Introduction to Statistics in Pharmaceutical Clinical Trials

Todd A Durham and J Rick Turner

Introduction to Statistics in Pharmaceutical Clinical Trials

Introduction to Statistics in Pharmaceutical Clinical Trials

Todd A Durham MS

Senior Director of Biostatistics and Data Management Inspire Pharmaceuticals Durham, North Carolina, USA

J Rick Turner PhD

Chairman, Department of Clinical Research Campbell University School of Pharmacy Research Triangle Park, North Carolina, USA and Consulting Executive Director of Operations CTMG, Inc. Greenville and Wilson, North Carolina, USA

London • Chicago

Published by the Pharmaceutical Press

An imprint of RPS Publishing 1 Lambeth High Street, London SE1 7JN, UK 100 South Atkinson Road, Suite 200, Greyslake, IL 60030-7820, USA

© J Rick Turner and Todd A Durham 2008

(**PP**) is a trade mark of RPS Publishing RPS Publishing is the publishing organisation of the Royal Pharmaceutical Society of Great Britain

First Published 2008

Typeset by J&L Composition, Filey, North Yorkshire Printed in Great Britain by Cambridge University Press, Cambridge

ISBN 978 0 85369 714 5

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the copyright holder.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

The right of J Rick Turner and Todd A Durham to be identified as the authors of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act, 1988.

A catalogue record for this book is available from the British Library

Disclaimer

The drug selections and doses given in this book are for illustration only. The authors and publishers take no responsibility for any actions consequent upon following the contents of this book without first checking current sources of reference.

All doses mentioned are checked carefully. However, no stated dose should be relied on as the basis for prescription writing, advising or monitoring. Recommendations change constantly, and a current copy of an official formulary, such as the British National Formulary or the Summary of Product Characteristics, should always be consulted. Similarly, therapeutic selections and profiles of therapeutic and adverse activities are based upon the authors' interpretation of official recommendations and the literature at the time of publication. The most current literature must always be consulted.

Contents

Foreword x Preface xii Dedications xiv

1 The discipline of Statistics: Introduction and terminology

- 1.1 Introduction 1
- 1.2 The discipline of Statistics 2
- 1.3 The term "statistic" and the plural form "statistics" 3
- 1.4 The term "statistical analysis" 3
- 1.5 Association versus causation 3
- 1.6 Variation and systematic variation 4
- 1.7 Compelling evidence 4
- 1.8 The terms "datum" and "data" 5
- 1.9 Results from statistical analyses as the basis for decision-making 5
- 1.10 Blood pressure and blood pressure medication 5
- 1.11 Organization of the book 6
- 1.12 Some context before reading Chapters 2–11 7
- 1.13 Review 8
- 1.14 References 8

2 The role of clinical trials in new drug development

9

- 2.1 Introduction 9
- 2.2 Drug discovery 9
- 2.3 Regulatory guidance and governance 10
- 2.4 Pharmaceutical manufacturing 13
- 2.5 Nonclinical research 14
- 2.6 Clinical trials 15
- 2.7 Postmarketing surveillance 18
- 2.8 Ethical conduct during clinical trials 19
- 2.9 Review 20
- 2.10 References 20

3 Research questions and research hypotheses

- 3.1 Introduction 23
- 3.2 The concept of scientific research questions 23
- 3.3 Useful research questions 23
- 3.4 Useful information 24
- 3.5 Moving from the research question to the research hypotheses 24
- 3.6 The placebo effect 24
- 3.7 The drug treatment group and the placebo treatment group 25
- 3.8 Characteristics of a useful research question 25
- 3.9 The reason why there are two research hypotheses 26
- 3.10 Other forms of the null and alternate hypotheses 27
- 3.11 Deciding between the null and alternate hypothesis 28
- 3.12 An operational statistical definition of "more" 29
- 3.13 The concept of statistically significant differences 30
- 3.14 Putting these thoughts into more precise language 30
- 3.15 Hypothesis testing 31
- 3.16 The relationship between hypothesis testing and ethics in clinical trials 31
- 3.17 The relationship between research questions and study design 32
- 3.18 Review 33
- 3.19 References 33

4 Study design and experimental methodology

- 4.1 Introduction 35
- 4.2 Basic principles of study design 36
- 4.3 A common design in therapeutic exploratory and confirmatory trials 38
- 4.4 Experimental methodology 40
- 4.5 Why are we interested in blood pressure? 41
- 4.6 Uniformity of blood pressure measurement 43
- 4.7 Measuring change in blood pressure over time 43
- 4.8 The clinical study protocol 44
- 4.9 Review 45
- 4.10 References 45

5 Data, central tendency, and variation

- 5.1 Introduction 47
- 5.2 Populations and samples 47
- 5.3 Measurement scales 48
- 5.4 Random variables 49
- 5.5 Displaying the frequency of values of a random variable 49
- 5.6 Central tendency 52
- 5.7 Dispersion 53
- 5.8 Tabular displays of summary statistics of central tendency and dispersion 55

23

35

- 5.9 Review 56
- 5.10 References 56

6 Probability, hypothesis testing, and estimation

- 6.1 Introduction 57
- 6.2 Probability 57
- 6.3 Probability distributions 60
- 6.4 Binomial distribution 61
- 6.5 Normal distribution 62
- 6.6 Classical probability and relative frequency probability 67
- 6.7 The law of large numbers 68
- 6.8 Sample statistics and population parameters 69
- 6.9 Sampling variation 69
- 6.10 Estimation: General considerations 70
- 6.11 Hypothesis testing: General considerations 74
- 6.12 Hypothesis test of a single population mean 78
- 6.13 The *p* value 80
- 6.14 Relationship between confidence intervals and hypothesis tests 81
- 6.15 Brief review of estimation and hypothesis testing 82
- 6.16 Review 83
- 6.,17 References 83

7 Early phase clinical trials

- 7.1 Introduction 85
- 7.2 A quick recap of early phase studies 85
- 7.3 General comments on study designs in early phase clinical studies 86
- 7.4 Goals of early phase clinical trials 86
- 7.5 Research questions in early phase clinical studies 87
- 7.6 Pharmacokinetic characteristics of interest 87
- 7.7 Analysis of pharmacokinetic and pharmacodynamic data 89
- 7.8 Dose-finding trials 91
- 7.9 Bioavailability trials 92
- 7.10 Other data acquired in early phase clinical studies 93
- 7.11 Limitations of early phase trials 94
- 7.12 Review 95
- 7.13 References 95

8 Confirmatory clinical trials: Safety data I

- 8.1 Introduction 97
- 8.2 The rationale for safety assessments in clinical trials 97
- 8.3 A regulatory view on safety assessment 98

85

57

- 8.4 Adverse events 99
- 8.5 Reporting adverse events 99
- 8.6 Using all reported AEs for all participants 100
- 8.7 Absolute and relative risks of participants reporting specific AEs 101
- 8.8 Analyzing serious AEs 102
- 8.9 Concerns with potential multiplicity issues 102
- 8.10 Accounting for sampling variation 103
- 8.11 A confidence interval for a sample proportion 103
- 8.12 Confidence intervals for the difference between two proportions 105
- 8.13 Time-to-event analysis 107
- 8.14 Kaplan-Meier estimation of the survival function 109
- 8.15 Review 114
- 8.16 References 115

9 Confirmatory clinical trials: Safety data II

- 9.1 Introduction 117
- 9.2 Analyses of clinical laboratory data 117
- 9.3 Vital signs 123
- 9.4 QT interval prolongation and torsades de pointes liability 124
- 9.5 Concluding comments on safety assessments in clinical trials 125
- 9.6 Review 126
- 9.7 References 126

10 Confirmatory clinical trials: Analysis of categorical efficacy data 127

- 10.1 Introduction: Regulatory views of substantial evidence 127
- 10.2 Objectives of therapeutic confirmatory trials 130
- 10.3 Moving from research questions to research objectives: Identification of endpoints 131
- 10.4 A brief review of hypothesis testing 132
- 10.5 Hypothesis tests for two or more proportions 133
- 10.6 Concluding comments on hypothesis tests for categorical data 145
- 10.7 Review 145
- 10.8 References 146

11 Confirmatory clinical trials: Analysis of continuous efficacy data 147

- 11.1 Introduction 147
- 11.2 Hypothesis test of two means: Two-sample *t* test or independent groups *t* test 147
- 11.3 Hypothesis test of the location of two distributions: Wilcoxon rank sum test 150
- 11.4 Hypothesis tests of more than two means: Analysis of variance 152

		C	ontents	ix
	11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 11.13 11.14 11.15 11.16	A worked example with a small dataset 155 A statistical methodology for conducting multiple comparison Bonferroni's test 160 Employing Bonferroni's test in our example 161 Tukey's honestly significant difference test 163 Implications of the methodology chosen for multiple compari Additional considerations about ANOVA 166 Nonparametric analyses of continuous data 167 The Kruskal–Wallis test 167 Hypothesis test of the equality of survival distributions: Logra Review 171 References 172	sons 164	
12	Addition 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11	nal statistical considerations in clinical trials Introduction 173 Sample size estimation 173 Multicenter studies 181 Analysis populations 182 Dealing with missing data 184 Primary and secondary objectives and endpoints 185 Evaluating baseline characteristics 186 Equivalence and noninferiority study designs 187 Additional study designs 189 Review 190 References 190		173
13	Concluc	ling comments Reference 191		191
AppendicesAppendix 1: Standard normal distribution areas195Appendix 2: Percentiles of t distributions205Appendix 3: Percentiles of χ^2 distributions207Appendix 4: Percentiles of F distributions ($\alpha = 0.05$)209Appendix 5: Values of q for Tukey's HSD test ($\alpha = 0.05$)211				193
Review exercise solutions by chapter215				

Index

Foreword

With this introductory text, the authors have managed to de-mystify Statistics for students of pharmacy and clinical research who may be taking their first, or one of their earliest, courses in the subject. Three fundamental departures from the standard treatment of statistics are evident from the start - the way in which "Statistics" is defined, the organization of the book itself, and the use of a single, unifying disease area for illustration throughout the book. The reference to Statistics as "an experimental approach to gaining knowledge" at the start of the first chapter sets the tone for the rest of the book. Statistical concepts are defined and explained relative to their usefulness in clinical decision making. A unique operational definition of the discipline of Statistics is presented that consists of six components, beginning with the posing of a research question and concluding with both a regulatory submission and peerreviewed publication. This is a far cry from the standard definitions used in most Statistics texts and alerts the reader to the fact that applications and discussions of utility will be intertwined with mathematical concepts and methodologies for the duration of their reading.

Rather than simply providing an exposition of mathematical terms and operators followed by a canvassing of the usual array of statistical tools and techniques, the authors choose instead to follow the product development pathway in organizing their book, showing how statistics plays an important role in providing the ability to move from step to step with objectivity and sound decision making. After an overview of the drug development paradigm that includes the nonclinical, manufacturing, and marketing aspects, the reader is introduced to the fundamentals of experimental design, probability distributions, and hypothesis testing. The reader is then guided through each phase of pharmaceutical clinical trials. From early phase to confirmatory trials, the questions that need to be addressed and the types of data and statistical tools needed to address them are explained and fully illustrated with an antihypertensive treatment example. Note, however, that the straightforward nature of the exposition does not equate to simplicity of subject matter. Nonparametric statistics, noninferiority trials, and adaptive designs all receive mention as the text covers the majority of situations these future researchers are likely to encounter. And unlike many basic statistics texts with a focus on efficacy occupying the majority of the pages, safety analyses receive nearly equal treatment here. Timely safety topics of particular clinical interest, such as QT/QTc interval prolongation and how to design a study to test for this adverse effect, are covered.

Focusing on a potential treatment of hypertension for illustration throughout the book provides consistency and really makes the product development pathway come alive. The reader has the sense of helping move this product from phase to phase, and the example serves to not only illustrate the statistical methods, but also the clinical decision making surrounding the product's development. In addition, the reader is able to accumulate the medical background required to appreciate the data examples in a minimum number of pages, and the example is rich enough so as to not afford any loss of generality with this singular focus.

The dialogue between clinician and statistician is of the utmost importance in the successful execution of a product development program today. The need for strong communication skills, verbal and written, among those involved in this complex process has never been greater. The authors have provided a text that fully equips students to engage in clear and meaningful dialogue with their clinical colleagues and regulatory counterparts. By focusing on the common goal of learning essential information about experimental products through well-designed and well-conducted studies, and accurately collected and appropriately analyzed data, the reader never loses sight of the fact that statistics are the means to the end, and not the end in themselves. As the authors note on page 191, "Our interest in Statistics, then, is a pragmatic one: The discipline provides the best way currently available to conduct clinical development programs."

I have had the pleasure of working with Todd Durham for over 10 years and I am not surprised in the least with his clear and concise treatment of Statistics in this text. He is known among friends, colleagues, and students for his thoughtful approach to study design and analysis problems, his excellent communication skills, and his great capacity for mentoring and tutoring others. His contributions through this text will enable other classrooms to benefit from his winning style of teaching even when he is not present to lead the discussion himself. Todd is an Adjunct Professor of Clinical Research at the Campbell University School of Pharmacy, and teaches Statistics to students in the Master of Science in Clinical Research program. I am delighted that this collaboration with Rick Turner, the Chairman of the Department of Clinical Research, has proved so successful.

Lisa M. LaVange, Ph.D. Professor and Director, Collaborative Studies Coordinating Center Department of Biostatistics, School of Public Health University of North Carolina at Chapel Hill Chapel Hill, NC, USA January 2008

Preface

This book is an introductory statistics textbook designed primarily for students of pharmacy, clinical research, and allied health professions. It takes a novel approach by not only teaching you how to conduct individual statistical analyses, but also placing these analyses in the context of the clinical research activities needed to develop a new pharmaceutical drug. By taking this approach, we are able to provide you with a unified theme throughout the book and, in addition, to teach you the computational steps needed to conduct these analyses and provide you with a powerful conceptual understanding of why these analyses are so informative. This approach also makes the book well suited to professionals entering the pharmaceutical, biotechnology, and contract research organization (CRO) industries who wish to gain a broader understanding of study design and research methodology in clinical trials. Both target audiences will find this book a useful introduction to the central role of the discipline of Statistics in the clinical development of pharmaceutical drugs that improve the human condition. Important concepts are reinforced with review questions at the end of chapters.

By focusing on the statistical analyses most commonly used in drug development and employing an organizational structure that follows the order in which these statistical analyses are commonly used in clinical drug development, the book shows you how the discipline of Statistics facilitates the acquisition of optimum quality data, that is, numerical representations of relevant information, which form the basis of rational decision-making throughout the drug development process.

Although this book meaningfully integrates the computational aspects of statistics with the overall conceptual objectives for which they are used, we have not included some topics that are traditionally included in introductory statistics textbooks, including linear regression and correlation. We believe that the selected topics and the depth at which they are discussed are appropriate and unique for our intended audience. While we are very happy with the title of the book as it is, the title *The Statistical Basis of Decision-making in Pharmaceutical Clinical Trials* would capture one of the book's major themes extremely well.

The motivation to write this book is directly related to our professional activities. Both of us teach Statistics in the Department of Clinical Research at the Campbell University School of Pharmacy (TD, a professional biostatistician, is also an Adjunct Professor of Clinical Research, and RT is Chairman of this department). The department is located in the heart of North Carolina's Research Triangle Park, one of the world's leading pharmaceutical and biotechnology research centers. Statistics courses in this department are therefore taught in the context of the development of new pharmaceutical and biopharmaceutical products, with the goal of providing a solid knowledge and understanding of the nature, methods, applications, and importance of the discipline of Statistics. It should be emphasized that we are not training our students to be professional statisticians. Rather, we wish them to become familiar with the basics of design, methodology, and analysis as used in the development of new drugs. We aim to convey the following information:

 why, and how, data are collected in clinical studies (to investigate a specific question, using appropriate study design and research methodology)

- how these data are summarized and analyzed (descriptive statistics, hypothesis testing and inferential statistics, statistical significance)
- what the results mean in the context of the clinical research question (interpretation, estimation, and clinical significance)
- how the results are communicated to regulatory agencies and to the scientific and medical communities.

By presenting statistical analysis in a meaningful, integrated, and relevant manner, our students' knowledge and retention of the material is markedly improved. Moreover, their understanding and appreciation of the discipline of Statistics in all of their future scientific endeavors (both academically while studying, and professionally once in the workforce) is considerably enhanced. This book will become the text for the first of two Statistics courses in our Master of Science in Clinical Research program.

It is appropriate to acknowledge here that neither author is a clinician. The first author is a professional statistician and the second a professional educator, medical writer, and research methodologist. We are also both clinical trialists: The first author is experienced in statistical aspects of clinical trials, and the second in writing regulatory clinical documentation. At various points throughout this book, we discuss how the discipline of Statistics provides the rational evidence for making clinical decisions. On several occasions we use hypothetical data, show how statistical analyses of these data and the associated statistical interpretations can form the rational basis for clinical decisionmaking, and illustrate what the hypothetical

clinical decision might be. This is done for educational purposes. Please remain aware, when reading our hypothetical clinical interpretations, that we are not clinicians: We are conveying the logic and importance of incorporating statistical information in the process of clinical decision-making. The crucial role that the discipline of Statistics plays in clinical practice is to provide the information upon which evidence-based clinical practice is based. The most effective drug development programs, one facet of the larger field of clinical research, result from the collaboration of many specialists, including statisticians and clinicians. Actual clinical decisions are, of course, the province of clinicians.

We express our thanks to professional colleagues and students who have supported and informed us during the preparation of this book. Christina De Bono and Kevin Tuley at Pharmaceutical Press have provided constant support and assistance throughout this project, and we are very grateful. Richard Zink provided detailed reviews of several drafts of the manuscript. Finally, our previous students have provided invaluable feedback on lecture material and initial drafts of this book.

Views expressed in this book are those of the authors and Turner Medical Communications LLC, and not necessarily those of Inspire Pharmaceuticals and/or the Campbell University School of Pharmacy.

> Todd Durham and Rick Turner Research Triangle Park, NC, USA August 2007

Dedications

This book is dedicated to Heidi Durham and Karen Turner, who have been there for us every step of the way. We also thank Rachel, Daisy, Misty, and Mishadow for their wonderful companionship.