

healthy participants allows the sponsor to
attribute any untoward findings to the drug, or
to a particular dose of the drug, as significant
background diseases are all but absent. 

Early clinical studies frequently involve the
use of a concurrent inactive control. This can 
be important because the study procedures can
be somewhat invasive and associated with some
adverse effects themselves – for example,
frequent blood draws resulting in a lowering of
hematocrit. Without a concurrent control arm
(even in a study of healthy participants) study
sponsors and investigators would not be 
able to rule out a drug effect when observing 
such occurrences, which are expected, easily
explained, and non-drug related. In early studies
that involve inpatient facilities for close moni-
toring, other controls may be instituted, for
example, standardized meals and set times for
study procedures. 

7.4 Goals of early phase clinical trials

Early clinical trials used in new drug
development typically have the following goals: 

• characterize the pharmacokinetic profile of
the investigational drug 

• describe the safety and tolerability of the
investigational drug in study participants who
do not have significant medical conditions

• describe the extent to which a pharmacody-
namic effect is affected by different doses of
the new drug

• begin to identify a dose range that would
likely provide adequate exposure to yield an
important clinical effect. 

Although somewhat overly simplistic (especially
to readers who are students of pharmacy) we can
consider pharmacokinetic effects as “what the
body does to the drug” and pharmacodynamic
effects as “what the drug does to the body.” For
those readers who are less familiar with pharma-
cokinetics and pharmacodynamics, Tozer and
Roland (2006) provide an excellent and very
readable introduction to these topics.

Patients with diseases or conditions of interest
can have a number of attributes that, although
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very important in the context of the eventual
use of the new drug, make accurate assessments
of the safety and pharmacokinetics of the inves-
tigational drug difficult. For example, patients
with the disease may have compromised kidney
or liver function, which would confound the
characterization of the metabolism of the new
drug. Similarly, patients with the disease may
take several other medications for the disease
under study or for other related or unrelated
diseases. It then becomes difficult to ascertain in
early studies whether potential adverse effects or
laboratory abnormalities are attributable to the
investigational drug, to concomitant drugs, or to
any potential interactions between the investiga-
tional drug and other drugs. (Drug interactions
are not discussed in this book and readers are
referred to Hansten [2004].)

The employment of healthy participants in
early clinical studies provides essential informa-
tion about the pharmacokinetics, pharmacody-
namics, and safety of the new drug. This chapter
focuses on the research questions relevant to
early human studies, the designs used to 
address them, the data and analysis approaches
commonly encountered, and the development
decisions that are made as a result of these
studies. 

We should note here that there are some
special cases for which the use of healthy
participants is not justified in early studies. For
particularly invasive therapies (for example,
implantation of a medical device) or therapies
with known toxicity (for example, oncologics) it
is not ethical to study healthy participants. The
use of healthy participants in early studies may
also provide a misleading result for future
studies of participants with disease. For
example, the maximum tolerated dose of new
antidepressants or anxiolytics may differ quite
markedly between healthy participants and
those with the disease.

7.5 Research questions in early phase
clinical studies

In the early clinical development of a new drug,
the following questions arise:

• How does the magnitude of systemic expo-
sure to the new drug differ as a function of
increasing concentrations of the drug?

• How does the magnitude of systemic expo-
sure to the new drug differ as a function of
different dosing schedules (for example, once,
twice, or three times a day)?

• How do varying degrees of drug exposure
modify measurable pharmacodynamic effects?

• How does the total amount of drug exposure
from the route of administration being studied
(for example, oral) compare with the total
amount of drug exposure when administered
parenterally (that is, intravenously or intra-
arterially)? In other words, how bioavailable is
the drug?

• How safe is the new drug? Evaluations include
clinical laboratory tests, physical assessments,
vital signs, adverse events, and cardiac effects
through electrophysiological monitoring via
an ECG.

To address the first four research questions listed
above, pharmacokinetic data are typically
collected at various time points in early clinical
studies: These data are discussed in the next
section. To evaluate the difference between back-
ground variation (influences that are not directly
of interest) and changes brought about by the
administration of drug (influences that are of
interest), measurements are collected on several
occasions before the start of the drug, at several
times during drug administration, and at least
once after the administration of the drug when
its effect is likely to be minimal (for example, 24
hours later). Evaluation of the fifth question is
discussed in Section 7.10.

7.6 Pharmacokinetic characteristics of
interest

Investigations at this stage of a clinical develop-
ment program focus primarily on a very careful
evaluation of how well the drug reaches the
bloodstream, and how its concentrations in 
the bloodstream change over time, that is, on
pharmacokinetics. The extent and duration of a
drug’s presence in the bloodstream determine
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how good a chance it has ultimately to exert its
intended clinical effect by reaching and inter-
acting with its target receptors, the domain of
pharmacodynamic investigation. Therefore, we
need to study pharmacokinetic factors before
studying the actual clinical effects of the drug in
therapeutic exploratory trials, trials in which the
relationship between drug concentrations and
clinical response are typically addressed for the
first time.

As mentioned in Section 2.5, the term “phar-
macokinetics” generally refers to the absorption,
distribution, metabolism, and excretion (ADME)
of a drug. When developing a new drug a great
deal of time and effort is devoted to formulating
the drug so that it has the most desirable charac-
teristics from the standpoint of safety, efficacy,
and commercial concerns (for example, patient
convenience and patient adherence to the
prescribed regimen). There are several commonly

used summary measures that are useful for quan-
tifying absorption and excretion. In contrast,
metabolism and distribution are not as easy to
define in terms of quantifiable measures,
although it is possible to characterize how a drug
is metabolized through the identification of
certain markers. 

7.6.1 Total systemic exposure

Total systemic exposure to an administered drug
is usually measured by the area under the drug
concentration curve. For each participant the
drug concentration (in nanograms/milliliter) can
be plotted as a function of time, as displayed in
Figure 7.1. The maximal drug concentration
(Cmax) and the time at which it is observed (tmax)
are also shown. These two parameters are
discussed in Section 7.6.2.
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Figure 7.1 Sample drug–concentration time curve for a single participant (Cmax of 290 ng/mL and tmax of 6 hours)



The estimated area under the curve from time
point zero to infinity (AUC(0��)) is calculated
using the trapezoidal rule. There are two steps in
this process:

1. Calculate the trapezoidal area between all
adjacent time points

2. Sum all areas calculated in the first step. 

This calculation is an estimate of the real
AUC(0��), but a meaningful and useful estimate.
By progressively increasing the sampling
frequency we could obtain more and more
precise measurements, but pragmatism dictates
frequency, and a reasonable frequency produces
a useful estimate of AUC(0��). AUC(0�t) denotes
the area under the curve from 0 to any time
point t.

7.6.2 Maximum concentration

Another important measure of absorption is the
peak or maximum concentration or maximum
systemic exposure (Cmax). It may be of interest to
know the Cmax associated with a beneficial effect.
However, it is more common to use the value of
Cmax to provide assurance that, despite observing
a specific Cmax value, there was no unwanted toxi-
city. If the Cmax is too high for a given dose of drug
as measured by a clinical effect, such a finding
could guide development of other formulations
and treatment schedules. The Cmax is calculated as
the maximum value of the drug concentration
during the period of monitoring. The time from
administration to achieve the Cmax is called tmax.
Depending on the intended clinical use for the
new drug, it may be more desirable to have
shorter or longer values of tmax. For example,
when in need of headache pain relief, we might
be interested in a tmax that is as short as possible.
As noted in the previous section, both Cmax and
tmax are shown in Figure 7.1, where Cmax has a value
of 290 ng/mL and tmax has a value of 6 hours.

7.6.3 Elimination

Elimination of a drug is measured using a quan-
tity called a half-life (t1/2). A half-life is the time
required to reduce the plasma concentration to

half its initial value. Longer half-lives can be
associated with desirable characteristics (for
example, longer activity requiring less frequent
administration of the drug) or undesirable ones
(for example, adverse effects). 

7.6.4 Excretion

Excretion concerns the removal of a drug
compound from the body. Both the original
(parent) drug compound and its metabolites can
be excreted. The primary mode of investigation
here is excretion balance studies. A radiolabeled
drug compound is administered and radioac-
tivity is then measured from excretion sites (for
example, urine, feces, expired air). These studies
provide information on which organs are
involved in excretion and the time course of
excretion. 

7.7 Analysis of pharmacokinetic and
pharmacodynamic data

Statistical analyses of pharmacokinetic and phar-
macodynamic effects are primarily descriptive in
nature. As described in Chapter 6, inferential
statistical methods such as hypothesis testing are
used to make decisions in the presence of uncer-
tainty, while limiting the likelihood of making
decisions with unwanted consequences (for
example, marketing an ineffective drug or not
bringing to market an effective one). The deci-
sions to be made in pharmacokinetic studies do
not have such dire consequences nor are they
directly applicable to the real world use of the
new drug. Rather, the data acquired in pharma-
cokinetic studies are used as a starting point to
identify doses, dosage forms, and dosage regi-
mens for the new drug which, when studied in
individuals with the disease, will allow a reason-
able chance at evaluating the potential benefits
and risks associated with its use. 

Pharmacokinetic measures such as AUC(0–24),
Cmax, and tmax are analyzed as continuous
measures. As seen in the example in Table 7.1,
measures of central tendency and dispersion can
be helpful to highlight differences among groups. 
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Before discussing the interpretation of the data
in Table 7.1, a couple of points about tabular
displays like this one are worth pointing out.
First, every study or analysis has a primary
comparison of interest: In this case it is to
compare AUC across groups. The ability of a
regulatory reviewer to interpret data with respect
to the primary comparison is aided by displaying
data across columns for the comparison. In this
case, a single summary measure of interest
(AUC) represents a row and the groups may be
compared by reading left to right. Secondary
comparisons should then be placed as rows on a
table. 

A common example of a secondary compar-
ison in pharmacokinetic studies is the concen-
tration of drug at various time points during the
study. It is important to know how the within-
group average concentration changes over time,
but it is more important to know how the mean
concentration differs among groups at one time
point. The fundamental nature of clinical trials is
comparative, above all else. The second point
about tabular displays such as this one is that the
table itself is well labeled with titles and column
headers. In the regulated world of drug develop-
ment, presentation is extremely important.
“Substance” is our first concern, but “style” is
certainly important to convey the substance to a
regulatory reviewer. 

Descriptive analyses were discussed in 
Chapter 5, particularly measures of central
tendency and dispersion. Those discussions now
enable us to examine the pharmacokinetic data
presented in Table 7.1. As can be seen, a total of
10 participants were studied in each group. The
mean (SD) AUC values were 812 (132), 1632

(264), and 2237 (412), respectively. From these
results we can conclude that the three times
daily dosage regimen resulted in overall greater
systemic exposure to the drug. 

7.7.1 Decisions and inferences from FTIH
studies

Having completed one or more pharmacokinetic
and pharmacodynamic studies in early develop-
ment, a multidisciplinary team, consisting of
clinical scientists, regulatory specialists, pharma-
cologists, and statisticians, will examine these
early clinical data to plan for studies of early effi-
cacy and safety in individuals with the disease or
condition of interest. They will interpret the data
to decide which combinations of dosage forms,
concentration, and regimen resulted in the
optimal exposure to the drug with minimal
apparent toxicities. In many instances the data
may be too ambiguous to make clear decisions,
especially as a degree of subjectivity is present in
such decisions. For example, two regimens may
have similar total exposure (as measured by
AUC) but one may be associated with a greater
Cmax, which may lead to adverse effects in subse-
quent studies. These judgments and decisions
are fairly imperfect anyway because the relation-
ship between pharmacokinetics and clinical
effects is more relevant. 

For this reason alone, early clinical studies are
not considered definitive and most sponsors are
wise to interpret the data carefully. Ideally,
certain combinations of dosage forms, drug
concentrations, and regimens can be eliminated
from future consideration as a result of early
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Table 7.1 Pharmacokinetic measures: Mean (SD) for three dosage regimens of a new investigational drug

Dosage regimen

20 mg once a day 20 mg twice daily 20 mg three times daily  
(n � 10) (n � 10) (n � 10)

AUC(0–24) (ng h/mL) 812 (132) 1632 (264) 2237 (412)
Cmax (ng/mL) 174 (61) 181 (74) 308 (94)
tmax (h) 2.4 (0.9) 2.6 (0.6) 7.4 (1.0)



studies (for example, inadequate exposure, too
much exposure). Pharmaceutical companies can
then conduct future research on the drug in
forms that may realistically provide a benefit.
AUC and Cmax are very useful measures in initial
clinical development activities and, accordingly,
we need statistical methods and analyses to
assess them in a scientific and therefore infor-
mative manner. However, these are not the para-
meters that are of ultimate interest: It is the
clinical benefits and risks of the new drug that
are ultimately the characteristics of importance.
The statistical evaluation clinical benefits (thera-
peutic efficacy) and risk (adverse events, etc.) are
covered in Chapters 8–11. 

7.8 Dose-finding trials

A drug’s dosing regimen comprises the dose of
the drug given and the schedule on which it is
administered – that is, both concentration and
timing are important characteristics. A variety of
dosing regimens may be explored in these trials,
and the specific regimens chosen in a specific
trial depend on the objectives of the trial and the
type of drug being studied. 

Dose-finding studies are conducted to provide
information that facilitates selection of a safe
and efficient drug administration regimen.
Chevret (2006a, p 5) defined dose-finding trials
as “early phase clinical experiments in which
different doses of a new drug are evaluated to
determine the optimal dose that elicits a certain
response to be recommended for the treatment
of patients with a given medical condition.”
Chevret (2006a) also provided some related
definitions that are helpful:

• Dose: The amount of active substance that is
given in a single administration or repeated
over a given period, as dictated by an admin-
istration schedule of equal or unequal single
doses at equal or unequal intervals.

• Response: The outcome of interest in study
participants. This can be defined in pharma-
codynamic terms as the therapeutic points of
interest, or in terms of pharmacotoxicity/
tolerability of the drug.

• Maximum tolerated dose (MTD): The highest
dose that produces an “acceptable” risk for
toxicity or, expressed differently, the dose
that, if exceeded, would put individuals at
“unacceptable” risk for toxicity.

• Minimally effective dose (MED): The dose that
elicits a specified lowest therapeutic response.

Before continuing with our current discussions,
the word “acceptable” in the third bullet point
may initially seem somewhat incongruous here.
All drugs lead to some side-effects, that is, some
adverse events. Therefore, there is some degree
of risk associated with taking any drug. To 
be useful, a drug needs to have an acceptable
benefit–risk ratio – that is, the benefit must be
larger than the risk, and it must be larger by a
certain amount. Stating the precise amount by
which a drug must provide more benefit than it
may lead to harm is a difficult judgment call that
must be made ultimately by physicians.
However, we can make some observations. If 
a drug that is extremely beneficial to very sick
patients shows relatively strong side-effects, a
clinician may well decide that the benefit–risk
ratio is still acceptable. In contrast, a drug taken
for a relatively mild condition such as a head-
ache would need to show relatively much less
strong side-effects for the benefit–risk ratio to be
acceptable.

Human pharmacology studies often involve
dose-finding trials that focus on the evaluation
of MTDs such as trials in oncology. It is impor-
tant to note that studies that aim to define an
MTD require clear and consistent definitions of
toxicities and toxicity grades. In many disease
areas outside cancer it is difficult to define the
MTD in a clear manner because the drugs them-
selves may not be as apparently toxic as a new
chemotherapeutic. Dose-finding trials that focus
on the evaluation of MED are commonly
referred to as early Phase II trials. (As noted in
Chapter 2, the categorization of clinical trials
into Phase I, II, or III, although very common,
can result in confusing and less than definitive
nomenclature. Here, the nomenclature “early
Phase II trials” is used to distinguish these trials
from therapeutic exploratory or “late Phase II
trials.”) One common design for FTIH studies is
a dose-escalation cohort study. In this design the
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first cohort consists of participants administered
the lowest dose of the drug or placebo. An assess-
ment of the safety of the first dose is undertaken
and, if the lowest dose is considered safe, a
second cohort of participants is studied at the
next highest dose. Additional cohorts are studied
in this manner until a dose has been found to
have unacceptable risks or the maximum dose
has been studied in the final cohort. Chevret
(2006b) provides a comprehensive discussion of
dose-finding experiments.

7.9 Bioavailability trials

Another type of early clinical study may be
conducted with the primary objective of estab-
lishing the bioavailability of a particular dosage
form, concentration, and regimen. Bioavail-
ability can be defined as the proportion of an
administered dose that reaches the systemic
circulation in an unchanged form. Maximum
bioavailability results after an intravenous injec-
tion of the drug. In this case, the bioavailability
is by definition 100%. When administered
orally, however, a drug experiences first-pass
metabolism, also called first-pass loss, before it
reaches the systemic circulation. 

Metabolism is a complex and tremendously
beneficial process in most cases, but one that
poses interesting challenges in pharmacological
therapy. We are constantly exposed to xenobi-
otics, substances that are foreign to our bodies.
For example, our modern environment is a
constant source of xenobiotics that are toxi-
cants. These can enter our bodies via our lungs
as we breathe and our stomachs as we eat, and
some can enter the body through our skin. In
addition, animal and plant food contains many
chemicals that have no nutritional value but
do have potential toxicity. Fortunately, our
bodies are very good at getting rid of bodily
toxicants. The processes of metabolism and
excretion are involved in this. As noted by
Mulder (2006), metabolism can be divided into
three phases:

1. Phase 1: The chemical structure of the
compound is modified by oxidation, reduc-

tion, or hydrolysis. This process forms an
acceptor group.

2. Phase 2: A chemical group is attached to the
acceptor group. This typically generates
metabolites that are more water soluble and
therefore more readily excreted.

3. Phase 3: Transporters transport the drug or
metabolites out of the cell in which Phase 1
and Phase 2 metabolism has occurred.

Along with all animals, humans have a wide
variety of xenobiotic-metabolizing enzymes
that convert a wide range of chemical structures
to water-soluble metabolites, which can be
excreted in urine. Humans have a high concen-
tration of these enzymes in the gut mucosa
and the liver. This arrangement ensures that
systemic exposure to potentially toxic chemicals
is limited. A high percentage of these may be
caught in first-pass metabolism. Xenobiotics
that are absorbed from the intestine travel via
the hepatic portal vein to the liver, the major
organ of metabolism, before being circulated
systemically, and metabolism in the liver means
that damage to the rest of the body is amelio-
rated. Under normal circumstances this is
extremely advantageous.

From the point of view of pharmacological
therapy, however, this protective system repre-
sents a considerable challenge. Orally adminis-
tered drugs also travel via the hepatic portal vein
to the liver before being circulated systemically.
Therefore, before the drug gets a chance to exert
any therapeutic activity in the body, it has to
withstand this first attempt to degrade it. This
first-pass metabolism is more or less effective
depending on factors including the drug’s
chemical and physical properties, but almost
certainly there will be some degree of degrada-
tion. This means that most orally administered
drugs display less than 100% bioavailability.

The most rigorous quantitative way to assess
the extent of bioavailability for an orally admin-
istered drug is to compare the areas under the
respective plasma–concentration curves after
oral and intravenous administration of the same
dose of drug. The AUC is then calculated for
both, and a ratio calculated by dividing the AUC
for the oral administration by that for the intra-
venous administration. If the area ratio for the
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drug administered orally and intravenously is
0.5 (which can be expressed as 50%), only 50%
of the oral dose was absorbed systemically. 

Consider the development of a new drug that
is going to be given orally. Assessing its bioavail-
ability is important. An intravenous infusion of
the new drug will result in a certain systemic
exposure as measured by the AUC. This amount
of systemic exposure will by definition be called
100% bioavailability. It is important to identify
the dosage form and schedule that provide rela-
tively high bioavailability. In this case, partici-
pants may be randomly assigned to receive one
of the following drug administration regimens:

• intravenous infusion of the drug for 4 hours
• 10 mg tablet once a day 
• 10 mg tablet twice a day 
• 10 mg three times a day 
• 20 mg tablet once a day 
• 20 mg tablet twice a day 
• 20 mg three times a day. 

At the end of the study, the pharmacokinetic
characteristics of the drug would be evaluated,
and the systemic exposure for each dosage
regimen compared with the intravenous route of
administration. 

7.10 Other data acquired in early
phase clinical studies

As we saw in Section 7.5, one research question
of interest in early phase trials is:

• How safe is the new drug? Evaluations include
clinical laboratory tests, physical examina-
tions, vital signs, adverse events, and cardiac
effects through ECG monitoring.

More extensive discussion of these safety assess-
ments is provided in the following chapters, but
it is useful to introduce these topics at this point.

7.10.1 Clinical laboratory tests

There is a very wide range of clinical chemistry
tests that can be conducted, including liver

(hepatic) and kidney (renal) tests. These are
discussed in Section 9.2.

7.10.2 Physical examinations

Although perhaps not as sensitive as other safety
assessments, physical examinations are still 
very helpful, because a general exam may iden-
tify more pronounced effects to the drug such as
allergic reactions or edema (fluid retention).
Data collected from physical exams include a
subjective assessment by the investigator as 
to whether the participant has “normal” or
“abnormal” function for each body system (for
example, respiratory, dermatologic) examined. If
the body system is considered abnormal, addi-
tional descriptions of the particular abnormality
are also recorded. Data recorded as normal or
abnormal are measured on the nominal scale.
These data are typically summarized by tabu-
lating the number and percentage of individuals
with each result. 

7.10.3 Vital signs

Monitoring of vital signs, including heart rate,
respiration rate, and blood pressure, is carried
out on a regular basis, typically several times a
day. Each of these is measured on the continuous
scale. Analyses of these outcomes primarily focus
on measures of central tendency and dispersion. 

7.10.4 Adverse events

The collection of adverse events can be based on
observation by either the investigator or partici-
pant self-report. Participant self-reports of
adverse events can vary according to how the
information is elicited from them. It is advisable
to standardize the manner in which participants
are asked about how they feel during the trial.
Data collected from adverse events usually
include text descriptions of several characteris-
tics of the adverse event:

• the adverse event, for example, “rash on left
forearm”
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• the severity or intensity of the adverse event,
for example, mild, moderate, severe

• the date and time of onset
• the outcome of the adverse event (resolved

without sequelae, resolved with sequelae, or
ongoing)

• any treatments administered for the adverse
event

• any action taken with the study drug (for
example, temporarily discontinued, stopped,
none)

• whether or not the adverse event is considered
serious. 

To standardize the reporting of adverse events,
the adverse event descriptions are coded using
medical dictionaries such as MedDRA (Medical
Dictionary for Drug Regulatory Affairs coding
dictionary: See, for example, Chow and Liu,
2004, p. 563) or COSTART. The original descrip-
tion of the adverse event provides qualitative
information about the finding that may not be
captured in the coded event. Both aspects – that
is, coded and uncoded – are retained in the
scientific database for reporting and analysis. 

7.11 Limitations of early phase trials

In this chapter we have discussed the impor-
tance, and the strengths, of early phase clinical
trials. Before moving on to later phase clinical
trials, it is also appropriate to consider their limi-
tations. The word “limitations” should not be
seen as a negative assessment in this context. As
we will discuss in Chapter 12, later-phase preap-
proval clinical trials also have their limitations.
Acknowledgment of the strength and the limita-
tions of any method of inquiry is legitimate and
helpful: As Katz (2001, p xi) noted, “to work
skillfully with evidence is to acknowledge its
limits.”

7.11.1 Studying pharmacokinetics in
healthy participants

Studying the pharmacokinetics of a new investi-
gational drug in FTIH studies – that is, in indi-
viduals with healthy renal and hepatic systems –
results in a pharmacokinetic assessment that is
somewhat artificial. In later stages of develop-
ment, it may be necessary to study the drug in
individuals with impaired kidney or liver func-
tion, especially if these conditions are expected
in the types of patients who will be prescribed
the drug if and when it is approved for
marketing. However, this initial FTIH assessment
can serve as a useful starting point and provide
guidance for such later studies. 

7.11.2 Extremely tight experimental
control 

It may seem paradoxical to see tight experi-
mental control listed in a section discussing the
limitations of a clinical trial. After all, in
Chapter 4 we extolled the merits of such control.
The issue here is related to the issue addressed in
Section 7.2. Since the investigational drug is
administered in such a carefully controlled
manner, the generalizability of the results from
these studies becomes questionable. If and when
the drug is approved for marketing, patients who
are prescribed the medication will be unlikely to
take the medication in such a precisely
controlled manner. As in many places in drug
development, there are advantages and disad-
vantages to this strategy. We have noted the
disadvantages and now focus on the advantages. 

The advantage of very tight control in early
Phase II (therapeutic exploratory) trials is that
the “pure” efficacy of the drug can be assessed as
well as possible. The drug has every chance to
demonstrate its efficacy in these circumstances.
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In other words, we can assess how well the drug
can work. It is not so easy to assess how the drug
will work if and when approved and prescribed
to a very large population of heterogeneous
patients who take the drug in various states of
adherence with the prescribed regimen, but that
is another question for another stage of the
clinical development program.
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7.12 Review

1. What are some reasons that inferential statistics
(that is, hypothesis testing) are not used very often
in early phase studies?

2. What information from early phase trials may be
used to inform the study designs of therapeutic
exploratory and therapeutic confirmatory trials?

3. Name three advantages or strengths of early phase
trials as they pertain to the overall development of
a new drug.

4. Name three disadvantages of early phase trials as
they pertain to the overall development of a new
drug.





8.1 Introduction

The regulatory standard for the approval of new
drugs for marketing can be framed in the
following manner: The benefits associated with
the new treatment outweigh the risks associated
with the new treatment. All pharmaceutical
products carry the potential for side-effects,
some of which are more serious than others.
Therefore, for a given investigational drug to be
approved for marketing the regulatory agency
needs to be presented with compelling evidence
that the likely benefits to the target population
with the disease or condition of interest out-
weigh the likely risks. This requires conducting
clinical trials that employ samples selected from
the target population, and use of Statistics to
design these trials appropriately, collect optimum
quality data, analyze and interpret the data
correctly, and make inferences about the popula-
tion from which those samples were drawn. 

Judgments about the benefit–risk profile of an
investigational drug require, by definition,
consideration of both benefit and risk. This
means that the therapeutic benefit of the inves-
tigational drug needs to be assessed quantita-
tively, and considered together with quantitative
assessments of risk. In this chapter we discuss the
assessment of risk in terms of evaluating the
drug’s safety profile. Even though we typically
use the nomenclature benefit–risk profile and
not risk–benefit profile, we discuss safety evalua-
tions first because the safety of patients must be
our first concern.

Safety analyses in pharmaceutical clinical trials
tend to be largely descriptive because there are so
many adverse events (AEs) and other safety para-
meters evaluated, and analysis of them leads to
issues of multiplicity (see Section 8.9). As

described in Chapter 6, the appropriate use of
inferential statistics requires a prespecified
hypothesis of interest. As knowledge is gained
about an experimental therapy during its devel-
opment (for example, in therapeutic exploratory
trials) a specific hypothesis about the drug’s
safety may emerge and can then be tested appro-
priately. In such instances there are inferential
statistical analyses that can be used for safety
data, and we present some of those applicable to
AEs in this chapter. (See also Chow and Liu
[2004b, Chapter 13] for additional discussions of
safety assessment.)

8.2 The rationale for safety
assessments in clinical trials

When a clinician prescribes a new treatment for
a patient for the first time, the clinician and
indeed the patient may be interested in the
following questions about the safety of the drug: 

• How likely is it that my patient will experience
an adverse drug reaction? (The term “adverse
drug reaction” refers to an unwanted occur-
rence caused by a drug. Hence, a prescribing
clinician [and researchers conducting post-
marketing surveillance studies] is concerned
with adverse drug reactions. During preap-
proval clinical trials, we do not know which
treatment an individual is receiving, so
unwanted occurrences are called AEs. Formal
definitions are provided shortly.)

• How likely is it that my patient will experi-
ence an adverse drug reaction that is so
serious that it may be life threatening?

• How will the risk of an adverse drug reaction
vary with different doses of the drug? 
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• How will the risk of an adverse drug reaction
change with the length of treatment? 

• Are the typical adverse drug reactions
temporary or permanent in nature? 

• Are there specific clinical parameters that
should be monitored more closely in my
patient while he or she is receiving this treat-
ment because of increased risks from the
newly marketed drug? 

At the time that a new drug receives marketing
approval, the best information available upon
which the clinician can form an answer to these
questions is the information gathered during the
preapproval clinical trials. This information is
provided to the clinician (and to all patients
receiving an approved drug) in the package
insert. (This situation changes in due course as
additional [and more detailed] safety evaluation
takes place during the process of postmarketing
surveillance [see Mann and Andrews, 2007].
However, this process may take several years to
acquire meaningful data, and so the statement in
the text may remain true for quite a while.)

A number of clinical parameters are assessed
during preapproval clinical trials. This informa-
tion provides the basis upon which the clinician
will formulate answers to these questions. The
precise set of clinical parameters employed in a
given trial may vary according to the disease and
the type of drug under study. In general, the
safety evaluation of new drugs is intended to
detect quantifiable effects in as many organs and
systems as possible. In other words, when
looking for risks associated with a new drug, the
strategy is to “cast a wide net.” 

8.3 A regulatory view on safety
assessment

The view of the US Food and Drug Administra-
tion (FDA) concerning safety reviews is
presented in their guidance document on the
safety review of new drug applications (US FDA,
2005, p 5). As this guidance states, most thera-
peutic exploratory and therapeutic confirmatory
trials are carefully designed to establish that a

new drug is efficacious, while controlling the
probability of committing a type I or II error.
Unless safety concerns have arisen in earlier
stages of the clinical development program,
these trials typically do not involve assessments
of safety that are as sensitive as those designed
for establishing the efficacy of the investiga-
tional drug. Quoting from this guidance:

In the usual case, however, any apparent finding
emerges from an assessment of dozens of poten-
tial endpoints (adverse events) of interest,
making description of the statistical uncertainty
of the finding using conventional significance
levels very difficult. The approach taken is there-
fore best described as one of exploration and
estimation of event rates, with particular atten-
tion to comparing results of individual studies
and pooled data. It should be appreciated that
exploratory analyses (for example, subset
analyses, to which a great caution is applied in a
hypothesis testing setting) are a critical and
essential part of a safety evaluation. These
analyses can, of course, lead to false conclusions,
but need to be carried out nonetheless, with
attention to consistency across studies and prior
knowledge. The approach typically followed is
to screen broadly for adverse events and to
expect that this will reveal the common adverse
reaction profile of a new drug and will detect
some of the less common and more serious
adverse reactions associated with drug use. 

US FDA (2005, p 5)

Safety evaluations of investigational drugs focus
primarily on estimating the risk of unwanted
events associated with the drug, and, more
specifically, on the risk of those events relative to
what would be expected in the patient popula-
tion as a whole if the drug were to be approved.
Although more specialized tests and assays may
be evaluated in certain instances, in this chapter
and in Chapter 9 we describe statistical
approaches used for the most common clinical
data used to assess the safety of new drugs: AEs,
clinical laboratory data, vital signs, and changes
in ECG parameters. This chapter focuses on
discussions of AEs. Adverse events are nominal
data, and therefore summaries of AEs are based
on counts.
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8.4 Adverse events

ICH Guidance E6 (R1) (1996, p 2) provides the
following definition of the term adverse event:

Any untoward medical occurrence in a patient
or clinical investigation subject administered a
pharmaceutical product and which does not
necessarily have a causal relationship with the
treatment. An adverse event (AE) can therefore
be any unfavourable and unintended sign
(including an abnormal laboratory finding),
symptom, or disease temporally associated with
the use of a medicinal (investigational) product,
whether or not associated with the medicinal
(investigational) product.

ICH Guidance E2A (1995, p 3) provides a defin-
ition of the term “adverse drug reaction” that is
applicable during preapproval clinical experi-
ences with a new medicinal product:

All noxious and unintended responses to a
medicinal product related to any dose should be
considered adverse drug reactions. 

There are various types of AEs, as shown in 
Table 8.1. 

The length of observation for AEs is typically
specified in the study protocol. In most instances,
on-treatment AEs (also called treatment-
emergent AEs) are considered to be those
events with an onset from the time that study
treatment has been initiated through the
protocol-defined follow-up period. For example,

a protocol may specify that AEs occurring within
30 days of the last exposure to the study drug be
reported. In some therapeutic areas it may be
desirable to assess separately those AEs that
occur once treatment has been discontinued, for
example, to evaluate withdrawal or rebound
effects during the follow-up period. 

In the hypothetical data presented in Table 8.1,
the numbers of participants in the drug and
placebo groups are deliberately similar but not
identical. This is why provision of both absolute
numbers and percentages is so informative when
making comparisons between the treatment
groups.

8.5 Reporting adverse events

Adverse events are typically reported in one of
two ways: 

1. By study investigators on the basis of their
own observations (for example, from a
physical exam)

2. By the study participant as a self-reported
event.

In the second case, it is advisable to elicit AEs
from participants using a standardized script to
ensure that they are collected as accurately as
possible. For example, a question such as “Have
you noticed anything different or had any
health problems since you were last here?” is a
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Table 8.1 Participant accountability (Safety Population: Study AB0001)

Adverse events (AEs) Number (%) of participants 

Placebo (n � 2603) Drug (n � 2456)

Pre-treatment AEs 24 (1) 31 (1)
On-treatment AEsa 297 (11) 386 (16)
Drug-related AEsb 31 (1) 42 (2)
Serious AEs 20 (1) 27 (1)
AEs leading to withdrawal 12 (� 1) 17 (1)

aAEs that occur on any treatment, whether active or nonactive.
b”Drug-related” is a designation made by an investigator who decides that there is a reasonable chance that the AE was caused by the treatment being

taken.



way of asking a participant about potential AEs
without leading him or her to answer in a certain
way. 

Study personnel who interact with partici-
pants are trained to capture the essence of any
self-reported AEs on a case report form (CRF),
one of the most important documents in clinical
trials. Examples of reported AEs include “short-
ness of breath,” “rash on left wrist,” “dry mouth,”
and “vomiting.” In addition to the description of
the nature of the AE, additional information
such as the following is typically collected: 

• the severity
• the date and time of onset
• the resolution date (if the event resolved), any

action that was taken with the study drug (for
example, stopped, dosage reduced)

• the presumed relationship to the study
treatment

• whether or not the AE was considered
“serious” according to a regulatory definition. 

8.6 Using all reported AEs for all
participants

The first question listed in Section 8.2 was: “How
likely is it that my patient will experience an
adverse drug reaction?” We turn this question
around, and reframe it in terms of assessing how
likely it is that a participant in a preapproval
clinical trial will experience an AE. The data that
are typically used to answer this question are all
on-treatment AEs for all participants treated (or
exposed) in each treatment group. The proba-
bility that a participant in a particular treatment
group will report any AE is estimated by the
proportion of participants in the group who
reported any AE. 

When describing proportions, it is important
to note what event is being counted in the
numerator and what event in the denominator.
Many times it is clear what the appropriate
numerator for a proportion should be, but not
so clear what the appropriate denominator
should be. The simplest starting point for deter-
mining which participants should be counted
in the denominator is to identify all those who

are at risk of experiencing the event of interest.
For example, the proportion of participants
experiencing an AE in the first 90 days should
be calculated by counting the number of parti-
cipants who were treated for at least 90 days in
the denominator and the number of parti-
cipants who were treated for at least 90 days
and reported an AE in the first 90 days in the
numerator.

As described earlier, proportions are numbers
between 0 and 1. We have also noted that it is
common for proportions to be multiplied by 100
so that the quantity being assessed is expressed
in percentage terms. In the present context, we
are interested in the percentages of participants
experiencing a certain event. 

The probability of an individual reporting an
AE in a trial is estimated by the following
proportion:

[Number of participants who were 
administered the treatment and reported 

any AE]
––––––––––––––––––––––––––––––––––––––––

[Number of participants who were
administered the treatment]

Some participants will have reported more than
one AE. For this analysis, we count participants
only once if they experienced any AE(s). 

As noted in Chapter 6, this calculated propor-
tion is considered a point estimate, because it
was obtained from a single sample and the esti-
mate does not take into account any variability
attributed to sampling. In most clinical study
reports (and, ultimately, package inserts for
marketed products), the point estimate of the
proportion of individuals experiencing AEs is
expressed as a percentage of individuals. This
quantity can be thought of as a rate (ratio of
individuals experiencing an event among those
exposed to the treatment) or, in the terminology
used in the discipline of epidemiology, the
incidence of AEs. 

Calculating the proportion (or, equivalently,
the percentage) of individuals reporting any AE
for all treatment groups in a study enables us to
see whether AEs are more or less likely in the test
treatment group than in other groups. The use of
an inactive control group (for example, a
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placebo) in a study allows us to compare the
probability attributed to the test treatment group
to what can be thought of as the background
risk, which is approximated for by the risk in the
inactive control group. 

8.7 Absolute and relative risks of
participants reporting specific AEs 

Similar analysis approaches are used to describe
the risk, in both the absolute and relative
(comparative) sense, of individuals reporting
specific AEs. These analyses are much more
useful clinically because not all AEs are created
equal. One example is to estimate the proportion
of individuals in a given group who reported a
headache. To do this in a standardized manner it
is necessary to “code” the AE descriptions (for
example, “tension headache”, “achy head”). The
use of the MedDRA coding dictionary for this
purpose is now widely accepted, and in some
instances may be required. Coding is performed
before statistical analysis and the “coded” terms
are used in statistical summaries that require
counting of participants reporting each event. 

The proportion from the sample in the study
can be estimated as:

[Number of participants who received 
the treatment and reported a 
headache during the study]

––––––––––––––––––––––––––––––––––
[Number of participants who received 

the treatment].

For example, if 25 participants received treat-
ment A and, among them, 5 reported a head-
ache, the estimated proportion of participants
reporting a headache is 5/25 � 0.20, which
can also be expressed as 20%. When such
an analysis is repeated for all AEs reported,
and the quantities are expressed as percentages
and displayed in tabular form in a package
insert, it is relatively easy for prescribing physi-
cians and their potential patients to answer
their questions.

Suppose that an investigational antihyperten-
sive drug is evaluated at multiple doses in a
parallel-group placebo-controlled study. Partici-
pants in this therapeutic exploratory study were
randomly assigned to receive either placebo or
one of three possible doses of the test treatment
(low, medium, or high). The treatment period
was for 6 weeks. The number and percentage of
participants experiencing any AE, and particular
AEs, are displayed in Table 8.2. 

We now have data with which to begin to
answer the question: How likely is a patient to
experience an AE after use of the new treatment?
As this study included three doses of the test
treatment, we need to consider the dose in our
answer. Examining the top row in Table 8.2, it
seems that the overall chance of observing an AE
at all doses of the active treatment is similar to
that for the placebo group: The percentages for
“Any event” range from 10% to 13% across the
groups with no apparent relationship to dose.
From these data, our best guess as to the proba-
bility of an individual treated with the test treat-
ment experiencing any AE is between 10% and
13%. However, the probability of experiencing
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Table 8.2 Number and percentage of participants reporting adverse events (AEs) by group

AE Placebo (n � 98) Low (n � 101) Medium (n � 104) High (n � 97)

Any event 12 (12%) 13 (13%) 10 (10%) 12 (12%)
Headache 6 (6%) 8 (8%) 9 (9%) 8 (8%)
Dizziness 1 (1%) 3 (3%) 4 (4%) 3 (3%)
Upper respiratory infection 4 (4%) 1 (1%) 2 (2%) 2 (2%)
Nausea 1 (1%) 2 (2%) 1 (1%) 3 (3%)



an AE is almost equal to the probability of expe-
riencing an AE after treatment with placebo. The
implication of this result is that the risk of expe-
riencing an AE after treatment with the new drug
is no different than if the participant had not
been treated with the drug.

Looking at the specific AEs in Table 8.2, there is
really little difference among the groups with one
exception, the AE of dizziness. Only 1% of parti-
cipants in the placebo group reported dizziness
compared with 3–4% of participants treated with
the active drug. How might a regulatory reviewer
interpret these data? The first conclusion is that
dizziness was not reported very often in any
participant group, so, if the drug is approved and
marketed, most patients treated with the new
drug would probably not have a problem.
However, the difference in the percentage of
participants might generate some concern.

Initially, the absolute difference in dizziness
rates (2–3%) may not seem extreme. However,
when considering the rates in relative terms,
those treated with the investigational drug are
three to four times as likely to experience dizzi-
ness as someone who did not receive the active
drug. This measure of risk is called a relative risk
and is calculated as follows:

The probability of the event in group A
Relative risk � –––––––––––––––––––––––––––––––––––––.

The probability of the event in group B

In many instances, the communication of a
risk (probability of experiencing the event) is
most clear with an absolute measure (such as 
the point estimate for a group) and a relative
measure (such as the relative risk). The relative
risk is a ratio of two probabilities, and can
therefore range from zero to infinity. 

8.8 Analyzing serious AEs

ICH Guidance E2A (1994) provides the following
definition of a serious event: A serious adverse
event (experience) or reaction is any untoward
medical occurrence that at any dose:

• results in death
• is life threatening (note that the term “life

threatening” in the definition of “serious”

refers to an event in which the patient was at
risk of death at the time of the event; it does
not refer to an event that hypothetically
might have caused death if it were more
severe)

• requires inpatient hospitalization or
prolongation of existing hospitalization

• results in persistent or significant disability/
incapacity

• is a congenital anomaly/birth defect.

A similar analysis can be performed to address
another question of interest: How likely is it that
an individual will experience an adverse effect
that is potentially life threatening? The data used
to answer this question include all of the AEs
that were rated as serious at the time of
reporting. We would estimate the probability by
calculating the proportion of participants treated
in each group who experienced a serious AE. The
proportions (or, equivalently, the percentages) of
patients could be compared across groups to see
if there was an increased risk of a serious AE
associated with the new treatment. 

8.9 Concerns with potential multiplicity
issues

As noted earlier, safety analyses in clinical trials
tend to be largely descriptive because so many
AEs and other safety parameters are evaluated. If
we were to perform hypothesis tests for the large
number of parameters evaluated – for example,
for all AEs reported in a trial – it is probable that
at least one of the tests would be nominally
statistically significant at the a � 0.05 level. In
most instances the statistical analysis is planned
so that the probability of making a type I error is
� 0.05. In Table 8.2 rates were presented for five
AEs (including any event). If we were interested
in identifying statistically significant differences
for each active dose group versus placebo, we
would need to conduct 15 hypothesis tests (three
dose groups to be tested against placebo for five
AEs). As we saw in Chapter 6, if we test a number
of hypotheses without taking into account
multiplicity of comparisons we will likely
commit a type I error. For the 15 tests that could
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be conducted using the data in Table 8.2, it is
certainly possible that one of them might have a
nominal p value � 0.05 by chance alone.
Committing a type I error in this setting would
mean concluding that the new treatment was
associated with an excess risk of an AE when that
really is not the case. 

If a single test were considered nominally
statistically significant after looking at so many
other AEs, the result should be treated with a
great deal of skepticism. Before making any regu-
latory or business decisions on the basis of such
a result, medical, clinical, and statistical experts
should, at a minimum, evaluate the medical and
statistical plausibility of the result. Ideally, addi-
tional data would be collected to provide
supporting evidence for such a finding. As we
have pointed out a number of times already,
statistical results such as these aid in decision-
making, in concert with insights and evidence
from other disciplines. This view, as it relates to
analyses of safety data, is perfectly in line with
the EMEA’s Committee for Proprietary Medicinal
Products (CPMP) (2002, p 4) guidance, Points to
Consider on Multiplicity Issues in Clinical Trials:

In those cases where a large number of statis-
tical test procedures is used to serve as a flag-
ging device to signal a potential risk caused by
the investigational drug it can be generally
stated that an adjustment for multiplicity is
counterproductive for considerations of safety.
It is clear that in this situation there is no
control over the type I error for a single
hypothesis and the importance and plausibility
of such results will depend on prior knowledge
of the pharmacology of the drug.

8.10 Accounting for sampling variation 

Hypothesis tests and interval estimates of
proportions are frequently presented in clinical
study reports, especially in earlier studies of
development when late phase studies are being
planned. Accordingly, discussion now turns to
analysis methods that can be used to account for
sampling variation and, therefore, determine if
the results observed are likely due to chance
alone.

In Chapter 6 we described the basic compo-
nents of hypothesis testing and interval estima-
tion (that is, confidence intervals). One of the
basic components of interval estimation is the
standard error of the estimator, which quantifies
how much the sample estimate would vary from
sample to sample if (totally implausibly) we were
to conduct the same clinical study over and over
again. The larger the sample size in the trial, the
smaller the standard error. Another component
of an interval estimate is the reliability factor,
which acts as a multiplier for the standard error.
The more confidence that we require, the larger
the reliability factor (multiplier). The reliability
factor is determined by the shape of the
sampling distribution of the statistic of interest
and is the value that defines an area under the
curve of (1 � a). In the case of a two-sided
interval the reliability factor defines lower and
upper tail areas of size a/2.

If the shape of the sampling distribution is
symmetric (for example, the Z or t distributions),
the reliability factor used for the lower and upper
limits is exactly the same, but with a change in
sign. Some sampling distributions are not
symmetric (for example, the F distribution for
the ratio of two variances) and, therefore, the
reliability factors for the lower and upper limits
are not equal. 

Let us now look at how we would calculate a
confidence interval for a single proportion, such
as a within-treatment group proportion of
participants experiencing an AE. 

8.11 A confidence interval for a sample
proportion

The estimator for a sample proportion can be
defined as follows:

number of observations with the event of interest
p̂ � ––––––––––––––––––––––––––––––––––––––––––––––,

total number of observations at risk of the event

which is an unbiased estimator of the unknown
population proportion, P. The standard error of
the estimator, 

_____
p̂ q̂

SE(p̂) � � ––––,
n
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where q̂ � 1 � p̂, the sample proportion of obser-
vations without the event of interest. The esti-
mator p̂ is approximately normally distributed
for large samples (that is, when p̂n � 5) so the
reliability factor for interval estimates will come
from the Z distribution. For now, we will
consider only two-sided confidence intervals.
Hence, the reliability factor Z1�a/2 will be the
specific value of Z such that an area of (1 � [a/2])
lies to the right of the cutoff value. A two-sided
(1 � a)% confidence interval for a sample
proportion, p̂ is:

p̂ � z1�a/2SE(p̂).

This is also a confidence interval for the para-
meter p, probability of success, of the binomial
distribution. The use of the Z distribution for
this interval is made possible because of the
Central Limit Theorem. Consider the random
variable X taking on values of 0 or 1, such that
the sampling distribution of the sample mean
(the proportion) is approximately normally
distributed. A table of the most commonly
encountered values of the standard normal
distribution is provided in Table 8.3 
for quick reference. Others are provided in
Appendix 1.

This methodology can be used to answer a
question about the data presented in Table 8.2,
where the percentages of participants reporting
headache during the 6-week study were 6%, 8%,
9%, and 8% for the placebo, low-dose, medium-
dose, and high-dose groups respectively.
Headaches may be reported fairly often among
people with hypertension as a matter of course,
but these data suggest that the proportion
(expressed here as a percentage) of individuals
reporting headache is a bit higher for individuals

treated with the active treatment than for those
in the placebo group. We can calculate the 95%
confidence interval for the proportion of partici-
pants in the combined active dose groups
reporting a headache. We can also calculate 
the corresponding confidence interval for the
placebo group and compare the two.

The research question

Is the risk (or probability) of experiencing a
headache after treatment with the active drug
(all doses combined) higher than the risk after
treatment with placebo? 

Study design

In this study, an investigational antihypertensive
drug was evaluated at multiple doses in a
parallel-group, placebo-controlled study. An
important feature of the design was random-
ization to treatment, which provides us with
unbiased (accurate) estimates of treatment 
differences. Another feature of the design of the
statistical analysis is that we have chosen to
compare the rates of one particular AE among
many only after seeing the results (that is, a
posteriori). As we have already seen, any differ-
ence between treatments that we may find at
this point may be a type I error resulting from
the large number of AEs that could have been
selected for this particular analysis. 

Data

The data for this analysis are the counts of parti-
cipants treated in each group (that is, the denom-
inator for within-group proportions) and the
counts of participants within each group who
reported a headache during the study (that is, the
numerator for the within-group proportions). As
the research question involved all active dose
groups combined (that is, any dose of the drug) it
is necessary to pool the data across the active dose
groups to calculate the confidence interval of
interest. Having done that, we now have the
following data for our example: 6 out of 98
participants in the placebo group reported a
headache, and 25 out of 302 participants in the
combined active groups.
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Table 8.3 Selected values of Z for two-sided
confidence intervals

a (two sided) Z1 � a/2

0.10 1.645
0.05 1.96
0.01 2.576
0.001 3.3



Statistical analysis

The statistical analysis approach is to calculate
95% confidence intervals for the proportion of
participants in each group (placebo and com-
bined active) reporting a headache. This analysis
approach is reasonable because the sample size 
is sufficiently large (that is, the values, p̂n, in
each group are at least five). Satisfying this
assumption enables us to use the Z distribution
for the reliability factor. 

The first step is to calculate the point estimate
of the proportion. For the placebo group the
proportion is 0.06. The second step is to calcu-
late the standard error. For this estimator the
standard error is calculated as follows:

____________

(0.06)(0.94)� ––––––––––– � 0.02.
98

The third component of the interval estimate is
the reliability factor. As we are calculating a two-
sided 95% confidence interval, we select the
value of Z from Table 8.3 corresponding to a of
0.05, that is, 1.96. 

With all of the components now available, the
last step is to calculate the confidence interval.
The lower limit is 0.06 – 1.96(0.02) � 0.02. The
upper limit is 0.06 � 1.96(0.02) � 0.10. We write
the 95% confidence interval as (0.02, 0.10).
Repeating these steps for the combined active
dose group, we obtain a 95% confidence interval
of (0.04, 0.12). (We leave it to you to verify this
calculation.)

Interpretation and decision-making

Using these two confidence intervals we can
now make some conclusions about the
unknown population proportion of participants
who experience headache after exposure in each
group. In the case of the placebo group, we are
95% confident that the population proportion of
participants experiencing a headache is enclosed
in the interval (0.02, 0.10). For the combined
active dose group, we are 95% confident that the
population proportion of participants experi-
encing a headache is enclosed in the interval
(0.04, 0.12). Although it may initially have
seemed that there may be an increased risk of
headache associated with the active treatment,

the overlapping within-group confidence inter-
vals suggest that there is insufficient evidence to
conclude that the observed difference is real
(that is, not due to chance). 

8.12 Confidence intervals for the
difference between two proportions

There is also another way to answer this research
question. If the proportions of individuals
reporting headache are the same among partici-
pants in the active dose groups and the placebo
group, the difference between the two propor-
tions would be 0. Further, because of the influ-
ence of sampling error, with which we are now
very familiar, we would not necessarily expect
the difference to be exactly 0 (just like we do not
expect precisely equal numbers of heads and
tails in a series of coin tosses). In this approach,
therefore, we calculate a confidence interval
about the difference in proportions for two inde-
pendent groups. This interval estimate allows us
to exclude implausible values of the difference.
This method and others throughout this book
require independence of groups (for example,
two groups of participants). Examples of groups
that are not considered independent are
measurements on the same study participant (for
example, in ophthalmology left eyes are not
considered independent of right eyes in the
same individual). 

For this method we have sample proportions
for independent groups 1 and 2 defined as
above:

number of observations in group 1 with the event of interest
p̂1� ––––––––––––––––––––––––––––––––––––––––––––––––––––––––– and

total number of observations in group 1 at risk of the event

number of observations in group 2 with the event of interest
p̂2� –––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

total number of observations in group 2 at risk of the event

The estimator for the difference in the two
sample proportions is p̂1 � p̂2 and the standard
error of p̂1 � p̂2 is: 

_______________
p̂1q̂ 1 p̂2q̂ 2

SE(p̂1 � p̂2) � �–––––– � ––––––,
n1 n2

where q̂1 � 1 � p̂1 and q̂2 � 1 � p̂2.
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For large samples (that is, when p̂1 n1 � 5 
and  p̂2 n2 � 5) the estimator p̂1 � p̂2 is
approximately normally distributed with mean, 

p1 � p2

and variance,

p1(1 � p1) p2(1 � p2)
–––––––––– + ––––––––––.

n1 n2

So the reliability factor for interval estimates will
come from the Z distribution. Then a two-sided
(1 � a)% confidence interval for the difference
in sample proportions, p̂1 � p̂2 is:

(p̂1 � p̂2) � z1�a/2SE(p̂1 � p̂2).

While this form of the confidence interval is
widely used we suggest the use of a correction
factor, 

1 1 1
–– ( ––– � ––– ) ,
2 n1 n2

attributed to Yates (see Fleiss et al., 2003). This
continuity correction factor accounts for the fact
that the normal distribution is being used as an
approximation to the binomial. With the correc-
tion factor, a two-sided (1 � a)% confidence
interval for the difference in sample proportions,
p̂1 � p̂2, is:

1 1 1
(p̂1 � p̂2) � (z1�a/2SE(p̂1 � p̂2) � –– (––– � –––)) .

2 n1 n2

As an example, we look at the headache AE data
again and calculate a two-sided confidence
interval for the difference in sample proportions.

Data

As above, the data are in the form of counts: 6
out of 98 participants in the placebo group
reported a headache and 25 out of 302
participants in the combined active groups
reported a headache.

Statistical analysis

As with the previous method, the first step is to
calculate the point estimate, but this time the
point estimate of the difference in sample
proportions. For the placebo group the propor-
tion is 0.06. For the active group the proportion

is 0.08. So the point estimate for the difference is
0.06 � 0.08 � �0.02. 

The next step is to calculate the standard error,
which is: 

__________________________

(0.06)(0.94) (0.08)(0.92)� ––––––––––– � ––––––––––– � 0.03.
98 302

The third component of the interval estimate is
the reliability factor. The Z value will be the same
as for the previous example (that is, 1.96). For
this interval estimate, we also use the continuity
correction factor. The continuity correction is
calculated as 0.5(1/98 � 1/302) � 0.007. 

We now have all the components of the
interval calculation. The lower limit is given as
follows:

�0.02 � 1.96(0.03) � 0.007 � �0.09.

The upper limit is given as follows:

�0.02 � 1.96(0.03) � 0.007 � 0.04.

Note that the calculated limits do not appear to
be equidistant from the point estimate, as we
might have expected. This is the result of
rounding to two significant digits in the calcula-
tions. The calculated 95% confidence interval
about the difference in proportion of partici-
pants reporting headache as an AE is written as
follows:

95% Cl � (�0.09, 0.04).

Interpretation and decision-making

Given its importance, it is worth restating the
interpretation of this confidence interval. We are
95% confident that the true difference in propor-
tions of individuals reporting headache as an AE
is within the interval (�0.09, 0.04). As the
interval includes 0, there is not enough evidence
to suggest that the two groups are statistically
significantly different with respect to the risk of
headache as an AE. Following this conclusion,
we could reasonably continue with further
studies in our clinical development program of
the active drug, with some assurance from these
limited data that the active treatment did not
increase the risk of headache. 

Suppose, however, that a skeptical colleague
insisted that the risk of headache had to be
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higher for participants treated with the active
drug than with placebo. Using these data, how
confident could he or she be that this was really
the case? What if all of the headaches in the
active treated group were reported in the first
week of treatment, whereas in the placebo group
the events were spread evenly over the entire 
6-week treatment period? Would your view of
the relationship between the active treatment
and the risk of headache change? A method-
ology called time-to-event analysis is useful here.

8.13 Time-to-event analysis

An illustration of this scenario is given in 
Figure 8.1, which shows data from a hypothet-
ical study, study 1 (we discuss another hypothet-
ical scenario, study 2, in due course). There are
two treatment groups represented: Active and
placebo. Suppose for this example that there are
10 participants in each group, and the length of
treatment is 20 days. On the x axis of each panel
is time, that is, the number of days since the start
of study treatment. Different study participants
are represented on the y axis of each panel.
Participants numbered 1–10 are in the placebo
group and participants numbered 11–20 are in
the active group. The occurrence of an AE (“A”)
is represented with an “X.” Completion of the
study on day 20 without the AE is denoted by an
open circle. The time to either the first report of
the AE or the completion of the study is repre-
sented by the length of the line from day 1 to the
event. Note that it is possible for participants to
report more than one instance of the same AE,
but only the first occurrence is represented in
Figure 8.1. 

Here is a descriptive summary of the data
displayed in Figure 8.1. For both groups (placebo
and active), 5 out of 10 (50%) of the participants
reported the particular AE. So, if we were to
report these rates and a 95% confidence interval
about the difference in proportions, there would
not appear to be any difference between these
two groups. However, when we look at the times
relative to the start of study treatment, this is not
so clear any more. In the placebo group, the 
AE was reported on days 4, 9, 11, 14, and 18. In

contrast, the AE was reported much earlier
among participants in the active group, on days
1, 2, 4, 5, and 6. The remainder of participants in
both groups completed the study on day 20
without experiencing the AE. It appears as if the
probability of experiencing the AE (as estimated
by the proportion of participants reporting it) is
the same between the groups, but that there is a
temporal relationship between the start of the
study treatment and the time at which the AE is
reported. How might we report such a result? 

One possibility that might come to mind,
although it is not recommended for reasons we
discuss shortly, would be to calculate the average
number of days to the reported AE. This is prob-
lematic, however, because we can calculate such
a quantity only for those participants who actu-
ally reported the AE. The mean number of days
is 11.2 and 3.6 among participants reporting AE
“A” in the placebo and active groups, respec-
tively. This analysis completely ignores those
who did not report the AE. It hardly seems accu-
rate to exclude these individuals from our
analysis. In fact, although half of the partici-
pants in both groups did not report “A,” they
might have eventually reported it if we had
followed them longer. Such an estimate of the
expected time at which an AE is reported is
biased, because not all participants were part of
the estimate. 

This example suffers from an oversimplifica-
tion that we have to deal with in the real world,
namely that study participants do not always
complete the study for the full length of the
follow-up period. Participants may drop out of
studies for a number of reasons, some of which
reflect their experience with the drug (for
example, it may be poorly tolerated). Therefore,
the “time at risk” differs from individual to
individual within the same trial, and it can differ
to a considerable degree from trial to trial
throughout a clinical development program. 

The most important points to remember here
are as follows. Simply comparing the relative
frequency (that is, the proportion of participants
reporting the AE) of the AE between two groups
does not tell the whole story: Such an analysis
does not address the potential temporal relation-
ship between exposure to the study treatment
and the AE of interest. As we saw in this
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example, exactly the same proportion of partici-
pants in both groups reported the AE. However,
the AE occurred in the first 6 days among parti-
cipants in the active group, whereas the AE
reported by participants in the placebo group
occurred at evenly spaced intervals over the
course of the time at risk. Such a difference in
times of the events would suggest that there is a
cause-and-effect relationship between the active
treatment and the AE. 

A more informative approach would be to take
into account the time of the event relative to the
start of treatment. Ideally, we should use the data
from all participants in this approach and should
account for varying lengths of time at risk for
experiencing the event. O’Neill (1987) advocated

such an approach especially for serious AEs
caused by the shortcomings of simply describing
the incidence (or “crude rate” as he defines it) 
of AEs:

For drugs used for chronic exposure, one
number or rate such as the crude rate is not
likely to be informative without reference to
time. To be useful as a summary measure of
combined safety data from several studies and
which would estimate an overall rate that
describes experiences of all participants exposed
for varying time periods, there is a need to
stratify for time as well as other factors. (O’Neill
1987, p 20)

The next section in this chapter addresses just
such a method. 
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Figure 8.1 Days since the start of study drug at which adverse event “A” was first reported: Study 1 with no dropouts



8.14 Kaplan–Meier estimation of the
survival function

The analysis method attributed to Kaplan and
Meier (1958) enables us to analyze the time to the
first reported AE while accounting for different
lengths of time at risk. To illustrate this method
fully, we have modified the data from the
previous example slightly, as shown in Figure 8.2.
We refer to this new example as study 2.

The proportion of participants with the event
is still equal between the groups (this time 0.6 in
both). As seen in Figure 8.2, some participants
dropped out of the study before reporting the
AE, which are denoted by the open circles at
days before day 20. When analyzing data in this
way, observations for which the event of interest
was not recorded during the time at risk are
called censored observations. As noted earlier it

is conceivable that, if we had followed these
participants for a longer period of time, or if they
had not dropped out of the study, they may have
experienced the AE of interest. 

When analyzing the time to the AE, we need
an analytic way to deal with these censored
observations. Although we do not know what
would have happened for these participants, we
do know that they were at risk for some period of
time and “survived” their time in the study
without experiencing the AE. Accordingly, the
main objective of this analysis is to describe how
long participants survive without experiencing
the event. 

The name survival analysis reflects one situa-
tion in which this type of analysis is used. When
the participants in a clinical trial are very ill, the
measurement of efficacy can be the length of
time that they live, that is, death is the “event.”
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An example may be an oncology trial in which
one group receives the investigational drug and
the other receives an active control, usually the
current gold standard of therapy for the specific
type of cancer. Of interest is whether those
receiving the investigational treatment survive
longer than those receiving the active control.
However, survival analysis, as will be seen in our
examples, can also be used to measure the time
to any defined event.

In this analytic methodology the data for each
participant are expressed in a different manner.
We present the event times for every participant,
defined in one of two ways:

1. The day at which the participant reported the
AE

2. The last day the participant was “at risk” for
reporting the AE without having done so. This
type of participant is labeled parenthetically
as “censored.”

The data are therefore as follows:

• placebo: 4, 9, 11, 14, 15 (censored), 17, 18, 19
(censored), 20 (censored), 20 (censored)

• active: 1, 2, 4, 4 (censored), 5, 6, 9, 9
(censored), 20 (censored), 20 (censored).

Before discussing the formal definition of this
method, it is instructive to think through how
we might interpret these data. Let us start with
the active group. At the start of the study, all 10
participants are at risk of reporting the AE.
Therefore, at day 0 (the day before the start of
study treatment), the probability of surviving
day 0 without having experienced the AE is 1.00
(we accept this as a given when we define this
analysis formally). On day 1, 1 participant out of
10 at risk reported the AE. The probability of an
AE on day 1 is 1/10 or 0.10 (that is, 10%). This
participant is no longer at risk of reporting the
AE later. On day 2 there are nine participants at
risk and on this day one more participant
reported the event. The probability of an AE on
day 2 is 1/9 or 0.11. 

This also leaves eight participants at risk on
day 3. On day 3 no participant reported the
event. Of the eight participants who were at risk
on day 4, one reported the AE and one dropped
out (that is, was “censored” from the analysis).
As before, the probability of an AE occurring is

calculated relative to the number at risk, that is,
1/8 or 0.13. On day 5 there are only six partici-
pants still at risk. These data are provided in the
first five columns of Table 8.4 for the active
group, and the same interpretation follows
through the end of the 20-day study. 

The primary interest in this analysis is not
what happens at a single time point, but rather
what happens at time t and all points preceding
time t. This leads us to the final column of 
Table 8.4. The numbers in this last column are
the estimated probabilities of participants
surviving the interval time t without having
reported the AE. Given these data, it becomes
possible to compare among treatments the prob-
ability of a participant not having the event of
interest at any given time t.

This method has two desirable characteristics
that a simple comparison of proportions does
not have. First, it takes into account the variable
timing of AEs, which can occur if there is a
cause-and-effect relationship of drug to AE.
Second, it takes into account the possibility that
not all participants will remain at risk for the
same amount of time. 

Having thought about this methodology in
conceptual terms, we now address the necessary
calculations for arriving at the data presented in
the final column in Table 8.4. This methodology
is called the survival function. 

8.14.1 The survival function

We introduced you to Bayes’ theorem in 
Chapter 6. According to this theorem, the condi-
tional probability of A given B can be written as:

P(B | A)
P(A | B) � ———— 	 P(A).

P(B)

Or, equivalently, as:

P(A | B)
P(A) � ———— 	 P(B).

P(B | A)

In this methodology we define A as surviving
through time t, and B as surviving through time
t � 1. Then, P(A|B) is the probability of a partic-
ipant surviving through time t given that he or
she has survived through all preceding times
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(t � 1), (t � 2), . . . , (1). In addition, P(B|A) is the
probability of surviving through t � 1 given that
the participant survived through time t. By
definition, that probability is 1.00. Therefore, 
to calculate the conditional probability of
surviving through time t, we need two pieces of
information:

1. The probability of surviving through time 
t given that the participant survived the
previous time

2. The probability of surviving the previous
interval.

At day 0 (before any participants are at risk), the
probability of surviving through time t is 1.00 by
definition. On day 1 the probability of surviving
through day 1 is the probability of surviving
through day 1 given survival through day 0
(that is, 1 minus the probability of the event on
day 1 among those at risk), which is equal to

1 � 0.10 � 0.90 times the probability of
surviving through day 0 (1.00). That is, the
probability is 0.90 	 1.00 � 0.90. Therefore, to
calculate the probability in the last column we
use the cumulative survival probability (last
column) for the previous time and the probability
of the event in the interval among those at risk.

Sometimes, these data are presented in a
shorter table that displays only those time points
at which an individual had an event or was
censored, and thus the only values of time for
which the probability of survival changes. It is
more common, however, to see analyses of this
type displayed graphically. The Kaplan–Meier
estimate of the survival distribution is displayed
for both groups in Figure 8.3. The survival curves
displayed in the figure are termed “step func-
tions” because of their appearance. We return to
the interpretation of Figure 8.3 after we have
fully specified the survival distribution function.

Kaplan–Meier estimation of the survival function 111

Table 8.4 Event times for the active group in study 2

Time (day), t Individuals at risk Individuals Probability of AE Individuals Probability of
for the AE before reporting AE at time t among dropping surviving through
time t at time t those at risk out at time t time t without AE

0 10 0 0 0 1.00
1 10 1 0.10 0 0.90
2 9 1 0.11 0 0.80
3 8 0 0 0 0.80
4 8 1 0.13 1 0.70
5 6 1 0.17 0 0.58
6 5 1 0.20 0 0.46
7 4 0 0 0 0.46
8 4 0 0 0 0.46
9 4 1 0.25 1 0.35

10 2 0 0 0 0.35
11 2 0 0 0 0.35
12 2 0 0 0 0.35
13 2 0 0 0 0.35
14 2 0 0 0 0.35
15 2 0 0 0 0.35
16 2 0 0 0 0.35
17 2 0 0 0 0.35
18 2 0 0 0 0.35
19 2 0 0 0 0.35
20 2 0 0 2 0.35



8.14.2 Kaplan–Meier estimation of a
survival distribution

The survival function is the probability that a
participant survives (that is, does not experience
the event) longer than time t: 

S(t) � P (participant survives longer than t).

By definition, a participant cannot experience
the event until he or she is at risk of the event,
so will survive longer than time 0 or, equiva-
lently, S(0) � 1. Also, we accept as a given that, if
we waited an infinite amount of time, an indi-
vidual would eventually experience the event no
matter how rare. Therefore, the survival distribu-
tion at infinity is defined to be 0, or S(
) � 0.
We also define the following: 

• ti is the unique event time, where i � 1, 2, . . ., i.
• ni is the number of participants who are at risk

just before ti

• mi is the number of participants with events
at time ti

• ci is the number of participants censored in
the interval (ti, ti�1).

The Kaplan–Meier estimate of the survival
function at time t is:

mtŜ(t) � P (1 � –––).
ti �t

nt

We can write this series of products out in full as
follows:

m1 m1 m2 mt�1 mt
Ŝ(t) � 1 	 (1 �–––) 	 (1 �–––)(1 �–––)	 . . . 	(1 �–––––)(1 �–––).

n1 n1 n2 nt�1 nt

This expression means that the probability of
surviving past time t is the product of the proba-
bility of surviving time t conditional upon
surviving all preceding time points and the prob-
ability of surviving all other preceding time
points. 
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The variance of the survival distribution
function at time t is:

mtvar[Ŝ(t)] � [Ŝ(t)] R –––––––––––.
t(i)�t

nt (nt � mt )

Consequently, we can take the square root of the
variance to obtain the standard error and calcu-
late a (1 � a)% confidence interval:

________
Ŝ(t) � Z1�a/2 �var[Ŝ(t)].

A common measure of central tendency from
the Kaplan–Meier estimate is the median
survival time (note that this can be estimated
only if more than half the participants experi-
ence the event). The median survival time is the
earliest value of t such that the probability of
survival is � 0.5. Note that when observations
are censored any estimate of the mean is biased
because, technically, the event would eventually
occur if we followed participants indefinitely.

We now return to our example to work with
some of these expressions. Looking at the last
column in Table 8.4 (the estimated survival
distribution), we can see that the probability of
surviving day 5 is 0.58. Similarly the probability
of surviving day 6 is 0.46. Therefore, the esti-
mated median time to an AE in the active group
is 6 days, the earliest time at which the proba-
bility of survival is � 0.5. For a comparison, the
median time to an AE is 16 days in the placebo
group. The graphical representation of the
survival distribution in Figure 8.3 can also be
used to estimate the median time to event. 

In Figure 8.3 the survival distribution is
plotted against time. As can be seen from the
tabular presentation of these estimates in 
Table 8.4, the survival estimate changes only
when there is an event. In the active group on
day 1 the estimate is 0.9 and then it drops down
to 0.8 on day 2. An important property of the
step function defined using discrete event times
is that it is a discontinuous function (that is, not
defined) between event times. For example, the
survival distribution function is 0.46 on days 6,
7 and 8, and then at day 9 the estimate is 0.35.
Looking at the Kaplan–Meier curve for the active
group you could read day 9 as having an esti-
mate of 0.35 or 0.46, but it is appropriate to
remember that the outside edge of the step (right

at day 9) is discontinuous, and thus the esti-
mated probability of survival for day 9 or later is
0.35. 

Using this guideline we can read off the
median survival times by drawing a reference
line across Figure 8.3 at S(t) � 0.50 and finding
the earliest value of time on the curve below the
reference line. We leave it to you to verify the
median times of 6 and 16 days for the active and
placebo groups, respectively, using this method. 

The point estimate of the probability of
surviving past day 6 is 0.46 for the active group.
Using the notation above, we write Ŝ(6) � 0.46.
We can now calculate a 95% confidence interval
about this estimate. The first step is to calculate
the variance about the estimate. Using the
expression above and point estimate and the
number of events and participants at risk at each
time point before day 6, we obtain the following: 

1 1 1 1
var[Ŝ(6)] � (0.46)2 [––––– � –––– � –––– � ––––]10(9) 9(8) 8(7) 6(5)

1 1 1 1
� (0.46)2 [––– � ––– � ––– � –––]90 72 56 30

� 0.016.

As we have chosen a confidence level of 95%,
the corresponding value of Z (the reliability
factor) is 1.96. Finally, the 95% confidence
interval is calculated as follows:

0.46 � 1.96  (0.016), i.e., (0.43, 0.49).

That is, we are 95% confident that the true prob-
ability of not experiencing the event (surviving)
past day 6 is in the interval (0.43, 0.49). 

The Kaplan–Meier estimate is a non-
parametric method that requires no distribu-
tional assumptions. The only assumption
required is that the observations are indepen-
dent. In the case of this example, the observa-
tions are event times (or censoring times) for
each individual. Observations on unique study
participants can be considered independent. The
confidence interval approach described here is
consistent with the stated preference for estima-
tion and description of risks associated with new
treatments. A method for testing the equality of
survival distributions is discussed in Chapter 11. 
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8.14.3 Cox’s proportional hazards model

Although we do not cover them in detail, there
are parametric methods to analyze time to event
data of this type, the most notable of which is
Cox’s proportional hazards model. 

A hazard can be thought of as the risk of the
event in a small interval of time, given survival
up to the start of the short interval. Parametric
approaches to time-to-event data such as Cox’s
model have a number of advantages, including
the ability to adjust for other explanatory effects
in a model and to extend them to recurring
events for a single individual. In this case, event
times would not be independent because within-
participant event times would be correlated.
Such an approach is appealing statistically
because it makes use of more data. However, 
the main disadvantage of Cox’s model is that the
single parameter of the model, the ratio of the
hazards of two groups, is assumed to be constant
over time. The risk of an AE for participants
treated with an active drug could vary in a
nonconstant manner over time relative to the
risk for placebo-treated participants, making
such an assumption tenuous. 

8.14.4 Considerations for the use of
Kaplan–Meier estimation for AEs

We suggest the use of the Kaplan–Meier estimate
for a better understanding of the risk of AEs in
clinical trials for two reasons. First, the propor-
tional hazards model has important assumptions
which must be made. Secondly, the
Kaplan–Meier method is easier to implement
and interpret. The analysis of AEs using the
Kaplan–Meier method allows us to account for
the different lengths of time at risk without
making any significant assumptions about the
shape of the underlying distributions of the
survival or hazard functions. Reviewing the
rather exaggerated data from Figure 8.3 it may
seem obvious that ignoring the time at risk could
be problematic. Employing an appropriate
method of analysis (for example, properly
accounting for all individuals and calculating an
interval estimate for the proportion) does not
necessarily mean that the analysis is the most

appropriate one. Consideration should be given
to the varying lengths of follow-up or “time at
risk” when reporting AEs. It is wise to consider
the denominator carefully when making any
statement about probabilities. 

A final word of caution here is that, although
the Kaplan–Meier method (and other methods
for time-to-event data) appropriately accounts
for the time at risk of an event within a group, if
the pattern of censoring is dependent on the
treatment (for example, suppose the dropout
rate is dose dependent as might be seen with
chemotherapy), any treatment group compar-
isons of the estimate of the risk of AEs would be
potentially biased. Thus, a more complete
analysis would include first an assessment of
censoring times (visually at a minimum) and the
reason for drop out, and then the appropriate
analysis to account for the time at risk. Failing to
quantify the probability of an AE accurately
during drug development can have significant
implications for sponsors, regulatory authorities,
prescribing clinicians, and patients.
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8.15 Review

1. What measures are taken to ensure that AE data
are of a high quality?

2. Refer to Table 8.2. Calculate a two-sided 99%
confidence interval for the proportion of
participants reporting any event in the:

(a) placebo group
(b) active dose groups combined.

3. In a therapeutic exploratory trial, 22 participants
out of 140 reported an AE:

(a) What is the 95% confidence interval for the
sample proportion of participants reporting an
AE?

(b) What is the 99% confidence interval for the
sample proportion of participants reporting an
AE?

(c) How confident would you be that the true
population proportion of participants reporting
an AE does not exceed 0.18?
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4. A total of 290 participants were studied in the first
therapeutic exploratory trial of an investigational
antihypertensive drug. Of the 150 individuals
treated with the test treatment, 32 reported fatigue.
Of the 140 treated with placebo, 19 reported
fatigue:

(a) Calculate a 90% confidence interval for the
difference in proportions of participants
reporting fatigue.

(b) Calculate a 95% confidence interval for the
difference in proportions of participants
reporting fatigue.

(c) Calculate a 99% confidence interval for the
difference in proportions of participants
reporting fatigue.

(d) What is the statistical interpretation of these
results?

(e) How might these results influence the course of
future development of the drug? 

5. Why is it important to account for the time that
individuals are at risk of an AE?

6. Describe in your own words what a survival
function is.




