
1 Basic Definitions and Concepts

Statistics has its own vocabulary. Many of the terms that comprise statistical nomenclature
are familiar: some commonly used in everyday language, with perhaps, somewhat different
connotations. Precise definitions are given in this chapter so that no ambiguity will exist when
the words are used in subsequent chapters. Specifically, such terms as discrete and continuous
variables, frequency distribution, population, sample, mean, median, standard deviation, variance, coef-
ficient of variation (CV), range, accuracy, and precision are introduced and defined. The methods
of calculation of different kinds of means, the median, standard deviation, and range are also
presented. When studying any discipline, the initial efforts are most important. The first chap-
ters of this book are important in this regard. Although most of the early concepts are relatively
simple, a firm grasp of this material is essential for understanding the more difficult material
to follow.

1.1 VARIABLES AND VARIATION
Variables are the measurements, the values, which are characteristic of the data collected in
experiments. These are the data that will usually be displayed, analyzed, and interpreted in a
research report or publication. In statistical terms, these observations are more correctly known
as random variables. Random variables take on values, or numbers, according to some corre-
sponding probability function. Although we will wait until chapter 3 to discuss the concept
of probability, for the present we can think of a random variable as the typical experimental
observation that we, as scientists, deal with on a daily basis. Because these measurements may
take on different values, repeat measurements observed under apparently identical conditions
do not, in general, give the identical results (i.e., they are usually not exactly reproducible).
Duplicate determinations of serum concentration of a drug one hour after an injection will
not be identical no matter if the duplicates come from (a) the same blood sample or (b) from
separate samples from two different persons or (c) from the same person on two different
occasions. Variation is an inherent characteristic of experimental observations. To isolate and
to identify particular causes of variability require special experimental designs and analy-
sis. Variation in observations is due to a number of causes. For example, an assay will vary
depending on

1. the instrument used for the analysis;
2. the analyst performing the assay;
3. the particular sample chosen;
4. unidentified, uncontrollable background error, commonly known as “noise.”

This inherent variability in observation and measurement is a principal reason for the
need of statistical methodology in experimental design and data analysis. In the absence of
variability, scientific experiments would be short and simple: interpretation of experimental
results from well-designed experiments would be unambiguous. In fact, without variability,
single observations would often be sufficient to define the properties of an object or a system.
Since few, if any, processes can be considered absolutely invariant, statistical treatment is often
essential for summarizing and defining the nature of data, and for making decisions or inferences
based on these variable experimental observations.
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1.1.1 Continuous Variables
Experimental data come in many forms.∗ Probably the most commonly encountered variables
are known as continuous variables. A continuous variable is one that can take on any value within
some range or interval (i.e., within a specified lower and upper limit). The limiting factor for the
total number of possible observations or results is the sensitivity of the measuring instrument.
When weighing tablets or making blood pressure measurements, there are an infinite number
of possible values that can be observed if the measurement could be made to an unlimited
number of decimal places. However, if the balance, for example, is sensitive only to the nearest
milligram, the data will appear as discrete values. For tablets targeted at 1 g and weighed to the
nearest milligram, the tablet weights might range from 900 to 1100 mg, a total of 201 possible
integral values (900, 901, 902, 903, . . ., 1098, 1099, 1100). For the same tablet weighed on a more
sensitive balance, to the nearest 0.1 mg, values from 899.5 to 1100.4 might be possible, a total of
2010 possible values, and so on.

Often, continuous variables cannot be easily measured but can be ranked in order of
magnitude. In the assessment of pain in a clinical study of analgesics, a patient can have a
continuum of pain. To measure pain on a continuous numerical scale would be difficult. On
the other hand, a patient may be able to differentiate slight pain from moderate pain, moderate
pain from severe pain, and so on. In analgesic studies, scores are commonly assigned to pain
severity, such as no pain = 0, slight pain = 1, moderate pain = 2, and severe pain = 3. Although
the scores cannot be thought of as an exact characterization of pain, the value 3 does represent
more intense pain than the values 0, 1, or 2. The scoring system above is a representation of a
continuous variable by discrete “scores” that can be rationally ordered or ranked from low to
high. This is commonly known as a rating scale, and the ranked data are on an ordinal scale.
The rating scale is an effort to quantify a continuous, but subjective, variable.

1.1.2 Discrete Variables
In contrast to continuous variables, discrete variables can take on a countable number of values.
These kinds of variables are commonly observed in biological and pharmaceutical experiments
and are exemplified by measurements such as the number of anginal episodes in one week or
the number of side effects of different kinds after drug treatment. Although not continuous,
discrete data often have values associated with them that can be numerically ordered according
to their magnitude, as in the examples given earlier of a rating scale for pain and the number of
anginal episodes per week.

Discrete data that can be named (nominal), categorized into two or more classes, and
counted are called categorical variables, or attributes; for example, the attributes may be different

∗ For a further discussion of different kinds of variables, see section 15.1.
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side effects resulting from different drug treatments or the presence or absence of a defect in
a finished product. These kinds of data are frequently observed in clinical and pharmaceutical
experiments and processes. A finished tablet classified in quality control as “defective” or “not
defective” is an example of a categorical or attribute type of variable. In clinical studies, the cat-
egorization of a patient by sex (male or female) or race is a classification according to attributes.
When calculating ED50 or LD50, animals are categorized as “responders” or “nonresponders” to
various levels of a therapeutic agent, a categorical response. These examples describe variables
that cannot be ordered. A male is not associated with a higher or lower numerical value than a
female.

Continuous variables can always be classified into discrete classes where the classes
are ordered. For example, patients can be categorized as “underweight,” “normal weight,”
or “overweight” based on criteria such as those listed in Metropolitan Life Insurance tables
of “Desirable Weights for Men and Women” [l]. In this example, “overweight” represents a
condition that is greater than “underweight.”

Thus we can roughly classify data as

1. continuous (blood pressure, weight);
2. discrete, associated with numbers and ordered (number of anginal episodes per week);
3. attributes: categorical, ordered (degree of overweight);
4. attributes: categorical, not ordered (male or female).

1.2 FREQUENCY DISTRIBUTIONS AND CUMULATIVE FREQUENCY DISTRIBUTIONS

1.2.1 Frequency Distributions
An important function of statistics is to facilitate the comprehension and meaning of large quan-
tities of data by constructing simple data summaries. The frequency distribution is an example
of such a data summary, a table or categorization of the frequency† of occurrence of variables
in various class intervals. Sometimes a frequency distribution of a set of data is simply called
a “distribution.” For a sampling of continuous data, in general, a frequency distribution is
constructed by classifying the observations (variables) into a number of discrete intervals. For
categorical data, a frequency distribution is simply a listing of the number of observations in
each class or category, such as 20 males and 30 females entered in a clinical study. This procedure
results in a more manageable and meaningful presentation of the data.

† The frequency is the number of observations in a specified interval or class: for example, tablets weighing
between 300 and 310 mg, or the number of patients who are female.
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Table 1.1 Serum Cholesterol Changes (mg%) for 156 Patients After Administration

of a Drug Tested for Cholesterol-Lowering Effecta

17 −12 25 −37 −29 −39

−22 0 −22 −63 34 −31

−64 −12 −49 5 −8 33

−50 −7 16 −11 −38 −17

0 −9 −21 1 2 −30

−32 −34 −14 −18 5 6

24 −6 −49 −8 −49 −37

−25 −12 14 10 −41 −66

−31 35 21 −19 −27 17

−6 −17 −6 1 −28 40

−31 17 −54 −27 −16 16

−44 10 −3 −3 5 6

−19 9 −10 −20 −9 −8

−10 −11 11 −39 19 −32

4 −15 −18 35 6 20

46 24 −27 −19 5 −60

27 23 −22 −1 12 −27

−13 −39 39 −34 −97 −26

38 14 −47 8 26 −15

−62 12 −53 11 21 −47

−54 −11 −5 0 55 34

−69 −11 −44 20 −50 19

0 −25 −24 −4 14 2

−34 16 −23 −71 −58 9

9 2 −2 −58 13 14

17 −13 −22 −3 −17 1

aA negative number means a decrease and a positive number means an increase.

Table 1.1 is a tabulation of serum cholesterol changes resulting from the administration of
a cholesterol-lowering agent to a group of 156 patients. The data are presented in the order in
which results were reported from the clinic.

A frequency distribution derived from the 156 cholesterol values is shown in Table 1.2.
This table shows a tabulation of the frequency, or number, of occurrences of values that fall
into the various class intervals of “serum cholesterol changes.” Clearly, the condensation of
the data as shown in the frequency distribution in Table 1.2 allows for a better “feeling” of
the experimental results than do the raw data represented by the individual 156 results. For
example, one can readily see that most of the patients had a lower cholesterol value in response
to the drug (a negative change) and that most of the data lie between −60 and +19 mg%.

When constructing a frequency distribution, two problems must be addressed. The first
problem is how many classes or intervals should be constructed, and the second problem is
the specification of the width of each interval (i.e., specifying the upper and lower limit of each
interval). There are no definitive answers to these questions. The choices depend on the nature

Table 1.2 Frequency Distribution of Serum Cholesterol Changes

Class interval Frequency

−100 to −81 (−100.5 to −80.5) 1

−80 to −61 (−80.5 to −60.5) 6

−60 to −41 (−60.5 to −40.5) 16

−40 to −21 (−40.5 to −20.5) 31

−20 to −1 (−20.5 to −0.5) 40

+0 to +19 (−0.5 to + 19.5) 43

+20 to +39 (+19.5 to +39.5) 16

+40 to +59 (+39.5 to +59.5) 3

Data taken from Table 1.1.
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Table 1.3 Frequency Distribution of Serum Cholesterol

Changes Using 16 Class Intervals

Class interval Frequency

−100 to −91 1

−90 to −81 0

−80 to −71 1

−70 to −61 5

−60 to −51 6

−50 to −41 10

−40 to −31 14

−30 to −21 17

−20 to −11 22

−10 to −1 18

0 to +9 22

−10 to +19 21

+20 to +29 9

+30 to +39 7

+40 to +49 2

+50 to +59 1

of the data and good judgment. The number of intervals chosen should result in a table that
considerably improves the readability of the data. The following rules of thumb are useful to
help select the intervals for a frequency table:

1. Choose intervals that have significance in relation to the nature of the data. For example,
for the cholesterol data, intervals such as 18 to 32 would be cumbersome and confusing.
Intervals of width 10 or 20, such as those in Tables 1.2 and 1.3, are more easily comprehended
and manipulated arithmetically.

2. Try not to have too many empty intervals (i.e., intervals with no observations). The half of
the total number of intervals that contain the least number of observations should contain
at least 10% of the data. The intervals with the least number of observations in Table 1.2
are the first two intervals (−100 to −81 and −80 to −61) and the last two intervals (+ 20 to
+39 and +40 to +59) (one-half of the eight intervals), which contain 26% or 17% of the 156
observations.

3. Eight to twenty intervals are usually adequate.

Table 1.3 shows the same 156 serum cholesterol changes in a frequency table with 16
intervals. Which table gives you a better feeling for the results of this study, Table 1.2 or
Table 1.3? (See also Exercise Problem 3.)

The width of all the intervals, in general, should be the same. This makes the table easy to
read and allows for simple computations of statistics such as the mean and standard deviation.
The intervals should be mutually exclusive so that no ambiguity exists when classifying values.
In Tables 1.2 and 1.3, we have defined the intervals so that a value can be categorized only in one
class interval. In this way, we avoid problems that can arise when observations are exactly equal
to the boundaries of the class intervals. If the class intervals were defined so as to be continuous,
such as −100 to −90, −90 to −80, −80 to −70, and so on, one must define the class to which
a borderline value belongs, either the class below or the class above, a priori. For example, a
value of −80 might be defined to be in the interval −80 to −70.

Another way to construct the intervals is to have the boundary values have one more
“significant figure” than the actual measurements so that none of the values can fall on the
boundaries. The extra figure is conveniently chosen as 0.5. In the cholesterol example, measure-
ments were made to the nearest mg%; all values are whole numbers. Therefore, two adjacent
values can be no less different than 1 mg%, +10, and +11, for example. The class intervals could
then have a decimal of 0.5 at the boundaries, which means that no value can fall exactly on a
boundary value. The intervals in parentheses in Table 1.2 were constructed in this manner. This
categorization, using an extra figure that is halfway between the two closest possible values,
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makes sense from another point of view. After rounding off, a value of +20 can be considered to
be between 19.5 and 20.5, and would naturally be placed in the interval 19.5 to 39.5, as shown in
Table 1.2.

1.2.2 Stem-and-Leaf Plot
An expeditious and compact way of summarizing and tabulating large amounts of data, by
hand, known as the stem-and-leaf method [2], is best illustrated with an example. We will use the
data from Table 1.1 to demonstrate the procedure.

An ordered series of integers is conveniently chosen (see below) to cover the range of
values. The integers consist of the first digit(s) of the data, as appropriate, and are arranged
in a vertical column, the “stem.” By adding another digit(s) to one of the integers in the stem
column (the “leaves”), we can tabulate the data in class intervals as in a frequency table. For the
data of Table 1.1, the numbers range from approximately −100 to +60. The stem is conveniently
set up as follows:

−10 −7 −4 −1 +1 +4

−9 −6 −3 −0 +2 +5

−8 −5 −2 +0 +3 +6

In this example, the stem is the first digit(s) of the number and the leaf is the last digit. The
first value in Table 1.1 is 17. Therefore, we place a 7 (leaf) next to the + 1 in the stem column.
The next value in Table 1.1 is −22. We place a 2 (leaf) next to −2 in the stem column, and so
on. Continuing this process for each value in Table 1.1 results in the following stem-and-leaf
diagram.

−10

−9 7

−8

−7 1

−6 4 2 9 3 6 0

−5 0 4 4 3 8 0 8

−4 4 9 9 7 4 1 9 7

−3 2 1 1 4 4 9 7 9 4 8 9 1 0 7 2

−2 2 5 5 2 1 7 2 4 3 2 7 0 9 7 8 6 7

−1 9 0 3 2 2 2 7 1 5 1 1 3 4 0 8 1 8 9 9 6 7 7 5

−0 6 7 9 6 6 3 5 2 8 3 1 4 3 8 9 8

+0 0 4 0 9 0 9 2 5 1 1 8 0 2 5 5 6 5 6 6 2 9 1

+1 7 7 0 7 4 2 6 6 4 1 0 1 9 2 6 4 3 7 6 9 4

+2 4 7 4 3 5 1 0 1 0

+3 8 9 9 5 4 3 4

+4 6 0

+5 5

+6

This is a list of all the values in Table 1.1. The distribution of this data set is easily visualized
with no further manipulation. However, if necessary, one can easily construct a frequency dis-
tribution from the configuration of data resulting from the stem-and-leaf tabulation. (Note that
all categories in this particular example can contain as many as 10 different numbers except for
the −0 category, which can contain only 9 numbers, −1 to −9 inclusive. This “anomaly” occurs
because of the presence of both positive and negative values and the value 0. In this example,
0 is arbitrarily assigned a positive value.) In addition to the advantages of this tabulation noted
above, the data are in the form of a histogram, which is a common way of graphically displaying
data distributions (see chap. 2).
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Table 1.4 Frequency Distribution of Tablet Potencies

Frequency
Potency (mg) Wi

a Xi
b

89.5–90.5 1 90

90.5–91.5 0 91

91.5–92.5 2 92

92.5–93.5 1 93

93.5–94.5 5 94

94.5–95.5 1 95

95.5–96.5 2 96

96.5–97.5 7 97

97.5–98.5 10 98

98.5–99.5 8 99

99.5–100.5 13 100

100.5–101.5 17 101

101.5–102.5 13 102

102.5–103.5 9 103

103.5–104.5 0 104

104.5–105.5 0 105

105.5–106.5 5 106

106.5–107.5 4 107

107.5–108.5 0 108

108.5–109.5 0 109

109.5–110.5 2 110∑
Wi = 100

aWi is the frequency.
b Xi is the midpoint of the interval.

1.2.3 Cumulative Frequency Distributions
A large set of data can be conveniently displayed using a cumulative frequency table or plot.
The data are first ordered and, with a large data set, may be arranged in a frequency table with
n class intervals. The frequency, often expressed as a proportion (or percentage), of values equal
to or less than a given value, Xi, is calculated for each specified value of Xi, where Xi is the upper
point of the class interval (i = 1 to n). A plot of the cumulative proportion versus X can be used
to determine the proportion of values that lie in some interval, that is, between some specified
limits. The cumulative distribution for the tablet potencies in Table 1.4 is shown in Table 1.5 and

Table 1.5 Cumulative Frequency Distribution of Tablet Potencies

Potency, Xt(mg)a Cumulative frequency (≤X) Cumulative proportion

90.5 1 0.01

92.5 3 0.03

93.5 4 0.04

94.5 9 0.09

95.5 10 0.10

96.5 12 0.12

97.5 19 0.19

98.5 29 0.29

99.5 37 0.37

100.5 50 0.50

101.5 67 0.67

102.5 80 0.80

103.5 89 0.89

106.5 94 0.94

107.5 98 0.98

110.5 100 1.00

Data taken from Table 1.4.
a Xt is the upper point of the class interval in Table 1.4, excluding null intervals.
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Figure 1.1 Cumulative proportion plot for data in Table 1.5 (tablet potencies).

plotted in Figure 1.1. The cumulative proportion represents the proportion of values less than
or equal to Xi (e.g., 29% of the values are less than or equal to 98.5). Also, for example, from an
inspection of Figure 1.1, one can estimate the proportion of tablets with potencies between 100
and 105 mg inclusive, equal to approximately 0.48 (0.91 at 105 mg minus 0.43 at 100 mg). (See
also Exercise Problem 5.)

The cumulative distribution is a very important concept in statistics. In particular, the
application of the cumulative normal distribution, which is concerned with continuous data,
will be discussed in chapter 3. A more detailed account of the construction and interpretation
of frequency distributions is given in Refs. [3–5].

1.3 SAMPLE AND POPULATION
Understanding the concepts of samples and populations is important when discussing statistical
procedures. Samples are usually a relatively small number of observations taken from a relatively
large population or universe. The sample values are the observations, the data, obtained from
the population. The population consists of data with some clearly defined characteristic(s). For
example, a population may consist of all patients with a particular disease, or tablets from a
production batch. The sample in these cases could consist of a selection of patients to participate
in a clinical study, or tablets chosen for a weight determination. The sample is only part of
the available data. In the usual experimental situation, we make observations on a relatively
small sample in order to make inferences about the characteristics of the whole, the population.
The totality of available data is the population or universe. When designing an experiment,
the population should be clearly defined so that samples chosen are representative of the
population. This is important in clinical trials, for example, where inferences to the treatment
of disease states are crucial. The exact nature or character of the population is rarely known,
and often impossible to ascertain, although we can make assumptions about its properties.
Theoretically, a population can be finite or infinite in the number of its elements. For example,
a finished package contains a finite number of tablets; all possible tablets made by a particular
process, past, present, and future, can be considered infinite in concept. In most of our examples,
the population will be considered to be infinite, or at least very large compared to the sample
size. Table 1.6 shows some populations and samples, examples that should be familiar to the
pharmaceutical scientist.

1.3.1 Population Parameters and Sample Statistics
“Any measurable characteristic of the universe is called a parameter” [6]. For example, the
average weight of a batch of tablets or the average blood pressure of hypertensive persons
in the United States are parameters of the respective populations. Parameters are generally
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Table 1.6 Examples of Samples and Populations

Population Sample

Tablet batch Twenty tablets taken for content uniformity

Normal males between ages 18 and 65 years

available to hospital

Twenty-four subjects selected for a phase I clinical

study

Sprague–Dawley weaning rats 100 rats selected to test possible toxic effects of a

new drug candidate

Analysts working for company X Three analysts from a company to test a new

assay method

Persons with diastolic blood pressure between 105

and 120 mm Hg in the United States

120 patients with diastolic pressure between 105

and 120 mm Hg to enter clinical study to

compare two antihypertensive agents

Serum cholesterol levels of one patient Blood samples drawn once a week for 3 months

from a single patient

denoted by Greek letters; for example, the mean of the population is denoted as �. Note that
parameters are characteristic of the population, and are values that are usually unknown to us.

Quantities derived from the sample are called sample statistics. Corresponding to the true
average weight of a batch of tablets is the average weight for the small sample taken from the
population of tablets. We should be very clear about the nature of samples. Emphasis is placed
here (and throughout this book) on the variable nature of such sample statistics. A parameter,
for example, the mean weight of a batch of tablets, is a fixed value; it does not vary. Sample
statistics are variable. Their values depend on the particular sample chosen and the variabil-
ity of the measurement. The average weight of 10 tablets will differ from sample to sample
because

1. we choose 10 different tablets at each sampling;
2. the balance (and our ability to read it) is not exactly reproducible from one weighing to

another.

An important part of the statistical process is the characterization of a population by
estimating its parameters. The parameters can be estimated by evaluating suitable sample
statistics. The reader will probably have little trouble in understanding that the average weight
of a sample of tablets (a sample statistic) estimates the true mean weight (a parameter) of the
batch. This concept is elucidated and expanded in the remaining sections of this chapter.

1.4 MEASURES DESCRIBING THE CENTER OF DATA DISTRIBUTIONS

1.4.1 The Average
Probably the most familiar statistical term in popular use is the average, denoted by X (X bar).
The average is also commonly known as the mean or arithmetic average. The average is a sum-
marizing statistic and is a measure of the center of a distribution, particularly meaningful if
the data are symmetrically distributed below and above the average. Symbolically, the mean is
equal to

∑N
i=1 Xi

N
(1.1)

the sum of the observations divided by the number of observations.
∑N

i=1 Xi is the sum of the
N values, each denoted by Xi, (X1, X2, . . . , Xn), where i can take on the values 1, 2, 3, 4, . . . , n.‡

‡ For the most part, when using summation notation in this book, we will not use the full notation, such as∑N
i=1 Xi , but rather

∑
X, the i notation being implied, unless otherwise stated.
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The average of the values 7, 11, 6, 5, and 4 is

7 + 11 + 6 + 5 + 4
5

= 6.6.

This is an unweighted average, each value contributing equally to the average.

1.4.2 Other Kinds of Averages
When averaging observations, we usually think of giving each observation equal weight. The
usual formula for the average (

∑
Xi/N) gives each value equal weight. If we believe that the

values to be averaged do not carry the same weight, then we should use a weighted average.
The average of three cholesterol readings 210, 180, and 270 is (660)/3 = 220. Suppose that the
value of 210 is really the average of two values (200 and 220), we might want to consider giving
this value twice as much weight as the other two values, resulting in an average

210 + 210 + 180 + 270
4

= 217.5

or

2 × 210 + 180 + 270
2 + 1 + 1

= 217.5.

The formula for a weighted average, Xw is

∑
Wi Xi∑

Wi
, (1.2)

where Wi is the weight assigned to the value Xi. The weights for the calculation of a weighted
average are often the number of observations associated with the values Xi. This concept is
illustrated for the calculation of the average for data categorized in the form of a frequency
distribution. Table 1.4 shows a frequency distribution of 100 tablet potencies. The frequency
is the number of observations of tablets in a given class interval, as defined previously. The
frequency or number of tablets in a “potency” interval is the weight used in the computation of
the weighted average. The value X associated with the weight is taken as the midpoint of the
interval; for example, for the first interval, 89.5 to 90.5, X1 = 90. Applying Eq. (1.2), the weighted
average is

∑
Wi Xi/

∑
Wi :

1 × 90 + 0 × 91 + 2 × 92 + 1 × 93 + 5 × 94 + · · · + 4 × 107 + 2 × 110
1 + 0 + 2 + 1 + 5 + · · · + 4 + 2

,

which equals 10,023/100 = 100.23 mg.
It is not always obvious when to use a weighted average, and one should have a substantial

knowledge of the circumstances and nature of the data in order to make this decision. In the
previous example, if the 210 value (the average of two observations) came from one patient and
the other values were single observations from two different patients, one may not want to use a
weighted average. The reasoning in this example may be that this average is meant to represent
the true average cholesterol of these three patients, each with different cholesterol levels. There
does not seem to be a good reason to give twice as much weight to the “210” patient because
that patient happened to have two readings. This may be more clearly seen if the patient had
100 readings and the other two patients only a single reading. The unweighted average would
be very close to the average of the patient with the 100 readings and would not represent the
average of the three patients. In this example, the average of three values (one value for each
patient) would be a better representation of the average, (210 + 180 + 270)/3 = 220.
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Table 1.7 Distribution of Particle Size of Powder

Midpoint Log sieve
Sieve size Size (Y ) Weight (W) (WT ) × (Y )

10a 2.3026 19.260 44.3478

30 3.4012 24.015 81.6797

50 3.1920 22.240 87.0034

70 4.2485 7.525 31.9699

90 4.4998 6.515 29.3163

150b 5.0106 20.445 102.4424

Sum 100.00 376.7595

a10 is for sieve size less than 20, that is, between 0 and 20.
b150 is substituted for >100.

If the four values were obtained from one patient where the 210 average came from one
laboratory and the other two values from two different laboratories, the following reasoning
might be useful to understand how to treat the data properly. If the different laboratories used
the same analytical method that was expected to yield the same result, a weighted average
would be appropriate (give twice the weight to the 210 value). If the laboratories have different
methods that give different results for the same sample, an unweighted average may be more
appropriate.

The distribution of particle size of a powdered blend is often based on the logarithm of the
particle size (see sect. 10.1.1). The quantity (weight) of powder in a given interval of particle size
may be considered a weighting factor when computing the average particle size. Table 1.7 shows
the particle size distribution (frequency distribution) of a powder, where the class intervals are
based on the logarithm of the sieve size fractions. The weighted average can be calculated as

Xw =
∑

weight × (log sieve size)∑
(weights)

. (1.3)

The weight is the percentage of powder found for a given particle size (or interval of sieve
sizes). Note that for this example, the sieve size is taken as the midpoint of the untransformed
class (sieve size) interval.

From Eq. (1.3), weighted average = 376.7595/100.0 = 3.7676. Since sieve size is in log
terms, the antilog of 3.7676 = 43.3 is an estimate of the average particle size. (For more advanced
methods of estimating the parameters of particle size distributions, see Refs. [7,8].)

The calculation of the variance of a weighted average is dependent on the nature
of the weighted average and an experienced statistician should be consulted if neces-
sary (see SAS manual for options). This more advanced concept is discussed further in
section 1.5.5.

Two other kinds of averages that are sometimes found in statistical procedures are the
geometric and harmonic means. The geometric mean is defined as

n
√

X1 · X2 · X3 · · · Xn

or the nth root of the product of n observations.
The geometric mean of the numbers 50, 100, and 200 is

3
√

50 · 100 · 200 = 3
√

1,000,000 = 100.

If a measurement of population growth shows 50 at time 0, 100 after one day, and 200 after
two days, the geometric mean (100) is more meaningful than the arithmetic mean (116.7).
The geometric mean is always less than or equal to the arithmetic mean, and is meaning-
ful for data with logarithmic relationships. (See also sect. 15.1.1.) Note that the logarithm of
3
√

50 · 100 · 200 is equal to [log 50 + log 100 + log 200]/3, which is the average of the logarithms
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Figure 1.2 Average illustrated as balancing forces.

of the observations. The geometric mean is the antilog of this average (the antilog of the average
is 100).

The harmonic mean is the appropriate average following a reciprocal transformation
(chap. 10). The harmonic mean is defined as

N∑
1/Xi

.

For the three observations 2, 4, and 8 (N = 3), the harmonic mean is

3
1/2 + 1/4 + 1/8

= 3.429.

1.4.3 The Median
Although the average is the most often used measure of centrality, the median is also a common
measure of the center of a data set. When computing the average, very large or very small
values can have a significant effect on the magnitude of the average. For example, the average
of the numbers 0, 1, 2, 3, and 34 is 8. The arithmetic average acts as the fulcrum of a balanced
beam, with weights placed at points corresponding to the individual values, as shown in Figure
1.2. The single value 34 needs four values, 0, 1, 2, and 3, as a counterbalance. Also, the median
may be a more appropriate measure of central tendency for skewed distributions such as the
log-normal distribution (see sect. 10.1.1).

The median represents the center of a data set, without regard for the distance of each point
from the center. The median is the value that divides the data in half, half the values being less
than and half the values greater than the median value. The median is easily obtained when the
data are ranked in order of magnitude. The median of an odd number of different§ observations
is the middle value. For 2N + 1 values, the median is the (N + l)th ordered value. The median of
the data 0, 1, 2, 3, and 34 is the third (middle) value, 2(N = 2, 2N +1 = 5 values). By convention,
the median for an even number of data points is considered to be the average of the two center
points. For example, the median of the numbers, 0, 1, 2, and 3 is the average of the center points,
1 and 2, equal to (1 + 2)/2 = 1.5. The median is often used as a description of the center of a
data set when the data have an asymmetrical distribution. In the presence of either extremely
high or extremely low outlying values, the median appears to describe the distribution better
than does the average. The median is more stable than the average in the presence of extreme
observations. A very large or very small value has the same effect on the calculation of the
median as any other value, larger or smaller than the median, respectively. On the other hand,
as noted previously, very large and very small values have a significant effect on the magnitude
of the mean.

The distribution of individual yearly incomes, which have relatively few very large values
(the multimillionaires), serves as a good example of the use of the median as a descriptive
statistic. Because of the large influence of these extreme values, the average income is higher
than one might expect on an intuitive basis. The median income, which is less than the average
income, represents a figure that is readily interpreted; that is, one-half of the population earns
more (or less) than the median income.

The distribution of particle sizes for bulk powders used in pharmaceutical products is often
skewed. In these cases, the median is a better descriptor of the centrality of the distribution than

§ If the median value is not unique, that is, two or more values are equal to the median, the median is calculated
by interpolation (3).
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is the mean [9]. The median is less efficient than the mean as an estimate of the center of a
distribution; that is, the median is more variable [10]. For most of the problems discussed in this
book, we will be concerned with the mean rather than the median as a measure of centrality.

An interesting, but not well documented, relationship between the mean and median
shows that for positive numbers, the mean must be greater than half the median. This can be
proven simply as follows:

Consider 2N + 1 numbers whose median is “M” and mean is “m.” We will choose an
odd number of values so that the median is well defined. The mean, m, is the sum of all the
numbers divided by 2N + 1. Of the 2N + 1 numbers, N + 1 is greater than or equal to the
median, M. Therefore, m is greater than or equal to (N + 1)M/(2N + 1). But (N + 1)/(2N + 1) >
1/2. Therefore, m > M/2. Therefore the mean must be greater than half the median.

For example, consider the following extreme example. The data consist of the following
values: 1, 1, 1, 999.5, 1000, 10,001,000. The median is 999.5. The mean is 571.8. 571.8 is greater
than 999.5/2.

The median is also known as the 50th percentile of a distribution. To compute percentiles,
the data are ranked in order of magnitude, from smallest to largest. The nth percentile denotes
a value below which n% of the data are found, and above which (100 − n) % of the data are
found. The 10th, 25th, and 75th percentiles represent values below which 10%, 25%, and 75%,
respectively, of the data occur. For the tablet potencies shown in Table 1.5, the 10th percentile is
95.5 mg; 10% of the tablets contain less than 95.5 mg and 90% of the tablets contain more than
95.5 mg of drug. The 25th, 50th, and 75th percentiles are also known as the first, second, and
third quartiles, respectively.

The mode is less often used as the central, or typical, value of a distribution. The mode
is the value that occurs with the greatest frequency. For a symmetrical distribution that peaks
in the center, such as the normal distribution (see chap. 3), the mode, median, and mean are
identical. For data skewed to the right (e.g., incomes), which contain a relatively few very large
values, the mean is larger than the median, which is larger than the mode (Fig. 10.1).

1.5 MEASUREMENT OF THE SPREAD OF DATA
The mean (or median) alone gives no insight or information about the spread or range of values
that comprise a data set. For example, a mean of five values equal to 10 may comprise the
numbers

0, 5, 10, 15, and 20 or 5, 10, 10, 10, and 15.

The mean, coupled with the standard deviation or range, is a succinct and minimal descrip-
tion of a group of experimental observations or a data distribution. The standard deviation
and the range are measures of the spread of the data; the larger the magnitude of the standard
deviation or range, the more spread out the data are. A standard deviation of 10 implies a wider
range of values than a standard deviation of 3, for example.

1.5.1 Range
The range, denoted as R, is the difference between the smallest and the largest values in the data
set. For the data in Table 1.1, the range is 152, from −97 to +55 mg%. The range is based on only
two values, the smallest and largest, and is more variable than the standard deviation (i.e., it is
less stable).

1.5.2 Standard Deviation and Variance
The standard deviation, denoted as s.d. or S, is calculated as

√∑
(X − X)2

N − 1
, (1.4)

where N is the number of data points (or sample size) and
∑

(X − X)2 is the sum of squares of the
differences of each value from the mean, X. The standard deviation is more difficult to calculate
than is the range.
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Table 1.8 Calculation of the Standard Deviation

X X X − X (X − X)2

101.8 103 −1.2 1.44

103.2 103 0.2 0.04

104.0 103 1.0 1.00

102.5 103 −0.5 0.25

103.5 103 0.5 0.25∑
X = 515

∑
(X − X)2 = 2.98

s.d. =
√∑

(X − X)2

N − 1
=
√

2.98
4

= 0.86

Consider a group of data points: 101.8, 103.2, 104.0, 102.5, and 103.5. The mean is 103.0.
Details of the calculation of the standard deviation are shown in Table 1.8. The difference
between each value and the mean is calculated: X − X. These differences are squared, (X − X)2,
and summed. The sum of the squared differences divided by N − 1 is calculated, and the square
root of this result is the standard deviation.

With the accessibility of electronic calculators and computers, it is rare, nowadays, to hand
compute a mean and standard deviation (or any other calculation, for that matter). Nevertheless,
when computing the standard deviation by hand (or with the help of a calculator), a well-known
shortcut computing formula is recommended. The shortcut is based on the identity

∑
(X − X)2 =

∑
X2 − (

∑
X)2

N
.

Therefore,

s.d. =
√∑

X2 − (
∑

X)2
/ N

N − 1
, (1.5)

where
∑

X2 is the sum of each value squared and (
∑

X)2 is the square of the sum of all the
values [(

∑
X)2/N is also known as the correction term]. We will apply this important formula,

Eq. (1.5), to the data above to illustrate the calculation of the standard deviation. This result will
be compared to that obtained by the more time-consuming method of squaring each deviation
from the mean (Table 1.8).

∑
(X − X)2 = 101.82 + 103.22 + 104.02 + 102.52 + 103.52 − 5152

5
= 2.98.

The standard deviation is
√

2.98/4 = 0.86, as before.
The variance is the square of the standard deviation, often represented as S2. The variance

is calculated as

S2 =
∑

(X − X)2

N − 1
. (1.6)

In the example of the data in Table 1.8, the variance, S2, is

2.98
4

= 0.745.

A question that often puzzles new students of statistics is: Why use N − 1 rather than N in
the denominator in the expression for the standard deviation or variance [Eqs. (1.4) and (1.6)]?
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The variance of the population, a parameter traditionally denoted as �2 (sigma squared), is
calculated as¶:

�2 =
∑

(X − X)2

N
, (1.7)

where N is the number of all possible values in the population. The use of N − 1 rather than N
in the calculation of the variance of a sample (a sample statistic) makes the sample variance an
unbiased estimate of the population variance. Because the sample variance is variable (a random
variable), in any given experiment, S2 will not be exactly equal to the true population variance,
�2. However, in the long run, S2 (calculated with N − 1 in the denominator) will equal �2,
on the average. “On the average” means that if samples of size N were repeatedly randomly
selected from the population, and the variance calculated for each sample, the averages of these
calculated variance estimates would equal �2. Note that the sample variance is an estimate of
the true population variance �2.

If S2 estimates �2 on the average, the sample variance is an unbiased estimate of the
population variance. It can be proven that the sample variance calculated with N − 1 in the
denominator is an unbiased estimate of �2. To try to verify this fact by repeating exactly the same
laboratory or clinical experiment (if the population variance were known) would be impractical.
However, for explanatory purposes, it is often useful to illustrate certain theorems by showing
what would happen upon repeated sampling from the same population. The concept of the
unbiased nature of the sample variance can be demonstrated using a population that consists of
three values: 0, 1, and 2. The population variance,

∑
(X − X)2/3, is equal to 2/3 [see Eq. (1.7)].

Using the repeated sample approach noted above, samples of size 2 are repeatedly selected at
random from this population. The first choice is replaced before selection of the second choice
so that each of the three values has an equal chance of being selected on both the first and second
selection. (This is known as sampling with replacement.) The following possibilities of samples of
size 2 are equally likely to be chosen:

0, 1; 1, 0; 0, 2; 2, 0; 1, 2; 2, 1; 1, 1; 2, 2; 0, 0

The sample variance∗∗ of these nine pairs are [
∑

(X − X)2/(N − 1)] 0.5, 0.5, 2, 2, 0.5, 0.5,

0, 0, and 0, respectively. The average of the nine equally likely possible variances is

0.5 + 0.5 + 2 + 2 + 0.5 + 0.5 + 0 + 0 + 0
9

= 6
9

= 2
3
,

which is exactly equal to the population variance. This demonstrates the unbiased character of
the sample variance. The sample standard deviation [Eq. (1.4)] is not an unbiased estimate of
the population standard deviation, �, which for a finite population is calculated as

√∑
(X − X)2

N
. (1.8)

The observed variance is not dependent on the sample size. The sample variance will
equal the true variance “on the average,” but the variability of the estimated variance decreases
as the sample size increases. The unbiased nature of a sample estimate of a population parameter,
such as the variance or the mean, is a desirable characteristic. X, the sample estimate of the true
population mean, is also an unbiased estimate of the true mean. (The true mean is designated
by the Greek letter �. In general, population parameters are denoted by Greek letters as noted
previously.)

¶ Strictly speaking, this formula is for a population with a finite number of data points.
∗∗ For samples of size 2, the variance is simply calculated as the square of the difference of the values divided by

2, d2/2. For example, the variance of 0 and 1 is (1 – 0)2/2 = 0.5.
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One should be aware that some calculators having a built-in function for calculating the
standard deviation use N in the denominator of the formula for the standard deviation. As we
have emphasized above, this is correct for the calculation of the population standard deviation
(or variance), and will be close to the calculation of the sample standard deviation when N is
large.

The value of N − 1 is also known as the degrees of freedom for the sample (later we will
come across situations where degrees of freedom are less than N − 1). The concept of degrees of
freedom (denoted as d.f.) is very important in statistics, and we will have to know the degrees
of freedom for the variance estimates used in statistical tests to be described in subsequent
chapters.

Another common misconception is that the standard deviation (or variance) of a sample
becomes smaller as the sample size increases. The standard deviation of a sample is an estimate
of the true standard deviation. The true standard deviation is a constant and does not change
with a change in sample size. However, we can say that the estimate of the true standard
deviation as observed in a sample is more reliable and less variable as the sample size increases.
But, on the average, the standard deviation of a small or large sample will approximate the true
standard deviation. As discussed later in this chapter (sect. 1.5.4), the standard deviation of a
mean will decrease with larger sample sizes.

1.5.3 Coefficient of Variation
The variability of data may often be better described as a relative variation rather than as an
absolute variation, such as that represented by the standard deviation or range. One common
way of expressing the variability, which takes into account its relative magnitude, is the ratio
of the standard deviation to the mean, s.d./X. This ratio, often expressed as a percentage, is
called the coefficient of variation, abbreviated as CV, or RSD, the relative standard deviation.
A CV of 0.1 or 10% means that the s.d. is one-tenth of the mean. This way of expressing
variability is useful in many situations. It puts the variability in perspective relative to the
magnitude of the measurements and allows a comparison of the variability of different kinds
of measurements. For example, a group of rats of average weight 100 g and s.d. of 10 g has the
same relative variation (CV) as a group of animals with average weight 70 g and s.d. of 7 g.
Many measurements have an almost constant CV, the magnitude of the s.d. being proportional
to the mean. In biological data, the CV is often between 20% and 50%, and one would not be
surprised to see an occasional CV as high as 100% or more. The relatively large CV observed
in biological experiments is due mostly to “biological variation,” the lack of reproducibility in
living material. On the other hand, the variability in chemical and instrumental analyses of
drugs is usually relatively small. Thus it is not unusual to find a CV of less than 1% for some
analytical procedures.

1.5.4 Standard Deviation of the Mean (Standard Error of the Mean)
The s.d. is a measure of the spread of a group of individual observations, a measure of their
variability. In statistical procedures to be discussed in this book, we are more concerned with
making inferences about the mean of a distribution rather than with individual values. In
these cases, the variability of the mean rather than the variability of individual values is of
interest. The sample mean is a random variable, just as the individual values that comprise the
mean are variable. Thus, repeated sampling of means from the same population will result in a
distribution of means that has its own mean and s.d.

The standard deviation of the mean, commonly known as the standard error of the mean, is a
measure of the variability of the mean. For example, the average potency of the 100 tablets shown
in Table 1.4 may have been determined to estimate the average potency of the population, in
this case, a production batch. An estimate of the variability of the mean value would be useful.
The mean tablet potency is 100.23 mg and the s.d. is 3.687. To compute the s.d. of the mean (also
designated as SX), we might assay several more sets of 100 tablets and calculate the mean potency
of each sample. This repeated sampling would result in a group of means, each composed of
100 tablets, with different values, such as the five means shown in Table 1.9. The s.d. of this
group of means can be calculated in the same manner as the individual values are calculated
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Table 1.9 Means of Potencies of Five Sets of

100 Tablets Selected from a Production Batch

Sample Mean potency

1 99.84

2 100.23

3 100.50

4 100.96

5 100.07

[Eq. (1.4)]. The s.d. of these five means is 0.431. We can anticipate that the s.d. of the means will
be considerably smaller than the s.d. calculated from the 100 individual potencies. This fact is
easily comprehended if one conceives of the mean as “averaging out” the extreme individual
values that may occur among the individual data. The means of very large samples taken from
the same population are very stable, tending to cluster closer together than the individual data,
as illustrated in Table 1.9.

Fortunately, we do not have to perform real or simulated sampling experiments, such as
weighing five sets of 100 tablets each, to obtain replicate data in order to estimate the s.d. of
means. Statistical theory shows that the s.d. of mean values is equal to the s.d. calculated from
the individual data divided by

√
N, where N is the sample size††:

SX = S√
N

. (1.9)

The s.d. of the numbers shown in Table 1.4 is 3.687. Therefore, the s.d. of the mean for
the potencies of 100 tablets shown in Table 1.4 is estimated as S/

√
N = 3.687/

√
100 = 0.3687.

This theory verifies our intuition; the s.d. of means is smaller than the s.d. of the individual
data points. The student should not be confused by the two estimates of the s.d. of the mean
illustrated above. In the usual circumstance, the estimate is derived as S/

√
N (0.3687 in this

example). The data in Table 1.3 were used only to illustrate the concept of a s.d. of a mean. In
any event, the two estimates are not expected to agree exactly; after all SX is also a random
variable and only estimates the true value, �/

√
N .

As the sample size increases, the s.d. of the mean becomes smaller and smaller. We can
reduce the s.d. of the mean, SX , to a very small value by increasing N. Thus means of very large
samples hardly vary at all. The concept of the s.d. of the mean is important, and the student will
find it well worth the extra effort made to understand the meaning and implications of SX.

1.5.5 Variance of a Weighted Average‡‡

The general formula for the variance of a weighted average is

S2
w =

(∑
W2

i S2
i

)
(
∑

Wi )
2 (1.10)

where S2
i is the variance of the ith observation. To compute the variance of the weighted mean,

we would need to have an estimate of the variance of each observation.
If the weights of the observations are taken to be 1

/
S2

i (the reciprocal of the variance, a
common situation), then S2

w = 1
/∑

(1
/

S2
i ). This formula can be applied to the calculation of

the variance of the grand average of a group of i means where the variance of the individual
observations is constant, equal to S2. (We know that the variance of the grand average is S2/N,
where N = ∑

ni .) The variance of each mean, S2
i , is S2/ni , where ni is the number of observations

†† The variance of a mean, S2
X
, is S2/N.

‡‡ This is a more advanced topic.
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in group i. In this example, the weights are considered to be the reciprocal of the variance, and
S2

w = 1/
∑

(ni
/

S2) = S2/
∑

ni . Of course, we need to know S2 (or have an estimate) in order
to calculate (or estimate) the variance of the average. An estimate of the variance, S2, in this
example is

∑
ni (Yi − Yw)2/(N − 1), where the ni acts as the weights and N is the number of

observations.
The following calculation can be used to estimate the variance where a specified number

of observations is available as a measure of the weight (as in a set of means). The variance of a
set of weighted data can be estimated as follows:

estimated variance =
∑

Wi
(
Yi − Yw

)2∑
Wi − 1

, (1.11)

where Wi is the weight associated with Yi, and Yw = weighted average of Y.
A shortcut formula is

[∑(
Wi Y2

i

)−∑
(Wi Yi )2

/∑
(Wi )

]
∑

Wi − 1
. (1.12)

Example:

The diameters of 100 particles were measured with the results shown in Table 1.10.
From Eq. (1.12), the variance is estimated as [89,375 − (2425)2/100]/99 = 308.8. s.d. = √

308.8 =
17.6. The s.d. of the mean is 17.6/

√
100 = 1.76. Note: The weighted average is 2425/100 =

24.25.
In this example, it makes sense to divide the corrected sum of squares by (N − 1), because this

sum of squares is computed using data from 100 particles. In some cases, the computation
of the variance is not so obvious.

1.6 CODING
From both a practical and a theoretical point of view, it is useful to understand how the mean
and s.d. of a group of numbers are affected by certain arithmetic manipulations, particularly
adding a constant to, or subtracting a constant from each value; and multiplying or dividing
each value by a constant.

Consider the following data to exemplify the results described below:

2, 3, 5, 10

Mean = X = 5
Variance = S2 = 12.67
Standard deviation = S = 3.56

Table 1.10 Data for Calculation of Variance of a Weighted Mean

Diameter (m) Midpoint
Number of particles

= weight Weight × midpoint Weight × midpoint2

Yi Wi WiYi WiY2
i

0–10 5 25 125 625

10–20 15 35 525 7875

30–40 35 15 525 18,375

40–60 50 25 1250 62,500

Sum 100 2425 89,375
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1. Addition or subtraction of a constant will cause the mean to be increased or decreased by
the constant, but will not change the variance or s.d. For example, adding + 3 to each value
results in the following data:

5, 6, 8, 13

X = 8
S = 3.56

Subtracting 2 from each value results in

0, 1, 3, 8

X = 3
S = 3.56

This property may be used to advantage when hand calculating the mean and s.d. of very
large or cumbersome numbers. Consider the following data:

1251, 1257, 1253, 1255

Subtracting 1250 from each value we obtain

1, 7, 3, 5

X = 4
S = 2.58

To obtain the mean of the original values, add 1250 to the mean obtained above, 4. The
s.d. is unchanged. For the original data

X = 1250 + 4 = 1254
S = 2.58

This manipulation is expressed in Eq. (1.13) where Xi represents one of n observations
from a population with variance �2. C is a constant and X is the average of the Xi’s.

Average (Xi + C) =
∑ Xi + C

n
= X + C

Variance (Xi + C) = �2 (1.13)

2. If the mean of a set of data is X and the s.d. is S, multiplying or dividing each value by
a constant k results in a new mean of k X or X

/
k, respectively, and a new s.d. of kS or S/k,

respectively. Multiplying each of the original values above by 3 results in

6, 9, 15, 30

X = 15 (3 × 5)
S = 10.68 (3 × 3.56)
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Dividing each value by 2 results in

1, 1.5, 2.5, 5

X = 2.5
(

5
2

)

S = 1.78
(

3.56
2

)

In general,

Average (C · Xi ) = C X
Variance (C · Xi ) = C2�2 (1.14)

These results can be used to show that a set of data with mean X and s.d. equal to S can
be converted to data with a mean of 0 and a s.d. of 1 (as in the “standardization” of normal
curves, discussed in sect. 3.4.1). If the mean is subtracted from each value, and this result is
divided by S, the resultant data have a mean of 0 and a s.d. of 1. The transformation is

X − X
S

. (1.15)

Standard scores are values that have been transformed according to Eq. (1.15) [11]. For
the original data, the first value 2 is changed to (2 − 5)/3.56 equal to −0.84. The interested
reader may verify that transforming the values in this way results in a mean of 0 and a s.d. of 1.

1.7 PRECISION, ACCURACY, AND BIAS
When dealing with variable measurements, the definitions of precision and accuracy, often
obscure and not distinguished in ordinary usage, should be clearly defined from a statisti-
cal point of view.

1.7.1 Precision
In the vocabulary of statistics, precision refers to the extent of variability of a group of mea-
surements observed under similar experimental conditions. A precise set of measurements is
compact. Observations, relatively close in magnitude, are considered to be precise as reflected
by a small s.d. (Note that means are more precisely measured than individual observations
according to this definition.) An important, sometimes elusive concept is that a precise set of
measurements may have the same mean as an imprecise set. In most experiments with which
we will be concerned, the mean and s.d. of the data are independent (i.e., they are unrelated).
Figure 1.3 shows the results of two assay methods, each performed in triplicate. Both methods
have an average result of 100%, but method II is more precise.

Figure 1.3 Representation of two analytical methods with the same accuracy but different precisions.
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Figure 1.4 In vitro dissolution results for two formulations using two different methods and in vivo blood level

versus time results. Methods A and B, in vitro; C, in vivo.

1.7.2 Accuracy
Accuracy refers to the closeness of an individual observation or mean to the true value. The
“true” value is the result that would be observed in the absence of error (e.g., the true mean
tablet potency or the true drug content of a preparation being assayed). In the example of the
assay results shown in Figure 1.3, both methods are apparently equally accurate (or inaccurate).

Figure 1.4 shows the results of two dissolution methods for two formulations of the same
drug, each formulation replicated four times by each method. The objective of the in vitro
dissolution test is to simulate the in vivo oral absorption of the drug from the two dosage-form
modifications. The first dissolution method, A, is very precise but does not give an accurate
prediction of the in vivo results. According to the dissolution data for method A, we would
expect that formulation I would be more rapidly and extensively absorbed in vivo. The actual
in vivo results depicted in Figure 1.4 show the contrary result. The less precise method, method
B in this example, is a more accurate predictor of the true in vivo results. This example is
meant to show that a precise measurement need not be accurate, nor an accurate measurement
precise.

Of course, the best circumstance is to have data that are both precise and accurate. If
possible, we should make efforts to improve both the accuracy and precision of experimental
observations. For example, in drug analysis, advanced electronic instrumentation can greatly
increase the accuracy and precision of assay results.

1.7.3 Bias
Accuracy can also be associated with the term bias. The notion of bias has been discussed in
section 1.4 in relation to the concept of unbiased estimates (e.g., the mean and variance). The
meaning of bias in statistics is similar to the everyday definition in terms of “fairness.” An
accurate measurement, no matter what the precision, can be thought of as unbiased, because an
accurate measurement is a “fair” estimate of the true result. A biased estimate is systematically
either higher or lower than the true value. A biased estimate can be thought of as giving an
“unfair” notion of the true value. For example, when estimating the average result of experi-
mental data, the mean, X, represents an estimate of the true population parameter, �, and in this
sense is considered accurate and unbiased. An average blood pressure reduction of 10 mm Hg
due to an antihypertensive agent, derived from data from a clinical study of 200 patients, can
be thought of as an unbiased estimate of the true blood pressure reduction due to the drug,
provided that the patients are appropriately selected at “random.” The true reduction in this
case is the average reduction that would be observed if the antihypertensive effect of the drug
were known for all members of the population (e.g., all hypertensive patients). The outcome of
a single experiment, such as the 10 mm Hg reduction observed in the 200 patients above, will in
all probability not be identical to the true mean reduction. But the mean reduction as observed
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Figure 1.5 Bias in determining the effect of an antihypertensive drug.

in the 200 patients is an accurate and unbiased assessment of the population average. A biased
estimate is one which, on the average, does not equal the population parameter. In the example
cited above for hypertensives, a biased estimate would result if for all patients one nurse took all
the measurements before therapy and another nurse took all measurements during therapy, and
each nurse had a different criterion or method for determining blood pressure. See Figure 1.5 for
a clarification as to why this procedure leads to a biased estimate of the drug’s effectiveness in
reducing blood pressure. If the supine position results in higher blood pressure than the sitting
position, the results of the study will tend to show a bias in the direction of too large a blood
pressure reduction.

The statistical estimates that we usually use, such as the mean and variance, are unbiased
estimates. Bias often results from (a) the improper use of experimental design; (b) improper
choice of samples; (c) unconscious bias, due to lack of blinding, for example; or (d) improper
observation and recording of data, such as that illustrated in Figure 1.5.

1.8 THE QUESTION OF SIGNIFICANT FIGURES
The question of significant figures is an important consideration in statistical calculations and
presentations. In general, the ordinary rules for retaining significant figures are not applicable to
statistical computations. Contrary to the usual rules for retaining significant figures, one should
retain as many figures as possible when performing statistical calculations, not rounding off
until all computations are complete.

The reason for not rounding off during statistical computations is that untenable answers
may result when using computational procedures that involve taking differences between values
very close in magnitude if values are rounded off prior to taking differences. This may occur
when calculating “sums of squares” (the sum of squared differences from the mean) using the
shortcut formula, Eq. (1.4), for the calculation of the variance or s.d. The shortcut formula for∑

(X − X)2 is
∑

X2 − (
∑

X)2/N that cannot be negative, and will be equal to zero only if all the
data have the same value. If the two terms,

∑
X2 and (

∑
X)2

/N, are very similar in magnitude,
rounding off before taking their difference may result in a zero or negative difference. This
problem is illustrated by calculating the s.d. of the three numbers 1.19, 1.20, and 1.21. If the
squares of these numbers are first rounded off to two decimal places, the following calculation
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of the s.d. results:

S =

√√√√∑
(X2 −∑

X)2
/

N

N − 1
=
√

1.42 + 1.44 + 1.46 − 3.62/3
2

=
√

4.32 − 4.32
2

= 0.

The correct s.d. calculated without rounding off is 0.01.
Computers and calculators carry many digits when performing calculations and do not

round off further unless instructed to do so. These instruments retain as many digits as their
capacity permits through all arithmetic computations. The possibility of rounding off, even
considering the large capacity of modern computers, can cause unexpected problems in sophis-
ticated statistical calculations, and must be taken into account in preparing statistical software
programs. These problems can usually be overcome by using special programming techniques.

At the completion of the calculations, as many figures as are appropriate to the situation
can be presented. Common sense and the usual rules for reporting significant figures should
be applied (see Ref. [9] for a detailed discussion of significant figures). Sokal and Rohlf [9]
recommend that, if possible, observations should be measured with enough significant figures
so that the range of data is between 30 and 300 possible values. This flexible rule results in a
relative error of less than 3%. For example, when measuring diastolic blood pressure, the range
of values for a particular group of patients might be limited to 60 to 130 mm Hg. Therefore,
measurements to the nearest mm Hg would result in approximately 70 possible values, and
would be measured with sufficient accuracy according to this rule. If the investigator can make
the measurement only in intervals of 2 mm Hg (e.g., 70 and 72 mm Hg can be measured, but not
71 mm Hg), we would have 35 possible data points, which is still within the 30 to 300 suggested
by this rule of thumb. Of course, rules should not be taken as “written in stone.” All rules should
be applied with judgment.

Common sense should be applied when reporting average results. For example, reporting
an average blood pressure reduction of 7.42857 for 14 patients treated with an antihypertensive
agent would not be appropriate. As noted above, most physicians would say that blood pressure
is rarely measured to within 2 mm Hg. Why should one bother to report any decimals at all for
the average result? When reporting average results, it is generally good practice to report the
average with a precision that is “reasonable” according to the nature of the data. An average of
7.4 mm Hg would probably suffice for this example. If the average were reported as 7 mm Hg,
for example, it would appear that too much information is suppressed.

KEY TERMS
Accuracy Precision
Attributes Random variable
Average (X) Range
Bias Ranking
Coding Rating scale
Coefficient of variation (CV) Sample
Continuous variables Significant figures
Correction term (CT) Standard deviation (s.d., S)
Cumulative distribution Standard error of the mean (S X)
Degrees of freedom (d.f.) Standard score
Discrete variables Treatment
Frequency distribution Unbiased sample
Geometric mean Universe
Harmonic mean Variability
Mean (X) Variable
Median Weighted average
Population
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EXERCISES
1. List three experiments whose outcomes will result in each of the following kinds of

variables:
(a) Continuous variables
(b) Discrete variables
(c) Ordered variables
(d) Categorical (attribute) variables

2. What difference in experimental conclusions, if any, would result if the pain scale dis-
cussed in section 1.1 were revised as follows no pain = 6, slight pain = 4, moderate
pain = 2, and severe pain = 0? (Hint: see sect. 1.6.)

3. (a) Construct a frequency distribution containing 10 class intervals from the data in
Table 1.1.

(b) Construct a cumulative frequency plot based on the frequency distribution from
part (a).

4. What is the average result based on the frequency distribution in part (a) of problem 3?
Use a weighted-average procedure.

5. From Figure 1.1, what proportion of tablets have potencies between 95 and 105 mg?
What proportion of tablets have a potency greater than 105 mg?

6. Calculate the average and standard deviation of (a) the first 20 values in Table 1.1, and (b)
the last 20 values in Table 1.1. If these data came from two different clinical investigators,
would you think that the differences in these two sets of data can be attributed to
differences in clinical sites? Which set, the first or last, is more precise? Explain your
answer.

7. What are the median and range of the first 20 values in Table 1.1?

8. (a) If the first value in Table 1.1 were +100 instead of +17, what would be the values of
the median and range for the first 20 values?

(b) Using the first value as 100, calculate the mean, standard deviation, and variance.
Compare the results for these first 20 values to the answers obtained in Problem 6.

§§∗∗9. Given the following sample characteristics, describe the population from which the
sample may have been derived. The mean is 100, the standard deviation is 50, the
median is 75, and the range is 125.

∗∗10. If the population average for the cholesterol reductions shown in Table 1.1 were some-
how known to be 0 (the drug does not affect cholesterol levels on the average), would
you believe that this sample of 156 patients gives an unbiased estimate of the true aver-
age? Describe possible situations in which these data might yield (a) biased results; (b)
unbiased results.

∗∗11. Calculate the average standard deviation using the sampling experiment shown in sec-
tion 1.5.2 for samples of size 2 taken from a population with values of 0, 1, and 2 (with
replacement). Compare this result with the population standard deviation. Is the sample
standard deviation an unbiased estimate of the population standard deviation?

12. Describe another situation that would result in a biased estimate of blood pressure
reduction as discussed in section 1.7.3 (Fig. 1.5).

13. Verify that the standard deviation of the values 1.19, 1.20, and 1.21 is 0.01 (see sect. 1.8).
What is the standard deviation of the numbers 2.19, 2.20, and 2.21? Explain the result of
the two calculations above.

§§ The double asterisk indicates optional, more difficult problems.
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14. For the following blood pressure measurements: 100, 98, 101, 94, 104, 102, 108, 108,
calculate (a) the mean, (b) the standard deviation, (c) the variance, (d) the coefficient of
variation, (e) the range, and (f) the median.

∗∗15. Calculate the standard deviation of the grouped data in Table 1.2. (Hint : S2 =[∑
Ni X2

i − (
∑

Ni Xi )2/(
∑

Ni )
]
/(
∑

Ni − 1); see Ref. [3]. Ni = frequency per group with
midpoint Xi )

16. Compute the arithmetic mean, geometric mean, and harmonic mean of the following set
of data. 3, 5, 7, 11, 14, 57

If these data were observations on the time needed to cure a disease, which mean
would you think to be most appropriate?

17. If the weights are 2, 1, 1, 3, 1, and 2 for the numbers 3, 5, 7, 11, 14, and 57 (Exercise 16),
compute the weighted average and variance.
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2 DATA GRAPHICS

“The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove
nothing, but bring outstanding features readily to the eye; they are therefore no substitute for
such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in
explaining the conclusions founded upon them.” This quote is from Ronald A. Fisher, the father
of modern statistical methodology [1]. Tabulation of raw data can be thought of as the initial
and least refined way of presenting experimental results. Summary tables, such as frequency
distribution tables, are much easier to digest and can be considered a second stage of refine-
ment of data presentation. Summary statistics such as the mean, median, variance, standard
deviation, and the range are concise descriptions of the properties of data, but much informa-
tion is lost in this processing of experimental results. Graphical methods of displaying data
are to be encouraged and are important adjuncts to data analysis and presentation. Graphical
presentations clarify and also reinforce conclusions based on formal statistical analyses. Finally,
the researcher has the opportunity to design aesthetic graphical presentations that command
attention. The popular cliché “A picture is worth a thousand words” is especially apropos to
statistical presentations. We will discuss some key concepts of the various ways in which data
are depicted graphically.

2.1 INTRODUCTION
The diagrams and plots that we will be concerned with in our discussion of statistical methods
can be placed broadly into two categories:

1. Descriptive plots are those whose purpose is to transmit information. These include dia-
grams describing data distributions such as histograms and cumulative distribution plots
(see sect. 1.2.3). Bar charts and pie charts are examples of popular modes of communicating
survey data or product comparisons.

2. Plots that describe relationships between variables usually show an underlying, but unknown
analytic relationship between the variables that we wish to describe and understand. These
relationships can range from relatively simple to very complex, and may involve only two
variables or many variables. One of the simplest relationships, but probably the one with
greatest practical application, is the straight-line relationship between two variables, as
shown in the Beer’s law plot in Figure 2.1. Chapter 7 is devoted to the analysis of data
involving variables that have a linear relationship.

When analyzing and depicting data that involve relationships, we are often presented
with data in pairs (X, Y pairs). In Figure 2.1, the optical density Y and the concentration X are
the data pairs. When considering the relationship of two variables, X and Y, one variable can
often be considered the response variable, which is dependent on the selection of the second
or causal variable. The response variable Y (optical density in our example) is known as the
dependent variable. The value of Y depends on the value of the independent variable, X (drug
concentration). Thus, in the example in Figure 2.1, we think of the value of optical density as
being dependent on the concentration of drug.

2.2 THE HISTOGRAM
The histogram, sometimes known as a bar graph, is one of the most popular ways of presenting
and summarizing data. All of us have seen bar graphs, not only in scientific reports but also in
advertisements and other kinds of presentations illustrating the distribution of scientific data.
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Figure 2.1 Beer’s law plot illustrating a linear relationship between two variables.

The histogram can be considered as a visual presentation of a frequency table. The frequency, or
proportion, of observations in each class interval is plotted as a bar, or rectangle, where the area
of the bar is proportional to the frequency (or proportion) of observations in a given interval.
An example of a histogram is shown in figure 2.2, where the data from the frequency table in
Table 1.2 have been used as the data source. As is the case with frequency tables, class intervals
for histograms should be of equal width. When the intervals are of equal width, the height of
the bar is proportional to the frequency of observations in the interval. If the intervals are not of
equal width, the histogram is not easily or obviously interpreted, as shown in Figure 2.2(B).

The choice of intervals for a histogram depends on the nature of the data, the distribution
of the data, and the purpose of the presentation. In general, rules of thumb similar to that used

Figure 2.2 Histogram of data derived from

Table 1.2.
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for frequency distribution tables (sect. 1.2) can be used. Eight to twenty equally spaced intervals
usually are sufficient to give a good picture of the data distribution.

2.3 CONSTRUCTION AND LABELING OF GRAPHS
Proper construction and labeling of graphs are crucial elements in graphical data representation.
The design and actual construction of graphs are not in themselves difficult. The preparation
of a good graph, however, requires careful thought and competent technical skills. One needs
not only a knowledge of statistical principles, but also, in particular, computer and drafting
competency. There are no firm rules for preparing good graphical presentations. Mostly, we
rely on experience and a few guidelines. Both books and research papers have addressed the
need for a more scientific guide to optimal graphics that, after all, is measured by how well the
graph communicates the intended messages(s) to the individuals who are intended to read and
interpret the graphs. Still, no rules will cover all situations. One must be clear that no matter
how well a graph or chart is conceived, if the draftsmanship and execution is poor, the graph
will fail to achieve its purpose.

A “good” graph or chart should be as simple as possible, yet clearly transmit its intended
message. Superfluous notation, confusing lines or curves, and inappropriate draftsmanship
(lettering, etc.) that can distract the reader are signs of a poorly constructed graph. The books
Statistical Graphics, by Schmid [2], and The Visual Display of Quantitative Information by Tufte
[3] are recommended for those who wish to study examples of good and poor renderings of
graphic presentations. For example, Schmid notes that visual contrast should be intentionally
used to emphasize important characteristics of the graph. Here, we will present a few examples
to illustrate the recommendations for good graphic presentation as well as examples of graphs
that are not prepared well or fail to illustrate the facts fairly.

Figure 2.3 shows the results of a clinical study that was designed to compare an active
drug to a placebo for the treatment of hypertension. This graph was constructed from the X, Y
pairs, time and blood pressure, respectively. Each point on the graph (+ , �) is the average blood
pressure for either drug or placebo at some point in time subsequent to the initiation of the
study.

Proper construction and labeling of the typical rectilinear graph should include the fol-
lowing considerations:

1. A title should be given. The title should be brief and to the point, enabling the reader to
understand the purpose of the graph without having to resort to reading the text. The title
can be placed below or above the graph as in Figure 2.3.

2. The axes should be clearly delineated and labeled. In general, the zero (0) points of both axes
should be clearly indicated. The ordinate (the Y axis) is usually labeled with the description
parallel to the Y axis. Both the ordinate and abscissa (X axis) should be each appropriately
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Figure 2.3 Blood pressure as a function of time in a clinical study comparing drug and placebo with a regimen

of one tablet per day. �, placebo (average of 45 patients); +, drug (average of 50 patients).
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Figure 2.4 Various graphs of the same data presented in different ways. Exercise time at various time intervals

after administration of single doses of two nitrate products. � = Drug I, � = Drug II.

labeled and subdivided in units of equal width (of course, the X and Y axes almost always
have different subdivisions). In the example in Figure 2.3, note the units of mm Hg and
weeks for the ordinate and abscissa, respectively. Grid lines may be added [Fig. 2.4(E)] but,
if used, should be kept to a minimum, not be prominent and should not interfere with the
interpretation of the figure.

3. The numerical values assigned to the axes should be appropriately spaced so as to nicely
cover the extent of the graph. This can easily be accomplished by trial and error and a little
manipulation. The scales and proportions should be constructed to present a fair picture of
the results and should not be exaggerated so to prejudice the interpretation. Sometimes, it
may be necessary to skip or omit some of the data to achieve this objective. In these cases,
the use of a “broken line” is recommended to clearly indicate the range of data not included
in the graph (Fig. 2.4).
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4. If appropriate, a key explaining the symbols used in the graph should be used. For example,
at the bottom of Figure 2.3, the key defines � as the symbol for placebo and + for drug. In
many cases, labeling the curves directly on the graph (Fig. 2.4) results in more clarity.

5. In situations where the graph is derived from laboratory data, inclusion of the source of the
data (name, laboratory notebook number, and page number, for example) is recommended.

Usually graphs should stand on their own, independent of the main body of the text.
Examples of various ways of plotting data, derived from a study of exercise time at various

time intervals after administration of a single dose of two long-acting nitrate products to anginal
patients, are shown in Figures 2.4(A) to 2.4(E). All of these plots are accurate representations of
the experimental results, but each gives the reader a different impression. It would be wrong to
expand or contract the axes of the graph, or otherwise distort the graph, in order to convey an
incorrect impression to the reader. Most scientists are well aware of how data can be manipulated
to give different impressions. If obvious deception is intended, the experimental results will not
be taken seriously.

When examining the various plots in Figure 2.4, one could not say which plot best repre-
sents the meaning of the experimental results without knowledge of the experimental details,
in particular the objective of the experiment, the implications of the experimental outcome, and
the message that is meant to be conveyed. For example, if an improvement of exercise time of
120 seconds for one drug compared to the other is considered to be significant from a medical
point of view, the graphs labeled A, C, and E in Figure 2.4 would all seem appropriate in con-
veying this message. The graphs labeled B and D show this difference less clearly. On the other
hand, if 120 seconds is considered to be of little medical significance, B and D might be a better
representation of the data.

Note that in plot A of Figure 2.4, the ordinate (exercise time) is broken, indicating that
some values have been skipped. This is not meant to be deceptive, but is intentionally done
to better show the differences between the two drugs. As long as the zero point and the break
in the axis are clearly indicated, and the message is not distorted, such a procedure is entirely
acceptable.

Figures 2.4(B) and 2.5 are exaggerated examples of plots that may be considered not to
reflect accurately the significance of the experimental results. In Figure 2.4(B), the clinically
significant difference of approximately 120 seconds is made to look very small, tending to
diminish drug differences in the viewer’s mind. Also, fluctuations in the hourly results appear
to be less than the data truly suggest. In Figure 2.5, a difference of 5 seconds in exercise time
between the two drugs appears very large. Care should be taken when constructing (as well as
reading) graphs so that experimental conclusions come through clear and true.

6. If more than one curve appears on the same graph, a convenient way to differentiate the
curves is to use different symbols for the experimental points (e.g., ◦, ×, �, �, +) and, if
necessary, connecting the points in different ways (e.g., —.—.—., . . . . . ., –.–.–.–). A key or
label is used, which is helpful in distinguishing the various curves, as shown in Figures 2.3
to 2.6. Other ways of differentiating curves include different kinds of crosshatching and use
of different colors.

Figure 2.5 Exercise time at various time inter-

vals after administration of two nitrate products.

•, product I; +, product II.
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Figure 2.6 Plot of dissolution of four successive

batches of a commercial tablet product. � = batch

I, • = batch II, × = batch 3, � = batch 4.

7. One should take care not to place too many curves on the same graph, as this can result in
confusion. There are no specific rules in this regard. The decision depends on the nature of
the data, and how the data look when they are plotted. The curves graphed in Figure 2.7
are cluttered and confusing. The curves should be presented differently or separated into
two or more graphs. Figure 2.8 is a clearer depiction of the dissolution results of the five
formulations shown in Figure 2.7.

8. The standard deviation may be indicated on graphs as shown in Figure 2.9. However, when
the standard deviation is indicated on a graph (or in a table, for that matter), it should be
made clear whether the variation described in the graph is an indication of the standard
deviation (S) or the standard deviation of the mean (Sx̄). The standard deviation of the
mean, if appropriate, is often preferable to the standard deviation not only because the
values on the graph are mean values, but also because Sx̄ is smaller than the s.d., and
therefore less cluttering. Overlapping standard deviations, as shown in Figure 2.10, should
be avoided, as this representation of the experimental results is usually more confusing than
clarifying.

9. The manner in which the points on a graph should be connected is not always obvious.
Should the individual points be connected by straight lines, or should a smooth curve that
approximates the points be drawn through the data? (See Fig. 2.11.) If the graphs represent
functional relationships, the data should probably be connected by a smooth curve. For
example, the blood level versus time data shown in Figure 2.11 are described most accurately
by a smooth curve. Although, theoretically, the points should not be connected by straight
lines as shown in Figure 2.11(A), such graphs are often depicted this way. Connecting the
individual points with straight lines may be considered acceptable if one recognizes that
this representation is meant to clarify the graphical presentation, or is done for some other
appropriate reason. In the blood-level example, the area under the curve is proportional to
the amount of drug absorbed. The area is often computed by the trapezoidal rule [4], and
depiction of the data as shown in Figure 2.11(A) makes it easier to visualize and perform
such calculations.

Figure 2.12 shows another example in which connecting points by straight lines is con-
venient but may not be a good representation of the experimental outcome. The straight line
connecting the blood pressure at zero time (before drug administration) to the blood pressure
after two weeks of drug administration suggests a gradual decrease (a linear decrease) in blood

Figure 2.7 Plot of dissolution time of five dif-

ferent commercial formulations of the same drug.

• = product A, � = product B, × = product C,

� = product D, � = product E.
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Figure 2.8 Individual plots of dissolution of the five formulations shown in Fig. 2.7.

pressure over the two-week period. In fact, no measurements were made during the initial
two-week interval. The 10-mm Hg decrease observed after two weeks of therapy may have
occurred before the two-week reading (e.g., in one week, as indicated by the dashed line in
Fig. 2.12). One should be careful to ensure that graphs constructed in such a manner are not
misinterpreted.

Figure 2.9 Plot of exercise time as a function of time for an antianginal drug showing mean values and standard

error of the mean.
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Figure 2.10 Graph comparing two antianginal drugs that is confusing and cluttered because of the overlapping

standard deviations. •, drug A; o, drug B.

2.4 SCATTER PLOTS (CORRELATION DIAGRAMS)
Although the applications of correlation will be presented in some detail in chapter 7, we will
introduce the notion of scatter plots (also called correlation diagrams or scatter diagrams) at this
time. This type of plot or diagram is commonly used when presenting results of experiments.
A typical scatter plot is illustrated in Figure 2.13. Data are collected in pairs (X and Y) with the
objective of demonstrating a trend or relationship (or lack of relationship) between the X and
Y variables. Usually, we are interested in showing a linear relationship between the variables
(i.e., a straight line). For example, one may be interested in demonstrating a relationship (or
correlation) between time to 80% dissolution of various tablet formulations of a particular drug

Figure 2.11 Plot of blood level versus time data illustrating two ways of drawing the curves.

Figure 2.12 Graph of blood pressure reduction with time of

antihypertensive drug illustrating possible misinterpretation

that may occur when points are connected by straight lines.
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Figure 2.13 Scatter plot showing the correlation of dissolution time and in vivo absorption of six tablet formula-

tions. �, formulation A; ×, formulation B; •, formulation C; �, formulation D; �, formulation E; +, formulation F.

and the fraction of the dose absorbed when human subjects take the various tablets. The data plotted
in Figure 2.13 show pictorially that as dissolution increases (i.e., the time to 80% dissolution
decreases) in vivo absorption increases. Scatter plots involve data pairs, X and Y, both of which
are variable. In this example, dissolution time and fraction absorbed are both random variables.

2.5 SEMILOGARITHMIC PLOTS
Several important kinds of experiments in the pharmaceutical sciences result in data such
that the logarithm of the response (Y) is linearly related to an independent variable, X. The
semilogarithmic plot is useful when the response (Y) is best depicted as proportional changes
relative to changes in X, or when the spread of Y is very large and cannot be easily depicted
on a rectilinear scale. Semilog graph paper has the usual equal interval scale on the X axis and
the logarithmic scale on the Y axis. In the logarithmic scale, equal intervals represent ratios. For
example, the distance between 1 and 10 will exactly equal the distance between 10 and 100 on a
logarithmic scale. In particular, first-order kinetic processes, often apparent in drug degradation
and pharmacokinetic systems, show a linear relationship when log C is plotted versus time.
First-order processes can be expressed by the following equation:

log C = log C0 − kt
2.3

(2.1)

where C is the concentration at time t, C0 the concentration at time 0, k the first-order rate
constant, t the time, and log represents logarithm to the base 10.

Table 2.1 shows blood-level data obtained after an intravenous injection of a drug
described by a one-compartment model [3].

Figure 2.14 shows two ways of plotting the data in Table 2.1 to demonstrate the linearity
of the log C versus t relationship.

1. Figure 2.14(A) shows a plot of log C versus time. The resulting straight line is a consequence
of the relationship of log concentration and time as shown in Eq. 2.1. This is an equation of
a straight line with the Y intercept equal to log C0 and a slope equal to −k/2.3. Straight-line
relationships are discussed in more detail in chapter 8.

Table 2.1 Blood Levels After Intravenous Injection of Drug

Time after injection, t (hr) Blood level, C (�g/mL) Log blood level

0 20 1.301

1 10 1.000

2 5 0.699

3 2.5 0.398

4 1.25 0.097
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Figure 2.14 Linearizing plots of data from Table 2.1. (Plot A) log C versus time; (plot B) semilog plot.

2. Figure 2.14(B) shows a more convenient way of plotting the data of Table 2.1, making use of
semilog graph paper. This paper has a logarithmic scale on the Y axis and the usual arithmetic,
linear scale on the X axis. The logarithmic scale is constructed so that the spacing corresponds
to the logarithms of the numbers on the Y axis. For example, the distance between 1 and 2 is
the same as that between 2 and 4. (Log 2−log 1) is equal to (log 4−log 2). The semilog graph
paper depicted in Figure 2.14(B) is two-cycle paper. The Y (log) axis has been repeated two
times. The decimal point for the numbers on the Y axis is accommodated to the data. In our
example, the data range from 1.25 to 20 and the Y axis is adjusted accordingly, as shown in
Figure 2.14(B). The data may be plotted directly on this paper without the need to look up
the logarithms of the concentration values.

2.6 OTHER DESCRIPTIVE FIGURES
Most of the discussion in this chapter has been concerned with plots that show relationships
between variables such as blood pressure changes following two or more treatments, or drug
decomposition as a function of time. Often occasions arise in which graphical presentations are
better made using other more pictorial techniques. These approaches include the popular bar
and pie charts. Schmid [2] differentiates bar charts into two categories: (a) column charts in which
there is a vertical orientation and (b) bar charts in which the bars are horizontal. In general, the
bar charts are more appropriate for comparison of categorical variables, whereas the column
chart is used for data showing relationships such as comparisons of drug effect over time.

Bar charts are very simple but effective visual displays. They are usually used to compare
some experimental outcome or other relevant data where the length of the bar represents the
magnitude. There are many variations of the simple bar chart [2]; an example is shown in Figure
2.15. In Figure 2.15(A), patients are categorized as having a good, fair, or poor response. Forty
percent of the patients had a good response, 35% had a fair response, and 25% had a poor
response.

Figure 2.15(B) shows bars in pairs to emphasize the comparative nature of two treatments.
It is clear from this diagram that Treatment X is superior to Treatment Y. Figure 2.15(C) is another
way of displaying the results shown in Figure 2.15(B). Which chart do you think better sends
the message of the results of this comparative study, Figure 2.15(B) or 2.15(C)? One should be
aware that the results correspond only to the length of the bar. If the order in which the bars
are presented is not obvious, displaying bars in order of magnitude is recommended. In the
example in Figure 2.15, the order is based on the nature of the results, “Good,” “Fair,” and
“Poor.” Everything else in the design of these charts is superfluous and the otherwise principal
objective is to prepare an aesthetic presentation that emphasizes but does not exaggerate the
results. For example, the use of graphic techniques such as shading, crosshatching, and color,
tastefully executed, can enhance the presentation.

Column charts are prepared in a similar way to bar charts. As noted above, whether or not
a bar or column chart is best to display data is not always clear. Data trends over time usually
are best shown using columns. Figure 2.16 shows the comparison of exercise time for two drugs
using a column chart. This is the same data used to prepare Figure 2.4(A) (also, see Exercise
Problem 8 at the end of this chapter).
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Figure 2.15 Graphical representation of patient responses to drug therapy.
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Figure 2.16 Exercise time for two drugs in the form of a column chart using data of Figure 2.4.

Pie charts are popular ways of presenting categorical data. Although the principles used in
the construction of these charts are relatively simple, thought and care are necessary to convey
the correct message. For example, dividing the circle into too many categories can be confusing
and misleading. As a rule of thumb, no more than six sectors should be used. Another problem
with pie charts is that it is not always easy to differentiate two segments that are reasonably
close in size, whereas in the bar graph, values close in size are easily differentiated, since length
is the critical feature.

The circle (or pie) represents 100%, or all of the results. Each segment (or slice of pie) has an
area proportional to the area of the circle, representative of the contribution due to the particular
segment. In the example shown in Figure 2.17(A), the pie represents the anti-inflammatory
drug market. The slices are proportions of the market accounted for by major drugs in this
therapeutic class. These charts are frequently used for business and economic descriptions, but
can be applied to the presentation of scientific data in appropriate circumstances. Figure 2.17(B)
shows the proportion of patients with good, fair, and poor responses to a drug in a clinical trial
(see also Fig. 2.15).

Of course, we have not exhausted all possible ways of presenting data graphically. We
have introduced the cumulative plot in section 1.2.3. Other kinds of plots are the stick diagram
(analogous to the histogram) and frequency polygon [5]. The number of ways in which data
can be presented is limited only by our own ingenuity. An elegant pictorial presentation of
data can “make” a report or government submission. On the other hand, poor presentation of
data can detract from an otherwise good report. The book Statistical Graphics by Calvin Schmid
is recommended for those who wish detailed information on the presentation of graphs and
charts.

Figure 2.17 Examples of pie charts.
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KEY TERMS
Bar charts Independent variables
Bar graphs Key
Column charts Pie charts
Correlation Scatter plots
Data pairs Semilog plots
Dependent variables
Histogram

EXERCISES
1. Plot the following data, preparing and labeling the graph according to the guidelines out-

lined in this chapter. These data are the result of preparing various modifications of a
formulation and observing the effect of the modifications on tablet hardness.

Formulation modification

Starch (%) Lactose (%) Tablet hardness (kg)

10 5 8.3

10 10 9.1

10 15 9.6

10 20 10.2

5 5 9.1

5 10 9.4

5 15 9.8

5 20 10.4

(Hint: Plot these data on a single graph where the Y axis is tablet hardness and the X axis
is lactose concentration. There will be two curves, one at 10% starch and the other at 5%
starch.)

2. Prepare a histogram from the data of Table 1.3. Compare this histogram to that shown in
Figure 2.2(A). Which do you think is a better representation of the data distribution?

3. Plot the following data and label the graph appropriately.

X: response Y : response
Patient to product A to product B

1 2.5 3.8

2 3.6 2.4

3 8.9 4.7

4 6.4 5.9

5 9.5 2.1

6 7.4 5.0

7 1.0 8.5

8 4.7 7.8

What conclusion(s) can you draw from this plot if the responses are pain relief scores, where
a high score means more relief?

4. A batch of tables was shown to have 70% with no defects, 15% slightly chipped, 10%
discolored, and 5% dirty. Construct a pie chart from these data.

5. The following data from a dose–response experiment, a measure of physical activity, are the
responses of five animals at each of three doses.
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Dose (mg) Responses

1 8, 12, 9, 14, 6

2 16, 20, 12, 15, 17

4 20, 17, 25, 27, 16

Plot the individual data points and the average at each dose versus (a) dose, (b) log dose.

6. The concentration of drug in solution was measured as a function of time.

Time (weeks) Concentration

0 100

4 95

8 91

26 68

52 43

(a) Plot concentration versus time.
(b) Plot log concentration versus time.

7. Plot the following data and label the axes appropriately.

X: Cholesterol Y : Triglycerides
Patient (mg%) (mg%)

1 180 80

2 240 180

3 200 70

4 300 200

5 360 240

6 240 200

Tablet X : Tablet potency (mg) Y : Tablet weight (mg)

1 5 300

2 6 300

3 4 280

4 5 295

5 6 320

6 4 290

8. Which figure do you think best represents the results of the exercise time study. Figure 2.16
or Figure 2.4(A)? If the presentation were to be used in a popular nontechnical journal read
by laymen and physicians, which figure would you recommend?
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