
9.1 Introduction

Chapter 8 focused on adverse event (AE) data, a
large component of the overall safety data
collected in clinical trials. Although AE data are
often presented descriptively, we demonstrated
that it is indeed possible to conduct inferential
statistical analyses using AE data. This chapter
discusses other safety data, including laboratory
data, vital signs, and an assessment of cardiac
safety that involves investigation of the cardiac
QT interval (the QT interval can be identified
on the ECG, as seen in Figure 9.2). In each of
these cases, descriptive statistics, including
measures of central tendency and dispersion,
and categorical data are common forms of
assessment.

9.2 Analyses of clinical laboratory data

Safety monitoring in clinical studies can be both
data and labor intensive. In the context of later-
stage therapeutic exploratory and therapeutic
confirmatory trials, the collection of laboratory
data is no exception. Typically, participants in
clinical trials provide blood or urine samples at
every clinic visit. There is an expansive range of
clinical chemistry tests that can be conducted
using these samples. 

Samples may be analyzed by laboratories asso-
ciated with each site (sometimes called local
labs), each with its own handling procedures,
assays, and reporting conventions, but this is not
an optimal strategy. The use of a site’s own labor-
atory poses no difficulties when the emphasis is
on medical care, that is, the values obtained for
a single individual. However, when conducting

clinical research the emphasis is on using data
from a group of individuals to make optimally
informed conclusions and decisions. 

Differences from local lab to local lab may
preclude a sponsor from meaningfully
combining data from all participants across a
number of investigative sites. A statistical
approach to standardizing laboratory values from
a number of different labs (each potentially with
their own reference ranges) has been described by
Chuang-Stein (1992). However, standardization
is time-consuming and the use of a number of
local labs can introduce unwanted sources of
variability that are neither easily quantified nor
accounted for.

To overcome the difficulties with using local
labs the use of central laboratories (central labs)
is desirable. The advantages of using a central lab
are that the samples are handled in a similar
fashion, the assays used are consistent over
time and across individuals, and the reporting
conventions (for example, units of measurement)
are uniform. Techniques for proper sample
collection, storage, and handling, including
shipment to a central lab, should be included in
study protocols. Once the samples have been
obtained by the central lab they are analyzed
and the data recorded in a database that includes
participant identifiers, study visit, date and time
of sample collection, test name, result, reporting
units, and the value of the reference (“normal”)
range. 

The determination of values for reference
ranges is based on the distribution of test values
in large samples. Reference ranges are deter-
mined using large databases from a general
population and typically represent “2r” limits,
assuming that the values are normally distrib-
uted in the general population. The lower limit
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of the reference range is the value that cuts off
the lowest 2.5% of values from individuals in the
general population (l �2r). Likewise, the upper
limit of the reference range is the value that cuts
off the highest 2.5% of values from individuals
in a general population (l � 2r). Reference ranges
for certain parameters (for example, hematocrit)
may be defined specific to age and gender.
Whichever approach is employed, local or
central labs, the reference ranges are provided
with lab values themselves to gauge the extent to
which an individual’s value is considered within
an expected range or extreme. 

In ICH Guidance E3 (1995), several analyses of
clinical laboratory data are recommended. The
approaches to describing clinical laboratory data
include: 

• measures of central tendency (for example,
means or medians) for all groups at all time
points examined

• shift analyses that classify laboratory values at
baseline and later time points as normal, low
or high relative to a reference range

• description of the number and proportion of
participants for whom a change of a specified
magnitude or more was reported at a partic-
ular time point. This is typically called a
responders’ analysis

• graphical displays of each subject’s baseline
value plotted against an on-treatment and/or
end-of-study value

• identification of individual values that are
so extreme that they would be considered
clinically significant. 

9.2.1 Measures of central tendency at
each time point

Laboratory values are summarized descriptively
for continuous measures by displaying the
sample size, measures of central tendency
(including the mean and median), the standard
deviation, and the minimum and maximum
values. A sample of such a descriptive display is
provided in Table 9.1. 

As the primary comparison is among or
between treatment groups, the groups are
displayed in the columns. Values of each test
over time are of secondary interest and, there-
fore, are placed on the rows of the table. Reading
between columns, we can see if the typical value
(for example, the mean) for a parameter differs
between groups. It is also possible to read down
the column (that is, across time within a group)
to see how the typical values vary over time.
Provision of the minimum and maximum values
allows the reviewer to identify any extreme
values that might be considered out of the
normal range. On occasion, similar analyses may
also be presented for change from baseline
values (typically calculated as endpoint value
minus baseline value). If there are consistent and
systematic changes from the start of the study,
they may be apparent by examining the mean
values and looking for values that deviate
considerably from zero.

It may be of interest to provide a confidence
interval for the change from baseline value
within a group where an interval estimate that
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Table 9.1 Summary of hemoglobin values (g/dL)

Treatment group

Visit Statistic Placebo Active

Baseline n 20 20
Mean (SD) 13.78 (1.97) 14.61 (2.05)
Median 13.5 14.6
Min., Max. 11.0, 17.3 11.2, 17.7

Endpoint (last visit) n 20 20
Mean (SD) 13.41 (2.07) 13.75 (2.00)
Median 13.3 13.5
Min., Max. 10.6, 16.9 10.4, 17.2



excludes zero represents evidence of a change in
mean value that exceeds what might be observed
by chance alone. Similarly, confidence intervals
may be calculated to provide an estimate of the
between-group difference in a laboratory para-
meter. Comparison with a control group can be
especially important when there is a laboratory
test that changes as a result of study procedures
(for example, decreases in hematocrit or hemo-
globin as a consequence of frequent blood
sampling). A summary of the change from
baseline at the last visit is provided in Table 9.2.

9.2.2 A confidence interval for a mean
with unknown variance

For a sample size of n observations of a random
variable, the sample mean, an estimator of the
population mean, is calculated as:

n

R xi

i�1x̄ � –––—–
n

and the sample standard deviation, s, an esti-
mator of the population standard deviation is
calculated as: 

n
____________

R (xi � x̄)2

i�1s � �–––––––––—–.
n � 1

The standard error of the sample mean is then
calculated as:

sSE(x̄) � –––.
�
__
n

Finally, assuming that the random variable is
normally distributed (or at least symmetrically
distributed with a sample size � 30), a (1 �a/2)%
confidence interval is:

x̄ � t1�a/2,n�1SE(x̄),

where t1�a/2,n�1 represents the reliability factor
and is the value of the t distribution with n �1
degrees of freedom (df) to the left of which is 
(1 �a/2)% of the area under the curve. These
values are provided in Appendix 2. 

As an example, let us calculate a 95% two-
sided confidence interval for the mean hemo-
globin value at the end of the study for the active
group using data in Table 9.1. 

Data

The data are 20 hemoglobin values from indi-
viduals treated with the active drug, obtained
from blood samples collected at the last visit of
the study. The mean and standard deviation
were calculated as 13.75 and 2.00, respectively,
and these values serve as the basis of the confi-
dence interval. 

Statistical analysis

As the population variance is unknown and is
therefore being estimated by the sample vari-
ance, we use the t distribution for a reliability
factor. The use of the t distribution requires us to
assume that the underlying distribution of
hemoglobin values is approximately normally
distributed, or at least symmetrically distributed.
The standard error of the sample mean is
calculated as:
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Table 9.2 Summary of change from baseline hemoglobin values (g/dL)

Treatment group

Visit Statistic Placebo Active

Endpoint (last visit) n 20 20
Mean (SD) �0.37 (1.47) �0.86 (1.67)
Median �0.4 �0.8
Min., Max. �3.8, 2.1 �4.5, 1.4



s 2.00SE(x̄) � ––– � –––– � 0.44.
�
__
n �

___
20

As we are interested in a 95% two-sided confi-
dence interval, the value of the variate that
cuts off the upper 2.5% of area from the t distri-
bution with 19 df is 2.093. Therefore, the 95%
confidence interval for the mean hemoglobin is
calculated as follows:

13.75 � 2.093 (0.44) � (12.83, 14.67).

Interpretation and decision-making

From the confidence interval we can conclude
with 95% confidence that the true population
mean hemoglobin is in the interval (12.83, 14.67).
Assuming that the reference range is 12–15 g/dL
for females and 14–17 g/dL for males, we can
proceed with development of the new drug with
some degree of assurance although gender-
specific intervals would be more informative.

9.2.3 A confidence interval for the
difference in two means with equal
unknown variance

Within-group confidence intervals can be infor-
mative, but usually the primary interest in a 
clinical trial is to compare the effect of one 
treatment with that of another. Therefore, a
confidence interval for the difference in two
means can better address the goals of the
research.

For two independent groups 1 and 2, a sample
size of n1 observations of a random variable from
group 1 and n2 observations of a random variable
from group 2, the sample means from each
group are:

n1

R x1i

i�1x̄1 � –––—– andn1

n2

R x2j

j�1x̄2 � –––—–, respectively.n2

The within-group sample variances are
estimated as:

n1

R (x1i � x̄1)
2

i�1s2
1 � ––––––––––—– and

n1 � 1

n2

R (x2j � x̄2)
2

j�1s2
2 � ––––––––––—–, respectively.

n2 � 1

As before, these sample statistics are estimates of
the unknown population parameters, the popu-
lation means, and the population variances. If
the population variances are assumed to be
equal, each sample statistic is a different estimate
of the same population variance. It is then
reasonable to average or “pool” these estimates
to obtain the following:

(n1 � 1)s2
1 � (n1 � 1)s2

2s2
p � –––––––––––––––––––––.

(n1 � n1 � 2)

The standard error of the difference in sample
means is:

_______
1 1SE(x̄1 � x̄2) � sp �–– � ––.
n1 n2

Calculation of a confidence interval for the
difference in means requires an assumption of
normal data (or, alternately, symmetrical
distributions with sample sizes of 30 or
more). If the population variances are
assumed to be equal, a two-sided (1 � a)%
confidence interval is:

(x̄1 � x̄2) � t1�a/2,n1+n2�2SE(x̄1 � x̄2),

where t1�a/2,n1+n2�2 represents the reliability factor
and is the value of the t distribution with
n1�n2�2 df to the left of which is (1 � a/2)% of
the area under the curve. 

To illustrate this methodology we use the data
from Table 9.2 to calculate a between-group
difference in the mean change from baseline
hemoglobin at the end of the study.
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Data

The description of the data for this analysis is
provided in Section 9.2.1. 

Statistical analysis 

For this analysis we are required to use the 
t distribution, and therefore to make the 
assumption that the distribution of change 
from baseline values is normally or approxi-
mately normally distributed. When calculating 
a between-group confidence interval, it is very
important to understand how the difference is
being calculated and what the interpretation
of the interval is, given the direction of the
difference. 

In this case, each change from baseline value is
calculated as “endpoint minus baseline.” There-
fore, a mean value of change from baseline that
was � 0 would imply an increase from baseline,
whereas a mean change from baseline value that
was � 0 would imply a decrease from baseline.
In this instance we are interested in the between-
group difference in mean change from baseline.
We interpret the calculated confidence interval
accordingly. 

To start, the point estimate for the between-
group (active minus placebo) difference in
mean change from baseline is (�0.86) � (�0.37)
� �0.49. To calculate the standard error we first
need to obtain an estimate of the pooled variance,
which is calculated as follows:

(20 � 1)1.672 � (20 � 1)1.472 (19)2.79 � (19)2.16
s2
p � –––––––––———–—–––—––––– � –––––––——––––––– � 2.47.

(20 � 20 � 2) 38

The pooled standard deviation is calculated as:

�
____
2.47 � 1.57.

The standard error of the difference in means is
calculated as:

_______
1 1SE(x̄1 � x̄2) � 1.57�–– � –– � 0.50.

20 20

The final component is to obtain the reliability
factor from the t distribution with 38 df, which

is 2.02. The 95% confidence interval for the
difference in means is therefore calculated as:

�0.49 � 2.02(0.50) � (�1.5, 0.52). 

Interpretation and decision-making 

On the basis of this confidence interval, there
does not appear to be much of a difference
between the groups with respect to a change in
hemoglobin from baseline to the end of the
study, particularly because the confidence
interval includes the value 0. 

9.2.4 Shift analysis

Another method used to analyze clinical labora-
tory data is called a shift analysis. For this analysis
the data themselves are not the actual numeric
values of the laboratory test, but a categorical
ordinal variable that indicates whether the value
was within the reference range (normal), low
relative to the reference range (low), or high rela-
tive to the reference range (high). With these
classifications on observations from baseline and
some other post-randomization time point (for
example, end of study), the primary interest is in
the proportion of individuals who shifted from
normal to high or normal to low. Depending on
the parameter being investigated, a shift from
high to low or low to high may also be of
interest.

A typical summary table representing this kind
of analysis is provided in Table 9.3. As seen there
25% of participants in the placebo group who
had normal values at baseline had low values at
the last visit. In the active group 20% of partici-
pants experienced this shift from baseline to last
visit. 

9.2.5 Responders’ analysis

We noted earlier in this book that there is no
such thing as an effective drug without some
associated risks. Some drugs may be known to be
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associated with a small but consistent change in
a clinical laboratory parameter (for example,
treatment with hydrochlorothiazide is often
associated with increases in blood glucose).
Imagine a scenario in which a small change is
not troubling in itself. A concern may then be:
What is the chance that an individual who
receives the test treatment will have a change in
the lab test above a certain threshold, one that
would no longer be trivial? 

An analysis approach that may be informa-
tively used here is to calculate a change from
baseline for each observation and then categor-
ize the change from baseline value as either a
responder (that is, someone whose change from
baseline was less or greater than a specified
value) or a non-responder (that is, someone
whose change from baseline was within the
tolerable values of change). Whether or not a
decrease or increase in the lab value is indicative
of harm depends on the laboratory test itself.
The descriptive analysis for this type of data
includes the presentation of counts and percent-
ages (recall that these can be represented as
proportions) of responders in each group. As
there usually are a number of visits at which the
lab test is performed, the analysis may be
presented for all post-baseline visits, the last
visit, or both. 

An extension of the responder analysis
described above would be to categorize the
change from baseline values into several (� 2)
categories (for example, no change, increase 	 X,
increase � X). 

9.2.6 Graphical displays of end-of-study
values plotted against baseline

One common element shared by a number of
the analyses of laboratory data that we have
described is that the magnitude of change from
the start to the end of the study is important,
but so is the final value itself. In addition, the
relative frequency of such outcomes is of vital
interest when gauging the overall risk of treat-
ment with a new drug. One descriptive
approach to address several of these issues is a
graphical one.

A scatter plot of each individual’s baseline
value plotted against his or her end-of-study
value enables us to see how many individuals (in
the absolute or relative sense) had end-of-study
values beyond a normal level or changes from
baseline to end-of-study that represent a signifi-
cant health risk. As an example, hemoglobin
values at the end of the study have been plotted
against the baseline value for two treatment
groups (placebo and active) in Figure 9.1. 

Note the diagonal line in each plot that
connects all points for which the baseline value
is equal to the end-of-study value. With the end-
of-study value on the y axis, points above the
diagonal line represent an increase from baseline
and points below represent a decrease from base-
line. Larger vertical deviations from the diagonal
line represent larger changes from baseline
values. Thus, the need to interpret a number of
quantities at once is satisfied by one graphical
display. 
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Table 9.3 Shift analysis of hemoglobin values

Baseline value

Placebo (n � 20) Active (n � 20)

Last visit Low Normal High Low Normal High

Low 3 (15%) 5 (25%) 0 1 (5%) 4 (20%) 1 (5%)
Normal 2 (10%) 7 (35%) 2 (10%) 1 (5%) 11 (55%) 0
High 0 1 (5%) 0 0 0 2 (10%)



9.2.7 Clinically significant laboratory
values

A graphical display such as the one in Figure 9.1,
or a table of summary descriptive statistics
including the minimum and maximum, may
reveal values that are so extreme that they merit
additional scrutiny. This is typically accom-
plished with the use of a listing that provides all
values of the laboratory test, the dates and times
of the sample collection, and the characteristics
of the participant. Such an analysis is not based
on aggregate information but rather on an indi-
vidual observation. If a clinically significant
observation were noted a medical reviewer
would look to see if the participant’s values
returned to normal levels or remained abnormal,
and if there were any accompanying AEs. 

9.3 Vital signs

Vital signs typically measured in clinical trials
are blood pressure (both systolic or SBP and dias-
tolic or DBP) and heart rate, often measured as
pulse rate, in beats per minute. Weight might
also be of interest. In our ongoing scenario of

the development of a new antihypertensive
drug, blood pressure measurements are efficacy
measurements, not safety measures as such.
However, we discuss the use of blood pressures in
safety assessment here because this is so common
in the development of non-antihypertensive
drugs. 

As for laboratory data, both continuous and
categorical data analytical methods can be
employed here. Measures of central tendency
and dispersion are appropriate for continuous
data. Categories of interest, and the associated
categorical data, can take various forms. Imagine
a trial in which the treatment phase is 12 weeks
and participants visit their investigational site
every 2 weeks – that is, a baseline value taken
before treatment commences is followed by six
values measured during the treatment phase. It
may be of interest to know how many individ-
uals show clinically significant vital sign changes
during the treatment period. In this case a
precise definition of clinically significant must
be provided in the study protocol. The following
hypothetical changes in vital signs might be
considered of clinical significance by clinicians
on the study team if they occurred at any of
the six measurement points in the treatment
phase:
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Figure 9.1 Scatterplot of hemoglobin values at baseline and end of study: (a) Placebo; (b) active



• an increase from baseline in SBP � 20 mmHg
• an increase from baseline in DBP � 12 mmHg
• an increase from baseline in SBP � 15 mmHg

and an increase in DBP � 10 mmHg
• a pulse rate � 120 beats/min and an associated

increase from baseline of at least 15 beats/min.

The clinicians on the study team might also be
interested in sustained changes in vital signs.
Hypothetical examples of definitions of
sustained changes might be:

• an increase from baseline in SBP � 15 mmHg
at each of three consecutive visits

• an increase from baseline in DBP � 10 mmHg
at each of three consecutive visits

• an increase from baseline in pulse rate � 10
beats/min at each of three consecutive visits.

Appropriate categorical analyses could then be
used with these data.

9.4 QT interval prolongation and
torsades de pointes liability 

The ECG is a very recognizable pattern of bio-
logical activity. The ECG consists of the P wave,
the QRS complex, and the T wave. These compo-
nents, represented in Figure 9.2, are associated
with different aspects of the cardiac cycle: Atrial
activity, excitation of the ventricles, and repolar-
ization of the ventricles, respectively. Modern

computerized systems not only display these
electrophysiological signals but also concur-
rently digitize them and store them for later
examination. 

The QT interval is highlighted in Figure 9.2.
This interval is of particular interest in assessing
cardiac safety in drug development, because QT
interval prolongation is one potentially informa-
tive surrogate biomarker available for very
serious cardiac events including sudden cardiac
death. (This section focuses on cardiac safety
assessment in all systemically available drugs
being developed for uses other than the control
of cardiac arrhythmias: QT/QTc interval
prolongation – an occurrence deemed highly
undesirable in all other drugs – can occur with
antiarrhythmic drugs as a consequence of their
mechanism of clinical efficacy [ICH Guidance
E14, 2005].) The ICH Guidance E14 addresses
the evaluation of QT intervals in clinical
development programs. 

The time interval between the onset of the
QRS complex and the offset of the T wave is
defined as the QT interval. Consider an indi-
vidual with a steady heart rate of 60 beats/min, a
number chosen to make the math easy in this
example. This represents one heart beat/second,
and so the total length (in the time domain) of
all ECG segments during one beat would add up
to 1 second, represented in this research field as
1000 milliseconds (ms). Each component of the
ECG can therefore be assigned a length, or dura-
tion, in milliseconds. The length of the QT
interval can be obtained by measurement from
inspecting the ECG and identifying the QRS
onset and the T-wave offset. 

As the heart beats faster (heart rate increases),
the duration of an individual cardiac cycle
decreases, because more cardiac cycles now occur
in the same time. Therefore, as the cardiac cycle
shortens, so do each of the components of the
cardiac cycle. This means that the QT interval
will tend to be shorter at a higher heart rate. As
it is of interest to examine the QT interval at
various heart rates, the interval can be
“corrected” for heart rate. This leads to the term
QTc, which is calculated (by one of several
methods including two corrections attributed to
Bazett and Fridericia), taking into account the
actual QT and the heart rate (the duration of
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Figure 9.2 Stylized representation of the ECG, showing
the QT interval



the entire cardiac cycle, sometimes referred to as
the RR interval) at that point. The title of ICH
Guidance E14 uses the term “QT/QTc interval” to
indicate that both QT and QTc are of interest: In
this book, the term “QT interval” represents
both QT and QTc.

It is of considerable interest in drug develop-
ment to determine whether the investigational
drug under development leads to prolongation
of the QT interval: Although QT interval prolon-
gation can be congenital, it can also be acquired,
for example, induced by drug therapy. QT
prolongation, which represents delayed cardiac
repolarization of the myocardial cells, is regarded
as a potentially very informative surrogate
marker for certain dangerous cardiac arrhyth-
mias, namely polymorphic ventricular tachy-
cardia and torsades de pointes,and sudden cardiac
death. Extensive ECG monitoring during preap-
proval clinical trials is therefore a critical part of
clinical development programs, and results from
this testing must be presented to a regulatory
agency to obtain marketing approval. One of
the biggest causes of delay in getting a new
drug approved by a regulatory agency, or failure
to be given marketing approval, is cardiac
safety issues, and therefore the choice of the
correct study design, appropriate methodology
for collecting optimum quality data, and appro-
priate statistical analyses are of tremendous
importance.

Although ICH Guidance E14 (2005) provides
guidance on each of these considerations, we
focus here on the statistical approaches that
should be taken in the investigation of QT
prolongation. As this guidance noted (p 9), “The
QT/QTc interval data should be presented both
as analyses of central tendency (for example,
means, medians) and categorical analyses. Both
can provide relevant information on clinical risk
assessment.” The effect of the investigational
drug on the QT intervals is most commonly
analyzed using the largest time-matched mean
difference between the drug and placebo
(adjusted for baseline) over the data collection
period.

Categorical analyses are based on the number
and the percentage of individuals who meet or
exceed a predefined upper limit. Such limits can
be stated in the study protocol in terms of either

absolute QT interval prolongation values or
changes from baseline. At this time, there is no
consensus concerning what is the “best” choice
of these upper limit values. ICH Guidance 14
therefore suggested that multiple analyses using
several predefined limits is a reasonable
approach in light of this lack of consensus. For
absolute QT interval data, the guidance suggests
providing absolute numbers and percentages of
individuals whose QT intervals exceed 450, 480,
and 500 ms. For change-from-baseline QT
interval data, the same information might be
provided for increases exceeding 30 ms and
those exceeding 60 ms. The design and analysis
of studies intended to evaluate changes in QT
can be rather difficult to implement. Some of the
difficulties and areas for further research brought
to light by ICH Guidance E14 are discussed in a
recent paper (Pharmaceutical Research and
Manufacturers of America QT Statistics Expert
Working Team, 2005). 

For further discussion of QT/QTc interval
prolongation and other cardiac safety assess-
ments for noncardiac drugs, see Morganroth and
Gussak (2005) and Turner and Durham (2008).

9.5 Concluding comments on safety
assessments in clinical trials

In this chapter we have seen that the goal of
safety analyses is to cast a wide net in the hopes
of identifying any events that may be attribut-
able to treatment with the new drug. Such a
broad search, however, also has a significant
disadvantage: If we look at so many outcomes,
we might find one that looks problematic just by
chance alone. Rather than rely solely on statis-
tical approaches to limit the chance of this
occurring, a sensible approach is to substantiate
such a finding with additional data, either a
similar result in a different study or some data on
the medical explanation for the event (the
mechanism of action). 

The analysis tools that we have described in
this chapter provide ways to evaluate the risk of
the new drug, given the constraints of sample
sizes obtainable in clinical development. The
limitations of relatively little human experience
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before marketing approval have to be consid-
ered, especially when reviewing clinical safety
data. Thus far, regulatory agencies have not
required pharmaceutical companies to increase
the sizes of their studies to find the best way to
uncover safety risks that would otherwise be
hard to find. Rather, the emphasis has been to
use more modern tools (for example, genetics
and candidate screening) to identify potentially
dangerous drugs before there are a large number
of participant exposures (US Department of
Health and Human Services, FDA, 2004). The
role of postmarketing surveillance will continue
to be important (see also ICH Guidance E2E,
2004; Strom, 2005; Mann and Andrews, 2007).
This is especially true when we think of the rela-
tive homogeneity of participants in clinical trials
compared with patients in the real world and the
implications of the law of large numbers (recall
discussions in Chapter 6). 

As a final note to this chapter, any potential
risks to individuals treated with a new drug have
to be considered and cannot automatically be
considered trivial. The acceptability of the
magnitude of the risk depends largely on a
statistical demonstration of the expected benefit
of the new treatment, which is the topic of
Chapters 10 and 11. 
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3. What is the statistical and clinical
interpretation (or relevance) of the following
95% confidence intervals for the between-
group difference (for example, test group
minus placebo) in mean change from baseline
hemoglobin (g/dL) at endpoint (last visit)? 

(a) (�1.2, 2.6)
(b) (1.7, 3.4)
(c) (�6.2, �2.3).

9.6 Review

1. What are some advantages and disadvantages of
the various analytical approaches cited from ICH
Guidance E3 listed in Section 9.2?

2. Refer to the data in Table 9.1:

(a) Calculate a two-sided 90% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit). 

(b) Calculate a two-sided 95% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit).

(c) Calculate a two-sided 99% confidence interval
for the difference in mean hemoglobin value at
endpoint (last visit).

(d) What is the statistical interpretation of these
results?



10.1 Introduction: Regulatory views of
substantial evidence

When thinking about the use of statistics in clin-
ical trials, the first thing that comes to mind for
many people is the process of hypothesis testing
and the associated use of p values. This is very
reasonable, because the role of a chance outcome
is of utmost importance in study design and the
interpretation of results from a study. A sponsor’s
objective is to develop an effective therapy that
can be marketed to patients with a certain disease
or condition. From a public health perspective,
the benefits of a new treatment cannot be sepa-
rated from the risks that are tied to it. Regulatory
agencies must protect public health by ensuring
that a new treatment has “definitively” been
demonstrated to have a beneficial effect. The
meaning of the word “definitively” as used here
is rather broad, but we discuss what it means in
this context – that is, we operationally define the
term “definitively” as it applies to study design,
data analysis, and interpretation in new drug
development. 

Most of this chapter is devoted to describing
various types of data and the corresponding
analytical strategies that can be used to demon-
strate that an investigational drug, or test
treatment, is efficacious. First, however, it is
informative to discuss the international stand-
ards for demonstrating efficacy of a new product,
and examine how regulatory agencies have
interpreted these guidelines. ICH Guidance E9
(1998, p 4) addresses therapeutic confirmatory
studies and provides the following definition:

A confirmatory trial is an adequately controlled
trial in which the hypotheses are stated in

advance and evaluated. As a rule, confirmatory
trials are necessary to provide firm evidence of
efficacy or safety. In such trials the key hypoth-
esis of interest follows directly from the trial’s
primary objective, is always pre-defined, and is
the hypothesis that is subsequently tested when
the trial is complete. In a confirmatory trial it is
equally important to estimate with due precision
the size of the effects attributable to the treat-
ment of interest and to relate these effects to
their clinical significance.

It is common practice to use earlier phase
studies such as therapeutic exploratory studies
to characterize the size of the treatment effect,
while acknowledging that the effect size found
in these studies is associated with a certain
amount of error. As noted earlier, confidence
intervals can be helpful for planning confirma-
tory studies. The knowledge and experience
gained in these earlier studies can lead to
hypotheses that we wish to test (and hopefully
confirm) in a therapeutic confirmatory trial, for
example, the mean reduction in systolic blood
pressure (SBP) for the test treatment is 20 mmHg
greater than the mean reduction in SBP for
placebo. As we have seen, a positive result from
a single earlier trial could be a type I error, so a
second study is useful in substantiating that
result.

The description of a confirmatory study in
ICH Guidance E9 (1998) also illustrates the
importance of the study design employed. The
study should be designed with several important
characteristics:

• It should test a specific hypothesis.
• It should be appropriately sized.
• It should be able to differentiate treatment

effects from other sources of variation (for
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example, time trends, regression to the mean,
bias).

• The size of the treatment effect that is being
confirmed should be clinically relevant.

The clinical relevance, or clinical significance, of
a treatment effect is an extremely important
consideration. The size of a treatment effect that
is deemed clinically relevant is best defined by
medical, clinical, and regulatory specialists. 

Precise description of the study design and
adherence to the study procedures detailed in
the study protocol are particularly important for
confirmatory studies. Quoting again from ICH
Guidance E9 (1998, p 4):

Confirmatory trials are intended to provide firm
evidence in support of claims and hence adher-
ence to protocols and standard operating proce-
dures is particularly important; unavoidable
changes should be explained and documented,
and their effect examined. A justification of the
design of each such trial, and of other important
statistical aspects such as the principal features
of the planned analysis, should be set out in
the protocol. Each trial should address only a
limited number of questions. 

Confirmatory studies should also provide
quantitative evidence that substantiates claims
in the product label (for example, the package
insert) as they relate to an appropriate popula-
tion of patients. In the following quote from
ICH Guidance E9 (1998, p 4), the elements of
statistical and clinical inference can be seen:

Firm evidence in support of claims requires that
the results of the confirmatory trials demonstrate
that the investigational product under test has
clinical benefits. The confirmatory trials should
therefore be sufficient to answer each key clinical
question relevant to the efficacy or safety claim
clearly and definitively. In addition, it is impor-
tant that the basis for generalisation . . . to the
intended patient population is understood and
explained; this may also influence the number
and type (e.g. specialist or general practitioner) of
centres and/or trials needed. The results of the
confirmatory trial(s) should be robust. In some
circumstances the weight of evidence from a
single confirmatory trial may be sufficient.

The terms “firm evidence” and “robust” do
not have explicit definitions. However, as clin-
ical trials have been conducted and reported in
recent years, some practical (operational) defini-
tions have emerged, and these are discussed
shortly. 

In its guidance document Providing Clinical
Evidence of Effectiveness for Human Drug and
Biological Products, the US Food and Drug
Administration (US Department of Health and
Human Services, FDA, 1998) describes the
introduction of an effectiveness requirement
according to a standard of “substantial evidence”
in the Federal Food, Drug, and Cosmetic Act
(the FDC Act) of 1962: 

Substantial evidence was defined in section 505(d)
of the Act as “evidence consisting of adequate
and well-controlled investigations, including
clinical investigations, by experts qualified by
scientific training and experience to evaluate the
effectiveness of the drug involved, on the basis
of which it could fairly and responsibly be
concluded by such experts that the drug will
have the effect it purports or is represented to
have under the conditions of use prescribed,
recommended, or suggested in the labeling or
proposed labeling thereof.”

US Department of Health and 
Human Services, FDA (1998, p 3)

The phrase “adequate and well-controlled inves-
tigations” has typically been interpreted as at
least two studies that clearly demonstrated that
the drug has the effect claimed by the sponsor
submitting a marketing approval. Furthermore, a
type I error of 0.05 has typically been adopted as
a reasonable standard upon which data from
clinical studies are judged. That is, it was widely
believed that the intent of the FDC Act of 1962
was to state that a drug could be concluded to be
effective if the treatment effect was clinically
relevant and statistically significant at the a �

0.05 level in two independent studies. 
The ICH Guidance E8 (1998, p 4) clarified this

issue:

The usual requirement for more than one
adequate and well-controlled investigation
reflects the need for independent substantiation
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of experimental results. A single clinical experi-
mental finding of efficacy, unsupported by other
independent evidence, has not usually been
considered adequate scientific support for a
conclusion of effectiveness. The reasons for this
include the following:

• Any clinical trial may be subject to unantici-
pated, undetected, systematic biases. These
biases may operate despite the best intentions
of sponsors and investigators, and may lead
to flawed conclusions. In addition, some
investigators may bring conscious biases to
evaluations.

• The inherent variability in biological systems
may produce a positive trial result by chance
alone. This possibility is acknowledged, and
quantified to some extent, in the statistical
evaluation of the result of a single efficacy
trial. It should be noted, however, that
hundreds of randomized clinical efficacy trials
are conducted each year with the intent of
submitting favorable results to the FDA. Even
if all drugs tested in such trials were ineffec-
tive, one would expect one in forty of those
trials to “demonstrate” efficacy by chance
alone at conventional levels of statistical
significance. It is probable, therefore, that
false positive findings (that is, the chance
appearance of efficacy with an ineffective
drug) will occur and be submitted to FDA as
evidence of effectiveness. Independent
substantiation of a favorable result protects
against the possibility that a chance occur-
rence in a single study will lead to an erro-
neous conclusion that a treatment is effective.

• Results obtained in a single center may be
dependent on site or investigator-specific
factors (for example, disease definition,
concomitant treatment, diet). In such cases,
the results, although correct, may not be
generalizable to the intended population.
This possibility is the primary basis for
emphasizing the need for independence in
substantiating studies.

• Rarely, favorable efficacy results are the
product of scientific fraud.

Although there are statistical, methodologic,
and other safeguards to address the identified
problems, they are often inadequate to address
these problems in a single trial. Independent

substantiation of experimental results addresses
such problems by providing consistency across
more than one study, thus greatly reducing the
possibility that a biased, chance, site-specific, or
fraudulent result will lead to an erroneous
conclusion that a drug is effective.

This guidance further clarified that the need for
substantiation does not necessarily require two
or more identically designed trials:

Precise replication of a trial is only one of a
number of possible means of obtaining indepen-
dent substantiation of a clinical finding and, at
times, can be less than optimal as it could leave
the conclusions vulnerable to any systematic
biases inherent to the particular study design.
Results that are obtained from studies that are
of different design and independent in execu-
tion, perhaps evaluating different populations,
endpoints, or dosage forms, may provide
support for a conclusion of effectiveness that is
as convincing as, or more convincing than, a
repetition of the same study.

ICH Guidance E8 (1998, p 5)

Regulatory agencies have traditionally accepted
only two-sided hypotheses because, theoreti-
cally, one could not rule out harm (as opposed to
simply no effect) associated with the test treat-
ment. If the value of a test statistic (for example,
the Z-test statistic) is in the critical region at the
extreme left or extreme right of the distribution
(that is, � �1.96 or � 1.96), the probability of
such an outcome by chance alone under the null
hypothesis of no difference is 0.05. However, the
probability of such an outcome in the direction
indicative of a treatment benefit is half of 0.05,
that is, 0.025. This led to a common statistical
definition of “firm” or “substantial” evidence as
the effect was unlikely to have occurred by
chance alone, and it could therefore be attrib-
uted to the test treatment. Assuming that two
studies of the test treatment had two-sided 
p values � 0.05 with the direction of the treat-
ment effect in favor of a benefit, the probability
of the two results occurring by chance alone
would be 0.025 � 0.025, that is, 0.000625 (which
can also be expressed as 1/1600).

It is important to note here that this standard
is not written into any regulation. Therefore,
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there may be occasions where this statistical
standard is not met. In fact, it is possible to
redefine the statistical standard using one large
well-designed trial, an approach that has been
described by Fisher (1999). 

Whether the substantial evidence comes from
one or more than one trial, the basis for
concluding that the evidence is indeed substan-
tial is statistical in nature. That is, the regulatory
agency must agree with the sponsor on several
key points in order to approve a drug for
marketing:

• The effect claimed cannot be explained by
other phenomena such as regression to the
mean, time trends, or bias. This highlights the
need for appropriate study design and data
acquisition.

• The effect claimed is not likely a chance
outcome. That is, the results associated with a
primary objective have a small p value, indi-
cating a low probability of a type I error. 

• The effect claimed is large enough to be
important to patients, that is, clinically rele-
vant. The magnitude of the effect must
account for sampling during the trial(s).

A clinical development program contains
various studies that are designed to provide the
quantity and quality of evidence required to
satisfy regulatory agencies, which have the
considerable responsibility of protecting public
health. The requirements for the demonstra-
tion of substantial evidence highlight the
importance of study design and analytic strate-
gies. Appropriate study design features such as
concurrent controls, randomization, standardiza-
tion of data collection, and treatment blinding

help to provide compelling evidence that an
observed treatment effect cannot be explained
by other phenomena. Selection of the appropriate
analytical strategy maximizes the precision and
efficiency of the statistical test employed. The
employment of appropriate study design and
analytical strategies provides the opportunity for
an investigational drug to be deemed effective if
a certain treatment effect is observed in clinical
trials. 

10.2 Objectives of therapeutic
confirmatory trials 

Table 10.1 provides a general taxonomy of the
objectives of confirmatory trials and specific
research questions corresponding to each.
Confirmatory trials typically have one primary
objective that varies by the type of trial. In the
case of a new antihypertensive it may be suffi-
cient to demonstrate simply that the reduction
in blood pressure is greater for the test treatment
than for the placebo. A superiority trial is appro-
priate in this instance. However, in other thera-
peutic areas – for example, oncology – other
designs are appropriate. In these therapeutic
areas it is not ethical to withhold life-extending
therapies to certain individuals by randomizing
them to a placebo treatment if there is already an
existing treatment for the disease or condition.

In such cases, it is appropriate to employ trials
with the objective of demonstrating that the
clinical response to the test treatment is equiva-
lent (that is, no better or worse) to that of an
existing effective therapy. These trials are called
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Table 10.1 Taxonomy of therapeutic confirmatory trial objectives

Objective of trial Example indication Example research question

Demonstrate superiority Hypercholesterolemia Is the magnitude of LDL reduction for the test 
treatment greater than for placebo?

Demonstrate equivalence Oncology Is the test treatment at worst trivially inferior to and at 
best slightly better than the active control with 
respect to the rate of partial tumor response?

Demonstrate noninferiority Anti-infective Is the microbial eradication rate for the test treatment 
at least not unacceptably worse than for the active control?



equivalence trials. A question that arises here 
is: Why would we want to develop another drug
if there is already an existing effective treat-
ment? The answer is that we believe the test
treatment offers other advantages (for example,
convenience, tolerability, or cost) to justify its
development. Another type of trial is the 
noninferiority trial. These trials are intended
only to demonstrate that a test treatment is not
unacceptably worse (noninferior) than an active
control. Again, the test treatment may provide
advantages other than greater therapeutic
response such as fewer adverse effects or greater
convenience. 

Equivalence and noninferiority trials are quite
different from superiority trials in their design,
analysis, and interpretation (although exactly
the same methodological considerations apply
to collect optimum quality data in these trials).
Superiority trials continue to be our focus in this
book, but it is important that you are aware of
other designs too. Therefore, in Chapter 12 we
discuss some of the unique features of these
other design types. 

10.3 Moving from research questions to
research objectives: Identification of
endpoints

There is an important relationship between
research questions and study objectives, and it is
relatively straightforward to restate research
questions such as those in Table 10.1 in terms of
study objectives. As stated in ICH Guidance E9, a
confirmatory study should be designed to
address at most a few objectives. If a treatment
effect can be quantified by an appropriate
statistical measure, study objectives can be trans-
lated into statistical hypotheses. For example,
the extent of low-density lipoprotein (LDL)-
cholesterol reduction can be measured by the
mean change from baseline to end-of-treatment,
or by the proportion of study participants who
attain a goal level of LDL according to a treat-
ment guideline. The efficacy of a cardiovascular
intervention may be measured according to the
median survival time after treatment. For many
drugs, identification of an appropriate measure

of the participant-level response (for example,
reported pain severity using a visual analog scale)
is not difficult. However, there may be instances
when the use of a surrogate endpoint can be
justified on the basis of statistical, biological and
practical considerations. Measuring HIV viral
load as a surrogate endpoint for occurrence of
AIDS is an example. 

Identification of the endpoint of interest is
one of the many cases in clinical research that
initially seem obvious and simple. We know
exactly what disease or condition we are inter-
ested in treating, and it should be easy to iden-
tify an endpoint that will tell us if we have
been successful. In reality, the establishment of
an appropriate endpoint, whether it is the
most clinically relevant endpoint or a surrogate
endpoint, can be difficult. Some of the statistical
criteria used to judge the acceptability of surro-
gate endpoints are described by Fleming and
DeMets (1996), who caution against their use in
confirmatory trials. One might argue that the
most clinically relevant endpoint for a antihy-
pertensive is the survival time from myocardial
infarction, stroke, or death. Fortunately, the
incidence of these events is relatively low during
the typical observation period of clinical trials.
The use of SBP as a surrogate endpoint enables the
use of shorter and smaller studies than would be
required if the true clinical endpoint had to be
evaluated. For present purposes, we assume the
simplest scenario: The characteristic that we are
going to measure (blood pressure) is uncontro-
versial and universally accepted, and a clinically
relevant benefit is acknowledged to be associated
with a relative change in blood pressure for the
test treatment compared with the control. 

Common measures of the efficacy of a test
treatment compared with a placebo include the
differences in means, in proportions, and in
survival distributions. How the treatment effect
is measured and analyzed in a clinical trial
should be a prominent feature of the study
protocol and should be agreed upon with
regulatory authorities before the trial begins. In
this chapter we describe between-group differ-
ences in general terms. It is acceptable to
calculate the difference in two quantities, A and
B as “A minus B” or “B minus A” as long as the
procedure chosen is identified unambiguously. 
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10.4 A brief review of hypothesis
testing

We discussed hypothesis testing in some detail
in Chapter 6. For present purposes, the role of
hypothesis testing in confirmatory clinical trials
can be restated simply as follows:

Hypothesis testing provides an objective way to
make a decision to proceed as if the drug is
either effective or not effective based on the
sample data, while also limiting the probability
of making either decision in error. 

For a superiority trial the null hypothesis is that
the treatment effect is zero. Sponsors of drug
trials would like to generate sufficient evidence,
in the form of the test statistic, to reject the null
hypothesis in favor of the alternate hypothesis,
thereby providing compelling evidence that the
treatment effect is not zero. The null hypothesis
may be rejected if the treatment effect favors
the test drug, and also if it favors the placebo
(as discussed, we have to acknowledge this
possibility).

The decision to reject the null hypothesis
depends on the value of the test statistic relative
to the distribution of its values under the null
hypothesis. Rejection of the null hypothesis
means one of two things:

1. There really is a difference between the two
treatments, that is, the alternate hypothesis is
true.

2. An unusually rare event has occurred, that is,
a type I error has been committed, meaning
that we reject the null hypothesis given that
it is true. 

Regulatory authorities have many reasons to be
concerned about type I errors. As a review at the
end of this chapter, the reader is encouraged to
think about the implications for a pharmaceu-
tical company of committing a type I or II error
at the conclusion of a confirmatory efficacy study.

The test statistic is dependent on the analysis
method, which is dependent on the study
design; this, in turn, is dependent on a precisely
stated research question. By now, you have seen

us state this fundamental point several times,
but it really cannot be emphasized enough. In
our experience, especially with unplanned data
analyses, researchers can be so anxious to know
“What’s the p value?” that they forget to
consider the possibility that the study that
generated the data was not adequately
designed to answer the specific question
of interest. The steps that lead toward opti-
mally informed decision-making in confirma-
tory trials on the basis of hypothesis testing are
as follows:

1. State the research question.
2. Formulate the research question in the form

of null and alternate statistical hypotheses.
3. Design the study to minimize bias, maximize

precision, and limit the chance of committing
a type I or II error. As part of the study design,
prespecify the primary analysis method that
will be used to test the hypothesis. Depending
on the nature of the data and the size of the
study, consider whether a parametric or
nonparametric approach is appropriate.

4. Collect optimum-quality data using optimum-
quality experimental methodology. 

5. Carry out the primary statistical analysis
using the prespecified method.

6. Report the results of the primary statistical
analysis. 

7. Make a decision to proceed as if the drug is
either effective or ineffective:

(a) If you decide that it is effective based on
the results of this study, you may choose
to move on to conduct the next study in
your clinical development plan, or, if this
is the final study in your development
plan, to submit a dossier (for example,
NDA [new drug application], MAA
[marketing authorisation application]) to
a regulatory agency. 

(b) If you decide that it is ineffective based on
the results of this study, you may choose
to refine the original research question
and conduct a new study, or to abandon
the development of this investigational
new drug.

132 Chapter 10 • Confirmatory clinical trials: Analysis of categorical efficacy data



10.5 Hypothesis tests for two or more
proportions

The research question of interest in some studies
can be phrased: Does the test treatment result in
a higher probability of attaining a desired state
than the control? Examples of such applications
include: 

• survival after 1 year following a cardiovascular
intervention

• avoiding hospitalization associated with
asthmatic exacerbations over the course of
6 months

• attaining a specific targeted level of LDL
according to one’s background risk.

In a confirmatory trial of an antihypertensive,
for example, a sponsor might like to know if
the test treatment results in a higher propor-
tion of hypertensive individuals (which can be
interpreted as a probability) reaching an SBP 
� 140 mmHg. 

10.5.1 Hypothesis test for two
proportions: The Z approximation

In the case of a hypothesis test for two propor-
tions the null and alternate statistical
hypotheses can be stated as follows:

H0: p1 � p2 � 0
HA: p1 � p2 � 0

where the population proportions for each of
two independent groups are represented by p1
and p2.

The sample proportions will be used to esti-
mate the population proportions and, as in
Chapter 8, are defined as:

number of observations in group 1 with the event of interest
p̂1 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––

total number of observations in group 1 at risk of the event

and

number of observations in group 2 with the event of interest
p̂2 � ––––––––––––––––––––––––––––––––––––––––––––––––––––––––.

total number of observations in group 2 at risk of the event

The estimator for the difference in the two
sample proportions is p̂1 �p̂2 and the standard
error of the difference p̂1 �p̂2 is:

_______________
p̂1q̂1 p̂2q̂ 2

SE(p̂1 � p̂2) � �–––––– � ––––––,
n1 n2

where q̂1 � 1 �p̂1 and q̂2 � 1 �p̂2. The test statistic
for the test of two proportions is equal to:

(p̂1 � p̂2)
Z � –––––––––––.

SE(p̂1 � p̂2)

Use of a correction factor may be useful as well,
especially with smaller sample sizes. A test
statistic that makes use of the correction factor is:

1 1 1
|p̂1 � p̂2| � –– (–– � ––)2 n1 n2

Z � ––––––––––––––––––––––.
SE(p̂1 � p̂2)

For large samples (that is, when p̂1n1 � 5 and
p̂2n2 � 5), these test statistics follow a standard
normal distribution under the null hypothesis.
Values of the test statistic that are far away from
zero would contradict the null hypothesis and
lead to rejection. In particular, for a two-sided
test of size a, the critical region (that is, those
values of the test statistic that would lead to
rejection of the null hypothesis) is defined by 
F � Fa/2 or F � F1 �a/2. If the calculated value of
the test statistic is in the critical region, the 
null hypothesis is rejected in favor of the alter-
nate hypothesis. If the calculated value of the
test statistic is outside the critical region, the 
null hypothesis is not rejected.

As an illustration of this hypothesis test,
consider the following hypothetical data from a
confirmatory study of a new antihypertensive.
In a randomized, double-blind, 12-week study,
the test treatment was compared with placebo.
The primary endpoint of the study was the
proportion of participants who attained an SBP
goal � 140 mmHg. Of 146 participants assigned
to placebo, 34 attained an SBP � 140 mmHg at
week 12. Of 154 assigned to test treatment, 82
attained the goal. Let us look at how these results
can help us to make a decision based on the

Hypothesis tests for two or more proportions 133



information provided. We go through the steps
needed to do this.

The research question

Is the test treatment associated with a higher rate
of achieving target SBP?

Study design

As noted, the study is a randomized, double-
blind, placebo-controlled, 12-week study of an
investigational antihypertensive drug.

Data

The data from this study are in the form of
counts. We have a count of the number of partic-
ipants in each treatment group, and, for both of
these groups, we have a count of the number
of participants who experienced the event of
interest. As the research question pertains to a
probability, or risk, we use the count data to
estimate the probability of a proportion of
participants attaining the goal SBP. 

Hypotheses and statistical analysis

The null and alternate statistical hypotheses in
this case can be stated as:

H0: pTEST � pPLACEBO � 0
HA: pTEST � pPLACEBO � 0

where the population proportions for each
group are represented by pTEST and pPLACEBO. As
the response is attaining a lower SBP, the group
with the greater proportion of responses will be
regarded as the treatment with a more favorable
response. The difference in proportions is calcu-
lated as “test minus placebo.” Positive values of
the test statistic will favor the test treatment. 

As the samples are large according to the defi-
nition given earlier, the test of the two propor-
tions using the Z approximation is appropriate.
For a two-sided test of size 0.05 the critical region
is defined by Z � �1.96 or Z � 1.96. The value
of the test statistic is calculated as:

p̂TEST � p̂PLACEBOZ � ––––––––––––––––––.
SE(p̂TEST � p̂PLACEBO)

The difference in sample proportions is 
calculated as:

82 34
p̂TEST � p̂PLACEBO � –––– � –––– � 0.5325 � 0.2329 � 0.2996.

154 146

The standard error of the difference in sample
proportions is calculated as:

_________________________________
(0.5325)(0.4675) (0.2329)(0.7671)

SE(p̂TEST � p̂PLACEBO) � � ––––––––––––––– � ––––––––––––––– � 0.0533.
154 146

Using these calculated values, the value of the
test statistic is:

0.2996
Z � ––––––– � 5.62.

0.0533

The test statistic using a correction factor is
obtained as:

1 1 1
0.2996 � – (–––– � ––––)2 154 146

Z � –––––––––––––––––––––––– � 5.50.
0.0533

Interpretation and decision-making

As the value of test statistic – that is, 5.62 – is in
the critical region (5.62 � 1.96), the null hypoth-
esis is rejected in favor of the alternate hypoth-
esis. Note that the value of the test statistic using
the correction factor was also in the critical
region. The probability of attaining the SBP goal
is greater for those receiving the test treatment
than for those receiving placebo. 

It is fairly common to report a p value from
such an analysis. As we have seen, the p value is
the probability (under the null hypothesis) of
observing the result obtained or one that is more
extreme. In this analytical strategy we refer to a
table of Z scores and the tail areas associated
with each to find the sum of the two areas (that
is, probabilities) to the left of �5.62 (a result as
extreme as the observed or more so) and to the
right of 5.62 (the result observed and those more
extreme). A Z score of this magnitude is way out
in the right-hand tail of the distribution, leading
to a p value � 0.0001.

The results of this study may lead the sponsor
to decide to conduct a second confirmatory trial,
being confident that the drug is efficacious.
Alternately, if the entire set of clinical data are
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satisfactory, the sponsor may decide to apply for
marketing approval. 

10.5.2 Hypothesis test for two (or more)
proportions: v2 test of homogeneity

An alternative method to the Z approximation
for the comparison of two proportions from
independent groups is called the v2 test, which is
considered a goodness-of-fit test; this quantifies
the extent to which count data (for example, the
number of individuals with and without the
response of interest) deviate from counts that
would be expected under a particular mathemat-
ical model. The mathematical model used in
clinical studies for goodness-of-fit tests is that of
homogeneity. That is, if a particular response is
homogeneous with respect to treatment, we
would expect all the responses of interest to be
proportionally distributed among all treatment
groups. The assumption of homogeneity will
allow us to calculate the cell counts that would
be expected. These will then be compared with
what was actually observed. The more the
expected counts under the particular model of
interest (for example, homogeneity) deviate
from what is observed, the greater the value of
the test statistic, and therefore the more the data
do not represent goodness of fit. The v2 test is
useful because it can be used to test homogeneity
across two or more treatment groups. We first
describe the case of two groups and the more
general case is described in Section 10.5.3.

If there are two independent groups of interest
(for example, treatment groups in a clinical trial)
each representing an appropriate population,
the proportions of participants with the charac-
teristic or event of interest are represented by p̂1
� m1/n1 and p̂2 � m2/n2. The counts of partici-
pants with events and nonevents can be
displayed in a contingency table with two
columns and two rows, representing the
numbers of observations with (m1 and m2) and
without (n1 � m1 and n2 � m2) the characteristic
of interest. The marginal total of individuals
with events (the sum across the two groups) is
denoted by R � m1 � m2. The marginal total of
individuals without the events (sum across the
two groups) is denoted by S � (n1 � n2) � (m1 � m2).

Finally, the total sample size (sum across the two
groups) is denoted by N � n1 � n2. The overall
proportion of responses of interest across both
groups is p̂ � R/N. The complementary propor-
tion of responses is q̂ � S/N. A sample contin-
gency table displaying the observed counts is
represented in Table 10.2. 

The null hypothesis for the v2 test of 
homogeneity for two groups is stated as: 

H0: The distribution of the response of interest is
homogeneous with respect to the two treatment
groups. Equivalently, the proportion of “yes”
responses is equal across the two groups.

The alternate hypothesis is:

HA: The distribution of the response of interest
is not homogeneous with respect to the two
treatment groups.

If the null hypothesis is true – that is, the propor-
tion of participants with the event of interest is
similar across the two groups – the expected
count of responses in groups 1 and 2 would be in
the same proportion as observed across all
groups. That is, the expected cell count in row 1
(participants with events of interest) for
group 1 is: 

E1,1 � p̂n1.

Likewise, the expected cell count in row 1
(participants with events of interest) for
group 2 is: 

E1,2 � p̂n2.

Similarly, the expected cell count in row 2
(participants without the event of interest) for
group 1 is:

E2,1 � q̂ n1.
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Table 10.2 Sample contingency table for two groups
and two responses (2 � 2)

Group

Event or characteristic? 1 2 Total

Yes m1 m2 R
No n1 � m1 n2 � m2 S

n1 n2 N



Lastly, the expected cell count in row 2 (partici-
pants without the event of interest) for group 2 is:

E2,2 � q̂ n2.

The corresponding observed counts in Table 10.2
are:

O1,1 � m1,
O1,2 � m2,
O2,1 � n1 � m1,

and

O2,2 � n2 � m2.

The test statistic v2 is calculated as the sum of
squared differences between the observed and
expected counts divided by the expected count
for all four cells (two groups and two responses)
of the contingency table: 

2 2 (Or,i � Er,i)
2

X2 � RR –––––––––––.
i�1 r�1

Er,i

Under the null hypothesis of homogeneity, the
test statistic, X2, for two groups and two
responses (for example, interest is in the propor-
tion) is approximately distributed as a v2 with 1
degree of freedom (df). Only large values of the
test statistic are indicative of a departure from
the null hypothesis. Therefore, the v2 test is
implicitly a one-sided test. Values of the test
statistic that lie in the critical region are those
with X2 � v1

2. 
The notation in this section tends to be

more complex than we have encountered in
previous chapters. A worked example using the
data from Section 10.5.1 may clarify the descrip-
tion. In a randomized, double-blind, 12-week
study, the test treatment was compared with
placebo. The primary endpoint of the study 
was the proportion of participants who attained
an SBP goal � 140 mmHg. Of 146 partici-
pants assigned to placebo, 34 attained an SBP 
� 140 mmHg at week 12. Of 154 assigned to
test treatment, 82 attained the goal. 

The research question

Are participants who take the test treatment
more likely than placebo participants to attain
their SBP goal? 

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as the
contingency table displayed in Table 10.3.

Statistical analysis

The null and alternate statistical hypotheses can
be stated as follows:

H0: The proportion of individuals who attained
SBP � 140 mmHg is homogeneous (equal) across
the two treatment groups.

HA: The proportion of individuals who attained
SBP � 140 mmHg is not homogeneous across
the two treatment groups.

In cases where there are only two categories,
such as in this one, we need to know only how
many individuals are in the “yes” row, because
the number in the “no” row can be obtained by
subtraction from the sample size within each
group. 

To calculate the test statistic, we first need to
know the expected cell counts. These can be
calculated as the product of the marginal row
total and the marginal column total divided by
the total sample size. The expected cell counts
under the null hypothesis of homogeneity are
provided in Table 10.4. The expected cell count
for the placebo group in the first row (“Yes”) was
calculated as: (146)(116)/300 � 56.453. The
expected cell count for the test treatment group
in the second row (“No”) was calculated as:
(154)(184)/300 � 94.453. You are encouraged to
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Table 10.3 Contingency table for individuals
attaining goal SBP

Attained SBP � 140? Placebo Test Total

Yes 34 82 116
No 112 72 184

146 154 300



verify the remaining two cell counts using the
same methodology. 

Now that we have calculated the expected cell
counts, we can calculate the test statistic using
these expected cell counts in conjunction with
the observed cell counts:

(34 � 56.453)2 (82 � 59.547)2 (112 � 89.547)2 (72 � 94.453)2

X2 � ––––––––––––– � ––––––––––––– � ––––––––––––– � –––––––––––––
56.453 59.547 89.547 94.453

� 28.3646

Tabled values to determine critical regions are
not as concise as those for the standard normal
distribution, because there is not just one v2

distribution but many of them. However, the 
v2 distribution with 1 df is quite frequently
encountered as 2 � 2 contingency tables. Hence,
for reference, values of the v2 distribution for 
1 df that cut off various areas in the right-hand
tail are provided in Table 10.5. Additional values
of v2

1�a are provided in Appendix 3.

For a test of size 0.05 the value of the test
statistic, 28.3646, is much greater than the
critical value of 3.841.

Interpretation and decision-making

Just as the hypothesis test using the Z approxi-
mation resulted in a rejection of the null hypo-
thesis, so does this v2 test. We can also tell from
the critical values in Table 10.5 that the p value
must be � 0.001 because less than 0.001 of the
area under the 1 df v2 distribution lies to the
right of the value 10.38 and the calculated test
statistic, 28.3646 lies to the right of that value. 

10.5.2.1 Odds ratio as a measure of
association from 2 � 2 contingency tables 

Many articles published in medical journals cite
a measure of association called an odds ratio,
which is an estimate of the relative risk of the
event or outcome of interest, a concept that was
introduced in Chapter 8. If the probability of an
outcome of interest for group 1 is estimated as p̂1
the odds of the event are:

p̂1
Odds of the event for group 1        � –––––––.

1 � p̂1

Similarly:
p̂2

Odds of the event for group 2        � ––––––.
1 � p̂2

Then the estimated odds ratio is calculated as:
p̂1(1 � p̂2)

Odds ratio � ––––––––––.
p̂2(1 � p̂1)

Note that an equivalent definition of the odds
ratio using the observed counts from the 2 � 2
contingency table in Section 10.5.2 is:

O1,1O2,2
Odds ratio � ––––––––.

O1,2O2,1

A standard error may be calculated for
purposes of constructing a confidence interval
for the odds ratio, but it requires an iterative
solution. Statistical software is useful for this
purpose. Interested readers will find a wealth of
information on the odds ratio in Fleiss et al.
(2003). 

If the estimated probabilities of the event are
the same (or similar) between the two groups,
the odds ratio will have a value around 1 (unity).
Thus an assumption of no association in a 2 � 2
table implies that the odds ratio is equal to 1.
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Table 10.4 Expected cell counts for v2 test of
homogeneity

Attained SBP � 140? Placebo Test Total

Yes 56.453 59.547 116
No 89.547 94.453 184

146 154 300

Table 10.5 Critical values for the v2 distribution with
1 degree of freedom 

a (one sided) v2
(1 � a),1

0.10 2.706
0.05 3.841
0.01 6.635
0.001 10.38



This also means that the v2 test for binary
outcomes from Section 10.5.2 can be considered
a test of the null hypothesis that the population
odds ratio � 1. Values of the odds ratio appro-
priately � 1 or appropriately � 1 are suggestive
of an association between the group and the
outcome. 

Using the data from Table 10.3 as presented
and using the formula for observed cell counts,
the estimated odds ratio is calculated as:

(34)(72)
Odds ratio � –––––––– � 0.27.

(112)(82)

Interpreting this value as an estimate of the rela-
tive risk of attaining the target SBP level, we
would say that patients treated with placebo are
0.27 times as likely as patients treated with the
active drug to attain the SBP goal. This statement
may seem awkward (we would not disagree),
which points out a potentially difficult aspect of
the odds ratio. As the name implies it is a ratio
scaled quantity so the odds ratio can be
expressed as a/b or b/a. Keeping in mind that the
odds ratio is an estimate of the relative risk,
selecting the more appropriate method will aid
the clinical interpretation of the result. In this
case the response of interest is a favorable
outcome, so a relative risk � 1 would imply that
a favorable outcome was more likely after treat-
ment with the active drug than the placebo.
Similarly, if the response of interest is a bad
outcome (for example, serious adverse event) a
relative risk � 1 would suggest that the proba-
bility of a bad outcome was less for the active
drug than the placebo. 

Hence we can make more sense of this calcu-
lated value by taking its inverse as 1/0.27 � 3.75.
This expression is more appealing and an accu-
rate interpretation in that patients treated with
the test drug are 3.75 times more likely to attain
the SBP goal than those treated with placebo.
One can also obtain this result by switching the
order of the columns in Table 10.3 and
performing the calculation as:

(82)(112)
Odds ratio � –––––––– � 3.75.

(72)(34)

Odds ratios are one of the most common statis-
tics cited from logistic regression analyses.

Logistic regression is an advanced topic and
therefore not included in this book. An overly 
simple description is that it is an analysis
method by which binary outcomes are modeled
(or explained) using various predictor variables.
The proper interpretation of odds ratios from
logistic regression models will depend on the
way in which the predictors were used in the
statistical model. However, the general concept
is the same as in this example. The odds ratio
represents the relative increase in risk of a partic-
ular event for one group versus another. We
recommend two excellent texts on logistic
regression by Hosmer and Lemeshow (2000) and
Kleinbaum and Klein (2002). 

10.5.2.2 Use of the v2 test for two
proportions

The v2 test of homogeneity is useful for
comparing two proportions under the following
circumstances:

• The groups need to be independent.
• The responses need to be mutually exclusive.
• The expected cell counts are reasonably sized. 

With regard to the last of these requirements, we
need to operationally define “reasonably sized.”
A commonly accepted guideline is that the v2

test is appropriate when at least 80% of the cells
have expected counts of at least five. In the case
of the worked example, the use of the v2 test is
appropriate on the basis of independence (no
participant was treated with both placebo and
test treatment) and sample size. If a participant
can be counted in only one response category
the responses are considered mutually exclusive
or non-overlapping, as was the case here.

The v2 test of homogeneity is a special case
because it can be used for any number of groups.
The more general case is discussed in the
following section. 

10.5.3 Hypothesis test for g proportions:
v2 test of homogeneity

If there are g independent groups of interest (for
example, treatment groups in a clinical trial)
each representing relevant populations, the
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proportion of individuals with the characteristic
or event of interest is represented by:

p̂
i � 

m
i—

ni

for i � 1, 2, . . . g, where g represents the number
of groups. The counts of individuals with events
and nonevents can be displayed in a contin-
gency table with g columns and two rows repre-
senting the numbers of observations with (mi)
and without (ni � mi) the characteristic of interest.
The marginal total of individuals with events
(the sum across the g groups) is denoted by: 

g

R � R mi .
i�1

The marginal total of individuals without the
events (sum across the g groups) is denoted by: 

g

S � R ni �mi .
i�1

Finally, the total sample size (sum across the 
g groups) is denoted by: 

g

N � R ni .
i�1

The overall proportion of responses across all
groups is:

R
p̂ � ––.

N

A sample contingency table displaying the
observed counts in this more general case is
represented in Table 10.6. 

As before with the case of two groups, the null
hypothesis is stated as: 

H0: The distribution of the response of interest is
homogeneous with respect to the g treatment
groups. Equivalently, the proportion of “yes”
responses is equal across all g groups.

The alternate hypothesis is:

HA: The distribution of the response of interest is
not homogeneous with respect to the g treatment
groups.

If the null hypothesis is true, that is, the propor-
tion of individuals with the event of interest is
similar across the groups, the expected count of
responses in group i will be in the same propor-
tion as observed across all groups. That is, the
expected cell count in row 1 (individuals with
events of interest) for group i is: 

E1,i � p̂ni .

Similarly, the expected cell count in row 2
(individuals without the event of interest) for
group i is:

E2,i � q̂ ni.

The expected cell counts are calculated in this
manner for all 2g cells of the contingency table.
The corresponding observed counts for groups 
i � 1, 2, . . ., g, in Table 10.6 are:

O1,i � mi

and

O2,i � ni � mi.

The test statistic X2 is calculated as the sum of
squared differences between the observed and
expected counts divided by the expected count
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Table 10.6 Sample contingency table for g groups and two responses (g � 2)

Group

Event or characteristic? 1 2 . . . g Total

Yes m1 m2 . . . mg R
No n1 � m1 n2 � m2 . . . ng � mg S

n1 n2 . . . ng N



for all 2g cells (g groups and 2 responses) of the
contingency table: 

g 2 (Oi,g � Ei,g)
2

X2 � RR –––––––––––.
i�1 r�1

Ei,g

Under the null hypothesis of homogeneity, the
test statistic, X2, for g groups and two responses
is approximately distributed as a v2 with (g �1)
df. Values of the test statistic that lie in the
critical region are those with X2 � v2

g �1. 

10.5.4 Hypothesis test for r responses
from g groups

The v2 test can be applied to more general situa-
tions, including data with r response levels and g
independent groups. When there are more than
two response categories, however, the null and
alternate hypotheses cannot be stated simply in
terms of one proportion, but need to be stated in
terms of the distribution of response categories. 

One example containing more than two
groups would be an evaluation of the following
three categories of response: Worsening, no
change, and improvement. It would not be suffi-
cient to state the null hypothesis in terms of the
proportion of individuals with a response of
worsening because there are two other responses
of interest. We highlight this point because the
v2 test is used extensively in clinical research,
and it can be correctly applied to multilevel
responses and multiple groups. If we use the
more general terminology, “distribution of
responses is homogeneous with respect to treat-
ment group,” we are always correct no matter
how many responses there were or how many
groups. 

The specific methodology associated with
these more general cases is beyond the scope of
our text. The most appropriate and efficient
analyses of data of this type can depend on the
hypothesis of interest and whether or not the
response categories are ordered. Additional
details can be found in two excellent texts by
Stokes et al. (2001) and Agresti (2007).

10.5.5 Hypothesis test for two
proportions: Fisher’s exact test

The two methods described earlier, the Z approxi-
mation and the v2 test of homogeneity, are appro-
priate when the sample sizes are large enough.
There are times, however, when the sample sizes in
each group are not large enough or the proportion
of events is low such that np̂ � 5. In such cases
another analysis method, one that does not
require any approximation, is appropriate.

An alternate hypothesis test for two propor-
tions is attributed to Fisher. Fisher’s exact test is
applicable to contingency tables with two or
more responses in two or more independent
groups. We consider one case, 2 � 2 tables, repre-
sented by counts of individuals with and
without the characteristic of interest (two rows)
in each of two treatment groups (two columns),
for which the cell counts are small. For this test
the row and column marginal totals are consid-
ered fixed. That is, one assumes that the total
number of individuals with events is fixed as
well as the number in each group. The extent to
which the two groups are similar or dissimilar
accounts for the distribution of events between
the two groups. For any 2 � 2 table, the proba-
bility of the particular distribution of response
counts, assuming the fixed marginal totals, can
be calculated exactly via something called the
hypergeometric distribution (we do not go into
details here). Using slightly different notation
from the examples above, the cell counts and
marginal totals of a general 2 � 2 table are
displayed in Table 10.7. The total number of
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Table 10.7 Cell counts and marginal totals from a
general 2 � 2 table

Event or characteristic Group 1 Group 2 Total
of interest?

Yes Y1 Y2 Y.
No N1 N2 N.

n1 n2 n



“yes” responses is denoted by the symbol, Y.,
where the dot in the index means that the count
is obtained by summing the responses over the
two columns, that is, Y1 � Y2. Likewise, the total
number of “no” responses is denoted by the
symbol, N., the sum over groups 1 and 2. 

Given the fixed margins as indicated in 
Table 10.7, the probability of the distribution of
responses in the 2 � 2 table is calculated from
the hypergeometric distribution as:

Y.!N.!n1!n2!P(Y1, Y2, N1, N2, | Y., N., n1, n2, n) � ––––––––––––.
n!Y1!Y2!N1!N2!

The null and alternate hypotheses in this case
are as follows:

H0: The proportion of responses is independent
of the group.
HA: The proportion of responses is not 
independent of the group.

If the null hypothesis is rejected, the alternate
hypothesis is better supported by the data. 

For this test there is no test statistic as such,
because this test is considered an exact test.
Therefore, we need not compare the value of a
test statistic to a distribution. Instead, the p value
is calculated directly and compared with the
predefined a level. Recall that a p value is the
probability, under the null hypothesis, of
observing the obtained results or those more
extreme, that is, results contradicting the null
hypothesis. The calculation of the p value for
this exact test entails the following three steps: 

1. Calculate the probability of the observed cell
counts using the expression above.

2. For all other permutations of 2 � 2 tables with
the same marginal totals, calculate the proba-
bility of observed cell counts in a similar
manner. 

3. Calculate the p value as the sum of the
observed probability (from the first step) and
all probabilities for other permutations that
are less than the probability for the observed
table. 

As a consequence, the p value represents the like-
lihood of observing, by chance alone, the actual

result or those more extreme. The calculated p
value is compared with the value of a and we
either reject or fail to reject the null hypothesis.

As an example of Fisher’s exact test, we
consider other data from the antihypertensive
trial introduced in Section 10.5.1. These data are
presented in Table 10.8. 

The research question

Is there sufficient evidence at the a � 0.05 level
to conclude that the probability of attaining a
SBP � 120 mmHg (a remarkable response for a
hypertensive person!) is greater for people
receiving the test treatment than for those
receiving the placebo?

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as a
contingency table as displayed in Table 10.8. As
seen in Table 10.8, only four individuals had the
event of interest. Neither the Z approximation
nor the v2 test would be appropriate given the
small cell sizes of one and three. 

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:
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Table 10.8 Contingency table for individuals
attaining SBP � 120 mmHg

Attained SBP � 120? Placebo Test Total

Yes 1 3 4
No 145 151 296

146 154 300



H0: The proportion of individuals who attained
SBP � 120 mmHg is independent of treatment
group.
HA: The proportion of participants who attained
SBP � 120 mmHg is not independent of treat-
ment group. 

In this instance, independence means that the
probability of the response is no more or less
likely for one group versus the other. In his orig-
inal paper, Fisher stated the null hypothesis
slightly differently (although equivalent mathe-
matically). The null hypothesis, after Fisher, can
be stated in this form: The population odds ratio
of response to nonresponse for one group versus
the other is equal to one. 

In Figure 10.1 all of the possible permutations
of cell counts, given the marginal totals, are
displayed. To be concise, the row and column
labels are not included. The calculated proba-
bility from the hypergeometric distribution is
provided to the right of each arrangement of cell
counts. The probabilities in Figure 10.1 are
included to illustrate the calculation. Note that
by definition, 0! � 1. For this particular dataset it
is manageable to calculate each probability with
a calculator, but in many instances this partic-

ular test should be done using statistical soft-
ware. When calculating these probabilities by
hand it is helpful to re-write the factorial
expressions in a way so that numerator and
denominator terms “cancel out.” For example,
writing 154! as 154*153*152*151! allows us to
cancel 151! from the numerator and denomi-
nator of the probability associated with the
observed result.

The calculated p value is the probability from
the observed result plus all probabilities less than
the probability associated with the observed
result. For this example the exact p value is:

p value � 0.263453 � 0.236537 � 0.068119
� 0.054910 � 0.623019.

Rounding to three significant digits, this can be
expressed as p value � 0.623.

Interpretation and decision-making

Comparing the p value of 0.623 to a � 0.05, the
statistical conclusion is not to reject the null
hypothesis. There is insufficient evidence to con-
clude that the alternate hypothesis is true. If the
goal of a new antihypertensive therapy were to
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0 4

146 150

4! 296! 146! 154!

0! 4! 146! 150! 300!
P � 0.068119� 

1 3

145 151

4! 296! 146! 154!

1! 3! 145! 151! 300!
P � 0.263453 (observed result)� 

2 2

144 152

4! 296! 146! 154!

2! 2! 144! 152! 300!
P � 0.376981� 

3 1

143 153

4! 296! 146! 154!

3! 1! 145! 151! 300!
P � 0.236537� 

4 0

142 154

4! 296! 146! 154!

4! 0! 142! 154! 300!
P � 0.054910� 

Figure 10.1 All permutations of response counts given fixed marginal totals and probabilities of each



reduce SBP to levels � 120 mmHg, such a result
would be disappointing and may lead to a decis-
ion to halt the clinical development program.
However, the study was not designed to answer
such a question. In fact, the research question,
having been formulated as an exploratory
analysis, may not be well suited for the study that
was actually conducted. Perhaps a greater dose or
more frequent administration of the investiga-
tional antihypertensive drug would increase the
rate of the desired response. In any case, as the
analysis earlier in the chapter illustrated, the new
drug does seem to lower SBP to levels that would
beconsideredclinically important (�140mmHg).

10.5.6 Test of two proportions from
stratified samples: The Mantel–Haenszel
method

Confirmatory efficacy studies typically involve a
number of investigative centers and, accord-
ingly, are known as multicenter trials. Multi-
center trials have a number of benefits, which
are discussed later. A common analysis method
used in multicenter trials is to account for differ-
ences from center to center by including them in
the analysis. Stratifying the randomization to
treatment assignment by investigative center
ensures that there are approximately equal
numbers of participants assigned to test or
placebo within each center. Analyses from
studies with this design typically account for
center as it is conceivably another source of vari-
ation. This is accomplished by calculating a
summary test statistic within each center and
then pooling or calculating weighted averages 
of the within-center statistics across all centers,
thereby removing the effect of the centers from
the overall test statistic. 

The weights used in the analysis are chosen at
the trial statistician’s discretion, which provides
a good example of the “art” of Statistics, because
the statistician must make a well-informed judg-
ment call. Some commonly employed choices of
weights are as follows:

• equal weights for all centers
• weights proportional to the size of the center
• weights that are related to the standard error

of the within-center statistic (for example,

more precise estimates have more weight
than less precise estimates). 

One method applicable to the difference of two
proportions, originally described by Mantel and
Haenszel (1959) and well described by Fleiss et
al. (2003), utilizes weights that are proportional
to the size of each stratum (in this case, centers)
to calculate a test statistic that follows approxi-
mately a v2 distribution. 

Assume that there are h strata of interest, and
within each of the strata (h � 1, 2, . . ., H) there
are nh1 observations for group 1 (for example,
treatment group 1) and nh2 observations for
group 2 (for example, treatment group 2). The
proportion of observations with the character-
istic of interest within each stratum for the two
groups is denoted by p̂h1 and p̂h2, respectively.
The overall proportion of participants with the
characteristic of interest within each stratum is
denoted by p–h; the overall proportion without
the characteristic of interest with each stratum is
denoted by q–h �1 � p–h. 

The null hypothesis tested by the
Mantel–Haenszel method is as follows:

H0: There is no overall association between
response and group after accounting for the
stratification factor.

If the null hypothesis is rejected, the data favor
the following alternate hypothesis:

HA: There is an overall association between
response and group after accounting for the
stratification factor.

The test statistic for the Mantel–Haenszel
method is:

H nh1 nh2( | R –––––– (p̂h1 � p̂ h2)| � 0.5)
2

h�1
nh

X2
MH � ––––––––––––––––––––––––––––––.

H nh1 nh2R –––––– p̄ hq̄ h

h�1
nh�1

Note that the differences in proportions, 
p̂h1 – p̂h2, are weighted by the quantities nh1nh2——— .nh
This test statistic utilizes a continuity correction
factor of 0.5 as well. As described by Fleiss et al.
(2003), the test performs well when expected cell
counts within each of H 2 � 2 tables differ by at
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least 5 (maximum – minimum). The test statistic
that is computed in this manner is approxi-
mately distributed as a v2 with 1 df. 

A similar test statistic, Cochran’s statistic, orig-
inally attributed to Cochran (1954), is described
by Fleiss et al. (2003):

H nh1 nh2( R –––––– (p̂h1 � p̂ h2))
2

h�1
nh

X2
CMH � –––––––––––––––––––––––––.

H nh1 nh2R –––––– p̄hq̄h

h�1
nh

Note that Cochran’s statistic does not use a
correction factor and the denominator of the
stratum weights is nh instead of (nh � 1). We
mention Cochran’s statistic because it is used by
some statistical software packages instead of the
Mantel–Haenszel statistic. Fleiss points out that
the difference between the Mantel–Haenszel
statistic and Cochran’s statistic is small when the
sample sizes are large, but considerable when the
sample sizes within each of the strata are small. 

As an illustration of the Mantel–Haenszel
method, we take the data from our example as
detailed in Section 10.5.1 and separate them into
data collected at each of three centers, which in
this case represent the three strata. 

The research question

Is there sufficient evidence at the a � 0.05 level
to conclude that the probability of attaining a
goal SBP level is greater for individuals receiving
test treatment than for those receiving the
placebo after accounting for differences in
response among centers?

Study design

The study is a randomized, double-blind, placebo-
controlled, 12-week study of an investigational
antihypertensive drug.

Data

The data from the study are represented as three
contingency tables, one for each of the centers in
Table 10.9.

Statistical analysis

The null and alternate statistical hypotheses can
be stated as:

H0: There is no overall association between the
response (attaining SBP � 140 mmHg) and
treatment group after accounting for center.
HA: There is an overall association between the
response and treatment group after accounting
for center.

For a test of size a � 0.05, a v2 test with 1 df has
a critical value of 3.841. 

The differences in the proportions of interest
(test minus placebo) are as follows:
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Table 10.9 Contingency table for individuals
attaining goal SBP by center

Center 1
Attained SBP � 140? Placebo Test Total

Yes 12 24 36
No 34 21 55

46 45 91

Center 2
Attained SBP � 140? Placebo Test Total

Yes 15 31 46
No 29 19 48

44 50 94

Center 3
Attained SBP � 140? Placebo Test Total

Yes 7 27 34
No 49 32 81

56 59 115

Overall
Attained SBP � 140? Placebo Test Total

Yes 34 82 116
No 112 72 184

146 154 300



• Center 1: (0.533 � 0.261) � 0.272
• Center 2: (0.620 � 0.341) � 0.279
• Center 3: (0.458 � 0.125) � 0.333.

The overall response rates for the event of
interest and their complements are:

36 55Center 1: p̄1 � ––– � 0.396 and q̄1 � ––– � 0.604
91 91

46 48Center 2: p̄2 � ––– � 0.489 and q̄2 � ––– � 0.511
94 94

34 81Center 3: p̄3 � ––– � 0.296 and q̄3 � ––– � 0.704.
115 115

The test statistic is then computed as:

46 * 45 44 * 50 56 * 59{ | [(––––––)(0.272) �(––––––)(0.279) � (––––––)(0.333)] | � 0.5}
2

91 94 115
X2

MH � –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
46 * 45 44 * 50 56 * 59(––––––)(0.396)(0.604) �(––––––)(0.489)(0.511) �(––––––)(0.296)(0.704)

90 93 114

� 27.21

Although the calculation details are not shown
here, the value of Cochran’s statistic for this
example is 28.47, which is consistent with the
result obtained for the Mantel–Haenszel statistic.

Interpretation and decision-making

The value of the test statistic is much greater
than the critical value of 3.841. Hence the statis-
tical decision is to reject the null hypothesis of
no association after accounting for center differ-
ences. The proportion of responders is signifi-
cantly higher among those receiving the test
treatment. The p value associated with the test
can be obtained from statistical software.
However, we know from the sample of critical
values in Table 10.5 that the p value must be 
� 0.001. As before, a pharmaceutical company
would be encouraged by such results. 

10.6 Concluding comments on
hypothesis tests for categorical data

All of the methods described in this chapter are
applicable to data that are in the form of “binary”

events, that is, either the event or characteristic
occurred for a given individual or it did not. For
binary data, the summary statistic representing
each treatment group is a sample proportion. To
account for variation from sample to sample,
hypothesis-testing methods allow a researcher to
draw an inference about the underlying popula-
tion difference in proportions. Although not
covered in great detail, some of the methods can
also be expanded to more than two categories.

In contrast, the methods described in 
Chapter 11 are applicable to data with outcomes
that are continuous in nature. In those cases,
other summary statistics are required to describe
the typical effect in each group and the typical
effect expected for the population under study. 
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10.7 Review

1. What constitutes “compelling evidence” of a
beneficial treatment effect?

2. Consider a pharmaceutical company that has just
completed a confirmatory efficacy study. What 
are the implications for the company of committing
a type I error? What are the implications for the
company of committing a type II error?

3. The equality of two proportions is being tested with
the null hypothesis, H0: pTEST � pPLACEBO � 0. Given
that this is a two-sided test and using the following
information, would the null hypothesis be rejected
or not rejected?

(a) a � 0.05, Z approximation test statistic � 1.74
(b) a � 0.10, Z approximation test statistic � 1.74
(c) a � 0.05, Z approximation test statistic � 4.23
(d) a � 0.01, Z approximation test statistic � 4.23
(e) a � 0.05, v2 test statistic � 1.74
(f) a � 0.10, v2 test statistic � 1.74
(g) a � 0.05, v2 test statistic � 4.23
(h) a � 0.01, v2 test statistic � 4.23.

4. The equality of two proportions is being tested with
the null hypothesis, H0: pTEST � pPLACEBO � 0. Given
that this is a two-sided test, what is the p value that
corresponds to the following values of the Z
approximation test statistic?

(a) �1.56
(b) �2.67
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(c) 3.29
(d) 1.00.

5. The term “responders’ analysis” was first
introduced in Chapter 9 with regard to clinical
laboratory data. A responders’ analysis approach
can be used in the context of efficacy data, as
well. Consider a double-blind, placebo-controlled,
therapeutic confirmatory trial of an investigational
antihypertensive (“test drug”). Based on earlier
experience, a period of 12 weeks is considered
sufficient to observe a clinically meaningful
treatment effect that can be sustained for many
months. In this study, a participant whose SBP is
reduced by at least 10 mmHg after 12 weeks 
of treatment is considered a responder. Similarly, 
a participant whose SBP is not reduced by at 
least 10 mmHg after 12 weeks is considered a
non-responder. A total of 1000 participants were
studied: 502 on placebo and 498 on test drug.
Among the placebo participants, 117 were
responders. Among those on the test drug, 152
were responders. 

(a) Summarize these results in a 2 � 2
contingency table.

(b) The sponsor’s research question of interest is:
Are individuals treated with the test drug more
likely to respond than those treated with
placebo? What are the null and alternate
statistical hypotheses corresponding to this
research question? 

(c) What statistical tests may be used to test the
null hypothesis? Are any more appropriate
than others?

(d) Is there sufficient evidence to reject the null
hypothesis using a test of size a � 0.05?
Describe any assumptions necessary and show
the calculation of the test statistic.

(e) Calculate the odds ratio from the contingency
table. What is the interpretation of the
calculated odds ratio?

6. When would the Mantel–Haenszel v2 test be more
useful than the v2 test?


