
Glossary

a calculated intercept in regression
ANCOVA analysis of covariance
ANOVA analysis of variance
b calculated slope in regression
BMS between mean square
BSS between sum of squares
C. T. correction term
CI confidence interval
CV coefficient of variation; relative error; relative standard

deviation
CXR column × row interaction
df degrees of freedom
E expected number in chi-square table
F F value for F distribution
Ha alternative hypothesis
Ho null hypothesis
In natural log
LSD least significant difference
O observed number in chi-square table
p estimated proportion (binomial)
p (A) probability that event will occur
p (A|B) conditional probability of A given B
Po true or hypothesized proportion
q probability of failure in binomial
R range
r calculated correlation coefficient
r (Dixon) computation for outlier analysis
r2 square of correlation coefficient
RSD relative standard deviation
S sample standard deviation
S2 sample variance
S2y.x estimated variance from line fitting
t t value for t distribution
Tn test for outlier
� true standard deviation of distribution
w weight in weighted least squares
WSS within sum of squares
Xi ith observation
Z normal standard deviate
X2 chi square
� delta, true change or difference
N sample size
� sum of observations
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� alpha level or error for null hypothesis; error of first
kind

	 beta error (1-power)
� observed change or difference
� true mean of distribution



Appendix I

Some Properties of the Variance

I.1 POOLING VARIANCES
In many statistical procedures, an estimate of the variance is obtained by “averaging” or pooling
the variances from more than one group of observations. The pooling of variances is appropriate
in cases where samples from separate groups or different experiments provide estimates of
the same variance. Note that we do not pool or average standard deviations. As we have
previously noted, the sample variance,

∑
(X − X̄)2/(N − 1) [Eq. (1.5)], is an unbiased estimate

of the true population variance. The standard deviation, estimated from a sample, is a biased
estimate of the true population standard deviation. On the average, the sample standard deviation
underestimates the population standard deviation. Estimation and properties of the variance
are important considerations in both theoretical and applied statistics.

A common example of a procedure where variance estimates from different groups are
pooled is the two-sample independent-groups t test for comparison of means discussed in
chapter 5. In this test, the average results of two treatments∗ (e. g., active drug versus placebo;
dissolution behavior of two tablet formulations) are compared. An estimate of the variance
of the observations is needed in order to compare the two treatment groups statistically. An
important assumption underlying this test is that the variances for each group are equal. The
variance is first calculated for each treatment group separately. The variance is more precisely
estimated from samples with a larger number of observations, and the pooled variance from
both treatment groups is the best estimate of the common variance. For example, suppose that
the following variances were observed in a comparative experiment:

Placebo group: N = 25 and the variance (S2) = 10
Drug group: N = 20 and the variance (S2) = 15

Although we assume that the true variance (the population variance) is the same for each group,
different variances are observed in the two groups. If the two groups truly have equal variance,
the difference in the observed variance is a consequence of random variation, due in part to
the particular samples which were chosen, and measurement errors. The pooling procedure, in
general, uses a weighted average, where the weights are equal to the degrees of freedom [see Eq.
(1.2)].

S2 pooled = S2
p = (24)(10) + (19)(15)

24 + 19
= 12.21.

The standard deviation is 3.49 (
√

12.21). The numbers 24 and 19 are the degrees of freedom for
the two groups. If variances are to be pooled from more than two groups, the procedure is the
same. Use a weighted average of the group variances, weighting the variance in each group by
its number of degrees of freedom.

I.2 COMPONENTS OF VARIANCE
Variability of observations usually arise from more than one source. Hence, the variability of
observations can often be expressed as the sum of independent sources of error that comprise the

∗ The word “treatment” in statistics does not necessarily mean treatment in the medical sense. Treatments are
conditions or combinations of conditions whose effects on an experimental outcome are to be assessed.
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total variation. This notion is presented in more detail under the topic of components of variance in
section 12.4.1. The variance of the average of assay results for three tablets obtained by selecting
a single tablet from each of three batches and assaying each tablet is as follows: [variance due to
mean potency differences among batches (i.e., the batch averages are not identical) + variance
due to tablet differences within batches† + variance due to drug assay]/3. Note that this is the
variance of a mean of three results (a total of three tablets have been assayed from the three
batches). This accounts for the number 3 in the denominator (S2 = S2/N).

Similarly, the variability of individual cholesterol changes, derived from a group of
patients, such as shown in Table 1.1, is the sum of the components that contribute to the
overall variability: (a) biological variation as reflected in inherent differences between patients,
(b) the day-to-day variability within patients (a single person’s cholesterol varies from day to
day), and (c) the analytical error, among other sources of error.

I.3 VARIANCE OF LINEAR COMBINATIONS OF INDEPENDENT VARIABLES
The variance of linear combinations of variables, where the variables are independent, can be
shown to be

Variance(mX1 ± nX2) = m2 variance(X1) + n2 variance(X2), (I.1)

where m and n are constants. This important result can be used to derive the variance of the
mean of n independent observations, for example. Consider m observations of the variable X.
We can represent the observations as X1, X2, X3,. . ., Xm. The mean is

∑
Xi

m
= X1 + X2 + X3 + · · · + Xm

m
.

The variance of each X is �2. Therefore, the variance of the mean is

�2
1 + �2

2 + �2
3 + · · · �2

m

m2 = m(�2)
m2 = �2

m

Equation (I.1) also demonstrates that the variance of the difference of two independent observa-
tions is the sum of their variances. An example noted by Mandel [1] that illustrates this concept
is the timing of a reaction. A stopwatch is started at the initiation of the reaction and stopped at
some end point. The time depends on both the initial and final readings. If errors in the times
are independent, the variance of t2 — t1, the difference between final and initial readings, is the
sum of the variances; that is, the error of the difference of the two readings is larger than the
error of either reading alone. Consider another example where a procedure calls for 10 mL of
solution to be removed from a beaker containing 30 mL. Only 10-mL pipettes are available. The
original 30 mL of solution is prepared by pipetting three 10-mL portions into a beaker. A total
of 10 mL is then removed. The variance of the volume remaining in the solution is calculated as
follows:

Variance(P1 + P2 + P3 − P4) = �2 P1 + �2 P2 + �2 P3 + �2 P4,

where Pi (i = 1, 2, 3, 4) represents the four pipetting steps. If the variance of a pipetting step is
0.01, the total variance of the remaining solution (with an expected volume of 20 mL) is (4)(0.01)
= 0.04.

REFERENCE
1. Mandel J. The Statistical Analysis of Experimental Data, New York: Interscience, 1964.

† Variation resulting from differences in tablet potency in a randomly chosen sample of tablets which is due to the
inherent variability of tablets (a result of the heterogeneity of the tableting process) is also known as “sampling
error.”
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Comparison of Slopes and Testing of Linearity:
Determination of Relative Potency

A common problem in bioassay, or when comparing the potency of compounds such as in
drug screening programs, is the assessment of the relative potency of the comparative drugs.
The problems in this analysis consist of (a) obtaining a function of dose and response that is
linear, (b) testing the lines for each compound for parallelism (i.e., equality of slopes), and (c)
determining the relative potency. We will discuss some elementary concepts for a comparison
of two anti-inflammatory compounds, a standard drug (St) and an experimental compound
(Ex). The experiment consists of measuring the reduction in volume after treatment of initially
inflamed paws of two animals at each of three doses for each compound. The results are
shown in Table II.1 and plotted in Figure II.1. The figure shows that the plot of log dose versus
response is approximately linear. A transformation of dose and/or response is often necessary
to achieve linearity in dose-response relationships. The response is usually considered to be
a linear function of log dose (see chap. 10). Transformations to obtain linearity are desirable
because straight-line relationships are more easily analyzed and interpreted than are more
complex functions.

How does one determine if the data are represented by a linear function such as a straight
line? A known theoretical relationship between X and Y may be sufficient to answer the question.
From a statistical point of view, replicate measurements at fixed values of X are needed to test
for linearity. Replicate measurements of Y at a fixed X represent S2

y only, a variance estimate
which is independent of the functional form of X and Y. If X and Y are truly related by a
straight-line function, deviations of the observed values of Y from the fitted line should be due
only to the variability of Y. If the relationship between X and Y is not a straight line, the variance
as measured by the deviations of Y from the fitted line will be increased due to “nonlinearity”
(see Fig. 7.4b). To test for linearity, we compare the variance due to deviations of Y from the
fitted line (deviations from regression) to the variation due only to Y (the pooled error from the
Y replicates, the within mean square). The “deviations” mean square is the mean square due to
deviations of the averages of Y (at each X) from the fitted line. The statistical test is an F test
obtained from an analysis of variance. The concept of this test is illustrated in Figure II.2.

To perform the test, a one-way ANOVA is first performed on the data (Table II.2), duplicate
determinations for three doses in the present example. The ANOVA is computed for each of
both the standard and experimental drugs. For example, the calculations for the ANOVA for
the standard drug are as follows:

Total SS = ∑
Y2 −

(∑
Y2
)

N
= 1.674 − 1.4406 = 0.2334

Between-doses SS = 0.492 + 1.002 + 1.452

2
− 1.4406 = 0.2307.

The within SS is the difference between the total SS and the between SS (see sec. 8.1).
The between-doses SS is the sum of two components: (a) the SS due to the slope (regression

SS) and (b) the SS due to deviations of the mean values (at each X) of Y from the fitted line. The deviation
SS has been discussed above and is shown in Figure II.2. The easiest way to compute the
deviation SS is to divide the between-doses SS into its components as follows. The “regression”
SS has 1 degree of freedom and is defined as

Regression SS = b2
∑

(X − X)2. (II.1)



458 APPENDIX II

Table II.1 Results of the Experiment Comparing Potencies of Two

Compoundsa

Dose (mg)

Compound 5 15 45

Standard (St) 0.22 0.51 0.70

0.27 0.49 0.75

Experimental (Ex) 0.29 0.55 0.76

0.26 0.54 0.83

aData are relative reduction in paw volume from baseline value.

Figure II.1 Plot of dose response data for anti-inflammatory study.

Figure II.2 ANOVA test for linearity.
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Table II.2 One-way ANOVA for Data from Standard and Experimental Drugs

Standard drug Experimental drug

Source d.f. SS MS d.f. SS MS

Between doses 2 0.2307 0.1154 2 0.27053 0.1353

Within (doses) 3 0.0027 0.0009 3 0.00295 0.00098

Total 5 0.2334 5 0.27348

This SS, a result of the slope of the line, will be zero for a line of zero slope (b = 0), and will
be large for a line with a steep positive or negative slope. For the standard drug, the regression
sum of squares is calculated as follows (remember, we are using log dose = X):

b = 0.503

b2 = ∑
(X − X)2 = 0.5032(0.9106) = 0.2304.

The deviation SS (sometimes called “lack of fit” SS) is equal to the between-doses SS minus the
regression SS. Therefore, the deviation SS = 0.2307–0.2304 = 0.0003.

The results of this calculation for both standard and experimental drugs are shown in
Table II.3.

The test for linearity is an F test (deviation MS)/(within MS). For the standard drug, for
example, the F ratio is 0.0003/0.0009 = 0.33, with 1 and 3 d.f., which is not significant (within
MS = 0.0009, Table II.2). There is no evidence for lack of linearity for both lines.

Usually, in these assays, the deviation mean squares are pooled from both products and
compared to the pooled error (within MS), testing linearity of both lines simultaneously. The
pooled deviation MS is (0.000433)/2 with 2 degrees of freedom. The pooled within MS is
0.000942 with 6 degrees of freedom. The F test for linearity is 0.000217/ 0.00094 = 0.23 (2 and
6 d.f.), which is clearly not significant. The pooling assumes that the error for both drugs is the
same, and that both drugs show a linear response versus log dose.

Another assumption in the analysis of the parallel-line assay is that the two lines are
parallel. A test of parallelism is equivalent to a test of equality of slopes. The common slope,
calculated from all the data combined, is

b =
∑

XY − (
∑

X
∑

Y) /N∑
(X − X)2

= 0.5240.

The regression SS due to the common slope is

b2
∑

(X − X)2 = (0.5240)2(1.8212) = 0.500.

The regression SS of the common slope is subtracted from the pooled regression SS for the two
drugs to obtain the SS attributed to lack of parallelism of the lines. The pooled regression SS is

Table II.3 Regression and Deviations Sum of Squares for Standard and Experimental Drugsa

Standard drug Experimental drug

Source d.f. SS d.f. SS

Regression 1 0.2304 1 0.2704

Deviations 1 0.0003 1 0.000133

Between doses 2 0.2307 2 0.270533

aDegrees of freedom for “regression” in the simple linear regression case is always equal to 1. Degrees of freedom

for “deviations” is equal to (number of doses – 2).
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0.2304 + 0.2704 = 0.5008. The SS for “parallelism” is 0.0008 (0.5008 – 0.5000). The F test has 1
and 6 d.f., using the pooled error term:

F1,6 = 0.0008
0.00094

= 0.851.

Since the F value shows lack of significance at the 5% level, we conclude that the lines
appear to be parallel within “experimental error.”

The test for parallelism for two lines can also be done by using a t test with the same results
as the F test. (For the case of two lines, the t is the square root of the F value.) For the t test, we
compare the two slopes, using the standard deviation of the difference of the two slopes in the
denominator of the t ratio. The slopes are 0.5030 and 0.5449 for the standard and experimental
drugs, respectively. The variances in both groups are assumed to be equal.

t = |b1 − b2|√
S2

[
1/
∑
1

(X − X)2 + 1
∑
2

(X − X)2

]

t = |0.5030 − 0.5449|√
0.00094

[
1/
∑
1

(X − X)2 + 1
∑
2

(X − X)2

] ,

(II.2)

where
∑

i (X − X)2 represents the sum of squares of the X’s for the respective groups. [Note that
the variance of a slope equals S2/

∑
(X − X)2.]

Having satisfied ourselves that the assumptions of the assay have been met (i.e., particu-
larly, linearity and parallelism), we can now estimate the relative potency. The relative potency
is the ratio of the comparative drugs that will give the same response. If the lines are parallel,
we can choose any response (Y) to estimate the relative potency; the answer will be the same
(Fig. II.3).

One can show that the log of the relative potency (log R) is equal to

log R = log
[

experimental
standard

]
= ae − ad

b
,

where ae and ad are the intercepts for the experimental drug and the standard drug, respectively;
b is the common slope (0.524, in our example); and (experimental/standard) is the inverse ratio
of doses that gives equal response. For the data of Table II.1,

ad = −0.1262 ae = −0.0779

log R = −0.0779 − (−0.1262)
0.5240

= 0.092.

Figure II.3 Relative potency estimation using

parallel dose–response lines; doses equivalent to

log X1 and log X2 give the same response for

products e and d, respectively.
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The relative potency is 1.24; that is, the experimental drug is 1.24 times as potent as the standard.
This means that 124 mg of the standard is needed to give the same response as 100 mg of the
experimental drug, for example.

Confidence limits can be put on the relative potency based on Fieller’s theorem (similar
to confidence limits for X at a given Y; see chap. 7). The procedure is complicated, and the
interested reader is referred to the book by Finney, Statistical Methods in Biological Assay [1], for
details of the computations.

REFERENCE
1. Finney DJ. Statistical Methods in Biological Assay. New York: Hafner, 1964.
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Multiple Regression

Multiple regression is a topic of utmost importance in statistics, analysis of variance being a
special case of the more general regression techniques. Multiple regression is an extension of
linear regression, in which we wish to relate a response, Y (dependent variable), to more than
one independent variable, Xi.

Linear regression: Y = A+ BY
Multiple regression: Y = B0 + B1 X1 + B2 X2 + ...

The independent variables, X1, X2, and so on, generally represent factors that we believe influ-
ence the response. Usually, the purpose of multiple regression analysis is to quantitate the
relationship between Y and the Xi’s by means of an equation, the multiple regression equation.
For example, tablet dissolution may be measured as a function of several variables, such as
level of disintegrant, lubricant, and drug. In this case, a multiple regression equation would be
useful to predict dissolution, at given levels of the independent variables.

Y = B0 + B1 X1 + B2 X2 + B3 X3, (III.1)

where Y is the some measure of dissolution, Xi is ith independent variable, and Bi the regression
coefficient for the ith independent variable.

Here, X1, X2, and X3 refer to the level of disintegrant, lubricant, and drug. B1, B2, and B3
are the coefficients relating the Xi to the response. These coefficients correspond to the slope (B)
in linear regression. B0 is the intercept. This equation cannot be simply depicted, graphically, as
in the linear regression case. With two independent variables (X1 and X2), the response surface
is a plane (Fig. III.1). With more than two independent variables, it is not possible to graph the
response in two dimensions.

Data suitable for multiple regression analysis can be obtained in different ways. Opti-
mal efficiency and interpretation are obtained by using data from “designed” experiments. In
designed experiments, the independent variables are carefully chosen and deliberately con-
trolled at preassigned levels. For example, in the dissolution experiment noted above, we may
be able to fix the levels of disintegrant, lubricant, and drug according to a factorial design (as
described in chap. 9). Table III.1 illustrates a 23 factorial design. These data correspond to the
eight combinations in the 23 design that can be used to construct a multiple regression equation.
The procedure for fitting data from a factorial design to a regression equation is given in section
16.2.

The form of the equation and the number of independent variables necessary to define the
response adequately depend on a knowledge of the system being investigated. In the example
above, there are three independent variables (factors), but interactions of factors may also be
needed to define the response. In multiple regression equations, interactions may be represented
by “cross-product” terms, such as (X1X2) or (X1X2X3). We usually include only those terms in
the equation that probably have a meaningful effect on the response. Suppose, in our example,
that the three factors and the lubricant X drug interaction are related to the response, dissolution.
We would include terms for X1, X2, X3, and X2X3 in the model.

Y = B0 + B1 X1 + B2 X2 + B3 X3 + B23 X2 X3.
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Figure III.1 Representation of the multiple regression

equation response, Y = B0 + B1×1 + B2X2, as a

plane.

Data for multiple regression fits are often obtained from undesigned experiments where
the levels of the independent variables are not controlled. This less desirable alternative is often
a consequence of convenience or cost considerations. Sometimes, the circumstances are such
that we have no choice; we get the data in any way that we can. For example, suppose that
tableting pressure, temperature, and humidity all affect some particular quality of a finished
tablet. Tablets may be conveniently selected for inspection during the manufacturing process, at
which time measurements of the pressure, temperature, and humidity are made. After collecting
a sufficient quantity of data, these variables may be related to tablet quality using multiple
regression techniques.

Y = B0 + B1(tablet press pressure) + B2(temperature) + B3(humidity).

In this example, we have no control of the variables; their values are a matter of “hap-
penstance.” We take the values as they come. A significant disadvantage of making conclusions
based on data of this sort is that a correlation exists among the independent variables, which
can be eliminated (or controlled) in a designed experiment. The result of this correlation is that
the effects of the variables cannot be clearly separated. What we attribute to one variable, tem-
perature for example, has a component due to humidity and pressure as well. With data derived
from a designed experiment, such as the factorial design noted above, the regression equation
can be constructed so that the effects of different factors and interactions are represented by the
coefficients (Bi) and are independent of other factors.

The computations to determine the coefficients in multiple regression analysis are very
tedious, and without the use of computers, analysis of undesigned experiments of reasonable
size are virtually impossible. Manipulations of large matrices are often performed in the solu-
tion of these problems. Regression equations for orthogonal (designed) factors are much easier
to compute. However, with easy access to computers, hand analysis should be done only as
a learning tool to gain insight into the analytical process. We will not discuss computational
methods in the general multiple regression model. However, because of the importance of mul-
tiple regression in optimization procedures discussed in chapter 16, some further introductory
concepts will be presented here.

Table III.1 Factorial Design to Be Used as the Source for a Multiple Regression Equation

Disintegrant low level Disintegrant high level

Drug Drug

Low level High level Low level High level

Lubricant Low level

High level
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The technique of fitting a linear model to data consisting of N observations of a response,
Y, and one or more independent variables, Xi, is applicable when the number of observations
is equal to or greater than the number of parameters to be estimated (the coefficients are the
parameters in multiple regression). In simple linear regression, we estimate two parameters in
the usual case, the intercept and the slope. Given two X, Y points, the line (slope and intercept)
is unambigously fixed. With more than two points, the best straight line is considered to be
the line that minimizes the sum of the squared deviations of the observed values from the
fitted least squares line. Multiple regression is just an extension of this procedure. If there are
N parameters (coefficients) in the regression model, N observations will result in an exact fit to
the model. For example, an equation with six coefficients will be exactly fit to six appropriate
experimental values (with certain mathematical restrictions). With more than N observations,
the coefficients, Bi, are calculated to minimize the squared deviations of the observations from
the least squares regression fit (the same concept as in simple linear regression).

The relationship of the independent variables and the dependent variable in the multiple
regression model must be linear in the coefficients, Bi, in order to obtain the regression equation
by the usual procedures [1]. The general form of the regression equation is given by Eq. (III.1).

Y = B0 + B1 X1 + B2 X2 + B3 X3. (III.1)

The Xi’s can be “nonlinear” functions such as X2, log X, or 10x. However, the coefficients,
Bi, cannot be in this nonlinear form. Thus

Y = B1 X1 + B2 X2 + B3 X2
1 + B4 X1 X2 is linear in Bi

Y = B0 + B1 X1 + XB2
1 is not linear in Bi .

The basic problems in multiple regression analysis are concerned with estimation of the
error and the coefficients (parameters) of the regression model. Statistical tests can then be
performed for the significance of the coefficient estimates.

When many independent variables are candidates to be entered into a regression equation,
one may wish to use only those variables that contribute “significantly” to the relationship
with the dependent variable. In designed experiments (e. g., factorial designs) the significance
of each factor can be determined using analysis of variance, or, equivalently, by testing the
regression coefficients for significance. In an undesigned experiment, where the data come from
“uncontrolled” combinations of the variables, the independent variables will inevitably be more
or less correlated. Thus, if dissolution is to be related to tablet weight, drug content, and tablet
hardness, based on production records, we are obliged to fit an equation with the available
data, and some correlation will exist between drug content and weight, for example. This
lack of independence presents special problems when deciding which variables are relevant,
contributing significantly to the regression relationship. If two of the X variables, Xi and Xj, are
highly correlated, inclusion of both in the regression equation will be redundant. Therefore, there
may be some X variables that appear to contribute to the regression but which are correlated to
other X variables. We must then make a choice regarding their inclusion in the final regression
equation. Draper and Smith note: “There is no unique statistical procedure for doing this,” and
some degree of arbitrariness must be used in making choices [1]. Two methods used to help
make such decisions are made possible through the use of computers. One method involves
regression fits using all possible combinations of the independent variables (2k regressions,
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where k is the number of independent variables). For two independent variables, X1 and X2,
the four possible regressions are

1. Y = B0
2. Y = B0 + B1X1
3. Y = B0 + B2X2
4. Y = B0 + B1X1 + B2X2

The best equation may then be selected based on the fit and the number of variables
needed for the fit. The multiple correlation coefficient, R2, is a measure of the fit. R2 is the sum
of squares due to regression divided by the sum of squares without regression. For example,
if R2 is 0.85 when three variables are used to fit the regression equation, and R2 is equal to
0.87 when six variables are used, we probably would be satisfied using the equation with three
variables, other things being equal. The inclusion of more variables in the regression equation
cannot result in a decrease of R2.

Another method of selecting variables to be included in the regression equation is the
popular stepwise procedure, which is considered a better method than the “all possible regres-
sions” approach. Independent variables (Xi) are entered into the equation, one at a time, starting
with the independent variable that is most highly correlated to the dependent variable, Y. As
each new variable is considered, its inclusion is based on a preassigned statistical test related
to its correlation with the dependent variable, as well as its correlation to those independent
variables already included in the regression equation.

Probably the biggest pitfall in multiple regression techniques lies in the interpretation
of the coefficients. Draper and Smith discuss this problem, and the answer is by no means
simple [1].

Interpretation of the meaning of the coefficients in multiple regression equations is much
more clear in a designed (orthogonal) experiment. As we have noted previously, in a factorial
experiment, the levels of the factors can be controlled, so that the effects of the factors can
be independently evaluated. Techniques to describe and optimize pharmaceutical systems by
fitting experimental data to regression models using designed experiments are discussed in
chapter 16.

An application of regression analysis to physical properties of finished tablets, with com-
pression pressure and various tablet components as independent variables can be found in
Ref. [2]. In this paper, the authors considered five independent variables for inclusion in the
regression equation. They suggested the following equation as a predictor of dissolution:

Y = 69.91 − 37.3X5 − 17.48X2 + 4.24X3, (III.2)

where Y is the dissolution, X5 the magnesium stearate level, X2 the compression pressure, and
X3 the starch disintegrant.

Magnesium stearate and compression pressure decrease dissolution (negative coefficient).
Starch increases dissolution. The authors discuss possible mechanisms for these effects.

Multiple regression equations that relate variables such as those described above are
empirical relationships. We do not encounter real systems that can be described so simply,
theoretically. The multiple regression equation is a “model” of a real system that must be
recognized as being only an approximation of reality. How good an approximation the equation
is can be evaluated only by seeing how the equation performs as a predictor of the response in
new situations, where the levels of the independent variables are changed. Also, particularly
in undesigned systems, placing physical interpretation on the signs and magnitude of the
coefficients can be hazardous. As noted previously, the coefficients can give insights into the
mechanisms of a process, but great caution is needed before making definitive judgments on
this basis. Problems similar to those discussed for prediction in linear regression apply here
as well. Error (variability) in the estimation of the coefficients, extrapolating to areas outside
the levels of the variables in the experiment, and the choice of an incorrect model all adversely
affect the reliability of the predicted value.

In addition to its use as a predictive equation, the regression equation may also be used
to help obtain combinations of ingredients that will give a desired (e. g., optimum) response.
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This process is discussed in chapters 9 and 16. For those readers who are interested in a more
advanced, in-depth discussion of regression, the excellent book by Draper and Smith, Applied
Regression Analysis, is recommended [1].

REFERENCES
1. Draper NR, Smith H. Applied Regression Analysis, 2 nd ed. New York: Wiley, 1981.
2. Bohidar NR, Restaino FA., Schwartz JB. Selecting Key Pharmaceutical Formulation Factors by Regres-

sion Analysis. Drug Dev Ind Pharm 1979; 5: 175.
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Tables

Table IV.1 Random Numbers

44 17 50 92 09 79 27 71 05 07 76 21 95 93 04

83 50 39 13 89 83 45 72 40 94 78 62 93 55 62

28 79 77 81 43 04 54 23 14 80 49 98 32 70 27

55 29 62 11 00 62 65 76 31 83 08 22 02 35 53

88 93 30 81 50 24 43 07 88 45 96 24 60 78 89

46 00 76 13 83 31 98 15 30 74 17 76 73 31 40

99 05 78 83 75 79 52 47 39 12 70 33 42 30 45

24 88 59 45 16 73 64 63 03 16 04 43 81 66 97

14 90 27 33 43 46 37 68 94 35 12 72 70 43 54

50 27 98 87 19 20 15 73 00 94 52 85 80 22 26

55 47 03 77 04 44 22 78 84 26 04 33 46 09 52

59 29 97 68 60 71 91 38 67 54 13 58 18 24 76

48 55 90 65 72 96 57 69 36 10 96 46 92 42 45

66 37 32 20 30 77 84 57 03 29 10 45 65 04 26

68 49 69 10 82 53 75 91 93 30 34 25 20 57 27

83 62 64 11 12 67 19 00 71 74 60 47 21 92 86

06 90 91 47 68 25 49 33 74 02 16 29 35 65 16

33 23 97 78 26 78 26 45 40 19 61 29 53 73 09

47 15 40 15 02 82 06 93 20 01 67 38 02 37 90

79 65 14 62 16 34 96 02 75 82 46 75 43 89 36
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Table IV.2 Cumulative Normal Distribution:

Cumulative Area Under the Normal Distribution

(Less Than or Equal to Z)

Z Area Z Area Z Area Z Area

−3.25 0.0006 −1.50 0.0668 0.25 0.5987 2.00 0.9772

−3.20 0.0007 −1.45 0.0735 0.30 0.6179 2.05 0.9798

−3.15 0.0008 −1.40 0.0808 0.35 0.6368 2.10 0.9821

−3.10 0.0010 −1.35 0.0885 0.40 0.6554 2.15 0.9842

−3.05 0.0011 −1.30 0.0968 0.45 0.6736 2.20 0.9861

−3.00 0.0013 −1.25 0.1056 0.50 0.6915 2.25 0.9878

−2.95 0.0016 −1.20 0.1151 0.55 0.7088 2.30 0.9893

−2.90 0.0019 −1.15 0.1251 0.60 0.7257 2.35 0.9906

−2.85 0.0022 −1.10 0.1357 0.65 0.7422 2.40 0.9918

−2.80 0.0026 −1.05 0.1469 0.70 0.7580 2.45 0.9929

−2.75 0.0030 −1.00 0.1587 0.75 0.7734 2.50 0.9938

−2.70 0.0035 −0.95 0.1711 0.80 0.7881 2.55 0.9946

−2.65 0.0040 −0.90 0.1841 0.85 0.8023 2.60 0.9953

−2.60 0.0047 −0.85 0.1977 0.90 0.8159 2.65 0.9960

−2.55 0.0054 −0.80 0.2119 0.95 0.8289 2.70 0.9965

−2.50 0.0062 −0.75 0.2266 1.00 0.8413 2.75 0.9970

−2.45 0.0071 −0.70 0.2420 1.05 0.8531 2.80 0.9974

−2.40 0.0082 −0.65 0.2578 1.10 0.8643 2.85 0.9978

−2.35 0.0094 −0.60 0.2743 1.15 0.8749 2.90 0.9981

−2.30 0.0107 −0.55 0.2912 1.20 0.8849 2.95 0.9984

−2.25 0.0122 −0.50 0.3085 1.25 0.8944 3.00 0.9987

−2.20 0.0139 −0.45 0.3264 1.30 0.9032 3.25 0.9994

−2.15 0.0158 −0.40 0.3446 1.35 0.9115

−2.10 0.0179 −0.35 0.3632 1.40 0.9192

−2.05 0.0202 −0.30 0.3821 1.45 0.9265

Z Area

1.282 0.90

1.645 0.95

−2.00 0.0228 −0.25 0.4013 1.50 0.9332 1.960 0.975

−1.95 0.0256 −0.20 0.4207 1.55 0.9394 2.326 0.99

−1.90 0.0287 −0.15 0.4404 1.60 0.9452 2.576 0.995

−1.85 0.0322 −0.10 0.4602 1.65 0.9505 3.090 0.999

−1.80 0.0359 −0.05 0.4801 1.70 0.9554

−1.75 0.0401 0 0.5000 1.75 0.9599

−1.70 0.0446 0.05 0.5199 1.80 0.9641

−1.65 0.0495 0.10 0.5398 1.85 0.9678

−1.60 0.0548 0.15 0.5596 1.90 0.9713

−1.55 0.0606 0.20 0.5793 1.95 0.9744
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Table IV.3 Individual Terms of the Binomial Distribution for N = 2 to 10 and P = 0.2, 0.5, and 0.7a

P = 0.2

N

X 2 3 4 5 6 7 8 9 10

0 0.64 0.512 0.410 0.328 0.262 0.210 0.168 0.134 0.107

1 0.32 0.384 0.410 0.410 0.393 0.367 0.336 0.302 0.268

2 0.04 0.096 0.154 0.205 0.246 0.275 0.294 0.302 0.302

3 0.008 0.026 0.051 0.082 0.115 0.147 0.176 0.201

4 0.002 0.006 0.015 0.029 0.046 0.066 0.088

5 ∗ 0.002 0.004 0.009 0.017 0.026

6 ∗ ∗ 0.001 0.003 0.006

7 ∗ ∗ ∗ 0.001

8 ∗ ∗ ∗
9 ∗ ∗

10 ∗
P = 0.5

N

X 2 3 4 5 6 7 8 9 10

0 0.250 0.125 0.0625 0.031 0.016 0.008 0.004 0.002 0.001

1 0.500 0.375 0.250 0.156 0.094 0.055 0.031 0.018 0.010

2 0.250 0.375 0.375 0.313 0.234 0.164 0.109 0.070 0.044

3 0.125 0.250 0.313 0.313 0.273 0.219 0.164 0.117

4 0.0625 0.156 0.234 0.273 0.273 0.246 0.205

5 0.031 0.094 0.164 0.219 0.246 0.246

6 0.016 0.055 0.109 0.164 0.205

7 0.008 0.031 0.070 0.117

8 0.004 0.018 0.044

9 0.002 0.010

10 0.001

P = 0.7

N

X 2 3 4 5 6 7 8 9 10

0 0.090 0.027 0.008 0.002 0.001 ∗ ∗ ∗ ∗
1 0.420 0.189 0.076 0.028 0.010 0.004 0.001 ∗ ∗
2 0.490 0.441 0.265 0.132 0.060 0.025 0.010 0.004 0.001

3 0.343 0.412 0.309 0.185 0.097 0.047 0.021 0.009

4 0.240 0.360 0.324 0.227 0.136 0.074 0.037

5 0.168 0.303 0.318 0.254 0.172 0.103

6 0.118 0.247 0.296 0.267 0.200

7 0.082 0.198 0.267 0.267

8 0.058 0.156 0.233

9 0.040 0.121

10 0.028

∗P < 0.0005.
aThese tables may be used for P = 0.8 and P = 0.3 as follows. Use the table with P = 0.2 to obtain terms for P = 0.8; and use

the table with P = 0.7 to obtain terms for P = 0.3. For example, for the probability of 5 (x ′ = 5) successes in 8 trials (N = 8) for

P = 0.8, look in the table for P = 0.2, N = 8, and X = N − X ′ = 8 − 5 = 3. This is equal to 0.147.
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Table IV.4 t Distributions

Two-sided: 40% 20% 10% 5% 1%
One-sided: 20% 10% 5% 2.50% 0.50%
d.f.: t0.80 t0.90 t0.95 t0.975 t0.995

1 1.376382 3.077684 6.313752 12.7062 63.65674

2 1.06066 1.885618 2.919986 4.302653 9.924843

3 0.978472 1.637744 2.353363 3.182446 5.840909

4 0.940965 1.533206 2.131847 2.776445 4.604095

5 0.919544 1.475884 2.015048 2.570582 4.032143

6 0.905703 1.439756 1.94318 2.446912 3.707428

7 0.89603 1.414924 1.894579 2.364624 3.499483

8 0.88889 1.396815 1.859548 2.306004 3.355387

9 0.883404 1.383029 1.833113 2.262157 3.249836

10 0.879058 1.372184 1.812461 2.228139 3.169273

11 0.87553 1.36343 1.795885 2.200985 3.105807

12 0.872609 1.356217 1.782288 2.178813 3.05454

13 0.870152 1.350171 1.770933 2.160369 3.012276

14 0.868055 1.34503 1.76131 2.144787 2.976843

15 0.866245 1.340606 1.75305 2.13145 2.946713

16 0.864667 1.336757 1.745884 2.119905 2.920782

17 0.863279 1.333379 1.739607 2.109816 2.898231

18 0.862049 1.330391 1.734064 2.100922 2.87844

19 0.860951 1.327728 1.729133 2.093024 2.860935

20 0.859964 1.325341 1.724718 2.085963 2.84534

21 0.859074 1.323188 1.720743 2.079614 2.83136

22 0.858266 1.321237 1.717144 2.073873 2.818756

23 0.85753 1.31946 1.713872 2.068658 2.807336

24 0.856855 1.317836 1.710882 2.063899 2.796939

25 0.856236 1.316345 1.708141 2.059539 2.787436

26 0.855665 1.314972 1.705618 2.055529 2.778715

27 0.855137 1.313703 1.703288 2.05183 2.770683

28 0.854647 1.312527 1.701131 2.048407 2.763262

29 0.854192 1.311434 1.699127 2.04523 2.756386

30 0.853767 1.310415 1.697261 2.042272 2.749996

31 0.85337 1.309464 1.695519 2.039513 2.744042

32 0.852998 1.308573 1.693889 2.036933 2.738481

33 0.852649 1.307737 1.69236 2.034515 2.733277

34 0.852321 1.306952 1.690924 2.032244 2.728394

35 0.852012 1.306212 1.689572 2.030108 2.723806

36 0.85172 1.305514 1.688298 2.028094 2.719485

37 0.851444 1.304854 1.687094 2.026192 2.715409

38 0.851183 1.30423 1.685954 2.024394 2.711558

39 0.850935 1.303639 1.684875 2.022691 2.707913

40 0.8507 1.303077 1.683851 2.021075 2.704459

41 0.850476 1.302543 1.682878 2.019541 2.701181

42 0.850263 1.302035 1.681952 2.018082 2.698066

43 0.85006 1.301552 1.681071 2.016692 2.695102

44 0.849867 1.30109 1.68023 2.015368 2.692278

45 0.849682 1.300649 1.679427 2.014103 2.689585

46 0.849505 1.300228 1.67866 2.012896 2.687013

47 0.849336 1.299825 1.677927 2.01174 2.684556

48 0.849174 1.299439 1.677224 2.010635 2.682204

49 0.849018 1.299069 1.676551 2.009575 2.679952

50 0.848869 1.298714 1.675905 2.008559 2.677793

75 0.84644 1.292941 1.665425 1.992102 2.642983

100 0.84523 1.290075 1.660234 1.983971 2.625891

500 0.842341 1.283247 1.647907 1.96472 2.585698

infinity 0.841621 1.281552 1.644855 1.959966 2.575834
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Table IV.5 Chi-Square Distributions

ProbabilityDegrees
of

Freedom 0.01 0.025 0.05 0.1 0.2 0.8 0.9 0.95 0.99
1 6.634897 5.023886 3.841459 2.705544 1.642375 0.064185 0.015791 0.003932 0.000157

2 9.21034 7.377759 5.991465 4.60517 3.218876 0.446287 0.210721 0.102587 0.020101

3 11.34487 9.348404 7.814728 6.251388 4.641628 1.005174 0.584374 0.351846 0.114832

4 13.2767 11.14329 9.487729 7.77944 5.988617 1.648777 1.063623 0.710723 0.297109

5 15.08627 12.8325 11.0705 9.236357 7.289276 2.342534 1.610308 1.145476 0.554298

6 16.81189 14.44938 12.59159 10.64464 8.55806 3.070088 2.204131 1.635383 0.87209

7 18.47531 16.01276 14.06714 12.01704 9.80325 3.822322 2.833107 2.16735 1.239042

8 20.09024 17.53455 15.50731 13.36157 11.03009 4.593574 3.489539 2.732637 1.646497

9 21.66599 19.02277 16.91898 14.68366 12.24215 5.380053 4.168159 3.325113 2.087901

10 23.20925 20.48318 18.30704 15.98718 13.44196 6.179079 4.865182 3.940299 2.558212

11 24.72497 21.92005 19.67514 17.27501 14.63142 6.988674 5.577785 4.574813 3.053484

12 26.21697 23.33666 21.02607 18.54935 15.81199 7.807328 6.303796 5.226029 3.570569

13 27.68825 24.7356 22.36203 19.81193 16.9848 8.633861 7.041505 5.891864 4.106915

14 29.14124 26.11895 23.68479 21.06414 18.15077 9.467328 7.789534 6.570631 4.660425

15 30.57791 27.48839 24.99579 22.30713 19.31066 10.30696 8.546756 7.260944 5.229349

16 31.99993 28.84535 26.29623 23.54183 20.46508 11.15212 9.312236 7.961646 5.812213

17 33.40866 30.19101 27.58711 24.76904 21.61456 12.00227 10.08519 8.67176 6.40776

18 34.80531 31.52638 28.8693 25.98942 22.75955 12.85695 10.86494 9.390455 7.014911

19 36.19087 32.85233 30.14353 27.20357 23.90042 13.71579 11.65091 10.11701 7.63273

20 37.56623 34.16961 31.41043 28.41198 25.03751 14.57844 12.44261 10.85081 8.260398

21 38.93217 35.47888 32.67057 29.61509 26.1711 15.44461 13.2396 11.59131 8.897198

22 40.28936 36.78071 33.92444 30.81328 27.30145 16.31404 14.04149 12.33801 9.542492

23 41.6384 38.07563 35.17246 32.0069 28.42879 17.18651 14.84796 13.09051 10.19572

24 42.97982 39.36408 36.41503 33.19624 29.55332 18.0618 15.65868 13.84843 10.85636

25 44.3141 40.64647 37.65248 34.38159 30.6752 18.93975 16.47341 14.61141 11.52398

26 45.64168 41.92317 38.88514 35.56317 31.79461 19.82019 17.29189 15.37916 12.19815

27 46.96294 43.19451 40.11327 36.74122 32.91169 20.70298 18.1139 16.1514 12.8785

28 48.27824 44.46079 41.33714 37.91592 34.02657 21.58797 18.93924 16.92788 13.56471

29 49.58788 45.72229 42.55697 39.08747 35.13936 22.47505 19.76774 17.70837 14.25645

30 50.89218 46.97924 43.77297 40.25602 36.25019 23.36412 20.59923 18.49266 14.95346

31 52.19139 48.23189 44.98534 41.42174 37.35914 24.25506 21.43356 19.28057 15.65546

32 53.48577 49.48044 46.19426 42.58475 38.46631 25.14779 22.27059 20.07191 16.36222

33 54.77554 50.72508 47.39988 43.74518 39.57179 26.04222 23.1102 20.86653 17.07351

34 56.06091 51.966 48.60237 44.90316 40.67565 26.93827 23.95225 21.66428 17.78915

35 57.34207 53.20335 49.80185 46.05879 41.77796 27.83587 24.79666 22.46502 18.50893

36 58.61921 54.43729 50.99846 47.21217 42.8788 28.73496 25.6433 23.26861 19.23268

37 59.8925 55.66797 52.19232 48.36341 43.97822 29.63547 26.49209 24.07494 19.96023

38 61.16209 56.89552 53.38354 49.51258 45.07628 30.53734 27.34295 24.8839 20.69144

39 62.42812 58.12006 54.57223 50.65977 46.17303 31.44052 28.19579 25.69539 21.42616

40 63.69074 59.34171 55.75848 51.80506 47.26854 32.34495 29.05052 26.5093 22.16426

41 64.95007 60.56057 56.94239 52.94851 48.36283 33.2506 29.90709 27.32555 22.90561

42 66.20624 61.77676 58.12404 54.0902 49.45597 34.15741 30.76542 28.14405 23.65009

43 67.45935 62.99036 59.30351 55.23019 50.54799 35.06534 31.62545 28.96472 24.3976

44 68.70951 64.20146 60.48089 56.36854 51.63892 35.97435 32.48713 29.78748 25.14803

45 187.5299 180.2291 174.101 167.2074 159.1036 130.5082 123.6489 118.1714 108.3451

46 71.2014 66.61653 62.82962 58.64054 53.8177 37.79548 34.21517 31.439 26.65724

47 72.44331 67.82065 64.00111 59.77429 54.90561 38.70752 35.08143 32.26762 27.41585

48 73.68264 69.02259 65.17077 60.90661 55.99258 39.62051 35.94913 33.09808 28.17701

49 74.91947 70.22241 66.33865 62.03754 57.07863 40.53442 36.81822 33.93031 28.94065

50 76.15389 71.4202 67.50481 63.16712 58.1638 41.44921 37.68865 34.76425 29.70668

51 77.38596 72.61599 68.66929 64.2954 59.24811 77.38596 38.56038 35.59986 30.47505

52 78.61576 73.80986 69.83216 65.42241 60.33158 78.61576 39.43339 36.43709 31.24567

53 79.84334 75.00186 70.99345 66.5482 61.41425 79.84334 40.30762 37.27589 32.01849

54 81.06877 76.19205 72.15322 67.67279 62.49613 81.06877 41.18304 38.11622 32.79345

55 82.29212 77.38047 73.31149 68.79621 63.57724 82.29212 42.05962 38.95803 33.57048

56 83.51343 78.56716 74.46832 69.91851 64.65762 83.51343 42.93734 39.80128 34.34952

57 84.73277 79.75219 75.62375 71.03971 65.73727 84.73277 43.81615 40.64593 35.13053

58 85.95018 80.93559 76.7778 72.15984 66.81621 85.95018 44.69603 41.49195 35.91346

59 87.16571 82.11741 77.93052 73.27893 67.89448 87.16571 45.57695 42.33931 36.69825

60 88.37942 83.29768 79.08194 74.39701 68.97207 88.37942 46.45889 43.18796 37.48485

80 112.3288 106.6286 101.8795 96.5782 90.40535 112.3288 64.27785 60.39148 53.54008

100 135.8067 129.5612 124.3421 118.498 111.6667 135.8067 82.35814 77.92947 70.0649

500 576.4928 563.8515 553.1268 540.9303 526.4014 576.4928 459.9261 449.1468 429.3875
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474 APPENDIX IV

Table IV.6B Upper 1% Values of the F Distribution

Degrees of Freedom in numerator
Degrees of
freedom in
denominator 1 2 3 4 5 6 7 8 9 10 11 12 13
1 4052.181 4999.500 5403.352 5624.583 5763.650 5858.986 6125.865 6125.865 6022.473 6055.847 6083.317 6106.321 6125.865

2 98.503 99.000 99.166 99.249 99.299 99.333 99.422 99.374 99.388 99.399 99.408 99.416 99.422

3 34.116 30.817 29.457 28.710 28.237 27.911 26.983 27.489 27.345 27.229 27.133 27.052 26.983

4 21.198 18.000 16.694 15.977 15.522 15.207 14.307 14.799 14.659 14.546 14.452 14.374 14.307

5 16.258 13.274 12.060 11.392 10.967 10.672 9.825 10.289 10.158 10.051 9.963 9.888 9.825

6 13.745 10.925 9.780 9.148 8.746 8.466 7.657 8.102 7.976 7.874 7.790 7.718 7.657

7 12.246 9.547 8.451 7.847 7.460 7.191 6.410 6.840 6.719 6.620 6.538 6.469 6.410

8 11.259 11.259 7.591 7.006 6.632 6.371 5.609 6.029 5.911 5.814 5.734 5.667 5.609

9 10.561 8.022 6.992 6.422 6.057 5.802 5.055 5.467 5.351 5.257 5.178 5.111 5.055

10 10.044 7.559 6.552 5.994 5.636 5.386 4.650 5.057 4.942 4.849 4.772 4.706 4.650

11 9.646 7.206 6.217 5.668 5.316 5.069 4.342 4.744 4.632 4.539 4.462 4.397 4.342

12 9.330 6.927 5.953 5.412 5.064 4.821 4.100 4.499 4.388 4.296 4.220 4.155 4.100

13 9.074 6.701 5.739 5.205 4.862 4.620 3.905 4.302 4.191 4.100 4.025 3.960 3.905

14 8.862 6.515 5.564 5.035 4.695 4.456 3.745 4.140 4.030 3.939 3.864 3.800 3.745

15 8.683 6.359 5.417 4.893 4.556 4.318 3.612 4.004 3.895 3.805 3.730 3.666 3.612

16 8.531 6.226 5.292 4.773 4.437 4.202 3.498 3.890 3.780 3.691 3.616 3.553 3.498

17 8.400 6.112 5.185 4.669 4.336 4.102 3.401 3.791 3.682 3.593 3.519 3.455 3.401

18 8.285 6.013 5.092 4.579 4.248 4.015 3.316 3.705 3.597 3.508 3.434 3.371 3.316

19 8.185 5.926 5.010 4.500 4.171 3.939 3.242 3.631 3.523 3.434 3.360 3.297 3.242

20 8.096 5.849 4.938 4.431 4.103 3.871 3.177 3.564 3.457 3.368 3.294 3.231 3.177

21 8.017 5.780 4.874 4.369 4.042 3.812 3.119 3.506 3.398 3.310 3.236 3.173 3.119

22 7.945 5.719 4.817 4.313 3.988 3.758 3.067 3.453 3.346 3.258 3.184 3.121 3.067

23 7.881 5.664 4.765 4.264 3.939 3.710 3.020 3.406 3.299 3.211 3.137 3.074 3.020

24 7.823 5.614 4.718 4.218 3.895 3.667 2.977 3.363 3.256 3.168 3.094 3.032 2.977

25 7.770 5.568 4.675 4.177 3.855 3.627 2.939 3.324 3.217 3.129 3.056 2.993 2.939

26 7.721 5.526 4.637 4.140 3.818 3.591 2.904 3.288 3.182 3.094 3.021 2.958 2.904

27 7.677 5.488 4.601 4.106 3.785 3.558 2.871 3.256 3.149 3.062 2.988 2.926 2.871

28 7.636 5.453 4.568 4.074 3.754 3.528 2.842 3.226 3.120 3.032 2.959 2.896 2.842

29 7.598 5.420 4.538 4.045 3.725 3.499 2.814 3.198 3.092 3.005 2.931 2.868 2.814

30 7.562 5.390 4.510 4.018 3.699 3.473 2.789 3.173 3.067 2.979 2.906 2.843 2.789

31 7.530 5.362 4.484 3.993 3.675 3.449 2.765 3.149 3.043 2.955 2.882 2.820 2.765

32 7.499 5.336 4.459 3.969 3.652 3.427 2.744 3.127 3.021 2.934 2.860 2.798 2.744

33 7.471 5.312 4.437 3.948 3.630 3.406 2.723 3.106 3.000 2.913 2.840 2.777 2.723

34 7.444 5.289 4.416 3.927 3.611 3.386 2.704 3.087 2.981 2.894 2.821 2.758 2.704

35 7.419 5.268 4.396 3.908 3.592 3.368 2.686 3.069 2.963 2.876 2.803 2.740 2.686

36 7.396 5.248 4.377 3.890 3.574 3.351 2.669 3.052 2.946 2.859 2.786 2.723 2.669

37 7.373 5.229 4.360 3.873 3.558 3.334 2.653 3.036 2.930 2.843 2.770 2.707 2.653

38 7.353 5.211 4.343 3.858 3.542 3.319 2.638 3.021 2.915 2.828 2.755 2.692 2.638

39 7.333 5.194 4.327 3.843 3.528 3.305 2.624 3.006 2.901 2.814 2.741 2.678 2.624

40 7.314 5.179 4.313 3.828 3.514 3.291 2.611 2.993 2.888 2.801 2.727 2.665 2.611

50 7.171 5.057 4.199 3.720 3.408 3.186 2.508 2.890 2.785 2.698 2.625 2.562 2.508

60 7.077 4.977 4.126 3.649 3.339 3.119 2.442 2.823 2.718 2.632 2.559 2.496 2.442

80 6.963 4.881 4.036 3.563 3.255 3.036 2.361 2.742 2.637 2.551 2.478 2.415 2.361

100 6.895 4.713 3.984 3.513 3.206 2.988 2.313 2.694 2.590 2.503 2.430 2.368 2.313

200 6.763 4.713 3.881 3.414 3.110 2.893 2.220 2.601 2.497 2.411 2.338 2.275 2.220

infinity 6.635 3.912 3.782 3.319 3.017 2.802 2.130 2.511 2.408 2.321 2.248 2.185 2.130
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14 15 16 17 18 19 20 25 30 40 50 60 80 100 inf
6142.674 6157.285 6125.865 6181.435 6191.529 6200.576 6208.730 6239.825 6260.649 6286.782 6302.517 6313.030 6326.197 6334.110 6365.861

99.428 99.433 99.437 99.440 99.444 99.447 99.449 99.459 99.466 99.474 99.479 99.482 99.487 99.489 99.499

26.924 26.872 26.827 26.787 26.751 26.719 26.690 26.579 26.505 26.411 26.354 26.316 26.269 26.240 26.125

14.249 14.198 14.154 14.115 14.080 14.048 14.020 13.911 13.838 13.745 13.690 13.652 13.605 13.577 13.463

9.770 9.722 9.680 9.643 9.610 9.580 9.553 9.449 9.379 9.291 9.238 9.202 9.157 9.130 9.020

7.605 7.559 7.519 7.483 7.451 7.422 7.396 7.296 7.229 7.143 7.091 7.057 7.013 6.987 6.880

6.359 6.314 6.275 6.240 6.209 6.181 6.155 6.058 5.992 5.908 5.858 5.824 5.781 5.755 5.650

5.559 5.515 5.477 5.442 5.412 5.384 5.359 5.263 5.198 5.116 5.065 5.032 4.989 4.963 4.859

5.005 4.962 4.924 4.890 4.860 4.833 4.808 4.713 4.649 4.567 4.517 4.483 4.441 4.415 4.311

4.601 4.558 4.520 4.487 4.457 4.430 4.405 4.311 4.247 4.165 4.115 4.082 4.039 4.014 3.909

4.293 4.251 4.213 4.180 4.150 4.123 4.099 4.005 3.941 3.860 3.810 3.776 3.734 3.708 3.602

4.052 4.010 3.972 3.939 3.909 3.883 3.858 3.765 3.701 3.619 3.569 3.535 3.493 3.467 3.361

3.857 3.815 3.778 3.745 3.716 3.689 3.665 3.571 3.507 3.425 3.375 3.341 3.298 3.272 3.165

3.698 3.656 3.619 3.586 3.556 3.529 3.505 3.412 3.348 3.266 3.215 3.181 3.138 3.112 3.004

3.564 3.522 3.485 3.452 3.423 3.396 3.372 3.278 3.214 3.132 3.081 3.047 3.004 2.977 2.868

3.451 3.409 3.372 3.339 3.310 3.283 3.259 3.165 3.101 3.018 2.967 2.933 2.889 2.863 2.753

3.353 3.312 3.275 3.242 3.212 3.186 3.162 3.068 3.003 2.920 2.869 2.835 2.791 2.764 2.653

3.269 3.227 3.190 3.158 3.128 3.101 3.077 2.983 2.919 2.835 2.784 2.749 2.705 2.678 2.566

3.195 3.153 3.116 3.084 3.054 3.027 3.003 2.909 2.844 2.761 2.709 2.674 2.630 2.602 2.489

3.130 3.088 3.051 3.018 2.989 2.962 2.938 2.843 2.778 2.695 2.643 2.608 2.563 2.535 2.421

3.072 3.030 2.993 2.960 2.931 2.904 2.880 2.785 2.720 2.636 2.584 2.548 2.503 2.475 2.360

3.019 2.978 2.941 2.908 2.879 2.852 2.827 2.733 2.667 2.583 2.531 2.495 2.450 2.422 2.305

2.973 2.931 2.894 2.861 2.832 2.805 2.781 2.686 2.620 2.535 2.483 2.447 2.401 2.373 2.256

2.930 2.889 2.852 2.819 2.789 2.762 2.738 2.643 2.577 2.492 2.440 2.403 2.357 2.329 2.211

2.892 2.850 2.813 2.780 2.751 2.724 2.699 2.604 2.538 2.453 2.400 2.364 2.317 2.289 2.169

2.857 2.815 2.778 2.745 2.715 2.688 2.664 2.569 2.503 2.417 2.364 2.327 2.281 2.252 2.131

2.824 2.783 2.746 2.713 2.683 2.656 2.632 2.536 2.470 2.384 2.330 2.294 2.247 2.218 2.097

2.795 2.753 2.716 2.683 2.653 2.626 2.602 2.506 2.440 2.354 2.300 2.263 2.216 2.187 2.064

2.767 2.726 2.689 2.656 2.626 2.599 2.574 2.478 2.412 2.325 2.271 2.234 2.187 2.158 2.034

2.742 2.700 2.663 2.630 2.600 2.573 2.549 2.453 2.386 2.299 2.245 2.208 2.160 2.131 2.006

2.718 2.677 2.640 2.606 2.577 2.550 2.525 2.429 2.362 2.275 2.220 2.183 2.135 2.106 1.980

2.696 2.655 2.618 2.584 2.555 2.527 2.503 2.406 2.340 2.252 2.198 2.160 2.112 2.082 1.956

2.676 2.634 2.597 2.564 2.534 2.507 2.482 2.386 2.319 2.231 2.176 2.139 2.090 2.060 1.933

2.657 2.615 2.578 2.545 2.515 2.488 2.463 2.366 2.299 2.211 2.156 2.118 2.070 2.040 1.911

2.639 2.597 2.560 2.527 2.497 2.470 2.445 2.348 2.281 2.193 2.137 2.099 2.050 2.020 1.891

2.622 2.580 2.543 2.510 2.480 2.453 2.428 2.331 2.263 2.175 2.120 2.082 2.032 2.002 1.872

2.606 2.564 2.527 2.494 2.464 2.437 2.412 2.315 2.247 2.159 2.103 2.065 2.015 1.985 1.854

2.591 2.549 2.512 2.479 2.449 2.421 2.397 2.299 2.232 2.143 2.087 2.049 1.999 1.968 1.837

2.577 2.535 2.498 2.465 2.434 2.407 2.382 2.285 2.217 2.128 2.072 2.034 1.984 1.953 1.820

2.563 2.522 2.484 2.451 2.421 2.394 2.369 2.271 2.203 2.114 2.058 2.019 1.969 1.938 1.805

2.461 2.419 2.382 2.348 2.318 2.290 2.265 2.167 2.098 2.007 1.949 1.909 1.857 1.825 1.683

2.394 2.352 2.315 2.281 2.251 2.223 2.198 2.098 2.028 1.936 1.877 1.836 1.783 1.749 1.601

2.313 2.271 2.233 2.199 2.169 2.141 2.115 2.015 1.944 1.849 1.788 1.746 1.690 1.655 1.494

2.265 2.223 2.185 2.151 2.120 2.092 2.067 1.965 1.893 1.797 1.735 1.692 1.634 1.598 1.427

2.172 2.129 2.091 2.057 2.026 1.997 1.971 1.868 1.794 1.694 1.629 1.583 1.521 1.481 1.279

2.082 2.039 2.000 1.965 1.934 1.905 1.878 1.773 1.697 1.592 1.523 1.473 1.404 1.358 1.000
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Table IV.7A Upper 5% Points in the Studentized Range

Number of treatments, k

d.f. (error) 2 3 4 5 6 7 8 9 10 15 20

2 8.33 9.80 10.89 11.73 12.43 13.03 13.54 13.99 15.65 16.77

4 5.04 5.76 6.29 6.71 7.06 7.35 7.60 7.83 8.67 9.24

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.72 8.21

6 3.46 4.34 4.90 5.31 5.63 5.89 6.12 6.32 6.49 7.14 7.59

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.48 6.87

10 3.15 3.88 4.33 4.66 4.91 5.12 5.30 5.46 5.60 6.12 6.47

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.88 6.21

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.72 6.03

16 3.00 3.65 4.05 4.34 4.56 4.74 4.90 5.03 5.15 5.59 5.90

18 2.97 3.61 4.00 4.28 4.49 4.67 4.83 4.96 5.07 5.50 5.79

20 2.95 3.58 3.96 4.24 4.45 4.62 4.77 4.90 5.01 5.43 5.71

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.32 5.59

30 2.89 3.48 3.84 4.11 4.30 4.46 4.60 4.72 4.83 5.21 5.48

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 5.11 5.36

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 5.00 5.24

120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.90 5.13

∞ 2.77 3.32 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.80 5.01

Table IV.7B Values of t ′ for Dunnett’s Comparison of Several Treatments and a Control (� = 0.05)

Number of treatments

d.f. 2 3 4 5 6 7

5 3.03 3.39 3.66 3.88 4.06 4.22

6 2.86 3.18 3.41 3.60 3.75 3.85

7 2.75 3.04 3.24 3.41 3.54 3.66

8 2.67 2.94 3.13 3.28 3.40 3.51

9 2.61 2.86 3.04 3.18 3.29 3.39

10 2.57 2.81 2.97 3.11 3.21 3.31

11 2.53 2.76 2.92 3.05 3.15 3.24

12 2.50 2.72 2.88 3.00 3.10 3.18

13 2.48 2.69 2.84 2.96 3.06 3.14

14 2.46 2.67 2.81 2.93 3.02 3.10

15 2.44 2.64 2.79 2.90 2.99 3.07

20 2.38 2.57 2.70 2.81 2.89 2.96

24 2.35 2.53 2.66 2.76 2.84 2.91

30 2.32 2.50 2.62 2.72 2.79 2.86

40 2.29 2.47 2.58 2.67 2.75 2.81

60 2.27 2.43 2.55 2.63 2.70 2.76

120 2.24 2.40 2.51 2.59 2.66 2.71

∞ 2.21 2.37 2.47 2.55 2.62 2.67
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Table IV.8 Dixon’s Criteria for Rejecting Outliers

Significance level

k 5% 1%

3 r10 = (X2 − X1)/(Xk − X1) if smallest value is suspected; 0.941 0.988

4 0.765 0.889

5 = (Xk − Xk−1)/(Xk − X1) if largest value is suspected 0.642 0.780

6 0.560 0.698

7 0.507 0.637

8 r11 = (X2 − X1)/(Xk−1 − X1) if smallest value is suspected; 0.554 0.683

9 0.512 0.635

10 = (Xk − Xk−1)/(Xk − X2) if largest value is suspected 0.477 0.597

11 r21 = (X3 − X1)/(Xk−1 − X1) if smallest value is suspected; 0.576 0.679

12 0.546 0.642

13 = (Xk − Xk−2)/(Xk − X2) if largest value is suspected 0.521 0.615

14 r22 = (X3 − X1)/(Xk−2 − X1) if smallest value is suspected; 0.546 0.641

15 0.525 0.616

16 = (Xk − Xk−2)/(Xk − X3) if largest value is suspected 0.507 0.595

17 0.490 0.577

18 0.475 0.561

19 0.462 0.547

20 0.450 0.535

21 0.440 0.524

22 0.430 0.514

23 0.421 0.505

24 0.413 0.497

25 0.406 0.489

Table IV.9 Critical Values of T for a Two-Sided Test at

the 5% Level of Significance (Test for Outliers)

Sample size T

3 1.155

4 1.481

5 1.715

6 1.887

7 2.020

8 2.126

9 2.215

10 2.290

11 2.355

12 2.412

13 2.462

14 2.507

15 2.549

16 2.585

17 2.620

18 2.651

19 2.681

20 2.709

25 2.822

30 2.908

35 2.979

40 3.036

50 3.128

100 3.383
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Table IV.10 Factors for Determining Upper and Lower 3� Limits for Mean (X ) and Range (R) Charts, and for

Estimating � from R

Factors for range chart

Sample size A: Factor DL for DU for � = R
d2

of subgroup, N for X chart lower limit upper limit d2

2 1.88 0 3.27 1.128

3 1.02 0 2.57 1.693

4 0.73 0 2.28 2.059

5 0.58 0 2.11 2.326

6 0.48 0 2.00 2.534

7 0.42 0.08 1.92 2.704

8 0.37 0.14 1.86 2.847

9 0.34 0.18 1.82 2.970

10 0.31 0.22 1.78 3.078

15 0.22 0.35 1.65 3.472

20 0.18 0.41 1.59 3.735

Example: If X = 100 and R (the average range) = 5, and N = 6, the upper and lower limits for the X chart are

X ± AR = 100 ± 0.48(5) = 100 ± 2.4 = (102.4, 97.6).

The upper limit for the range chart is DU R = 2.0(5) = 10. The lower limit for the range chart is DL R = 0(5) = 0. .

For samples of size 4, � = R

2.059
.

If R = 5,� = 5
2.059

= 2.43.
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Table IV.11 Number of Correct Guesses Needed for Significance

in the Triangle Testa

Correct guesses for significance

Panel size 5% Level 1% Level

6 5 6

7 5 6

8 6 7

9 6 7

10 7 8

11 7 8

12 8 9

13 8 9

14 9 10

15 9 10

16 9 11

17 10 11

18 10 12

19 11 12

20 11 13

21 12 13

22 12 14

23 12 14

24 13 15

aPick-up Table from 3rd ed.

Table IV.12 Number of Positive or Negative Signs Needed for

Significance for the Sign Test

Number of positive or negative
signs for significancea

Sample size 5% Level 1% Level

6 6 —

7 7 —

8 8 8

9 8 9

10 9 10

11 10 11

12 10 11

13 11 12

14 12 13

15 12 13

16 13 14

17 13 15

18 14 15

19 15 16

20 15 17

aThis is a two-sided test. Choose positive or negative signs, whichever is larger.



480 APPENDIX IV

Table IV.13 Values Leading to Significance for the Wilcoxon

Signed Rank Test (Two-Sided Test)

Sample size, N 5% Levela 1% Level

6 0 —

7 2 —

8 3 0

9 5 1

10 8 3

11 10 5

12 13 7

13 17 10

14 21 13

15 25 16

16 30 19

17 35 23

18 40 28

19 46 32

20 52 37

aIf the smaller rank sum is less than or equal to the table value, the comparative

groups are different at the indicated level of significance.

Table IV.14 Critical Values for Number of Runs at the 5% Level of Significance

Sample Two-sided test One-sided
size, N Lower numbera Upper number test Lower number

10 2 9 3

12 3 10 3

14 3 12 4

16 4 13 5

18 5 14 6

20 6 15 6

22 7 16 7

24 7 18 8

26 8 19 9

28 9 20 10

30 10 21 11

32 11 22 11

34 11 24 12

36 12 25 13

38 13 26 14

40 14 27 15

aIf the number of runs is less than or equal to the lower number or greater than or equal to the upper value, the sequence is

considered nonrandom at the 5% level of significance. The sample size (N) is the number of values above and below the median.

For odd-size samples where one value is the median, use the next smaller sample size for the critical values.

Table IV.15 Probability of Getting at Least One Run of Given Size

for N Samples

N 5% Level 1% Level

10 5 —

20 7 8

30 8 9

40 9 10

50 10 11
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Table IV.16 Critical Values for Wilcoxon Rank Sum Testa (� = 0.05)

Size of smaller sample (M)
Size of larger
sample M = 3 4 5 6 7 8 9

M 5,16 11,25 18,37 26,52 37,68 49,87 63,108

M + 1 6,18 12,28 19,41 28,56 39,73 51,93 66,114

M + 2 6,21 12,32 20,45 29,61 41,78 54,98 68,121

M + 3 7,23 13,35 21,49 31,65 43,83 56,104 71,127

M + 4 7,26 14,38 22,53 32,70 45,88 58,110 74,133

M + 5 8,28 15,41 24,56 34,74 46,94 61,115 77,139

M + 6 8,31 16,44 25,60 36,78 48,99 63,121 79,146

M + 7 9,33 17,47 26,64 37,83 50,104 65,127 82,152

M + 8 10,35 17,51 27,68 39,87 52,109 68,132 85,158

M + 9 10,38 18,54 29,71 41,91 54,114 70,138 88,164

M + 10 11,40 19,57 30,75 42,96 56,119 72,144 90,171

M + 15 13,53 24,72 36,94 50,118 66,144 84,172 104,202

M + 20 16,65 28,88 42,113 58,140 76,169 96,200 118,223

M + 25 18,78 32,104 48,132 66,162 86,194 108,228 132,264

aFrom Wilcoxon F, and Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY: Lederle Laboratories, 1964.

If rank sum of smaller sample is equal to or lower than smaller numbers in table or equal to or larger than larger number, groups

are significantly different at 0.05 level.

Table IV.17 Critical Difference for Significance (� = 0.05) Comparing All Possible

Pairs of Treatments for Nonparametric One-Way ANOVAa

Number of treatments
N (for each
treatment) 3 4 5 6 7

3 15 23 30 37 45

4 24 35 46 57 69

5 33 48 63 79 96

6 43 63 83 104 125

7 54 79 105 131 158

8 66 96 128 160 192

9 79 115 152 190 229

10 92 134 178 223 268

11 106 155 205 257 309

12 121 176 233 292 352

13 136 199 263 329 397

14 152 222 294 368 444

15 169 246 326 408 492

16 186 271 359 449 542

17 203 296 393 492 593

18 221 323 428 536 646

19 240 350 464 581 700

20 259 378 501 627 756

21 278 406 538 674 814

22 298 435 577 723 872

23 319 465 617 773 932

24 340 496 657 824 994

25 361 527 699 875 1056

aFrom Wilcoxon F, Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY:

Lederle Laboratories, 1964.
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Table IV.18 Critical Differences for Significance (� = 0.05) Comparing All Possible

Pairs of Treatments for Nonparametric Two-Way ANOVAa

Number of treatments
N (for each
treatment) 3 4 5 6 7

3 6 8 10 13 15

4 7 10 12 15 18

5 8 11 14 17 20

6 9 12 15 18 22

7 9 13 16 20 24

8 10 14 17 21 25

9 10 14 18 23 27

10 11 15 19 24 28

11 11 16 20 25 30

12 12 16 21 26 31

13 12 17 22 27 32

14 13 18 23 28 34

15 13 18 24 29 35

16 13 19 24 30 36

17 14 19 25 31 37

18 14 20 26 32 38

19 14 20 27 33 39

20 15 21 27 34 40

21 15 21 28 35 41

22 16 22 29 35 42

23 16 22 29 36 43

24 16 23 30 37 44

25 17 23 31 38 45

aFrom Wilcoxon F, Wilcox RA. Some Rapid Approximate Statistical Procedures. Pearl River, NY:

Lederle Laboratories, 1964.
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Table IV.19 Factors for Two-Sided Tolerance Limits for Normal Distributionsa

	 = 0.75 	 = 0.90
p p

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

2 4.498 6.301 7.414 9.531 11.920 11.407 15.978 18.800 24.167 30.227

3 2.501 3.538 4.187 5.431 6.844 4.132 5.847 6.919 8.974 11.309

4 2.035 2.892 3.431 4.471 5.657 2.932 4.166 4.943 6.440 8.149

5 1.825 2.599 3.088 4.033 5.117 2.454 3.494 4.152 5.423 6.879

6 1.704 2.429 2.889 3.779 4.802 2.196 3.131 3.723 4.870 6.188

7 1.624 2.318 2.757 3.611 4.593 2.034 2.902 3.452 4.521 5.750

8 1.568 2.238 2.663 3.491 4.444 1.921 2.743 3.264 4.278 5.446

9 1.525 2.178 2.593 3.400 4.330 1.839 2.626 3.125 4.098 5.220

10 1.492 2.131 2.537 3.328 4.241 1.775 2.535 3.018 3.959 5.046

11 1.465 2.093 2.493 3.271 4.169 1.724 2.463 2.933 3.849 4.906

12 1.443 2.062 2.456 3.223 4.110 1.683 2.404 2.863 3.758 4.792

13 1.425 2.036 2.424 3.183 4.059 1.648 2.355 2.805 3.682 4.697

14 1.409 2.013 2.398 3.148 4.016 1.619 2.314 2.756 3.618 4.615

15 1.395 1.994 2.375 3.118 3.979 1.594 2.278 2.713 3.562 4.545

16 1.383 1.977 2.355 3.092 3.946 1.572 2.246 2.676 3.514 4.484

17 1.372 1.962 2.337 3.069 3.917 1.552 2.219 2.643 3.471 4.430

18 1.363 1.948 2.321 3.048 3.891 1.535 2.194 2.614 3.433 4.382

19 1.355 1.936 2.307 3.030 3.867 1.520 2.172 2.588 3.399 4.339

20 1.347 1.925 2.294 3.013 3.846 1.506 2.152 2.564 3.368 4.300

21 1.340 1.915 2.282 2.998 3.827 1.493 2.135 2.543 3.340 4.264

22 1.334 1.906 2.271 2.984 3.809 1.482 2.118 2.524 3.315 4.232

23 1.328 1.898 2.261 2.971 3.793 1.471 2.103 2.506 3.292 4.203

24 1.322 1.891 2.252 2.959 3.778 1.462 2.089 2.489 3.270 4.176

25 1.317 1.883 2.244 2.948 3.764 1.453 2.077 2.474 3.251 4.151

26 1.313 1.877 2.236 2.938 3.751 1.444 2.065 2.460 3.232 4.127

27 1.309 1.871 2.229 2.929 3.740 1.437 2.054 2.447 3.215 4.106

30 1.297 1.855 2.210 2.904 3.708 1.417 2.025 2.413 3.170 4.049

35 1.283 1.834 2.185 2.871 3.667 1.390 1.988 2.368 3.112 3.974

40 1.271 1.818 2.166 2.846 3.635 1.370 1.959 2.334 3.066 3.917

45 1.262 1.805 2.150 2.826 3.609 1.354 1.935 2.306 3.030 3.871

50 1.255 1.794 2.138 2.809 3.588 1.340 1.916 2.284 3.001 3.833

55 1.249 1.785 2.127 2.795 3.571 1.329 1.901 2.265 2.976 3.801

60 1.243 1.778 2.118 2.784 3.556 1.320 1.887 2.248 2.955 3.774

65 1.239 1.771 2.110 2.773 3.543 1.312 1.875 2.235 2.937 3.751

70 1.235 1.765 2.104 2.764 3.531 1.304 1.865 2.222 2.920 3.730

75 1.231 1.760 2.098 2.757 3.521 1.298 1.856 2.211 2.906 3.712

80 1.228 1.756 2.092 2.749 3.512 1.292 1.848 2.202 2.894 3.696

85 1.225 1.752 2.087 2.743 3.504 1.287 1.841 2.193 2.882 3.682

90 1.223 1.748 2.083 2.737 3.497 1.283 1.834 2.185 2.872 3.669

95 1.220 1.745 2.079 2.732 3.490 1.278 1.828 2.178 2.863 3.657

100 1.218 1.742 2.075 2.727 3.484 1.275 1.822 2.172 2.854 3.646

110 1.214 1.736 2.069 2.719 3.473 1.268 1.813 2.160 2.839 3.626

120 1.211 1.732 2.063 2.712 3.464 1.262 1.804 2.150 2.826 3.610

130 1.208 1.728 2.059 2.705 3.456 1.257 1.797 2.141 2.814 3.595

140 1.206 1.724 2.054 2.700 3.449 1.252 1.791 2.134 2.804 3.582

150 1.204 1.721 2.051 2.695 3.443 1.248 1.785 2.127 2.795 3.571

160 1.202 1.718 2.047 2.691 3.437 1.245 1.780 2.121 2.787 3.561

170 1.200 1.716 2.044 2.687 3.432 1.242 1.775 2.116 2.780 3.552

180 1.198 1.713 2.042 2.683 3.427 1.239 1.771 2.111 2.774 3.543

190 1.197 1.711 2.039 2.680 3.423 1.236 1.767 2.106 2.768 3.536

200 1.195 1.709 2.037 2.677 3.419 1.234 1.764 2.102 2.762 3.529

250 1.190 1.702 2.028 2.665 3.404 1.224 1.750 2.085 2.740 3.501

300 1.186 1.696 2.021 2.656 3.393 1.217 1.740 2.073 2.725 3.481

400 1.181 1.688 2.012 2.644 3.378 1.207 1.726 2.057 2.703 3.453

500 1.177 1.683 2.006 2.636 3.368 1.201 1.717 2.046 2.689 3.434

600 1.175 1.680 2.002 2.631 3.360 1.196 1.710 2.038 2.678 3.421

700 1.173 1.677 1.998 2.626 3.355 1.192 1.705 2.032 2.670 3.411

800 1.171 1.675 1.996 2.623 3.350 1.189 1.701 2.027 2.663 3.402

900 1.170 1.673 1.993 2.620 3.347 1.187 1.697 2.023 2.658 3.396

1000 1.169 1.671 1.992 2.617 3.344 1.185 1.695 2.019 2.654 3.390

(Continued)
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Table IV.19 (Continued)

	 = 0.95 	 = 0.99
p p

n 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999

∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

2 22.858 32.019 37.647 48.430 60.573 114.363 160.193 188.491 242.300 303.054

3 5.922 8.380 9.916 12.861 16.208 13.378 18.930 22.401 29.055 36.616

4 3.779 5.369 6.370 8.299 10.502 6.614 9.398 11.150 14.527 18.383

5 3.002 4.275 5.079 6.634 8.415 4.643 6.612 7.855 10.260 13.015

6 2.604 3.712 4.414 5.775 7.337 3.743 5.337 6.345 8.301 10.548

7 2.361 3.369 4.007 5.248 6.676 3.233 4.613 5.488 7.187 9.142

8 2.197 3.136 3.732 4.891 6.226 2.905 4.147 4.936 6.468 8.234

9 2.078 2.967 3.532 4.631 5.899 2.677 3.822 4.550 5.966 7.600

10 1.987 2.839 3.379 4.433 5.649 2.508 3.582 4.265 5.594 7.129

11 1.916 2.737 3.259 4.277 5.452 2.378 3.397 4.045 5.308 6.766

12 1.858 2.655 3.162 4.150 5.291 2.274 3.250 3.870 5.079 6.477

13 1.810 2.587 3.081 4.044 5.158 2.190 3.130 3.727 4.893 6.240

14 1.770 2.529 3.012 3.955 5.045 2.120 3.029 3.608 4.737 6.043

15 1.735 2.480 2.954 3.878 4.949 2.060 2.945 3.507 4.605 5.876

16 1.705 2.437 2.903 3.812 4.865 2.009 2.872 3.421 4.492 5.732

17 1.679 2.400 2.858 3.754 4.791 1.965 2.808 3.345 4.393 5.607

18 1.655 2.366 2.819 3.702 4.725 1.926 2.753 3.279 4.307 5.497

19 1.635 2.337 2.784 3.656 4.667 1.891 2.703 3.221 4.230 5.399

20 1.616 2.310 2.752 3.615 4.614 1.860 2.659 3.168 4.161 5.312

21 1.599 2.286 2.723 3.577 4.567 1.833 2.620 3.121 4.100 5.234

22 1.584 2.264 2.697 3.543 4.523 1.808 2.584 3.078 4.044 5.163

23 1.570 2.244 2.673 3.512 4.484 1.785 2.551 3.040 3.993 5.098

24 1.557 2.225 2.651 3.483 4.447 1.764 2.522 3.004 3.947 5.039

25 1.545 2.208 2.631 3.457 4.413 1.745 2.494 2.972 3.904 4.985

26 1.534 2.193 2.612 3.432 4.382 1.727 2.469 2.941 3.865 4.935

27 1.523 2.178 2.595 3.409 4.353 1.711 2.446 2.914 3.828 4.888

30 1.497 2.140 2.549 3.350 4.278 1.668 2.385 2.841 3.733 4.768

35 1.462 2.090 2.490 3.272 4.179 1.613 2.306 2.748 3.611 4.611

40 1.435 2.052 2.445 3.213 4.104 1.571 2.247 2.677 3.518 3.493

45 1.414 2.021 2.408 3.165 4.042 1.539 2.200 2.621 3.444 3.399

50 1.396 1.996 2.379 3.126 3.993 1.512 2.162 2.576 3.385 4.323

55 1.382 1.976 2.354 3.094 3.951 1.490 2.130 2.538 3.335 4.260

60 1.369 1.958 2.333 3.066 3.916 1.471 2.103 2.506 3.293 4.206

65 1.359 1.943 2.315 3.042 3.886 1.455 2.080 2.478 3.257 4.160

70 1.349 1.929 2.299 3.021 3.859 1.440 2.060 2.454 3.225 4.120

75 1.341 1.917 2.285 3.002 3.835 1.428 2.042 2.433 3.197 4.084

80 1.334 1.907 2.272 2.986 3.814 1.417 2.026 2.414 3.173 4.053

85 1.327 1.897 2.261 2.971 3.795 1.407 2.012 2.397 3.150 4.024

90 1.321 1.889 2.251 2.958 3.778 1.398 1.999 2.382 3.130 3.999

95 1.315 1.881 2.241 2.945 3.763 1.390 1.987 2.368 3.112 3.976

100 1.311 1.874 2.233 2.934 3.748 1.383 1.977 2.355 3.096 3.954

110 1.302 1.861 2.218 2.915 3.723 1.369 1.958 2.333 3.066 3.917

120 1.294 1.850 2.205 2.898 3.702 1.358 1.942 2.314 3.041 3.885

130 1.288 1.941 2.194 2.883 3.683 1.349 1.928 2.298 3.019 3.857

140 1.282 1.833 2.184 2.870 3.666 1.340 1.916 2.283 3.000 3.833

150 1.277 1.825 2.175 2.859 3.652 1.332 1.905 2.270 2.983 3.811

160 1.272 1.819 2.167 2.848 3.638 1.326 1.896 2.259 2.968 3.792

170 1.268 1.813 2.160 2.839 3.527 1.320 1.887 2.248 2.955 3.774

180 1.264 1.808 2.154 2.831 3.616 1.314 1.879 2.239 2.942 3.759

190 1.261 1.803 2.148 2.823 3.606 1.309 1.872 2.230 2.931 3.744

200 1.258 1.798 2.143 2.816 3.597 1.304 1.865 2.222 2.921 3.731

250 1.245 1.780 2.121 2.788 3.561 1.286 1.839 2.191 2.880 3.678

300 1.236 1.767 2.106 2.767 3.535 1.273 1.820 2.169 2.850 3.641

400 1.223 1.749 2.084 2.739 3.499 1.255 1.794 2.138 2.809 3.589

500 1.215 1.737 2.070 2.721 3.475 1.243 1.777 2.117 2.783 3.555

600 1.209 1.729 2.060 2.707 3.458 1.234 1.764 2.102 2.763 3.530

700 1.204 1.722 2.052 2.697 3.445 1.227 1.755 2.091 2.748 3.511

800 1.201 1.717 2.046 2.688 3.434 1.222 1.747 2.082 2.736 3.495

900 1.198 1.712 2.040 2.682 3.426 1.218 1.741 2.075 2.726 3.483

1000 1.195 1.709 2.036 2.676 3.418 1.214 1.736 2.068 2.718 3.472

∞ 1.150 1.645 1.960 2.576 3.291 1.150 1.645 1.960 2.576 3.291

aFactors t ′ such that the probability is � that at least a proportion P of the distribution will be included between X ± t ′s where X

and s are estimates of the mean and the standard deviation computed from a sample size of n.
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Table IV.20 Test for Outliers (Upper Band for Critical Values for Studentized Residual)

(� = .10)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.87

6 2.00 1.89

7 2.10 2.02 1.90

8 2.18 2.12 2.03 1.91

9 2.24 2.20 2.13 2.05 1.92

10 2.30 2.26 2.21 2.15 2.06 1.92

12 2.39 2.37 2.33 2.29 2.24 2.17 1.93

14 2.47 2.45 2.42 2.39 2.36 2.32 2.19 1.94

16 2.53 2.51 2.50 2.47 2.45 2.42 2.34 2.20

18 2.58 2.57 2.56 2.54 2.52 2.50 2.44 2.35

20 2.63 2.62 2.61 2.59 2.58 2.56 2.52 2.46 2.11

25 2.72 2.72 2.71 2.70 2.69 2.68 2.66 2.63 2.50

30 2.80 2.79 2.79 2.78 2.77 2.77 2.75 2.73 2.66 2.13

35 2.86 2.85 2.85 2.85 2.84 2.84 2.82 2.81 2.77 2.55

40 2.91 2.91 2.90 2.90 2.90 2.89 2.88 2.87 2.84 2.72

45 2.95 2.95 2.95 2.95 2.94 2.94 2.93 2.93 2.90 2.82

50 2.99 2.99 2.99 2.99 2.98 2.98 2.97 2.95 2.89

60 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.04 3.03 3.00

70 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.10 3.09 3.07

80 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.12

90 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.19 3.18 3.17

100 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.21

(� = .05)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.92

6 2.07 1.93

7 2.19 2.08 1.94

8 2.28 2.20 2.10 1.94

9 2.35 2.29 2.21 2.10 1.95

10 2.42 2.37 2.31 2.22 2.11 1.95

12 2.52 2.49 2.45 2.39 2.33 2.24 1.96

14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.96

16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26

18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44

20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15

25 2.89 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60

30 2.96 2.96 2.95 2.94 2.93 2.93 2.90 2.88 2.79 2.17

35 3.03 3.02 3.02 3.01 3.00 3.00 2.98 2.97 2.91 2.64

40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84

45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.09 3.06 2.96

(� = .05)

q

n 1 2 3 4 5 6 8 10 15 25

50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04

60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15

70 3.29 3.29 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23

80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.29

90 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34

100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.39 3.38

(Continued)
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Table IV.20 (Continued)

(� = .01)

q

n 1 2 3 4 5 6 8 10 15 25

5 1.98

6 2.17 1.98

7 2.32 2.17 1.98

8 2.44 2.32 2.18 1.98

9 2.54 2.44 2.33 2.18 1.99

10 2.62 2.55 2.45 2.33 2.18 1.99

12 2.76 2.70 2.64 2.56 2.46 2.34 1.99

14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.99

16 2.95 2.92 2.88 2.84 2.79 2.73 2.58 2.35

18 3.02 3.00 2.97 2.94 2.90 2.85 2.75 2.59

20 3.08 3.06 3.04 3.01 2.98 2.95 2.87 2.76 2.20

25 3.21 3.19 3.18 3.16 3.14 3.12 3.07 3.01 2.78

30 3.30 3.29 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21

35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.28 3.19 2.81

40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.05

45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23

50 3.52 3.52 3.51 3.51 3.51 3.50 3.49 3.48 3.45 3.34

60 3.60 3.59 3.59 3.59 3.58 3.58 3.57 3.56 3.54 3.48

70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3.57

80 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.68 3.67 3.64

90 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70

100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

n = number of observations

q = number of independent variables (including count for intercept if fitted)

Source: Lund, Technometrics 17(4), Nov. 1975.
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Outlier Tests and Chemical Assays

V.1 INTRODUCTION
In a recent landmark decision resulting from a trial involving the Federal Government and
Barr Laboratories, Judge Wolin made many judgments based on his constant probing and the
testimony of expert witnesses [1]. Remarkably, most of what he had to say was clear, correct, and
to the point, despite his sparse background in the subject material. Much of the Decision related
to testing drug products during their production when failing results (out of specification) were
observed. A summary of the Decision is available from the FDA [2]. A previous paper by this
author [3] presented some alternatives to retesting when a single out of specification result was
observed for which no obvious cause was apparent, a situation that is common in my experience.
This paper discusses some issues related to the elimination of an out of specification (OOS) result
with no obvious cause, based on an outlier test. The Judge, in his Decision, stated that tests for
outliers that can be used to exclude an aberrant observation are not appropriate for chemical
tests. His reasoning was that the USP includes tests for outliers, but presents these tests only in
the context of biological assays, which tend to be very variable. This, he suggests, is appropriate
because of the large variability of these kinds of procedures. Judge Wolin further suggests in
his Decision that such outlier analyses should not be used for chemical assays, because if they
were appropriate, the USP would have recommended the procedure for chemical assays. Thus,
the judgment is that, by default, outlier tests for chemical assays should not be used. All of
this raises several questions, including (a) Was it the USP’s intention to exclude outlier tests for
chemical assays? (b) Was this an oversight or was it intentional? (c) Does the USP not discuss
outlier tests for chemical assays because the issue is complex with many possible alternatives?

I do not believe that it was Judge Wolin’s intention that his Decision should result in
nonscientifically based procedures by pharmaceutical firms. I also believe that he would be
disturbed if his Decision and FDA’s interpretation of his Decision would lead to increased costs
because good judgment was cast aside in lieu of fear of a “483 citation.” For example, one
firm discarded a batch of product because a single content uniformity value failed, despite the
fact that 100 individual repeat assays all yielded results between 85% and 115%. Another firm
assayed the blend for a capsule product more than 50 times using single dose unit samples
during a validation study (because the recommended 3 dosage units were not feasible), with
one value being at 119%. All other values were between 90% and 110%. For fear of a “483,”
the company was reluctant to release the batch. They would have been equally fearful, had the
OOS value been 111%, because they interpreted the Decision to impose limits of 90% to 110%
for 3 dosage unit weight assays at the blend stage. The final product passed with all content
uniformity values between 90% and 110% and an RSD of 2%. Would this firm have been better
off performing an absolute minimum number of assays to validate the batch in order to decrease
the probability of a failing assay, or to proceed as they did to ensure a thorough validation with
increased risk of failure? Once more, I cannot believe that it was Judge Wolin’s intention to
impose such irrational hardships on the industry. Thus, part of the incentive for this paper (and
one previously published. Ref. [2]) is to propose some rational alternatives in the spirit of the
Judge’s Decision.

V.2 CAN OUTLIER TESTS BE JUSTIFIED?
In fact, the outlier problem remains perplexing, whether applied to questions of fundamental
science or problems of more direct practical application. Stories abound in the history of sci-
ence about how a single outlier, discarded, was eventually found to have contained important
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information. Similarly, anecdotes exist about outliers not discarded obscuring the truth. Thus,
scientists understand that there is no one answer to the problem, and that there are risks associ-
ated with making decisions about how to handle outlying observations. Although the question
of how to deal with apparent outliers resulting from chemical assays cannot be resolved easily,
the use of outlier tests is ubiquitous in both practical laboratory SOPs as well as the chemical
and statistical literature. Pages could be filled with references on this subject, including many
from scientists associated with the National Bureau of Standards, for example, the prominent
statisticians, Drs. Youden [4] and Mandell [5]. Dr. Youden [4] commented that the experimenter
is better equipped to detect outliers than the statistician when a small number of values (e.g., 3)
are observed. In fact, with only 3 observations, a value must appear to be extremely divergent
before it could be considered an outlier. Thus, he suggests that the experienced experimenter
probably would be less conservative than the statistician in finding an observation suspect (the
statistical test may be considered conservative in the decision to reject an outlier). Natrella [6]
discusses this problem, noting that “There have been many criteria proposed for guiding the
rejection of observations.” She also states that “no available criteria are superior to the judg-
ment of an experienced investigator . . . ." She gives several statistical procedures for identifying
outliers.

It is obvious that there is both theoretical and practical interest in this problem. Again,
scientific judgment appears dominant in approaching such problems. Judgment can be defined
to be a result of education, knowledge, experience, and common sense. All of these must
come into play, and we can be 100% sure that there will never be unanimous agreement on
controversial issues. However, because many statistical and chemical treatises discuss the outlier
problem, I do not believe that its use can be dismissed out of hand, only because the USP lacks a
specific recommendation. Other often used references and documents (OAOC, etc.), including
some that are government sponsored, recommend use of outlier tests, when appropriate, for
all kinds of data, in particular chemical assays. Virtually every well meaning, knowledgeable
scientist would probably entertain the possibility of excluding an outlying value from a set of
experimental data. One could give an example of a single assay showing zero drug content,
an extreme case, in which it would be absurd not to follow-up with further testing, even if
no cause for the “erroneous” result could be found. Similarly, if 3 assays were performed on a
relatively homogeneous blend such as a 20 tablet composite, with results of 99, 101, and 0, the
null assay would have to be considered suspect. Of course, most situations that might provoke
use of an outlier test are less extreme, and probably would need the application of judgment.
Certainly, excessive use of outlier tests would suggest some persistant problem that needs to
be resolved, unrelated to the assay. Perhaps, there exists a compromise that could satisfy both
the conservative (never apply an outlier test) and more liberal (always apply an outlier test and
discard the outlying value if present) critic?

V.3 WHY IS THERE NOT A USP TEST FOR OUTLIERS FOR CHEMICAL ASSAYS?
The answer as to why outlier tests are not specifically recommended for chemical assays in the
USP is not entirely clear, but I can conjure up a possible scenario. Because of the variability
of biological assays, to obtain a more precise estimate of drug content, replicate assays are
frequently employed. This is a good scientific approach. The average of replicate assays always
gives a better estimate of the true average drug content than a single assay. For very variable
assays, a single result may fail because of the large assay variability, not related to the true drug
content. For chemical assays, the assay variability is usually relatively small, and a single assay
may give a good estimate of the true drug content of the batch. On the other hand, chemical
assays with large variability should use replicate assays, with the average result representing
the true drug content. Thus, the USP may not want to commit to any specific assay scheduling.

The USP does not comment on the number of assays to be performed, and, in particular,
does not suggest multiple assays on a single “homogeneous” portion of material, such as
a composite mixture or solution. The number of assays to be performed would appear to
be a matter of judgment, each laboratory using its own criteria. This seems reasonable and
appropriate. Clearly, in any event, if a single assay or duplicate assays (with no previous
estimate of the standard deviation) are performed, outlier tests cannot be applied. At least three
assays are needed for an independent application of an outlier test. Thus, the USP cannot apply
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outlier tests to chemical assays unless at least three assays are performed. In my experience,
only one or two assays are routinely performed for the chemical analysis of composite material.
Therefore, for the USP to have an outlier test for chemical assays, at least three assays must be
performed. As previously noted, the USP makes no such recommendation. In fact, if a firm is
considering multiple assays on a composite, for example, and no provision is made for an outlier
test, a decision to perform a single assay would probably cause the least problems, and would
be the most prudent from an economic point of view. The more assays that are performed on
good material, the greater the chance that at least one of the assays will fail. Yet, from a scientific
viewpoint, performing multiple assays and using the average result as a measure of the batch
parameter is clearly superior to a single assay. This important point is discussed in more detail
later and is also exemplified by the multiple assays performed in a validation batch noted earlier.

V.4 SOME COMMENTS ON THE NATURE OF OUTLIERS AND OUTLIER TESTS, AND
OTHER INCONSISTENCIES IN THE DECISION THAT OUTLIER TESTS BE USED
FOR BIOLOGICAL ASSAYS BUT NOT FOR CHEMICAL ASSAYS

When performing multiple assays on a single source of material, such as a relatively homo-
geneous mix or a solution, there is a reasonable probability that one of the replicates may be
deviant due to chance or due to an outright error. Whether or not a cause for the deviant assay
is documented, the USP suggests (for biological assays) the value may be excluded if an outlier
test confirms that the observation is deviant at the 4% level (the chance that the value will
be incorrectly excluded is less than 1 in 25). The USP makes it clear that outlier tests should
be used sparingly, when unavoidable. Certainly, the situation that is “unavoidable” is open to
interpretation or judgment. It would appear to me that one situation that might fit the USP’s
definition is where inclusion of the outlier would cause the batch to fail and no cause can be
found for the outlying value following a suitable investigation. Since such general statements
need some interpretation, one would want to know the relevant batch history as well as other
measures of the batch performance as part of the justification for performing an outlier test and
discarding the outlying result. According to my experience, exclusion of biological assay results
based on the outlier test is rarely questioned. This situation should be considered carefully in
light of the potential 100% exclusion of outlier tests for chemical assays under all circumstances.

What is the nature of an outlier test? Very important in any such test is an assumption
about the underlying distribution of the population data, the distribution of analytical results
that might arise from the analysis of a sample, in our context. If we consider the assay results
to have an approximate normal distribution, then the outlier test recommended in the USP is
appropriate. We probably would be not too far wrong using this assumption for the analytical
results derived from a single homogeneous sample. The outlier test recommended in the USP
compares the ranges of values in order to assess if the extreme value is far enough removed
to be considered discordant relative to the rest of the data. The assumption is that the data are
normally distributed and if the probability that the extreme value comes from the distribution
is less than 1 in 25, then the value may be considered discordant. It is extremely important
to understand that this test is not dependent on the absolute variability of data, but rather on
the distance of the suspected outlier from the rest of the data relative to the dispersion of the
remaining data. Thus, this test will reject an outlier with the same probability no matter what
the variance of the data. The following example may clarify this concept. In a microbiological
assay, the following three values were obtained for potency based on three replicate assays: 52.3,
99.9, 101.9. The USP outlier test would be just satisfied, that is, we could exclude the outlier, 52.3.
Note that for 3 assays, the outlier must be very far (and obviously) removed from the other two
values in order to be discarded. In a chemical assay, the following three values were observed,
86.14, 97.64, 97.87. Again, the value of 86.14 is found to be an outlier. The higher precision of
the chemical assay as suggested by the two values close together allows a less distant outlier to
be detected. Note that if two of three assays are identical (which may occur if rounding results
in identical assays), the third result will always be an outlier. The important point to remember
is that the probability of incorrectly eliminating the outlier is less than 1 in 25 for both of these
examples. Thus, the risk of incorrectly eliminating an outlier is not dependent on the underlying
variability of the normal distribution associated with the assay data.
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As suggested previously, if a testing recommendation is not scientifically sound, less valid
testing situations will be used to satisfy the recommendations in lieu of more valid approaches.
The exclusion of outlier testing for chemical assays may promote less good testing procedures,
in my opinion.

V.5 WHAT IS THE PURPOSE OF PERFORMING REPLICATE ASSAYS AND WHEN IS
AVERAGING APPROPRIATE?

Although the Barr Decision suggests that averaging is not correct in some circumstances, aver-
aging is appropriate in the situation where multiple assays are used to obtain a better estimate
of the true parameter (which is the case for biological assays as well as chemical assays). The
reason for performing multiple assays is not to detect nonuniformity, but rather to obtain a
better estimate of a parameter, the true drug content. The more assays performed the better the
estimate based on the average. This would apply to any assay, but would be more important
for variable assays. For chemical assays that are usually (but not always) more precise than
biological assays, a single assay may be sufficient to get a good estimate of the drug content. An
important consideration is that the average result is what is needed in this circumstance. Still,
as noted above, a single assay among the replicates that is found to be OOS may suggest further
testing, depending on circumstances (e.g., as noted in the Decision, assays of 91, 91, and 89). It
would appear perfectly reasonable to me that if replicate chemical assays (3 or more) are to be
performed on a sample (a priori as specified in an SOP), that the same considerations be given
to outliers in this situation as is given to biological assays. (Due to its far-ranging implications,
perhaps the USP can look further into this very important question.)

The more difficult question to answer is how to apply outlier tests when retesting or
resampling is considered to be appropriate. This has been addressed briefly in a previous
publication [3], but I will pursue this further here.

V.6 IN WHAT SITUATIONS MIGHT OUTLIER TESTS BE APPLICABLE?

V.6.1 Homogeneous Sample (Solution or Composite Powder)
When performing replicate assays on the same portion of material, the average result is typically
used as representing the batch parameter. However, although not specifically recommended in
official documents, if one of the replicate values is outside of official specifications (whether an
outlier or not), a prudent manufacturer may decide to perform further analyses [3]. In particular,
in my opinion, if replicate assays (at least 3) are performed based on SOPs, an outlier test is
appropriate. Another application of outlier analysis may occur when a single assay fails and no
cause is found. In this case, I recommend further sampling as discussed in the previous paper
[3]. If the further assays indicate that the original result is an outlier, then it may be discarded
in the calculation of the average. The calculation of the number of samples to be reassayed
is also discussed in Ref. [2]. For example, consider the following hypothetical scenario. The
original assay is 75% from a composite that should have a mean of 100%. Three new samples
are assayed from the same composite with results of 98%, 99% and 100%. The lower limit for
passing is 93%. Would you accept or reject this test? (The value of 75% tests as an outlier). If the
original OOS result does not meet the outlier criterion, then scientific judgment is needed. If the
average passes including the outlier, a prudent manufacturer will examine other batch records
and batch history to aid in a decision. For example, with no evidence of batch failure, a passing
average in this example may be considered to represent the batch. The same considerations may
apply if the average does not pass when the original result is included. If the original result
was 75% and three reassays were 93%, 96% and 105%, the 75% value would not be a significant
outlier. Considerable judgment would be required here. Should the batch be rejected based only
on this evidence? Is further testing appropriate? According to the Court, a product should not
be tested into compliance, certainly a reasonable and prudent decision. On the other hand, the
hypothetical situation presented here begs for further testing, in my opinion. I would hesitate
to make any specific recommendations for this case, but further information about the product
would be needed to come to any decision. Again, to establish inflexible rules for every situation
does not seem to be a good substitute for scientific judgment. That is not to say that reasonable
guidelines are not needed and are not important. For a further discussion, see Ref. [3].
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V.6.2 Outlier Tests for Destructive Testing
A particularly difficult situation for the application of outlier tests is testing where the sam-
ple, once analyzed, is no longer available. This situation is most prevalent in the context of
Quality Control testing of content uniformity and dissolution results. Similar situations may
arise in stability testing. Another controversial area in which this problem has been extensively
discussed is in bioequivalence testing, where the outlying subject is either not available or has
changed since the original observation. Another situation that may be included here is when
a large sample of homogeneous material presented for analysis continues to fail after multiple
testing, and the possibility exists (but undocumented) that the sample does not truly represent
the batch, perhaps due to mishandling or an error in preparation. In these cases, further testing
may be indicated, and this has been discussed in Ref. [3]. Because we cannot retest the original
material, we can never be certain whether the original analysis is correct. In particular, if the
result is a failure, we will never know the truth unless an obvious cause is discovered. This
would be the case in content uniformity (CU) testing where a single value outside the range of
75% to 125% is observed. This single value would almost certainly be tested as an outlier. If not,
the batch would be suspect. Before discussing this situation, we might try to gain some insight
into the nature of the CU test. The CU test does not say that OOS values do not exist in the batch.
For example, if 0.1% (1/1000) of the tablets in a batch were outside 75% to 125%, assuming a
normal distribution, about 94% of the tablets would be between 85% and 115% and about 6%
between 75% to 85% and 115% to 125%. The chances of finding one of these OOS tablets in a
random sample of 10 is about 1 in a 100, a very small probability. Yet, 1 in every 1000 tablets
is OOS. The probability that the CU test would pass based on the first 10 tablets is >0.88. The
probability that the CU test would pass based on the second tier testing is >0.94. Therefore, the
CU test is not very discriminating in finding OOS tablets. We would have to have at least 1%
of the tablets OOS (less than 75% or greater than 125%) before the CU test would have a good
chance (about 50–50) of failing. Thus, the CU test can be considered as a screening test, but
relatively nondiscriminating in finding tablets OOS if there are less than 1% in the batch. If we
observe a tablet outside 75% to 125%, which tests as an outlier with no obvious cause, should
the batch be rejected? There is no way of knowing with certainty whether the value is real or due
to some malfunction during the assay, or if real was only a chance observation of an event that
has very small probability. I propose that in such situations, following a failure investigation,
if appropriate, that a sufficient number of tablets be assayed to give high assurance that the
proportion of OOS tablets in the batch is small. Remembering that we cannot ever know with
certainty that such tablets do not exist in the batch and that the CU test does not discriminate
against a small percentage of such tablets, this seems a prudent approach. This problem has
also been addressed in the previous publication where in most cases (small RSD and average
potency near 100%) with a sufficient number of passing reassays, we can have high confidence
that more than 99.9% of the tablets are within 85% to 115% [3]. It would seem to me that such
a probability statement is stronger and carries more information than the usual USP test with
regard to tablet uniformity. As suggested in the decision [1], resampling should be conducted
using the original sample if possible. Thus, in the case of CU testing or a composite sample
(which continually fails), the new samples should be taken from the larger sample of product
submitted for analysis by Quality Control Personnel. For example, if the CU test is conducted
on tablets taken from a bottle of 1000 tablets submitted by QC, the resampling should be from
the remaining tablets.

The approach to demonstrating the validity of data presented here is only one way of
coping with a difficult problem. However, any method that is backed by scientific reasoning
and common sense should certainly be an improvement over arbitrary approaches. In a sense,
the application of this kind of reasoning to such methods may be compared to the application
of probability and statistical reasoning substantiating or defining findings in criminal court
decisions.
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Should a Single Unexplained Failing Assay be
Reason to Reject a Batch?

The problem of what to do with data that appear to be erroneous, but for which no cause is
apparent, has puzzled scientists for as long as data have been collected and evaluated. These
data can be characterized as outliers, not appearing to be of the same kind as other data collected
under the same circumstances. One might suppose that situations exist where such outliers can
be considered absurd, for example, nobody with any knowledge of the process could conceive
that such a value could exist. For example, if an automatic device for weighing individual
tablets would record a zero, we would be “certain” that the result was not due to a weightless
tablet, but rather due to some malfunction of the process. However, in the great majority of
cases, the cause for an outlying result cannot be ascertained. In the case of scientific experiments
for research purposes, the outlier appears among other experimental results, and the scientist
can freely hypothesize reasons and explanations for its presence. Thus, the scientist can make
a case for exclusion or inclusion of the outlier, and discuss reasons, implications, etc., with
impunity. The future will demonstrate the correctness of his evaluation and judgment; “Time
will tell.” In a regulatory environment, time is of the essence. We cannot wait for time to prove
a hypothesis about an outlying observation, correct or not. Usually, a decision must be made
quickly. Although there is no absolute right or wrong way to proceed, “judgment” seems to be a
key word. Under a given set of circumstances, what is to be done with the “outlier” is not easy to
answer. These problems were at the heart of a recent litigation involving the Federal Government
(FDA) and a generic company (Barr Labs, Inc.) [1] that involved testing of solid dosage forms or
products for reconstitution. Much of the government’s case against Barr related to the passing
of batches in which a single failing or outlying assay was observed. The government suggested
that if a single assay was not within specifications, in the face of all other tests performed on
the batch, the product should be rejected. This “outlying” result or test failure could occur as
a result of in-process testing or final product testing, either situation resulting in the rejection
of the batch. This was the point of much of the trial proceedings, with a willing judge looking
for the truth. In fact, there is no truth. What is to be done is a matter of judgment and common
sense, grounded in experience, knowledge, and scientific know-how. Nevertheless, it is certainly
possible that two knowledgeable and intelligent experts might disagree on what to do in any
given situation. Good judgment does not necessarily lead to a single universal truth. Thus, the
procedures recommended in this paper represent my judgment and experience.

In my opinion, a single outlying or failing result among many test results accumulated
during the manufacture of a batch of product does not necessarily mean that the batch is
unacceptable. In fact, I would think quite the contrary, that if all measures of batch quality other
than the “outlier” suggests that the batch is acceptable, indeed the batch probably represents
an acceptable product. In any event, the decision as how to proceed should consider other
measurements observed during production as well as the product history. If a product has a
history of problems, then failing results must be taken very seriously, and the onus of quality
falls heavily on the product. On the other hand, if the product has a history of good quality, the
outlier may not be due to the product, but rather due to a human or equipment malfunction.
Thus, the data should be taken in context. Data available for the batch under consideration
and past batches consist of, for example, raw material and blend assays during production,
dissolution, content uniformity, final product assay, weight variation, hardness, thickness, and
friability. Nevertheless, judgment is difficult to document, and who is to say what person has
the qualities to make the correct decision. We can only hope to make a decision that is sensible
under the circumstances, knowing that all circumstances differ.



494 APPENDIX VI

As stated in the “Opinion” [2], “The goal is to distinguish between an anomaly and a
reason to reject the batch.” If a single assay fails, and all other evidence indicates “quality,” the
manufacturer has the responsibility to demonstrate that the failing result does not represent the
product. If the data were observed in a scientific experiment, the researcher could hypothesize
reasons for accepting the bulk of the evidence, with possible justifications for the aberrant result,
as noted previously. No harm is done. In a manufacturing environment where GMPs dictate
procedures, explanations, no matter how rational or scientifically rigorous, are useless, if a
judgment is made by an FDA inspector that the result impugns the quality of the product. There
is no unanimity concerning the procedure of evaluating an outlier. This small paper discusses
approaches in a few commonly encountered situations in the presence of a failing result or
outlier. The discussion presupposes that a cause for the aberrant data is not apparent. Clearly,
if a cause can be identified, for example, analyst mistake, instrument malfunction, or sample preparation
error, then a reassay on the same or a new sample (as appropriate) according to the original procedure,
would be a reasonable procedure to follow.

VI.1 CASE 1
The original material from which the failing result or outlier was observed is still available
and is (relatively) homogeneous. For example, this would occur in the case of an assay of a
blend composite or the assay of a composite of 20 tablets for the final product assay. We assume
relatively good homogeneity. The same situation would apply for the assay of a solution when
some sample is still available after the assay.

VI.2 CASE 1A
A single assay is reported and fails, for example, outside the 90% to 110% release limits. No
cause can be determined. How many reassays are necessary to discredit (or verify) the original
assay and ensure the integrity of the batch? The Court’s “Opinion” [2] suggests that 7 of 8
passing results may possibly suffice. The recommendation is subjective, although not altogether
unreasonable. The number of samples to be retested may be quantified in an objective way, but
the final decision still requires “judgment.” Although the following analysis could apply to any
of the situations described above, I will use the example of a final composite assay for tablets
(a homogeneous mix of 20 tablets) to illustrate one possible approach. Thus, when failing or
aberrant data with no obvious cause are observed, a reasonable sample size for reassay could
be calculated as follows:

Estimate the true batch average and RSD from other data compiled during the batch
testing, in particular content uniformity (CU). (We assume that CU data have passed. If not, a
failure investigation is warranted.) Assay a sufficient number of new samples so that the 99%
confidence interval for the average result, calculated from the available assays on the composite
sample, is within specifications. In order to make the calculation for the number of samples to
be reassayed, we need to estimate both assay and tablet variability. We can either assume that
assay variability is considerably larger than tablet variability (use the RSD from CU); or estimate
assay and tablet content variability separately from other available data (previous lots, assay
data, etc.) in order to make a more realistic estimate. Bolton has discussed how this may be
done in a previous publication [3]. For simplicity, estimate the average tablet content and RSD
from the CU data. Note that the RSD estimated from the CU data will be an overestimate of the
RSD for the composite (S2[CU] = S2[assay] + S2[tablet uniformity]; S2[composite] = S2[assay]
+ S2[tablet uniformity/20]), so that the sample size for the reassay will be overestimated, a
maximum estimate. (We assume that assay variance is large compared to tablet variance.) The
confidence interval depends on the sample size and d.f., and we can estimate a sample size
iteratively. Use Table VI.1 for the estimate of number of samples to be reassayed from the
composite (or original sample) as a function of mean potency and RSD. Use a slightly larger
sample if in doubt. This table is based on a one-sided confidence interval. Typically, we are
concerned about an out-of-specification result that is either too low or too high. Note that the
numbers in Table VI.1 are based on the sample having the mean and RSD shown in the table.
Therefore, the a priori estimate of the sample mean and RSD should be made with care. If in
doubt, choose a sample somewhat larger than given in the table. On the other hand, if estimates
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Table VI.1 Estimate of Approximate Number of Samples to Be

Reassayed Based on Estimate of Mean and RSD for One-Sided

99% Confidence Limit (See Text)

Mean potency (%)

RSD (%) 94 96 98 100a

1 4 3 3 3

2 5 4 3 3

3 7 5 4 4

4 9 6 5 4

5 12 7 6 5

6 16 9 7 6

aFor estimates greater than 100%, use the 98% column for 102%, etc.

of RSD are made from CU data, the estimate is apt to be too large, and this would tend to make
the choice of sample size conservative.

An example should make this clear: Specifications for an active ingredient are 90% to
110%. A single assay of 89% is observed on a composite sample of 20 tablets. From CU data, the
average result is 97% with RSD = 4. From Table VI.1, N ≈ 6. If RSD is 3 in this example, N ≈ 5.

The number of reassayed samples is sensible. If the average is close to 100% and the RSD
is small, only a few samples need to be reanalyzed. If the RSD is large and the average is close
to the limits, a larger sample is necessary. Note that if the sample size, mean potency, and RSD match
the values in Table VI.1, the one-sided 99% CI will be within specifications (90–110). Finally, one may
want to know if the original “outlier” or failing result should be included in the calculation
of the average and standard deviation. I would recommend applying the USP test for outliers
(Dixon’s test) [4] to make a decision as to whether the original outlying observation should be
included (see Note 1 on Court Opinion at the end of this paper.) For example, if the original
assay is 85%, but we believe that the average potency should be 98% with RSD of 2%, we would
assay (at least) three more samples from the same composite (from Table VI.1). If the observed
reassay values are 96%, 98%, and 99%, the original assay of 85% is an outlier (Dixon test), and
only the 3 reassay values are used in the calculation. The mean is 97.7% and the RSD is 1.55%.
The 99% (one-sided) CI is 97.7–6.23 = 91.47, which is within the 90% to 100% limits, and passes.
A sample size of 4 or more would give a “comfort” zone.

Note that the Court recommendation of 7 of 8 passing results could be overly conservative
in some cases, but less than adequate in other cases. In fact, with moderate variation, 8 samples
would be a good number if the average observed potency is close to the specification limits. If
the observed potency is close to 100% with moderate variability, less samples are needed.

Also, one might be concerned that if more than one assay fails, the product may still pass
(i.e., the average is within limits and the 99% CI is within limits). This would seem to be a
most unlikely occurrence, because the inclusion of a failing result would increase the variance
considerably if the rest of the values were well within the specification limits. For example, the
six assays, 88% 89% 97% 98% 97% and 101%, have an average of 95% and a s.d. of 5.25. The
confidence limit would be below 90%.

VI.3 CASE 1B
Replicate assays are performed and the average of the assays is within limits, but one assay
fails. No cause can be found. For example, three assays of a homogeneous blend show results of
88%, 95%, and 98%. The average is within 90% to 100%, but one assay is out of limits. One could
accept the batch based on the average result (93.7%), but prudence may dictate further testing.
We would like to establish a reasonable retesting procedure. Based on the discussion above,
it would seem reasonable to assay new samples according to Table VI.1 based on an estimate
of the average and RSD. This estimate should be made based on all information available, for
example, CU results, not only the results of the assays in question. One could further determine
that the passing assays be part of the retesting if there is evidence that one of the values is in
error, for example, based on other batch data. Thus, in this case, if a sample of size 4 is called
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for, only two samples could be tested and combined with the remaining data (2 passing values).
Thus, judgment is critical. But, the rationale for retesting should be recorded and made clear.
The procedure could be part of SOPs for retesting. For example, in this example, CU data may
have shown an average of 98% and an RSD of 3%. In the current example, the value of 88%
appears to be an outlier and the retesting plan would be based on the CU data. On the other
hand, if the CU data showed an average of 94% and an RSD of 4%, one might believe that the
88% value may be a legitimate value to be included in the average. In this case, the RSD of the
three original assays may be factored into the decision of how much retesting is to be done.
Consider the following example to help clarify this decision-making process.

Two assays are performed on a composite sample (2 portions of the same composite), with
assay results of 90% and 98%. Note that, in the absence of an outright analytical error, differences
in results of such replicates can be, at first, attributed to assay variability. The variability (RSD)
of such duplicates based on retrospective data (accumulated from past lots, e.g., from control
charts) is determined to be 2%. This suggests that the difference between the two assays (8%)
is excessive and probably due to an analytical error. Also, the CU data show an average of 97%
and an RSD of 3.5%. From Table VI.1, a sample of size 5 is recommended. Include the 98%
observation, but not the 90% value, as one of the 5 samples. (Of course, there is nothing wrong
with taking a conservative approach and reassaying 6 new samples.) Note again that one is
penalized (more samples to be assayed) when a product is either very variable, not close to
100% in potency, or both.

VI.4 CASE 2
The material from which the failing result or outlier was observed is no longer available. This
could occur, for example, for single tablet assays where the test is destructive, or for assays
where stability is an issue, and a repeat assay on the same material may not be indicative of
the original assayed material. This situation may also occur if repeated testing of a sample
shows failure, but where the failure is not necessarily indicative of the quality of the product.
An example of this latter situation is repeated failures on a single composite, where the failures
could be possibly attributed to an error in preparation of the composite. The process of testing
further samples is termed “resampling” (as opposed to “retesting” in the Opinion).

VI.5 CASE 2A
Specific examples of the situation described in CASE 2 above may be considered for the cases of
dissolution and content uniformity. In these cases, the original material is not present, and mul-
tiple units have been assayed. Outliers may be observed more frequently in these cases because
of the multiplicity of assays. Clearly, the more assays performed, the greater the probability of
an analytical “error” causing an outlier, or the higher the probability of including an occasional
aberrant tablet among those items assayed. For example, one could reasonably argue that in
a large batch of tablets or capsules, there is a high probability that the batch contains one or
more unusually low and/or high potency units. The chances that such aberrant units will be
contained in the sample tested (from 6 to 30 units, for example) are very small if only a few
of these outliers exist in the batch. Thus, if an outlying value is observed without any obvious
cause, we have no way of knowing the true situation. A very conservative view would be to
throw out the batch, no matter if all other tests are within specifications (the “FDA” position
in the Barr Case). From a practical (cost) and scientific point of view, throwing out the batch
based on such an event seems severe. If we decide that further testing should be done to assess
the true nature of the batch, in terms of doing the right thing, we want to be “sure” that the
observed outlier is not representative of the batch. Of course, we can never be 100% sure. The
degree of assurance should be high and would be difficult to quantify. However, it seems fair
to say that if there were any sense that the failure could represent a public health hazard, the
desired degree of assurance should be greater.

At the present time, there is no unanimity on what is to be done. For example, in a content
uniformity test, a single failing result of 70% is observed for a tablet assay. In one instance, at
least, I know that a firm assayed 100 additional tablets (all of which were between 85% and
115%), and nevertheless, the batch was rejected. [The reason for the excessive testing was to
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Table VI.2A Minimum Number of Tablets Needed for Various Observed Values of Mean Potency and RSD for

Product to Be Acceptable (99% Tolerance Interval)

Mean potency

RSD 95% 96% 97% 98% 99% 100%

1% 6(7) 5(6) 5(6) 5(6) 5(5) 4(5)

2% 13 (25) 11(18) 9(15) 8(12) 8(11) 7(10)

3% 60 (>1000) 35 (250) 22 (90) 18 (50) 15(35) 13 (25)

4% Fails 700 (Fails) 140 (Fails) 70 (Fails) 45 (800) 30 (190)

5% Fails Fails Fails Fails 500 (Fails) 140 (Fails)

6% Fails Fails Fails Fails Fails Fails

99% assurance that 99% of tablets within 85% to 115% (99% assurance that 99.9% of tablets within 85% to 115% for potent

drugs).

meet GMP requirements, according to one defensive (my opinion) interpretation of a failure
investigation.]

The question is how much more testing should be done to give a given degree of assurance.
To come upon such a number, we need a measure of the “degree of assurance.” One reasonable
measure is to have assurance that the great majority of units (tablets) are within 85% to 115%.
For example, we may want 99% assurance that 99% of the tablets are within 85% to 115%. From
my point of view, such a conclusion would be satisfactory for most products. For very potent
products, we may want to have 99% assurance that 99.9% of the tablets are within 85% to 115%.
If we assume that the tablet drug content is normally distributed, tolerance intervals can be
calculated based on assay results. I would propose that further testing be done in cases of a
failing result caused by a single outlier (where no cause can be found), and the mean (% of label)
and RSD calculated from the reassays.

In this example (CU), all reassays should be within 85% to 115%, with the exception that
not more than 1 (3 in the case of capsules) in every 30 could be within 75% to 125%, as defined
for CU limits in the USP [5 If one or more items among the new values assay outside 75% to
125%, a full investigation is warranted and indicated. With an estimate of the mean (%) and
RSD from the assayed samples, the tolerance interval can be calculated, that is, we can say with
99% assurance that p percent of the tablets are within some upper and lower limit. Tables VI.2A
and VI.2B show some possible scenarios of extended testing in these situations. The number
of tablets (capsules) to be reassayed are given for 95% and 99% tolerance probabilities. Note
that in all these cases, there is very high assurance that practically 100% of the tablets will be
within 75% to 125% of label. This plan certainly seems reasonable. Products with a large RSD
(e.g., 5%) must be very close to 100% in order to have any chance of passing. If such products
contain potent drugs (a matter of judgment), then a product that shows 5% RSD cannot pass if
an outlier is observed (a full failure investigation is indicated.) Thus, the product must exhibit
moderate or low variability and be close to 100% in order to give assurance that the product is
acceptable. As noted previously, one must understand that the average result and RSD are not

Table VI.2B Minimum Number of Tablets Needed for Various Observed Values of Mean Potency and RSD for

Product to Be Acceptable (95% Tolerance Interval)

Mean potency

RSD 95% 96% 97% 98% 99% 100%

1% 3 (4) 3(3) 3(3) 2(3) 2(3) 2(3)

2% 8 (15) 7(11) 6(9) 6(8) 5(7) 5(6)

3% 35 (>1000) 19(140) 14(50) 11(30) 9(19) 8(15)

4% Fails 400 (Fails) 80 (Fails) 35 (>1000) 24 (400) 18(100)

5% Fails Fails Fails Fails 250 (Fails) 80 (Fails)

6% Fails Fails Fails Fails Fails Fails

95% assurance that 99% of tablets within 85% to 115% (95% assurance that 99.9% of tablets within 85% to 115% for potent

drugs).
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known until the assays are completed. (The RSD and mean potency are determined from the
assay results.) These values should be estimated in advance in order to determine the sample
size needed for reassay. These values can be estimated from the batch assays. (Use the passing
content uniformity data or past batch data for this estimate.) Clearly, the failing value, the
suspected faulty result, should not be included in sample size calculations. If unsure about the
number of samples to be reassayed, one should estimate conservatively, that is, a larger number
of reassays.

For example, a CU test showed 9 passing results (85–115%) and one value less than 75%.
The 9 passing values showed a mean of 97% with an RSD of 3%. According to Table VI.2A, 22
more tablets are assayed. If the average of these 22 tablets is close to 97% with RSD approximately
equal to 3%, we would have 99% confidence that 99% of the tablets are between 85% and 115%.
If the number of tablets to be reassayed based on Table VI.2A is less than 20, reassay at least
20 according to USP CU test specifications [4] the outlier occurred during the first stage of CU
testing. If the outlier (<75% or >125%) occurred during the second stage of testing (a total of 30
tablets have been tested), then the numbers in Table VI.2A can be used directly as is.

An important point to be emphasized once more is that the sample sizes in Tables VI.2A
and VI.2B will give the indicated tolerance interval if the observed mean and RSD are as
indicated in the table. The values of the mean and RSD are not known until the assays are
completed. Thus, the numbers in Tables VI.2A and VI.2B are based on a good guess of the
expected mean and RSD. A conservative approach would use larger sample sizes than indicated
to protect against a bad estimate or chance outcomes. How many more samples to use is strictly
a matter of judgment and cost considerations.

A similar table can be constructed for dissolution. This is generally one-sided, in that low
values result in failures. For example if the lower limit is 80% dissolution in 30 minutes, the
number of retests should result in 95% assurance that 99% of the tablets have a dissolution
above 80% in 30 minutes.

One potential cause for product failure is the observation of a large RSD in the CU test.
If a product passes based on the individual observations, but fails the RSD test, the individual
observations should be evaluated for possible outliers. If a single outler is observed as a possible
cause, reassay using the sample size given in Tables VI.2A and VI.2B. If the removal of a single
value still results in a failing RSD, a full batch investigation is warranted. For example, suppose
that 10 tablets are assayed and 9 have results between 101% and 103%, one value is at 109%,
and one value is 86%. Suppose the calculated RSD is greater than 6% (a failure). A reasonable
approach would be to reassay, assuming that the 86% value was an outlier. The remaining 9
values have an average result of 103% and RSD of 2.5%. From Table VI.2A, about 15 to 20 tablets
would be reassayed. In this example, if the tablets were evenly spread from 85% to 115%, it is
possible that elimination of a single tablet would not bring the RSD within specifications. In
this case a full investigation would be required. In my experience, this situation would be very
unlikely to occur.

VI.6 CASE 2B
Another somewhat different example would be a situation where a single assay fails (or is
borderline) and the original sample is no longer available or has been compromised. Again, no
cause for the result is obvious, and we cannot differentiate between a true failing result or an
analytical error. We need high assurance that the original value does not represent the batch.
We could follow the previous example, and estimate the resampling size from Tables VI.2A and
VI.2B. However, in these situations, often the material available may be limited. For example,
with stability samples, insufficient material may be available for reassay. Another situation
that may be considered similar is the case where a composite sample shows consistent failing
results and no cause is obvious. The result may have been caused by faulty preparation of the
composite. In both of these cases, new samples need to be prepared to verify the integrity of
the batch (or stability). In these situations, repeat assay on a new single sample (new composite
of 20 tablets or new bottle of liquid product) would not be sufficient to assure product quality.
One conceivable approach to this problem, if material is lacking, is to take sufficient samples
according to Table VI.1, so the results would give a 99% confidence interval for the true potency.
The new sample, in this example, would consist of new composites (each individual sample is
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a 20 tablet composite) or new bottles of liquid on stability (if available). Consider the following
example: A composite assay shows 80% potency after 4 assays. Evidence from CU and other
batch data suggest that there is an analytical or preparation error. Note that the composite is
an average of at least 20 random tablets, and this low observed value is almost surely not due
to lack of mixing (heterogeneous mix). The average potency appears to be about 99% with an
RSD of 2% based on other available data. Table VI.1 indicates that three new samples should be
taken. Three new composites of 20 tablets each are prepared and assayed, and a 99% confidence
interval calculated (one-sided). If the confidence limit is contained in the release specifications,
the product is considered to be acceptable. If this were a liquid product (which continues to fail
upon reassay), we would need to sample three new bottles. (If three stability samples are not
available, one might consider sampling from the field.)

VI.7 CONCLUSION
In my opinion, a single failing or outlying test result (with no documentable cause) is not
sufficient to fail a batch of product if other test results for the batch indicate no problems. In
these cases, a sufficient amount of further testing should be performed so that the product
quality can be assured with high probability. This paper proposes one way of approaching the
question of “what is the sufficient number of samples to reassay?”

Notes on the Court’s Opinion

1. The Opinion [6] suggests that the fact that the outlier test in the USP is directed toward
biological assays, and no mention is made of chemical assays, means that the test is not
applicable to chemical assays. It is unfortunate that this inference is made. Perhaps the
USP, inadvertently, is at fault, for lack of further explanation when describing the test. In
addition, the Opinion further states the reason for the omission of chemical assays with
regard to testing for outliers is due to the “innate variability of microbiological assays,” “. . .

subject to the whims of microorganisms.” In fact, the legitimacy of tests for outliers is not
dependent on inherent variability in the sense that the variability is taken into account in
the test. Thus, an assay with large variability, such as a microbiological assay, would have
to show considerable divergence due to the suspected outlier for the value to be rejected.
Because of lower variability, testing for an outlier in a chemical assay might reject a less
distant observation. Also, there are surely some chemical assays that are more variable than
some biological assays. Thus, the use of an outlier test should not be judged based on the
variability of the observation, but, rather on other criteria, for example, the nature of the
distribution of results or, perhaps, on philosophical grounds.

2. On pages 74 to 75 of the Opinion [7], the following statement appears: “Unless a firm with
certainty establishes grounds to reject the tablet falling outside the 75 to 125 range, the batch
should not be released.” There is no way to be 100% certain (certainty) in this situation (or
any situation for that matter). If the tablet is no longer available for assay and no cause
for the outlying result can be found, one can never resurrect the original scenario with any
confidence. I believe that if we replace the words, “with certainty”, with “with a high degree
of assurance”, that the methods proposed in this paper fulfill the latter definition.
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Appendix VII

When is it Appropriate to Average and its
Relationship to the Barr Decision

VII.1 BACKGROUND: ASSAY AND CONTENT UNIFORMITY TESTS
Analytical procedures to determine the drug content of pharmaceutical dosage forms are of
two kinds. One is to estimate the true average drug content of the product (e. g., mg/tablet or
mg/mL), and the other is to determine the uniformity of the product, that is, to assess the degree
to which different dosage units may differ. For true solutions, the question of uniformity is mute,
because solutions are homogeneous by definition (In certain cases, it may be desirable to check
uniformity for large volumes of solutions to ensure dissolution and adequate mixing prior to
transfer). For solid dosage forms, uniformity is determined by assaying different portions of
the powdered blend at the initial stages of the process, and individual finished tablets at the
final stage. For assessing uniformity, there are no “official” regulations for conformance for
blends. The finished product content uniformity test is defined in the USP. Release limits for
blend testing for uniformity is at the discretion of the pharmaceutical firm, and should have a
scientific as well as practical basis. The subject of blend testing was an important issue in the Barr
Trial and Judge Wolin’s Decision [1]. In particular, Judge Wolin condemned the averaging of
different samples of powdered blend when the purpose of the test was to determine uniformity.
This is obvious to the pharmaceutical scientist. Not that it is wrong to average the results (we
are always interested in the average), but we do not want to obscure the variability by mixing
heterogeneous samples and then reporting only an average, when the purpose of the test is to
assess that variability. Therefore, procedures for assessing and reporting variability are clear,
although the regulations for blend testing and interpretation of data are not “official” and need
scientific judgment. (A further dilemma here is that some pharmaceutical firms do not perform
blend testing on some products, at their discretion.)

VII.2 AVERAGING REPLICATES FROM A HOMOGENEOUS SAMPLE
The problem that I want to present here is: When is averaging appropriate and correct, and how
do we deal with the individual values that make up the average in these circumstances? This
can be simplified by limiting this question to one particular situation:

AVERAGING IS APPROPRIATE AND CORRECT WHEN MULTIPLE ASSAYS ARE
PERFORMED ON THE SAME SAMPLE, OR ON REPLICATE SAMPLES FROM THE SAME

HOMOGENOUS MIX, FOR PURPOSES OF DETERMINING THE TRUE
AVERAGE CONTENT.

I do not believe that any knowledgeable scientist would argue or contradict this. It is a
scientific, statistical fact that the average of multiple assays on the same material will give a
better estimate of the true content than single assays (the more assays, the better the estimate).
Thus, a pharmaceutical firm would better fulfill its obligation of supplying conforming material
to the public by performing multiple assays. Nevertheless, the number of assays performed for
purposes of estimating the true drug content is not fixed by law, and many companies perform
a single assay, whereas other companies may perform three or more assays. In fact, the manner
in which the replicates are performed may differ among companies. For example, a replicate
assay may be defined as coming from replicate analyses of the same final solution prepared
from a single portion of material, such as replicate HPLC injections from the same solution. The
variability among the replicate readings in this case represents instrumental variability rather
than product variability. If we are dealing with a solution or a homogenized composite of 20
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tablets, there are other sources of variability that are not accounted for in such a replicate scheme.
In particular, the variability arising from the sample preparation for analysis is neglected in the
former scheme because only one sample has been analyzed. Sample preparation variability
would include weighing variability as well as variability during the various steps of preparing
the product for the analysis. Therefore, the average of replicates using different sample prepa-
rations will give a better estimate of the true drug content than the same number of replicate
analyses on the same sample. The latter gives a good estimate of a single sample, whereas the
former better estimates the batch. Again, this is a scientific, statistical fact. We can define the
variability of such an assay measurement as the sum of independent variances

Variance (assay) = variance(I) + variance(P) + variance(O),
where I = instrumental, P = preparation and O = other sources of variation.

The variance of the average of 3 replicates where the replicates are multiple injections
from the same sample is

variance(I)
3

+ variance(O) + variance(P).

The variance of the average of 3 replicates where the replicates are multiple preparations
from the same sample is:

variance(I) + variance(O) + variance(P)
3

.

Therefore, given a choice, to obtain a more precise estimate of the average drug content of
a batch, assaying multiple preparations from the same homogeneous sample is a more desirable
procedure than assaying multiple injections from a single preparation. This would apply for
both solutions and homogeneous powders. Thus, there is little doubt as to what constitutes a
better testing procedure for estimating drug content

USE MORE INDEPENDENT SAMPLES!

Again, there are no official regulations on how many samples to use. Assaying a single sample
may be acceptable in this respect.

VII.3 HOW DO WE DEAL WITH SINGLE OOS RESULTS WHEN THE AVERAGE
CONFORMS?

What, then, is the problem? The problem is that there is confusion as to how to handle the
individual observations that make up the average in certain situations. There should be no
argument as to when it is appropriate to average. As emphasized throughout this discussion,
averaging multiple observations is appropriate when the purpose is to estimate the average drug
content. If all of the individual observations fall within release limits, there is no ambiguity. The
question is, “What do we do if one of the individual observations falls outside of the release
limits?”

Although not explicitly stated, official limits are absolute. A product either does or does
not pass. The official limits for drug content, as stated in the USP, for example, are based on
the average drug content. Clearly, some individual units may lie outside these limits as defined
in the content uniformity test. From a legal point of view, it appears that if the measure of the
average content falls within limits, the product is acceptable. Thus, an average result of 90.5
based on a single assay or duplicates of 89.5 and 91.5 is within limits. On the other hand, such
a result suggests that the true average may be below 90 with substantial probability. A prudent
manufacturer would want more assurance that the product is truly within specifications. In-
house limits such as 95 to 105 are constructed to give such assurance. These limits are usually
computed so that there is high assurance that the product truly meets official specifications
if an analytical result falls within these limits. The in-house specifications are not legal limits,
but, rather, are computed, conservative limits to ensure that the legal limits will be met. The
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construction of such limits should include all sources of variability including analytical error.
Thus, a single assay of 95.5% should be sufficient to release the product if the in-house limits are
computed correctly. In this situation, there is no question about the decision, the product passes
or does not pass. Suppose, that a company wants to improve this assessment of lot performance
by performing triplicate assays in this same situation. Because the single assay is close to the
in-house limit, repeat assays are apt to give values below 95. For example, triplicate assays
may give values of 94.5, 95.5, and 96.5, with an average of 95.5. In this case, the average result
is definitive and the single value below 95 should not invalidate the average. Otherwise, we
would be saying that a single assay of 95.5 is a better indicator of batch quality than triplicate
assays that average 95.5. Clearly, this is contradictory to scientific and statistical fact. If we act
otherwise, we would be defeating the intent and purpose of scientific QC analytical techniques.

How do we account for the fact that an average may fall within limits, but a single assay
may fall outside the limits (without obvious cause)? It is a well-known statistical fact that the
more observations we make, the greater the likelihood of seeing extreme observations because
of inherent variability in the observations. The variability has a probability distribution, say
approximately normal. Every observation has some probability of falling outside the release
limits due to extreme errors (variability) that can occur during an analysis. These extreme
observations are apt to happen from time to time, by chance. If we are unlucky enough to
see such an observation, is this irrevocable? Does this mean the batch is not good? The answer
requires scientific judgment. In the absence of a definitive mistake, examination of batch records
and product history, as well as the nature of the assay and release limits should lead to either
acceptance of the batch or further testing (according to SOPs). Further testing should help to
assess the true nature of the data, that is, to differentiate a failure from an anomalous result.

Unfortunately, Judge Wolin, in his decision (Barr Decision), excluded outlier tests from
chemical assays (this ruling is controversial and will almost certainly be modified in the near
future). But, even if a single failing value is not an outlier, is this cause for rejection, when
the average is the objective of the test? Certainly, some scientific judgment is needed here.
Otherwise, we will be throwing out much good material at the expense of the manufacturer
and taxpayer, and we will be condoning nonscientific, suboptimal testing techniques. If, in fact,
there is no give or compromise in this dilemma, companies will do an absolute minimal amount
of testing to reduce the probability of out-of-specification (OOS) results.

So the question remains as to how to handle this perplexing problem, “What do we do
about a single OOS result among replicates that are meant to be averaged?” I do not believe
that there can be a single inflexible rule. Scientific judgment and common sense are needed. I
will give a couple of examples.

Example 1. The official limits for a product are 90 to 110. In-house limits are set at 95 to 105.
The in-house limits are based on the variability of the product, that is, the manufacturer believes
that based on the variability inherent in measuring the drug content of the product (perhaps
including assay error, stability, uniformity, etc.) that the average content when the product is
released based on a 20 tablet composite should be between 95 and 105. Thus, the manufacturer
is prepared to release the product if the average composite assay is 95 to 105. Triplicate analyses
yield results of 99, 98, and 94.5, an average of 97.17, which passes. However, one assay is below
95 (note the triple jeopardy incurred by the triplicate determinations). Should this product
be released? Note that the release limits of 95 to 105 are based on inherent variability of the
product, including its measurement. On this basis, the product should pass, because it is the
average in which we are interested. If there is any doubt, I would want to look at other product
characteristics and batch history. Certainly, if there were no suggestion of a problem based on
other relevant data, release of this batch would be indicated. Another scientific contradiction
here concerns in-house limits that apparently are not subject to regulations. Firms that use in-
house limits for release, certainly a better and more conservative approach to releasing material
than using the absolute official limits, may be penalized for using a more scientific approach
to drug testing. Also, I believe that there is a qualitative difference for single OOS results
when applying “Official” and “in-house” release limits. “Official” limits are irrevocable, set by
“law” without a truly scientific basis. An average of 89.9 for a product with official limits of 90
to 110 cannot be released! In-house limits are set by individual companies based on scientific
“know-how” and have built-in allowances for variability. Thus, a single replicate falling slightly



WHEN IS IT APPROPRIATE TO AVERAGE AND ITS RELATIONSHIP TO THE BARR DECISION 503

below the “Official” limit should probably be treated with greater concern than-the single value
outside in-house limits but within official limits as observed in this example.

Example 2. Consider the situation where the Official release limits are 95 to 105 and the three
assays are 96.5, 95.5, and 94.5. The average is 95.5 that passes. All other data are conforming. In
this case, although it still may be argued convincingly that the product passes, I would suggest
additional testing. I believe that this is appropriate even if no cause can be found for the low
result. This question was raised in the Barr trial, in which results of 89, 89, 92 were contemplated
for a product with release limits of 90 to 110 (paragraph 49, Barr Decision). Further testing was
recommended by the witness, and the judge seemed to be satisfied with this approach. The real
problem here, is not the problem of averaging, or retesting, but of “retesting into compliance.”
Clearly, the latter approach is not satisfactory, and should be addressed in SOPs. The SOP should
recommend the number of retests to be performed when there is reasonable doubt about the
quality of the batch as suggested in this example.

VII.4 DISCUSSION
Because of the lack of specific regulations concerning averaging of data, scientific judgment and
common sense should prevail. Certainly, situations exist where averages are the optimal way of
treating and reporting data. In particular, replicate measures based on a homogeneous sample
are meant to be averaged. Procedures for averaging data and retesting should be contained in
the company’s SOPs.

The question of what to do if a single OOS result is observed is addressed to some
extent in the Barr Decision. A single OOS result that cannot be attributed to the process or
to an operator error, as opposed to a laboratory error, is not labeled as a failure. According
to Inspector Mulligan of the FDA (Barr Decision, paragraph 21), an OOS result overcome by
retesting is not a failure. “The inability to identify an error’s cause with confidence affects
retesting procedures, see paragraph 38–39. . .” (Barr Decision, paragraph 28). Paragraphs 38 and
39 suggest that retesting is part of the failure investigation. “A retest is similarly acceptable
when review of the analyst’s work is inconclusive.” Thus, retesting is not disallowed when the
retests are used to isolate the cause or nature of the outlying result. The amount of retesting
should be sufficient to differentiate an anomaly and a reason to reject a batch (paragraph 39).
Thus, according to the decision, retesting may be done with discretion (based on SOPs) to help
identify a cause for OOS results.

An important consideration is that good testing procedures should not be penalized.
As noted in the examples above, a single OOS result contained in an average that passes
specifications should not be reason to reject a batch in general without further testing. Otherwise,
firms will be forced into performing single assays to reduce the risk of failure. This is based on
the fact that the penalty for an OOS result would be the same for both (a) one of several assays
OOS or (b) a single assay OOS. Biological assays are often based on the average of triplicates, in
which the average result is the basis for release, regardless of the individual values. In principal,
chemical assays should be treated in a similar manner, with scientific judgment always in mind.
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Appendix VIII

Excel Workbooks and SAS Programs

Excel Workbooks
Microsoft Excel provides a powerful package to solve many statistical problems. The following
Workbooks are provided as examples of how this package can be used to solve problems
presented in this book. It is hoped that the reader will be able to apply the principles illustrated
in these examples to the real-life statistical problems that he or she encounters. It is anticipated
that the reader has some familiarity with Excel and the basic mathematical functions available
in Excel. The reader should also be familiar with the basic methods to copy and paste values
and formulas from one cell or group of cells to another.

Many of the examples use Excel’s built-in statistical modules. These are available in the
Statistical Analysis ToolPak add-in. If this feature is activated in your installation of Excel, you
will see it by choosing Tools in the main menu of Excel. If you find the Data Analysis option, the
add-in is activated. If not, choose Tools and then select Add-Ins. From the choice of Add-ins,
select both the Analysis ToolPak and the Analysis ToolPak-VBA options. This will install the
package.

In the following examples, sequences of Excel commands will be presented to accomplish
the data analyses. The Main Menu bar, in the following illustration, is just below the Microsoft
Excel heading. It has the headings of File, Edit, View, Insert, Format, Tools, Data, Window and
Help.
The command sequence:

Main Menu Tools → Data Analysis → Descriptive Statistics

Refers to the steps:

1. Choose Tools from the Main Menu
2. Select Data Analysis under the Tools menu
3. Move the highlight down to Descriptive Statistics
4. Click OK

The first example is based on the Serum Cholesterol Changes for 156 Patients shown in Table 1.1.
Workbook 1.1 shows how to perform descriptive analyses of the data and how to obtain a
cumulative frequency distribution.
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Workbook 1.1 Descriptive Analyses and Cumulative Frequency Distribution (partial workbook shown)

GFEDCBA

1 PercentRankChangePointChangeChange

2 100.00%15512517

3 Mean12 99.30%2469110.6218

4 98.70%340602.216327Standard Error25

5 Median37 98.00%4391059.5

6 97.40%53810917Mode29

7 96.10%6355027.68191Standard Deviation39

8 96.10%63588766.2883Sample Variance22

9 Kurtosis0 94.80%834110.16183

10 Skewness22 94.80%8341260.28357

11 94.10%103318152Range63

12 Minimum34 93.50%11279797

13 92.90%122611355Maximum31

14 Sum64 92.20%132531657

15 90.90%142437156Count12

16 90.90%14249249

17 90.30%1623985

Commands in Analyses
Cells A1 – A157 Enter “Change”, then in A2-A157 the 156 change

values from Table 1.1.
Main Menu Tools → Data Analysis → Descriptive Statistics
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column B or enter B1
Summary Statistics Click on this option
OK Click to calculate

Main Menu Tools → Data Analysis → Rank and Percentile
Dialog Box

Input Range: Highlight or enter A1:A157
Grouped By: Click on Columns option
Labels in First Row: Click on this option
Output Range Click on Column D or enter D1
OK Click to Calculate

Notes on Analyses Interpretation:
Columns C lists the value of the sample statistic referenced in Column B
The statistic “Mode” (most frequent value) is not a unique value in this data set.
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Workbook 1.4 Entry of Tablet Potencies When Frequency Distribution Is Given (partial worksheet
shown)

IHGFEDCBA

1 999897969594939290

2 999897969492

3 99989794

4 99989794

5 99989794

6 999897

7 999897

8 9998

9 98

10 98

Column D lists the observation number, in Column A, for the Change value in Column E
Column F lists the rank (highest to lowest) for the Change value shown in Column E
Column G lists the cumulative frequency percentile for the Change value in column E

The next example creates a histogram and a cumulative frequency plot from the tablet potency
values presented in Table 1.4.
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Each Xi value is entered into a separate worksheet column, the number of replicate entries
of a value is given by its frequency, Wi, in Table 1.4. Entering a value once and then copying it
through the range of desired cells simplifies the process.

The Xi values in each column are then copied to a new worksheet to create a single column
of all 100 tablet potencies, as shown in the following partial worksheet.

A

Potency1

2 90

3 92

4 92

5 93

6 94

7 94

8 94

9 94

10 94

11 95

12 96

13 96

14 97

15 97

16 97

17 97

18 97

19 97

20 97

Descriptive analyses can now be conducted on the values in Column A of this second worksheet
(e.g. creation of histogram and cumulative % plots).

Commands in Analyses
Main Menu Bar Tools → Data Analysis → Histogram
Dialog Box

Input Range: Highlight or enter A1:A101
Labels Click on this option
Output Click on New Worksheet Ply
Cumulative Percentage Click on this option
Chart Output Click on this option
OK Click to plot histogram

Click on Histogram
Main Menu Bar Chart → Location
Dialog Box

As New Sheet: Click on this option and enter “Histogram” in box to right
Click on cumulative

percentage line: Format symbol and colors as desired
Click on y-axis Format scale, font, number as desired
Click on histogram Bars Format color, patterns, fill effects as desired

Note: If it were necessary to format the x-axis (Bin) values, this is done by changing the format
of the Bin values column in the worksheet containing these values.
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Next the tablet assay results shown in Table 5.1 are used to demonstrate construction of a
95% confidence interval for the sample mean under the assumption that the data are normally
distributed. The mean, �, and the standard deviation, �, for the population are unknown and
must be estimated from the data. As such, the t-distribution is used to obtain the confidence
interval limits.

Workbook 5.1 Confidence Interval When Mean and Sigma Are Unknown

FEDCBA

ConfidencealphaSMeannPotency1

2 0.950.052.22103.010101.8

3 102.6

4 99.8 Cl UpperCl Lowert-valuedf

5 104.59101.412.269104.9

6 103.8

7 104.5

8 100.7

9 106.3

10 100.6

11 105.0

12

13

Commands in Analysis (commands for up to 100 entries in column A):
Cells in Column A Enter tablet potency results from Table 5.1
Cell B2 = COUNT(A2:A101) Total number of potency values
Cell B5 = B2–1 Degrees of freedom (df) = n-1
Cell C2 = AVERAGE(A2:A101) Arithmetic mean of potency values
Cell D2 = STDEV(A2:A101) Sample standard deviation for values
Cell E2 Enter alpha level 0.05 for 95% CI, 0.10 for 90% CI, etc.
Cell F2 = 1-E2 Confidence Interval coverage
Cell C5 = TINV(E2,B5) Critical t-value for alpha & df
Cell D5 = C2-C5∗D2/SQRT(B2) 95% Confidence Interval lower limit
Cell E5 = C2 + C5∗D2/SQRT(B2) 95% Confidence Interval upper limit
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The following uses the percent dissolution values of Table 5.9 to demonstrate how to use Excel’s
built in statistical tools to conduct an independent sample t-test.

Workbook 5.9 Two Independent Sample t-Test

EDCBA

FORM BFORM A1 t-Test: Two-Sample Assuming Equal Variances

2 7468

3 7184 FORM BFORM A

4 71.477.1Mean7981

5 48.7111111133.43333333Variance6385

6 1010Observations8075

7 41.07222222Pooled Variance6169

8 0Hypothesized Mean Diff6980

9 18Df7276

10 1.988775482t Stat8079

11 P(T6574 0.031073458t) one-tail

12 1.734063062t Critical one-tail

13 P(T 0.062146917t) two-tail

14 2.100923666t Critical two-tail

Commands in Analyses
Columns A & B Enter Form A and Form B values from

Table 5.9
Main Menu Bar Tools → Data Analysis → t-Test:

Two-Sample Assuming Equal
Variances

Dialog Box
Variable 1 Range: Highlight or enter A1:A11
Variable 2 Range: Highlight or enter B1:B11
Hypothesized Mean Diff: Enter the null hypothesis difference

between means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-Test, 0.05
Output Range Highlight cell C1 or enter C1.
OK Click to perform calculations.

Results appear in Columns C-E.

The next workbook performs the analysis for a paired sample t-test as shown in Table 5.11.
The comparison of the Areas under the blood-level curve calculated for six animals dosed in a
bioavailability study with both a new drug formulation (A) and the marketed formulation (B)
is easily performed using Excel’s built-in statistical program.
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Workbook 5.11 Paired Sample t-Test

GFEDCBA

ExpectedRatioFORM BFORM AAnimal1

2 10.821661361

3 10.911841682

4 10.831931603

5 10.90105944

6 11.011982005

7 10.881971746

8

9 t-Test: Paired Two Samplet-Test: Paired Two Sample for Means
for Means

10

11 ExpectedRatioFORM BFORM A

12 10.891654Mean173.83333155.33333Mean

13 00.004747Variance1278.16671332.2667Variance

14 66Observations66Observations

15 #DIV/0!Pearson0.9354224Pearson
CorrelationCorrelation

16 0Hypothesized0Hypothesized
MeanMean
DifferenceDifference

17 5df5Df

18 t Stat t Stat3.484781 3.85212

19 P(T P(T0.0087842t) 0.005988t)
one-tailone-tail

20 2.015049t Critical2.0150492t Critical
one-tailone-tail

21 P(T P(T0.0175684t) 0.011975t)
two-tailtwo-tail

22 2.570578t Critical2.5705776t Critical
two-tailtwo-tail

Commands in Analyses
Columns A, B, C & D Enter values from Table 5.11.
Column E Enter value of 1 for each entry in Column D (for analysis of ratios)
Main Menu Bar Tools Data → Analysis → t-Test: Paired Two-Sample for Means
Dialog Box

Variable 1 Range: Highlight or enter B1:B7
Variable 2 Range: Highlight or enter C1:C7
Hypothesized Diff: Enter the null hypothesis difference between means, 0
Labels: Click on this option
Alpha: Enter desired alpha level for t-test, 0.05
Output Range Click on cell or enter A9.
OK Click to perform calculations

Note: To obtain an analysis of the Form A/Form B ratios, perform the same sequence of
operations using the Ratio values (D1:D7) as Variable 1 and the Expected values (E1:E7) as
Variable 2. Choose output Range as E9.
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Section 5.2.6 discusses how to construct a 95% confidence interval on the difference
between the proportions of headaches observed in two different groups of patients. The calcu-
lation uses a normal approximation and incorporates a continuity correction.

The following Excel workbook shows how to carry out the calculations.

Workbook 5.2.6 Continuity-Corrected 95% Confidence Interval

FEDCBA

correctionZ-valuealphaGroup IIGroup I1

Headaches2 0.004911.960.054635

3

N4 196212 Z*sesedifference

P5 0.0775750.039580.0700.2350.165

Q6 0.7650.835

Cl_highCl_low7

8 0.1520.013

Commands in Analysis
Data Entry: Enter Section 5.2.6 values into cells B2, C2, B4, C4, D2
Cell B5: = B2/B4 p = #/n
Cell C5: = C2/C4
Cell B6: = 1-B5 q = 1 – p
Cell C6: = 1-C5
Cell D5: = C5-B5 difference between p values (group I-II)
Cell E2: = NORMSINV(1-D2/2) Critical Z- value for 95% confidence

interval
Cell E5: = SQRT(B5∗B6/B4 +

C5∗C6/C4)
se = (�(pq/n))1/2

Cell F2: = 0.5∗(1/B4 + 1/C4) continuity correction = 0.5 (1/nI +
1/nII)

Cell F5: = E2∗E5
Cell D8: = D5 – (F5 + F2) CI low = diff – [se∗Z + correction]
Cell E8: = D5 + (F5 + F2) CI high = diff + [se∗ Z + correction]

Excel has utilities for performing linear regression analyses and creating graphs of the results
of such analyses. The power of these utilities can be seen in this next example which uses tablet
assay results from a stability study (Table 7.5).

In this workbook, linear regression is used to model the stability of tablet potency over
time. A 95% confidence interval about the stability line is constructed and the results are
graphically illustrated using Excel’s Chart Wizard.

Commands in Analyses
Columns A & B Enter Month and Assay values from Table 7.5
Main Menu Bar Tools → Data Analysis → Regression
Dialog Box

Input Y Range: Highlight or enter B1:B19
Input X Range: Highlight or enter A1:A19
Labels: Click on this option
Output Range Click on cell C1 or enter C1. Results start in Column C.
OK Click to perform calculations

Cell D16 = AVERAGE(A2:A19) Mean value for the X values
Cell D17 = 18∗(VARP(A1:A19)) equal to �(Xi – mean)2
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Open a second worksheet in this workbook. This sheet will be used to calculate the predicted
values for the stability regression line and the 95% confidence interval band around the line.
The measured potency values from Worksheet 1 and the predicted values and their confidence
bounds from this new worksheet (Worksheet 2) will be used to create a stability trending graph.

Commands in Analyses
Column A Enter 0 & 1 into Cells A2 & A3, highlight & drag through Cell A62 to

obtain Month numbers 0 through 60.
Cells E2 and F2 Copy Slope and Intercept values from Worksheet 1
Cell E5 Enter 16, the residual df from ANOVA in Worksheet 1 equal to N-2
Cell F5 Enter or copy the SSQ Diff value from Worksheet 1
Cell F8 Enter or copy the Month Mean value from Worksheet 1
Cell E8 = TINV(0.05,E5), t-value for two-sided, 95% confidence interval
Cell E11 = SQRT(1.825), square root of residual MS from ANOVA in

Worksheet 1
Cell B2 = $F$2 + A2∗$E$2, intercept + month ∗ slope
Cells B3-B62 Copy formula from B2 into these cells to obtain predicted values
Cell C2 = $B2-$E$8∗$E$11∗SQRT(1/($E$5 + 2) +

POWER(($A2-$F$8),2)/$F$5)
Cells C3-C62 Copy formula from C2 to obtain 95% Conf. Interval lower bound
Cell D2 = $B2 + $E$8∗$E$11∗SQRT(1/($E$5 + 2) +

POWER(($A2-$F$8),2)/$F$5)
Cells D3-D62 Copy formula from D2 into these cells to obtain 95% Conf. Interval

upper bound

Create graph

Highlight cells A1:B62, click Chart Wizard icon and choose XY scatter plot.
Click Next and choose the series tab.
Click on ADD.
Click in the Name box and enter 95% CI.
For X-values, choose A1:A62.
For Y-values choose Cl:C62.
Repeat the process to add the graph of the 95% CI upper limits (D1:D62 values).
Next, repeat the process for the Month (X) and Assay (Y) values from Worksheet 1.
Click on Next and enter the title and axes labels for the graph.
Click on finish.

From the Main Toolbar Menu, choose Chart and then under that choose Location
Enter a Name so that the graph is placed as a chart separate from Worksheet 2.
The lines on the graph can now be edited by double clicking on each one.
Edit the predicted line to be solid with no symbols.
Edit the confidence interval curves to be smoothed, no-symbol, dashed.
The y and x axes can be edited (double click on each) to change the range of the Scale.
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Workbook 7.5 Linear Regression of Tablet Stability Results (Worksheet 2) (Listing of first 14 rows of
the 62-row worksheet)

FEDCBA

interceptslope95% Cl Hi95% Cl LowPredictedMonth1

2 52.950.751.80 51.80.26667

3 52.650.551.51

4 52.250.351.32 SSQDxDf

5 6301651.950.151.03

6 51.549.950.74

7 51.249.750.55 Meanxt-val

8 82.1250.949.550.26

9 50.649.249.97

10 50.349.049.78 S_yx

11 1.35150.148.749.49

12 49.848.449.110

13 49.648.148.911

14 49.447.848.612
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The following Workbook uses the spectrophotometric calibration curve results of Table 7.6.
While it employs only the basic mathematical functions of Excel, it provides a powerful method
for performing weighted linear regression analysis which can be used in situations where a
straight-line model is appropriate. In this example, the weight is the inverse of concentration
squared (1/X2), but the method can be easily adapted to other appropriate weights (some
function that is inversely proportional to the variance in y).

Commands in Analyses
Cells A2:B11 Enter the X and y values from Table 7.6
Cell C2 = 1/(A2∧2) Weight, w, is inverse of concentration squared
Cells C3:C11 Copy the formula from Cell C2
Cell D2 = C2∗A2∗B2 wXy
Cells D3:D11 Copy the formula from Cell D2
Cell E2 = C2∗A2 wX
Cells E3:E11 Copy the formula from Cell E2
Cell F2 = C2∗B2 wy
Cells F3:F11 Copy the formula from Cell F2
Cell G2 = C2∗A2∧2 wX2

Cells G3:G11 Copy the formula from Cell G2
Cell A13 = SUM(A2:A11) �X
Cells B13:G13 Copy formula from Cell A13 �y, �w, �wXy, �wX, �wy & �wX2

Cell B15 = (D13-E13∗F13/C13)/(G13 =
(E13∧2)/C13)

slope

Cell B17 = (F13/C13)-B15∗(E13/C13) intercept

Workbook 7.6 Weighted (1/X2) Linear Regression Analysis

GFEDCBA

wX^2wywXwXy1/X^2OD (y)Conc (X)1

2 10.00420.20.0210.040.1055

3 10.003920.20.01960.040.0985

4 10.002010.10.02010.010.20110

5 10.001940.10.01940.010.19410

6 10.0007920.040.01980.00160.49525

7 10.00081280.040.020320.00160.50825

8 10.00039320.020.019660.00040.98350

9 10.00040360.020.020180.00041.00950

10 10.00019640.010.019640.00011.964100

11 10.00020130.010.020130.00012.013100

Sum(Wx^2)Sum(wy)Sum(wX)Sum(wXy)Sum(w)Sum(y)Sum(X)12

13 100.01486930.740.199830.10427.57380

14

Slope (b) 15 0.01986

16

Intercept (a) 17 0.00166

The next example shows how to use Excel to perform a series of calculations iteratively across
different parameter values of a function to determine which values give the best fit to the
observed values. In this example, using the method of least-squares, the best estimates for the
parameters (slope and intercept) of the function (regression line) occur at the minimum sum of
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squares for the difference between the predicted values of the regression line and the observed
values. The regression line is defined by its slope (K) and its intercept (C0) and there are three
observed time (hour)-concentration values (mg/L): (1,63), (2,34), and (3,22). These data are
the stability results shown in Table 7.8. It is first necessary to determine a plausible range of
values for C0 and K. For C0, this could be done graphically by plotting the data and then
extrapolating the curve back to 0 time. A wide range of values should be selected around this
estimate for the first iteration. In the first worksheet, a range of 50–400 was chosen. An initial
range of estimates for K can be obtained in several ways: by using the estimate of C0 and then
solving the equation C = C0∗Exp(−K∗t) for each time (t)-concentration (C) pair in the data
set. Alternatively, the natural logarithm of each concentration can be plotted against time. The
slope of the line through the plotted points is an estimate of − K. In this example, K was found
to be close to 0.5 and a range of 0.1–0.7 was chosen for evaluation. The analysis requires the
calculation of the sum of squares (SSQ) of the deviations (DEV = observed-predicted) for each
of the three data points based on all combinations of the chosen C0 and K values. The C0 and
K values that result in the minimum SSQ represent the least-squares estimates.

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (first iteration)

I JHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC01

2 296.3327.5361.90.1400 298.9 293.5 250755.3274.3

3 148.2163.7181.00.1200 118.0 129.7 46667.7126.2

4 74.181.990.50.1100 27.5 47.9 5759.752.1

5 17.837.040.945.20.150 6.9 589.715.0

6 162.6219.5296.30.3400 233.3 185.5 108637.2140.6

7 81.3109.8148.20.3200 85.2 75.8 16510.959.3

8 40.754.974.10.3100 11.1 20.9 906.918.7

9 719.71.76.626.020.327.437.00.350

10 89.3147.2242.60.5400 179.6 113.2 49586.767.3

11 44.673.6121.30.5200 58.3 39.6 5477.822.6

12 2.322.336.860.70.5100 2.8 **13.40.3

13 1428.710.815.632.711.218.430.30.550

14 49.098.6198.60.7400 135.6 64.6 23302.827.0

15 24.549.399.30.7200 36.3 15.3 1559.82.5

16 360.49.89.313.312.224.749.70.7100

17 2178.715.921.738.26.112.324.80.750

MIN18 13.4

Additional iterations are performed to refine the estimates to the desired level of precision.
In this example, precision to one decimal place for C0 and to three decimal places for K was
considered appropriate.

Commands in Analyses (Commands are repeated for each iteration)
Columns A and B Enter all possible combinations of the selected C0 and K values.
Cell C2 = A2∗EXP(-B2∗1) Predicted Concentration at 1 hour
Cell D2 = A2∗EXP(-B2∗2) Predicted Concentration at 2 hour
Cell E2 = A2∗EXP(-B2∗3) Predicted Concentration at 3 hour
Cell F2 = 63-C2 1 hour deviation (observed-predicted)
Cell G2 = 34-D2 2 hour deviation
Cell H2 = 22-E2 3 hour deviation
Cell I2 = SUMSQ(F2,G2,H2) Sum of squared deviations (SSQ)
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Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (section of the
worksheet to refine the estimates)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

39.258.487.10.4130 24.1 24.4 1473.117.2

34.651.777.10.4115 14.1 17.7 670.512.6

30.144.967.00.4100 4.0 10.9 201.78.1

6.025.638.257.00.485 4.2 66.83.6

29.047.878.80.5130 15.8 13.8 491.47.0

25.742.369.80.5115 6.8 8.3 128.03.7

2.322.336.860.70.5100 2.8 13.40.3

147.63.02.711.419.031.351.60.585

21.539.271.30.6130 8.3 96.50.55.2

19.034.663.10.6115 0.1 **9.43.00.6

110.95.53.98.116.530.154.90.6100

401.17.98.416.414.125.646.60.685

15.932.164.60.7130 43.26.11.91.6

129.27.95.65.914.128.457.10.7115

360.49.89.313.312.224.749.70.7100

736.611.613.020.810.421.042.20.785

MIN 9.4

Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (further refining of
the estimates) (C0 range examined was 100–130, K range 0.50–0.70; only section with minimum is
shown)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

1.821.236.061.20.53104 7.90.82.0

1.221.436.461.80.53105 7.40.62.4

0.621.636.762.40.53106 7.90.42.7

1.820.835.761.20.54105 7.51.21.7

1.221.036.061.80.54106 6.51.02.0

0.621.236.362.40.54107 6.60.82.3

1.320.535.661.70.55107 6.31.51.6

0.720.736.062.30.55108 5.91.32.0

0.120.936.362.90.55109 6.41.12.3

1.320.135.261.70.56108 6.81.91.2

0.720.335.662.30.56109 **5.81.71.6

0.220.535.962.80.56110 5.81.51.9

20.736.263.40.56111 0.4 6.81.32.2

0.819.935.262.20.57110 6.52.11.2

0.220.135.562.80.57111 6.01.91.5

20.335.863.30.57112 0.3 6.51.71.8
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Workbook 7.8 Nonlinear Fit of Stability Data by the Method of Least-Squares (C0 range evaluated was
108.0–110.0 by 0.2; K was 0.550–0.570 by 0.002)

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

0.820.635.862.20.552108.0 5.8381.41.8

0.720.735.962.30.552108.2 5.8041.31.9

0.620.735.962.40.552108.4 5.8071.31.9

0.520.736.062.50.552108.6 5.8501.32.0

0.720.635.862.30.554108.4 5.7721.41.8

0.620.635.962.40.554108.6 5.7561.41.9

0.520.635.962.50.554108.8 5.7791.41.9

0.720.535.762.30.556108.6 5.7661.51.7

0.620.535.862.40.556108.8 5.7321.51.8

0.520.635.962.50.556109.0 5.7351.41.9

0.420.635.962.60.556109.2 5.7771.41.9

0.620.435.762.40.558109.0 5.7331.61.7

0.520.535.862.50.558109.2 **5.7181.51.8

0.420.535.862.60.558109.4 5.7411.51.8

0.620.435.662.40.560109.2 5.7611.61.6

0.520.435.762.50.560109.4 5.7271.61.7

0.420.435.862.60.560109.6 5.7311.61.8

IHGFEDCBA

SSQDev_3Dev_2Dev_122.034.063.0KC0

0.520.535.862.50.557109.1 5.7231.51.8

0.420.535.862.60.557109.2 5.7351.51.8

0.420.635.962.60.557109.3 5.7551.41.9

0.620.535.762.40.558109.1 5.7211.51.7

0.520.535.862.50.558109.2 **5.7181.51.8

0.520.435.762.50.559109.3 5.7191.61.7

0.620.435.762.40.559109.1 5.7441.61.7

0.620.435.762.40.559109.2 5.7271.61.7

0.520.435.762.50.559109.3 5.7191.61.7

Columns C through I Copy Row 2 formulas through rows 3–17
Cell I18 = MIN(I2:I17) Minimum of SSQ values
Cell J2 = IF(I2 = I$18,”∗∗”,”“) Flags row if it contains minimum SSQ
Cell J3-J17 Copy formula from Cell

J2
Flags row with best C0 and K estimates
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Based on these results, it appears that the best estimate of C0 is near 100 and for K near 0.5. The
next iterations further refine the estimates.
Final Iteration: C0 range evaluated was 109.0–109.4 by 0.1; K was 0.556–0.560 by 0.001
The least-squares estimates, at the desired levels of precision, are C0 = 109.2 and K = 0.558.

This next example uses Excel’s built-in two-factor ANOVA, without replication, to evaluate the
tablet dissolution data given in Table 8.9.

Commands in Analyses
Columns A, B, C, D Enter dissolution values from Table 8.9.
Main Menu Tools → Data Analysis → Anova: Two-Factor without

Replication
Dialog Box

Input Range: Highlight or enter A1:D9
Labels: Click on this option
Alpha: Enter 0.05
Output Range Click on or enter A11
OK Click to perform calculations

Cell F3 = ABS(D23-D25)/SQRT(2∗D32/8) Calculate pair-wise t-test
Cell F4 = ABS(D24-D25)/SQRT(2∗D32/8)
Cell G3 = TDIST(F3,C32,2) Determine pair-wise p-value
Cell G4 = TDIST(F4,C32,2)

This next example uses Excel’s built-in two-factor ANOVA, with replication, to evaluate the
replicate tablet dissolution data given in Table 8.12.

Commands in Analyses
Columns A,B,C,D Enter dissolution values from Table 8.12.
Main Menu Tools → Data Analysis → Anova: Two-Factor with Replication
Dialog Box

Input Range: Highlight or enter A1:D17
Rows per sample: Enter 2
Alpha: Enter 0.05
New Worksheet Ply: Click on this option
OK Click to perform calculations
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Workbook 8.9 Two-Way Analysis of Variance of Tablet Dissolution Results

GFEDCBA

StandardGeneric BGeneric ALAB1

2 9483891 p-valuet-value

3 7875932 A vs Std 0.9270.09

4 8975873 B vs Std 0.0432.23

5 8576804

6 8477805

7 8473876

8 7580827

9 7577688

10

11 Anova: Two-Factor Without Replication

12

13 VarianceAverageSumCountSUMMARY

14 30.3333388.666666726631

15 938224632

16 57.3333383.666666725133

17 20.3333380.333333324134

18 12.3333380.333333324135

19 54.3333381.333333324436

20 137923737

21 22.3333373.333333322038

22

23 58.7857183.256668A

24 10776168B

25 45.14286836648STANDARD

26

27

28 ANOVA

29 F critP-valueFMSdfSSSource of
Variation

30 2.7641960.1394361.93179955.97619057391.8333Rows

31 3.738890.0602393.456861100.1666672200.3333Columns

32 28.976190514405.6667Error

33

34 23997.8333Total
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Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results (worksheet 1)

DCBA

StandardGeneric BGeneric ALab1

2 9381871

3 958591

4 7474902

5 827696

6 8472843

7 947890

8 8173754

9 897985

10 8076775

11 887883

12 8070856

13 887689

14 7174797

15 798685

16 7073658

17 808171

Workbook 8.12 Two-Way ANOVA of Replicated Dissolution Results (continued)

GFEDCBA

58

59 ANOVA

60 F critP-valueFMSdfSSSource of Variation

61 2.4226310.002314.569485111.95247783.6667Sample

62 3.4028320.0019598.176871200.33332400.6667Columns

63 2.1297950.0307792.36540357.9523814811.3333Interaction

64 24.524588Within

65

66 472583.667Total

67

68 3.738890.0602393.456861200.33332400.6667Drugs
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(New Worksheet Ply)

EDCBA

1 Anova: Two-Factor With Replication

2

3 TotalStandardGeneric BGeneric ASUMMARY

4 1

5 6222Count

6 532188166178Sum

7 88.66667948389Average

8 27.86667288Variance

xxxxxxxx)xxxxxxxxxxxxxxxxxxxxxxxx(Rows not shown)9–45

46 8

47 6222Count

48 440150154136Sum

49 73.33333757768Average

50 37.86667503218Variance

51

52 Total

53 161616Count

54 132812321332Sum

55 837783.25Average

56 59.620.6666765.26667Variance

Commands in Analyses
Cell A68 Enter “Drugs” Drugs effect is that for columns in the

ANOVA table
Cell B68 = B62 Drugs SS
Cell C68 = C62 Drugs degrees of freedom
Cell D68 = D62 Drugs MS
Cell E68 = D62/D63 F-ratio = Drugs MS/Interaction MS
Cell F68 = FINV(E68,2,14) p-value for Drugs F-ratio with 2 & 14

degrees of freedom
Cell G68 = FDIST(0.95,2,14) Critical F-distribution value with 2 & 14

degrees of freedom

Notes on Interpretation
The analysis for Drugs in row 68 is based on the assumption that Drugs is a fixed effect and
Laboratories (Rows) is a random effect. The analysis in row 62 for the Column (Drugs) effect
assumes that both Drugs and Laboratories are fixed effects. If the laboratories are a random
sample of all the available laboratories and the results are to be generalized to all laboratories,
then use the row 68 results. If the eight laboratories are the only ones of interest, then the results
in row 62 should be used.
The next workbook shows how to perform an Analysis of Covariance using the data from Table
8.18. In this example, two different manufacturing methods (I and II) were used to produce four
lots of products whose potency and raw material potency are shown.
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Workbook 8.18 Analysis of Covariance to Compare Two Methods (worksheet 1)

FEDCBA

ProductMaterialMeth2MIIMIMethod1

2 98.098.40098.4I

3 97.898.60098.6I

4 98.598.60098.6I

5 97.499.20099.2I

6 97.698.7198.70II

7 95.499.01990II

8 96.199.3199.30II

9 96.198.4198.40II

10

Mean11 98.775

IAdj Meanp-valueF-parallel12 97.8639

13 0.9250.010 II 96.3611

Diff (II-I)14 1.50278

p-value15 0.036637

Intercept IIIntercpt ISlope16

17 176.8444178.34720.81481

Commands in Analyses
Columns A, E and F Enter Method, Material and Product values from Table 8.18.
Column B Copy Method I values into rows 2–5, enter 0 elsewhere.
Column C Copy Method II values into rows 6–9, enter 0 elsewhere.
Column D Enter 0 for Method I row and 1 for Method II row.
Cell E11 = AVERAGE(E2:E9) Mean for Material values.
Main Menu Tools → Data Analysis → Regression (ANOVA for separate lines)
Dialog Box

Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter B1:D9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations

Main Menu Tools → Data Analysis → Regression (ANOVA for parallel lines)
Dialog Box

Input Y Range: Highlight or enter F1:F9
Input X Range: Highlight or enter D1:E9
Labels: Click on this option
New Worksheet Ply: Click on this box
OK Click to perform calculations

Cell A17 Copy slope (Material coefficient) from parallel lines Worksheet
Cell B17 Copy Intercept coefficient from same Worksheet
Cell C17 = B17 + coefficient for Meth2 from parallel lines Worksheet
Cell F12 = B17 + E11∗A17
Cell F13 = C17 + E11∗A17
Cell F14 = F12-F13 Difference between adjusted Method means
Cell F15 p-value for difference from Meth2 in parallel lines Worksheet
Cell A13 = (SS resid. parallel lines – SS resid. separate lines)/(SS resid

separate/4)
Cell B13 = FDIST(A13,1,4)
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Workbook 8.18 Analysis of Covariance to Compare Two Methods (section of worksheet ply for separate
lines)

EDCBA

10 ANOVA

11 FMSSSdf

12 2.9168857181.9419166675.825753Regression

13 4Residual 2.663 0.66575

14 8.488757Total

15

16 P-valuet StatStandard ErrorCoefficients

17 0.2330939061.403645386134.2219351188.4Intercept

18 MI 1.3598917440.916666667 0.5372130.674073264

19 MII 1.2163241530.733333333 0.5790837540.602909456

20 Meth2 180.199398219.61 0.9185828250.108823893

Notes on Analyses (separate lines)

Cell C13 contains the residual SS for separate lines (2.663) to be used in the test for parallelism
(Cell A13 in Worksheet 1). The Intercept (188.4 in B17) is the intercept for the Method I line. The
slope for the Method I line is the coefficient for MI (– 0.917 in B18). The intercept for Method II
is the addition of the coefficient for Meth2 (B20) to the Method I intercept (B17), which is 188.4–
19.6 = 168.8. The slope for the Method II line is the coefficient for MII (-0.733 in B19).

(section of worksheet ply for parallel lines)

EDCBA

10 ANOVA

11 FMSSSdf

12 5.4490952.9095145.8190282Regression

13 5Residual 2.669722 0.533944

14 8.488757Total

15

16 P-valuet StatStandard ErrorCoefficients

17 0.0765912.22555980.13591178.3472Intercept

18 Meth2 1.50278 0.530852 2.83088 0.036637

19 Material 0.8119060.81481 0.3616461.00358

Notes on Analyses (parallel lines)

Cell C13 contains the residual SS for parallel lines (2.67) to be used in the test for parallelism
(Cell A13 in Worksheet 1). The coefficient for the Intercept (178.3 in B17) is the intercept for the
Method I line. The coefficient for the intercept of Meth2 is the difference between the intercepts
for Methods I and II (value −1.50 in B18) which, because the two lines are parallel, is also
the difference between the two methods. We estimate that Method II is 1.50 units lower than
Method I with the p-value for this difference (0.0366 in E18) being statistically significant at the
0.05 level. The common slope for the parallel lines for the two methods is given by the coefficient
for Material (−0.815 in B19).
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The next example is taken from Table 9.2. Here we analyze the results from a 23 factorial
experiment to determine the effect of three components upon the thickness of a tablet.

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment (worksheet 1)

HGFEDCBA

ResponseABCBCACABStarch (C)Drug (B)Stearate (A)1

2 4750000000

3 4870000001

4 4210000010

5 4260002011

6 5250000100

7 5460020101

8 4720200110

9 5224222111

Commands in Analyses
Column H Enter response values from Table 9.2.
Columns A, B, C Enter a 0 where Table 9.2 has a “ − “ and a 1 where there is a “+”
Cell D2 = 2∗A2∗B2 Design entry for Stearate-Drug interaction
Cells D3-D9 Copy formula from D2
Cell E2 = 2∗A2∗C2 Design entry for Stearate-Starch

interaction
Cells E3-E9 Copy formula from E2
Cell F2 = 2∗B2∗C2 Design entry for Drug-Starch interaction
Cells F3-F9 Copy formula from F2
Cell G2 = 4∗A2∗B2∗C2 Design entry for 3-way interaction
Cells G3-G9 Copy formula from G2
Main Menu Tools → Data Analysis → Regression (Estimate Main Effects)
Dialog Box

Input Y Range: Highlight or enter H1:H9

Workbook 9.2 Evaluation of Results from a 23 Factorial Experiment (main effects worksheet)

FEDCBA

10 ANOVA

11 Significance FFMSSSDf

12 0.00513523.918354589.333137683Regression

13 191.875767.54Residual

14 14535.57Total

15

16 Lower 95%P-valuet StatStandard ErrorCoefficients

17 438.05531.18E-0647.499849.794769465.25Intercept

18 Stearate (A) 22 0.0880252.2460979.794769 5.19469

19 Drug (B) 48 9.794769 0.0080414.90057 75.1947

20 Starch (C) 64 36.805310.0028346.53419.794769

MS21

968A22

4608B23

8192C24
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Input X Range: Highlight or enter A1:C9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet “Main Effects”
Main Menu Tools → Data Analysis → Regression (Estimate 2-Factor Interactions)
Dialog Box

Input Y Range: Highlight or enter H1:H9
Input X Range: Highlight or enter A1:F9
Labels: Click on this option
New Worksheet
Ply: Click on this box
OK Click to perform calculations

Rename New Worksheet “Interaction”
Repeat Regression Analysis with Input “X” Range as A1:G9 to obtain estimate for A∗B∗C

interaction

Commands in Analyses (Main Effects Worksheet)
Cell B22 = D18∗D18∗D13
Cell B23 = D19∗D19∗D13
Cell B24 = D20∗D20∗D13

(2-factor interactions worksheet)

FEDCBA

10 ANOVA

11 Significance FFMSSSdf

12 0.74788760.622942100.9167605.56Regression

13 1621Residual 162

14 767.57Total

15

16 Lower 95%P-valuet StatStandard ErrorCoefficients

17 0.4430971.19688711.9058814.25Intercept 137.02791

18 Stearate (A) 15.5884619 0.4374111.21885 217.06928

19 Drug (B) 15.5884615 0.5122460.96225 213.06928

20 Starch (C) 15.5884623 0.3791981.47545 221.06928

21 AB 5.5 0.6507830.6111119 108.85535

22 AC 13.5 0.3743341.59 100.85535

23 BC 9.5 0.4827981.0555569 104.85535

MS24

60.5AB25

364.5AC26

180.5BC27
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Commands in Analyses (2 factor interactions worksheet)
Cell B25 = D21∗D21∗D13
Cell B26 = D22∗D22∗D13
Cell B27 = D23∗D23∗D13

(worksheet 1 continued)

GFEDCBA

p-valueFMSSSDfEstimateEffect11

A12 0.07487.2968968122

B13 0.009934.346084608148

C14 0.004461.081928192164

AB15 60.560.515.5

AC16 0.19812.7364.5364.5113.5

BC17 180.5180.519.5

ABC18 16216219

Error19 134.33334033

Commands in Analyses (ANOVA similar to Table 9.5)
Column A Enter Effect Names
Column B Values are coefficients from Main Effects & Interactions Worksheets

Coefficient for ABC is from regression including all effects (Wrksht not
shown).

Column C Enter 1 for all effects except Error. Enter 3 for Error.
Cells E12-E17 Enter values from Main Effects & 2-Factor Interaction Worksheets
Cell E18 Enter value for Residual MS from Cell D13 of 2-Factor Interaction

Worksheet
Cell D12-D18 Enter same values that are in Cells E12-E18
Cell D19 = SUM(D15,D17,D18) Error term is chosen to be sum of AB, BC & ABC

terms
Cell E19 = D19/C19 MS = SS/df
Cell F12 = E12/E$19 F = Effect MS/Error MS
Cells F13, F14, F16 Copy formula from F12
Cell G12 = FDIST(F12, 1,3) p-value for Effect from

F-distribution
Cell G13,G14,G16 Copy formula from G12

Section 11.5 presents how to perform repeated measures Analysis of Variance. The methods
used in the analysis are illustrated using the results of a comparison of two antihypertensive
drugs. One group of patients received the standard drug and a second group the new drug.
Diastolic blood pressure was recorded for each patient prior to treatment (baseline) and then at
2, 4, 6, and 8 weeks after treatment. The results, presented in Table 11.22, are analyzed in the
following workbook.

Commands in Analyses
Cells A3-F10 Enter patient numbers and diastolic blood pressures from Table 11.22
Cells A15-A22 Copy patient numbers from Cells A3:A10
Cell B15 = C3-$B3 Calculates change from baseline
Cells B16-B22 Copy formula from Cell B15
Cells C15-E22 Copy formula from B15 through B22
Cell B25 = Sum(B15:B22) Sum of changes at Week 2
Cells C25-E25 Copy formula from Cell B25
Cell F25 = Sum(B25:E25) Sum of changes for all weeks
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Worksheet 11.22 Comparison of Two Antihypertensive Drugs (worksheet 1)

FEDCBA

Standard Drug1

Wk 8Wk 6Wk 4Wk 2BaselinePatient2

3 9386971061021

4 101991021031052

5 88889695995

6 98981021021059

7 1029110110810813

8 97999710110415

9 1019710010310617

10 9399969710018

Wk 8Wk 6Wk 4Wk 2Patient14

15 41 5 16 9

16 2 2 3 6 4

17 5 4 3 11 11

18 9 3 3 7 7

19 013 7 17 6

20 15 3 7 5 7

21 17 3 6 9 5

22 18 3 4 1 7

23

24 Standard

25 Sum 14 38 72 56 180

26

Section for New Drug (not shown):

Cells H2:M2 Enter or Copy the headings in cells A2-F2
Cell K1 Enter heading “New” for New Drug
Cells H3-M11 Enter New Drug patient numbers and diastolic readings
Cell 115 = J3-$13 Calculate changes from baseline
Cells 116–123 Copy formula from Cell 115
Cells J15-L23 Copy formulas from 115 through 123
Cell 125 = Sum(I15:123) New drug sum of changes Week 2
Cells J25-L25 Copy formula from Cell 115
Cell M25 = Sum(I25:L25) New drug sum of changes all

weeks
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(section of analyses shown in Tables 11.24 and 11.25)

GFEDCBA

27 ANOVA Standard ANOVA New

28 dfSSSourcedfSSSource

29 8114.2222Rows757.5Rows

30 3486.9722Columns3232.5Columns

31 24407.7778Error21255.5Error

32

33 351008.972Total31545.5Total

34

p-valueFMSSSdfSourceCT35

36 11.45171.7215Patients3750.368

37 223.23669.693Weeks

38 0.000917.13196.16196.161Drugs

39 WK 0.34871.1316.5949.783Drug

40 14.74663.2845Error

41 1750.6367Total

Commands in Analyses
Main Menu Tools → Data Analysis → Anova: Two-Factor Without Replication
Dialog Box

Input Range: Highlight or enter B15:E22
Alpha Level Enter or accept default value of 0.05
New Worksheet
Ply:

Click on this box

OK Click to perform calculations
(Copy ANOVA values from new worksheet to main Worksheet 1)

Cells B27-G33 Copy from cells A19-C25 of new worksheet to get Source, SS & df
Main Menu Tools → Data Analysis → Anova: Two-Factor Without Replication
Dialog Box

Input Range: Highlight or enter I15:L23 (New Drug data not shown)
Alpha Level Enter or accept default value of 0.05
New Worksheet
Ply:

Click on this box

OK Click to perform calculations
(Copy ANOVA values from new worksheet to main worksheet 1)

Cells E27-G33 Copy from Cells A19-C25 of new worksheet to get Source, SS & df
Cells A35-G35 Enter Headings CT, Source, df, SS, MS, F and p-value
Cells B36-B41 Enter Source names
Cell A36 = POWER(F25 + M25,2)/68 Correction Term
Cell C36 15 (Combined row df for Standard and New Drugs)
Cell C37 3 (number of weeks – 1)
Cell C38 1 (number of drugs – 1)
Cell C39 = 3∗1 (Product of Week df and Drugs df)
Cell C41 = 4∗17–1 (#Weeks ∗#Patients – 1)
Cell C40 = 67 – 15 – 3 – 1 – 3 (error df = Total-Patients-Drugs-WeeksxDrugs)
Cell D36 = B29 + F29 (Combined Row SS for Standard and New Drugs)
Cell D37 = (SUMSQ((B25 + I25),(C25 + J25),(D25 + K25),(E25 +

L25))/17)-A36
Cell D38 = F25∗F25/32 + M25∗M25/36 – A36
Cell D39 = B30 + F30-D37
Cell D40 = B31 + F31 (Combined Error SS for Standard and New Drugs)
Cell D41 = SUM(D36:D40) (Total SS = Sum of all other SS)
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Cell E36 = D36/C36 (MS = SS/df)
Cell E37-E40 Copy formula from Cell E36
Cell F38 = E38/E36 (F = MSeffect/MSerror Drugs uses MS Patients as error

term)
Cell F39 = E39/E40 (F value for Weeks x Drugs using ANOVA error term)
Cell G38 = FDIST(F38,1,15) (p-value for F with 1 df & 15 df)
Cell G39 = FDIST(F39,3,45)

Table 12.2 shows the average weights of 50 tablets from 30 batches of a tablet product.
In the next example, Excel is used to calculate the three-batch moving average for the

weights. These results are then used to construct a control plot of the moving averages along
with their upper and lower control limits.

Workbook 12.2 Average Weight of 50 Tablets from 30 Batches of a Product

GFEDCBA

HighLowMeanRangeMove AveAverageBatch1

2 402.397397.603400.00

3 N/A398.41

4 N/A399.52

5 1.1398.9398.83

6 2.1398.6397.44

7 5.3399.6402.75

Rows 8–26 not shown

27 3.1399.5398.425

28 0.4398.6398.826

29 1.5399.0399.927

30 2.1399.9400.928

31 1.0400.2399.929

32 1.4400.1399.530

33 402.397397.603400.031

34 2.35400.0Mean

Commands in Analyses
Data Entry: Enter Batch numbers and averages from Table 12.2 into columns A and B,

adding a Batch 0 and 31 for graphing purposes.
Cell C5 = Average(B3:B5) Average of first 3 batches
Cell C6-C32 Copy formula from Cell C5
Cell D5 = MAX(B3:B5)-MIN(B3: B5) Range (Max-Min) of first 3 batches
Cell D6-D32 Copy formula from Cell D5
Cell B34 = Average(B3:B32) Average of the 30 batches
Cell D34 Copy formula from Cell B34 Average of moving ranges
Cell E33 = B34
Cell F33 = $E$33 – 1.02∗$D$34 Lower Limit using factor (1.02)

from Table IV.10
Cell G33 = $E$33 + 1.02∗$D$34 Upper Limit using factor (1.02)

from Table IV.10
Cell E2 = E33
Cell F2 = F33
Cell G2 = G33
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Click on Chart Wizard and choose to create a XY scatter plot.
Click Next and then click on Series Tab, then on Add.
Click on worksheet icon for X-values.
Choose cells A2 through A33, click icon to accept this range.
For Y-values, click worksheet icon, choose cells C2 through C33.
Click Add for Series 2. X-values are A2 through A33. Y-values F2 through F33.
Click Add for Series 3. X-values are A2 through A33. Y-values are G2 through G33.
Click Add for Series 3. X-values are A2 through A33. Y-values are E2 through E33.
Click Next and add chart title, X and Y axes labels.
Click Legend tab and remove check mark on Show Legend (by clicking it).
Click tab for Gridlines and make sure all choices are blank.
Click Next and choose the name Plot for the New Worksheet for the chart.
Click on Plot Area and choose None for fill effects.
On Main Menu click Tools, Options & Chart.
Choose to plot empty cells as Interpolated.
Click on Lower & Upper limit points and set symbol to None and line to a dashed, black, custom

line.
Click on Mean point and set symbol to None and line to a solid, black, custom line.
Click on an X-axis number and then on the Scale tab.
Set Minimum = 0, Maximum = 31, Major Unit = 1.
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In the next example, the assay results for a sample of theee tablets from four different batches
of a product, as shown in Table 12.9, are used to demonstrate how to calculate the variance
components. The experiment was a nested design in which the total variance can be divided
into its components of between batches, between tablets within batch, and between assays
within tablets.

Workbook 12.9 Determination of Variance Components in a Nested Design

GFEDCBA

1 dfSSQAssay 3Assay 2Assay1TabletBatch

2 20.04666750.850.550.61A

3 20.18666748.548.949.12

4 20.0651.451.151.13

5 20.6249.449.050.11B

6 20.28666751.650.951.02

7 20.0849.850.050.23

8 20.08666751.851.751.41C

9 20.28666751.452.052.12

10 20.32666751.651.951.13

11 20.16666748.549.049.01D

12 20.10666747.647.647.22

13 20.24666749.248.548.93

Total 14 242.5

MS 15 0.104167

16

DCBA17

18 48.8351.6349.5050.63

19 47.4751.8351.1748.83

20 48.8751.5350.0051.20

Commands in Analyses
Column A,B,C,D,E Enter values from Table 12.9 into rows 1 through 13
Cell G2 Enter 2 Assay degrees of freedom for

Tablet
Cells G3-G13 Copy G2 value
Cell F2 = G2∗VARA(C2:E2) Assay SS for Tablet
Cells F3:F13 Copy formula from F2
Cell F14 = Sum(F2:F13) Pooled within-tablet assay SS
Cells G14 Copy formula from F14 Pooled degrees of freedom for

assay
Cell F15 = F14/G14 MS = SS/df
Cell A18 = Average (C2:E2) Tablet 1, Batch A average
Cells A19:A20) Copy formula from A18 Tablets 2 & 3 averages, Batch A
Cell B18 = Average(C5:E5) Tablet 1, Batch B average
Cells B19:B20) Copy formula from B18
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Cell C18 = Average(C8:E8) Tablet 1, Batch C average
Cells C19:C20) Copy formula from C18
Cell D18 = Average(C11:E11) Tablet 1, Batch D average
Cells D19:D20) Copy formula from D18

Workbook 12.9 Determination of Variance Components in a Nested Design (continuation of worksheet)

GFEDCBA

32 ANOVA

33 F critP-valueFMSdfSSSource of Variation

34 4.066180.010717.4105785.409722316.22917Between Groups

35 0.7385.84Within Groups

36

37 1122.06917Total

CorrectCorrect38

S w39 2 MSSS0.104167

S t40 2 Between0.695278 16.2291748.6875

S b41 2 Within1.559907 2.19017.52

Commands in Analyses
Main Menu Tools → Data Analysis →Anova: Single Factor
Dialog Box

Input Range: Highlight or enter A17:D20
Labels: Click on this option
Output Range: Highlight or enter A32
OK Click to perform calculations

Cell F40 = 3∗B34 SS individual = 3 ∗ SS of means
Cell F41 Copy formula from F40
Cell G40 = F40/C34 MS Between Batches
Cell G41 Copy formula from G40 MS Between Tablets (within

batch)
Cell B39 = F15 Between-Assay (within tablet)

Variance
Cell B40 = (1/3)∗(G41-B39) Between-Tablet (within batch)

Variance
Cell B41 = (1/9)∗(G40-G41) Between-Batch Variance

In the next example, the Day 1 calibration curve results (Peak Area vs. Concentration) from
Table 13.8 are used to demonstrate how to obtain the weighted linear regression analysis shown
in Table 13.10.
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Workbook 13.10 Weighted Linear Regression Analysis

HGFEDCBA

wt(Y-Ym)**2wt*X*Ywt*Ywt*X*Xwt*XwtYX1

2 0.0009360.061.21204000.0030.05

3 0.0001120.081.61204000.0040.05

4 0.0032890.080.415250.0160.20

5 0.0045360.090.4515250.0180.20

6 0.0069670.0880.0881110.0881.00

7 0.0080050.0940.0941110.0941.00

8 0.0083810.0920.009210.10.010.92010.00

9 0.0080370.09010.0090110.10.010.90110.00

10 0.0085980.092950.004647510.050.00251.85920.00

11 0.0083030.091350.004567510.050.00251.82720.00

12

Sum13 0.0571640.85843.8594251052.3852.025

Ym 14 0.0045297

Slope15 0.09154

Intercept16 0.00109

17

Commands in Analyses
Columns A and B Enter Day 1 values from Table 13.8 (X = Conc, Y = Area)
Cell C2 = 1/(A2∧2) Weight is 1/(X∗X)
Cells C3-C11 Copy formula from C2
Cell D2 = C2∗A2 Weight∗X = 1/X
Cells D3:D11 Copy formula from D2
Cell E2 = D2∗A2 Weight∗X∗X = 1
Cells E3:E11 Copy formula from E2
Cell F2 = C2∗B2 Weight∗Y = Y/X
Cells F3:F11 Copy formula from F2
Cell G2 = D2∗B2 Weight∗X∗Y
Cells G3:G11 Copy formula from G2
Cell C13 = SUM(C2:C11) �wt
Cell D13 = SUM(D2:D11) �(wt∗X)
Cell E13 = SUM(E2:E11) �(wt∗X2)
Cell F13 = SUM(F2:F11) �(wt∗Y)
Cell G13 = SUM(G2:G11) �(wt∗X∗Y)
Cell F14 = (SUM(F2:F12))/C13 Weighted mean for Y (Ym)
Cell H2 = C2∗(B2-$F$14)∧2 wt∗(Y-Ym)2

Cells H3:H11 Copy formula from H2
Cell H13 = SUM(H2:H11) �(wt∗(Y-Ym)2)
Cell B15 = (G13-((D13∗F13)/C13))/(E13-

((D13∗D13)/C13))
Cell B16 = (F13-(B15∗D13))/C13
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(continuation of worksheet)

GFEDCBA

wt(Y-Yav)**2wt(Yav-Yp)**2Yavwt(Y-Yp)**2YpYX18

19 0.0001000.00000010.0035000.0000950.0030.0030.05

20 0.0001000.00000010.0035000.0001050.0030.0040.05

21 0.0000250.00000120.0170000.0000370.0170.0160.20

22 0.0000250.00000120.0170000.0000150.0170.0180.20

23 0.0000090.00000030.0910000.0000060.0900.0881.00

24 0.0000090.00000030.0910000.0000130.0900.0941.00

25 0.0000010.00000010.9105000.0000000.9140.92010.00

26 0.0000010.00000010.9105000.0000020.9140.90110.00

27 0.0000010.00000041.8430000.0000021.8301.85920.00

28 0.0000010.00000041.8430000.0000001.8301.82720.00

29

SUM30 0.00027110.00000430.0002754

31

Commands in Analyses
Columns A and B Copy values from rows 2–11.
Cell C19 = $B$16 + $A19∗$B$15 Predicted Y value (Yp)
Cell C20-C28 Copy formula from C19
Cell D19 = (1/(A19∗A19))∗(B19-

C19)ˆ2
wt∗(Y-Yp)2

Cells D20:D28 Copy formula from D19
Cells E19 and E20 = (B$19 + B$20)/2 Average Y value: X = 0.05 (Yav)
Cells E21 and E22 = (B$21 + B$22)/2 X = 0.20
Cells E23 and E24 = (B$23 + B$24)/2 X = 1.00
Cells E25 and E26 = (B$25 + B$26)/2 X = 10.0
Cells E27 and E28 = (B$27 + B$28)/2 X = 20.0
Cell F19 = (1/(A19∗A19))∗(E19-

C19)∧2
wt∗(Yav-Yp)2

Cells F20-F28 Copy Formula from F19
Cell G19 = (1/(A19∗A19))∗(B19-

E19)∧2
wt∗(Y-Yav)2

Cells G20-G28 Copy Formula from G19
Cell D30 = SUM(D19:D28) $SMwt∗(Y-Yp)2

Cell F30 = SUM(F19:F28) $SMwt∗(Yav-Yp)2

Cell G30 = SUM(G19:G28) $SMwt∗(Y-Yav)2
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Workbook 13.10 Creation of ANOVA Table 13.10

GFEDCBA

31

FMSSSdfSource32

Slope33 1652.70.05688910.0568891

Error34 0.00003440.0002758

Dev Reg35 0.030.00000140.0000043

Within36 0.00005420.0002715

Total37 0.0571649

38

Commands in Analyses
Cell C37 = 10–1 Number of (x,y) pairs – 1
Cell C33 Enter 1 Slope has a single degree of freedom
Cell C34 = C37-C33 Total df – Slope df
Cell C36 Enter 5 5 concentrations that have duplicate values
Cell C35 = C34-C36 Error df – Within df
Cell D37 = H13 �(wt∗(Y-Ym)2)
Cell D34 = D30 �(wt∗(Y-Yp)2)
Cell D33 = D37-D34 Total SS – Error SS
Cell D35 = F30 �(wt∗(Yav-Yp)2)
Cell D36 = G30 �(wt∗(Y-Yav)2)
Cell E33 = D33/C33 SS/df
Cells E34-E36 Copy formula from E33
Cell F33 = E33/E34
Cell F35 = E35/E36

The next set of programs are from Chapter 15, Nonparametric Methods. These programs use
only the basic mathematical and sorting functions of Excel.

The first of these examples uses the paired time to peak concentration results from a
comparative bioavailability study in 12 subjects. The analysis of the data, shown in Table 15.3,
is based on the differences between the results for two oral formulations of a drug, A and B.
The program implements the Wilcoxon Signed Rank Test shown in Table 15.4.

Commands in Analyses
Columns A, B and C Enter values from Table 15.3.
Cell D2 = C2-B2 Calculates B-A difference
Cells D3-D13 Copy D2
Cell E2 = ABS(D2) Absolute value of difference
Cells E3-E13 Copy E2
Cell F2 = E2/D2 + 1 if difference >0; – 1 if

difference <0
Cells F3-F12 Copy F2
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Workbook 15.4 Wilcoxon Signed Rank Test Analysis of Table 15.3 Data

FEDCBA

Sign(B-A)Abs(B-A)B-ABASubject1

2 1113.52.51

3 111432

4 11.251.252.51.253

5 10.250.2521.754

6 #DIV/0!003.53.55

7 11.51.542.56

8 1.51.757 0.250.25 1

9 10.250.252.52.258

10 33.59 0.50.5 1

11 10.50.532.510

12 11.51.53.5211

13 10.50.543.512

(worksheet contined)

MLKJIHG

NegativePositiveSignRankRankSortSignSortValIndex1

2 22210.251

3 0.252 21 22

4 22210.253

5 0.54 51 55

6 55510.55

7 55510.56

8 7.57.57.5117

9 7.57.57.5118

10 99911.259

11 10.510.510.511.510

12 10.510.510.511.511

N13 11 Sum 759

Z14 2.312

p-value15 0.021



Excel Workbooks and SAS Programs 539

Commands in Analyses
Column G Enter the count of the non-zero differences.
Cells H2-H12 Copy nonzero values from Cells E2-E13 using Paste Special, Values

option.
Cells 12-I12 Copy corresponding values from cells F2-F13 (Paste Special, Values).
Cells H2-I12 Highlight this Range of cells and under Data choose to sort this

selection by column H.
Cell J2-J12 Enter number in column G unless the number in column H is tied

with another in column H. Use the average G number for the ties.
For example, Cells J2, J3 and J4 get the number 2 because their H
value, 0.25, is a three-way tie for index numbers 1, 2 and 3.

Cell K2 = I2∗J2 Signed Rank
Cells K3-K12 Copy formula from K2
Cell L2 = IF(K2 > 0,J2,” “) Enters rank if sign is positive
Cells L3-L12 Copy formula from L2
Cell M2 = IF(K2 < 0,J2,” “) Enters rank if sign is negative
Cells M3-M12 Copy formula from M2
Cell I13 = COUNT(12:I12) Determines N, the number of

signed ranks
Cell L13 = SUM(L2:L12) Sum of ranks with positive signs
Cell M13 = SUM(M2:M12) Sum of ranks with negative

signs
Cell L14 = ABS(L13-I13∗(I13 + 1)/4)/SQRT(I13∗(I13 + 0.5)∗(I13 + 1)/12)
Cell L15 = 2∗(1-NORMSDIST(L14))

Using the Peak Concentration (Cmax) results from a two-way, crossover Bioequivalence study,
a method for calculating a nonparametric confidence interval on the mean treatment ratio is
shown in the following example.

Commands in Analyses
Columns A, B, and C Enter values from Table 15.6 into rows 2–13.
Cell D2 = C2/B2 Calculates B/A Ratio
Cells D3-D13 Copy formula from D2
Cell D16 = 1/12 Power for Geometric Mean
Cell D15 = Product(D2:D13) Product of Ratios
Cell D17 = Power(D15,D16) Product to 1/12th power is

Geom. Mean Ratio
Cells E1-L1 Enter Column Labels.
Cells J2, J3 Enter 95% and 90%. Level of Confidence Interval

for row
Column E Start in row 2 (Subject) and enter number 1 twelve times, 2 eleven

times, 3 ten times, 4 nine times, etc., until 12 is entered into row
79. These numbers represent the first Subject for each pair.

Column F Starting in row 2, enter Subject numbers 1–12, next numbers 2–12,
next 3–12, next 4–12, etc., until 12 is entered into row 79. These
represent the second Subject for each pair.
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Workbook 15.6 Nonparametric Confidence Interval for Cmax

DCBA

B/ABASubject1

2 0.7555561021351

3 0.8212291471792

4 3.8118813851013

5 0.9724771061094

6 1.3695651891385

7 0.7777781051356

8 0.8227851301587

9 0.8012821251568

10 0.8275861441749

11 0.90476213314710

12 0.78620711414511

13 1.13605416714712

14

Product 15 1.080296

1/1216 0.083333

Mean Geometric17 1.006457

Cell G2 = POWER($D$2∗D2,0.5) Geometric mean of Subject 1 ratio
paired with itself

Cells G3-G13 Copy G2 formula Geometric mean ratio of Subject 1
with all others

Cell G14 = POWER($D$3∗D3,0.5) Geometric mean of Subject 2 ratio
paired with itself

Cells G15-G24 Copy G14 formula Geometric mean of Subject 2 with
Subjects 3–12

Cell G25 = POWER($D$4∗D4,0.5) Geometric mean of Subject3 ratio
paired with itself

Cells G26-G34 Copy G25 formula Geometric mean of Subject 3 with
Subjects 4–12

Cells G35-G79 Continue as above for remaining paired subject ratios.
Cells H2-H3 Enter index numbers 1 & 2 The number for the geometric mean (after

sorting)
Cells H4-H79 Highlight Cells H2-H3 and drag copy to obtain index numbers 3–78
Column I Highlight Cells G2-G79

Choose Copy under Edit on Main Menu toolbar.
Place cursor in Cell I2 and then choose Paste Special under Edit on

Main Menu
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(worksheet contined)

LKJIHGFE

HighLowConfidenceSortedIndexGeomean2nd Subj1st Subj1

2 1.2470.80095%0.75555610.75555611

3 1.0650.80490%0.76658620.78770821

4 0.77072931.69708231

5 0.77777840.85718241

6 0.77808351.01724351

7 0.78198160.76658661

8 0.78620770.78845471

9 0.78770880.77808381

10 0.78845490.79075191

11 0.789442100.8268101

12 0.790751110.770729111

13 0.793709120.926473121

14 0.799208130.82122922

15 0.799965141.76930132

Rows 16–74 not shown

75 1.857107740.8434041110

76 1.925349751.0138341210

77 2.080986760.7862071111

78 2.284868770.9450791211

79 3.811881781.1360541212

In Paste Special dialog box, choose to paste Values and then click OK
Next Highlight all entries in Column I
Choose Sort under Data on Main Menu.
Choose to stay with the current selection when prompted about

expanding.
Choose Sort, Ascending for the column labeled “Sorted.”
Click OK.

Use Table 15.5 to obtain the ranking numbers for the upper and lower confidence interval limits

Cell K2 = I15 Lower 95% CI limit is 14th ranked geometric mean ratio
Cell L2 = I66 Upper 95% CI limit is 65th ranked geometric mean ratio
Cell K3 = I19 Lower 90% CI limit is 18th ranked geometric mean ratio
Cell L3 = I62 Upper 90% CI limit is 61 st ranked geometric mean ratio
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Workbook 15.8 Wilcoxon Rank Sum Test for Differences Between Two Independent Groups

HGFEDCBA

M RankO RankRankSortedAppIndexDissolvedApparatus1

2 1150O153O

3 2252O261O

4 3353O357O

5 4454O450O

6 5.55.555M563O

7 5.55.555M662O

8 7756M754O

9 9957O852O

10 9957O959O

11 9957M1057O

12 111158M1164O

13 12.512.559O1258M

14 12.512.559M1355M

15 141461O1467M

16 15.515.562O1562M

17 15.515.562M1655M

18 171763O1764M

19 18.518.564O1866M

20 18.518.564M1959M

21 202066M2068M

22 212167M2157M

23 222268M2269M

24 232369M2356M

N 25 1211

Sum 26 170.5105.5

Z 27 1.631

p-value 28 0.103

The next example demonstrates how to perform the Wilcoxon Rank Sum Test for comparing
the differences between two independent groups. In this example, Excel is used to perform the
necessary calculations on the tablet dissolution results given in Table 15.8. The results from a
modified dissolution apparatus are compared with those obtained from the original apparatus
to see if they are statistically different from each other.
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Commands in Analysis
Columns A & B Enter apparatus and dissolution results from Table 15.8.
Column C Enter the index numbers 1 through 23.
Column D & E Copy values from Column A & B.

Highlight D2 through E24.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column “Sorter”, in ascending order, indicating

there is a Header Row.
Cell F2 = C2 Rank for E2, a unique number in col.
Cell Fx Copy F2 formula for each row, x, for each Ex that is unique.
Cells F6 & F7 = AVERAGE(C6:C7) Rank for tied E values (2).
Cell Fx & Fy Copy F6 formula to consecutive Ex & Ey ties of size 2.
Cells F9,F10,F11 = AVERAGE(C9:C11) Rank for tied E values (3).

Commands in Analyses (continued
Cell G2 = IF(D2 = “O”, F2, ““) Enters rank for original apparatus O.
Cells G3:G24 Copy G2 formula
Cell H2 = IF(D2 = “M”, F2, ““) Enters rank for modified apparatus.
Cells H3:H24 Copy H2 formula
Cell G25 = COUNT(G2:G24) # of original apparatus values.
Cell H25 = COUNT(H2:H24) # of modified apparatus values.
Cell G26 = SUM(G2:G24) Original apparatus Rank Sum.
Cell H26 = SUM(H2:H24) Modified apparatus Rank Sum.
Cell G27 = (ABS(G26-(G25∗(G25 + H25 + 1))/2))/(SQRT(G25∗H25∗

(G25 + H25 + 1)/12))
Cell G28 = 2∗(1-NORMSDIST(G27)) 2-sided p-value for G27 Z-val

Next we analyze the time-to-sleep values (Table 15.10) from one group of rats given a low dose
(L) of an experimental drug, a second group a high dose (H), and a third a dose of a control,
sedative (C).

Commands in Analyses
Columns A & B Enter compound id & time-to-sleep values from Table 15.10
Column C Enter the index numbers 1 through 29
Cells D2-D30 Copy values from A2-A30
Cells E2-E30 Copy values from B2-B30.

Highlight D1 through E30.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column "Sorter", in ascending order, indicating there is a

Header Row.
Cells F2-F30 = Cn n = 1–30; If En is a unique value (e. g. F13 =

C13)
= AVERAGE(Cx:Cy), for the Ex to Ey equal values (ties)

e.g. F2-F7 = AVERAGE(C2: C7).
Cells G2-G30 In first cell for a group of tied ranks in F, put # of tied values.
Cell E32 = COUNT(E2:E30) number of values.
Cell Hn = Gn∗(Gn∗Gn-1)/($E$32∗($E$32∗$E$32–1)) for each n, where there is

an entry in cell Gn.
This is the correction factor for the group Gn of ties.
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Workbook 15.10 Kruskal Wallis Test (One-Way Anova) for Differences Between Independent Groups (>2)

KJIHGFEDCBA

HighLowControlTie CorrTie SizeRankSortedCompndIndxTimeID1
2 3.50.00963.51C18C

3 3.53.51C21C

4 3.53.51L39C

5 3.53.51H49C

6 3.53.51H56C

7 3.53.51H63C

8 7.50.00027.52H715C

9 7.57.52H81C

10 100.0013103C97C

11 10103H1010L

12 10103H115L

13 12124H128L

14 13135L136L

15 150.0013156C147L

16 15156L157L

17 15156H1615L

18 18.50.002418.57C171L

19 18.518.57L1815L

20 18.518.57L197L

21 18.518.57L203H

22 220.0013228C214H

23 22228L228H

24 22228H231H

25 24.50.000224.59C241H

26 24.524.59C253H

27 262610L261H

28 280.00132815C276H

29 282815L282H

30 282815L292H

31
Count32 29 Sum 94.5191.0149.50.016

Correctn33 0.984

n34 10109

R*R/n35 893.03648.12483.4

36
Chi-Sq37 6.89

p-value38 0.032

Chi-Sq(c)39 7.00

p-value40 0.030
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Cells I2–I30 = IF(Dn = “C”,Fn,” “) n = 1 to 30; Rank for Control rows.
Cells J2-J30 = IF(Dn = “L”,Fn,” “) n = 1 to 30; Rank for Low Dose

rows.
Cell K2-K30 = IF(Dn = “H”,Fn,” “) n = 1 to 30; Rank for High Dose

rows.
Cell H32 = SUM(H2:H30) Sum of correction factor for ties.
Cell H33 = 1-H32 Correction for ties.
Cell I32 = SUM(I2:I30) Rank Sum for Control.
Cell J32 = SUM(J2:J30) Rank Sum for Low Dose.
Cell K32 = SUM(K2:K30) Rank Sum for High Dose.
Cell I34 = COUNT(I2:I30) Number of Control Values.
Cell J34 = COUNT(J2:J30) Number of Low Dose Values.
Cell K34 = COUNT(K2:K30) Number of High Dose Values.
Cell I35 = I32∗I32/I34 (Control Rank Sum Squared)/n.
Cell J35 = J32∗J32/J34 (Low Dose Rank Sum Squared)/n.
Cell K35 = K32∗K32/K34 (High Dose Rank Sum

Squared)/n.
Cell I37 = (12/(E32∗(E32 +

1))∗(SUM(I35:K35))-3∗(E32 + 1))
Chi-Square Statistic

Cell I38 = 2∗(1-NORMSDIST(I37)) P-value for I37 Chi-Square
Cell I39 = I37/H33 Statistic corrected for ties.
Cell I40 = 2∗(1-NORMSDIST(I39)) P-value for I39 statistic

In the next Workbook, the tablet hardness results in Table 15.11 from five tablet formulations
(1–5) produced on four different tablet presses (A-D) are examined by nonparametric, two-way
ANOVA to validate that all presses have statistically equivalent performance.

Commands in Analyses
Columns A & B Enter tablet press and hardness values from Table 15.11 in order

shown
Cell B23 Enter 5, the number of tablet formulations
Cell B24 Enter 4, the number of tablet presses
Column C Enter 5 groups of the index numbers 1–4 (one for each tablet

formulation)
Column D Enter the tablet formulation number for each value in column C
Cell E2 = 10∗B2∗D2 value is proportional to hardness
Cells E3-E21 Copy formula from Cell E2
Column F Copy Column A values
Column G Copy Column E, using the Paste Special, values, option under

Edit Highlight Columns F and G, rows 1 through 21.
From Main Menu Toolbar, choose Data and then Sort.
Sort by column “SortMod”, in ascending order, indicating there is

a Header Row.
Cells H2-H21 = IF(Fn = “A”,Cn,” “) n = 1 to 21; Enters ranks for

Press A values.
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Workbook 15.11 Friedman and Modified Friedman Tests (Two-Way Anova)

KJIHGFEDCBA

D RankC RankB RankA RankSortModPressModValTabIndexValuePress1

2 7.5A 1 169B751

3 6.9B 2 270D691

4 7.3C 3 373C731

5 7.0D 4 475A701

6 8.2A 1 1158D1642

7 8.0B 2 2160B1602

8 8.5C 3 3164A1702

9 7.9D 4 4170C1582

10 7.3A 1 1219A2193

11 7.9B 2 2228D2373

12 8.0C 3 3237B2403

13 7.6D 4 4240C2283

14 6.6A 1 1256D2644

15 6.5B 2 2260B2604

16 7.1C 3 3264A2844

17 6.4D 4 4284C2564

18 7.5A 1 1335D3755

19 6.8B 2 2340B3405

20 7.6C 3 3375A3805

21 6.7D 4 4380C3355

22

r 23 5 Sum 7191014

c 24 4 SumR*R 706

Chi-Sqr25 9.72

p-value26 0.0211

A227 150

B228 141.2 CritDiff 5.90

T229 7.364

p-value30 0.0047
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Cells I2-I21 = IF(Fn = “B”,Cn,” “) n = 1 to 21; Enters ranks for Press
B values.

Cells J2-J21 = IF(Fn = “C”,Fn,” “) n = 1 to 21; Enters ranks for Press
C values.

Cells K2-K21 = IF(Fn = “D”,Fn,” “) n = 1 to 21; Enters ranks for Press
D values.

Cell H23 = SUM(H2:H21) Rank Sum for Press A.
Cell I23 = SUM(12:I21) Rank Sum for Press B.
Cell J23 = SUM(J2:J21) Rank Sum for Press C.
Cell K23 = SUM(K2:K21) Rank Sum for Press D.
Cell H24 = SUMSQ(H23:K23) Sum of Squared Rank Sums
Cell H25 = ((12∗H24)/(B23∗B24∗(B24 +

1)))-3∗B23∗(B24 + 1)
Friedman X2

Cell H26 = CHIDIST(H25,B24–1) p-value for Friedman’s test
Cell H27 = SUMSQ(H2:K21) A2 = Sum of squares for the 29

individual ranks
Cell H28 = H24/B23 B2 = Average Squared Rank Sum
Cell H29 = ((B23 – 1)∗(H28-(B23∗B24∗(B24

+ 1)∗(B24 + 1))/4)/(H27-H28)
Modified X2

Cell H30 = FDIST(H29,
B24–1,(B23–1)∗(B24–1))

p-value for modified Friedman
test

Cell K28 = TINV(0.05,(B23–1)∗(B24–1))∗SQRT((2∗B23∗ (H27-H28))/
((B23–1)∗(B24–1)))

Minimum difference between any two Rank Sums that is significant
(p < 0.05)

The tablet harness values are used again to demonstrate how to perform the Quade Test for
randomized block designs as shown in Table 15.12.

Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

Commands in Analyses
Columns A, B, & C Enter press, formulation and hardness values from Table

15.11 in rows 2–21
Cell A24 Enter 4, the number of tablet presses (columns)
Cell A27 Enter 5, the number of tablet formulations (rows)
Cell D2 = MAX(B2:B5)-MIN(B2:B5) Determines range of tablet 1

hardness
Cells D6, D10, D14,

D18
= MAX(Bx:By)-MIN(Bx:By) for D6 x, y = 6, 9

for D10 x, y = 10, 13
for D14 x, y = 14, 17
for D18 x, y = 18, 21

Cells B23-B27 Enter tablet formulation numbers 1–5
Cells C23-C27 Copy ranges for each formulation from cells D2, D6, D10,

D14 & D18
Cells D23-D27 Rank the ranges using the average rank for ties (e. g., tied

ranks 3 and 4 = 3.5)
Cells E2-E21 Enter 5 groups of index numbers 1–4 (one group per tablet

formulation)
Cell F2 = 10∗B2∗D2 modifies hardness value to obtain correct

sorting within press
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Workbook 15.12 Quade Test on Table 15.11 Tablet Hardness Values

MLKJIHGFEDCBA

DCBASortModqPressModIndexQTabValuePress1

2 0.617.5A 1 691.5B75 2.25

3 16.9B 2 701.5D69 0.75

4 17.3C 3 0.75731.5C73

5 17.0D 4 2.25751.5A70

6 0.628.2A 1 1581.5D164 2.25

7 28.0B 2 1601.5B160 0.75

8 28.5C 3 0.751641.5A170

9 27.9D 4 2.251701.5C158

10 0.737.3A 1 2193.5A219 5.25

11 37.9B 2 2283.5D237 1.75

12 38.0C 3 1.752373.5B240

13 37.6D 4 5.252403.5C228

14 0.746.6A 1 2563.5D264 5.25

15 46.5B 2 2603.5B260 1.75

16 47.1C 3 1.752643.5A284

17 46.4D 4 5.252843.5C256

18 0.957.5A 1 3355D375 7.50

19 56.8B 2 3405B340 2.50

20 57.6C 3 2.503755A380

21 56.7D 4 7.503805C335

RnkRngTAB22

k23 c 1.50.61 Sum 2.00 21.005.50 17.50

424 1.50.62

25 3.50.73 A 270 CritDiff

r26 3.50.74 B 21.2156.3

27 50.955 T 5.499

p-value28 0.0131

29

Cells F3-F21 Copy F2 formula
Cells G2-G21 Copy cells A2-A21 press values
Cells H2-H21 Copy the D23-D27 tablet ranks for formulations in column C
Cells 12–I21 Copy F2-F21 values using the Paste Special option under Edit.

Highlight rows 2–21 of Columns G, H and I.
From Main Menu Toolbar, choose Data and then Sort.
Sort G2:I21 selection by column ``SortMod’’, in ascending order.
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Cells J2-J21 = IF($Gn = “A”,$Hn∗($En-($A$24 +
1)/2),”“)

n = 2 to 21; Sij for Press A.

Cells K2-K21 = IF($Gn = “B”,$Hn∗($En-($A$24 +
1)/2),” “)

n = 2 to 21; Sij for Press B.

Cells L2-L21 = IF($Gn = “C”,$Hn∗($En-($A$24 +
1)/2),” “)

n = 2 to 21; Sij for Press C.

Cells M2-M21 = IF($Gn = “D”,$Hn∗($En-($A$24 +
1)/2),”“)

n = 2 to 21; Sij for Press D.

Cell J23 = SUM(J2:J21) Rank Sum for Press A.
Cell K23 = SUM(K2:K21) Rank Sum for Press B.
Cell L23 = SUM(L2:L21) Rank Sum for Press C.
Cell M23 = SUM(M2:M21) Rank Sum for Press D.
Cell J25 = SUMSQ(J2:M21) A = �Sij2

Cell J26 = (SUMSQ(J23:M23))/A27 B = �(�Sij)2/r)
Cell J27 = ((A27–1)∗J26)/(J25-J26) Quade test statistic T = (r-1)B/

(A-B)
Cell J28 = FDIST(J27,A24–1,(A27–1) ∗(A24–1)) p-value from F3,12 distribution
Cell I26 = TINV(0.05,(A27–1)∗(A24–1))∗SQRT((2∗A27∗(J25-J26))/((A27–1)∗

(A24–1)))
Difference between any two Rank Sums which is significant at p = 0.05.

In the next Workbook, a product made from four lots of raw material each with a different
potency (X) is assayed for its potency (Y) after being manufactured using two different methods
(I and II). The results, shown in Table 15.13, are used to demonstrate the Quade Nonparametic
Covariance Analysis.

Commands in Analysis
Columns A, C & D Enter method, Assay (Y) and Material (X) values into rows 2–9
Column B Enter observation numbers 1–8 into rows 2–9
Cells A12-A19 Enter Index numbers 1–8 which will be used as a guide when

ranking values
Cells B12-B19 Copy B2-B9 Observation numbers
Cells C12-C19 Copy D2-D9 X values
Cells F12-F19 Copy B2-B9 Observation numbers
Cells G12-G19 Copy C2-C9 Y values
Cell B21 = (A19 + 1)/2 Mean rank, 4.5, for 8

observations
Cells B12-C19 Highlight this section and sort in ascending order (indicate a header

row)
Cells F12-G19 Highlight this section and sort in ascending order (indicate a header

row)
Cells D12-D19 Rank sorted cells C12-C19, using the average for tied ranks
Cells H12-H19 Rank sorted cells G12-G19 using the average for tied ranks
Cell E12 = D12-$B$21 Center X rank by subtracting

the mean rank
Cells E13-E19 Copy formula from Cell E12 Center remaining X ranks
Cells I12-I19 Copy formula from Cell E12 Center Y ranks by subtracting

the mean rank
Cells E2:E9 Enter centered Y rank, matching sorted Obs number with Obs

number in Col B
Cells F2:F9 Enter centered X rank, matching sorted Obs number with Obs

number in Col B



550 APPENDIX VIII

Workbook 15.13 Quade Nonparametric Covariance Analysis (ANCOVA)
(main worksheet ply)

IHGFEDCBA

Adj RxAdj RyXYObsMethod1

2 2.598.498.01I 3

3 1.598.697.82I 1

4 3.598.698.53I 1

5 99.297.44I 2.50.5

6 0.50.598.797.65II

7 99.095.46II 1.53.5

8 99.396.17II 3.52

9 98.496.18II 2 3

10

Adj RyRank YSort YSort ObsAdj RxRank XSort XSort ObsIndex11

112 1.598.41 195.463 3.5

213 1.598.48 2.596.173 2

314 3.598.62 2.596.181 2

415 3.598.63 497.441 0.5

516 0.5597.650.5598.75

617 1.5697.821.5699.06

718 2.5798.012.5799.24

819 3.5898.533.5899.37

23

(N20 1)/2

21 4.5

Commands in Analysis (continued)
Main Menu Tools → Data Analysis → Regression
Dialog Box

Input Y Range: Highlight or enter E1:E9
Input X Range: Highlight or enter F1:F9
Labels: Click on this option
New Worksheet Ply: Enter “Regression”
Residuals Click on this option
OK Click to perform calculations
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(regression worksheet ply)

CBA

20

21

22 RESIDUAL OUTPUT

23

24 ResidualsPredicted Rank YObservation

25 1.0548781.4451221

26 1.0182930.4817072

27 3.0182930.4817073

28 4 0.7042681.20427

29 5 0.7408540.24085

30 6 0.72256 2.77744

31 7 1.68598 0.31402

32 1.4451228 3.44512

33

Commands in Analyses (continued)
Main Worksheet Ply:
Cells G2:G9 Copy Predicted values from Cells B25-B32 of

Regression Worksheet Ply
Cells H2:H9 Copy Residual values from Cells C25-C32 of

Regression Worksheet Ply

(main worksheet ply)

JIHG

Method IIMethod IResidualPredicted1

2 0.74091.05491.05491.4451

3 1.01831.01830.4817 2.7774

4 3.01833.01830.4817 0.3140

5 0.70430.70431.2043 3.4451

6 0.74090.2409

7 0.7226 2.7774

8 1.6860 0.3140

9 1.4451 3.4451

10
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Commands in Analyses (continued)
Cells I2–I5 Copy Residual values for Method I from Cells H2-H5
Cells J2-J5 Copy Residual values for Method II from Cells H6-H9
Main Menu Tools → Data Analysis → Anova: Single Factor
Dialog Box

Input Range: Highlight or enter $I$1:$J$5
Labels: Click on this option
New Worksheet Ply: Enter word “ANOVA”
OK Click to perform calculations

(ANOVA worksheet ply)

GFEDCBA

1 Anova: Single
Factor

2

3 SUMMARY

4 VarianceAverageSumCountGroups

5 1.1193821.4489335.7957324Method I

6 4Method II 5.79573 3.9442941.44893

7

8

9 ANOVA

10 F critP-valueFMSdfSSSource of Variation

11 5.9873740.0420186.63362116.79525116.79525301Between Groups

12 2.531838615.19102748Within Groups

13

14 731.98628049Total

15

Note: The ANOVA Worksheet contains the results of the Analysis of Covariance.

The next Workbook shows how to perform an evaluation for comparability of baseline disease
severity (mild, moderate, or very severe) for patients randomized to one of two treatment
groups (A or B) in a clinical trial. The data are taken from Table 15.16 and the analysis follows
that shown in Table 15.17.
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Workbook 15.16 Chi-Square Evaluation of a 2×3 Contingency Table

Commands in Analysis
Cells C4-E5 Enter the patient counts from Table 15.16
Cell A8 Enter the number of rows in Table
Cell A11 Enter the number of columns in Table
Cell C6 = SUM(C4:C5)
Cells D6-E6 Copy formula from Cell C6
Cell F4 = SUM(C4:E4)
Cells F5-F6 Copy formula from Cell F4
Cell C12 = (C$6∗$F4)/$F$6
Cells C13 & D12-E13 Copy formula from Cell C12
Cells C14-E14 Copy formula from Cells C6-E6
Cells F12-F14 Copy formula from Cells F4-F6
Cell C20 = (C4-C12)∗(C4-C12)/C12
Cells C21 & D20-E21 Copy formula from Cell C19
Cell D22 = SUM(C20:E21)
Cell D23 = CHIDIST(D22,(A8–1)∗(A10–1))

(patients categorized by disease severity and treatment)

FEDCBA

Observed1

2

Severity:3 TotalMildModerateVery

Treatment:4 55182413A

5 51122019B

6 106304432Total

Rows:7

8 2

ExpectedCols:9

10 3

Severity:11 TotalMildModerateVery

Treatment:12 5515.5722.8316.60A

13 5114.4321.1715.40B

14 106304432Total

15

16

(0-E) /E17 2

18

Severity:19 MildModerateVery

Treatment:20 0.3810.0600.782A

21 0.4100.0650.844B

X22 2 2.541

P 23 0.281
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The final Excel Workbook uses the results shown in Table 15.21 on the Incidence of
Carcinoma in Drug- and Placebo-Treated Animals to demonstrate the method of calculating
exact confidence intervals for a 2 × 2 contingency table.

Workbook 15.21 Fisher’s Exact Test for Carcinoma Results in Drug- and Placebo-Treated Animals

GFEDCBA

p-valuesA values1

Carcinomas2 0.030430

AbsentPresent3 1

Placebo4 212120

Drug5 31495

6 426215

7 0.0120450.03043p-value

8

p-valueFisher’sCarcinomas9

0.04247AbsentPresent10

Placebo11 1275

Drug12 14140

13 26215

14 0.01204p-value

15

Commands in Analyses
Cells C6,D6,E4,E5 Enter marginal totals from (A + B), (C + D), (A +

Table 15.21 C), (B + D)
Cell E6 = SUM(E4:E5) N = A + B + C + D
Cell C4 Enter Placebo-Present count A
Cell C5 = C6-C4 B = (A + B)-A
Cell D4 = E4-C4 C = (A + C)-A
Cell D5 = E6-D4-C5-C4 D = Total-B-C-A
Cell D7 = (FACT(C6)∗FACT(D6)∗FACT(E4)∗FACT(E5))/

(FACT(E6)∗FACT(C4)∗FACT(C5)∗FACT(D4)∗ FACT(D5))
Note: The function FACT(x) returns the factorial of the number x or the

number in that cell if x is a cell reference (e. g. x = C6).
Column F Enter all possible values for A (Placebo-Present count)

This is obtained by going from a count of 0 and increasing to a count of
A + B (cell C5) or A + C (cell D4), whichever is smaller.

Cells B9-E14 Highlight and Copy Cells B2:E7 creates a working table

Set the value for A (Cell C11) to 0 in the working table. If the p-value in Cell D14 ≤ T Cell D7
then copy that value (use Paste Special, value) to column G beside the appropriate A value in
column F. Continue through all the possible values for A shown in column F.

Cell G10 = SUM(G2:G8) p-value for Fisher’s Exact Test
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SAS Programs
The following programs written for the SAS System perform the same analyses as those pre-
sented in the Excel Workbooks section of this appendix. As such, no commentary is provided for
these programs other than that needed to interpret the results of the SAS output. It is assumed
that the reader has a basic understanding of the SAS System and knows how to operate SAS
in his/her computer environment. The SAS programs utilize only the basic mathematical and
statistical functions and standard procedures available in SAS/Base and SAS/STAT. The pro-
grams have been kept as simple as possible in hopes that the reader will easily be able to follow
each program’s logic. All data are contained within the program itself (Cards Statement). The
reader should be able to easily modify the program code to input data from an external file.
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Appendix IX

An Alternative Solution to the Distribution of the
Individual Bioequivalence Metric∗

The Office of Generic Drugs (OGD) of the Federal Drug Administration (FDA) has recently
published statistical guidelines for determination of bioequivalence [1], see above. Included
in that publication is a statistical approach to determining individual bioequivalence (IB), as
recommended by Hyslop et al. [1]. Herewith, is a description of an alternative approach. The
probability density function (PDF) of the IB metric is determined and used to construct a decision
rule for acceptance. The acceptance criterion is based on an upper 95% confidence interval for
the metric, defined as 2.4948. Here is shown the derivation here for the reference-scaled metric.
However, with minor modifications, this approach is also applicable to the constant denominator
metric and to population bioequivalence described in the FDA guidance [1]. The following has
been described in chapter 11, but is repeated here for the sake of continuity.

The reference-scaled metric is defined as

� = [(�t − �r)2 − �2
d + �2

t − �2
r ]/�2

r , (IX.1)

or, equivalently as

� = [(�t − �r)2 + �2
d + �2

t ]/�2
r − 1. (IX.2)

Here, �t is the mean of the parameter for the test product, �r is the mean of the parameter
for the reference product, �2

d = subject-product interaction variance, �2
t = within-subject test

variance, �2
r = within-subject reference variance.

For a four-period replicate design as described by Hyslop and in the FDA guidance [1,2],
we can also define [3]

�2
i = �2

d + 0.5�2
t + 0.5�2

r , (IX.3)

where �2
i is the variance of (�t − �r ). Combining equations (IX.2) and (IX.3),

� = [(�t − �t)2 + �2
i + 0.5�2

i ]/�2
r − 1.5. (IX.4)

The parameter estimates, Xt Xr , S2
i , S2

t and S2
r , are computed using a mixed-effects linear

model as described in the FDA guidance [1].
The analysis in the recent guidance is approximate, has reasonably good properties [1,2],

and is relatively simple to calculate. It appears to agree well with the results of the previously
used bootstrap simulation approach.

The following derivation results in a more direct approach to estimating the upper con-
fidence interval. The idea is to derive the PDF of the metric. Once the PDF is known, the
cumulative probability distribution function (CDF), the 95% confidence interval, as well as
other parameters of interest can be easily determined.

∗Abstracted from a paper submitted to the Journal, Drug Development and Industrial Pharmacy, Marcel Dekker.
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IX.1 DERIVATION AND RESULTS
In principle, the PDF of � can be determined if the joint distributions of the random variables
Xt, Xr, S2

i , S2
t and S2

r are known. In general, this would be a formidable task. However, under
the usual assumption of statistical independence of these variables [2], it is quite feasible to
compute the PDF of � . Further assumptions include [1] that the random variables Xt and
Xr are Gaussian after the usual logarithmic transformation, and [2] that the variances are
distributed as �2

i � 2/d.f . With these assumptions, which are similar to those made by Hyslop
[2], the PDF of � can be derived as shown below. In the derivation, we have used the formulae
for computing the PDF of the sum of two independent variables and the PDF of the ratio of two
independent variables. These may be found in Ref.[4].

For ease of notation, define the following random variables:

Y = (Xt − Xr)2

Z = S2
i

U = 0.5S2
t

V = S2
r

In terms of these, define further the intermediate variables,

W = Y + Z
G = W + U

The metric may then be expressed as

� = G
V

− 1.5.

Since Xt and Xr are both Gaussian, their difference is also Gaussian. Let the mean and
standard deviation of (X̄t − X̄r) be � and � , respectively. Then the PDF of Y, p(y) is given by

p(y) = 1

�
√

2�
exp

(
− y + �2

2�2

)
1√
y

cosh
(

�
√

y
�2

)
y ≥ 0

Let q(z) be the PDF of Z. Since Y and Z are independent, the PDF of W, r(w), is given by the
convolution of p(y) and q(z). Thus

r (w) =
w∫

0

p(y)q (w − y)dy

Similarly, if s(u) is the PDF of U, then the PDF of the variable G, f (g), is given by

f (g) =
g∫

0

r (w)s(g − w)dw

Finally, let a(m) be the PDF of �. If t(v) is the PDF of V, then

a (m) =
w∫

0

vt(v) f [(m + 1.5)v]dv

A program was written in MATLAB [5] to evaluate a(m) using numerical integration to
compute the various integrals in the above derivation. If the parameters defining the distri-
butions of Xt, Xr, etc. were known, this would be an exact solution. In the absence of such
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Table IX.1 Comparison of Results of Convolution Method to Hyslop Method for the

Parameter Values Shown

N Mean Difference S2i S2
t S2r Hyslopa Convolutionb

122c 0 0.02 0.02 0.0125 −0.028 2.185

0 0.02 0.02 0.01 −0.001 2.46

0 0.02 0.03 0.01 +0.005 3.065

0.2 0.12 0.12 0.065 +0.023 3.175

26d 0.05 0.12 0.1 0.085 −0.008 2.43

0.05 0.198 0.02 0.1075 +0.0004 2.50

0.05 0.08 0.049 0.05 +0.005 2.68

0.2 0.12 0.12 0.095 +0.0205 2.96

16 0.05 0.05 0.05 0.05 −0.0085 2.24

0.05 0.02 0.02 0.02 −0.0014 2.41

0.05 0.05 0.1 0.05 +0.0296 3.395

0.05 0.03 0.02 0.02 +0.0623 3.725

12 0.05 0.02 0.02 0.01 −0.0014 2.79

0.05 0.02 0.022 0.03375 −0.0118 2.46

0 0.05 0.04 0.0475 +0.0144 3.56

0.07 0.05 0.04 0.0475 +0.0222 3.175

a Hyslop method passes for negative values.
b Convolution passes for values less than 2.498.
c Sequence sizes are 30,30,30,32.
d Sequence sizes are 6,6,6,8.

knowledge, an approximate solution is obtained by using the observed values of the means and
variances as the parameter values. Clearly, this solution would approach the exact solution with
large sample sizes. With the sample sizes usually used in BE studies, we expect that the solution
should be reasonably good. A preliminary spot check of the results and decisions comparing
this new approach to that of Hyslop is shown in Table IX.1. Examples are shown where the
decisions are borderline.
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Appendix X

Some Statistical Considerations and Alternate
Designs and Considerations for Bioequivalence

X.1 PARALLEL DESIGN IN BIOEQUIVALENCE
The great majority of bioequivalence studies measure drug in body fluids, such that products
can be compared within an individual using crossover designs. In some rare circumstances, this
approach is either not possible or impractical. For example, drugs with long half-lives may not
be amenable to a crossover design or studies where a clinical endpoint is required in patients
because of insufficient blood concentrations. In these cases a parallel design may be used.

In parallel designs comparative products are not given to the same patient. Patients are
randomly assigned to one of the test products. In this discussion, we will use examples where
two products are to be compared, a test and reference product. Typically, a random device is used
to assign product to patients as they enter the study, with an aim of having equal numbers of
patients in each product group. For a bioequivalence study, it would be expected that patients
would all be entered together, each patient assigned a number. If more patients are needed
that can be accommodated at one site, a multicenter study may be necessary. Randomization
schemes for parallel studies have been described in the literature [1]. Note that for these designs,
the number of observations in each group needs not be identical; dropouts do not invalidate
any of the remaining data.

Endpoints in clinical studies can be “continuous” data or discrete. For example, the end-
point could be treadmill time to angina, or a local treatment for ulcers, where the endpoint is
dichotomous, that is, success or failure. We will discuss the analysis of both kinds of studies.

Another problem with parallel studies is how to construct a test comparing products.
For numerical data, one should consider whether or not to transform the data. The usual
bioequivalence study uses a log transform of the pharmacokinetic parameters. In clinical studies,
it is not obvious if the clinical result should be transformed. In general, a transformation is not
necessary, but may depend on the nature of the resulting data. For dichotomous data, we have
a different problem when comparing outcomes.

The analysis will be illustrated using the following hypothetical data. The study is for
a drug taken orally that is absorbed, but is in such low concentrations in the blood that an
acceptable analysis is not available. The study looks for a clinical endpoint that can be measured
objectively. The drug is given once daily for seven days. The endpoint is the average time it
takes for patients to fall asleep. A parallel study is used because of the potential for carryover
of a physiological or psychological nature. At first, the data are considered to be approximately
normal, and no transformation is needed. The study design is single blind, with the evaluator
being blinded, as is typical for the usual bioequivalence crossover studies. The results of the
study are as follows:

Product N Average Variance

Test 24 0.980 0.228

Reference 26 0.949 0.213

Without a (log) transformation, the confidence interval computation is more complicated
than that for the usual crossover design with a log transformation. The ratio of test/reference is
not normally distributed. Before the log transformation requirement was initiated, an approx-
imate confidence interval was computed as described by FDA and the literature [1]. However,
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presently, the FDA is recommending use of Fieller’s method for computing confidence intervals.
We will calculate the confidence interval using both of these methods for the sake of illustrating
the methods and comparing the results.

X.1.1 Old FDA Method

Confidence interval(1) = [(Average test − average reference) ± t(d.f.0.1) ∗ sqrt(variance ∗ (1/N1 + 1/N2))]
Average test

Where the t value is from the t distribution with appropriate degrees of freedom at
the (one-sided) 5% level. The variance, in this case would be the pooled variance from the two
groups. The computations for the numerator are the same as that computed for a 90% confidence
interval in a two independent group t test.

In this example, the point estimate (Test/Reference) is 103.3% with a lower and upper
90% confidence interval equal to 92.3% and 114.3%, respectively (see Table X.1 for raw data and
calculations).

One could also use a log transformation if appropriate. Of course, there should be some
documentation of the rationale for a transformation. Using a log transform the results are
103.1 with a lower and upper 90% confidence interval equal to 91.8% and 115.8%, respectively

Table X.1 Data for Parallel Design Study (Clinical Endpoint)

Subject Test Subject Reference

1 0.82 1 0.83

2 0.54 2 1.22

3 1.01 3 1.14

4 1.4 4 0.88

5 0.89 5 0.95

6 1 6 1.4

7 0.76 7 1.1

8 1.23 8 0.84

9 0.87 9 0.99

10 0.99 10 0.61

11 1.1 11 0.68

12 1.15 12 1.03

13 0.76 13 0.79

14 0.65 14 1.09

15 1.25 15 0.91

16 1.11 16 1.22

17 0.77 17 1.1

18 0.63 18 0.89

19 0.98 19 1.17

20 1.32 20 0.58

21 1.26 21 1.11

22 0.94 22 0.75

23 0.99 23 0.95

24 1.11 24 1.03

25 0.88

26 0.54

Test Reference

Average 0.9804167 0.949231

Standard deviation 0.2281967 0.213353

Variance 0.0520737 0.045519

Point estimate = 1.032853863

t = 1.677224191

Pooled variance = 0.048660009

Upper level 114.3170257

Lower level 92.2537469
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Table X.2 Data For Parallel Design Study Transformed to Logarithms

Subject Test Log Subject Ref Log

1 0.82 −0.19845 1 0.83 −0.186329578

2 0.54 −0.61619 2 1.22 0.198850859

3 1.01 0.00995 3 1.14 0.131028262

4 1.4 0.336472 4 0.88 −0.127833372

5 0.89 −0.11653 5 0.95 −0.051293294

6 1 0 6 1.4 0.336472237

7 0.76 −0.27444 7 1.1 0.09531018

8 1.23 0.207014 8 0.84 −0.174353387

9 0.87 −0.13926 9 0.99 −0.010050336

10 0.99 −0.01005 10 0.61 −0.494296322

11 1.1 0.09531 11 0.68 −0.385662481

12 1.15 0.139762 12 1.03 0.029558802

13 0.76 −0.27444 13 0.79 −0.235722334

14 0.65 −0.43078 14 1.09 0.086177696

15 1.25 0.223144 15 0.91 −0.094310679

16 1.11 0.10436 16 1.22 0.198850859

17 0.77 −0.26136 17 1.1 0.09531018

18 0.63 −0.46204 18 0.89 −0.116533816

19 0.98 −0.0202 19 1.17 0.157003749

20 1.32 0.277632 20 0.58 −0.544727175

21 1.26 0.231112 21 1.11 0.104360015

22 0.94 −0.06188 22 0.75 −0.287682072

23 0.99 −0.01005 23 0.95 −0.051293294

24 1.11 0.10436 24 1.03 0.029558802

25 0.88 −0.127833372

26 0.54 −0.616186139

Test Reference

Point estimate = 1.032854 1.03123

t = 1.677224

Pooled variance = 0.05942

Upper level 115.775 (log) 0.146479

Lower level 91.8533 (log) −0.08498

(see Table X.2 for raw data and calculations). This result is similar to that for the untransformed
data, a result of the relatively low coefficient of variation.

X.1.2 Fieller’s Method
Fieller’s method can be used to compute confidence intervals for the ratio of two normally
distributed variables. There are assumptions when using Fieller’s method that include the
assumption of normality. Also the value of the denominator in Fieller’s equation must show the
reference product average to be “statistically significant” when compared to zero. In most cases,
the results of this approach should give similar conclusions as the old FDA method above.

The method is described in an FDA document [2], which is duplicated below.

X.1.2.1 Fieller’s Calculation for Crossover data (Correlated Values)
For an example of this calculation, see Ref. [2].

[(Average test/average reference) − G(� − RT/� − RR) ± (1/average reference) × Sqrt(K ∗ � − RR/n]
(1 − G)
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G = t2 ∗ � − RR

n ∗ average reference2

K =
(

Average test
average reference

)2

+ (1 − G)(� − TT) +
(

� − RT
� − RR

)

∗
(

G ∗ � − RT
� − RR − 2

∗ Average test
Average reference

)

� − TT = Variance test

� − RR = Variance reference

� − RT = ∑ (test − average test)(reference − average reference)
n − 1

X.1.2.2 Fieller’s Calculation for Independent Data
If the two groups are independent as in the above example, the term that relates to the correlation
of the data for the two groups, � − RT, is considered to be zero, and is not included in the
equation. Applying the data in Table X.1 without a transformation, the calculations are as
follows:

Interval = [(Average test/average reference) ± (1/average reference) × Sqrt(K∗�−RR/n)]/(1−G)
G=t2∗�−RR/(n∗average reference2)
K= (Average test/average reference2+(1−G)(�−TT/�−RR) − (2 ∗ Average test/average reference)

Test Reference

Average 0.9804167 0.949231

Standard

deviation

� − TT =
0.2281967

� − RR =
0.213353

Pooled

variance

0.04866

G = 0.0054659
K = 2.204524409

Upper interval = 1.09866168
Lower interval = 0.967046045

X.2 OUTLIERS
An outlier is an observation far removed from the bulk of the observations. A more detailed
discussion and statistical detection of outliers, as well as their treatment can be found in a
number of references [1].

For crossover studies and parallel studies, the detection of an outlier using common
statistical methods is straightforward. Using an appropriate statistical model, a single statistical
outlier can be identified. Although this alone may be sufficient to suspect an anomaly, usually
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it would be more definitive if other evidence is available to verify that the suspected datum is
indeed “mistaken.” A more creative approach is possible in the case of replicate designs (see
below). In these situations, we have estimates of within-subject variability that can be used to
identify outliers. For example, if the within-subject variance for a given treatment (omitting the
subject with the suspected outlier) is 0.04, and the two values for the log-transformed parameter
for the suspected data are 3.8 and 4.9 (corrected for period effects if necessary and meaningful),
we may perform an F test comparing variances for the suspect data and the remaining data.
The F ratio is

0.61
0.04

= 15.3.

If the degrees of freedom for the denominator (N − 1, where N is the number of subjects
including the outlier) is 25, an F value of 15.3 is highly significant (P < 0.01). One may wish to
correct the significance level, although there is no precedent for this approach. An alternative
analysis could be an ANOVA with and without the suspected outlier. An F test with 1 d.f. in
the numerator and appropriate d.f. in the denominator would be

[SS (all data) − SS (without outlier data)]
1

.

Another approach that has been used is to compare results for periods 1 and 2 versus
periods 3 and 4 in a 4 period fully replicated design.

Of course, if there are is an obvious cause for the outlier, a statistical justification is not
necessary. However, further evidence, even if only suspicious, is helpful.

If an outlier is detected, as noted above, the most conservative approach is to find a reason
for the outlying observation, such as a transcription error, or an analytical error, or a subject who
violated the protocol, and so on. In these cases, the data may be reanalyzed with the corrected
data, or without the outlying data if due to analytical or protocol violation, for example.

If an obvious reason for the outlier is not forthcoming, one may wish to perform a new
small study, replicating the original study, including the outlying subject along with a number
of other subjects (at least 5 or 6) from the original study. The results from the new study can
be examined to determine if the data for the outlier from the original study is anomalous. The
procedure here is not fixed, but should be reasonable, and makes sense. One can compare the
test to reference ratios for the outlying subject in the two studies, and demonstrate that the data
from the new study show the outlying subject is congruent with the other subjects in the new
study, for example.

X.3 DICHOTOMOUS OUTCOME
Studies with a dichotomous outcome (e.g., cured or not cured) are, typically, clinical studies on
patients. They may be parallel or crossover studies. An example of a crossover study with a
dichotomous outcome would be an application of a patch or topical product studying sensitivity
or evidence of a pharmacodynamic response. It would be difficult to compare products based
on a ratio for crossover designs with a dichotomous outcome. Statistical tests for such designs
would fall in the category of a McNemar test, where only those results that are different for
the two products are considered in the analysis. Thus, the results that are “positive” for both
products, or “negative” for both products would not be considered in the analysis. Thus far, no
regulatory requirements have been issued for bioequivalence for such designs.

Parallel designs for bioequivalence using dichotomous outcomes are not uncommon.
These studies usually use patients with the “disease.” The results are analyzed using either
the binomial distribution or the normal approximation to the binomial, where the outcome
may be cured or not cured. The FDA guidances suggest that the confidence interval for the
difference of the proportion of “successes” (or “failures”) between the products be within ±20%
for equivalence. Some criteria may be based on a one-sided 95% confidence interval in the case of
noninferiority studies. Proposals have been made to modify the ±20% window for equivalence
depending on the observed proportion [3].



628 APPENDIX X

For example, consider the following example:

Test product 160/200 successes = 80%

Reference product 170/200 successes = 85%

The confidence interval for the difference in proportion of successes is calculated as

(85 − 80) ± sqrt
(

P0 ∗ Q0 ∗
(

1
N1

+ i
N2

))
= 5 ± 1.96 ∗ sqrt

(
0.825 ∗ 0.175 ∗

(
2

200

))
= 5 ± 7.4.

This result would pass the ± 20% requirements. The interval is −2.4% to 7.4%.

X.4 STEADY STATE STUDIES
Steady state (SS) studies have been used to study bioequivalence for some drug products,
for example, controlled release products and highly variable products. SS is approximately
attained after about 5 drug half-lives. For example, if the half-life is 8 hours, the drug should be
administered for about 40 hours; for example, five single doses given at 8-hour intervals. At SS,
theoretically, Cmax, Cmin, and the AUC during a dosing interval remain constant. In particular,
the relative amount of drug absorbed is measured by the AUC over the dosing interval at SS.
SS studies are now discouraged by the FDA. One reason given for this proposal is that the
variability is reduced in SS studies, resulting in a less sensitive test for showing differences. This
lowering of the variability, however, could be useful from a practical point of view to compare
highly variable drug products. Thus, there is some controversy about the use and utility of SS
studies.

The design of SS studies are typically crossover studies with multiple dosing. Two groups
of patients are entered into the study similar to the usual two-treatment, two-period design.
However in the SS design, multiple dosing is administered, using the usual dosing schedule,
for a sufficient period of time to attain SS. One would estimate the total number of doses needed
based on a package insert, literature or available experimental results.

SS is achieved if the PK parameters remain constant with a given multiple dosing reg-
imen. Typically, dosing should be administered for at least three or more consecutive days.
Appropriate dosage administration and sampling should be carried out to document SS. The
trough concentration data should be analyzed statistically to verify that SS was achieved prior
to Period 1 and Period 2 pharmacokinetic sampling.

According to the FDA Guidance [4,5], the following parameters should be measured:

a. Individual and mean blood drug concentration levels.
b. Individual and mean trough levels (Cmin ss).
c. Individual and mean peak levels (Cmax ss).
d. Calculation of individual and mean steady state AUCinterdose (AUCinterdose is AUC during a

dosing interval at steady state).
e. Individual and mean percent fluctuation.

[
= 100 ∗ Cmax ss − Cmin ss

Caverage ss

]

f. Individual and mean time to peak concentration.

The log-transformed AUC and Cmax data during the final dosing interval should be
analyzed statistically using analysis of variance. The 90% confidence interval for the ratio of
the geometric means of the pharmacokinetic parameters (AUC and Cmax) should be within
80% to 125%. Fluctuation for the test product should be evaluated for comparability with the
fluctuation of the reference product.
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X.5 BIOEQUIVALENCE STUDIES PERFORMED IN GROUPS
Bioequivalence studies are usually performed at a single site, where all subjects are recruited
and studied as a single group. On occasion, more than one group is required to complete a study.
For example, if a large number of subjects are to be recruited, the study site may not be large
enough to accommodate the subjects. In these situations, the study subjects are divided into two
cohorts. Each cohort is used to assess the comparative products individually, as might be done
in two separate studies. Typically, the two cohorts are of approximately equal size. Another
example of a study that is performed in groups is the so–called “Add-on” study. In Canada, if a
study fails because it was not sized sufficiently, an additional number of subjects may be studied
so that the combined, total number of subjects would be sufficient to pass the study based on
results of the initial failing study. This reduces the cost to the pharmaceutical company, which,
otherwise, would have to repeat the entire study with a larger number of subjects.

It is not a requirement that each group separately pass the confidence interval requirement.
The final assessment is based on a combination of both groups. The totality of data is analyzed
with a new term in the analysis of variance (ANOVA), a Treatment × Group interaction term.
This is a measure (on a log scale) of how the ratios of test to reference differ in the groups. For
example, if the ratios are very much the same in each group, the interaction would be small or
negligible. If interaction is large, as tested in the ANOVA, then the groups cannot be combined.
However, if at least one of the groups individually passes the confidence interval criteria, then the
test product would be acceptable. If interaction is not statistically significant (P > 0.10), then the
confidence interval based on the pooled analysis will determine acceptability. It is an advantage
to pool the data, as the larger number of subjects results in increased power and a greater proba-
bility of passing the bioequivalence confidence interval, if the products are truly bioequivalent.

In Canada, a second statistical test (in addition to the test for interaction) is required
when an Add-on group is studied. Each group is analyzed separately in the usual manner. The
residual variances from the two separate groups are compared using an F test. If the variances
are significantly different, the groups cannot be pooled and the product will probably fail. Note
that the second group is studied only if the original study failed because of lack of size. It is
possible that the Add-on study could pass on its own, and in this case, the test product would
be acceptable. This second test comparing variances seems rather onerous, because an analysis
is possible for the combined groups with unequal variance. However, it may be the intention
of the Canadian HPB to trade the benefit of the add-on design for unnecessarily more stringent
regulatory requirements. An intensive study of the appropriateness and properties of add-on
designs is being investigated by FDA and industry personnel in the United States at the time of
this writing. A final finding is forthcoming.

An interesting question arises if more than two groups are included in a bioequivalence
study. As before, if there is no interaction, the data should be pooled. If interaction is evident, at
least one group is different from the others. Usually, it will be obvious which group is divergent
from a visual inspection of the treatment differences in each group. The remaining groups may
then be tested for interaction. Again, as before, if there is no interaction, the data should be
pooled. If there is interaction, the aberrant group may be omitted, and the remaining groups
tested, and so on. In rare cases, it may not be obvious which group or groups are responsible
for the interaction. In that case, more statistical treatment may be necessary, and a statistician
should be consulted. In any event, if any single group or pooled groups (with no interaction)
passes the bioequivalence criteria, the test should pass. If a pooled study passes in the presence
of interaction, but no single study passes, one may still argue that the product should pass, if
there is no apparent reason for the interaction. For example, if the groups are studied at the
same location under the identical protocol, and there is overlap in time among the treatments
given to the different groups, as occurs often, there may be no obvious reason for a significant
interaction. Perhaps, the result was merely due to chance, random variation. One may then
present an argument for accepting the pooled results.

The following statistical models have been recommended for analysis of data in groups:

Model 1: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT GRP∗TRT
If the GRP∗TRT term is not significant (P > 0.10), then reanalyze the data using Model 2.
Model 2: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT
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X.6 REPLICATE STUDY DESIGNS
Replicate studies in the present context are studies in which individuals are administered one
or both products on more than one occasion. For purposes of bioequivalence, either three or
four period designs are recommended. The two treatment four-period design is the one most
used. FDA [1] gives sponsors the option of using replicate design studies for all bioequivalence
studies. Replicate studies may provide information on within-subject variance of each product
separately, as well as potential product × subject interactions, although these analyses are not
required by FDA.

The FDA recommends that submissions of studies with replicate designs be analyzed
for average bioequivalence. The following (Table X.3) is an example of the analysis of a two
treatment four-period replicate design to assess average bioequivalence. The design has each of
two products, balanced in 2 sequences, ABAB and BABA, over four periods. Table X.1 shows
the results for Cmax for a replicate study. Eighteen subjects were recruited for the study and 17
completed the study. An analysis using the usual approach for the TTTP design, as discussed
above, is not recommended. The FDA [1] recommends use of a mixed model approach as in
SAS PROC MIXED (11). The recommended code is

Table X.3 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax)

Subject Product Sequence Period Cmax Ln(Cmax)

1 Test 1 1 14 2.639

2 Test 1 1 16.7 2.815

3 Test 1 1 12.95 2.561

4 Test 2 2 13.9 2.632

5 Test 1 1 15.6 2.747

6 Test 2 2 12.65 2.538

7 Test 2 2 13.45 2.599

8 Test 2 2 13.85 2.628

9 Test 1 1 13.05 2.569

10 Test 2 2 17.55 2.865

11 Test 1 1 13.25 2.584

12 Test 2 2 19.8 2.986

13 Test 1 1 10.45 2.347

14 Test 2 2 19.55 2.973

15 Test 2 2 22.1 3.096

16 Test 1 1 22.1 3.096

17 Test 2 2 14.15 2.650

1 Test 1 3 14.35 2.664

2 Test 1 3 22.8 3.127

3 Test 1 3 13.25 2.584

4 Test 2 4 14.55 2.678

5 Test 1 3 13.7 2.617

6 Test 2 4 13.9 2.632

7 Test 2 4 13.75 2.621

8 Test 2 4 13.25 2.584

9 Test 1 3 13.95 2.635

10 Test 2 4 15.15 2.718

11 Test 1 3 13.15 2.576

12 Test 2 4 21 3.045

13 Test 1 3 8.75 2.169

14 Test 2 4 17.35 2.854

15 Test 2 4 18.25 2.904

16 Test 1 3 19.05 2.947

17 Test 2 4 15.1 2.715

1 Reference 1 2 13.5 2.603

2 Reference 1 2 15.45 2.738

3 Reference 1 2 11.85 2.472

4 Reference 2 1 13.3 2.588
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Table X.3 Continued

5 Reference 1 2 13.55 2.606

6 Reference 2 1 14.15 2.650

7 Reference 2 1 10.45 2.347

8 Reference 2 1 11.5 2.442

9 Reference 1 2 13.5 2.603

10 Reference 2 1 15.25 2.725

11 Reference 1 2 11.75 2.464

12 Reference 2 1 23.2 3.144

13 Reference 1 2 7.95 2.073

14 Reference 2 1 17.45 2.859

15 Reference 2 1 15.5 2.741

16 Reference 1 2 20.2 3.006

17 Reference 2 1 12.95 2.561

1 Reference 1 4 13.5 2.603

2 Reference 1 4 15.45 2.738

3 Reference 1 4 11.85 2.472

4 Reference 2 3 13.3 2.588

5 Reference 1 4 13.55 2.606

6 Reference 2 3 14.15 2.650

7 Reference 2 3 10.45 2.347

8 Reference 2 3 11.5 2.442

9 Reference 1 4 13.5 2.603

10 Reference 2 3 15.25 2.725

11 Reference 1 4 11.75 2.464

12 Reference 2 3 23.2 3.144

13 Reference 1 4 7.95 2.073

14 Reference 2 3 17.45 2.859

15 Reference 2 3 15.5 2.741

16 Reference 1 4 20.2 3.006

17 Reference 2 3 12.95 2.561

PROC MIXED;
CLASSES SEQ SUBJ PER TRT;
MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;
RANDOM TRT/TYPE = FA0(2) SUB = SUBj G;
REPEATED/GRP = TRT SUB = SUBJ;
LSMEANS TRT;
ESTIMATE ’T VS. R’ TRT 1 − 1/CL ALPHA = 0.1;
RUN;

The abbreviated output is shown in Table X.4.

Table X.4 Analysis of Data from Table X.1 for Average Bioequivalece

ANALYSIS FOR LN-TRANSFORMED CMAX

 The MIXED Procedure

Class Level Information

Class Concentrations Values

SEQ 2  1 2
SUBJ  17  1 2 3 4 5 6 7 8 9 10 11 12 13

 14 15 16 17
 PER  4  1 2 3 4
 TRT 2  1 2
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Table X.4 (Continued)

Covariance Parameter Estimates (REML)

Cov Parm Subject  Group Estimate

FA(1,1) SUBJ  0.20078553
FA(2,1) SUBJ  0.22257742
FA(2,2) SUBJ -0.00000000

 DIAG SUBJ  TRT 1  0.00702204
 DIAG SUBJ  TRT 2  0.00982420

Tests of Fixed Effects

Source NDF  DDF  Type III F  Pr > F

SEQ  1  13.9  1.02  0.3294
 PER  3 48.2  0.30  0.8277
 TRT  1  51.1  18.12  0.0001

ESTIMATE Statement Results

Parameter T VS. R

Alpha = 0.1 Estimate Std Error DF t Pr > |t|

0.09755781  0.02291789  51.1  4.26  0.0001

Lower 0.0592 Upper 0.1360

Least Squares Means

Effect  TRT LSMEAN Std Error  DF  t  Pr > |t|

 TRT  1 2.71465972  0.05086200  15 53.37  0.0001
 TRT 2 2.61710191  0.05669416  15.3  46.16 0.0001

ANALYSIS FOR LN-TRANSFORMED CMAX

REFERENCES
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Answers to Exercises

CHAPTER 1
1. (a) Tablet hardness, blood concentration of drug, creatinine in urine

(b) Number of patients with side effects, bottles with fewer than 100 tablets, white blood
cell count

(c) Any continuous variable, rating scale
(d) Race, placebo group in clinical study, number of bottles of syrup that are cloudy

2. None (This is a simple linear transformation; the C.V. is unchanged.)
3.

Interval Frequency

−99.5 to −83.5 1

−83.5 to −67.5 2

−67.5 to −51.5 10

−51.5 to −35.5 16

−35.5 to −19.5 26

−19.5 to −3.5 34

−3.5 to +12.5 33

12.5 to 28.5 24

28.5 to 44.5 8

44.5 to 60.5 2

4. −10.27
5. Approximately 82% between 95 and 105 mg (0.91– 0.09); approximately 9% above 105 mg
6. (a) Mean = −12.65, S = 31.68; (b) X̄ = −7, S = 30.48 (read data in columns). Differences

probably not significant. The last set is more precise but the standard deviations are
virtually identical (the variability is probably not different in the two sets of data).

7. Median =−16 = (−13 − 19)/2; range = 46 to − 64 = 110
8. (a) Median =−16 as in Problem 7; range = 100 to − 64 = 164

(b) Mean = −8.5, S = 40.09, S2 = 1607
10. Probably not unbiased
11. � =√

2/3 = 0.816,S̄ = 0.6285

13.
√

�(X − x̄)2
/(N − 1) =√

(0.0001 + 0 + 0.0001)/2 = 0.01. The s.d. of 2.19; 2.20, and 2.21 is
also 0.01. If a constant is added to each value (the constant added here is 1), the s.d. is
unchanged. Standard deviation depends on differences among the values, not the absolute
magnitude.

14. (a) 101.875; (b) 4.79; (c) 22.98; (d) 4.79/101.875 = 0.047; (e) 14; (f) 101.5
15. �Ni X2

i = 1(90.5)2 + 6(70.5)2 + · · · + 16(29.5)2 + 3(49.5)2 = 137,219
�Ni Xi = 1( − 90.5) + 6( − 70.5) + · · · + 16(29.5) + 3(49.5) = −1658
�Ni = 156
S2 = [137,219 − ( − 1658)2

/156]/155 = 771.6
S = 27.79

16. 16.167, 9.865, 7.009
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17. X̄w = (2 × 3 + 5 + 7 + 3 × 11 + 14 + 3 × 57)/10 = 17.9

S2
w = 7149 − 3204.1

9
= 438.3

CHAPTER 2
1.

2.

3.

4.
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5.

6.

7.
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CHAPTER 3
1. Larger sample, more representative, blinded, less bias, etc.
2. All patients with disease who can be treated by antibiotic
3. Preference for new formulation among 24 panelists; number of broken tablets in sample of

100; race of patients in clinical study
4. 50,000 specked, but 20,000 are also chipped. Therefore, 30,000 are only specked. Probability

of speck or chip is 0.06 (60,000 tablets have either a speck or a chip).
5. (a) P(A and B) = P(A|B)P(B). Let A = high blood pressure and B = diabetic. Then P(A and

B) = (0.85)(0.10) = 0.085.
(b) If independent, P(A) = P(A|B); 0.25 
= 0.85; they are not independent.

6. (0.75)2(0.25)2 = 0.35163 × 6 = 0.21094. There are 6 ways of choosing 2 patients out of 4
(

4
4
)

.

7. (0.6)3(0.4)3 = 0.013824 × 20 = 0.276. There are 20 ways of choosing 3 patients out of 6
(

6
4
)

.
8. 0.3697
9. (a) Approximately 0.8; (b) 0.2

10. Z = (170 − 215)/35 = 1.29; probability = approximately 0.10
11. Z = (60 − 50)/5 = 2,P(X ≤ 60) = 0.977; Z = (40 − 50)/5 = − 2,P(X ≤ 40)

= 0.023; P(40) ≤ X ≤ 60) = 0.977 − 0.023 = 0.954
12. Not necessarily; the patient may have a cholesterol value in the extremes of the normal

distribution.
13. Z = (137 − 140)/2.5 = −1.2, probability ≤ Z = 0.115; Z = (142 − 140)/2.5 = 0.8, probability

≤ Z = 0.788; P(137 ≤ Z ≤ 142) = 0.788 − 0.115 = 0.673
14. Z = (280 − 205)/45 = 1.67; probability = 0.952; probability Z > 280 = 1 − 0.952 = 0.048
15. There are 36 equally likely possibilities, of which one is 2.
16. Yes! The order of heads and tails is not considered in the computation of probability.

17. P(0 defects) =
(

20
0
)

(0.01)0(0, 99)20 = 0.818; P(1 defect) =
(

20
1
)

(0.01)1(0.99)19 = 0.165; P(0 or 1 defect) = 0.818 + 0.165 = 0.983
18.

(
10
1
)

(0.5)1(0.5)9 = 0.0098

19.
(

4
2
)

(0.01)2(0.99)2 = 0.00059. The probability is small; and two of four cures can be consid-
ered unlikely. The probability of this event plus equally likely or less likely events (three of
four and four of four cures) is close to 0.00059. Thus, we conclude that the new treatment
is effective.

20.
√

(0.01)(0.99)20 = 0.445;
√

(0.01)(0.00)/20 = 0.022 (Problem 17)√
(0.01)(0.99)4 = 0.199;

√
(0.01)(0.99)/4 = 0.497 (Problem 19)

21. S =√
(0.5)(0.5)/20 = 0.112; Z = (0.75 − 0.5)/0.112 = 2.24; P(Z > 2.24) = 1 − 0.988 = 0.012

Drug is a promising candidate. The probability of observing such a large response is small
if the true proportion of responses is 50%.

22. P(0 defects) = 0.9930 = 0.7397; P(1 defect) = (30)(0.01)(0.99)29 = 0.2242;
P(0 or 1 defect) = 0.7397 + 0.2242 = 0.9639; P(more than 1 defect) = 1 − 0.9639 = 0.0361

23. 85 = 35 + 50 + 50 − 20 − 15 − 25 + P(ABC); P(ABC) = 10%

CHAPTER 4
1. Starting at the upper left corner,∗ going down in Table IV.1. Even numbers to A. Patients

assigned to A: 1, 2, 3, 5, 6, 8, 13, 14, 15, 16, 17, and 19.

∗ We started at the upper left and read down for convenience and for the purpose of illustration. Otherwise, the
starting point should be random.
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2. Start as in Problem 1. If the number is 1 to 3, assign to A; 4 to 6, assign to B; 7 to 9, assign
to C; do not count zeros.

Patient Random number Treatment

1 4 B

2 8 C

3 2 A

4 5 B

5 8 C

6 4 B

7 9 C

8 2 A

9 1 A

10 5 B

11 5 B

12 5 B

13 4 B

14 6 B (8 B’s)

15 8 C

16 3 A

17 9 C

18 3 A

19 8 C

20 8 C

21 9 C (8 C’s)

Remaining patients (22, 23, 24) given A

(May also randomize in groups of three; e.g., the first three patients are B, C, A—random
numbers 4 and 8 refer to B and C.)

3. Start as above in Table IV.1. Use two-digit numbers between 1 and 30: 28, 24, 14, 6, 17, 29.
5. Placebo: 1, 2, 4, 5, 7, 8, 9, 10, 12, 18; Drug: 3, 6, 11, 13, 14, 15, 16, 17, 19, 20.
6. Take 20 tablets at a specific time every hour, all at the same time each hour (e.g., on the

hour). Take 20 tablets each hour, but randomize the time the 20 are taken; e.g., first hour,
take the sample at 5 min past the hour; second hour, take at 25 min past the hour; etc. Take
tablets, one every 3 min during each hour. Take tablets at random times during each hour.

7. (see also Problem 3) 44, 8, 28, 55, 88
10. X̄ = 300.7

CHAPTER 5
1. Z = (49.8 − 54.7)/2 =−2.45; = 0.0071
2. 103 ± 2.58(2.2)/

√
10 = 103 ± 1.8 = 101.2 to 104.8

3. (a) 5.95 ± 2.57(1.16/
√

6 = 5.95 ± 0.17
(b) 0.024 ± 1.96

√
(0.024)(0.976)/500 = 2.4 ± 1.34%

(c) (0.83 − 0.50) ± 1.06
√

(0.83)(0.17) >sh> 60 + (0.50)(0.50)/50 = 0.33 ± 0.17
4. (a) Z = |498 − 502|/(5.3/

√
6 = 1.85; not significant, � = 0.05; two tailed test

(b) t = (5.08 − 4.86)/
√

0.095(2/5 = 1.13; not significant at 5% level
(c) T = 4/

√
(15.2)/6 = 2.51; t5 = 2.57; just misses significance at 5% level; two-tailed test.

5. (a) 0.098, larger
(b) 0.350 and 0.261, average s.d. = 0.305, pooled s.d.= 0.308

6. (a) X̄ = 10.66, s.d.= 0.932
(b) X̄ = 9.66, s.d. = 0.4696. t18 = 1/(0.738

√
2/10 = 3.03; difference is significant

(c) Approximate test: Z = (0.7 − 0.2)/
√

(0.45)(0.55)(2/10) = 2.24; significant. Chi-square
test with correction = 3.23; not quite significant.

(d) 0.45 ± 1.96
√

(0.45)(0.55)(1/20) = 0.45 ± 0.22
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7. Paired t test; 3 d.f.; � = 0.05; two tailed test
(a) t = 0.07

√
0.0039/4 = 2.23; not significant

(b) 0.07 ± 3.18(0.0627)/
√

4 = 0.07 ± 0.10
8. (a) Paired t test, 11 d.f.; t = 0.5/(0.612/

√
12 = 2.83; significant at 5% level

(b) 0.5 ± 2.2(0.612/
√

12 = 0.5 ± 0.39
9. 9/60 and 6/65 = 15/125 = 0.12; 80/1000 and 57/1000 = 137/2000 = 0.685

10. t = (16.7 − 15)/(3.87/
√

10) = 1.39; 10% level, one-sided test, this is significant
11. Chi-square = (3.5)2(2/12 + 2/88) = 2.32; not significant
12. Z = (|0.05 − 0.028| − 1/400)/

√
(0.028)(0.972)/200 = 1.67; not significant. 0.05 ±

1.96
√

(0.95)(0.05)/(200) = 0.5 ± 0.03; 10 ± 1.96
√

(0.95)(0.05)(200) = 10 ± 6
13. (a) 50 ± 1.96

√
(0.01)(0.99)(5000) = 50 ± 13.79 in 5000 for 1,000,000 tablets; 10,000 ± 2758

(b) (0.01 − 0.02)/
√

(0.02)(0.98)/5000 = −5.05; P #of 0.001;
very unlikely 1.96

√
(0.01)(0.99)/N = 0.001, N = (1.96)2(0.99)(0.01/10) = 38,032

14. Chi-square = (4.5)2(1/35.45 + 1/24.55 + 1/29.55 + 1.20.45) = 3.07; not significant at 5%
level. (40/60 − 25/50) ± 1.96

√
(0.67)(0.33)/60 ± (0.5(0.5)/50 = 0.167 ± 0.183

15. Z = (|0.75 − 0.5| − 1/80)/
√

(0.5)(0.5)/40 = 3.0; P < 0.05
16. Z = (|0.45 − 0.2| − 1/40)/

√
(0.8)(0.2)/20 = 2.51; P < 0.05; 0.45 ±

2.58
√

(0.45)(0.55)/20 = 0.45 ± 0.287
17. Chi-square = (3.5)2(1/13.85 + 1/86.15 + 1/13.15 + 1/81.85) = 2.10; not significant
18. (1.8)2(1/7.2 + 1/7.8 + 1/52.8 + 1/57.2) = 0.98
19.

80
57

920
943

= 2×2 table

� 2 = 112(1/68.5 + 1/931.5 + 1/68.5 + 1/931.5) = 3.79; just misses significance at
5% level

20. F9,9 = 0.869/0.220 = 3.94, P < 0.10 (Table IV.6). This is a two-sided test. A ratio of 3.18 is
needed for significance at the 10% level.

21. Correct � 2 = 3.79; d’Agostino = 2.04
22. � 2 = 28.6135 – 20.8591 = 7.75 (P < 0.05)

23. �2 = 9 × 5
0.711

= 63.29 � = 7.96

24. �2 = (7.8)2

18.49
= 95 � = 9.7

CHAPTER 6
1. 2(5/10)2(1.96 + 0.84)2 + 0.25(1.96)2 = approximately 5 per group
2. 2(5/10)2(1.96 + 0.84)2 = approximately 4 per group
3. [(0.8 × 0.2 + 0.9 × 0.1)/(0.1)2](1.96 + 1.28)2 = approximately 263 per group
4. [(0.5 × 0.5 + 0.5 × 0.5)/(0.2)2](1.96 + 1.28)2 = approximately 132 per group
5. (1.96)2(0.5 × 0.5)/(0.15)2 = approximately 43

(1.96)2(0.2)(0.8)/(0.15)2 = approximately 28
6. (10/10)2(1.96 + 2.32)2 + 2 = approximately 21 tablets
7. (a) Z	 = (3/5)

√
19/2 − 1.96 = −0.11; power is approximately 46%

(b) Z	 = (3/5)
√

49/2 − 1.96 = 1.01; power = 84%
8. (10/3)2(1.96 + 1.28)2 = approximately 117
9. Z	 = (0.2/0.25)

√
10 − 1.96 = 0.57; power is approximately 71%

10. 2(12/10)2(1.96 + 1.65)2 + 0.25Z2
� = approximately 39

11. Z	 = (15/40)
√

16 − 1.96 =−0.46; power = approximately 0.32
12. (1.96)2(0.90)(0.10)/(0.05)2 = 138.2 = approximately 139
13. N = 2(5/6)2(1.96 + 1.28)2 + 0.25(1.96)2 = 15.5 = approximately 16
14. 23 tablets per formulation
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CHAPTER 7
1. (a) b = 40/10 = 4; a12 − (4)(3) = 0

(b) S2
y,x = (164 − 16.10)/3 = 1.33; S2

b 1.33/10 = 0.133
t = 4/

√
0.133 = 10.95; significantly different from 0

(c) |4 − 5|/√0.133 = 2.74; d.f. = 3; not significant, 3.18 needed for significance
(d) 3 hr;Y = 4X = 12 ± 3.18

√
1.33

√
1/5 + 0.10 = 10.36 to 13.64.

5 hr;Y = 4X = 20 ±3.18
√

1.33
√

1/5 + 4/10 = 17.16 to 22.84
(e) Y = 4(20) = 80 ± 3.18

√
1 + 1/5 + (20 − 3)2/10 = 80 ± 20.1

(f) b = ∑
Xy/

∑
X2 = 220/55 = 4

2. (a) a =−0.073; b = 0.2159
(b) S2

y,x = 0.003377; S2
a = 0.001848; −1.69(3 d.f.); not significant; may be due to interfering

impurity
(c) C = 7.98; confidence limits are 7.43 to 8.64; see Eq. (7.17)

3. (a) b = 27/41.2 = 0.655, a = 100 − 0.655(200.4) =−31.3
(b) Y =−31.3 + 0.655)(200) = 99.74
(c) 99.74 ± 3.18

√
0.0102

√
1/5 + (200 − 200.42/41.2 = 99.74 ± 0.46

4. (a) 0.9588
(b) t10 = 10.7; r is significantly different from 0 at 5% level

5. r = 0.6519; t8 = 1.84/0.76 = 2.43, significant at 5% level
6. r = −0.93135; t7 = 6.77, significant at 5% level
7. r = 0.2187; F = 6.54/1.067 = 6.135

rds = (6.135) − 1)/
√

(6.135) + 1)2 − 4(0.21872)6.135 = 0.728
t8 = 0.728

√
8/

√
1 − 0.7282 = 3.00; p < 0.05; drug B is less variable

8. Y =−3.90082 + 0.99607X; predicted values: 0.10049 (X = ln 5); 0.20043 (X = ln 10), 0.49928
(X = ln 25), 0.99584 (X = ln 50), 1.98626 (X = ln 100).

9. (a) C = 2.5482 − 0.01209t; (b) 24.66 mos; (c) 23.27 mos; (d) 23.55 mos.
10. a = 0.5055

CHAPTER 8
1. For significance at the 5% level, t(8 d.f.) ≥ 2.31 (two-sided test) A vs. B : t = (101.2−

99.4)/Sp
√

1/5 + 1/5 = 2.84(P < 0.05); Sp = 1.0. A vs. C : t = (101.6 − 101.2)/(1.58
√

1/5 + 1/5)
= 0.40. B vs. C : t = (101.6 − 99.4)/(1.67

√
1/5 + 1/5) = 2.08

2.
Source d.f. MS F

Between treatments 2 0.167 0.039

Within treatments 3 4.33

Treatments are not significantly different.
3. Pooled error term from ANOVA table (Table 8.3) = 2.10

Avs.B : t = 1.8/
√

2.10(2/5) = 1.96
Avs. C : t = 0.44
B vs. C : t = 2.40 (P < 0.05)
Pooled error results in different values of t. This is appropriate if F is significant and/or
tests are proposed a priori (use pooled error, i.e., WMS).

4. (a) H0: �1 = �2 = �3 = �4; Ha : �i 
= � j ; � = 0.05
(b) Fixed
(c)

Source d.f. MS F

Between analysts 3 2.89 5.78 (<0.05)

Within analysts 8 0.50

LSD = 2.31
√

0.5(2/3) = 1.33
A differs from B, C, and D; B differs from C and D
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(d) Tukey test: 4.53
√

0.5(3) = 1.85; only analysts A and C differ at 5% level Scheffé test:√
0.5(3)4.07(1/3 + 1/3) = 2.02; none of the analysts differ at 5% level

5. H0: �i = � j ; Ha : �i 
= � j ; � = 5%
(a)

Source d.f. MS F

Between clinics 6 16.425 8.21 (P < 0.05)

Within clinics 13 2

(b) Yes
(c) Fisher’s LSD method (for example) at the 5% level

LSD = 2.16
√

2(1/3 + 1/3) = 2.49
Clinic 1 
= clinics 2, 5, 7; clinic 2 
= clinics 3, 5, 6; clinic 3 
= clinics 5, 7; clinic 4 
=
clinic 5; clinic 5 
= clinics 6, 7; clinic 6 
= clinic 7 For comparisons to clinic 7,
LSD = 2.16

√
2(1/3 + 1/2) = 2.79

6. (a) Drugs fixed; (b) Machines fixed; (c) formulations fixed; (d) Machines random; (e) Clus-
ters chosen at random

7. H0: �1 = �2 = �3; � = 0.05

Source d.f. MS F

Between batches 2 115.2 10.26 (P < 0.05)

Within batches 12 11.24

t test shows that batch 3 is different from batches 1 and 2; e.g., batch 1 vs. batch 3:
t12 = (20.33 − 11.8)/

√
11.24(1/6 + 1/5

8. (a)
Source d.f. MS F

Row 5 1679.0

Column 2 8.22 0.34 (P > 0.05)

Error 10 23.96

(b)
Source d.f. MS F

Row 5 52.99

Column 2 26.06 5.37 (P < 0.05)

Error 10 4.86 (F2,10 = 4.10 for

� = 0.05)

(c) Averages of drugs are: placebo = −0.33, drug 1 = −3.67, and drug 2 = −4.17. Tukey
test: 3.88

√
4.86/6 = 3.49; therefore, drug 2 is different from placebo. Newman–Keuls

test: Drugs 1 and 2 different from placebo (P < 0.05). Dunnett test: Drug 1 and drug 2
different from control (P < 0.05).

9. (a) If the six presses comprise all of the presses, the presses are fixed. Hours are fixed (i.e.,
each hour of the run is represented).

Source d.f. MS F

Hour 4 11.95 6.76 (P < 0.05)

Presses 5 2.45 1.38 (P > 0.05)

Error 20 1.77

(b) Presses are not significantly different (5% level)
(c) “Hours” are significantly different.
(d) Assume no interaction
(e) Use Tukey test: 4.23

√
1.77/6 = 2.30; hour 3 is significantly different from hours 1, 2,

and 5.
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10.
Source d.f. MS F

Rows 2 7.06 2.05

Columns 2 16.89 4.91 (P < 0.05)

Interaction 4 3.03 0.88

Within 9 3.44

(F2,9 = 4.26 for significance at 5% level.)

“Presses” are significant. “Interaction” is not significant. Interaction means that differences
between presses depend on the hour at which tablets are assayed.

11. Average results: A = 2.90, B = 6.50, C = 6.07
If “sites” are random, use CR as error term.
5.04

√
22.66/24 = 4.90 (no significant differences).

If “sites fixed,” use within error.
3.4
√

3.215/24 = 1.24 A is lower than B and C)
12. ANOVA Table:

Source d.f. Sum-Squares Mean Square

C 2 14.29167 7.145834

B 2 9.125 4.5625

Error 3 7.083334 2.361

Total (Adj) 7 30.5

13. ANOVA Table:

Source d.f. Sum-Squares Mean Square F-Ratio Prob > F

A (Method) 1 6.438E-04 7.438E-04 7.15 0.0369

Error 6 5.406E-04 9.010E-05

Total (Adj) 7 1.184E-03

Method average

1.9921655

2.974223

P = 0.0366 from ANCOVA

CHAPTER 9
1. ANOVA Table:

Source d.f. MS F

Stearate 1 1.56 5.21

Mixing time 1 1.82 6.1

Stearate X mixing time 1 0.72 2.41

Mixing time and stearate are significant at 5% level. Interaction is not significant.
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2. Low starch, low stearate Low starch, high stearate

0.475 0.487

0.421 0.426

Av. = 0.448 Av. = 0.4565

High starch − low starch = 0.4565 − 0.4480 = 0.0085
3. ANOVA:

Source d.f. MS F

a 1 0.66 14.0∗
b 1 0.06 1.3

ab 1 0.03 —

c 1 7.41 158∗∗
ac 1 0.10 —

bc 1 3.25 69∗∗
abc 1 0.01 —

∗P < 0.05; ∗∗P < 0.01.

Error = (0.03 + 0.10 + 0.01)/3 = 0.047; d.f. = 3
(a) a, c, bc
(b)

(c) When C is low, as B is increased, recovery is increased.
When C is high, as B is increased, recovery is decreased.

4. Synergism (or antagonism) would be evidenced by a significant AB interaction. If the effects
are additive, we would expect an increase of 12 for the AB combination beyond placebo
(4 from A and 8 from B). This is close to the observed increase of 14 (35 − 21) for AB. The
combination of A and B work better than either one alone, but the evidence for synergism
is not strong.

5. Weigh (1), ab, ac, bc: empty, a and b together, a and c together, b and c together.

Source d.f. MS F

A 1 2014 21.3a

B 1 356 3.8

AB 1 14 0.2

C 1 45 0.5

AC 1 741 7.9b

BC 1 121 1.3

ABC 1 36 —

D 1 5704 60.5a

AD 1 114 1.2

BD 1 226 2.4

ABD 1 128 —

CD 1 0.02 0

ACD 1 10 —

BCD 1 10 —

ABCD 1 271 —

Total 15 9806

Estimate of error = 94.3
aP < 0.01
bP < 0.05
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AC interaction is significant: at low C, the A effect is 52.2 − 43.3; i.e., changing from low to
high level of A has little effect when C is at the low level. At high C, the A effect is 62.4 −
26.4.

CHAPTER 10
1. 1.00, 1.11, 1.60, 1.64, 1.74, 1.80, 2.06, 2.16, 2.30, 2.34, 2.36, 2.57, 2.70, 2.90, 2.90, 2.99, 3.10, 3.12,

3.18, 3,66

2. log Y =−0.127 + 1.068 logX
log 47 =−0.127 + 1.068 logX
log X = 1.685
X = 48.4 mg

3. R̄ = 1.066,S = 0.281; (0.066)/(0.089) = 0.75 (not significant at 5% level). The t test for log B
− log A is identical except for sign as the t test for log A − log B. This example shows the
problems of using ratios. The average of A/B is not (in general) the reciprocal of B/A.

4. (62 − 54)/(62 − 47) = 8/15 = 0.533. This is an outlier according to the Dixon test. We prob-
ably should not omit this value without further verification. The outlier could be due to
analytical error and/or the presence of tablets with unusual high potency.

5. Winsorized, 50.7; using all values, 51.4.
6. t = [2.8 − 0.6]/[1.732

√
1/5 + 1/5] = 2.01.

(Note the difference between the variances of the two groups.)
Use a square-root transformation:
Process 1: mean = 1.4363, s.d. = 0.960
Process 2: mean = 0.6, s.d. = 0.548
t = [1.4363 − 0.6]/[0.782

√
1/5 + 1/5] = 1.69

CHAPTER 11
1. (b)

t =
√

107.2 − (−3.05)
1983.9(1/20 + 1/20)

= 7.83(t2 = F )

2.
Source d.f. MS F

Subjects 11 5.19

Treatment 1 0.04 0.005 Treatments are not

significantly different.

Order 1 2.04 0.25

Error 10 8.04
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3.
Source d.f. MS F

Subjects 11 16.41

Treatments 1 155 13.19 (P < 0.01)

Order 1 177 9.96 (P < 0.05)

Error 10 11.75

(22.3 − 17.3) ± 2.23
√

11.75(1/12 + 1/12) = 5 ± 3.12

Grizzle analysis: Residual effect = (245)2+(230)2

12
− (475)2

24
= 9.375;

within MS = 17.11; F1,10 = 9.375/17.11 = 0.55; not significant at 5% level
4. A/B = 1.334,S2 = 0.238; t = (1.334 − 1.0)/

√
0.238(1/12) = 2.37; P< 0.05.

5. log X = 0.0954265; antilog = 1.246; S2 = 0.0309; t = 1.88 (not significant; assume no order
effect); 0.0954 ± 2.20

√
0.031(1/12) = −0.016 to 0.207; antilogs: 0.96 to 1.61

6. Two-way ANOVAS:

Placebo Active
Combined

ANOVA

Source d.f. MS d.f. MS d.f. MS

Patients 5 2.866 5 2.742 10 2.804

Weeks 3 1.055 3 7.264 3 3.91

Patients × weeks 15 0.956 15 0.897 30 0.926

Drugs 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 15.1875

Drugs × weeks 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 4.41

For “drugs,” F1,10 = 15.1875/2.804 = 5.416(P< 0.05); for “drugs × weeks,” F3,15 = 4.41/

0.926 = 4.76P< 0.05). From the accompanying plot and the F test for interaction, the active
effect increases with time while the placebo is relatively constant.

7. N = 2(55/60)2(1.96 + 1.28)2 + 1=∼19
8. |− 4.75 + 7.6 |/ (3.433

√
1/8 + 1/9) = 1.71(P > 0.05)

10. Suppose that we start in column 5 in the Blocks of 6 section of Table 11.1. We can equate
numbers 1 and 2 to Treatment A, 3 and 4 to Treatment B, and 5 and 6 to Treatment C. The
assignments are as follows:
From Table 11.1

3 2 5 1 5

2 1 2 6 6

1 3 3 5 4

5 5 4 2 3

6 6 1 3 2

4 4 6 4 1
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Subject Treatment Subject Treatment Subject Treatment

1 B 13 C 25 C

2 A 14 A 26 C

3 A 15 B 27 B

4 C 16 B 28 B

5 C 17 A 29 A

6 B 18 C 30 A

7 A 19 A

8 A 20 C

9 B 21 C

10 C 22 A

11 C 23 B

12 B 24 B

11. A = 3, B = 2. The effect of A in Period 2 = 3 (Direct effect) + 2 (carryover) + 3 (period) =
8. The effect of B in Period 2 is 2 + 2 + 3 = 7. A − B = 8 − 7 = 1.

12. N = 2(0.8)(1 − 0.8){(1.65 + 1.28)/0.16}2 = 108 per group.

CHAPTER 12
1. X̄ = 9.95; limits are 9.95 ± 1.88(0.10) = 9.95 ± 0.19

R̄ = 0.10; forN = 2, limits are 0 to (3.27)(0.10) = 0.33
2. � =√

0.02(0.98)/1000 = 0.004427; 3� = 0.0133; 0.02 ± 3� = 0.0067 to 0.0333
3. X̄ control chart is centered at 47.6 with limits 47.6 ± 1.02(1.2) = 47.6 ± 1.22. R chart has a

target of 1.2 with lower limit of 0 and upper limit of 2.57(1.2) = 3.1 (see Table IV.10).
4. P = 1%; accept if 0 or 1 rejects. Probability 0 rejects = 0.99100 = 0.366.

P(1 reject) = 0.370; P(batch rejected) = 1 − 0.736 = 0.264.

5. X̄ = 10.02; limits : 10.02 ± 0.31(0.38) = 10.02 ± 0.12
R = 0.38; limits: lower is 0.22(0.38) = 0.08; upper is 1.78(0.38) = 0.68
Many means are out of limits. Either find cause or, if not possible, use moving average if
means are well within official limits.

6. p = 50/100,000 = 0.005 = probability of reject; q = 0.9995; therefore, probability of passing
batch = 0.9995100 = 0.951

7.
Source d.f. MS

Between 3 483.3

Within 8 87.83

Between-analyst component = (483.3 − 87.83)/3 = 131.8; within-analyst component =
87.83
Three analysts perform four essays:

S2 = 4(131.8) + 87.83
12

= 51.3

Four analysts perform two assays:

S2 = 2(131.8) + 87.83
8

= 43.9

Cost is $24 for both procedures. The latter procedure (four analysts) is more precise.
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8. Limits are 399.6 ± 1.02(3.48) = 399.6 ± 3.55

9. X̄ = 10.21,R̄ = 0.24,S̄ = √
0.052 = 0.23

Limits for X̄ = 10.21 ± 1.88(0.24) = 10.21 ± 0.45
Limits for R̄ = 0 to 3.27(0.24) = 0 to 0.78

10. N = 4; limit = 2.28,R̄ = 2.28(12.5) = 28.5 (0 is lower limit)
11. 6.25 vs. 3.8
13. (a) 90 + 1.71(0.3/2 + 0.5 + 4/20)1/2 = 91.58

110 − 1.71(0.3/2 + 0.5 + 4/20)1/2 = 108.42
(b) 90 + 1.71(0.3 + 0.5 + [4/20]/2)1/2 = 91.62
110 − 1.71(0.3 + 0.5 + [4/20]/2)1/2 = 108.38
Consider the advantages and disadvantages of different kinds of replication.

CHAPTER 13
1. R̄ = 3.375; upper limit = 3.375 × 2.57 = 8.7
2. X̄ = 106.5; R̄ = 5.4; limits = 106.5 ± 1.02(5.4) = 106.5 ± 5.5
3. S2

1 = 15.67; S2
2 = 2.83; S2

3 = 3.94
S̄2 = 7.48
X2

2 = 72.440 − 61.958 = 10.482(P< 0.05)
4. R̄ = 2.38; upper limit = 2.38 × 3.27 = 7.78
5. X̄ = 102.4; R̄ = 3.3; limits = 102.4 ± 3(3.3)/1.128 = 102.4 ± 8.8

CHAPTER 15
1. t = 0.583/0.6685

√
1/12 = 3.02; P < 0.05; parametric t test shows significance

2. (a) 9 of 12 comparisons are higher for B: not significant
(b) (b) t = 0.5/(0.61

√
1/12) = 2.83; P< 0.05

3. � Ranks for A= 11(or 67); � ranks for B = 67; N = 12, � = 0.05

Z =
∣∣67 − 12(13)/4

∣∣√
12(12.5)(13)/12

= 2.20; P< 0.05

4. Use the Wilcoxon signed-rank test.
∑

R = 13.5 (or 22.5); P > 0.05 (not significant).
5. Use the Wilcoxon rank sum test.

Z =
∣∣74 − 10(10 + 10 + 1)/2

∣∣√
10(10(10 + 10 + 1)/12

= 2.34; P< 0.05

t = 4.35 − 2.09√
3.816(1/10 + 1/10)

= 2.59; P< 0.05
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6. Use the Kruskal-Wallis test. Sum of ranks = 63.5, 40.5, and 16.

� 2
2 = 12

15(16)
(1133.3) − 3(15 + 1) = 8.67; P< 0.05

There is a significant difference (batch 3 has lowest dissolution).
7. Sum of ranks = 31, 21.5, and 19.5.

� 2
2 = 12

36(3 + 1)
(312+21.52+19.52) − 3(12)(4) = 6.29; P< 0.05

The standard has the highest Cmax (standard is greater than B, P < 0.05; see Ref. 2).
8.

0 1 2 Total

A 50(38.9) 50(61.1) 75(75) 175

B 20(31.1) 60(48.9) 60(60) 140

Total 70 110 135 315

X 2
2 = 11.69; P < 0.01. The distribution of scores for A and B is different.

9.
Capping

Yes No Total

Yes 13(1.8) 45(56.2) 58

Specks No 18(29.2) 924(912.8) 942

Total 31 969 1000

(a) S1
2 = 73.7 (corrected); P � 0.01; not independent

(b) Z = |0.714 − 0.5| −1/126√
0.5(0.5)/63

= 3.27; P< 0.01

The difference is significant at the 1% level.
10. The probability of the fourfold table is 0.0304:

12!5!14!21!
0!12!5!9!26!

= 0.0304

The only least likely table has five tumors in the controls and zero tumors in the treated
group. This table has a probability of 0.012.4. Therefore, the probability of the given table
+ more unlikely tables is 0.0304 + 0.01204 = 0.0421. The � 2 test (corrected) is equal to 3.98,
which is equal to P = 0.0460.

11. The median is 303.25. There are nine runs. According to Table IV.14, fewer than 6 or more
than 15 runs are needed for significance at the 5% level. Therefore, the sequence is not
significantly nonrandom for both one- and two-sided tests.

14. � 2 = 5.44(P< 0.05)
15.

Source d.f. Sum-Squares Mean Square

A (Treatment) 1 2.485E-04 2.485E-04

B (Subject) 11 .637813 .057983

Error 11 1.138684 .1035167

Total (Adj) 23 1.776746

90%C.I. : (4.9615 − 4.9551) ± 1.8
√

0.1035167/6 = 0.0064 ± 0.2364 = 0.795 to 1.275
16. Sequence 1: P1 + T1−P2−T2

Sequence 2: P1 + T2−P2−T1
Seq. 1 − Seq. 2 = 2(TP − T2)

17. Sequence:

∣∣73 − 8(8 + 9 + 1)/2
∣∣√

8 × 9(8 + 9 + 1)/12
= 0.096P> 0.5

Period:

∣∣54 − 8(8 + 9 + 1)/2
∣∣√

8 × 9(8 + 9 + 1)/12
= 1.73P< 0.10
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18. Answer: p = 0.012

Source d.f. Sum-Squares Mean Square F-Ratio Prob > F

A (Press) 3 .9815 .3271667 5.64 0.012

B (Formula) 4 5.288004 1.322001

AB 12 .6959966 5.79E-02

Total (Adj) 19 6.965501

19.
Source d.f. Sum-Squares Mean Square

Formulation 4 0 0

Press 3 156.3 52.1

Error 12 113.7 9.475

Total (Adj) 19 270

LSDX̄ = 2.18

√
9.475

(1
5

+ 1
5

)
= 4.244

Sum = 5 × 4.244 = 21.22

CHAPTER 16
1. (a) ′ X1 = 0; ′ X2 = 1; ′ X3 = 0; Y = 10.725 + 2.225 = 12.95

(b) ′ X1 = 1; ′ X2 = 1; ′ X3 = 0.6; Y = 15.36
2. See Eq. (16.4). ′ X1 = (1 − 1)/1 = 0; ′ X2 = (0.5 − 0.5)/0.5 = 0; ′ X3 = (2.5 − 2.5)/2.5 = 0
3. Y = (9.7 + 7.2 + 8.4 + 4.1)/4 + (−9.7 + 7.2 − 8.4 + 4.1)X1/4 + (−9.7 − 7.2 + 8.4 + 4.1)X2/

4 + (9.7 − 7.2 − 8.4 + 4.1)X1 X2/4 = 7.35 − 1.7X1 − 1.1X2 − 0.45X1 X2
4. A′ = (8.75 − 7.5)/2.5 = 0.5; B ′ = (100 − 75)/25 = 1.0; Y = 7.35 − 1.7(0.5) − 1.1(1) − 0.45(0.5) =

5.725
5. Y = 19.75 + 4.25(St) + 3.25(M) − 2.25(M)(St). Note: M and St are coded. One possibility is

(St) = −0.23 and (M) = −1. This is equivalent to 15 min of mixing and 0.539% stearate, for
a 15-min dissolution time.

6. Y + 10A+ 15B + 30AB; let B = 1 − A.Y = 10A+ 15(1 − A) + 30A(1 − A) =−30A2 + 25A+ 15;
dY/d A=−60A+ 25 = 0; A= 0.417 = 41.7%

7. (a) Y = 292A+ 5.6B + 50.4C−492.8AB−186.8AC−49.6BC + 54.6ABC
(b) 100% B is 5.6 min. Combinations between 50 and 100% B and 0 and 50% A may give a

fast dissolution (e.g., 0.6 of B and 0.4 of A = less than 2 min).
(c) There are many combinations. For example, 35% of A and 65% of C results in a disso-

lution of approximately 92 min.
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Accuracy, 21, 23, 359
Alias, 235
Allergy test, 416–417

alpha error (see also Hypothesis testing), 94
Alternative hypothesis (see Hypothesis testing)
Analgesics, 209, 259
Analysis of covariance (ANCOVA), 210–214
Analysis of variance (ANOVA), 182

in assay procedure, 151, 244, 322
assumptions in, 153
comparisons in penalty, 188

planned vs. unplanned, 187–189
computations, 183–187
degrees of freedom in, 160, 185–186
difference from baseline, 264
error terms, 208
F distribution in, 119, 186
in factorial designs, 222
fixed model, 198, 199–203
hypothesis in, 119
incorrect analysis, 187
interaction in, 199
interpretation, 183
missing data, 208–209
model, 186
fixed and random, 196–198
multiple comparisons, 189–196

contrasts, 192
correlated outcomes, 194–196
Dunnett, 194
experiment–wise, 188, 192
LSD, 190–191
multiple range test, 191–192
Newman–Keuls, 193–194
penalty, 188
planned vs. unplanned, 187–189
Scheffe method, 190
studentized range, 192

nested, 334
one–way

assumptions in, 183
computations, 183–186
fixed and random models, 196–198
nonparametric (Wilcoxon rank sum test),

408–409
nonparametric test, Kruskal–Wallis,

402–404
random effect, 332
unequal sample sizes, 196–198

power in, 138–140
randomized block (see also Analysis of variance

(ANOVA), two-way), 198
repeated measures, (see also Repeated measures

design), 198
sum of squares (see also Sum of squares), 13

residual, 165
table, ANOVA, 458
test of hypotheses, 152
three factor, 234–235, 360
treatment sum of squares, 183
treatment mean square, 184
total sum of squares, 183
two way, 198

Analytical methods comparison
Greenbriar, 327
statistical methods in development, 327
transformations in, 240–241

Anesthetic, 435
Antagonistic, 224
Antianginal, 262
Antibiotic, 41, 45–46, 135, 366
Antihypertensives, 89, 99–100, 171
Anti–inflammatory, 37, 457
AQL (see Quality control)
Arcsine transformation, 248
Area under curve (AUC) (see also Crossover

design), 131
Arthritis, 418
Assay

and Barr decision, 173
composite, 339, 341
outliers, 243
single failure (see Barr decision)
USP test, 488

Assay development, 327
automated procedure, 410
statistical methods, 327
validation, 399

Asthmatics, 74, 76
Attributes, 2, 111, 156

inspection for, 77–78
AUC (see also Bioequivalence), 109, 109–110, 133,

140
Averaging assays and Barr Decision, 500
Average (see also Mean), 8–9

Bar graph, 26, 37
column chart, 35
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Barr decision, 173
average confirms, 501–503
content uniformity test, 500
homogenous sample replication, 500–501

Bartlett’s test, 121, 358
Baseline readings, 198, 264–265
Beer’s law, 26–27, 147
Behrens–Fisher method, 105, 106
Bernoulli trial, 367
Beta error (see also Hypothesis testing), 99, 124, 145,

299
Bias, 21–22, 72, 107
Binomial (see also Probability), 44–52, 68

distribution, 40, 44
normal approximation to, 62

continuity correction, 63
expansion, 368, 371
hypothesis tests, 48, 87

parameters, 46
randomized blocks, 419–420
standard deviation (see also Standard deviation),

46
sampling, 78
in sign test, 393–394
summary of properties, 49–51
test, 110

Bioanalytical method (see Validation)
Bioassay, 457
Bioavailability, 109, 119, 144, 176
Bioequivalence (see also Crossover design)

carryover in (see Crossover design)
confidence interval in (see also Confidence

Intervals), 280–281
designs, 269
dichotomous outcome, 45
in groups, 622
individual, 124, 284, 285, 292–293
interaction in (see Crossover design)
long half life, 270
non–absorbed drug, 615
nonparametric, 396
outliers, 487–488, 619–620
parallel design in, 616–619

Fieller’s method, 618–619
old FDA method, 617–618

Biological Variation, 16, 183
Bivariate normal, 172, 176
Blends, 71, 500
Blend sampling, 341
Blinding, 22, 259
Block, 198–199

binomial outcome, 419–420
Blood pressure, 2, 3, 8, 21–22, 28, 90–91, 99,

100
Bootstrap, bootstrapping, 296, 366, 384–385
Bonferroni, 189, 195
Bracketing, 82, 156
Bulk powder sampling, 78

Calibration curve, 154, 358ff
Cancer, 299

Carryover (see also Crossover design), 198, 260,
268ff

Categorical variables, 2, 35, 390
Censored data, 209
Central Limit Theorem, 60–62, 104, 368–369, 374,

375–376
Change from baseline, 90, 199, 211, 263
Chi–square

distribution, 64–65, 114–116
test (see also Proportions), 114–117

Cholesterol, 4, 59ff, 173, 225
Clinical(pre), 86, 108, 113, 301
Clinical significance, 262–263, 274, 299
Clinical trials (see also Experimental designs)

ANOVA in post treatment results, 265
controlled, 258
experimental design in (see Experimental

designs)
general principles, 258
guidelines, 258
multiclinic (see Multiclinic studies)
random assignment in, 75, 261

Cmax (see also Bioequivalence), 133, 239, 270ff
Cochran, 173, 208, 391, 419
Coding, 18–20
Coefficient of variation, 1, 16, 163
Column charts (see Graphs)
Completely randomized design, 182
Components of variance (see Variance)
Composite designs (see also Optimization),

435–439
Composite (tablets), 253
Computer Intensive Methods, 366

Bootstrapping, 384–389
Monte Carlo, 379
packages for, 366
simulation, 384ff

Concomitant variable, 210, 214
Conditional probability, 43
Confidence Intervals (see also Bioequivalence), 82ff

in ANOVA, 119
asymmetric, 88–89
coefficients, 104–105
construction of, 118
in crossover studies (see Crossover design)
for log–transformed data, 143, 281, 284
Monte Carlo simulation, using, 366–369
nonparametric, 396, 397
one–sided, 88, 161

continuity correction, 111
overlapping, 106

ratios, 109
in regression, 159–163
slope and intercept, 159
standard deviation known, 84–85
statistical test, 94
t distribution for, 64
Westlake, 89

Confounding (see also Factorial designs), 225, 236,
273

Consumer risk, 336
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Content uniformity, 79, 122, 124
USP test, 59

Contingency tables (see also Chi–square), 116,
411–413

chi–square tests in, 411
expected values in, 412
four–fold tables (2 × 2 tables), 412, 414

combined sets, 418–419
related samples, 416–418

Mantel–Haenszel test, 418
multiple comparisons in, 406
RXC tables, 412–413

Continuity correction, 63, 114, 117–118, 299
Contour plot, 439, 442–443
Contrasts, 192, 193
Control Charts (see Quality control)
Controlled study, 258
Control group, 108, 199

in paired t test, 108
positive control, 262

Correction factor (see Continuity correction)
Correction Term, 14, 185
Correlation

coefficient, 166–167
comments, 174–175
diagrams (see also Scatter plot), 33–34
and independence, 172–173
interpretation, 175
matrix, 195
misuse, 171, 174
multiple correlated outcomes, 194–196
multiple, 465
test of zero, 173

Correlated outcomes, multiple, 194–196
Counts, 114, 249
Covariance (see Analysis of covariance)
Covariate, 210–214
Critical region, 94, 96
Crossover design (see also Bioequivalence)

add–on studies, 622
advantages and disadvantages, 266–269
analysis of variance, 278
AUC, 276, 277, 278
average bioequivalence, 294
in bioequivalence studies, 266
carryover, differential, 268, 270, 274
carryover, Grizzle analysis, 268–269
carryover in, 273
carryover, test for, 277–278
Cmax, 270–272, 274, 276
Hyslop method for IB, 301
individual bioequivalence (IB), 292–293
components of variance, 327
IB metric, 296, 297
IB scaling, 295, 296
IB statistical analysis, 296

Cumulative probability (see Probability)

Data characteristics, 390–393
Defects, 71, 113, 324
Degrees of Freedom, 16, 64, 65, 85, 98160

Dependent variables, 38, 210
Destructive testing, 71, 491
Descriptive plots, 26
Design (see Experimental design)
Detection limit, 359
Dichotomous outcome, 620–621
Difference to be detected, 129, 139
Discrete variables, 2–3
Dissolution, 21, 31–34

FDA guidance, 343
Distributions

chi square (see also Chi square), 64–65
continuous, 52
cumulative, 7, 48
discrete, 40, 47
F (see also F distribution), 65, 119
frequency, 3–7
normal (see also Normal), 8, 40, 53
Poisson, 63–64
tails, 40
Uniform, 369, 371

Dixon test, 252, 495
Dose response, 147, 457, 458, 460
Double Blind, 89, 259, 263
Double dummy, 259
Drug content, 21, 76, 131, 249, 254, 255, 332–336,

350
Dunnet’s test, 194

ED50, 3, 46
Efficiency, 77, 225, 268
Estimation, 82–84
Evolutionary operation (EVOP), 446
Excel, Microsoft, 366, 389, 504
Excipients, 66, 425
Exercise test, 205, 263–264
Expected number (see also Chi square), 52, 111, 115
Experimental designs (see also Analysis of variance

(ANOVA)), 210
balanced incomplete block, 261
in clinical trials, 258
analysis of covariance, 264
analysis of variance, 266
baseline values, 263
change from baseline, 262–263
crossover designs (see Crossover designs)
error, 265
general principles, 258
one–way ANOVA, 182
parallel, 262–265
patients, choice of, 260–261
power, 264
randomization, 261
repeated measures (see Repeated measures

design)
Experimental error, 149, 151, 198, 229
Expiration date, 155, 156, 161
Exploratory data analysis, 164, 245

F Distribution (see also Distributions), 65, 119, 120
Factorial experiments, 228–229
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Factorial designs (see also Optimization), 222
advantages, 225
aliases, 235
analysis of variance in, 233
calculations, 231

Yates method, 239
confounding in, 236
defining contrast, 237
definitions, 222
effects, 222
main (effects), 222
example of, 237
factors in, 237

choice of, 240
fractional, 234
half replicate, 235
interaction in, 222
interpretation, 232
levels in, 232
notation, 235
orthogonal, 225
performing, 226
quadratic response, 229
recommendations in performing, 228–229
replicates in, 233
runs in, 234
synergism, 226
variation, 229
worked example, 230
Yates analysis, 233

Fieller’s Theorem (see Relative potency)
First order kinetics, 240
Fisher–Behrens (see Behrens–Fisher method)
Fisher’s Exact Test, 413–416
Fixed model (see Analysis of variance

(ANOVA))
Fixed margins in Fisher’s test, 414
Formulation, 92, 103ff
Fourfold table (see also Contingency tables)
Fractional factorial designs (see Factorial designs)
Frequency distribution

cumulative, 3–6, 7
table, 10

Friedman test, 404–408

Gauss–Markov, 213
Generic, 200
Geometric mean, 11, 242, 396
Graphs

bar charts, 26
column charts, 35
connecting points in, 30
construction, 28–32
deception in, 30
histogram, 26
key, 26
labeling, 28–33
pie charts, 35
scatter plot, 33–34
semi–log, 34–35
standard deviation in, 26

Greenbriar procedure, 3327
Grizzle (see Crossover design)
Group Sequential analysis (see Interim analysis)

Half–normal plot, 433
Harmonic mean, 11–12
Headache, 88, 118
Heteroscedascity, 240, 359
Histogram (see also Graphs), 26–28
Hypergeometric distribution, 414
Hypnotic drugs, 108
Hypothesis testing, 48, 82

alpha error, 90
assumptions, 96
beta error, 99
binomial, 110–112
chi–square tests, 114
degrees of freedom, 120
expected values in, 115

single sample, 112
null hypothesis, 104, 109, 112
one–sample, 109
one–sided, 99
paired test, 107–108
proportions, test for, 110
related samples, 119
significance level (see Significance)
two independent groups t test, 119

assumptions, 120
planning, 106

two–sided, 106
variances known, 106
variances unequal, 106
variances unknown, 106

Hyslop (see Individual bioequivalence)

Incomplete block, 261
Incomplete three way design, 301
Independence, 102, 104, 120, 173, 186, 225
Independent variable, 26, 34, 147
Individual bioequivalence (see Bioequivalence)
In–house limits (see Release limits)
Inspection for attributes, 127
Intent to treat, 261
Interaction (see also Analysis of variance (ANOVA);

Factorial designs), 157
Interim analysis, 307–308
Interval scale data, 34

Kinetic study, 249
Kruskal–Wallis Test, 402–404

Last value carried forward (LVCF), 209
Latin square, 266–268

randomization in, 261
LD50, 3, 45
Least significant difference (LSD) (see also Analysis

of variance (ANOVA)), 190–191
Levels in factorial designs (see Factorial)
Limits (see Release limits)
Least squares line (see Regression), 241, 245
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Linearity
test for, 174

Linear Regression (see also Regression), 147
Linearize, 167, 241
Logarithm, 240

transformation (see also Transformation)
Lognormal, 66, 167, 243, 244
Log transformation (see also Transformation), 240,

241–245
Lund (see Outliers), 256

Main effects (see Factorial designs)
Mann–Whitney U–test (see Wilcoxon rank sum

test), 398
Mantel–Haenszel test, 424 (see also Contingency

tables)
Marginal totals, 115, 116
Matrix, 156, 305
Mean (see also Average)

geometric, 11, 242, 284
harmonic, 11
standard error of, 16–17
variance of, 17
weighted, 17

Measurements
objective, 90
subjective, 90

Median, 1, 12–13, 66–68
Mil–Std (see also Quality control), 128
Missing data, 208–209, 267, 269
Mixing time in validation (see Validation)
Mixture designs (see Optimization)
Mode, 13
Model

in multiple regression, 167
reduced and full, 210

Monte Carlo methods, 379
Moving range (see Quality control)
Multiclinic studies, 306–307

interaction, 306
Multiple comparisons (see also Analysis of variance

(ANOVA)), 187ff
in RXC tables, 116

Multiple correlated outcomes, 194–196
Multiple regression (see Regression)
Mutually exclusive, 41–43, 45, 93

Nesting, 286, 334
Nominal values, 2, 307
Nonlinear regression (see also Regression),

166–170
Nonlinearity, 151, 165, 361
Nonparametric tests, 392, 396
Nonparametric tolerance test, 420–421
Normal distribution, 8, 3, 40, 53

areas under, 53–60
cumulative, 56
deviate, 60
standard, 56, 60

Null hypothesis (see Hypothesis testing)

Observed number (see Chi square test), 87, 115
Office of Generic Drugs (OGD), 613
Ointment, 111, 351
One–at–a–time experiments, 226, 228
One–sided confidence interval, 88
Operating characteristic (see Quality control,

acceptance sampling)
Optical density, 26
Optimization

center point, 431
combination drug product, 434
composite design, 435
coding in, 430
constraints in, 107

orthogonality in, 429
curvature, 432
experimental error in, 460
extra–design point, 431
fractional factorial in, 234

Ordinal measurements, 390
Origin, line through, 151, 517
Orthogonal (see also Factorial designs), 225
Out of Specification (OOS), 335, 478
Outliers

in bioequivalence studies, 286, 490–491
for chemical assay, 488–489
defined, 249
described, 619–620
for destructive testing, 491
example of handling, 253
level of significance test, 477
statistical tests, 250

P value, 94, 102
Pain, 2
Paired t test (see t distribution)
Pairing, 109
Parallel groups, 89, 107, 182, 199, 266
Parallelism (see Slopes), 201, 206, 213
Parameter, 8–9, 11, 15
Particle size, 11, 66
Percentile, 13
Pharmacodynamic, 269, 272, 281
Pharmacokinetics, 147, 167, 244
Pie chart, 26
Placebo, 28, 75, 89–92
Plackett–Burman designs (see Screening designs)
Point estimate, 82–83
Poisson distribution, 63–64
Polynomial, (see also Optimization), 427
Pooled standard deviation (see also Standard

deviation), 86, 104, 114
Pooling proportions, 112
Population, 8
Power

curve, 139
example, 132–133

Precision, 20–21
Preclinical test, 113, 413
Preference test, 93, 124
Prediction interval in regression, 162–163
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Probability
binomial (see also Binomial distribution),50
chi–square (see Chi–square)
continuous distribution, 53
cumulative, 53
density, 53
distributions (see also Binomial distribution, F

distribution, Normal distribution, t
distribution), 44–45

multiplicative law, 43
mutually exclusive, 41
sampling, 15
theorems, 40

Producer risk, 324
Proportions (see also Hypothesis testing)

chi–square test, 114–117
normal distribution test, 110
two independent groups test, 100–102

Quade test (see Friedman test)
Quadratic equation, 167, 224, 361
Quality control

acceptance sampling, 324
assay of tablets, 312
control charts, 314
moving range, 318
operating characteristic, 324
sampling, 78
Shewhart, 312
standard deviation, 312
statistical control, 312
trends in, 314

Quantitation limit, 359
Quartiles, 13

RXC matrix data, 405
Random

numbers, 71
number table, 72–75
sampling, 72
variables, 1, 34

categorical, 3
continuous, 2
discrete, 2–3
nominal, 2

Randomized block (see also Analysis of variance
(ANOVA)), 198, 210, 404–408, 419

Random model (see Analysis of variance
(ANOVA))

Range (see also Quality control), 13–16
Ranking, 391, 392, 394
Rating Scale, 2
Ratio scale, 392
Regression

assumptions in, 152–153
confidence intervals in, 159
for intercept, 159
one–sided in stability, 161
prediction interval, 162
for slope, 163

Rejecting a batch, 326

Rejection region (see Critical region)
Relative potency

assumptions, 460
confidence limits in, 461
Fieller’s Theorem, 272, 281

Release limits, 336–338
Repeated measures design

experimental, 301–303
ANOVA, 303–306

Replicates
appropriate averaging, 490
crossover designs, 287–300
study design, 623–625

Replication in two–way ANOVA (see Analysis of
variance (ANOVA))

replicates in factorial designs, 203, 522
Reproducibility, 16, 198, 226, 294, 357
Resampling, 345, 490

computer packages for, 389
Retesting, 254, 345, 487, 495–496
Residuals, 164–165
Residual sum of squares in ANOVA, 359
Residual variation, 229
Response surface (see Optimization)
RSD, 16, 122, 339, 494
Runs test, 324

test for randomness, 409–411

Sample
authoritative, 72
choosing, 74
choosing and Barr, 487
haphazard, 72
judgment, 72
nonprobability, 72
probability, 72
random, 41
representative, 78
statistics, 8

Sample Size, 95
Sampling

authoritative, 72
cluster, 71, 77

two–stage, 77
error, 50
fraction, 77
judgment, 72
nonprobability, 72
plans (see Quality control)
probability, 72
quality control, in, 78
random, 41
representative, 72

Satterthwaite, 338, 340
Scatter Plots, 33–34, 170
Scheffe test (see also Analysis of variance

(ANOVA)), 190, 192–193
Screening designs

for drugs, 434
composite design, 435–439
interaction in, 462
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optimization using factorial design, 427–435
extra (Center) points, 433–434
optimization of combination drug product,

434–435
replication (sample size), 433

Plackett Burman designs, 449–450
Sedative, 402
Semi–logarithmic plots, 34–35, 245
Sensitivity, 128, 380
Sequential analysis, 195, 233, 261, 313, 446–449
75/75 Rule (see Crossover designs), 276, 284
Shelf life, 155–156, 159–160, 162, 215–218, 336
Side effects, 2, 87, 88
Sign test, 45, 112, 393–394
Simplex Lattice (see also Optimization), 439–446
Simulations, 366
Slopes, pooling in stability (see Stability)
Significance level, 99, 102, 104, 109, 143, 189, 218,

285
Solubility (see Optimization)
Solubility phase diagram, 440
SOP, 314
Spectrophotometric analysis, 164
Spheronization, 236
Split plot design (see Repeated measures design)
Stability, 88, 155–160, 168

accelerated, 215
bracketing, 156
expiration date, 156, 158
one–side confidence interval, 161
optimal designs in, 156

Standard curve, 151
Standard deviation, 13
Standard error of mean, 16–17, 32
Standard scores, 20
Stem and Leaf plot, 6
Stick diagram, 37
Strata, 75–76
Studentized range, 192
Studentized residuals, 256
Subgroups (see Quality control)
Subsample, 77
Sum of Squares, 13, 148, 153, 172

between, 183–185
regression, 172
total, 183–185

Symmetry, 335

t distribution (see also Distributions; Hypothesis
testing)

modified, 406
paired sample t test, 107–110

T procedure (see Outliers)
Tablets, 2, 8–10

assay, 93, 158
batch, 9, 41, 78, 318
components of variance, 182
content uniformity (see also Content uniformity)
defects, 41, 44, 50, 51, 63
dissolution (see Dissolution)
excipients (see Optimization)

formulation, 33, 34, 92, 103
hardness, 170, 222, 312
homogeneity, 356
inspection, 8, 51, 77–78, 322
optimization, 439
physical properties, 465
potencies, 7, 10, 13
presses, 113–114, 404
quality, 3
sampling, 9, 44, 45
stability, 158
weight, 2, 8

Time to peak (Tmax) (see also Bioequivalence), 274,
393

Tolerance interval, 123–124, 254–255, 420
nonparametric, 420–421

Topical products, 266, 420
Transformation, 240–249

arcsine, 248
linearizing, 241
log dose, 457
logarithmic, 284
proportions, 295
reciprocal, 249
square root, 240, 249
standard normal (see Normal distribution)
summary, 249

Trapezoidal rule, 31, 271–272, 280
Triplicates and outliers, 250–252
Two by two tables (see Chi–square; Contingency

tables)
Two, one–sided t test, 143, 276, 283
Two–sided test (see Hypothesis testing)

Ulcers, 300
Uniformity, 342
Universe, 8
USP, 58, 122, 254, 336, 342, 343

weight test, 58

Vaccine, 137
Validation

analytical, 358–364
ANOVA in, 358
between and within, 358
bioanalytical, 370

Variables, 1–3
continuous, 2, 53
dependent, 26, 34, 147, 215
discontinuous, 40–41
discrete, 2–3, 40

attributes, 2
categorical, 2
nominal, 2

independent, 26, 209
random (see also Random, variables), 1
relationships, 26

Variance, 14–18
analysis of (see Analysis of variance (ANOVA))
comparison in related samples, 107–108,

175–177
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Variance (Continued)
comparison in validation, 321, 349
comparison of (see also Hypothesis

testing)
components of

in assay development, 327
limits, determining in–house, 336–337

confidence limits for, 122
linear combination of independent variables,

456
pooled in ANOVA, 103–104, 121
pooling, 86, 103
properties of, 455
weighted average, 11, 17–18
within batch, 318

Variation, 1, 16
biological, 16, 183
interindividual, 183, 266
random, 1

Weighted, 240
analysis, 166, 239
average, 10–11
regression (see also Regression), 163–164

Weight (see Tablet)
Westlake, 89, 284
Wilcoxon rank sum test (2 independent groups),

398–402
correction for ties in, 400, 404
efficiency of, 400
normal approximation in, 399

Wilcoxon signed rank test, 394–397
Winsorizing (see Outliers), 252–253

Yates, 111, 118, 232–233
Yates analysis in factorial designs, 233
Yates continuity correction, 111, 1114

Z transformation (see Normal distribution)
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