
11 Experimental Design in Clinical Trials

The design and analysis of clinical trials is fertile soil for statistical applications. The use of sound
statistical principles in this area is particularly important because of close FDA involvement,
in addition to crucial public health issues that are consequences of actions based on the out-
comes of clinical experiments. Principles and procedures of experimental design, particularly
as applied to clinical studies, are presented. Relatively few different experimental designs are
predominantly used in controlled clinical studies. In this chapter, we discuss several of these
important designs and their applications.

11.1 INTRODUCTION
Both pharmaceutical manufacturers and FDA personnel have had considerable input in con-
structing guidelines and recommendations for good clinical protocol design and data analysis.
In particular, the FDA has published a series of guidelines for the clinical evaluation of a variety
of classes of drugs. Those persons involved in clinical studies have been exposed to the constant
reminder of the importance of design in these studies. Clinical studies must be carefully devised
and documented to meet the clinical objectives. Clinical studies are very expensive indeed, and
before embarking, an all-out effort should be made to ensure that the study is on a sound
footing. Clinical studies designed to “prove” or demonstrate efficacy and/or safety for FDA
approval should be controlled studies, as far as is possible. A controlled study is one in which
an adequate control group is present (placebo or active control), and in which measures are
taken to avoid bias. The following excerpts from General Considerations for the Clinical Evaluation
of Drugs show the FDA’s concern for good experimental design and statistical procedures in
clinical trials [1]:

1. Statistical expertise is helpful in the planning, design, execution, and analysis of clinical
investigations and clinical pharmacology in order to ensure the validity of estimates of
safety and efficacy obtained from these studies.

2. It is the objective of clinical studies to draw inferences about drug responses in well-defined
target populations. Therefore, study protocols should specify the target population, how
patients or volunteers are to be selected, their assignment to the treatment regimens, specific
conditions under which the trial is to be conducted, and the procedures used to obtain
estimates of the important clinical parameters.

3. Good planning usually results in questions being asked that permit direct inferences. Since
studies are frequently designed to answer more than one question, it is useful in the planning
phase to consider listing of the questions to be answered in order of priority.

The following are general principles that should be considered in the conduct of clinical
trials:

1. Clearly state the objective(s).
2. Document the procedure used for randomization.
3. Include a suitable number of patients (subjects) according to statistical principles (see

chap. 6).
4. Include concurrently studied comparison (control) groups.
5. Use appropriate blinding techniques to avoid patient and physician bias.
6. Use objective measurements when possible.
7. Define the response variable.
8. Describe and document the statistical methods used for data analysis.
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11.2 SOME PRINCIPLES OF EXPERIMENTAL DESIGN AND ANALYSIS
Although many kinds of ingenious and complex statistical designs have been used in clinical
studies, many experts feel that simplicity is the key in clinical study design. The implementation
of clinical studies is extremely difficult. No matter how well designed or how well intentioned,
clinical studies are particularly susceptible to Murphy’s law: “If something can go wrong, it
will!” Careful attention to protocol procedures and symmetry in design (e.g., equal number of
patients per treatment group) often is negated as the study proceeds, due to patient dropouts,
missed visits, carelessness, misunderstood directions, and so on. If severe, these deviations can
result in extremely difficult analyses and interpretations. Although the experienced researcher
anticipates the problems of human research, such problems can be minimized by careful plan-
ning.

We will discuss a few examples of designs commonly used in clinical studies. The basic
principles of good design should always be kept in mind when considering the experimental
pathway to the study objectives. In Planning of Experiments, Cox discusses the requirements for
a good experiment [2]. When designing clinical studies, the following factors are important:

1. absence of bias;
2. absence of systematic error (use of controls);
3. adequate precision;
4. choice of patients;
5. simplicity and symmetry.

11.2.1 Absence of Bias
As far as possible, known sources of bias should be eliminated by blinding techniques. If a
double-blind procedure is not possible, careful thought should be given to alternatives that will
suppress, or at least account for possible bias. For example, if the physician can distinguish
two comparative drugs, as in an open study, perhaps the evaluation of the response and the
administration of the drug can be done by other members of the investigative team (e.g., a
nurse) who are not aware of the nature of the drug being administered.

In a double-blind study, both the observer and patient (or subject) are unaware of the
treatment being given during the course of the study. Human beings, the most complex of
machines, can respond to drugs (or any stimulus, for that matter) in amazing ways as a result
of their psychology. This is characterized in drug trials by the well-known “placebo effect.”
Also, a well-known fact is that the observer (nurse, doctor, etc.) can influence the outcome of
an experiment if the nature of the different treatments is known. The subjects of the experiment
can be influenced by words and/or actions, and unconscious bias may be manifested in the
recording and interpretation of the experimental observations. For example, in analgesic studies,
as much as 30% to 40% of patients may respond to a placebo treatment.

The double-blind method is accomplished by manufacturing alternative treatment dosage
forms to be as alike as possible in terms of shape, size, color, odor, and taste. Even in the case
of dosage forms that are quite disparate, ingenuity can always provide for double blinding. For
example, in a study where an injectable dosage form is to be compared to an oral dosage form,
the double-dummy technique may be used. Each subject is administered both an oral dose and an
injection. In one group, the subject receives an active oral dose and a placebo injection, whereas
in the other group, each subject receives a placebo oral dose and an active injection. There are
occasions where blinding is so difficult to achieve or is so inconvenient to the patient that studies
are best left “unblinded.” In these cases, every effort should be made to reduce possible biases.
For example, in some cases, it may be convenient for one person to administer the study drug,
and a second person, unaware of the treatment given, to make and record the observation.

Examples of problems that occur when trials are not blinded are given by Rodda et al.
[3]. In a study designed to compare an angiotensin converting enzyme (ACE) inhibitor with
a beta-blocker, unblinded investigators tended to assign patients who had been previously
unresponsive to beta-blockers to the ACE group. This allocation results in a treatment bias. The
ACE group may contain the more seriously ill patients.

An important feature of clinical study design is randomization of patients to treatments.
This topic has been discussed in chapter 4, but bears repetition. The randomization procedure
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as applied to various designs will be presented in the following discussion. Randomization is an
integral and essential part of the implementation and design of clinical studies. Randomization
will help to reduce potential bias in clinical experiments, and is the basis for valid calculations
of probabilities for statistical testing.

11.2.2 Absence of Systematic Errors
Cox gives some excellent examples in which the presence of a systematic error leads to erroneous
conclusions [2]. In the case of clinical trials, a systematic error would be present if one drug
was studied by one investigator and the second drug was studied by a second investigator.
Any observed differences between drugs could include “systematic” differences between the
investigators. This ill-designed experiment can be likened to Cox’s example of feeding two
different rations to a group of animals, where each group of animals is kept together in separate
pens. Differences in pens could confuse the ration differences. One or more pens may include
animals with different characteristics that, by chance, may affect the experimental outcome.
In the examples above, the experimental units (patients, animals, etc.) are not independent.
Although the problems of interpretation resulting from the designs in the examples above may
seem obvious, sometimes the shortcomings of experimental procedures are not obvious. We
have discussed the deficiencies of a design in which a baseline measurement is compared to a
post-treatment measurement in the absence of a control group. Any change in response from
baseline to treatment could be due to changes in conditions during the intervening time period.
To a great extent, systematic errors in clinical experiments can be avoided by the inclusion of
an appropriate control group and random assignment of patients to the treatment groups.

11.2.3 Adequate Precision
Increased precision in a comparative experiment means less variable treatment effects and more
efficient estimate of treatment differences. Precision can always be improved by increasing the
number of patients in the study. Because of the expense and ethical questions raised by using
large numbers of patients in drug trials, the sample size should be based on medical and
statistical considerations that will achieve the experimental objectives described in chapter 6.

Often, an appropriate choice of experimental design can increase the precision. Use of
baseline measurements or use of a crossover design rather than a parallel design, for example,
will usually increase the precision of treatment comparisons. However, in statistics as in life,
we do not get something for nothing. Experimental designs have their shortcomings as well
as advantages. Properties of a particular design should be carefully considered before the final
choice is made. For example, the presence of carryover effects will negate the advantage of a
crossover design as presented in section 11.4.

Blocking is another way of increasing precision. This is the basis of the increased precision
accomplished by use of the two-way design discussed in section 8.4. In these designs, the
patients in a block have similar (and relevant) characteristics. For example, if age and sex
are variables that affect the therapeutic response of two comparative drugs, patients may be
“blocked” on these variables. Thus if a male of age 55 years is assigned to drug A, another
male of age approximately 55 years will be assigned Treatment B. In practice, patients of similar
characteristics are grouped together in a block and randomly assigned to treatments.

11.2.4 Choice of Patients
In most clinical studies, the choice of patients covers a wide range of possibilities (e.g., age,
sex, severity of disease, concomitant diseases, etc.). In general, inferences made regarding drug
effectiveness are directly related to the restrictions (or lack of restrictions) placed on patient
eligibility as described in the study protocol. This is an important consideration in experimental
design, and great care should be taken to describe that patients may be qualified or disqualified
from entering the study.

11.2.5 Simplicity and Symmetry
Again we emphasize the importance of simplicity. More complex designs have more restrictions,
and a resultant lack of flexibility. The gain resulting from a more complex design should be
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weighed against the expense and problems of implementation often associated with more
sophisticated, complex designs.

Symmetry is an important design consideration. Often, the symmetry is obvious: In most
(but not all) cases, experimental designs should be designed to have equal number of patients
per treatment group, equal number of visits per patient, balanced order of administration, and
an equal number of replicates per patient. Some designs, such as balanced incomplete block
and partially balanced incomplete block designs, have a less obvious symmetry.

11.2.6 Randomization
Principles of randomization have been described in chapter 4. Randomization is particularly
important when assigning patients to treatments in clinical trials, ensuring that the requirements
of good experimental design are fulfilled and the pitfalls avoided [4]. Among other qualities,
proper randomization avoids unknown biases, tends to balance patient characteristics, and is
the basis for the theory that allows calculation of probabilities. Randomization ensures a balance
in the long run. In any given experiment, two groups may not have similar characteristics due
to chance. Therefore, it is important to carefully examine properties of the groups to assess if
group differences could affect the experimental outcome. Use of covariance analysis can help
overcome differences between groups as discussed in section 8.6.

In section 4.2, the advantages of randomization of patients in blocks is discussed. Table
11.1 is a short table of random permutations that gives random schemes for block sizes of
4, 5, 6, 8, and 10. This kind of randomization is also known as restricted randomization and
allows for an approximate balance of treatment groups throughout the trial. As an example of
the application of Table 11.1, consider a study comparing an active drug with placebo using
a parallel design, with 24 patients per group (a total of 48 patients). In this case, a decision is
made to group patients in blocks of 8, that is, for each group of eight consecutive patients, four
will be on drug and four on placebo. In Table 11.1, we start in a random column in the section
labeled “Blocks of 8,” and select six sequential columns. Because this is a short table, we would
continue into the first column if we had to proceed past the last column. (Note that this table
is meant to illustrate the procedure and should not be used repeatedly in real examples or for
sample sizes exceeding the total number of random assignments in the table. For example, there
are 160 random assignments for blocks of size 8; therefore for a study consisting of more than
160 patients, this table would not be of sufficient size.) If the third column is selected to begin
the random assignment, and we assign Treatment A to an odd number and Treatment B to an
even number, the first eight patients will be assigned treatment as follows:

B B A B B A A A.

11.2.7 Intent to Treat
In most clinical studies, there is a group of patients who have been administered drug who
may not be included in the efficacy data analysis because of various reasons, such as pro-
tocol violations. This would include patients, for example, who (a) leave the study early for
nondrug-related reasons, (b) take other medications that are excluded in the protocol, or (c)
are noncompliant with regard to the scheduled dosing regimen, and so on. Certainly, these
patients should be included in summaries of safety data, such as adverse reactions and clin-
ical laboratory determinations. Under FDA guidelines, an analysis of efficacy data should be
performed with these patients included as an “intent to treat” (ITT) analysis [5]. Thus, both an
efficacy analysis including only those patients who followed the protocol, and an ITT analysis,
which includes all patients randomized to treatments (with the possible exception of inclusion
of ineligible patients, mistakenly included) are performed. In fact, the ITT analysis may take
precedence over the analysis that excludes protocol violators. The protocol violators, or those
patients who are not to be included in the primary analysis, should be identified, with reasons
for exclusion, prior to breaking the treatment randomization code. The ITT analysis should
probably not result in different conclusions from the primary analysis, particularly if the proto-
col violators and other “excluded” patients occur at random. In most circumstances, a different
conclusion may occur for the two analyses only when the significance level is close to 0.05.
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Table 11.1 Randomization in Blocks

BLOCKS OF 4

1 3 3 2 4 4 1 l 1 2 1 3 3 1 2 4 2 3 1 4

2 2 4 3 3 2 2 2 2 3 4 2 2 4 4 2 4 2 4 3

3 1 1 4 2 1 3 3 3 1 2 1 1 2 3 1 1 4 3 2

4 4 2 1 1 3 4 4 4 4 3 4 4 3 1 3 3 1 2 1

BLOCKS OF 5

4 4 1 3 5 5 4 2 5 5 3 5 4 3 2 2 3 2 5 4

2 5 3 5 2 3 5 5 1 1 2 2 2 4 3 5 4 3 1 2

3 3 5 4 1 2 1 3 4 3 5 4 1 5 4 3 2 4 4 3

1 2 4 2 3 1 3 4 2 4 4 3 5 2 5 1 1 1 2 1

5 1 2 1 4 4 2 1 3 2 1 1 3 1 1 4 5 5 3 5

BLOCKS OF 6

1 5 2 5 3 2 5 1 5 1 1 2 5 2 6 4 3 4 2 2

2 6 5 3 2 1 2 6 6 3 4 4 1 1 3 5 6 2 6 5

5 9 4 4 1 3 3 5 4 4 2 6 6 6 1 3 2 5 3 1

6 1 1 2 5 5 4 2 3 6 5 1 2 3 2 1 4 6 4 3

3 4 6 1 6 6 1 3 2 5 3 3 3 4 4 6 5 3 1 6

4 3 3 6 4 4 6 4 1 2 6 5 4 5 5 2 1 1 5 4

BLOCKS OF 8

7 4 2 4 1 2 1 5 3 4 4 8 5 3 5 2 2 5 1 6

8 2 4 5 8 5 5 2 4 5 6 6 4 5 4 7 8 3 7 7

4 3 1 6 3 6 3 4 5 2 7 5 1 1 3 6 6 6 8 5

1 5 6 3 2 7 8 8 2 1 3 1 3 8 6 3 3 8 5 1

2 8 8 1 7 8’ 4 3 8 7 5 7 7 6 1 4 4 2 3 3

3 1 5 8 6 1 2 7 7 6 2 3 2 2 2 5 5 1 6 2

6 7 3 7 5 4 7 1 6 8 8 2 8 4 7 8 7 4 2 4

5 6 7 2 4 3 6 6 1 3 1 4 6 7 8 1 1 7 4 8

BLOCKS OF 10

1 9 4 1 3 4 1 4 6 8 9 9 10 9 5 5 6 6 4 3

4 6 5 8 2 7 4 5 3 9 7 6 6 1 1 4 3 2 9 2

5 2 3 4 7 8 5 9 9 2 10 8 10 7 4 3 9 7 10 9

9 8 6 10 8 9 8 10 5 7 2 4 4 4 10 10 4 1 2 7

2 10 8 9 1 6 6 8 4 10 5 2 9 2 6 1 1 9 7 5

10 3 9 5 6 2 9 1 8 1 1 3 5 8 8 8 7 3 3 10

8 4 7 7 9 3 10 7 1 4 3 7 3 3 2 9 2 5 1 8

3 5 2 2 5 1 7 6 7 5 8 1 7 5 3 6 5 8 5 1

6 7 10 3 10 5 3 3 2 6 4 10 8 6 9 2 8 4 6 6

7 1 1 6 4 10 2 2 10 3 6 5 2 10 7 7 10 10 8 4

If the conclusions differ for the two analyses, ITT results are sometimes considered to be more
definitive. Certainly, an explanation should be given when conclusions are different for the two
analyses. One should recognize that the issue of using an ITT analysis vis-à-vis an analysis
including only “compliant” patients remains controversial.

11.3 PARALLEL DESIGN
In a parallel design, two or more drugs are studied, drugs being randomly assigned to different
patients. Each patient is assigned a single drug. In the example presented here, a study was
proposed to compare the response of patients to a new formulation of an antianginal agent and
a placebo with regard to exercise time on a stationary bicycle at fixed impedance. An alternative
approach would be to use an existing product rather than placebo as the comparative product.
However, the decision to use placebo was based on the experimental objective: to demonstrate
that the new formulation produces a measurable and significant increase in exercise time. A
difference in exercise time between the drug and placebo is such a measure. A comparison of
the new formulation with a positive control (an active drug) would not achieve the objective
directly.

In this study, a difference in exercise time between drug and placebo of 60 seconds was
considered to be of clinical significance. The standard deviation was estimated to be 65 based
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on change from baseline data observed in previous studies. The sample size for this study, for
an alpha level of 0.05 and power of 0.90 (beta = 0.10), was estimated as 20 patients per group
(see Exercise Problem 7). Therefore 40 patients were entered into the study, 20 each randomly
assigned to placebo and active treatment. A randomization that obviates a long consecutive run
of patients assigned to one of the treatments was used as described in section 11.2.6. Patients were
randomly assigned to each treatment in groups of 10, with 5 patients to be randomly assigned
to each treatment. This randomization was applied to each of the 4 subsets of 10 patients (40
patients total). From Table 11.1 starting in the fourth column, patients are randomized into
the two groups as follows, placebo if an odd number appears and new formulation if an even
number appears:

Placebo New formulation

Subset 1 1, 5, 6, 7, 9 2, 3, 4, 8, 10

Subset 2 11, 13, 15, 17, 18 12, 14, 16, 19, 20

Subset 3 22, 24, 27, 28, 29 21, 23, 25, 26, 30

Subset 4 31, 33, 36, 38, 39 32, 34, 35, 37, 40

The first subset is assigned as follows. The first number is 1; patient 1 is assigned to placebo.
The second number (reading down) is 8; patient 2 is assigned to the new formulation (NF). The
next two numbers (4, 10) are even. Patients 3 and 4 are assigned to NF. The next number is odd
(9); patient 5 is assigned to Placebo. The next two numbers are odd and Patients 6 and 7 are
assigned to Placebo. Patients 8, 9, and 10 are assigned to NF, placebo, and NF, respectively, to
complete the first group of 10 patients. Entering column five, patient 11 is assigned to placebo,
and so on.

An alternative randomization is to number patients consecutively from 1 to 40 as they
enter the study. Using a table of random numbers, patients are assigned to placebo if an odd
number appears, and assigned to the test product (NF) if an even number appears. Starting in
the eleventh column of Table IV.1, the randomization scheme is as follows:

Placebo New formulation

1, 6, 7, 8 2, 3, 4, 5

12, 13, 14 9, 10, 11

15, 18, 20 16, 17, 19

21, 22, 26 23, 24, 25

27, 28 29, 30, 31

32, 34, 35 33, 38, 39

36, 37 40

For example, the first number in column 11 is 7; patient number 1 is assigned to placebo.
The next number in column 11 is 8; the second patient is assigned to the NF; and so on. A
problem with this approach is that by chance we may observe a long string of consecutive of
odd or even numbers, which would negate the purpose of the randomization as noted above.

Patients were first given a predrug exercise test to determine baseline values. The test
statistic is the time of exercise to fatigue or an anginal episode. Tablets were prepared so that
the placebo and active drug products were identical in appearance. Double-blind conditions
prevailed. One hour after administration of the drug, the exercise test was repeated. The results
of the experiment are shown in Table 11.2.

The key points in this design are as follows:

1. There are two independent groups (placebo and active, in this example). An equal number
of patients are randomly assigned to each group.

2. A baseline measurement and a single post-treatment measurement are available.
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This design corresponds to a one-way analysis of variance, or in the case of two treatments,
a two independent groups t test. Since, in general, more than two treatments may be included
in the experiment, the analysis will be illustrated using ANOVA.

When possible, pretreatment (baseline) measurements should be made in clinical studies.
The baseline values can be used to help increase the precision of the measurements. For example,
if the treatment groups are compared using differences from baseline, rather than the post-
treatment exercise time, the variability of the measurements will usually be reduced. Using
differences, we will probably have a better chance of detecting treatment differences, if they
exist (increased power) [6]. “Subtracting out’’ the baseline helps to reduce the between-patient
variability that is responsible for the variance (the “within mean square”) in the statistical test.
A more complex, but more efficient analysis is analysis of covariance. Analysis of covariance [6]
takes baseline readings into account, and for an unambiguous conclusion, assumes that the
slope of the response versus baseline is the same for all treatment groups. See “Analysis of
Covariance” (sect. 8.6) for a more detailed discussion. Also, the interpretation may be more
difficult than the simple “difference from baseline” approach.

To illustrate the results of the analysis with and without baseline readings, the data
in Table 11.2 will be analyzed in two ways: (a) using only the post-treatment response,

Table 11.2 Results of the Exercise Test Comparing Placebo to Active Drug: Time (Seconds) to Fatigue or

Angina

Placebo Active drug (new formulation)

Exercise time Exercise time

Patient Pre Post Post–Pre Patient Pre Post Post–Pre

1 377 345 −32 2 232 372 140

6 272 310 38 3 133 120 −13

7 348 347 −1 4 206 294 88

8 348 300 −48 5 140 258 118

12 133 150 17 9 240 340 100

13 102 129 27 10 246 393 147

14 156 110 −46 11 226 315 89

15 205 251 46 16 123 180 57

18 296 262 −34 17 166 334 168

20 328 297 −31 19 264 381 117

21 315 278 −37 23 241 376 135

22 133 124 −9 24 74 264 190

26 223 289 66 25 400 541 141

27 256 303 47 29 320 410 90

28 493 487 −6 30 216 301 85

32 336 309 −27 31 153 143 −10

34 299 281 −18 33 193 348 155

35 140 186 46 38 330 440 110

36 161 125 −36 39 258 365 107

37 259 236 −23 40 353 483 130

Mean 259 256 −3.05 Mean 226 333 107.2

s.d. 102 95 36.3 s.d. 83 106 51.5
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post-treatment exercise time, and (b) comparing the difference from baseline for the two treat-
ments. The reader is reminded of the assumptions underlying the t test and ANOVA: the
variables should be independent, normally distributed with homogeneous variance. These
assumptions are necessary for both post-treatment and difference analyses. Possible problems
with lack of normality will be less severe in the difference analysis. The difference of inde-
pendent non-normal variables will tend to be closer to normal than are the original individual
data.

Before proceeding with the formal analysis, it is prudent to test the equivalence of the
baseline averages for the two treatment groups. This test, if not significant, gives some assurance
that the two groups are “comparable.” We will use a two independent groups t test to compare
baseline values (see sect. 5.2.2).

t = X1 − X2

Sp
√

1/N1 + 1/N2

= 259 − 226

Sp
√

1/20 + 1/20
= 33

93
√

1/10
= 1.12.

Note that the pooled standard deviation (93) is the pooled value from the baseline readings,√
(1022 + 832)/2. From Table IV.4, a t value of approximately 2.03 is needed for significance (38

d.f.) at the 5% level. Therefore, the baseline averages are not significantly different for the two
treatment groups. If the baseline values are significantly different, one would want to investigate
further the effects of baseline on response in order to decide on the best procedure for analysis
of the data (e.g., covariance analysis, ratio of response to baseline, etc.).

11.3.1 ANOVA Using Only Post-Treatment Results
The average results for exercise time after treatment are 256 seconds for placebo and 333 seconds
for the NF of active drug, a difference of 77 seconds (Table 11.2). Although the averages can be
compared using a t test as in the case of baseline readings (above), the equivalent ANOVA is
given in Table 11.3. The reader is directed to Exercise Problem 1 for the detailed calculations.
According to Table IV.6A1, between groups (active and placebo) is significant at the 5% level.

11.3.2 ANOVA of Differences from the Baseline
When the baseline values are taken into consideration, the active drug shows an increase in
exercise time over placebo of 110.25 seconds [107.2 − (−3.05)]. The ANOVA is shown in Table
11.4. The data analyzed here are the (post–pre) values given in Table 11.2. The F test for treatment
differences is 61.3! There is no doubt about the difference between the active drug and placebo.
The larger F value is due to the considerable reduction in variance as a result of including
the baseline values in the analysis. The within-groups error term represents within- patient
variation in this analysis. In the previous analysis for post-treatment results only, the within-
groups error term represents the between-patient variation, which is considerably larger than the
within-patient error. Although both tests are significant (p < 0.05) in this example, one can easily
see that situations may arise in which treatments may not be statistically different based on a
significance test if between-patient variance is used as the error term, but would be significant
based on the smaller within-patient variance. Thus, designs that use the smaller within-patient
variance as the error term for treatments are to be preferred, other things being equal.

Table 11.3 ANOVA Table for Post-Treatment Readings for the

Data of Table 11.2

Source d.f. SS MS F

Between groups 1 59,213 59,213 F1,38 = 5.86∗
Within groups 38 383,787 10,099.7

Total 39 443,000

∗p < 0.05.
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Table 11.4 Analysis of Variance for Differences from Baseline

(Table 11.1)

Source d.f. SS MS F

Between groups 1 121,551 120,551 F1,38 = 61.3∗
Within groups 38 75,396 1984

Total 39 196,947

∗p < 0.01.

11.4 CROSSOVER DESIGNS AND BIOAVAILABILITY/BIOEQUIVALENCE STUDIES
In a typical crossover design, each subject takes each of the treatments under investigation on
different occasions. Comparative bioavailability∗ or bioequivalence studies, in which two or
more formulations of the same drug are compared, are usually designed as crossover studies.
Perhaps the greatest appeal of the crossover design is that each patient acts as his or her own
control. This feature allows for the direct comparison of treatments, and is particularly efficient
in the presence of large interindividual variation. However, caution should be used when
considering this design in studies where carryover effects or other interactions are anticipated.
Under these circumstances, a parallel design may be more appropriate.

11.4.1 Description of Crossover Designs: Advantages and Disadvantages
The crossover (or changeover) design is a very popular, and often desirable, design in clinical
experiments. In these designs, typically, two treatments are compared, with each patient or
subject taking each treatment in turn. The treatments are typically taken on two occasions, often
called visits, periods, or legs. The order of treatment is randomized; that is, either A is followed
by B or B is followed by A, where A and B are the two treatments. Certain situations exist where
the treatments are not separated by time, for example, in two visits or periods. For example,
comparing the effect of topical products, locations of applications on the body may serve as the
visits or periods. Product may be applied to each of two arms, left and right. Individuals will be
separated into two groups, (1) those with Product A applied on the left arm and Product B on the
right arm, and (2) those with Product B applied on the left arm and Product A on the right arm.

A————————-→B B————————-→A
First week Second week or First week Second week

This design may also be used for the comparison of more than two treatments. The present
discussion will be limited to the comparison of two treatments, the most common situation
in clinical studies. (The design and analysis of three or more treatment crossovers follows.)
Crossover designs have great appeal when the experimental objective is the comparison of
the performance, or effects, of two drugs or product formulations. Since each patient takes
each product, the comparison of the products is based on within-patient variation. The within-
or intrasubject variability will be smaller than the between- or intersubject variability used
for the comparison of treatments in the one-way or parallel-groups design. Thus, crossover
experiments usually result in greater precision than the parallel-groups design, where different
patients comprise the two groups. Given an equal number of observations, the crossover design
is more powerful than a parallel design in detecting product differences.

The crossover design is a type of Latin square. In a Latin square, the number of treatments
equals the number of patients. In addition, another factor, such as order of treatment, is included
in the experiment in a balanced way. The net result is an N × N array (where N is the number
of treatments or patients) of N letters such that a given letter appears only once in a given row
or column. This is most easily shown pictorially. A Latin square for four subjects taking four
drugs is shown in Table 11.5. For randomizations of treatments in Latin squares, see Ref. [6].

∗ A bioavailability study, in our context, is defined as a comparative study of a drug formulation compared to an
optimally absorbed (intravenous or oral solution) formulation.
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Table 11.5 4 × 4 Latin Square: Four Subjects Take Four Drugs

Order in which drugsa are taken

Subject First Second Third Fourth

1 A B C D

2 B C D A

3 C D A B

4 D A B C

aDrugs are designated as A, B, C, D.

For the comparison of two formulations, a 2 × 2 Latin square (N = 2) consists of two
patients each taking two formulations (A and B) on two different occasions in two ‘‘orders” as
follows:

Occasion period

Patient First Second

1 A B

2 B A

The balancing of order (A − B or B − A) takes care of time trends or other “period” effects,
if present. (A period effect is a difference in response due to the occasion on which the treatment
is given, independent of the effect due to the treatment.)

The 2 × 2 Latin square shown above is familiar to all who have been involved in bioavail-
ability/bioequivalence studies. In these studies, the 2 × 2 Latin square is repeated several times
to include a sufficient number of patients (see also Table 11.6). Thus, the crossover design can
be thought of as a repetition of the 2 × 2 Latin square.

The crossover design has an advantage, previously noted, of increased precision relative
to a parallel-groups design. Also, the crossover is usually more economical: one-half the num-
ber of patients or subjects have to be recruited to obtain the same number of observations as
in a parallel design. (Note that each patient takes two drugs in the crossover.) Often, a signif-
icant part of the expense in terms of both time and money is spent recruiting and processing
patients or volunteers. The advantage of the crossover design in terms of cost depends on
the economics of patient recruiting, cost of experimental observations, as well as the relative
within-patient/between-patient variation. The smaller the within-patient variation relative to
the between-patient variation, the more efficient will be the crossover design. Hence, if a repeat
observation on the same patient is very variable (nonreproducible), the crossover may not be
very much better than a parallel design, cost factors being equal. This problem is presented and
quantitatively analyzed in detail by Brown [7].

There are also some problems associated with crossover designs. A crossover study may
take longer to complete than a parallel study because of the extra testing period. It should be
noted, however, that if recruitment of patients is difficult, the crossover design may actually save
time, because fewer patients are needed to obtain equal power compared to the parallel design.
Another disadvantage of the crossover design is that missing data pose a more serious problem
than in the parallel design. Since each subject must supply data on two occasions (compared to
a single occasion in the parallel design), the chances of observations being lost to the analysis
are greater in the crossover study. If an observation is lost in one of the legs of a two-period
crossover, the data for that person carry very little information. When data are missing in the
crossover design, the statistical analysis is more difficult and the design loses some efficiency.
Finally, the administration of crossover designs in terms of management and patient compliance
is somewhat more difficult than that of parallel studies.
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Figure 11.1 Carryover in a bioequivalence study.

Perhaps the most serious problem with the use of crossover designs is one common to all
Latin square designs, the possibility of interactions. The most common interaction that may be
present in crossover design is a differential carryover or residual effect. This effect occurs when
the response on the second period (leg) is dependent on the response in the first period, and this
dependency differs depending on which of the two treatments is given during the first period.
Carryover is illustrated in Figure 11.1(A), where the short interval between administration of
dosage forms X and Y is not sufficient to rid the body of drug when formulation X is given first.
This results in an apparent larger blood level for formulation Y when it is given subsequent to
formulation X. In the presence of differential carryover, the data cannot be properly analyzed
except by the use of more complex designs (see replicate crossover designs in sect. 11.4.7). These
special designs are not easily accommodated to clinical studies [8].

Figure 11.1(B) illustrates an example where a sufficiently long washout period ensures
that carryover of blood concentration of drug is absent. The results depicted in Figure 11.1(A)
show a carryover effect that could easily have been avoided if the study had been carefully
planned. This example only illustrates the problem; often, carryover effects are not as obvious.
These effects can be caused by such uncontrolled factors as psychological or physiological states
of the patients, or by external factors such as the weather, clinical setting, assay techniques, and
so on.

Grizzle has published an analysis to detect carryover (residual) effects [9]. When differ-
ential carryover effects are present, the usual interpretation and statistical analysis of crossover
studies are invalid. Only the first period results can be used, resulting in a smaller, less sen-
sitive experiment. An example of Grizzle’s analysis is shown in this chapter in the discussion
of bioavailability studies (sect. 11.4.2). Brown concludes that most of the time, in these cases,
the parallel design is probably more efficient [7]. Therefore, if differential carryover effects are
suspected prior to implementation of the study, an alternative to the crossover design should
be considered (see below).
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Because of the “built-in” individual-by-individual comparisons of products provided by
the crossover design, the use of such designs in comparative clinical studies often seems very
attractive. However, in many situations, where patients are being treated for a disease state, the
design is either inappropriate or difficult to implement. In acute diseases, patients may be cured
or improved so much after the first treatment that a “different” condition or state of illness is
being treated during the second leg of the crossover. Also, psychological carryover has been
observed, particularly in cases of testing psychotropic drugs.

The longer study time necessary to test two drugs in the crossover design can be critical
if the testing period of each leg is of long duration. Including a possible washout period to
avoid possible carryover effects, the crossover study will take at least twice as long as a parallel
study to complete. In a study of long duration, there will be more difficulty in recruiting and
maintaining patients in the study. One of the most frustrating (albeit challenging) facets of data
analysis is data with “holes,” missing data. Long-term crossover studies will inevitably have
such problems.

11.4.2 Bioavailability/Bioequivalence Studies†

The assessment of “bioequivalence” (BE) refers to a procedure that compares the bioavailability
of a drug from different formulations. Bioavailability is defined as the rate and extent to which
the active ingredient or active moiety is absorbed from a drug product and becomes available at
the site of action. For drug products that are not intended to be absorbed into the bloodstream,
bioavailability may be assessed by measurements intended to reflect the rate and extent to which
the active ingredient or active moiety becomes available at the site of action. In this chapter, we
will not present methods for drugs that are not absorbed into the bloodstream (or absorbed so
little as to be unmeasurable), but may act locally. Products containing such drugs are usually
assessed using a clinical endpoint, using parallel designs discussed elsewhere in this chapter.
Statistical methodology, in general, will be approached in a manner consistent with methods
presented for drugs that are absorbed.

Thus, we are concerned with measures of the release of drug from a formulation and its
availability to the body. BE can be simply defined by the relative bioavailability of two or more
formulations of the same drug entity. According to 21 CFR 320.1, BE is defined as “the absence of
a significant difference in the rate and extent to which the active ingredient or active moiety . . .

becomes available at the site of drug action when administered . . . in an appropriately designed
study.”

BE is an important part of an NDA in which formulation changes have been made during
and after pivotal clinical trials. BE studies, as part of Abbreviated New Drug Application
(ANDA) submissions, in which a generic product is compared to a marketed, reference product,
are critical parts of the submission. BE studies may also be necessary when formulations for
approved marketed products are modified.

In general, most BE studies depend on accumulation of pharmacokinetic (PK) data that
provide concentrations of drug in the bloodstream at specified time points following administra-
tion of the drug. These studies are typically performed, using oral dosage forms, on volunteers
who are incarcerated (housed) during the study to ensure compliance with regard to dosing
schedule as well as other protocol requirements. This does not mean that BE studies are limited
to oral dosage forms. Any drug formulation that results in measurable blood concentrations
after administration can be treated and analyzed in a manner similar to drugs taken orally.
For drugs that act locally and are not appreciably absorbed, either a surrogate endpoint may
be utilized in place of blood concentrations of drug (e.g., a pharmacodynamic response) or a
clinical study using a therapeutic outcome may be necessary. Also, in some cases where assay
methodology in blood is limited, or for other relevant reasons, measurements of drug in the
urine over time may be used to assess equivalence.

To measure rate and extent of absorption for oral products, PK measures are used. In
particular, model independent measures used are (a) area under the blood concentration versus

† Additional discussion of designs and analyses are given in Appendix X.
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time curve (AUC) and the maximum concentration (Cmax), which are measures of the amount
of drug absorbed and the rate of absorption, respectively.

The time at which the maximum concentration occurs (tmax) is a more direct measure as
an indicator of absorption rate, but is a very variable estimate.

Bioavailability/bioequivalence studies are particularly amenable to crossover designs.
Virtually all such studies make use of this design. Most BE studies involve single doses of drugs
given to normal volunteers, and are of short duration. Thus the disadvantages of the crossover
design in long term, chronic dosing studies are not apparent in bioavailability studies. With
an appropriate washout period between doses, the crossover is ideally suited for comparative
bioavailability studies.

Statistical applications are essential for the evaluation of BE studies. Study designs are
typically two-treatment, two-period (tttp) crossover studies with single or multiple (steady
state) dosing, fasting or fed. Designs with more than two periods are now becoming more
common, and are recommended in certain cases by the FDA. For long half-life drugs, where
time is crucial, parallel designs may be desirable, but these studies use more subjects than would
be used in the crossover design, and the implementation of parallel studies may be difficult and
expensive. The final evaluation is based on parameter averages derived from the blood level
curves, AUC, Cmax, and tmax. Statistical analyses that have been recommended are varied, and
the analyses presented here are typical of those recommended by regulatory agencies.

This section discusses some designs, their properties, and statistical evaluations.
Although crossover designs have clear advantages over corresponding parallel designs,

their use is restricted, in general, as previously noted, because of potential differential carryover
effects and confounded interactions. However, for BE studies, the advantages of these designs
far outweigh the disadvantages. Because these studies are typically performed in healthy vol-
unteers and are of short duration, the potential for carryover and interactions is minimal.
In particular, the likelihood of differential carryover seems to be remote. Carryover may be
observed if administration of a drug affects the blood levels of subsequent doses. Although
possible, a carryover effect would be very unusual, particularly in single-dose studies with
an adequate washout period. A washout period of at least seven half-lives is recommended.
Even more unlikely, would be a differential carryover, which suggests that the carryover from
one product is different from the carryover from the second product. A differential carryover
effect can invalidate the second period results in a two-period crossover (see below). Because
BE studies compare the same drug in different formulations, if a carryover exists at all, the
carryover of two different formulations would not be expected to differ. This is not to say
that differential carryover is impossible in these studies, but to this author’s knowledge, dif-
ferential carryover has not been verified in results of published BE studies, single or multiple
dose. In the typical tttp design, differential carryover is confounded with other effects, and a
test for carryover is not definitive. Thus, if such an effect is suspected, proof would require
a more restrictive or higher order design, that is, a design with more than two periods. This
problem will be discussed further as we describe the analysis and inferences resulting from
these designs.

The features of the tttp design are as follows:

1. N subjects recruited for the study are separated into two groups, or two treatment sequences.
N1 subjects take the treatments in the order AB, and N2 in the order BA, where N1 + N2 =
N. For example, 24 (N) subjects are recruited and 12 (N1) take the Generic followed by the
Brand product, and 12 (N2) take the Brand followed by the Generic. Note that the product
may be taken as a single dose, in multiple doses, fasted or fed.

2. After administration of the product in the first period, blood levels of drug are determined
at suitable intervals.

3. A washout period follows, which is of sufficient duration to ensure the “total” elimination
of the drug given during the first period. An interval of at least nine drugs half-lives should
be sufficient to ensure virtually total elimination of the drug. Often, a minimum of seven
half-lives is recommended.

4. The alternate product is administered in the second period and blood levels determined as
during Period 1.
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Crossover designs are planned so that each treatment is given an equal number of times
in each period. This is most efficient and yields unbiased estimates of treatment differences if a
period effect is present.

The blood is analyzed for each subject with both first and second periods analyzed con-
currently (the same day). To detect possible analytical errors, the samples are usually analyzed
chronologically (starting from the time 0 sample to the final sample), but with the identity of
the product assayed unknown (sample blinding).

After the blood assays are complete, the blood level versus time curves are analyzed for
the derived parameters, AUCt (also noted as AUC0−t), AUC0−∞, Cmax, and tmax (tp), for each
analyte. AUCt is the area to the last quantifiable concentration, and AUCinf is AUCt augmented
by an estimate of the area from time t to infinity (Ct/Ke). This is shown and explained in Figure
11.2. A detailed analysis follows.

The analysis of the data consists of first determining the maximum blood drug concen-
tration (Cmax) and the area under the blood level versus time curve (AUC) for each subject, for
each product. Often, more than one analyte is observed, for example, metabolites or multiple
ingredients, all of which may need to be separately analyzed.

AUC is determined using the trapezoidal rule. The area between adjacent time points
may be estimated as a trapezoid (Fig. 11.3). The area of each trapezoid, up to and including the
final time point, where a measurable concentration is observed, is computed, and the sum of
these areas is the AUC, designated as AUCt. The area of a trapezoid is 1/2 (base) (sum of two
sides). For example, in Figure 11.3, the area of the trapezoid shown in the blood level versus
time curve is 4. In this figure, Cmax is 5 ng/mL and tmax, the time at which Cmax occurs, is
two hours. Having performed this calculation for each subject and product, the AUC and Cmax
values are transformed to their respective logarithms. Either natural logs (ln) or logs to the base
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Figure 11.2 Derived parameters from bioequivalence study.
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Figure 11.3 Illustration of trapezoidal rule.

10 (log) may be used. Typically, one uses the natural log, or ln. The details of the analysis are
described later in this chapter. The analysis of AUC and Cmax was not always performed on the
logs of these values. Originally, the actual, observed (nontransformed) values of these derived
parameters were used in the analysis. (This history will be discussed in more detail below.)
However, examination of the theoretical derivations and mathematical expression of AUC and
Cmax, as well as the statistical properties, has led to the use of the logarithmic transformation. In
particular, data appear to show that these values follow a log-normal distribution more closely
than they do a normal distribution. The form of expression for AUC suggests a multiplicative
model

AUC =FD/VKe,

where F is fraction of drug absorbed, D is dose, V is volume of distribution, and Ke is elimination
rate constant.

The distribution of AUC is complex because of the nonlinearity; it is a ratio. Ln(AUC) is
equal to ln(F) + ln(D) − ln(V) − ln(Ke). This is linear, and the statistical properties are more
manageable. A similar argument can be made for Cmax.

The present FDA requirement for equivalence is based on product ratios using a symmetric
90% confidence interval for the difference of the average parameters, after a log transformation.
Earlier, according to FDA guidelines, the AUC and Cmax were analyzed using the untransformed
values of these derived parameters. Note that when using a clinical or pharmacodynamic end-
point (such as may be used in a parallel study when drug is not absorbed), the nontransformed
data may be more appropriate and the “old” way of forming the confidence interval may
still be used. This analysis is described below. However, at the present time, FDA is leaning
toward an analysis based on Fieller’s Theorem (Locke’s Method). (These analyses, along with a
log-transformed analysis, are described in the example following this discussion.)

11.4.2.1 Statistical Analysis
It is convenient to follow the statistical analysis and estimation of various effects by looking at
the two sequences in the context of the model for this design:

Let
� = overall mean
Gi = Effect of sequence group i (i = 1, 2)
Sik = Effect of subject k in sequence i (k = 1, 2, 3 . . . N)
Pj = Effect of period j (j = 1, 2)
Tt(ij) = treatment effect t (t = 1,2) in sequence i and period j
Yijk = � + Gi + Sik + Pj + Tt(ij) + eijk
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Table 11.6 Design for Two-Way Crossover Study

Period I Period II

Sequence I A B

Sequence II B A

The sequence × period interaction is the treatment effect (sequence × period is the com-
parison Period I–Period II for the two sequences; see Table 11.6).

e.g.,

[
(A− B)seq I − (B − A)seq II

]
2

= A− B.

Suppose that carryover is present, but carryover is the same for both products. We can
show that this would not bias the treatment comparisons. For the sake of simplicity, suppose
that there is no period effect (P1 = P2). Also suppose that the direct treatment effects are A = 3
and B = 2. Both products have a carryover that adds 2 to the treatment (product) in the second
period. (This would result in an additional value of 2 for the period effect.) Finally, assume that
the effects for the sequences are equal; Sequence I = Sequence II. This means that the average
results for subjects in Sequence I are the same as that for Sequence II. Based on this model,
Product B in Period II would have a value of 2 + 2 for carryover = 4. Product A in Period II has
a value of 3 + 2 = 5. Thus, the average difference between A and B is 1, as expected (A = 3 and
B = 2). Table 11.7 shows these simulated data.

This same reasoning would show that equal carryover effects do not bias treatment com-
parisons in the presence of a period effect. (See Exercise Problem 11 at the end of this chapter.)

Differential carryover, where the two products have different carryover effects, is con-
founded with a sequence effect. This means that if the sequence groups have significantly
different average results, one cannot distinguish this effect from a differential carryover effect in
the absence of more definitive information. For example, one can show that if there is a sequence
effect and no differential carryover, a differential carryover in the absence of a sequence effect
could give the same result.

To help explain the confounding, assume that the difference between treatments is 0
(treatments are identical) and that Sequence I averages 2 units more than Sequence II (e.g.,
Sequence I = Sequence II + 2). Since subjects are assigned to the sequence groups at random,
the differences should not be significant except by chance. With no carryover or period effects,
the average results could be something like that shown in Table 11.8.

If Sequence I is the order A followed by B (AB) and Sequence II is the order BA, the
treatment differences, A − B, would be 6 − 6 = 0 in Sequence I, and 4 − 4 = 0 in Sequence II.
Treatment A is the same as Treatment B in Sequence I, and in Sequence II. However, this same
result could occur as a result of differential carryover in the presence of treatment differences.

Table 11.9 shows the same results as Table 11.8 in a different format.
The data from Table 11.9 can be explained by assuming that A is 2 units higher than B (see

Period I results), a carryover of +2 units when B follows A, and a carryover of −2 units when A
follows B. The two explanations, a sequence effect or a differential carryover, cannot be separated
in this two-way crossover design. The sequence effect is G1 − G2. The differential carryover
is
{
[TA(2) − TA(1)] − [TB(2) − TB(1)]

}
/2 = {

[TA(2) + TB(1)] − [TB(2) + TA(1)]
}
/2, which is exactly

the sequence effect (average results in Sequence II − average results in Sequence I). The subscript
B(l) refers to average result for Product B in Period I.

Table 11.7 Simulated Data Illustrating Equal Carryover

Period I Period II

Sequence I A = 3 B = 4

Sequence II B = 2 A = 5
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Table 11.8 Example of Sequence Effect

Treatment A Treatment B Average

Sequence I 6 6 6

Sequence II 4 4 4

Average 5 5

In practice, an ANOVA is performed, which results in significance tests for the sequence
effect and an estimate of error for computing confidence intervals (see later in sect. 11.4.3).

The results of a typical single-dose BE study are shown in Table 11.10. These data were
obtained from drug plasma level versus time determinations similar to those illustrated in Figure
11.1(B). Area under the plasma level versus time curve (AUC, a measure of absorption), time to
peak plasma concentration (tp), and the maximum concentration (Cmax) are the parameters that
are usually of most interest in the comparison of the bioavailability of different formulations of
the same drug moiety.

The typical ANOVA for crossover studies will be applied to the AUC data to illustrate the
procedure used to analyze the experimental results. In these analyses, the residual error term
is used in statistical computations, for example, to construct confidence intervals. An ANOVA
is computed for each parameter based on the model. The ANOVA table is not meant for the
performance of statistical hypothesis tests, except perhaps to test the sequence effect, which
uses the between subject within sequences mean square as the error term. Rather, the analysis
removes some effects from the total variance to obtain a more “efficient” or pure estimate of
the error term. It is the error term, or estimate of the within-subject variability (assumed to be
equal for both products in this analysis), that is used to assess the equivalence of the parameter
being analyzed. A critical assumption for the correct interpretation of the analysis is the absence
of differential carryover effects, as discussed previously. Otherwise, the usual assumptions for
ANOVA should hold. FDA statisticians encourage a careful statistical analysis of crossover
designs. In particular, the use of a simple t test that ignores the possible presence of period
and/or carryover effects is not acceptable.‡ If period effects are present, and not accounted
for in the statistical analysis, the analysis will be less sensitive. The error mean square in the
ANOVA will be inflated due to inclusion of the period variance, and the width of the confidence
interval will be increased. If differential carryover effects are present, the estimate of treatment
differences will be biased (see sects. 11.4.1 and 11.4.2).

The usual ANOVA separates the total sum of squares into four components: subjects,
periods, treatments, and error (residual). In the absence of differential carryover effects, the
statistical test of interest is for treatment differences. The subject and period sum of squares are
separated from the error term which then represents “intrasubject” variation. The subjects sum
of squares (SS) can be separated into sequence SS and subject within sequence SS to test for the
sequence effect. The sequence effect is confounded with carryover, and this test is described
following the analysis without sequence effect.

Some history may be of interest with regard to the analysis recommended in the most
recent FDA guidance [10]. In the early evolution of BE analysis, a hypothesis test was used at the
5% level of significance. The raw data were used in the analysis; that is, a logarithmic transfor-
mation was not recommended. The null hypothesis was simply that the products were equal,
as opposed to the alternate hypothesis that the products were different. This had the obvious
problem with regard to the power of the test. Products that showed nearly the same average

Table 11.9 Example of Differential Carryover Effect

Period I Period II Average

Sequence I A = 6 B = 6 6

Sequence II B = 4 A = 4 4

‡ In bioavailability studies, carryover effects are usually due to an inadequate washout period.
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Table 11.10 Data for the Bioequivalence Study Comparing Drugs A and B

AUC Peak concentration Time to peak

Subject Order A B A B A B

1 AB 290 210 30 18 8 8

2 BA 201 163 22 19 10 4

3 AB 187 116 18 11 6 6

4 AB 168 77 20 14 10 3

5 BA 200 220 18 21 3 3

6 BA 151 133 25 16 4 6

7 AB 294 140 27 14 4 10

8 BA 97 190 16 23 6 6

9 BA 228 168 20 14 6 6

10 AB 250 161 28 19 6 4

11 AB 293 240 28 18 6 12

12 BA 154 188 16 20 8 8

Mean 209.4 167.2 22.3 17.3 6.4 6.3

Sum 2513 2006 268 207 77 76

results, but with very small variance, could show a significant difference, which may not be of
clinical significance, and be rejected. Alternatively, products that showed large differences with
large variance could show a nonsignificant difference, and be deemed equivalent. Similarly,
products could be shown to be equivalent if a small sample size was used resulting in an unde-
tected difference that could be clinically significant. Because of these problems, an additional
caveat was added to the requirements. If the products showed a difference of less than 20%,
was not statistically significant (p > 0.05), and the power of the study to detect a difference of
20% exceeded 80%, the products would be considered to be equivalent. This helped to avoid
undersized studies and prevent products with observed large differences from passing the BE
study. The following examples illustrate this problem.

Example 1. In a BE two-period, crossover study, with eight subjects, the test product showed
an average AUC of 100, and the reference product showed an average AUC of 85. The observed
difference between the products is (100–85)/85, or 17.6%.

The error term from the ANOVA (see below for description of the analysis) is 900, s.d. =
30. The test of significance (a t test with 6 d.f.) is

|100 − 85|[
900

(
1
8

+ 1
8

)]1/2 = 1.00.

This is not statistically significant at the 5% level (a t value of 2.45 for 6 d.f. is needed for
significance). Therefore, the products may be deemed equivalent.

However, this test is underpowered based on the need for 80% power to show a 20%
difference. A 20% difference from the reference is 0.2 × 85 = 17. The approximate power is
(Eq. 6.11)

Z = [17/42.43] [6]1/2 − 1.96 = −0.98.

Referring to a Table of the Cumulative Standard Normal Distribution, the approximate
power is 16%. Although the test of significance did not reject the null hypothesis, the power
of the test to detect a 20% difference is weak. Therefore, this product would not pass the BE
requirements.

Example 2. In a BE two-period, crossover study, with 36 subjects, the test product showed
an average AUC of 100, and the reference product showed an average AUC of 95. The products
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differ by approximately only 5%. The error term from the ANOVA is 100, s.d. = 10. The test of
significance (a t test with 34 d.f.) is

|100 − 95|[
100

(
1

36
+ 1

36

)]1/2 = 2.12.

This is statistically significant at the 5% level (a t value of 2.03 for 34 d.f. is needed for
significance). Therefore, the products may be deemed nonequivalent.

This test passes the criterion based on the need for 80% power to show a 20% difference.
A 20% difference from the reference is 0.2 × 95 = 19. The approximate power is (see chap. 6)

Z = [19/14.14] [34]1/2 − 1.96 = 5.88.

The approximate power is almost 100%. Although the power of the test to detect a 20%
difference is extremely high, the test of significance rejected the null hypothesis that the products
were equal. Therefore, this Product would fail the BE requirements. In some cases, a Medical
review would rule such a small difference as clinically non-significant and the product would
be approved.

Other requirements at that time included the 75/75 rule [11]. This rule stated that 75% of
the subjects in the study should have ratios of test/reference between 75% and 125%. This was
an attempt to include a variability criterion in the assessment of study results. Unfortunately,
this criterion has little statistical basis, and would almost always fail with highly variable drugs.
In fact, if a highly variable drug (CV greater than 30–40%) is tested against itself, it would most
likely fail this test. Eventually, this requirement was correctly phased out.

Soon after this phase in the evolution of BE regulations, the hypothesis test approach
was replaced by the two one-sided t test or, equivalently, the 90% confidence interval approach
[12]. This approach resolved the problems of hypothesis testing, and assumed that products
that are within 20% of each other with regard to the major parameters, AUC and Cmax, are
therapeutically equivalent. For several years, this method was used without a logarithmic
transformation. However, if the study data conformed better to a log-normal distribution than
a normal distribution, a log transformation was allowed. An appropriate statistical test was
applied to test the conformity of the data to these distributions.

The AUC data from Table 11.10 are analyzed below. To ease the explanation, the computa-
tions for the untransformed data are detailed. The log-transformed data are analyzed identically,
and these results follow the untransformed data analysis. The sums of squares for treatments
and subjects are computed exactly the same way as in the two-way ANOVA (see sect. 8.4). The
new calculations are for the “period” (1 d.f.) and “sequence” (1 d.f.) sums of squares. We first
show the analysis for periods. The analysis for sequence is shown when discussing the test for
differential carryover. Two new columns are prepared for the “period” calculation. One column
contains the data from the first period, and the second column contains data from the second
period. For example, for the AUC data in Table 11.10, the data for the first period are obtained by
noting the order of administration. Subject 1 took Product A during the first period (290); subject
2 took B during the first period (163); and so on. Therefore, the first period observations are

290, 163, 187, 168, 220, 133, 294, 190, 168, 250, 293, and 188 (sum = 2544).
The second period observations are
210, 201, 116, 77, 200, 151, 140, 97, 228, 161, 240, 154 (sum = 1975).
The “period” SS may be calculated as follows:

(
∑

P1)2 + (
∑

P2)2

N
− CT, (11.2)

where
∑

P1 and
∑

P2 are the sums of observations in the first and second periods, respectively,
N is the number of subjects, and CT is the correction term. The following ANOVA and Table
11.10 will help clarify the calculations.
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Calculations for ANOVA∑
Xt is the sum of all observations = 4519∑
XA is the sum of observations for Product A = 2513∑
XB is the sum of observations for Product B = 2006∑
P1 is the sum of observations for Period 1 = 2544∑
P2 is the sum of observations for Period 2 = 1975∑
X2

t is the sum of the squared observations = 929,321

CT is the correction term (
∑

Xt )
2

Nt
= (4519)2

24 = 850, 890.04.

Total SS = ∑
X2

t − CT = 78, 430.96∑
Si is the sum of the observations for subject i (e.g., 500 for first subject)

Subject SS

=
∑

(
∑

Si )
2

2
− CT = 5002 + 3642 + . . . + 3422

2
− CT = 43,560.46

Period sum of squares = 25442 + 19752

12
− CT = 13,490.0

Treatment sum of squares = 25132 + 20062

12
− CT = 10,710.4

Error SS = total SS − subject SS − period SS − treatment SS
= 78,430.96 − 43,560.46 − 13,490 − 10,710.38
= 10,670.1.

Note that the d.f. for error are equal to 10. The usual two-way ANOVA would have 11
d.f. for error (subjects − 1) × (treatments − 1). In this design, the error SS is diminished by the
period SS, which has 1 d.f.

Again, the ANOVA is typically performed using appropriate computer programs. A Gen-
eral Linear Models (GLM) program is suitable with factors, sequence, subjects within sequence,
treatment, and period.

11.4.2.2 Test for Carryover Effects
Dr. James Grizzle published a classic paper on analysis of crossover designs and presented a
method for testing carryover effects (sequence effects in his notation) [9]. Some controversy exists
regarding the usual analysis of crossover designs, particularly with regard to the assumptions
underlying this analysis. Before using the Grizzle analysis, the reader should examine the
original paper by Grizzle as well as the discussion by Brown, in which some of the problems of
crossover designs are summarized [7].

One of the key assumptions necessary for a valid analysis and interpretation of crossover
designs is the absence of differential carryover effects as has been previously noted. Data
from Table 11.10 were previously analyzed using the typical crossover analysis, assuming
that differential carryover was absent. Table 11.10 is reproduced as Table 11.11 (AUC only) to
illustrate the computations needed for the Grizzle analysis.

The test for carryover, or sequence, effects is performed as follows:

1. Compute the SS due to carryover (or sequence) effects by comparing the results for group
I to group II. (Note that these two groups, groups I and II, which differ in the order of
treatment are designated as treatment “sequence” by Grizzle.) It can be demonstrated that
in the absence of sequence effects, the average result for group I (A first, B second) is expected
to be equal to the average result for group II (B first, A second). The SS is calculated as(∑

group I
)2

N1
+
(∑

group II
)2

N2
− CT.
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Table 11.11 Data for AUC for the Bioequivalence Study Comparing Drugs A and B

Group I Group II
(Treatment A first, B second) (Treatment B first, A second)

Subject A B Total Subject A B Total

1 290 210 500 2 201 163 364

3 187 116 303 5 200 220 420

4 168 77 245 6 151 133 284

7 294 140 434 8 97 190 287

10 250 161 411 9 228 168 396

11 293 240 533 12 154 188 342

Total 1482 944 2426 Total 1031 1062 2093

In our example the sequence SS is (1 d.f.)

(2426)2

12
+ (2093)2

12
− (2426 + 2093)2

24
= 4620.375.

2. The proper error term to test the sequence effect is the within-group (sequence) mean square,
represented by the SS between subjects within groups (sequence). This SS is calculated as
follows:

1
2

∑
(subject total)2 − (CT)I − (CT)II,

where CTI and CTII are the correction terms for groups I and II, respectively. In our example,
the within-group SS is

1
2 (5002 + 3032 + 2452 + . . . + 3642 + 4202

+ . . . 3422) − (2426)2

12
− (2093)2

12
= 38,940.08.

This within-group (or subject within-sequence) SS has 10 d.f., 5 from each group. The
mean square is 38,940/10 = 3894.

3. Test the sequence effect by comparing the sequence mean square to the within-group mean
square (F test).

F1,10 = 4620.375
3894

= 1.19

Referring to Table IV.6, the effect is not significant at the 5% level. (Note that in practice,
this test is performed at the 10% level.) If the sequence (carryover) effect is not significant, one
would proceed with the usual analysis and interpretation as shown in Table 11.12.

Table 11.12 Analysis of Variance Table for the Crossover Bioequivalence Study (AUC) Without Sequence

Effect

Source d.f. SS MS P

Subjects 11 43,560.5 3960.0

Period 1 13,490.0 13,490.0

Treatment 1 10,710.4 10,710.4 F1,10 = 12.6∗
Error 10 10,670.1 1067.0

Total 23 78,430.96 F1,10 = 10.0∗

∗p < 0.05.
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If the sequence (carryover) effect is significant, the usual analysis is not valid. The rec-
ommended analysis uses only the first period results, deleting the data contaminated by the
carryover, the second period results. Grizzle recommends that the preliminary test for carryover
be done at the 10% level (see also the discussion by Brown [7]). For the sake of this discussion,
we will compute the analysis as if the data revealed a significant sequence effect in order to
show the calculations. Using only the first-period data, the analysis is appropriate for a one-way
ANOVA design (sect. 8.1). We have two “parallel” groups, one on Product A and the other on
Product B. The data for the first period are as follows:

Subject A Subject B

1 290 2 163

3 187 5 220

4 168 6 133

7 294 8 190

10 250 9 168

11 293 12 188

Mean 247 177

S2 3204.8 870.4

The ANOVA table is as follows:§

d.f. SS MS F

Between treatments 1 14,700 14,700 7.21

Within treatments 10 20,376 2037.6

Referring to Table IV.6, an F value of 4.96 is needed for significance at the 5% level (1 and
10 d.f.). Therefore, in this example, the analysis leads to the conclusion of significant treatment
differences.

The discussion and analysis above should make it clear that sequence or carryover effects
are undesirable in crossover experiments. Although an alternative analysis is available, one-half
of the data are lost (second period) and the error term for the comparison of treatments is usually
larger than that which would have been available in the absence of carryover (within-subject
versus between-subject variation). One should thoroughly understand the nature of treatments
in a crossover experiment in order to avoid differential carryover effects if at all possible. (Note:
Although at one time the presence of a sequence effect could cause rejection of a BE submission
by FDA, at the present time if there are no circumstances that could cause carryover, the FDA
review would take this into consideration as a spurious event.)

Since the test for carryover was set at 5% a priori, we will proceed with the interpretation,
assuming that carryover effects are absent. (Again, note that this test is usually set at the
10% level in practice). Both period and treatment effects are significant (F1,10 = 12.6 and 10.0,
respectively). The AUC values tend to be higher during the first period (on the average). This
period (or order) effect does not interfere with the conclusion that Product A has a higher average
AUC than that of Product B. The balanced order of administration of the two products in this
design compensates equally for both products for systematic differences due to the period or
order. Also, the ANOVA subtracts out the SS due to the period effect from the error term, which
is used to test treatment differences.

If the design is not symmetrical, because of missing data, dropouts, or poor planning,
a statistician should be consulted for the data analysis and interpretation. In an asymmetrical
design, the number of observations in the two periods is different for the two treatment groups.
This will always occur if there is an odd number of subjects. For example, the following scheme
shows an asymmetrical design for seven subjects taking two drug products, A and B. In such
situations, computer software programs can be used, which adjust the analysis and mean results
for the lack of symmetry [13].

§ This analysis is identical to a two-sample independent groups t test.
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Subject Period 1 Period 2

1 A B

2 B A

3 A B

4 B A

5 A B

6 B A

7 A B

The complete ANOVA is shown in Table 11.13.
The statistical analysis in the example above was performed on AUC, which is a measure

of relative absorption. The FDA recommends that plasma or urine concentrations be determined
out to at least three half-lives, so that practically all the area under the curve will be included
when calculating this parameter (by the trapezoidal rule, for example). Other measures of the
rate and extent of absorption are time to peak and peak concentration. Often, more than one
analyte is observed, for example, metabolites or multiple ingredients.

Much has been written and discussed about the expression and interpretation of bioe-
quivalency/bioavailability data as a measure of rate and extent of absorption. When are the
parameters AUC, tp, and Cmax important, and what part do they play in bioequivalency? The
FDA has stated that products may be considered equivalent in the presence of different rates
of absorption, particularly if these differences are designed into the product [14]. For example,
for a drug that is used in chronic dosing, the extent of absorption is probably a much more
important parameter than the rate of absorption. It is not the purpose of this presentation to
discuss the merits of these parameters in evaluating equivalence, but only to alert the reader to
the fact that BE interpretation need not be fixed and rigid.

The ANOVA for log AUC (AUC values are transformed to their natural logs) is shown
in Table 11.14. Exercise Problem 9 at the end of this chapter requests the reader to construct
this table. The procedure is identical to that shown for the untransformed data. Analysis of the
log-transformed parameters is currently required by the FDA. The critical parameters are AUC and
Cmax.

11.4.3 Confidence Intervals in BE Studies
The scientific community is virtually unanimous in its opposition to the use of hypothesis
testing for the evaluation of BE. Hypothesis tests are inappropriate in that products that are
very close, but with small variance, may be deemed different, whereas products that are widely
different, but with large variance, may be considered equivalent (not significantly different).
(See previous discussion in sect. 11.4.2). The use of a confidence interval, the present criterion for
equivalence, is more meaningful and has better statistical properties. (See chap. 5 for a discussion
of confidence intervals.) Given the lower and upper limit of the ratio of the parameters, the user
or prescriber of a drug can make an educated decision regarding the equivalence of alternative
products. The confidence limits must lie between 0.8 and 1.25 based on the difference of the
back-transformed averages of the log-transformed AUC and Cmax results. This computation
for AUC is shown below. For historical purposes and purposes of comparison, the confidence
interval is computed using the nontransformed data (the old method) and the log-transformed

Table 11.13 ANOVA for Untransformed Data from Table 11.10 for AUC

Variable (source) d.f. SS MS F ratio Prob > F

Sequence 1 4620.4 4620.4 1.19 0.3016

Subject (sequence) 10 38,940.1 3894.0 3.65 0.0265

Period 1 13,490.0 13,490.0 12.64 0.0052

Treat 1 10,710.4 10,710.4 10.04 0.0100

Residual 10 10,670.1 1067.0

Total 23 78,430.96
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Table 11.14 ANOVA for Log-Transformed Data from Table 11.10 for AUC

Variable (source) d.f. SS MS F ratio Prob > F

Sequence 1 0.0613 0.0613 0.46 0.5128

Subject (sequence) 10 1.332 0.1332 2.96 0.0507

Period 1 0.4502 0.4502 10.02 0.0101

Treat 1 0.2897 0.2897 6.44 0.0294

Residual 10 0.44955 0.04496

Total 23 2.58307

data (the current method). Note that a ratio based on the untransformed data may be used in
certain special circumstances where a log transformation may be deemed inappropriate, such
as data derived from a clinical study, where the data consist of a pharmacodynamic response
or some similar outcome. (See also, the currently recommended analysis using Locke’s Method
based on Fieller’s Theorem below.)

11.4.3.1 Locke’s Method of Analysis (Confidence Interval for the Ratio of Two Normally Distributed
Variables)

The confidence interval for the ratio of two variables is described in “Guidance for Industry,
Center for Drug Evaluation and Research, Appendix V, Feb 1997 [15].” The computations assume
normality of the variables. The example uses data supplied in the FDA document referenced
above.

If two variables are both normally distributed, it is not statistically valid to place a confi-
dence interval on ratios. Ratios of normally distributed variables are not normal. For example,
the data in the FDA document are as follows:

Subject Test Reference Ratio

2 −48.52 −22.2 2.19

3 −38.99 −18.65 2.09

4 −7.62 −22.42 0.34

7 0.98 −10.96 −0.09

9 −32.05 −37.4 0.86

11 −26.18 −26.73 0.98

12 −11.62 −12.56 0.93

The average ratio is 1.04 with a s.d. of 0.84 (the reader may verify these calculations). The
90% confidence interval is 1.04 ± 1.94 × 0.84 ×√

1/7 = approximately 0.42 to 1.66.
This is not correct. The correct calculations are as follows:
Calculate the mean and variance of the test and reference products

Mean of test = AVt = −23.43
Mean of reference = AVr = −21.56
Variance test = �2

T = 323.13
Variance reference = �2

R = 80.10.

Since the two variables are related or correlated (crossover design), calculate the covariance
= = �TR = ∑

(t − AVt)(r − AVr)(N − 1) , where N = sample size = 7 and covariance = 78.83.
A variable is defined as “G,” where G must be greater than zero in order for the calculations

to be valid.

G = (t2�2
R)

(N × AV2
r )

,

where N = sample size = 7
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= (1.9432 × 80.10)
(7 × 21.562)

G = 0.093.

Then, apply the following formulas to calculate the confidence interval. (Note the simi-
larity of these equations to the inverse equation to calculate the confidence interval for X, given
Y in regression. This is a similar application of the calculation of a confidence interval for the
ratio of two normal variables.)

K = {AV2
t /AV2

r } + {�T
2 /�2

R)(1 − G) + {�TR/�2
R}[G(�TR/�2

R) − 2(AVt/AVr)]

= {−23.43/ − 21.56}2 + {323.13/80.1)(1 − 0.093)+
{78.83/80.1}[0.093(78.3/80.1) − 2(−23.43/ − 21.56)]
K = 2.791.

Finally, calculate the 90% confidence interval (t = 1.943) as follows:

[(AVt/AVr) − G(�TR/�2
R)] ± [(t/AVr)

√
�2

R K/N]/(1 − G).

= [(−23.43/21.56)−0.0929(78.83/80.1)] ± [(1.943/21.56) sqrt (80.1 × 2.791/7)]/(1−0.0929).

The 90% confidence interval is approximately 54% to 166%.

11.4.3.2 Nontransformed Data
The following discussion refers to the approach to the analysis of confidence intervals for BE prior to the
present use of the logarithmic transformation. See also, above, the preferred method using Fieller’s (Locke)
Theorem.

90% confidence interval for AUC difference for data in Table 11.10

= �̄ ± t

√
EMS

(
1

N1
+ 1

N2

)

42.25 ± 1.81

√
1067

6
= 42.25 ± 24.14 = 18.11 to 66.39,

where 42.25 is the average difference of the AUCs, 1.81 the t value with 10 d.f., 1067 the variance
estimate (Table 11.12), and 1/6 = 1/N1 + 1/N2. The confidence interval can be expressed as an
approximate percentage relative bioavailability by dividing the lower and upper limits for the
AUC difference by the average AUC for Product B, the reference product as follows:

Average AUC for drug Product B = 167.2
Approximate 90% confidence interval for A/B
= (167.2 + 18.11)/167.2 to (167.2 + 66.39)/167.2
= 1.108 to 1.397.
Product A is between 11% and 40% more bioavailable than Product B. The ratio formed

for the nontransformed data, as shown in the example above, has random variables in both the
numerator and denominator. The denominator (the average value of the reference) is considered
fixed in this calculation, when, indeed, it is a variable measurement. Also, the decision rule is
not symmetrical with regard to the average results for the test and reference. That is, if the
reference is 20% greater than the test, the ratio test/reference is not 0.8 but is 1/1.2 = 0.83.
Conversely, if the test is 20% greater than the reference, the ratio will be 1.2. Nevertheless, at one
time this approximate calculation was considered satisfactory for the purposes of assessing BE.
Note that the usual concept of power does not play a part in the approval process. It behooves
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the sponsor of the BE study to recruit sufficient number of subjects to help ensure approval
based on this criterion. If the products are truly equivalent (the ratio of test/reference is truly
between 0.8 and 1.2), the more subjects recruited, the greater the probability of passing the test.
Note again that in this scenario the more subjects, the better the chance of passing. In practice,
one chooses a sample size sufficiently large to make the probability of passing reasonably
high. This probability may be defined as power in the context of proving equivalence. Sample
size determination for various assumed differences between the test and reference products
for various values of power (probability of passing the confidence interval criterion) has been
published by Diletti et al. [20] (see Table 6.5).

The conclusions based on the confidence interval approach are identical to two one-sided
t tests each performed at the 5% level [12,17]. The null hypotheses are

H0 :
A
B

< 0.8 and H0 :
A
B

> 1.25.

Note that with the log transformation, the upper limit is set at 1.25 instead of 1.2. This
results from the properties of logarithms, where log (0.8) = −log (1/0.8). If both tests are
rejected, the products are considered to have a ratio of AUC and/or Cmax between 0.8 and 1.25
and are taken to be equivalent. If either hypothesis (or both) is not rejected, the products are not
considered to be equivalent.

The test product (A in Table 11.10) would not pass the FDA equivalency test because
the upper confidence limit exceeds 1.25. For the two one-sided t tests, we test the observed
difference versus the hypothetical difference needed to reach 80% and 125% of the standard
product.

If the test product had an average AUC of 175 and the error were 1067, the product would
pass the FDA criterion using the “old” method. The 90% confidence limits would be

175 − 167.2 ± 1.81

√
1067

6
= −16.34 to 31.94.

The 90% confidence limits for the ratio of the AUC of test product/standard product are
calculated as

(167.2 − 16.34)
167.2

= 0.902

(167.2 + 31.94)
167.2

= 1.191.

The limits are within 0.8 and 1.25.
The two one-sided t tests are

H0 :
A
B

< 0.8 t = 175 − 167.2 − [−33.4]√
1067/6

= 3.09

H0 :
A
B

> 1.25 t = 175 − 167.2 − [41.8]√
1067/6

= 2.55,

where −33.4 represents 20% and 41.8 represents 25% of the reference.¶ Since both t values exceed
1.81, the table t for a one-sided test at the 5% level, the products are deemed to be equivalent.

¶ The former FDA criterion for the confidence interval was 0.8 to 1.20 based on nontransformed data. Therefore
this presentation is hypothetical.
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Westlake has discussed the application of a confidence interval that is symmetric about
the ratio 1.0, the value that defines equivalent products. The construction of such an interval is
described in section 5.1.

11.4.3.3 Log-Transformed Data (Current Procedure)
The log transform appears to be more natural when our interest is in the ratio of the product
outcomes. The antilog of the difference of the average results gives the ratio directly [18].

Note that the difference of the logarithms is equivalent to the logarithm of the ratio [i.e., log
A − log B = log (A/B)]. The antilog of the average difference of the logarithms is an estimate of
the ratio of AUCs.

The ANOVA for the ln-transformed data is shown in Table 11.14.
The averages ln values for the test and standard products are

A = 5.29751
B = 5.07778

A− B = 5.29751 − 5.0778 = 0.21973.

The anti-ln of this difference, corresponding to the geometric mean of the individual ratios,
is 1.246. This compares to the ratio of A/B for the untransformed values of 1.252.

0.21973 ± 1.81
√

0.045/6 = 0.06298 to 0.37648.

The anti-ln of these limits are 1.065 to 1.457. The 90% confidence limits for the untrans-
formed data are 1.108 to 1.397.

It is not surprising that both analyses give similar results and conclusions. However,
in situations where the confidence interval is close to the lower and/or upper limits, the two
analyses may result in different conclusions. A nonparametric approach has been recommended
(but is not currently accepted by the FDA) if the data distribution is far from normal (see chap.
15). As discussed earlier, at one time, the FDA suggested an alternative criterion for proof of
BE: at least 75% of the subjects should show the availability for a test product compared to the
reference or standard formulation to be between 75% and 125%. This is called the 75/75 rule.
If 75% of the population truly shows at least 75% relative absorption of the test formulation
compared to the standard, a sample of subjects in a clinical study will have a 50% chance of
failing the test based on the FDA criterion. This criterion has little statistical basis and has
fallen into disrepute. The concept of individual BE (sect. 11.4.6) is concerned with assessing the
equivalence of products on an individual basis based on a more statistically based criterion.

11.4.4 Sample Size and Highly Variable Drug Products
Phillips [19] published sample sizes as a function of power, product differences, and variability.
Diletti et al. [20] have published similar tables where the log transformation is used for the
statistical analysis. These tables are more relevant to current practices. Table 6.4 shows sample
sizes for the multiplicative (log-transformed) analysis, reproduced from the publication by
Diletti. This table as well as more details on sample size estimation is given in section 6.5.
(See also Excel program on the accompanying disk to calculate sample size under various
assumptions.)

When the variation is large because of inherent biologic variability in the absorption
and/or disposition of the drug (or due to the nature of the formulation), large sample sizes may
be needed to meet the confidence interval criterion. Generally, using results of previous studies,
one can estimate the within-subject variability from the residual error term in the ANOVA.
This can be assumed to be the average of the within-subject variances of the two products.
These variances cannot be separated in a two-period crossover design, nor can the variability
be separately attributed to the drug itself or to the formulation effects. Thus, the variability
estimate is some combination of both the drug and the formulation variances. A drug product
is considered to be highly variable if the error variance shows a coefficient of variation (CV) of
30% or greater. There are many drug products that show such variability. CV’s of 100% or more



EXPERIMENTAL DESIGN IN CLINICAL TRIALS 285

have been observed on occasion. To show equivalence for highly variable drug products, using
the FDA criterion of a 90% confidence interval of parameter ratios of 0.8 to 1.25 requires a very
large sample size.

For example, from Table 6.5, if the CV is 30% and the products differ by only 5%, a sample
size of 40 is needed to have 80% power to show the products are equivalent. The FDA has been
considering the problems of designing studies and interpreting results for variable drugs and/or
drug products. This problem has been debated for some time, and a few recommendations
have been proposed to deal with this problem. Although there is no single solution, possible
alternatives include widening of the confidence interval criterion from 0.8 to 1.25 to 0.75 to
1.33 [21] and use of replicated or sequential designs. The European Agency for the Evaluation
of Medicinal Products also makes provision for a wider interval provided it is prospectively
defined and can be justified accordingly [22]. Another recommendation by Endrenyi [23] is to
scale the ratio using the reference CV as the scaling factor. At the time of this writing, the FDA
has published a guidance that includes a scaled analysis. This approach may be recommended
for BE studies of highly variable products. This scaled analysis is described below. Individual
BE in a replicate design to assess BE is also supposed to result in smaller sample sizes for highly
variable drug products as compared to the corresponding two-period design. This solution
to the problem is yet to be fully confirmed. Currently, products with large CVs require large
studies, with an accompanying increased expense. Because these highly variable drugs have
been established as safe and effective and have a history of efficacy and safety in the marketplace,
increasing the confidence interval would be congruent with the drug’s variability in practice.
Scaled BE may provide an economical way of evaluating these drug products.

Note that for the determination of BE based on the final study results, power (computed
a posteriori) plays no role in the determination of equivalence. However, to estimate the sam-
ple size needed before initiating the study, power is an important consideration. The greater
the power one wishes to impose, where power is the probability of passing the 0.8 to 1.25
confidence interval, the more subjects will be needed. Usually, a power of 0.8 is used to esti-
mate sample size. However, if cost is not important (or not excessive), a greater power (0.9, for
example) can be used to gain more assurance of passing the study, assuming that the products
are truly bioequivalent.

Equation (11.3) can be used to approximate the sample size needed for a specified power.

N = 2(t�, 2N−2 + t	, 2N−2 )2
[

CV
(V − �)

]2

, (11.3)

where N is the total number of subjects required to be in the study; t the appropriate
value from the t distribution (approximately 1.7); � the significance level (usually 0.1); 1 − 	
the power, usually 0.8; CV the coefficient of variation; V the BE limit (ln 1.25 = 0.223); and � the
difference between the products (for 5% difference, delta equals [ln(1.05) = 0.0488]).

If we assume a 5% difference between the products being compared, the number of
subjects needed for a CV of 30% and power of 0.8 is: N = 2 (1.7 + 0.86)2 [0.3/(0.223 −.0488)]2 =
approximately 39 subjects, which is close to the 40 subjects from Table 6.5.

If the CV is 50%, we need approximately 108 subjects!

N = 2(1.7 + 0.86)2
(

0.5
0.223 − 0.0488

)2

= approximately 108 subjects.

It can be seen that with a large CV, studies become inordinately large.
BE studies are usually performed at a single site, where all subjects are recruited and

studied as a single group. On occasion, more than one group is required to complete a study.
For example, if a large number of subjects are to be recruited, the study site may not be large
enough to accommodate the subjects. In these situations, the study subjects may be divided into
two cohorts. Each cohort is used to assess the comparative products individually, as might be
done in two separate studies. Typically, the two cohorts are of approximately equal size. The
final assessment is based on a combination of both groups. The totality of data is analyzed with
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a new term in the ANOVA, a Treatment-by-Group interaction term.∗∗ This is a measure (on a
log scale) of how the ratios of test to reference differ in the groups. For example, if the ratios are
very much the same in each group, the interaction would be small or negligible. If interaction is
large, as tested in the ANOVA, then the groups statistically should not be combined. However,
if at least one of the groups individually passes the confidence interval criteria, then the test
product might be acceptable. If interaction is not statistically significant (p > 0.10), then the
confidence interval based on the pooled analysis, after dropping the interaction term, will
determine acceptability. It is an advantage to pool the data, as the larger number of subjects
increases power and there is a greater probability of passing the BE confidence interval, if the
products are truly bioequivalent.

An interesting question arises if more than two groups are included in a BE study. As
before, if there is no interaction, the data should be pooled. If interaction is evident, it is implied
that at least one group is different from the others. Usually, it will be obvious which group is
divergent from a visual inspection of the treatment differences in each group. The remaining
groups may then be tested for interaction. Again, as before, if there is no interaction, the data
should be pooled. If there is interaction, the aberrant group may be omitted, and the remaining
groups tested, and so on. In rare cases, it may not be obvious which group or groups are
responsible for the interaction. In that case, more statistical treatment may be necessary, and a
statistician should be consulted. In any event, if any single group or pooled groups (with no
interaction) passes the BE criteria, the test should pass. If a pooled study passes in the presence
of interaction, but no single study passes, one may still argue that the product should pass, if
there is no apparent reason for the interaction. For example, if the groups are studied at the
same location under the identical protocol, and there is overlap in time among the treatments
given to the different groups, as occurs often, there may be no obvious reason for a significant
interaction. Perhaps, the result was merely due to chance. One may then present an argument
for accepting the pooled results.

The following statistical models have been recommended for analysis of data in groups:

Model 1: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT GRP∗TRT.
If the GRP∗TRT term is not significant (p > 0.10), then reanalyze the data using Model 2.
Model 2: GRP SEQ GRP∗SEQ SUBJ(GRP∗SEQ) PER(GRP) TRT,

where GRP is the group, SEQ the sequence, GRP∗SEQ the group-by-sequence, SUBJ(GRP∗SEQ)
the subject nested within group-by-sequence, PER(GRP) the period nested within group, TRT
the treatment, and GRP∗TRT the group-by-treatment interaction.

11.4.5 Outliers in BE Studies
An outlier is an observation far removed from the bulk of the observations.

The problems of dealing with outlying observations is discussed in some detail in section
10.2. These same problems exist in the analysis and interpretation of BE studies. Several kinds
of outliers occur in BE studies. Analytical outliers may occur because of analytical errors, and
these can usually be rectified by reanalyzing the retained blood samples. Another kind of outlier
is a value that does not appear to fit the PK profile. If repeat analyses verify these values, one
has little choice but to retain these values in the analysis. If such values appear rarely, they
will usually not affect the overall conclusions since the individual results are a small part of the
overall average results, such as in the calculation of AUC. An exception may occur if the aberrant
value occurs at the time of the estimated Cmax, where the outlier could be more influential. The
biggest problem with outliers is when the outlier arises from a derived parameter (AUC or Cmax)
for an individual subject. The current FDA position is to disallow the exclusion of an outlier
from the analysis solely on a statistical basis. However, if a clinical reason can be determined as
a potential cause for the outlier and when the outlier appears to be due to the reference product,
an outlier may be omitted from the analysis at the discretion of the FDA. The FDA also suggests

∗∗ Currently, FDA requires this only when groups are not from the same population or are dosed widely separated
in time.
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that the outlier be retested in a sample of 6 to 10 subjects from the original study to support the
anomalous nature of the suspected outlier. Part of the reasoning for not excluding outliers is that
one or two individual outliers suggest the possibility of a subpopulation that shows a difference
between the products. Although theoretically possible, this author’s opinion is that this is a
highly unlikely event without definitive documentation. Also, using this reasoning, an outlying
observation due to the reference product would suggest that the reference did not act uniformly
among patients, suggesting a deficiency in the reference product. Another possible occasion for
discarding an individual subject’s result is the case where very little or no drug is absorbed.
Explanations for this effect could be product-related or subject-related, but the true cause is
unlikely to be known. Zero blood levels, in the absence of corroborating evidence for product
failure, are most likely due to a failure of the subject. These problems remain controversial and
should be dealt with on a case-by-case basis.

A more creative approach is possible in the case of replicate designs (see below). In
these situations, the estimates of within-subject variability can be used to identify outliers. For
example, if the within-subject variance for a given treatment is 0.61, but reduces to 0.04 when
omitting the subject with the suspected outlier value, an F test can be performed comparing
variances for the suspect data and the remaining data. The F ratio, in this example, is

F = 0.61
0.04

= 15.3.

The d.f. for the numerator are those for the variance estimate obtained using the results
from all subjects and those for the denominator are those for the variance estimate obtained
from the results omitting the suspected outlier. In the above example, if the numerator and
denominator d.f. were 30 and 28, respectively, then an F value of 15.3 is highly significant (p <

0.01). An alternative analysis could be an ANOVA with and without the suspected outlier. An
F test with 1 d.f. in the numerator and appropriate d.f. in the denominator would be:

[SS (all data) − SS (without outlier data)]/residual SS (all data)<
Another approach that has been used is to compare results for periods 1 and 2 versus

periods 3 and 4 in a four-period fully replicated design.
Of course, if there is an obvious cause for the outlier, a statistical justification is not

necessary. However, further evidence, even if only suspicious, is helpful.
If an outlier is detected, as noted above, the most conservative approach is to find a reason

for the outlying observation, such as a transcription error, or an analytical error, or a subject that
violated the protocol, and so on. In these cases, the data may be reanalyzed with the corrected
data, or without the outlying data if due to analytical or protocol violation, for example.

If an obvious reason for the outlier is not forthcoming, one may wish to perform a new
small study, replicating the original study, including the outlying subject along with a number
of other subjects (at least five or six) from the original study. The results from the new study
can be examined to determine if the data for the outlier from the original study are anomalous.
It should be noted that the data from the small study are not used as a replacement for any
of the original data, but serve only to confirm, or refute, that the suspected outlier subject is
reproducibly an outlier. The procedure here is not fixed, but should be reasonable, and make
sense. One can compare the test to reference ratios for the outlying subject in the two studies,
and demonstrate that the data from the new study show that the outlying subject is congruent
with the other subjects in the new study, for example.

11.4.6 Replicate Designs for BE Studies∗∗
Replicate crossover designs may be defined as designs with more than two periods where
products are given on more than one occasion. In the present context such replicate studies are
studies in which individuals are administered one or both products on more than one occasion.
FDA gives sponsors the option of using replicate design studies. Replicate studies can isolate

∗∗A more advanced topic.
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the within-subject variance of each product separately, as well as potential product-by-subject
interactions.

The FDA recommends that submissions of studies with replicate designs be analyzed for
average BE. The following (Table 11.15) is an example of the analysis of a two-treatment–four
period replicate design to assess average BE. The design has each of two products, balanced in
two sequences, ABAB and BABA, over four periods. Table 11.16 shows the results for Cmax for
a replicate study. Eighteen subjects were recruited for the study and 17 completed the study.
An analysis using the usual approach for the two-treatment, two-period design, as discussed
above, is not recommended. The FDA recommends use of a mixed model approach as in SAS
PROC MIXED [9]. The recommended code is

PROC MIXED;

CLASSES SEQ SUBJ PER TRT;

MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;

RANDOM TRT/TYPE = FAO (2) SUB = SUBj G;

REPEATED/GRP = TRT SUB = SUBJ;

LSMEANS TRT;

ESTIMATE “T VS. R” TRT 1 − 1/CL ALPHA = 0.1;

RUN;

We will concentrate on the comparison of two products in three- or four-period designs.
The FDA recommends using only two sequence designs because the interaction variability
estimate, subject × formulation, will be otherwise confounded (see Ref. 24 for a comparison of
the 2 and 4 sequence designs). The subject × formulation interaction is crucial because if this
effect is substantial, the implication is that subjects do not differentiate formulations equally,
that is, some subjects may give higher results for one formulation, and other subjects respond
higher on the other formulation. Two sequence designs for three- and four-period studies are
shown below. Although there are other designs available, these seem to have particularly good
properties [16,24].

Three-period design

Sequence Period

1 2 3

1 A B B

2 B A A

Four-period design

Sequence Period

1 2 3 4

1 A B B A

2 B A A B

With replicate designs, carryover effects, within-subject variances and subject × formula-
tion interactions can be estimated, unconfounded with other effects. Nevertheless, an unambigu-
ous acceptable analysis is still not clear. Do we include all the effects in the model simultaneously
or do we perform preliminary tests for inclusion in the model? What is the proper error term to
construct a confidence interval on the average BE parameter (e.g., AUC)? Some estimates may
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not be available if all terms are included in the model. Therefore, preliminary testing may be
necessary. These questions are not easy to answer and, despite their advantages, make the use
of replicate designs problematic at the time of this writing.

The following is one way of proceeding with the analysis: Test for differential carryover.
This term may be included in the model (along with the usual parameters) using a dummy
variable, that is, 0 if treatment in Period 1, if Treatment B follows Treatment A, and 2 if Treatment
A follows Treatment B. If differential carryover is not significant, remove it from the model.
Include a term for subject × formulation interaction, and if this effect is large, the products may
be considered bioinequivalent (see sect. 11.4.6.1). Another problem that arises here is concerned
with what error term should be used to construct the confidence interval for the average
difference between formulations. The choices are among the within-subject variance (residual),
the interaction term, or the residual with no interaction term in the model (pooled residual and
interaction). The latter could be defended if the interaction term is small or not significant.

The analysis of studies with replicate designs would be very difficult without access to a
computer program. Using SAS GLM, the following program can be used. (See below for FDA
recommended approach.)

proc glm;
class sequence subject product period co;
model auc = period subject (sequence) product co;
lsmeans product/stderr;
estimate ‘test-ref’product −11;

∗co is carryover∗
Using the data from Chow and Liu [16], a four-period design with nine subjects completing

the study, the SAS output is as follows:

Dependent variable: AUC

Source d.f. Sum of squares Mean square F value Pr > F

Model 13 40895.72505 3145.82500 8.25 0.0001

Error 22 8391.03801 381.41082

Corrected total 35 49286.76306

Dependent variable: AUC

Source d.f. Type I SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 24.23 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001

PRODUCT 1 1161.67361 1161.67361 3.05 0.0949

PERIOD 3 4650.60194 1550.20065 4.06 0.0193

CO 1 2.69894 2.69894 0.01 0.9337

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 8311.37782 8311.37782 21.79 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 9.68 0.0001

PRODUCT 1 975.69000 975.69000 2.56 0.1240

PERIOD 2 2304.85554 1152.42777 3.02 0.0693

CO 1 2.69894 2.69894 0.01 0.9337

Parameter Estimate T for HO: Pr > |T| Std error of

parameter

estimate

test-ref −10.98825000 −1.60 0.1240 6.87019569

Because carryover is not significant (p > 0.9), we can remove this term from the model and
analyze the data with a subject × formulation (within sequence) term included in the model.
The SAS output is as follows:
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General linear models procedure

Dependent variable: AUC

Source d.f. Sum of squares Mean squares F value Pr > F

Model 19 42490.87861 2236.36203 5.27 0.0008

Error 16 6795.88444 424.74278

Corrected total 35 49286.76306

Source d.f. Type I SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 21.76 0.0003

SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002

PRODUCT 1 1161.67361 1161.67361 2.74 0.1177

PERIOD 3 4650.60194 1550.20065 3.65 0.0354

SUBJECT ∗ PRODUCT(SEQ) (SEQ) 7 1597.85250 228.26464 0.54 0.7940

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 21.76 0.0003

SUBJECT (SEQ) 7 25838.61700 3691.23100 8.69 0.0002

PRODUCT 1 1107.56806 1107.56806 2.61 0.1259

PERIOD 2 4622.20056 2311.10028 5.44 0.0157

SUBJECT ∗ PRODUCT (SEQ) 7 1597.85250 228.26464 0.54 0.7940

The subject × product interaction is not significant (p > 0.7). Again the question of which
error term to use for the confidence interval is unresolved. The choices are (a) interaction = 228,
within-subject variance = 425, or pooled residual = 365. The d.f. will also differ depending on
the choice. The simplest approach seems to be to use the pooled variance if the interaction term
is not significant (the level must be defined). If interaction is significant, use the interaction term
as the error. In the example given above, the analysis without interaction and carryover may be
appropriate (also see sect. 11.4.6.1). The following analysis has an error term equal to 365.

Dependent variable: AUC
Source d.f. Sum of squares Mean square F value Pr > F

Model 12 40893.02611 3407.75218 9.34 0.0001

Error 23 8393.73694 364.94508

Corrected total 35 49286.76306

Source d.f. Type III SS Mean square F value Pr > F

SEQ 1 9242.13356 9242.13356 25.32 0.0001

SUBJECT (SEQ) 7 25838.61700 3691.23100 10.11 0.0001

PRODUCT 1 1107.56806 1107.56806 3.03 0.0949

PERIOD 3 4650.60194 1550.20065 4.25 0.0158

PRODUCT AUC LSMEAN Std err LSMEAN Pr > |T| HO :

LSMEAN = 0

1 87.7087500 4.5308014 0.0001

2 76.5462500 4.5308014 0.0001

Parameter Estimate T for HO:

Parameter = 0

Pr > |T| Std error of

estimate

test-ref −11.16250000 −1.74 0.0949 6.40752074

The complete analysis of replicate designs can be very complex and ambiguous, and is
beyond the scope of this book. An example of the analysis as recommended by the FDA is shown
later in this section. For an in-depth discussion of the analysis of replicate designs including
estimation of sources of variability (see Refs. [16,24,25]).

The four-period design will be further discussed in the discussion of individual bioequiv-
alence (IB), for which it is recommended. In a relatively recent guidance, the FDA [10] gives
sponsors the option of using replicate design studies for all BE studies. However, at the time of
this writing, the agency has ceased to recommend use of replicate studies although they may
be useful in some circumstances. The purpose of these studies was to provide more informa-
tion about the drug products than can be obtained from the typical, nonreplicated, two-period
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design. The FDA was interested in obtaining information from these studies to aid them in eval-
uation of the need for IB. In particular, replicate studies provide information on within-subject
variance of each product separately, as well as potential product × subject interactions. As noted
previously, the use of these designs and assessment of IB have been controversial, and its future
in its present form is in doubt.

The FDA recommends that submissions of studies with replicate designs be analyzed for
average BE [10]. Any analysis of IB will be the responsibility of the FDA, but will be only for
internal use, not for evaluating BE for regulatory purposes.

The following is another example of the analysis of a two-treatment–four-period replicate
design to assess average BE, as recommended by the FDA. This design has each of two products,

Table 11.15 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax)

Subject Product Sequence Period Cmax Ln(Cmax)

1 Test 1 1 14 2.639

2 Test 1 1 16.7 2.815

3 Test 1 1 12.95 2.561

4 Test 2 2 13.9 2.632

5 Test 1 1 15.6 2.747

6 Test 2 2 12.65 2.538

7 Test 2 2 13.45 2.599

8 Test 2 2 13.85 2.628

9 Test 1 1 13.05 2.569

10 Test 2 2 17.55 2.865

11 Test 1 1 13.25 2.584

12 Test 2 2 19.8 2.986

13 Test 1 1 10.45 2.347

14 Test 2 2 19.55 2.973

15 Test 2 2 22.1 3.096

16 Test 1 1 22.1 3.096

17 Test 2 2 14.15 2.650

1 Test 1 3 14.35 2.664

2 Test 1 3 22.8 3.127

3 Test 1 3 13.25 2.584

4 Test 2 4 14.55 2.678

5 Test 1 3 13.7 2.617

6 Test 2 4 13.9 2.632

7 Test 2 4 13.75 2.621

8 Test 2 4 13.25 2.584

9 Test 1 3 13.95 2.635

10 Test 2 4 15.15 2.718

11 Test 1 3 13.15 2.576

12 Test 2 4 21 3.045

13 Test 1 3 8.75 2.169

14 Test 2 4 17.35 2.854

15 Test 2 4 18.25 2.904

16 Test 1 3 19.05 2.947

17 Test 2 4 15.1 2.715

1 Reference 1 2 13.5 2.603

2 Reference 1 2 15.45 2.738

3 Reference 1 2 11.85 2.472

4 Reference 2 1 13.3 2.588

5 Reference 1 2 13.55 2.606

6 Reference 2 1 14.15 2.650

7 Reference 2 1 10.45 2.347

8 Reference 2 1 11.5 2.442

9 Reference 1 2 13.5 2.603

10 Reference 2 1 15.25 2.725

(Continued)
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Table 11.15 Results of a Four-Period, Two-Sequence, Two-Treatment, Replicate Design (Cmax) Continued

11 Reference 1 2 11.75 2.464

12 Reference 2 1 23.2 3.144

13 Reference 1 2 7.95 2.073

14 Reference 2 1 17.45 2.859

15 Reference 2 1 15.5 2.741

16 Reference 1 2 20.2 3.006

17 Reference 2 1 12.95 2.561

1 Reference 1 4 13.5 2.603

2 Reference 1 4 15.45 2.738

3 Reference 1 4 11.85 2.472

4 Reference 2 3 13.3 2.588

5 Reference 1 4 13.55 2.606

6 Reference 2 3 14.15 2.650

7 Reference 2 3 10.45 2.347

8 Reference 2 3 11.5 2.442

9 Reference 1 4 13.5 2.603

10 Reference 2 3 15.25 2.725

11 Reference 1 4 11.75 2.464

12 Reference 2 3 23.2 3.144

13 Reference 1 4 7.95 2.073

14 Reference 2 3 17.45 2.859

15 Reference 2 3 15.5 2.741

16 Reference 1 4 20.2 3.006

17 Reference 2 3 12.95 2.561

balanced in two sequences, ABAB and BABA, over four periods. Table 11.15 shows the results
for Cmax for a replicate study. Eighteen subjects were recruited for the study and 17 completed
the study. An analysis using the usual approach for the tttp design, as discussed above, is not
recommended. The FDA [10] recommends use of a mixed model approach as in SAS PROC
MIXED [13]. The recommended code is

PROC MIXED;
CLASSES SEQ SUBJ PER TRT;
MODEL LNCMAX = SEQ PER TRT/DDFM = SATTERTH;
RANDOM TRT/TYPE = FAO (2) SUB = SUBj G;
REPEATED/GRP = TRT SUB = SUBJ;
LSMEANS TRT;
ESTIMATE “T VS. R” TRT 1 − 1/CL ALPHA = 0.1;
RUN;

The abbreviated output is shown in Tables 11.16 and 11.17. Table 11.16 shows an analysis
of the first two periods for ln (Cmax) and untransformed Cmax. Table 11.17 shows the output
for the analysis of average BE using all four periods. Note that the confidence interval using
the complete design (0.0592–0.1360) is not much different from that observed from the analysis
of the first two periods (see Exercise at the end of the chapter), 0.0438, 0.1564. This should be
expected because of the small variability exhibited by this product.

11.4.6.1 Individual Bioequivalence††
Another issue that has been introduced as a relevant measure of equivalence is “individual”
bioequivalence (IB). This is in contrast to the present measure of “average” BE. Note that

†† FDA has never accepted, nor currently endorses, this method, despite its having devoted resources to its
development over a period >5 years. It is presented here due to its elegant statistical derivation from basic
principles of drug interchangeability and its place in the history of bioequivalence testing in the U.S.
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the evaluation of data from the tttp design results in a measure of average BE. Average BE
addresses the comparison of average results derived from the tttp BE study, and does not
consider differences of within-subject variance and interactions in the evaluation.

The IB approach is an attempt to evaluate the effect of changing products (brand to generic,
for example) for an individual patient, considering the potential for a change of therapeutic effect

Table 11.16 ANOVA for Data from First Two Periods of Table 11.15

(A) LN TRANSFORMATION
Dependent variable: LNCMAX

Pr F valueMean squareSum of squaresd.f.Source F

0.000110.340.092106131.6579104018Model

0.008906210.1335931215Error

1.7915035233Corrected Total
LNCMAX meanRoot MSECVR square

2.674836980.094372713.5281670.925430

Pr F valueMean squareType I SSd.f.Source F

0.006110.150.090424110.090424111SEQ
0.00011.090.098813471.4822020315SUBJ(SEQ)

0.83590.040.000395710.000395711PER
0.00759.530.084888550.084888551TRT

Least squares means

LNCMAXTRT
LSMEAN

2.62174427Reference
2.72185203Test

T for HO: Std error ofPr |T|
ParameterEstimateParameter Estimate0

0.032425720.00753.090.10010777T VS.R

(B) Dependent variable: CMAX
Pr F valueMean squareSum of squaresd.fSource F

0.00019.0721.18131269381.2636284718Model

2.3344247735.0163715315Error

416.2800000033Corrected total
CMAX meanRoot MSECVR square
14.900000001.5278824510.254240.915883

F valueMean squareType | SSd.f.Source Pr F

0.01297.9718.5940451418.594045141SEQ
0.00019.8923.08139699346.2209548615SUBJ(SEQ)
0.74930.110.247352940.247352941PER
0.01886.9416.2012755316.201275531TRT

Least squares means

CMAXTRT
LSMEAN

14.1649306Reference
15.5479167Test

Dependent variable: CMAX

T for HO: Std Error ofPr |T|
ParameterEstimateParameter Estimate0

0.524968390.01882.631.38298611T VS. R
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Table 11.17 Analysis of Data from Table 11.15 for Average Bioequivalence

ANALYSIS FOR LN-TRANSFORMED CMAX
The MIXED procedure
Class level information
Concentrations valuesClass
2 1 2SEQ
17 1 2 3 4 5 6 7 8 9 10 11 12 13SUBJ
14 15 16 17
4 1 2 3 4PER
2 12TRT

Covariance parameter estimates (REML)
EstimateGroupSubjectCov Parm

0.20078553SUBJFA(1,1)
0.22257742SUBJFA(2,1)

SUBJFA(2,2) 0.00000000
0.00702204TRT 1SUBJDIAG
0.00982420TRT 2SUBJDIAG

Tests of Fixed Effects
Pr Type III FDDFNDFSource F
0.32941.0213.91SEQ
0.82770.3048.23PER
0.000118.1251.11TRT

ESTIMATE statement results
Parameter T VS. R
Alpha td.f.Std errorEstimate0.1 Pr |t|

0.00014.2651.10.022917890.09755781

0.1360Upper0.0592Lower
Least squares means

t Pr d.f.Std ErrorLSMEANTRTEffect |t|
0.000153.37150.050862002.714659721TRT
0.000146.1615.30.056694162.617101912TRT

or increased toxicity when switching products [38]. This is a very difficult subject from both a
conceptual and statistical point of view. Statistical methods and meaningful differences must
be established to show differences in variability between products before this criterion can be
implemented. Whether or not a practical approach can be developed, and whether or not such
approaches will have meaning in the context of BE remains to be seen. Some of the statisti-
calproblems to be contemplated when implementing this concept include recommendations of
specific replicated crossover designs to measure both within- and between-variance components
as well as subject × product interactions, and definitions of limits that have clinical meaning.
The issue is related to variability. Assuming that the average bioavailability is the same for both
products as measured in a typical BE study, the question of IB appears to be an evaluation of
formulation differences. Since the therapeutic agents are the same in the products to be com-
pared, it is formulation differences that could result in excessive variability or differences in
bioavailability that are under scrutiny. Some of the dilemmas are related to the inherent biologic
variability of a drug substance. If a drug is very variable, we would expect large variability in
studies of interchangeability of products. In particular, taking the same product on multiple
occasions would show a lack of “reproducibility.” The question that needs to be addressed is
whether the new (generic) product would cause efficacy failure or toxicity when exchanged with
the reference or brand product due to excessive variability. The onus is on the generic product.
Product failure could be due to a change in the rate and extent of drug absorption as well as
an increase in inter- and intrapatient variability. The FDA has spent some energy in addressing
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the problem of how to define and evaluate any changes incurred by the generic product. This
is a difficult problem, not only in identifying the parameters to measure the variability, but also
to define the degree of variability that would be considered excessive. For example, drugs that
are very variable may be allowed more leniency in the criteria for “interchangeability” than less
variable, narrow-therapeutic-range drugs.

The FDA has proposed an expression to define IB

 = [�2 + �2
1 + (�2

T − �2
R)]

�2
R

(11.4)

where � is the difference between means of test and reference, �2
1 the subject × treatment

interaction variance, �2
T the within-subject test variance, and �2

R the within-subject reference
variance.

Equation 11.4 makes sense in that the comparison between test and reference products
is scaled by the within-reference variance, thereby not penalizing very variable drug products
when testing for BE. In addition, the expression contains a term for testing the mean difference,
the interaction, and the difference between the within-subject variances. If the test product has
a smaller within-subject variance than the reference, this favors the test product.

Before IB was to be considered a requirement from a regulatory point of view, data were
accumulated from replicate crossover studies (three or more periods) to compile a database to
assess the magnitude and kinds of intrasubject and formulation × subject variability that exist
in various drug and product classes. The design and submission of such studies were more or
less voluntary, and were analyzed for average BE. However, this gave the regulatory agency the
opportunity to evaluate the data according to IB, and to evaluate the need for this new kind of
criterion for equivalence. At the time of this writing, the FDA has rejected further development
of this approach. The details of the design and analysis of these studies are presented below.

In summary, IB is an assessment that accounts for product differences in the variability of
the PK parameters, as well as differences in their averages. IB evaluation is based on the statistical
evaluation of the metric [Eq. (11.4)], which represents a “distance” between the products. In
average BE, this distance can be considered the square of the difference in average results. In IB,
in addition to the difference in averages, the difference between the within-subject variances for
the two products, and the formulation × subject interaction (FS) are evaluated. In this section,
we will not discuss the evaluation of population BE. The interested reader may refer to the FDA
guidance [10].

The evaluation of IB is based on a 95% upper confidence limit on the metric, where the
upper limit for approval, theta (  ), is defined as 2.4948. Note that we only look at the upper limit
because the test is one-sided; that is, we are only interested in evaluating the upper value of the
confidence limit, upon which a decision of passing or failing depends. A large value of the metric
results in a decision of inequivalence. Referring to Eq. (11.4), a decision of inequivalence results
when the numerator is large and the denominator is small in value. Large differences in the
average results, combined with a large subject × formulation interaction, a large within-subject
variance for the test product and a small within-subject variance for the reference product, will
increase the value of theta (and vice versa).

Using the within-subject variance of the reference product in the denominator as a scaling
device allows for a less stringent decision for BE in cases of large reference variances. That is,
if the reference and test products appear to be very different based on average results, they
still may be deemed equivalent if the reference within-subject variance is large. This can be a
problem in interpretation of BE, because if the within-subject variance of the test product is
sufficiently smaller than the reference, an unreasonably large difference between their averages
could still result in BE [see Eq. (11.4)]. This could be described as a compensation feature or
trade-off; that is, a small within-subject variance for the test product can compensate for a large
difference in averages. To ensure that such apparently unreasonable conclusions will not be
decisive, the FDA guidance has a proviso that the observed T/R ratio must be not more than
1.25 or less than 0.8.
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11.4.6.2 Constant Scaling
The FDA guidance [10] also allows for a constant scaling factor in the denominator of Eq. (11.4).
If the variance of the reference is very small, the IB metric may appear very large, even though
the products are reasonably close. If the within-subject variance for the reference product is less
than 0.04, a value of 0.04 may be used in the denominator, rather than the observed variance.
This prevents an artificial inflation of the metric for cases of a small within-subject reference
variance. This case will not be discussed further, but is a simple extension of the following
discussion. The reader may refer to the FDA guidance for further discussion of this topic [10].

11.4.6.3 Statistical Analysis for IB
For average BE, the distribution of the difference in average results (log transformed) is known
based on the assumption of a log-normal distribution of the parameters. One of the problems
with the definition of BE based on the metric, Eq. (11.4), is that the distribution of the metric is
complex, and cannot be easily evaluated. At an earlier evolution in the analysis of the metric, a
bootstrap technique, a kind of simulation, was applied to the data to estimate its distribution.
The nature of the distribution is needed to construct a confidence interval so that a decision rule
of acceptance or rejection can be determined. This bootstrap approach was time consuming,
and not exactly reproducible. An approximate “parametric” approach was recommended [26],
which results in a hypothesis test that determines the acceptance rule. We refer to this approach
as the ‘‘Hyslop” evaluation. This will be presented in more detail below.

To illustrate the use of the Hyslop approach, the data of Table 11.18 will be used. This data
set has been studied by several authors during the development of methods to evaluate IB [27].

The details of the derivation and assumptions can be found in the FDA guidance [28] and
the paper by Hyslop et al. [26].

The following describes the calculations involved and the definitions of some terms that
are used in the calculations. The various estimates are obtained from the data of Table 11.18,
using SAS [13], with the following code:

proc mixed data = Drug;

class seq subj per trt;

model ln Cmax = seq per trt;

random int subject/subject = trt;

repeated/grp = trt sub = subj;

estimate “t vs.r” trt 1 − 1/cl alpha = 0.1;

run;

Table 11.19 shows the estimates of the variance components and average results for each
product from the data of Table 11.18.

Basically, the Hyslop procedure obtains an approximate upper confidence interval on
the sum of independent terms (variables) in the IB metric equation [Eq. (11.4)]. However, the
statistical approach is expressed as a test of a hypothesis. If the upper limit of the CI is less than
0, the products are deemed equivalent, and vice versa. The following discussion relates to the
scaled metric, where the observed reference within-subject variance is used in the denominator.
An analogous approach is used for the case where the reference variance is small and the
denominator is fixed at 0.04 (see Ref. [28]).

The IB criterion is expressed as

 = [�2 + �2
d + (�2

T − �2
R)]

�2
R

. (11.5)
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Table 11.18 Data from a Two-Treatment, Two-Sequence,

Four-Period Replicated Design [20]

Subject Sequence Period Product Ln Cmax

1 1 1 1 5.105339

1 1 3 1 5.090062

2 1 1 1 5.594340

2 1 3 1 5.459160

3 2 2 1 4.991792

3 2 4 1 4.693181

4 1 1 1 4.553877

4 1 3 1 4.682131

5 2 2 1 5.168778

5 2 4 1 5.213304

6 2 2 1 5.081404

6 2 4 1 5.333202

7 2 2 1 5.128715

7 2 4 1 5.488524

8 1 1 1 4.131961

8 1 3 1 4.849684

1 1 2 2 4.922168

1 1 4 2 4.708629

2 1 2 2 5.116196

2 1 4 2 5.344246

3 2 1 2 5.216565

3 2 3 2 4.513055

4 1 2 2 4.680278

4 1 4 2 5.155601

5 2 1 2 5.156178

5 2 3 2 4.987025

6 2 1 2 5.271460

6 2 3 2 5.035003

7 2 1 2 5.019265

7 2 3 2 5.246498

8 1 2 2 5.249127

8 1 4 2 5.245971

It can be shown that

�2
1 = �2

d + 0.5(�2
T + �2

R), (11.6)

where �2
d is the pure estimate of the subject × formulation interaction component. We can

express this in the form of hypothesis test, where the IB metric is linearized as follows:
Substituting Eq. (11.6) into Eq. (11.5), and linearizing

Let � = (�)2 + �2
1 + 0.5 �2

T − �2
R(−1.5 − ). (11.7)

Table 11.19 Parameter Estimates from Analysis of Data of Table 4 with Some

Definitions

�′
T = mean of test; estimate = 5.0353

�′
R = mean of reference; estimate = 5.0542

� = difference between observed mean of test and reference = −0.0189

�′
t
2 = interaction variance; estimate = MI = 0.1325

�′
T

2 = within-subject variance for the test product; estimate = MT = 0.0568

�′
R

2 = within-subject variance for the reference product; estimate = MR = 0.0584

n = degrees of freedom

s = number of sequences
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Table 11.20 Computations for Evaluation of Individual Bioequivalence

Hq = (1 − alpha) level upper
Confidence limit Eq = point estimate Uq = (Hq − Eq)2

HD =
[
|�| + t(1 − �, n − s)(1/s2

∑
n−1

i MI)
1/2
]2

ED = �2 UD

HI = [(n − s) · MI]/� 2(�, n − s) EI = MI UI
HT = [0.5 · (n − s) · MT]/� 2(�, n − s) ET = 0.5·MT UT
HR = [−(1.5 + 1) · (n − s) · MR]/� 2(1 − �, n − s) a ER = −(1.5 + 1)·MR UR

aNote that we use the 1 − � percentile here because of the negative nature of this expression. n =∑
nj ; s = number of sequences; ni = the number of subjects in sequence i .

We then form a hypothesis test with the hypotheses

H0: � > 0 Ha: � > 0.

Howe’s Method (Hyslop) effectively forms a CI for � by first finding an upper or lower
limit for each component in �. Then, a simple computation allows us to accept or reject the null
hypothesis at the 5% level (one-sided test). This is equivalent to seeing if an upper CI is less
than the FDA-specified criterion, . Using Hyslop’s Method, if the upper confidence limit is less
than , the test will show a value less than 0, and the products are considered to be equivalent.

The computation for the method is detailed below.
We substitute the observed values for the theoretical values in Eq. (11.7). The observed

values are shown in Table 11.19.
The next step is to compute the upper 95% confidence limits for the components in Eq.

(11.7). Note that � is normal with mean, true delta, and variance 2�2
d/N. The variances are

distributed as (�2) · � 2
(n)/n (where n = d.f.). For example, MT ∼ �T(n)2 � 2

(n)/n .
The equations for calculations are given in Table 11.20 [26].

H =
∑

(Ei) +
∑

(Ui)
0.5 = −0.0720 + 0.3885 = 0.3165.

Table 11.21 shows the results of these calculations.
Examples of calculations

HD = [|−0.0189| + 1.94 · ((1/4) · 0.1325/2)1/2]2 = 0.07213

HI = ((6) · 0.1325)/1.635 = 0.4862

HT = (0.5 · (6) · 0.0568)/1.635 = 0.1042

HR = (−(1.5 + 2.4948) · (6) · 0.0584)/12.59 = −0.1112

Table 11.21 Results of Calculations for Data of Table 11.20

Hi = confidence limit Ei = point estimate Ui = (H − E)2

Hd = 0.07213 Ed = 0.00357 0.0052

Hi = 0.4862 Ei = 0.1325 0.1251

Ht = 0.1042 Et = 0.0284 0.0057

Hr = −0.1112 Er = −0.2333 0.0149

SUM −0.0720 0.1509
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If the upper CI exceeds zero, the hypothesis is rejected, and the products are bioinequiv-
alent. This takes the form of a one-sided test of hypothesis at the 5% level.

Since this value (0.3165) exceeds 0, the products are considered to be inequivalent.
An alternative method to construct a decision criterion for IB based on the metric is given

in Appendix IX.

11.4.6.4 The Future
At the present time, the design and analysis of BE studies use tttp designs with a log trans-
formation of the estimated parameters. The 90% CI of the back-transformed difference of the
average results for the comparative products must lie between 0.8 and 1.25 for the products to
be deemed equivalent. Four-period replicate designs have been recommended on occasion for
controlled-release products and, in some cases, very variable products. However, FDA recom-
mends that these designs be analyzed for average BE. The results of these studies were analyzed
for IB by the FDA to assess the need for IB; that is, is there a problem with formulation × subject
interactions and differences between within-subject variance for the two products? The result
of this venture showed that replicate designs were not needed, that is, the data does not show
significant interaction or within-subject variance differences. IB may be reserved for occasions
where these designs will be advantageous in terms of cost and time. In fact, recent communica-
tion with FDA suggests that IB requirements are not likely to continue in the present form. Some
form of IB analysis may be optimal for very variable drugs, requiring less subjects than would be
required using a tttp design for average BE. On the other hand, in the future if IB analysis shows
the existence of problems with interaction and within-subject variances, it is possible that the
four-period replicate design and IB analysis will be considered for at least some subset of drugs
or drug products that exhibit problems. For very variable drug products, a scaled analysis has
been proposed that would reduce the sample size relative to the usual crossover analysis (see
below, sect. 11.4.9). Also, FDA is investigating the use of sequential designs, or add-on designs
in the implementation of BE studies.

See Appendix X for a discussion of designs used in BE studies.

11.4.7 Sample Size for Test for Equivalence for a Dichotomous (Pass–Fail) Outcome
Tests for BE are usually based on an analysis of drug in body fluids (e.g., plasma). However, for
drugs that are not absorbed, such as topicals and certain local acting gastrointestinal products
(e.g., sucralfate), a clinical study is necessary. Often the outcome is based on a binomial outcome
such as cured/not cured. See section 5.2.6 for confidence intervals for a proportion. A continuity
correction is recommended. Makuch and Simon [29] have published a method for determining
sample size for these studies, as well as other kinds of clinical studies where the objective is to
determine equivalence. This reference is concerned particularly with cancer treatments where
a less intensive treatment is considered to replace a more toxic treatment if the two treatments
can be shown to be therapeutically equivalent. As for the case of BE studies with a continuous
outcome, one needs to specify both alpha and beta errors in addition to a difference between
the treatments that is considered important to estimate the required sample size.

In this approach, we assume a parallel-groups design (two independent groups), typical
of these studies. To estimate the number of subjects required in the two groups, we will assume
an equal number to be assigned to each group. An estimate of (1) the value of the proportion of
subjects who will be “cured” or have a positive outcome for each treatment (P1 and P2), and (2)
the difference between the treatments that are not clinically meaningful is needed. Makuch and
Simon have shown that the number of subjects per group can be calculated from Eq. (11.4):

N = [P1(1 − P1) + P2(1 − P2)] ×
{

[Z� + Z	]
[� − [P1 − P2]

}2

, (11.8)

where delta (�) is the maximum difference between treatments considered to be of no clinical
significance.
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If we assume that the products are not different a priori, P1 = P2 = P, Eq. (11.4) reduces to

N = 2P(1 − P)

{[
Z� + Z	

]
�

}2

. (11.9)

In a practical example, a clinical study is designed to compare the efficacy of a generic
sucralfate to the brand product. The outcome is the healing of gastrointestinal ulcers. How
many subjects should be entered in a parallel study with a dichotomous endpoint (healed/ not
healed) if the expected proportion healed is 0.80 and the CI of the difference of the proportions
should not exceed ±0.2? We wish to construct a two-sided 90% CI with a beta of 0.2 (power =
0.8). This means that with the required number of patients, we will be able to determine, with
90% confidence, if the healing rates of the products are within ±0.2. If indeed the products are
equivalent, with a beta of 0.2, there is 80% probability that the CI for the difference between the
products will fall within ±20%.

The values of Z for beta can be obtained from Table 6.2.
Note that if the products are not considered to be different with regard to proportion or

probability of success, the values for beta will be based on a two-sided criterion. For example,
for 80% power, use 1.28 (not 0.84). From Eq. (11.5),

N = 2(0.8)(1 − 0.8)
{

[1.65 + 1.28]
0.2

}2

= 69.

Sixty-nine subjects per group are required to satisfy the statistical requirements for the
study.

If the criterion is made more similar to the typical BE criterion, we might consider the
difference (delta) to be 20% of 0.8 or 16%, rather than the absolute 20%. If delta is 16%, the
number of subjects per group will be approximately 108. (See Exercise Problem 12 at the end
of this chapter.) The BE subject number calculator on the CD included with this book provides
for the calculation of these subject numbers with the inclusion of a continuity correction often
requested by FDA.

11.4.8 SCALED CRITERION FOR BE
The scaled criterion is currently endorsed by FDA for highly variable drug products [30]. A
within-subject CV of 30% or greater is considered “highly variable.” The recommended design
is a three-period crossover with three sequences, TRR, RTR and RRT, where R is the reference and
T is the test product. Thus, only the reference is replicated, and the within-subject variance can be
estimated for the reference product. Although a minimum sample size of 24 is recommended,
the appropriate sample size is determined by the sponsor. After a log transformation, the
parameters (AUC and Cmax) are calculated in addition to the within-subject variance of the
reference product.

The statistical null hypothesis is

Ho : (XT − XR)2/S2
R > 

The alternative hypothesis is

H1 : (XT − XR)2/S2
R ≤ ,

where  is the scaled average BE limit, XT − XR is the difference between the average parameter
(AUC or Cmax) after a log transformation, and SR

2 is the calculated within-subject variance for
the reference product.

 is defined as (ln �)2/�2
wo, where � = 1.25 and �wo = 0.25.

Therefore,  = 0.7967.
BE is accepted if the null hypothesis is rejected and the ratio of test to reference is between 0.8

and 1.25. Both criteria must be satisfied to declare BE.



EXPERIMENTAL DESIGN IN CLINICAL TRIALS 301

A 95% upper bound for (XT − XR)2/SR
2 from the BE study must be ≤  in addition to

the restriction of the ratio of test to reference parameters (0.8–1.25). As of this writing, a method
for computing the upper bound is not forthcoming. Use of the “Hyslop” Method for individual
BE, previously discussed and modified for this application, has been proposed.

11.4.9 NONINFERIORITY TRIALS
Noninferiority trials are related to BE studies in that in both cases we are not testing for
differences. For noninferiority trials, we are testing that a test product is not worse than a
reference product based on results of a clinical study. Again, we must define a value such that
if the lower confidence bound (usually 95%) of the test treatment compared to the reference
exceeds that value, the test treatment will be considered noninferior. This value should be
defined in the protocol prior to seeing the study results, and is a value such that any value lower
than the specified value would result in a conclusion of inferiority.

For example, comparing Test Drug X to Reference Drug Y, it was determined that a
difference in average response of 2 units would be acceptable for purposes of noninferiority.
That is, if study results showed that Drug X was no more than 2 units less than Drug Y, Drug
X would be considered to be noninferior to Drug Y. The study showed that Drug X was 1 unit
less than Drug Y. The 95% lower bound of this difference was 2.1, that is, based on the lower
bound, Drug X, could be as much as 2.1 units less than Drug Y. Therefore, Drug X failed the
noninferiority test. The lower confidence bound showed more than a 2 unit difference, and we
can not conclude that Drug X is noninferior to Drug Y.

11.5 REPEATED MEASURES (SPLIT-PLOT) DESIGNS
Many clinical studies take the form of a baseline measurement followed by observations at
more than one point in time. For example, a new antihypertensive drug is to be compared to a
standard, marketed drug with respect to diastolic blood pressure reduction. In this case, after
a baseline blood pressure is established, the patients are examined every other week for eight
weeks, a total of four observations (visits) after treatment is initiated.

11.5.1 Experimental Design
Although this antihypertensive drug study was designed as a multiclinic study, the data pre-
sented here represent a single clinic. Twenty patients were randomly assigned to the two
treatment groups, 10 to each group (see sect. 11.2.6 for the randomization procedure). Prior to
drug treatment, each patient was treated with placebo, and blood pressure determined on three
occasions. The average of these three measurements was the baseline reading.

The baseline data were examined to ensure that the three baseline readings did not show a
time trend. For example, a placebo effect could have resulted in decreased blood pressure with
time during this preliminary phase.

Treatment was initiated after the baseline blood pressure was established. Diastolic blood
pressure was measured every two weeks for eight weeks following initiation of treatment. (The
dose was one tablet each day for the standard and new drug.) Two patients dropped out in the
“standard drug” group, and one patient was lost to the “new drug” group, resulting in eight
and nine patients in each treatment group. The results of the study are shown in Table 11.22 and
Figure 11.4.

The design described above is commonly known in the pharmaceutical industry as a
repeated measures or split-plot design. (This design is also denoted as an incomplete three-way or
a partially hierarchical design.) This design is common in clinical or preclinical studies, where
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Figure 11.4 Plot of mean results from antihypertensive drug study. •—standard drug; O—new drug.

two or more products are to be compared with multiple observations over time. The design can
be considered as an extension of the one-way or parallel-groups design. In the present design
(repeated measures), data are obtained at more than one time point. The result is two or more
two-way designs, as can be seen in Table 11.22, where we have two two-way designs. The
two-way designs are related in that observations are made at the same time periods. The chief
features of the repeated measures design as presented here are as follows:

1. Different patients are randomly assigned to the different treatment groups, that is, a patient
is assigned to only one treatment group.

2. The number of patients in each group need not be equal. Equal numbers of patients per
group, however, result in optimum precision when comparing treatment means. Usually,
these studies are designed to have the same number of patients in each group, but dropouts
usually occur during the course of the study.

3. Two or more treatment groups may be included in the study.
4. Each patient provides more than one measurement over time.
5. The observation times (visits) are the same for all patients.
6. Baseline measurements are usually available.
7. The usual precautions regarding blinding and randomization are followed.

Although the analysis tolerates lack of symmetry with regard to the number of patients
per group (see feature 2), the statistical analysis can be difficult if patients included in the study

Table 11.22 Results of a Comparison of Two Antihypertensive Drugs

Standard drug New drug

Week Week

Patient Baseline 2 4 6 8 Patient Baseline 2 4 6 8

1 102 106 97 86 93 3 98 96 97 82 91

2 105 103 102 99 101 4 106 100 98 96 93

5 99 95 96 88 88 6 102 99 95 93 93

9 105 102 102 98 98 8 102 94 97 98 85

13 108 108 101 91 102 10 98 93 84 87 83

15 104 101 97 99 97 11 108 110 95 92 88

17 106 103 100 97 101 12 103 96 99 88 86

18 100 97 96 99 93 14 101 96 96 93 89

16 107 107 96 93 97

Mean 103.6 101.9 98.9 94.6 96.6 Mean 102.8 99.0 95.2 91.3 89.4
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have missing data for one or more visits. In these cases, a statistician should be consulted
regarding data analysis [31].

The usual assumptions of normality, independence, and homogeneity of variance for each
observation hold for the split-plot analysis. In addition, there is another important assumption
with regard to the analysis and interpretation of the data in these designs. The assumption is
that the data at the various time periods (visits) are not correlated, or that the correlation is of a
special form [32]. Although this is an important assumption, often ignored in practice, moderate
departures from the assumption can be tolerated. Correlation of data during successive time
periods often occurs such that data from periods close together are highly correlated compared
to the correlation of data far apart in time. For example, if a person has a high blood pressure
reading at the first visit of a clinical study, we might expect a similar reading at the subsequent
visit if the visits are close in time. The reading at the end of the study is apt to be less related
to the initial reading. The present analysis assumes that the correlation of the data is the same
for all pairs of time periods, and that the pattern of the correlation is the same in the different
groups (e.g., drug groups) [32]. If these assumptions are substantially violated, the conclusions
based on the usual statistical analysis will not be valid. The following discussion assumes that
this problem has been considered and is negligible [31].

11.5.2 ANOVA
The data of Table 11.22 will be subjected to the typical repeated measures (split-plot) ANOVA.
As in the previous examples in this chapter, the data will be analyzed, corrected for baseline,
by subtracting the baseline measurement from each observation. The measurements will then
represent changes from baseline. The more complicated analysis of covariance is an alternative
method of treating such data [31, 32]. More expert statistical help will usually be needed when
applying this technique, and the use of a computer is almost mandatory. Subtracting out the
baseline reading is easy to interpret and, generally, results in conclusions very similar to that
obtained by covariance analysis. Table 11.23 shows the “changes from baseline” data derived
from Table 11.22. For example, the first entry in this table, two weeks for the standard drug, is
106 − 102 = 4.

When computing the ANOVA by hand (use a calculator), the simplest approach is to first
compute the two-way ANOVA for each treatment group, “standard drug” and “new drug.”
The calculations are described in section 8.4. The results of the ANOVA are shown in Table
11.24. Only the sums of squares need to be calculated for this preliminary computation.

The final analysis combines the separate two-way ANOVAs and has two new terms,
“weeks × drugs” interaction and “drugs,” the variance represented by the difference between
the drugs. The calculations are described below, and the final ANOVA table is shown in Table
11.25.

Table 11.23 Changes from Baseline of Diastolic Pressure for the Comparison of Two Antihypertensive Drugs

Standard drug New drug

Week Week

Patient 2 4 6 8 Patient 2 4 6 8

1 4 −5 −16 −9 3 −2 −1 −16 −7

2 −2 −3 −6 −4 4 −6 −8 −10 −13

5 −4 −3 −11 −11 6 −3 −7 −9 −9

9 −3 −3 −7 −7 8 −8 −5 −4 −17

13 0 −7 −17 −6 10 −5 −14 −11 −15

15 −3 −7 −5 −7 11 2 −13 −16 −20

17 −3 −6 −9 −5 12 −7 −4 −15 −17

18 −3 −4 −1 −7 14 −5 −5 −8 −12

16 0 −11 −14 −10

Mean −1.75 −4.75 −9 −7 Mean −3.8 −7.6 −11.4 −13.3

Sum −14 −38 −72 −56 Sum −34 −68 −103 −120
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Table 11.24 ANOVA for Changes from Baseline for Standard

Drug and New Drug

Standard drug New drug

Source d.f. Sum of squares d.f. Sum of squares

Patients 7 57.5 8 114.22

Weeks 3 232.5 3 486.97

Error 21 255.5 24 407.78

Total 31 545.5 35 1008.97

Patients’ SS: Pool the SS from the separate ANOVAs (57.5 + 114.22 = 171.72 with 7 + 8 =
15 d.f.).

Weeks’ SS: This term is calculated by combining all the data, resulting in four columns
(weeks), with 17 observations per column, 8 from the standard drug and 9 from the new drug.
The calculation is

∑
C2

R1 + R2
− CT,

where C is the column sums of combined data and R1 + R2 is the sum of the number of rows,

= (−48)2 + (−106)2 + (−175)2 + (−176)2

17
− (−505)2

68

= 4420.1 − 3750.4 = 669.7.

Drug SS:

Drug SS = (CTSP) + (CTNP) − (CTT),
where CTsp is the correction term for the standard drug, CTNP the correction term for the new
product, and CTT the correction term for the combined data.

Drug SS = (−180)2

32
+ (−325)2

36
− (−505)2

68

= 196.2.

Table 11.25 Repeated Measures (Split-Plot) ANOVA for the Antihypertensive

Drug Study

Source d.f.a SS MS

Patients 15 171.7 11.45

Weeks 3 669.7 223.23

Drugs 1 196.2 196.2 F1,15 = 196.2

11.45
= 17.1∗

Weeks × drugs 3 49.8 16.6

Error (within treatments) 45 663.3 14.74 F1,15 = 16.6

14.74
= 1.1

67 1750.6

aDegrees of freedom for “patients” and “error” are the d.f. pooled from the two-way ANOVAs.

For “weeks” and “drugs,” the d.f. are (weeks − 1) and (drugs − 1), respectively. For “weeks ×
drugs,” d.f. are (weeks − 1) × (drugs − 1).
∗p < 0.01.
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Figure 11.5 Plot from the data of Table 11.23 showing lack of significant interaction of weeks and drugs in

experiment comparing standard and new antihypertensive drugs. •—standard drug; o—new drug.

Weeks × drugs SS: This interaction term (see below for interpretation) is calculated as the
pooled SS from the “week” terms in the separate two-way ANOVAs above, minus the week
term for the final combined analysis, 669.7.

Weeks × drug SS = 232.5 + 486.97 − 669.7 = 49.8.

Error SS: The error SS is the pooled error from the two-way ANOVAs, 255.5 + 407.8 =
663.3.

11.5.2.1 Interpretation and Discussion
The terms of most interest are the “drugs” and “weeks × drugs” components of the ANOVA.
“Drugs” measures the difference between the overall averages of the two treatment groups.
The average reduction of blood pressure was (180/32) = 5.625 mm Hg for standard drug,
and (325/36) = 9.027 mm Hg for the new drug. The F test for “drug” differences is (drug
MS)/(patients MS) equal to 17.1 (1 and 15 d.f.; see Table 11.25). This difference is highly signifi-
cant (p < 0.01). The significant result indicates that on the average, the new drug is superior to
the standard drug with regard to lowering diastolic blood pressure.

The significant difference between the standard and new drugs is particularly meaningful
if the difference is constant over time. Otherwise, the difference is more difficult to interpret.
“Weeks × drugs” is a measure of interaction (see also chap. 9). This test compares the parallelism
of the two “change from baseline” curves as shown in Figure 11.5. The F test for “weeks × drugs”
uses a different error term than the test for “drugs.” The F test with 3 and 45 d.f. is 16.6/14.74
= 1.1, as shown in Table 11.25. This nonsignificant result suggests that the pattern of response
is not very different for the two drugs. A reasonable conclusion based on this analysis is that
the new drug is effective (superior to the standard drug), and that its advantage beyond the
standard drug is approximately maintained during the course of the experiment.

A significant nonparallelism of the two “curves” in Figure 11.5 would be evidence for a
“weeks × drugs” interaction. For example, if the new drug showed a lower change in blood
pressure than the standard drug at two weeks, and a higher change in blood pressure at eight
weeks (the curves cross one another), interaction of weeks and drugs would more likely be
significant. Interaction, in this example, would suggest that drug differences are dependent on
the time of observation.

If interaction is present or the assumptions underlying the analysis are violated (partic-
ularly concerning the form of the covariance matrix) [31], a follow-up or an alternative is to
perform p one-way ANOVAs at each of the p points in time. In the previous example, analyses
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Figure 11.6 Two kinds of interaction: (A) one drug always better than another, but the difference changes for

different clinical sites; (B) one drug better than another at sites 1 and 2 and worse at site 3.

would be performed at each of the four post-treatment weeks. A conclusion is then made on
the results of these individual analyses (see Exercise Problem 8).

11.6 MULTICLINIC STUDIES
Most clinical studies carried out during late phase 2 or phase 3 periods of drug testing involve
multiclinic studies. In these investigations, a common protocol is implemented at more than
one study site. This procedure, recommended by the FDA, serves several purposes. It may not
be possible to recruit sufficient patients in a study carried out by a single investigator. Thus
multiclinic studies are used to “beef up” the sample size. Another very important consideration
is that multiclinic studies, if performed at various geographic locations with patients represent-
ing a wide variety of attributes, such as age, race, socioeconomic status, and so on, yield data
that can be considered representative under a wide variety of conditions. Multiclinic studies,
in this way, guard against the possibility of a result peculiar to a particular single clinical site.
For example, a study carried out at a single Veterans’ Administration hospital would probably
involve older males of a particular economic class. Also, a single investigator may implement
the study in a unique way that may not be typical, and the results would be peculiar to his or her
methods. Thus, if a drug is tested at many locations and the results show a similar measure of
efficacy at all locations, one has some assurance of the general applicability of the drug therapy.
In general, one should attempt to have more or less equal numbers of patients at each site, and
to avoid having too few patients at sites.

However, there are instances where a drug has been found to be efficacious in the hands of
some investigators and not for others. When this occurs, the drug effect is in some doubt unless
one can discover the cause of such results. This problem is statistically apparent in the form
of a treatment × site interaction. The comparative treatments (drug and placebo, for example)
are not differentiated equally at different sites. A treatment × site interaction may be consid-
ered very serious when one treatment is favored at some clinical sites and the other favored
at different sites. Less serious is the case of interaction where all clinics favor the same treat-
ment, but some favor it more than others. These two examples of interaction are illustrated in
Figure 11.6.

When interaction occurs, the design, patient population, clinical methods, protocol, and
other possible problems should be carefully investigated and dissected, to help find the
cause. The cause will not always be readily apparent, if at all. See section 8.4.3 for a fur-
ther example and discussion of interactions in clinical studies. An important feature of multi-
clinic studies, as noted above, is that the same protocol and design should be followed at all
sites.

Since one can anticipate missing values due to dropouts, missed visits, recording errors,
and so on, an important consideration is that the design should not be so complicated that
missing data will cause problems with the statistical interpretation or that the clinicians will
have difficulty following the protocol. A simple design that will achieve the objective is to
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be preferred. Since parallel-groups designs are the most simple in concept, these should be
preferred to some more esoteric design. Nevertheless, there are occasions where a more complex
design would be appropriate providing that the study is closely monitored and the clinical
investigators thoroughly educated.

11.7 INTERIM ANALYSES
Under certain conditions, it is convenient (and sometimes prudent) to look at data resulting
from a study prior to its completion in order to make a decision to change the protocol procedure
or requirements, or to abort the study early or to increase the sample size, for example. This
is particularly compelling for a clinical study involving a disease that is life-threatening, is
expensive, and/or is expected to take a long time to complete. A study may be stopped, for
example, if the test treatment can be shown to be superior early on in the study. However, if
the data are analyzed prior to study completion, a penalty is imposed in the form of a lower
significance level to compensate for the multiple looks at the data (i.e., to maintain the overall
significance level at alpha). The more occasions that one looks at and analyzes the data for
significance, the greater the penalty, that is, the more difficult it will be to obtain significance
at each analysis. The penalty takes the form of an adjustment of the alpha level to compensate
for the multiple looks at the data. The usual aim is to keep the alpha level at a nominal level,
for example 5%, considering the multiple analyses; this fixes the probability of declaring the
treatments different when they are truly the same at, at most, 5%, taking into account the fact
that at each look we have a chance of incorrectly declaring a significant difference. For example,
if the significance level is 0.05 for a single look, two looks will have an overall significance level
of approximately 0.08.

In addition to the advantage (time and money) of stopping a study early when efficacy
is clearly demonstrated, there may be other reasons to shorten the duration of a study, such as
stopping because of a drug failure, modifying the number of patients to be included, modifying
the dose, and so on. If interim analyses are made for these purposes in phase 3 pivotal studies, an
adjusted p level will probably be needed for regulatory purposes. Davis and Huang discuss this
in more detail [33]. In any event, the approach to interim analyses should be clearly described
in the study protocol, a priori; or, if planned after the study has started, the plan of the interim
analysis should be communicated to the regulatory authorities (e.g., FDA). Even if interim looks
do not affect the study procedure or outcome, such procedures should be clearly documented
either in the study protocol or as an amendment to the protocol. One of the popular approaches
to interim analyses was devised by O’Brien and Fleming [34], an analysis known as a group
sequential method. The statistical analyses are performed after a group of observations have
been accumulated rather than after each individual observation. The analyses should be clearly
documented and should be performed by persons who cannot influence the continuation and
conduct of the study.

The procedure and performance of these analyses must be described in great detail in
the study protocol, including the penalties in the form of reduced “significance” levels. A very
important feature of interim analyses is the procedure of breaking the randomization code.
One should clearly specify who has access to the code and how the blinding of the study is
maintained. It is crucial that the persons involved in conducting the study, clinical personnel
and monitors alike, not be biased as a result of the analysis. This is of great concern to the
FDA. Interim analyses should not be done willy-nilly, but should be planned and discussed
with regulatory authorities. Associated penalties should be fixed in the protocol. As noted pre-
viously, this does not mean that interim analyses cannot and should not be performed as an
afterthought if circumstances dictate their use during the course of the study. A Pharmaceutical
Manufacturer’s Association (PMA) committee [35] suggested the following to minimize poten-
tial bias resulting from an interim analysis. (1) “A Data Monitoring Committee (DMC) should
be established to review interim results.” The persons on this committee should not be involved
in decisions regarding the progress of the study. (2) If the interim analysis is meant to terminate
a study, the details should be presented in the protocol, a priori. (3) The results of the interim
analysis should be confidential, known only to the DMC.

Sankoh [25] discusses situations where interim analyses have been used incorrectly from
a regulatory point of view. In particular, he is concerned with unplanned interim analyses.
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Table 11.26 Significance Levels for Two-Sided Group

Sequential Studies with an Overall Significance Level of 0.05

(According to O’Brien/Fleming)

Number of analysis (stages) Analysis Significance level

2 First 0.005

Final 0.048

3 First 0.0005

Second 0.014

Final 0.045

4 First 0.0005

Second 0.004

Third 0.019

Final 0.043

5 First 0.00001

Second 0.001

Third 0.008

Fourth 0.023

Final 0.041

These include (a) the lack of reporting these analyses and the consequent lack of adjust-
ment of the significance level, (b) inappropriate adjustment of the level and inappropriate
stopping rules, (c) interim analyses inappropriately labeled “administrative analyses,” where
actual data analyses have been carried out and results disseminated, (d) lack of documenta-
tion for the unplanned interim analysis, (e) and the importance of blinding and other protocol
requirements.

An interim analysis may also be planned to adjust sample size. In this case, a full analysis
should not be done. The analysis should be performed when the study is not more than half
done, and only the variability should be estimated (not the treatment differences). Under these
conditions, no penalty need be assessed. However, if the analysis is done near the end of the
trial or if the treatment differences are computed, a penalty is required [25].

Table 11.26 shows the probability levels needed for significance for k looks (k analyses) at
the data according to O’Brien and Fleming [34], where the data are analyzed at equal intervals
during patient enrollment. For example, if the data are to be analyzed three times (k = 3, where
k is the number of analyses or stages, including the final analysis), the analysis should be done
after 1/3, 2/3 and all of the patients have been completed [36]. There are other schemes for group
sequential interim analyses, including those that do not require analyses at equal intervals of
patient completion [37].

For example, a study with 150 patients in each of two groups is considered for two
interim analyses. This corresponds to three stages, two interim and one final analysis. The first
analysis is performed after 100 patients are completed (50 per group) at the 0.0005 level. To show
statistically significant differences, the product differences must be very large or obvious at this
low level. If not significant, analyze the data after 200 patients are completed. A significance
level of 0.014 must be reached to terminate the study. If this analysis does not show significance,
complete the study. The final analysis must meet the 0.045 level for the products to be considered
significantly different.

One can conjure up reasons as to why stopping a study early based on interim analysis
is undesirable (less information on adverse effects or less information for subgroup analyses,
for example). One possible solution to this particular problem in the case where the princi-
ple objective is to establish efficacy, is to use the results of the interim analysis for regulatory
submission, if the study data meet the interim analysis p level, but to continue the study
after the interim analysis, and then analyze the results for purposes of obtaining further infor-
mation on adverse effects, and so on. However, in this procedure, one may face a dilemma
if the study fails to show significance with regard to efficacy after including the remaining
patients.
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KEY TERMS

Analysis of covariance Interaction
AUC (area under curve) Interim analyses
Balance Latin square
Baseline measurements Locke’s Method
Between-patient variation (error) Log transformation
Bias Multiclinic
Bioavailability Objective measurements
Bioequivalence Parallel design
Blinding Period (visit)
Carryover Placebo effect
Changeover design Positive control
Cmax Randomization
Controlled study Repeated measures
Crossover design Replicate designs
Differential carryover Scaled bioequivalence analysis
Double blind Sequences
Double dummy Split plot
75–75 rule Symmetry
Experimental design Systematic error
Grizzle analysis tp
Incomplete three-way ANOVA Washout period
Individual bioequivalence Within-patient variation (error)
Intent to treat 80% power to detect 20% difference

EXERCISES
1. (a) Perform the calculations for the ANOVA table (Table 11.3) from the data in Table 11.2.

(b) Perform a t test comparing the differences from baseline for the two groups in Table
11.2. Compare the t value to the F value in Table 11.3.

2. Using the data in Table 11.10, test to see if the values of tp are different for formulations A
and B (5% level).

3. (a) Using the data in Table 11.10, compare the values of Cmax for the two formulations (5%
level). Calculate a confidence interval for the difference in Cmax.

(∗∗b) Analyze the data for Cmax using the Grizzle Method. Is a differential carryover effect
present?

4. Analyze the AUC data in Table 11.10 using ratios of AUC (A/B). Find the average ratio and
test the average for significance. (Note that H0 is AUCA/AUCB = 1.0.) Assume no period
effect.

5. Analyze the AUC data in Table 11.10 using logarithms of AUC. Compare the antilog
of the average difference of the logs to the average ratio determined in Problem 4. Put
a 95% confidence interval on the average difference of the logs. Take the antilogs of
the lower and upper limit and express the interval as a ratio of the AUCs for the two
formulations.

6. ** In a pilot study, two acne preparations were compared by measuring subjective improve-
ment from baseline (10-point scale). Six patients were given a placebo cream and six different
patients were given a cream with an active ingredient. Observations were made once a week
for four weeks. Following are the results of this experiment:

∗∗This is an optional, more difficult problem.
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Placebo Active

Week Week

Patient 1 2 3 4 Patient 1 2 3 4

1 2 2 4 3 1 2 2 3 3

2 3 2 3 3 2 4 4 5 4

3 1 4 3 2 3 1 3 4 5

4 3 2 1 0 4 3 4 4 7

5 2 1 3 2 5 2 2 3 6

6 4 4 5 3 6 3 4 6 5

A score of 10 is complete improvement. A score of 0 is no improvement (negative scores
mean a worsening of the condition). Perform an ANOVA (split plot). Plot the data as in
Figure 11.4. Are the two treatments different? If so, how are they different?

7. For the exercise study described in section 11.3, the difference considered to be significant
is 60 minutes with an estimated standard deviation of 55 minutes. Compute the sample
size if the Type I (alpha) and Type II (beta) error rates are set at 0.05 and 0.10, respectively.

8. From the data in Table 11.23, test for a difference (� = 0.05) between the two drugs at
week 4.

9. Perform the ANOVA on the ln transformed bioavailability data (sect. 11.4.2, Table 11.10).

10. A clinical study is designed to compare three treatments in a parallel design. Thirty patients
are entered into the study, 10 in each treatment group. The randomization is to be performed
in groups of six. Show how you would randomize the 30 patients.

11. In the example in Table 11.7, suppose that a period effect of 3 existed in this study. This
means that the observations in Period 2 are augmented by 3 units. Show that the difference
between treatments is not biased, that is, the difference between A and B is 1.

12. Exercise: Compute the sample size for the example in section 11.4.8, assuming that a
difference of 0.16 (16%) is a meaningful difference.

13. Compute the confidence interval using Locke’s Method as described in section 11.4.3.
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12 Quality Control

The science of quality control is largely statistical in nature, and entire books have been devoted
to the application of statistical techniques to quality control. Statistical quality control is a key
factor in process validation and the manufacture of pharmaceutical products. In this chap-
ter, we discuss some common applications of statistics to quality control. These applications
include Shewhart control charts, sampling plans for attributes, operating characteristic curves,
and some applications to assay development, including components of variance analysis. The
applications to quality control make use of standard statistical techniques, many of which have
been discussed in previous portions of this book.

12.1 INTRODUCTION
Starting from raw materials to the final packaged container, quality control departments have
the responsibility of assuring the integrity of a drug product with regard to safety, potency,
and biological availability. If each and every item produced could be tested (100% testing),
there would be little need for statistical input in quality control. Those individual dosage units
that are found to be unsatisfactory could be discarded, and only the good items would be
released for distribution. Unfortunately, conditions exist that make 100% sampling difficult, if
not impossible. For example, if every dosage unit could be tested, the expense would probably
be prohibitive both to manufacturer and consumer. Also, it is well known that attempts to test
individually every item from a large batch (several million tablets, for example), result in tester
fatigue, which can cause misclassifications of items and other errors. If testing is destructive, such
as would be the case for assay of individual tablets, 100% testing is, obviously, not a practical
procedure. However, 100% testing is not necessary to determine product quality precisely.
Quality can be accurately and precisely estimated by testing only part of the total material (a
sample). In general, quality control procedures require relatively small samples for inspection
or analysis. Data obtained from this sampling can then be treated statistically to estimate
population parameters such as potency, tablet hardness, dissolution, weight, impurities, content
uniformity (variability), as well as to ensure the quality of attributes such as color, appearance,
and so on.

In various parts of this book, we discuss data from testing finished products of solid dosage
forms. The details of some of these tests are explained at the end of this chapter, section 12.7.

Statistical techniques are also used to monitor processes. In particular, control charts
are commonly used to ensure that the average potency and variability resulting from a phar-
maceutical process are stable. Control charts can be applied during in-process manufacturing
operations, for finished product characteristics, and in research and development for repetitive pro-
cedures. Control charts are one of the most important statistical applications to quality control.

12.2 CONTROL CHARTS
Probably the best-known application of statistics to quality control that has withstood the test
of time is the Shewhart control chart. Important attributes of the control chart are its simplicity
and the visual impression that it imparts. The control chart allows for judgments based on an
easily comprehended graph. The basic principles underlying the use of the control chart are
described below.

12.2.1 Statistical Control
A process under statistical control is one in which the process is susceptible to variability
due only to inherent, but unknown and uncontrolled chance causes. According to Grant [1]:
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“Measured quality of manufactured product is always subject to a certain amount of variation
as a result of chance. Some stable system of chance causes is inherent in any particular scheme
of production and inspection. Variation within this stable pattern is inevitable. The reasons for
variation outside this stable pattern may be discovered and corrected.”

Using tablet manufacture as an example, where tablet weights are being monitored, it is
not reasonable to expect that each tablet should have an identical weight, precisely equal to
some target value. A tablet machine is simply not capable of producing identical tablets. The
variability is due, in part, to (a) the variation of compression force, (b) variation in filling the
die, and (c) variation in granulation characteristics. In addition, the balance used to weigh
the tablets cannot be expected to give exactly reproducible weighings, even if the tablets could
be identically manufactured. Thus, the weight of any single tablet will be subject to the vagaries
of chance from the foregoing uncontrollable sources of error, in addition to other identifiable
sources that we have not mentioned.

12.2.2 Constructing Control Charts
The process of constructing a control chart depends, to a great extent, on the process character-
istics and the objectives that one wishes to achieve. A control chart for tablet weights can serve
as a typical example. In this example, we are interested in ensuring that tablet weights remain
close to a target value, under “statistical control.” To achieve this objective, we will periodically
sample a group of tablets, measuring the mean weight and variability. The mean weight and
variability of each sample (subgroup) are plotted sequentially as a function of time. The control
chart is a graph that has time or order of submission of sequential lots on the X axis and the
average test result on the Y axis. The process average together with upper and lower limits are
specified as shown in Figure 12.1. The preservation of order with respect to the observations is
an important feature of the control chart. Among other things, we are interested in attaining a
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Figure 12.1 Quality control X and range charts.



314 CHAPTER 12

state of statistical control and detecting trends or changes in the process average and variability.
One can visualize such trends (mean and range) easily with the use of the control chart. The
“consistency” of the data as reflected by the deviations from the average value is not only easily
seen, but the chart provides a record of batch performance. This record is useful for regulatory
purposes as well as for an in-house source of data.

As will be described subsequently, variability can be calculated on the basis of the standard
deviation or the range. The range is easier to calculate than the standard deviation. Remember:
The range is the difference between the lowest and highest value. If the sample size is not large
(<10), the range is an efficient estimator of the standard deviation. Figure 12.1 shows an example
of an “X” (X bar or average) and “range” chart for tablet weights determined from consecutive
tablet production batches.

12.2.2.1 Rational Subgroups
The question of how many tablets to choose at each sampling time (rational subgroups) and how
often to sample is largely dependent on the nature of the process and the level of precision
required. The larger the sample and the more frequent the sampling, the greater the precision,
but also the greater will be the cost. If tablet samples are taken and weights averaged over rela-
tively long periods of time, significant fluctuations that may have been observed with samples
taken at shorter time intervals could be obscured. The subgroups should be as homogeneous as
possible relative to the overall process. Subgroups are usually (but not always) taken as units
manufactured close in time. For example, in the case of tablet production, consecutively manu-
factured tablets may be chosen for a subgroup. If possible, the subgroup sample size should be
constant. Otherwise, the construction and interpretation of the control chart is more difficult.
Four to five items per subgroup is usually an adequate sample size. Procedures for selecting
samples should be specified under SOPs (standard operating procedures) in the quality control
manual. In our example, 10 consecutive tablets are individually weighted at approximately one-
hour intervals. Here the subgroup sample size is larger than the “usual” four or five, principally
because of the simple and inexpensive measurement (weighing tablets). The average weight
and range are calculated for each of the subgroup samples. One should understand that under
ordinary circumstances the variation between individual items (tablets in this example) within
a subgroup is due only to chance causes, as noted above. In the example, the 10 consecutive
tablets are made almost at the same time. The granulation characteristics and tablet press effects
are similar for these 10 tablets. Therefore, the variability observed can be attributed to causes
that are not under our control (i.e., the inherent variability of the process).

12.2.2.2 Establishing Control Chart Limits
The principal use of the control chart is as a means of monitoring the manufacturing process. As
long as the mean and range of the 10 tablet samples do not vary “too much” from subgroup to
subgroup, the product is considered to be in control. To be “in control” means that the observed
variation is due only to the random, uncontrolled variation inherent in the process, as discussed
previously. We will define upper and lower limits for the mean and range of the subgroups.
Values falling outside these limits are cause for alarm. The construction of these limits is based
on normal distribution theory. We know, from chapter 3, that individual values from a normal
distribution will be within 1.96 standard deviations of the mean 95% of the time, and within
3.0 (or 3.09) standard deviations of the mean 99.73% (or 99.8%) of the time (see Table IV.2).
Therefore, the probability of observing a value outside these limits is small; only 1 in 20 in the
former case and 2.7 in 1000 in the latter case. Two limits are often used in the construction of X
(mean) charts as “warning” and “action” limits, respectively (Fig. 12.1). The warning limits are
narrower than the action limits and do not require immediate action. If a process is subject only
to random, chance variation, a value far from the mean is unlikely. In particular, a value more
than 3.0 standard deviations from the mean is highly unlikely (2.7/1000), and can be considered
to be probably due to some systematic, assignable cause. Such a “divergent” observation should
signal the quality control unit to modify the process and/ or initiate an investigation into its
cause. Of course, the “aberrant” value may be due only to chance. If so, subsequent means
should fall close to the process average as expected. In some circumstances, one may wisely
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Table 12.1 Tablet Weights and Ranges from a Tablet

Manufacturing Processa

Date Time Mean, X Range

3/1 11 a.m. 302.4 16

12 p.m. 298.4 13

1 p.m. 300.2 10

2 p.m. 299.0 9

3/5 11 a.m. 300.4 13

12 p.m. 302.4 5

1 p.m. 300.3 12

2 p.m. 299.0 17

3/9 11 a.m. 300.8 18

12 p.m. 301.5 6

1 p.m. 301.6 7

2 p.m. 301.3 8

3/11 11 a.m. 301.7 12

12 p.m. 303.0 9

1 p.m. 300.5 9

2 p.m. 299.3 11

3/16 11 a.m. 300.0 13

12 p.m. 299.1 8

1 p.m. 300.1 8

2 p.m. 303.5 10

3/22 11 a.m. 297.2 14

12 p.m. 296.2 9

1 p.m. 297.4 11

2 p.m. 296.0 12

aData are the average and range of 10 tablets.

make an observation on a new subgroup before the scheduled time, in order to verify the initial
result. If two successive averages are outside the acceptable limits, chances are extremely high
that a problem exists. An investigation to detect the cause and make a correction may then be
initiated.

The procedure for constructing control charts will be illustrated using data on tablet
weights as shown in Table 12.1 and Figure 12.2. Note that the X chart consists of an “average”
or “standard” line along with upper and lower lines that represent the action lines. The average
line may be determined from the history of the product, with regular updating, or may be
determined from the product specifications. In this example, the average line is defined by
the quality control specifications (standards) for this product, a target value of 300 mg. The
action lines are constructed to represent ±3 standard deviations from the target value. This is
also known as “3� limits.” Observations that lie outside these limits are a cause for action.
Adjustments or other corrective action should not be implemented if the averages are within
the action limits. Tampering with equipment and/or changing other established procedures
while the process remains within limits should be avoided. Such interference will often result
in increased variation.

In order to establish the upper and lower limits for the mean (X), we need an estimate of
the standard deviation, if it is not previously known. The standard deviation can be obtained
from the replicates (10 tablets) of the subgroup samples that generate the means for the control
chart. By pooling the variability from many subgroups (N = 10), a very good estimate of the
true standard deviation, �, can be obtained (see App. I). Note that an estimate of the standard
deviation or range is needed before limits for the X chart can be established. If a “range” chart is
used in conjunction with the X chart, the upper and lower limits for the X chart can be obtained
from the range according to Table IV.10 (column A). These factors are derived from theoretical
calculations relating the range and standard deviation. For example, in the long run, the range
can be shown to be equal to 3.078 times the standard deviation for samples of size 10. If we wish
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Figure 12.2 Control chart for tablet averages and range data from Table 12.1.

to establish 3� limits about the mean of samples of size 10 (s.d. = �/
√

10) using the range, the
following relationship leads to the value 0.31 in Table IV.10 (see column A):

X ± 3�√
10

= X ± 3(R)

(3.078)
√

10
= X ± 0.31R,

where R/3.078 is the average range divided by 3.078, which on the average is equal to �. Thus,
if the average range is 12 for samples of size 10, the upper and lower control chart limits for X
are

X ± 0.31R = X ± 0.31(12) = X ± 3.72. (12.1)

Note that the average range is simply the usual average of the range values, obtained in a
manner similar to that for calculating the process average. Ranges obtained during the control
charting process are averaged and updated as appropriate.
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Table IV.10 also has factors for upper and lower limits for a range chart. The values in
columns DL and DU are multiplied times the average range to obtain the lower and upper limits
for the range. Usually, a range that exceeds the upper limit is a cause for action. A small value
of the range shows good precision and may be disregarded in many situations. In the present
example, the average range is set equal to 12 based on previous experience. For samples of size 10,
DL and DU are 0.22 and 1.78, respectively. Therefore, the lower and upper limits for the range are

Lower limit: 0.22 × 12 = 2.6

Upper limit: 1.78 × 12 = 21.3. (12.2)

These limits are shown in the control chart for the range in Figure 12.2. See Figure 12.1
for another example of a range chart. Ordinarily, the sample size should be kept constant. If
sample size varies from time to time, the limits for the control chart will change according to
the sample size. If the sample sizes do not vary greatly, one solution to this problem is use an
average sample size [2].

Having established the mean and the average range, the process is considered to be under
control as long as the average and range of the subgroup samples fall within the lower and upper
limits. If either the mean or range of a sample falls outside the limits, a possible “assignable”
cause is suspected. The reason for the deviation should be investigated and identified, if possible.
One should appreciate that a process can change in such a way that (a) only the average is
affected, (b) only the variability is affected, or (c) both the average and variability are affected.
These possibilities are illustrated in Figure 12.3.

In the example of tablet weights, one might consider the following as possible causes for
the results shown in Figure 12.3. A change in average weight may be caused by a misadjustment
of the tablet press. Increased variability may be due to some malfunction of one or more
punches. Since 10 consecutive tablets are taken for measurement, if one punch gives very low
weight tablets, for example, a large variability would result. A combination of lower weight and
increased variability probably would be quickly detected if half of the punches were sticking in
a random manner. Under these circumstances, the average (X) would be substantially reduced
and the range would be substantially increased relative to the values expected under statistical
control.

The control charts shown in Figure 12.2 are typical. For the X chart, the mean was taken
as 300 mg based on the target value as set out in the quality control standards. The upper and
lower action limits were calculated on the basis of an average range of 12 and factor A in Table
IV.10. The lower and upper action limits are 300 ± 3.72 mg or approximately 296.3 to 303.7 mg,

Figure 12.3 Representation of possible process changes as may be detected in a control chart procedure.
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respectively. The process is out of control during the production of the batch produced on 3/22.
This will be discussed further below. The range control chart shows that the process is in control
with respect to this variable.

When the standard deviation rather than the range is computed for purposes of constructing
control charts, the factors for calculating the limits for the X chart are different. The variability
is monitored via a chart of the standard deviation of the subgroup rather than the range. Factors
for setting limits for both X charts and “sigma” (standard deviation) charts may be found in
Ref. [1].

If an outlying observation (X, R) is eliminated because an assignable cause has been found,
that observation should be eliminated from future updating of the X and R charts.

12.2.3 Between-Batch Variation as a Measure of Variability (Moving Averages)
The discussion of control charts above dealt with a system that is represented by a regular
schedule of production batches. The action limits for X were computed using the “within”-
batch variation as measured by the variability between items in a “rational subgroup.” The
subgroup consists of a group of tablets manufactured under very similar conditions. For the
manufacture of unit dosage forms with inherent heterogeneity, such as tablets, attempts to
construct control charts that include different batches, based on within-subgroup variation,
may lead to apparently excessive product failure and frustration. Sometimes, this unfortunate
situation may result in the discontinuation of the use of control charts as an impractical statistical
device. However, the nature of the manufacture of a heterogeneous mixture, such as the bulk
granulations used for manufacturing tablets, lends itself to new sources of uncontrolled error.
This error resides in the variability due to the different (uncontrolled) conditions under which
different tablet batches are manufactured. One would be hard put to describe exactly why
batch-to-batch differences should exist, or to identify the sources of these differences. Perhaps
the dies and punches of the tablet press are subject to wear and erosion. Perhaps a new employee
involved in the manufacturing process performs the job in a slightly different manner from his
or her predecessor. Whatever the reason, such interbatch variation may exist.∗ In these cases,
the within-subgroup variation underestimates the variation, and many readings will appear
out of control. This is exemplified by the last batch in Table 12.1 and Figure 12.2.

Thus, when significant interbatch variation exists, the usual control chart will lead to many
batches being out of control. If the cause of this variation cannot be identified or controlled, and
the product consistently passes the official quality control specifications, other methods than
the usual control chart may be used to monitor the process.

Use of the “Control Chart for Individuals” [1,2] seems to be one reasonable approach to
monitoring such processes. The limits for the X chart are based on a moving range using two
consecutive samples (Table 12.2). For example, the first value for the two-batch moving range is
the range of batches 1 and 2 = 1.1(399.5 − 398.4). The second moving range is 399.5 − 398.8 =
0.7, and so on. The average moving range is 1.507. The average tablet weight of the 30 batches
is 400.01. The average range is based on samples of 2. To estimate the standard deviation from
the average range of samples of size 2, it can be shown that we should divide the average
range by 1.128 (Table IV.10). The 3 sigma limits are X ± 3(R/1.128) = 400.01 ± 3(1.507/1.128) =
400.01 ± 4.01. The range chart has an upper limit of 3.27(1.507) = 4.93. These charts are shown
in Figure 12.4. Batch 13 is out of limits based on both the average and range charts.

The moving average method is another approach to construct control charts that can be
useful in the presence of interbatch variation. In this method, we use only a single mean value
for each batch, ignoring the individual values within the subgroup, if they are available. Thus,
the data consist of a series of means over many batches as shown in Table 12.2. A three-batch
moving average consists of averaging the present batch with the two immediately preceding
batches. For example, starting with batch 3, the first value for the moving average chart is

398.4 + 399.5 + 398.8
3

= 398.9.

∗ Process validation investigates and identifies such variation.
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Table 12.2 Average Weight of 50 Tablets from 30 Batches of a Tablet Product:

Example of the Moving Average

Two-batch Three-batch Three-batch
Batch moving moving moving

Batch average (mg) range average range

1 398.4 — — —

2 399.5 1.1 — —

3 398.8 0.7 398.9 1.1

4 397.4 1.4 398.6 2.1

5 402.7 5.3 399.6 5.3

6 400.5 2.2 400.2 5.3

7 401.0 0.5 401.4 2.2

8 398.5 2.5 400.0 2.5

9 399.5 1.0 399.7 2.5

10 400.1 0.6 399.4 1.6

11 399.0 1.1 399.5 1.1

12 401.7 2.7 400.3 2.7

13 395.4 6.3 398.7 6.3

14 400.7 5.3 399.3 6.3

15 401.6 0.9 399.2 6.2

16 401.4 0.2 401.2 0.9

17 401.5 0.1 401.5 0.2

18 400.4 1.1 401.1 1.1

19 401.0 0.6 401.0 1.1

20 402.1 1.1 401.2 1.7

21 400.9 1.2 401.3 1.2

22 400.8 0.1 401.3 1.3

23 401.5 0.7 401.1 0.7

24 398.6 2.9 400.3 2.9

25 398.4 0.2 399.5 3.1

26 398.8 0.4 398.6 0.4

27 399.9 1.1 399.0 1.5

28 400.9 1.0 399.9 2.1

29 399.9 1.0 400.2 1.0

30 399.5 0.4 400.1 1.4

The second value is (399.5 + 398.8 + 397.4)/3 = 398.6. The calculation is similar to that
used for the two-batch moving range in the example of the Control Chart for Individuals. The
moving average values are plotted as in the ordinary control chart. Limits for the control chart
are established from the moving range, which is calculated in a similar manner. The range
of the present and the two immediately preceding batches is calculated for each batch. The
average of these ranges is R, the limits for the control chart are computed from Table IV.10. The
computations of the moving average and range for samples of size 3 are shown in Table 12.2,
and the data charted in Figure 12.5. The average weight was set at the targeted weight of 400
mg. The average moving range (from Table 12.2) is 2.35. The limits for the moving average chart
are determined using the average range and the factor from Table IV.10 for samples of size 3.

400 ± 1.02(2.35) = 400 ± 2.4.

All of the moving average values fall within the limits based on the average moving
range. In this analysis, the suspect batch number 13 is “smoothed” out when averaged with its
neighboring batches. The upper limit for the range chart is 2.57(2.35) = 6.04, which would be a
cause to investigate the conditions under which batch number 13 was produced (Table 12.2). For
further details of the construction and interpretation of moving average charts, see Refs. [1,3].

Another approach to the problem of between-batch variation is the difference chart. A
good standard lot is set aside as the control. Each production lot is compared to the standard lot
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Figure 12.4 Control charts for individuals from Table 12.2.

by taking samples of each. Both the control and production lots are measured and the difference
of the means is plotted. The limits are computed as

0 ± 3√
n

√
S2

c + S2
p,

where S2
c and S2

p are the estimates of the variances of the control and production lots, respectively.

0

395

396

397

398

399

400

401

402

403

5 10 15

Batch

M
ea

n 
(X

)

20 25 30

Figure 12.5 Moving average plot for tablet weight means from Table 12.2.
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12.2.4 Quality Control Charts in Research and Development
Control charts may be advantageously conceived and used during assay development and
validation, in preliminary research or formulation studies, and in routine pharmacological-
screening procedures. During the development of assay methodology and validation, for exam-
ple, by keeping records of assay results, an initial estimate of the assay standard deviation is
available. The initial estimate can then be updated as data accumulate.

The following example shows the usefulness of control charts for control measurements in
a drug-screening procedure. This test for screening potential anti-inflammatory drugs measures
improvement of inflammation (guinea pig paw volume) by test compounds compared to a
control treatment. A control chart was established to monitor the performance of the control
drug (a) to establish the mean and variability of the control, and (b) to ensure that the results
of the control for a given experiment are within reasonable limits (a validation of the assay
procedure). The average paw volume difference (paw volume before treatment–paw volume
after treatment) and the average range for a series of experiments are shown in Table 12.3. The
control chart is shown in Figure 12.6.

As in the control charts for quality control, the mean and average range of the “process”
were calculated from previous experiments. In this example, the screen had been run 20 times
previous to the data of Table 12.3. These initial data showed a mean paw volume difference of
40 and a mean range (R) of 9, which were used to construct the control charts shown in Figure
12.6. The subgroups consist of four animals each. Using Table IV.10, the action limits for the X
and range charts were calculated as follows:

X ± 0.73R = 40 ± 0.73(9) = 33.4 to 46.6 (X chart)

R(2.28) = 9(2.28) = 20.5 the upper limit for the range.

Note that the lower limit for the range of subgroups consisting of four units is zero. Six
of the 20 means are out of limits. Efforts to find a cause for the larger intertest variation failed.
The procedures were standardized and followed carefully, and the animals appeared to be
homogeneous. Because different shipments of animals were needed to proceed with these tests

Table 12.3 Average Paw Volume Difference and

Range for a Screening Procedure (Four Guinea

Pigs Per Test Group)

Test number Mean Range

1 38 4

2 43 3

3 34 3

4 48 6

5 38 24

6 45 4

7 49 5

8 32 9

9 48 5

10 34 8

11 28 12

12 41 10

13 40 22

14 34 5

15 37 4

16 43 14

17 37 6

18 45 8

19 32 7

20 42 13
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Figure 12.6 Control chart for means and range for control group in a pharmacological-screening procedure.

over time, the researchers felt that there was no way to “tighten up” the procedure. Therefore,
as in the tablet weight example discussed in the preceding section, a new control chart was
prepared based on the variability between test means. A moving average was recommended
using four successive averages. Based on historical data, X was calculated as 39.7 with an average
moving range of 12.5. The limits for the moving average graph are

39.7 ± 0.73(12.5) = 30.6 to 48.8.

The factor 0.73 is obtained from Table IV.10 for subgroup samples of size 4.

12.2.5 Control Charts for Proportions
Table 12.4 shows quality control data for the inspection of tablets where the measurement is an
attribute, a binomial variable. Three hundred tablets are inspected each hour to detect various
problems, such as specks, chips, color uniformity, logo, and so on. For this example, the defect

Table 12.4 Proportion of Chipped Tablets of 300 Inspected

During Tablet Manufacture

Time

Batch 10 a.m. 11 a.m. 12 p.m. 1 p.m.

1 0.060 0.053 0.087 0.055

2 0.073 0.047 0.060 0.047

3 0.040 0.067 0.033 0.053

4 0.033 0.040 0.030 0.027

5 0.040 0.013 0.023 0.040

6 0.025 0.000 0.027 0.013
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Figure 12.7 Control chart for proportion of tablets chipped.

under consideration is a chipped tablet. According to quality control specifications, this type
of defect is considered of minor importance and an average of 5% chipped tablets is tolerable.
This problem of chipped tablets was of recent origin, and the control chart was implemented
as an aid to the manufacturing and research and development departments, who were looking
into the cause of this defect. In fact, the 5% average had been written into the specifications as
a result of the persistent appearance of the chipped tablets in recent batches. The data in Table
12.4 represent the first six batches where this attribute was monitored.

For the control chart, 5% defects was set as the average value. The action limits can be
calculated from the standard deviation of a binomial. In this example, where 300 tablets were
inspected, N = 300, p = 0.05, and q = 0.95 [� = √

pq/N, Eq. (3.11)].

� =
√

(0.05)(0.95)
300

= 0.0126.

The limits are 0.05 ± 3� = 0.05 ± 3(0.0126) = 0.012 to 0.088. Proportions below the lower
limit indicate an improvement in the process in this example. Note that we can use the normal
approximation to the binomial when calculating the 3� limits, because both NP and Nq are
greater than 5 (see sect. 3.4.3). The control chart is shown in Figure 12.7.

The chart clearly shows a trend with time toward less chipping. The problem seems to be
lessening. Although no specific cause was found for this problem, increased awareness of the
problem among manufacturing personnel may have resulted in more care during the tableting
process.

12.2.6 Runs in Control Charts
The most important feature of the control chart is the monitoring of a process based on the
average and control limits. In addition, control charts are useful as an aid in detecting trends
that could be indicative of a lack of control. This is most easily seen as a long consecutive series
of values that are within the control limits but (a) stay above (or below) the average or (b) show a
steady increase (or decline). Statistically, such occurrences are described as “runs.” For example,
a run of 7 successive values that lie above the average constitutes a run of size 7. Such an event
is probably not random because if the observed values are from a symmetric distribution and
represent random variation about a common mean, the probability of 7 successive values being
above the mean is (1/2)7 = 1/128. In fact, the occurrence of such an event is considered to be
suggestive of a trend and the process should be carefully watched or investigated.

In general, when looking for runs in a long series of data, the problem is that significant
runs will be observed by chance when the process is under control. Nevertheless, with this
understanding, it is useful to examine data to be forewarned of the possibility of trends and
potential problems. The test for the number of runs above and below the median of a consecutive
series of data is described in section 15.7. For the consecutive values 9.54, 9.63, 9.42, 9.86, 9.40,
9.31, 9.79, 9.56, 9.2, 9.8, and 10.1, the median is 9.56. The number of runs above and below the
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median is 8. According to Table IV.14, this is not an improbable event at the 5% level. If the
consecutive values observed were 9.63, 9.86, 9.79, 9.8, 10.1, 9.56, 9.54, 9.42, 9.40, 9.31, and 9.2,
the median is till 9.56, but the number of runs is 2. This shows a significant lack of randomness
(p < 0.05). Also see Exercise Problem 12.

Duncan [2] describes a runs test that looks at the longest run occurring above or below the
median. The longest run is compared to the values in Table IV.15. If the longest run is equal to
or greater than the table value, the data are considered to be nonrandom. For the data of Table
12.1, starting with the data on the date 3/5 (ignore the data on 3/1 for this example), the median
is 300.35. The longest run is 7. There are seven consecutive values above the median starting at
11 a.m. on 3/9. For N = 20, the table value in Table IV.15 is 7, and the data are considered to be
significantly nonrandom (p < 0.05). Note that this test allows a decision of lack of control at the
5% level if a run of 7 is observed in a sequence of 20 observations.

For other examples of the application of the runs test, see Ref. [2]. Also see section 15.7
and Exercise Problem 11 in chapter 15.

In addition to the aforementioned criteria, that is, a point outside the control limits, a
significant number of runs, or a single run of sufficient length, other rules of thumb have been
suggested to detect lack of control. For example, a run of 2 or 3 outside the 2� limits but within
the 3� limits, and runs of 4 or 5 between l� and 2� limits can be considered cause for concern.

Cumulative sum control charts (cusum charts) are more sensitive to process changes.
However, the implementation, construction, and theory of cusum charts are more complex than
the usual Shewhart control chart. Ref. [4] gives a detailed explanation of the use of these control
charts.

For more examples of the use of control charts, see chapter 13.

12.3 ACCEPTANCE SAMPLING AND OPERATING CHARACTERISTIC CURVES
Finished products or raw materials (including packaging components) that appear as separate
units are inspected or analyzed before release for manufacturing purposes or commercial sale.
The sampling and analytical procedures are specified in official standards or compendia (e.g., the
USP), or in in-house quality control standards. The quality control procedure known as acceptance
sampling specifies that a number of items be selected according to a scheduled sampling plan,
and be inspected for attributes or quantitatively analyzed. The chief purpose of acceptance
sampling is to make a decision regarding the acceptability of the material. Therefore, based on
the inspection, a decision is made, such as “the material or lot is either accepted or rejected.”
Sampling plans for variables (quantitative measurements such as chemical analyses for potency)
and attributes (qualitative inspection) are presented in detail in the U.S. government documents
MIL-STD-414 and MIL-STD-105E, respectively [3,5].

A single sampling plan for attributes is one in which N items are selected at random from the
population of such items. Each item is classified as defective or not defective with respect to the
presence or absence of the attribute(s). If the sample size is small relative to the population size,
this is a binomial process, and the properties of sampling plans for attributes can be derived
using the binomial distribution. For example, consider the inspection of finished bottles of
tablets for the presence of an intact seal. This is a binomial event; the seal is either intact or
it is not intact. The sampling plan states the number of units to be inspected and the number
of defects which, if found in the sample, leads to rejection of the lot. A typical plan may call
for inspection of 100 items; if two or more are defective, reject the lot (batch). If one or less
are defective, accept the lot. (The acceptance number is equal to one.) Theoretically, “100%
inspection” will separate the good and defective items (seals in our example). In the absence of
100% inspection, there is no guarantee that the lot will have 0% (or any specified percentage)
defects. Thus, underlying any sampling plan are two kinds of risks:

1. The producer’s or manufacturer’s risk. This is the risk or probability of rejecting (not releasing)
the product, although it is really good. By “good” we mean that had we inspected every
item, the batch would meet the criteria for release or acceptance. This risk reflects an unusu-
ally high number of defects appearing in the sample taken for inspection, by chance. The
producer’s risk can be likened to the � error, that is, rejecting the batch, even though it is
good.
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Figure 12.8 Operating characteristic curve for sampling plan N: sample 500 items—accept if 10 or less defective.

2. The consumer’s risk. This is the probability that the product is considered acceptable
(released), although, in truth, it would not be acceptable were it 100% inspected. The con-
sumer’s risk can be likened to the 	 error, that is, the batch is accepted even though it has a
more than the acceptable number of defects.

There are any number of possible plans that, in addition to economic considerations,
depend on

1. the number of items sampled;
2. the producer’s risk;
3. the consumer’s risk.

MIL-STD-105E is an excellent compilation of such plans [3]. Each plan gives the number
of items to be inspected, and the number of defects in the sample needed to cause rejection
of the lot. Each plan is accompanied by an operating characteristic (OC) curve. The OC curve
shows the probability of accepting a lot based on the sampling plan specifications, given the
true proportion of defects in the lot. A typical OC curve is shown in Figure 12.8.

The OC curve is a form of power curve (see sect. 6.5). The OC curve in Figure 12.8 is
derived from a sampling plan (plan N from MIL-STD-105E) in which 500 items (bottles) are
inspected from a lot that contains 30,000 items. If 11 or more items inspected are found to
be defective, the lot is rejected. Inspection of Figure 12.8 shows that if the batch truly has 1%
defect, the probability of accepting the lot is close to 99% when plan N is implemented. This
plan is said to have an acceptable quality level (AQL) of 1%. An AQL of 1% means that the
consumer will accept most of the product manufactured by the supplier if the level of defects
is not greater than 1%, the specified AQL (i.e., 1%). In this example, with the AQL equal to
approximately 1%, about 99% of the batches will pass this plan if the percent defects is 1%
or less.

The plan actually chosen for a particular product and a particular attribute depends on
the lot size and the nature of the attribute. If the presence (or absence) of an attribute (such
as the integrity of a seal) is critical, then a stringent plan (a low AQL) should be adopted. If
a defect is considered of minor importance, inspection for the presence of a defect can make
use of a less stringent plan. MIL-STD-105E describes various plans for different lot (population)
sizes, which range from less stringent for minor defects to more stringent for critical defects.
These are known as levels of inspection, level I, II, or III. This document also includes criteria for
contingencies for switching to more or less tight plans depending on results of prior inspection.
A history of poor quality will result in a more stringent sampling plan and vice versa. If 2 of
2, 3, 4 or 5 consecutive lots are rejected, the normal plan is switched to the tightened plan.
If five consecutive lots are accepted under the tightened plan, the normal plan is reinstated.
If quality remains very good, reduced plans may be administered as described in MIL-STD-
105E. The characteristics of the plan are defined by the AQL and the OC curve. For example,
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Figure 12.9 Operating characteristic curve for plan

N: AQL = 0.025%.

for lot sizes of 10,001 to 35,000, the following are two of the possible plans recommended by
MIL-STD-105E:

Reject numbera if AQL =

Plan Sample size 0.4% 1%

K 125 2 4

N 500 6 11

aReject the lot if the number of defects (or more) are observed.

Plan N is a more “discriminating” plan than plan K. The larger sample size results in a
greater probability of rejecting lots with more than AQL percentage of defects. For plan N, if
there are 2% defects in the lot, the lot will be accepted approximately 57% of the time. For plan
K, with 2% defects in the lot, the lot will be accepted 75% of the time. (See MIL-STD-105E [3] for
OC curves. The OC curve for an AQL of 1% for plan N is shown in Fig. 12.8.)

In the present example, a defective seal is considered a critical defect and plan N will be
implemented with an AQL of 0.025%. This means that lots with 0.025% (25 defects per 100,000
bottles) are considered acceptable. According to MIL-STD-105E, if one or more defects are found
in a sample of 500 bottles, the lot is rejected.† This means that the lot is passed only if all 500
bottles are good. The OC curve for this plan is shown in Figure 12.9.

The calculations of the probabilities needed to construct the OC curve are not very difficult.
These calculations have been presented in the discussion of the binomial distribution in chapter
3. As an illustration, we will calculate the probability of rejecting a lot using plan N with an AQL
of 0.025%. As noted above, the lot will be rejected if one or more defects are observed in a sample
of 500 items. Thus, the probability of accepting a lot with 0.025% defects is the probability of
observing zero defects in a sample of 500. This probability can be calculated from Eq. (3.9)(

N
X

)
P Xq N−X =

(
500
0

)
P0q 500 = (0.00025)0(0.99975)500 = 0.88,

where 500 is the sample size, P the probability of a defect (0.00025), and q the probability of
observing a bottle with an intact seal (0.99975). Thus, using this plan, lots with 0.025% defects
will be passed 88% of the time. A lot with 0.4% (4 defects per 1000 items) will be accepted with a
probability of(

500
0

)
(0.004)0(0.996)500 = 0.13 (i.e., 13%).

† If the result of inspection calls for rejection, 100% inspection is a feasible alternative to rejection.
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Copies of sampling plans K and N from MIL-STD-105E are shown in Tables 12.5 and 12.6.
In addition to the sampling plans discussed above, MIL-STD-105E also presents multiple-

sampling plans. These plans use less inspection than single sampling plans, on the average. After
the first sampling, one of three decisions may be made:

1. Reject the lot
2. Accept the lot
3. Take another sample

In a double-sampling plan, if a second sample is necessary, the final decision of acceptance
or rejection is based on the outcome of the second sample inspection.

The theory underlying acceptance sampling for variables is considerably more complex
than that for sampling for attributes. In these schemes, actual measurements are taken, such as
assay results, dimensions of tablets, weights of tablets, measurement of containers, and so on.
Measurements are usually more time consuming and more expensive than the observation of a
binomial attribute. However, quantitative measurements are usually considerably less variable.
Thus, there is a trade-off between expense and inconvenience, and precision. Many times, there
is no choice. Official procedures may specify the type of measurement. Readers interested in
plans for variable measurements are referred to MIL-STD-414 [5] and the book, “Quality Control
and Industrial Statistics” [2] for details.

12.4 STATISTICAL PROCEDURES IN ASSAY DEVELOPMENT
Statistics can play an important role in assisting the analytical chemist in the development
of assay procedures. A subcommittee of PMA (Pharmaceutical Manufacturers Association)
statisticians developed a comprehensive scheme for documenting and verifying the equivalence
of alternative assay procedures to a standard [6]. The procedure is called the Greenbriar procedure
(named after the location where the scheme was developed). This approach includes a statistical
design that identifies sources of variation such as that due to different days and different
analysts. The design also includes a range of concentration of drug. The Greenbriar document
emphasizes the importance of a thoughtful experimental design in assay development, a design
that will yield data to answer questions raised in the study objectives. The procedure is too
detailed to present here. However, for those who are interested, it would be a good exercise to
review this document, a good learning experience in statistical application.

For those readers interested in pursuing statistical applications in assay and analytical
development, two books, Statistical Methods for Chemists by Youden [7] and The Statistical Analysis
of Experimental Data, by Mandel [8], are recommended. Both of these statisticians had long
tenures with the National Bureau of Standards.

In this book, we have presented some applications of regression analysis in analytical
methodology (see chaps. 7 and 13). Here, we will discuss the application of sample designs to
identify and quantify factors that contribute to assay variability (components of variance).

12.4.1 Components of Variance‡

During the discussion of the one-way ANOVA design (sect. 8.1), we noted that the “between-
treatment mean square” is a variance estimate that is composed of two different (and independent)
variances: (a) that due to variability among units within a treatment group, and (b) that due
to variability due to differences between treatment groups. If treatments are, indeed, identical,
the ANOVA calculations are such that observed differences between treatment means will
probably be accounted for by the within-treatment variation. In the ANOVA table, the ratio of
the between-treatment mean square to the within-treatment mean square (F = BMS/WMS) will
be approximately equal to 1 on the average when treatments are identical.

‡ A more advanced topic [16].
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Table 12.7 Design to Analyze Components of Variance for the Tablet Assay

Tablets (treatment groups)

1 2 3 4 5 6 7 8 9 10

Assay 48 49 49 55 48 54 45 47 53 50

Results 51 50 52 55 47 52 49 49 50 51

Mean 49.5 49.5 50.5 55 47.5 53 47 48 51.5 50.5

Grand average = 50.2

In certain situations (particularly when treatments are a random effect), one may be
less interested in a statistical test of treatment differences, but more interested in separately
estimating the variability due to different treatment groups and the variability within treatment
groups. We will consider an example of a quality control procedure for the assay of finished
tablets. Here, we wish to characterize the assay procedure by estimating the sources of variation
that make up the variability of the analytical results performed on different, distinct tablets. This
variability is composed of two parts: (a) that due to analytical error, and (b) that due to tablet
heterogeneity. A oneway ANOVA design such as that shown in Table 12.7 will yield data to
answer this objective. In the example shown in the table, 10 tablets are each analyzed in duplicate.
Duplicate determinations were obtained by grinding each tablet separately, and then weighing
two portions of the ground mixture for assay. The manner in which replicates (duplicates, in this
example) are obtained is important, not only in the present situation, but also in most examples
of statistical designs. Here we can readily appreciate that analytical error, the variability due
to the analytical procedure only, is represented by differences in the analytical results of the
two “identical” portions of a homogeneously ground tablet. This variability is represented by
the “within” error in the ANOVA table shown in Table 12.8. The “within”-mean square is the
pooled variance within treatment groups, where a group, in this example, is a single tablet.

The between-tablet mean square is an estimate of both assay (analytical error) and the
variability of drug content in different tablets (tablet heterogeneity) as noted above. If tablets were
identical, individual tablet assays would not be the same because of analytical error. In reality,
in addition to analytical error, the drug assay is variable due to the inherent heterogeneity of
such dosage forms. Variability between tablet assays is larger than that which can be accounted
for by analytical error alone. This is the basis for the F test in the ANOVA [(between-mean
square)/(within-mean square)]. Large differences in the drug content of different tablets result
in a large value of the between-tablet mean square. This concept is illustrated in Figure 12.10,
which shows an example of the distribution of actual drug content in a theoretical batch of
tablets. The distribution of tablet assays is more spread out than the drug content distribution,
because the variation based on the assay results of the different tablets include components due
to actual drug content variation plus assay error.

Based on the theoretical model for the one-way ANOVA, section 8.1 (random model),
it can be shown that the between-mean square is a combination of the assay error and tablet
variability as follows:

BMS = n�2
T + �2

w, (12.3)

where n is the number of replicates in the design (based on equal replication in each group,
two assays per tablet in our example), �2

T the variance due to tablet drug content heterogeneity,

Table 12.8 Analysis of Variance for the Tablet Assay Data from Table 12.7

Source d.f. SS MS

Between tablets 9 112.2 12.47

Within tablets 10 27.0 2.70

Total 19 139.2



QUALITY CONTROL 333

Figure 12.10 Distribution of actual drug content compared to distribution of analytical results of tablets (these

are theoretical, hypothetical distributions).

and �2
W is the within-treatment (assay) variance. In our example, n = 2, and the between-mean

square is an estimate of 2�2
T + �2

W. The within-tablet mean square is an estimate of �2
W, equal to

2.70 (Table 12.8). The estimate of �2
T from Eq. (12.3) is (BMS − �2

W)/n

Estimate of �2
T = between MS − 2.70

2
= 12.47 − 2.70

2
= 4.9.

In this manner we have estimated the two components of the between-treatment mean
square term

�2
W = 2.7 and �2

T = 4.9.

The purpose of the experiment above, in addition to estimating the components of vari-
ance, would often include an estimation of the overall average of drug content based on the 20
assays (Table 12.7). The average assay result is 50.2 mg. The estimates of the variance compo-
nents can be used to estimate the variance of an average assay result, consisting of m tablets
with n assay replicates per tablet. We use the fact that the variance of an average is equal to the
variance divided by N, where N is equal to mn, the total number of observations. According to
Eq. (12.3), the variance of the average result can be shown to be equal to

n�2
T + �2

W

mn
. (12.4)

The variance estimate of the average assay result (50.2) for the data in Table 12.7,
where m = 10 and n = 2, is

2(4.9) + 2.7
10(2)

= 0.62.

Note that this result is exactly equal to the between-mean square divided by 20.
According to Eq. (12.4), the variance of single assays performed on two separate tablets,

for example, is equal to (m = 2, n = 1)

4.9 + 2.7
2

= 3.8.
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Note that the variance of a single assay of a single tablet is �2
T + �2

W. Similarly, the variance
of the average of two assays performed on a single tablet (m = 1, n = 2) is (2�2

T + �2
W)/2

(see Exercise Problem 11). The former method, where two tablets were each assayed once, has
greater precision than duplicate assays on a single tablet. Given the same number of assays,
the procedure that uses more tablets will always have better precision. The “best” combination
of the number of tablets and replicate assays will depend on the particular circumstances, and
includes time and cost factors. In some situations, it may be expensive or difficult to obtain
the experimental material (e.g., obtaining patients in a clinical trial). Sometimes, the actual
observation may be easily obtained, but the procedure to prepare the material for observation
may be costly or time consuming. In the case of tablet assays, it is conceivable that the grinding
of the tablets, dissolving, filtration, and other preliminary treatment of the sample for assay
might be more expensive than the assay itself (perhaps automated). In such a case, replicate
assays on ground material may be less costly than assaying separate tablets, where each tablet
must be crushed and ground, dissolved, and filtered prior to assay. However, such situations
are exceptions. Usually, in terms of precision, it is cost effective to average results obtained from
different tablets.

The final choice of how many tablets to use and the total number of assays will probably
be a compromise depending on the precision desired and cost constraints. The same precision
can be obtained by assaying different combinations of numbers of tablets (m) with different
numbers of replicate determinations (n) on each tablet. Time-cost considerations can help make
the choice. Suppose that we have decided that a sufficient number of assays should be performed
so that the variance of the average result is equal to approximately 1.5. In our example, where
the variance estimates are S2

T = 4.9 and S2
W = 2.7, the average of five single-tablet assays would

satisfy this requirement

S2
T = 4.9 + 2.7

5
= 1.52.

As noted above, the variance of a single-tablet assay is S2
T + S2

W. An alternative scheme
resulting in a similar variance of the mean result is to assay four tablets, each in duplicate

(m = 4, n = 2).

S2
X = 2(4.9) + 2.7

8
= 1.56.

The latter alternative requires eight assays compared to five assays in the former scheme.
However, the latter method uses only four tablets compared to the five tablets in the former
procedure. The cost of a tablet would probably not be a major factor with regard to the choice of
the alternative procedures. In some cases, the cost of the item being analyzed could be of major
importance. In general, for tablet assays, in the presence of a large assay variation, if the analytical
procedure is automated and the preparation of the tablet for assay is complex and costly, the
procedure that uses less tablets with more replicate assays per tablet could be the best choice.

12.4.1.1 Nested Designs
Designs for the estimation of variance components often fall into a class called nested or com-
pletely hierarchical designs. The example presented above can be extended if we were also
interested in ascertaining the variance due to differences in average drug content between dif-
ferent batches of tablets. We are now concerned with estimating (a) between-batch variability, (b)
between-tablet (within batches) variability, and (c) assay variability. Between-batch variability
exists because, despite the fact that the target potency is the same for all batches, the actual
mean potency varies due to changing conditions during the manufacture of different batches.
This concept has been discussed under the topic of control charts.

A design used to estimate the variance components, including batch variation, is shown
in Table 12.9 and Figure 12.11. In this example, four batches are included in the experiment, with
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Table 12.9 Nested Design for Determination of Variance Components

Batch A B C D

Tablet 1 2 3 1 2 3 1 2 3 1 2 3

50.6 49.1 51.1 50.1 51.0 50.2 51.4 52.1 51.1 49.0 47.2 48.9

50.5 48.9 51.1 49.0 50.9 50.0 51.7 52.0 51.9 49.0 47.6 48.5

50.8 48.5 51.4 49.4 51.6 49.8 51.8 51.4 51.6 48.5 47.6 49.2

ANOVA

Source d.f. SS MS Expected MSa

Between batches 3 48.6875 16.229 �2
W + 3�2

T + 9�2
B

Between tablets (within

batches)

8 17.52 2.190 �2
W + 3�2

T

Between assays (within

tablets)

24 2.50 0.104 �2
W

aCoefficient for �2
T = replicate assays; coefficient for �2

B = replicate assays times the number of tablets per batch.

three tablets selected from each batch (tablets nested in batches), and three replicate assays of
each tablet (replicate assays nested in tablets). This design allows the estimate of variability due
to batch differences, tablet differences, and analytical error. The calculations for the ANOVA
will not be detailed (see Ref. [9]) but the arithmetic is straightforward and is analogous to the
analysis in the previous example.

The mean squares (MS) calculated from the ANOVA estimate the true variances indicated in
the column “expected MS.” The coefficients of the variances from the expected mean squares
and the estimates of the three “sources” of variation can be used to estimate the components of
variance. The variance components, �2

B , �2
T , and �2

W may be estimated as follows from the mean
square and expected mean square columns in Table 12.9.

S2
W = 0.104

S2
W + 3S2

T = 2.190 S2
T = 0.695

S2
W + 3S2

T + 9S2
B = 16.229 S2

B = 1.56

An estimate of the variance of single-tablet assays randomly performed within a single
batch is S2

W + S2
T = 0.799. If tablets are randomly selected from different batches, the variance

estimate of single-tablet assays is S2
W + S2

T + S2
B = 2.36.

Nested designs should be symmetrical to be easily analyzed and interpreted. The symme-
try is reflected by the equal number of tablets from each batch, and the equal number of replicates
per tablet. Missing or lost data result in difficulties in estimating the variance components [10].

Figure 12.11 A nested or completely hierarchical design to estimate variance components (three of four batches

are shown).
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12.5 ESTABLISHING IN-HOUSE LIMITS
An important consideration in establishing standards is to evaluate limits for release of products.
The two important kinds of release limits are “official” limits, such as stated in the USP or in
regulatory submissions, and “in-house” limits that are narrower than the “official” limits. The
purpose of in-house limits is to obtain a greater degree of assurance that the true attributes
of the product are within official limits when the product is released. Thus, in-house limits
decrease the consumer risk. If a product shows measurable decomposition during its shelf life,
the in-house release specifications must be more narrow than the official limits to compensate
for the product instability.

In the absence of instability, in-house limits should be sufficiently within the official limits
to ensure the integrity of the product considering the variability of the measurement (assay). For
the case of a homogeneous sample (e.g., solutions or a composite sample of a solid dosage form),
the variability of the assay may be accounted for by analytical error. An important consideration
is to use a proper estimate of the analytical variability. A distinction should be made between
within-day variability and between-day variability. For this application, the variability of the
analytical method should be estimated as between-day variability. The reason for this is that
the variability of an assay on any given day will be dependent on assay conditions on that day,
and is apt to be larger than the within-day variability (differences among replicate assays on the
same day). For solid dosage forms, the variability of the final assay is a combination of analytical
error and tablet heterogeneity (that is, in the absence of analytical error, two separate samples
will differ in drug content due to the fact that perfect mixing is not possible in a powder mix).
In this case, the estimate of assay variability should not ignore these components of variance.
(See discussion of components of variance.)

The examples below show the calculation for a lower limit for in-house release specifica-
tions, but the same reasoning will apply for an upper in-house release specification.

LRL = Lower official limit + t × S
LRL = Lower release specification (12.5)

For a 95% one-sided confidence interval, t is determined from a t table with d.f. based
on the estimate of the assay standard deviation, S. The standard deviation is obtained from
between-day replicates during assay development or from a standard product assayed on
different days. For tablets, the proper standard deviation should include tablet heterogeneity,
that is, replicate assays on different composites. A standard deviation estimated from replicates
done on the same day (sometimes estimated from control charts) is not the correct standard
deviation.

If, according to SOPs, the assay for release is done in duplicate, one might be tempted to
divide the last term in Eq. (12.5) by

√
2. This is not strictly correct because the duplicates refer to

within-day variability. If the duplicates were done on two separate days (an unlikely procedure)
and on separate composites, then the division by

√
2 would be more correct. If replicates are

used for the final assay, one could estimate the correct error if an estimate of the within- and
between-day components of variance (based on assay of different composites) is available.

S2
total = S2

between + S2
within

n
,

where n = number of replicates (separate sets of composites). In this case, the number of d.f. can
be estimated using Saterthwaite’s (see below) approximation. An alternative way of estimating
the s.d., if product heterogeneity is not a factor, is to perform replicate determinations on a
standard product over time and compute the s.d. of the average results. Some examples should
clarify the procedure.

Example 1. Single assays on a portion of a cough syrup are performed as one of the tests for the
release of the product. The assay has a s.d. of 2.1 based on the results of the assay performed on
a single stable batch on 15 different occasions (days). From Table IV.4, the value of t with 14 d.f.
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for a one-sided 95% confidence interval is 1.76. If the official limits are 90% to 110%, in-house
limits of

90% + 1.76 × 2.1 = 93.7
110% − 1.76 × 2.1 = 106.3

mean that if the assay falls within 93.7% and 106.3%, the probability that the true batch mean is
out of official specifications (90%–110%) is less than 5%.

Example 2. Single assays on a composite of 20 tablets are performed as one of the tests for the
release of a product. During development of the product and the assay, an experimental batch
of tablets was assayed on 20 different days (a different composite each day). This assay was
identical to the composite assay, a 20 tablet composite. The drug in the dosage form is very
stable. The s.d. (19 d.f.) is 2.1. From Table IV.4, the value of t with 19 d.f. for a one-sided 95%
confidence interval is 1.73. If the official limits are 90% to 110%, the in-house limits are

90% + 1.73 × 2.1 and 110% − 1.73 × 2.1
93.63% to 106.37%.

Example 3. Consider the situation in Example 2 where the assay is performed in duplicate and
the average result is reported as a basis for releasing the batch. The duplicate determination is
performed on two portions of the same 20 tablet composite on the same day. The variability of
the result is a combination of tablet content heterogeneity, and within- and between-day assay
variability. Since the same composite is assayed twice, the variance is

[S2
tablet heterogeneity]

20
+ S2

(assay) between +
[S2

(assay) within]

2
. (12.6)

If one considers the first term to be small relative to the last two terms, the s.d. can be
computed with estimates of the within- and between-day variance components. These estimates
could be obtained from historical data, including data garnered during the assay development.
The important point to remember is that the computation is not straightforward because of the
need to estimate variance components and the d.f. based on these estimates. Assuming that the
between-day variance component of the assay is 0, we could calculate the limits as follows.

Assume that the first two terms in Eq. (12.6) are small and that the assay variability has
been estimated based on 15 assays with s.d. = 2.1. The average of duplicate assays on the same
composite would have in-house limits of

90% + 1.76 × 2.1/
√

2 and 110% − 1.76 × 2.1
√

2
92.6 to 107.4%.

If the tablet variability, [S2
tablet heterogeneity]/20, is large compared to assay variability (prob-

ably a rare occurrence), performing duplicate assays on the same composite will not yield
much useful information. In this case, to get more precision, one can assay separate 20 tablet
composites (see Exercise Problem 13 at the end of this chapter).

Allen et al. [4] discuss the setting of in-house limits when a product is susceptible to
degradation. This situation is complicated by the fact that the in-house limits must now take
into consideration an estimate of the rate of degradation with its variability, as well as the
variability due to the assay. Obviously, the in-house release limits should be within the official
limits. In particular, for the typical case where the slope of the degradation plot is negative, we
are concerned with the lower limit. If the official lower limit is 90%, the in-house release limit
should be greater than 90% by an amount equal to the estimated amount of drug degraded
during the shelf life plus another increment due to assay variability. The following notation
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is somewhat different from Allen et al., but the equations are otherwise identical. The lower
release limit (LRL) can be calculated as shown in Eq. (12.7).

LRL = OL − DEGRAD + t ×
(

S2
d + S2

a

n

)1/2

(12.7)

where OL is the official lower limit; DEGRAD the predicted amount of degradation during
shelf life = average slope of stability regression lines × shelf life; S2

d the variance of total
degradation = shelf life2 × S2

slope.

Note: Variance of slope = S2
y.x/

∑
(X − X)2

Var (k × variable) = k2 × S2 (variable) where k is a constant
S2

a = variance of assay
Note: S2

a is added because the assay performed at release is variable.

Another problem in computing the LRL is computation of d.f. for the one-sided 95%
t distribution. The problem results from the fact that d.f. are associated with two variance
estimates. When combining independent variance estimates, Satterthwaite approximation can
be used to estimate the d.f. associated with the combined variance estimate [Eq. (12.8)].

For the linear combination, L, where

L = a1S2
1 + a2S2

2 + . . .

the d.f. for L are approximately

d.f. = (a1S2
1 + a2S2

2 + . . .)2

(a1S2
1 )2/v1 + (a2S2

2 )2/v2 + . . .
(12.8)

where vi is d.f. for variance i.
The following example (from Allen) illustrates the calculation for the release limits.

OL = 90%
Average slope = −0.20%/month
shelf life = 24 months
DEGRAD = −0.20 × 24 = −4.8%
Sa = 1.1%
Standard error of the slope = 0.03%
Sd = 0.03 × 24 = 0.72%
d.f. = 58
t = 1.67
n = 2 (duplicate assays)

If more than one lot is used for the computation, the lots should not be pooled without
a preliminary test. Otherwise, an average slope may be used. In the case of multiple lots,
the computations are not as straightforward as illustrated, and statistical assistance may be
necessary.

Note the precautions on the variance of duplicate assays as discussed above.

LRL = 90 + 4.8 + 1.67 ×
(

0.722 + 1.12

2

)1/2

= 96.6%.

The lower release specification is set at 96.6%.
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12.6 SOME STATISTICAL ASPECTS OF QUALITY AND THE “BARR DECISION”
The science of quality control is largely based on statistical principles, in part because we take
small samples and make inferences about the large population (e.g., a batch). Following is a
discussion of a few topics that illustrate some statistical ways of looking at data.

What is a good sample size? The FDA often seeks information on the rationale for sample
sizes in SOPs. Are we taking enough samples? How many samples should we use for analysis?
Actually, this is not an easy question to answer in many cases and that is why the question is
asked so often. To answer this question from a statistical point of view, one has to answer a
few questions, not all of them easy (chap. 6). For example, we need an estimate of the s.d. and
definitions of alpha and beta levels for a given meaningful difference, if the data suggest some
comparison.

Often the sample size is fixed based on other considerations such as official specifications.
Cost is a major consideration. As an example, consider the composite assay for tablets as one
of the QC release criteria. Twenty tablets are assayed to represent a million or more tablets in
many cases.

Is this sample large enough? The sample size needed to make such an estimate depends
on the precision (s.d.) of the data and the desired precision of the estimate in which we are
interested, the mean of the 20 tablets in this case. For the composite assay test, we are required
to assay at least 20 tablets. Suppose that tablet variability (RSD) as determined from CU tests is
about 3% and the analytical error (RSD) is 1%. Based on this information, we can estimate the
variability of the composite assay. The content uniformity variation is due to tablet heterogeneity,
which includes weight variation and potency variation, in addition to analytical error.

S2
content uniformity = S2

weight + S2
potency + S2

analytical.

The tablet heterogeneity variance is the content uniformity variance minus the analytical
variance.

S2
potency + S2

weight = S2
content uniformity − S2

analytical = (3)2 − (1)2 = 8.

We could even estimate the potency variation separately from weight variation if an
estimate of weight variation is available (from QC tests for example).

The variability of the average of 20 tablets (without analytical error) is

S2
composite = 8

20
= 0.4.

If we assay a mixture of 20 tablets, the variance including analytical error is

S2 = 0.4 + 1 = 1.4
S = 1.18.

Do you think that the average of a randomly selected sample of 20 tablets gives an accurate
representation of the batch? We might answer this question by looking at a confidence interval
for the average content based on these data. Assume that the analytical error is well established
and, for this calculation, 9 d.f. (based on CU data) are reasonable for the t value needed for the
calculation of the confidence interval. If the observed composite assay is 99.3%, a 95% confidence
interval for the true average is

99.3% ± 2.262 × 1.18 = 96.6 to 102.0.

If this is not satisfactory (too wide), we could reduce the interval width by performing
replicate assays of the composite or, perhaps, by using more tablets in the composite. For
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example, duplicate assays from a single composite may be calculated as follows:

S2 = 0.4 + 1
2

= 0.9

S = 0.95.

Note that the assay variance is reduced by half, but the variance due to tablet heterogeneity
is not changed because we are using the same composite. The confidence interval for the
duplicates is

99.3 ± 2.262 × 0.95 = 97.2% to 101.4%.

Using more than 20 tablets would decrease the CI slightly. If we used 40 tablets with a
single assay, the variance would be

S2 = 8
40

+ 1 = 1.2

and the CI would be 96.8 to 101.8.
When combining independent variance estimates, Satterthwaite approximation can be

used to estimate the d.f. associated with the combined variance estimate. The formula [Eq.
(12.8)] is presented in section 12.5

d.f. = (a1S2
1 + a2S2

2 + . . .)2

(a1S2
1 )2/v1 + (a2S2

2 )2/v2 + . . .
, (12.8)

where vi is d.f. for variance i.
For example, suppose the estimates of variance have the d.f. as follows:

S2
analytical = 2 with 15 d.f.

S2
weight = 9 with 9 d.f.

S2
potency = 1 with 6 d.f.

The d.f. for an estimate of content uniformity are based on the following linear combination:

1 × S2
analytical + 1 × S2

weight + 1 × S2
potency.

From Eq. (12.8),

d.f. = (9 + 2 + 1)2

(4/15 + 81/9 + 1/6)
= 15.3.

Estimating the d.f. using this approximation is less good for the differences of variances
as compared to the sum of variances.

Example. Limits based on analytical variation are to be set for release of a product. The
lower limit is 90%. In-house limits are to be sufficiently above 90% so the probability of an assay
being below 90% is less than 0.05. Calculate the release limits where a single assay is done on
a composite of 20 tablets. The assay RSD is 3% based on 25 d.f. Tablet heterogeneity (RSD) is
estimated as 1% based on 9 d.f.



QUALITY CONTROL 341

The estimated variance of the composite assay is (a1 = 1/20, s2
1 = 1, a2 = 1, S2

2 = 3)

1
20

+ 32 = 9.05%

d.f. ≈ (32 + 12/20)2/[32 × (1/25) + (1/20)2 × (1/9)] = 25.3

Assuming 26 d.f., t = 1.71
The lower limit is 90 + 1.71 × √

9.05 = 95.1.

Therefore, the lower in-house limit is 95.1%.
Blend Samples. What are some properties of three dose weight samples for blend testing?

This has been interpreted in different ways, such as (a) take three sample weights and assay
the whole sample. (b) Take three sample weights and assay a single dose weight without
mixing the sample. (Tread lightly when transferring the sample to the laboratory.) (c) Take three
sample weights, mix thoroughly and assay a single sample. Based on the Barr decision [11],
the latter (c) appears to be preferable. Some firms have been requested to sample the blend
(3 dose weights) and to impose limits of 90% to 110% for each sample. One might ask if this
standard is too restrictive, too liberal, or just right? To help evaluate this procedure, consider the
case of a firm that assays three samples, each of single dosage weights. How might the above
criterion for acceptance compare to that for 10 dosage units in which all must be between 85%
and 115%?

Some approximate calculations to see if the 90% to 110% limits are fair for the blend
samples can shed some light on the nature of the specifications. Suppose that the assay is right
on, at 100%. Suppose, also, that 99.9% of the tablets in the batch are between the 85% to 115%
CU limits. The probability of 10 of 10 tablets passing if each has a probability of 0.999 of passing
is (binomial theorem)

0.99910 = 0.99.

If the tablets are distributed normally, the s.d. is about 4.6. This is based on the fact that a
normal distribution with a mean of 100 and a s.d. of 4.6 will have 99.9% of the values between 85
and 115. This same distribution will have 97% of the tablets between 90 and 110. The probability
of 3 of three units being between 90 and 110 is

0.973 = 0.91,

which is less than the probability of passing for the final tablet content uniformity test.
The FDA has recommended that the limits for the blend samples be 90% to 110%. Since

the probability of passing the final tablet CU test is 0.99 under these circumstances, the chances
of failing the blend uniformity test may not seem fair, unless you believe that the blend should
be considerably more uniform than the final tablets.

What limits would be fair to make this acceptance criterion (3/3 must pass) equivalent to
the USP test given the above estimates. Let the probability of passing the blend test = 0.99 to
make the test equivalent to that for the finished tablets.

P3 = 0.99,

where p is the probability of a single blend sample passing.

p = 0.9967

That is, to make the probability of passing (3/3) the same as the final CU test, we would
assume that 99.67% of the samples should be within limits. Assuming a normal distribution
with a RSD of 4.6%, this corresponds to acceptance limits of about 87.5 to 112.5. This would
seem fair. However, what are the consequences if the 3-dosage unit weight is composited? In
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this case, we are assaying the average of 3 tablet weights. These assays should be less variable
with a s.d. less than 4.6, the s.d. of single unit weights. Although the variability of the average
of 3 dosage weights will be smaller than a single dosage weight, the exact s.d. cannot be defined
because the nature of tablet heterogeneity cannot be defined. For the sake of this example, let
us assume that the s.d. is 2.66 (4.6/

√
3). Would 90% to 110% be fair limits for each of three

blend samples, each consisting of 3 dosage weights? We can compute the probability of a single
sample (3 tablet weights) passing using normal distribution theory.

Z = 10/2.66 = 3.76

probability (90 < assay < 110) = 0.99983.
The probability of three samples passing is

0.999833 = 0.999.

Although this test would be easier to pass than the final tablet content uniformity test, it is
based on an assumption of the value of the s.d. for the three unit weight samples, an unknown!

12.7 IMPORTANT QC TESTS FOR FINISHED SOLID DOSAGE FORMS
(TABLETS AND CAPSULES)

Important finished solid dosage form tests include

1. content uniformity;
2. assay;
3. dissolution.

In this section, a description of these tests is presented. Included also is the f 2 test for
comparing dissolution profiles of two different products with the same active ingredient (as is
often done when comparing the dissolution of generic and brand products).

12.7.1 Content Uniformity
The content uniformity is a test to assess and control the variability of solid dosage forms.
Although the sampling of the batch for these tests is not specified, good statistical practice
recommends some kind of random or representative sampling [12]. This test consists of two
stages. For tablets, 30 units are set aside to be tested. In the first stage, individually assay 10
tablets. If all tablets assay between 85% and 115% of label claim and the RSD is less than or
equal to 6, the test passes. If the test does not pass, and no tablet is outside 75% or 125%, assay
the remaining individual 20 tablets (Stage 2). The test passes if, of the 30 tablets, not more than
one tablet is outside 85% to 115% of label claim, no tablet is outside 75% to 125%, and the RSD
is less than or equal to 7.8%.

For capsules, the first stage is the same as for tablets, except that one capsule may lie
outside of 85% to 115%, but none outside 75% to 125%. The second stage assays 20 more
capsules and of the total of 30 capsules, no more than three capsules can be outside 85% to
115%, none outside 75% to 125% and the RSD not more than 7.8%.

12.7.2 Assay
The potency of the final product is based on the average of (at least) 20 dosage units. Twenty
random or representative units are ground into a “homogeneous” mix using a suitable method.
A sample(s) of this mix is assayed. This assay must be within the limits specified in the USP
or a specified regulatory document. Typically, but not always, the assay must be within 90% to
110% of label claim.

12.7.3 Dissolution
The FDA guidance for “Dissolution Testing of Immediate Release Oral Dosage Forms” suc-
cinctly describes methods for testing and evaluating dissolution data [13]. Dissolution testing
evaluates the dissolution behavior of the drug from a dosage form as a function of time. Thus,
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Table 12.10 USP Dissolution Test Acceptance Criteria

Stage Number tested Criteria

Stage 1 (S1) 6 Each unit not less than Q + 5%

Stage 2 (S2) 6 Average of 12 units (S1 + S2) equal to or greater than

and no unit less than Q − 15%

Stage 3 (S3) 12 Average of 24 units (S1 + S2 + S3) equal to or greater

than Q; and not more than 2 units are less than Q −
15%, and no unit is less than Q − 25%

Q is the dissolution specification in percent dissolved.

the typical dissolution-vs.-time curve shows the cumulative dissolution of drug over time.
Provided a sufficient quantity of solvent is available, 100% of the drug should be dissolved,
given enough time. The procedure for dissolution testing is described in the USP. Briefly, the
procedure requires that individual units of the product (for solid dosage forms) be placed in a
dissolution apparatus that typically accommodates six separate units. The volume and nature
of the dissolution medium is specified (e.g., 900 mL of 0.1 N HCl), and the containers, rotating
basket or paddle (USP), are then agitated at a prescribed rate in a water bath at 37◦C. Portions
of the solution are removed at specified times and analyzed for dissolved drug. Usually, dis-
solution specifications for immediate-release drugs are determined as a single point in time.
Table 12.10 shows the USP Dissolution Test Acceptance Criteria [14], which may be superseded
by specifications in individual drug monographs. For controlled-release products and during
development, dissolution at multiple time points, resulting in a dissolution profile (Fig. 12.12) is
necessary.

The principal purposes of dissolution testing are threefold: (1) for quality control, dis-
solution testing is one of several tests to ensure the uniformity of product from batch to
batch. (2) Dissolution is used to help predict bioavailability for formulation development. For
the latter purpose, it is well known that dissolution characteristics may predict the rate and
extent of absorption of drugs in some cases, particularly if dissolution is the rate-determining
step for drug absorption. Thus, although not always reliable, dissolution is probably the
best predictor of bioavailability presently available. (3) Finally, dissolution may be used as
a measure of change when formulation or manufacturing changes are made to an existing
formulation.

Figure 12.12 Dissolution profile comparing test to reference products.
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Table 12.11 Comparison of Test and Reference Dissolution Profiles

% Dissolution

Time (min) Test Reference Difference (Ri – Ti )

5 15 21 6

15 38 43 5

30 61 70 9

45 82 86 4

60 94 99 5

The so-called f 2 method can be used to compare two dissolution profiles. The formula for
the computation of f 2 is as follows:

f2 = 50 log

{[
1 +

(
1
N

)∑
(Ri − Ti )2

]−0.5

× 100

}
,

where N is the number of time points; Ri and Ti are the dissolution of reference and test products
at time i.

Consider the following example (Table 12.11 and Fig. 12.12).

f2 = 50 log

{[
1 + 1

N

∑
(Ri − Ti )2

]−0.5

× 100

}

= 50 log

{[
1 + 1

5
× (36 + 25 + 81 + 16 + 25)

]−0.5

× 100

}

= 50 log

{[
1 + 1

5
× 183

]−0.5

× 100

}
= 60.6

f 2 must be greater than 50 to show similarity.
f 2 should not be absolute. There are situations where the use of this test does not give

results that give reasonable conclusions. For example, with rapidly dissolving drugs, large
differences at early time points could result in an f 2 value less than 50 when the dissolution
profiles seem to be similar. Also, the method should be used and interpreted with care when
few data points are available.

Consider another example (Table 12.12 and Fig. 12.13).

f2 = 50 log

{[
1 +

(
1
4

)
(576 + 36 + 9 + 1)

]−0.5

× 100

}
= 45.

These products differ only at the very early, and probably variable, time point. Yet, they
are not considered similar using this test. As noted, an interpretation of these kinds of data
should be made with caution.

Table 12.12 A Second Comparison of Test and

Reference Dissolution Profiles

% Dissolution

Time (min) Test Reference

5 51 75

10 89 95

15 93 96

30 97 98
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Figure 12.13 Dissolution profile comparing test to refer-

ence products for fast dissolving products.

12.8 OUT OF SPECIFICATION (OOS) RESULTS
A discussion of OOS results (failing assay) is presented in Appendices V and VI. These articles
were prompted by the Barr decision and FDA’s interpretation of Judge Wolin’s decision [11].
Since these articles were published, the FDA has published a guidance for “Investigating Out
of Specification (OOS) Test Results for Pharmaceutical Production,” which addresses these
problems and more clearly defines procedures to be followed if an OOS result is observed [15].

The following is a synopsis of the document and comments on topics relevant to this book.
All OOS results should be investigated, whether or not the batch is rejected. It is important to find
causes that would help maintain the integrity of the product in future batches. The laboratory
data should first be inspected for accuracy before any test solutions are discarded. If no errors
are apparent, a “complete failure investigation should follow.” If an obvious error occurs, the
analysis should be aborted, and immediately documented. The thrust of the investigation is to
distinguish between a laboratory error and problems with the manufacture of the product. Of
course, the optimal procedure would be to have the opportunity to retest the suspect sample if it
is still available. In any event, if a laboratory error is verified, the OOS result will be invalidated.

In the laboratory phase of the investigation, various testing procedures are defined. Retest-
ing is a first option if there is not an obvious laboratory error. This is a test of the same sample
that yielded the OOS result. For example, for a solution, an aliquot of that same solution may be
tested. For a powdered composite, a new weighing from the same composite may be tested. The
analysis should be performed by a person other than the one who obtained the OOS result. This
retesting could confirm a mishandling of the sample or an instrumental error, for example. The
SOPs should define how many assays are necessary to confirm a retesting result. The number
of retests should be based on sound scientific and statistical procedures. (See Appendix for
an example of a basis for retesting.) However, an OOS result that cannot be documented as a
laboratory error, in itself, may not be sufficient to reject the batch. All analytical and other QC
results should “be reported and considered in batch release decisions.”

Resampling is sampling not from the original sample, but from another portion of the
batch. This may be necessary when the original sample is not available or was not prepared
properly, for example. These results may further indicate manufacturing problems, or may help
verify the OOS result as an anomoly.

The document also discusses averaging (see also App. VII). Averaging is useful when
measuring several values from a homogeneous mixture. If the individual results are meant to
measure variability, it is clear that averaging without showing individual values is not tolerable.
In any event when reporting averages, the individual values should be documented. All of
these procedures should be clearly spelled out in the appropriate SOPs. It is of interest that the
document discusses the case where three assays yield values of 89, 89, and 92, with a lower limit
of 90. Clearly, this should raise some questions, although the FDA document states that this by
itself does not necessarily mean that the batch will be failed.

Finally, the FDA does allow the use of outlier tests as long as the procedure is clearly
documented in the SOPs. As a final comment, common sense and good scientific judgment are
required to make sensible decisions in this controversial area.
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KEY TERMS
Acceptance sampling Consumer’s risk
Action limits Control chart
AQL Control chart for differences
Batch variation Control chart for individuals
Between- and within-batch variation Expected mean square
Chance variation f 2
Components of variance Moving average chart
Nested designs Runs
Operating characteristic (OC) Sampling for attributes
OOS (out of specification) Sampling for variables
Power curve Sampling plan
Producer’s (manufacturer’s) risk Statistical control
Proportion (p) charts Upper and lower limits
Range chart Warning limits
Rational subgroups X charts
Release limits 100% inspection
Resampling

EXERCISES
1. Duplicate assays are performed on a finished product as part of the quality control pro-

cedure. The average of assays over many batches is 9.95 and the average range of the
duplicates is 0.10 mg. Calculate upper and lower limits for the X chart and the range chart.

2. Past experience has shown the percentage of defective tablets to be 2%. What are the lower
and upper 3� limits for samples of size 1000?

3. A raw material assay shows an average percentage of 47.6% active with an average range
of 1.2 based on triplicate assay. Construct a control chart for the mean and range.

4. What is the probability of rejecting a batch of product that truly has 1.0% rejects (defects)
if the sampling plan calls for sampling 100 items and rejecting the batch if two or more
defects are found?

5. The initial data for the assay of tablets in production runs are as follows (10 tablets per
batch):

Batch Mean Range

1 10.0 0.3

2 9.8 0.4

3 10.2 0.4

4 10.0 0.2

5 10.1 0.5

6 9.8 0.4

7 9.9 0.2

8 9.9 0.5

9 10.3 0.3

10 10.2 0.6

Construct an X and range chart based on this “initial” data. Comment on observations out
of limits.

6. A sampling plan for testing sterility of a batch of 100,000 ampuls is as follows. Test 100
ampuls selected at random. If there are no rejects, pass the batch. If there are one or more
rejects, reject the batch. If 50 of the 100,000 ampuls are not sterile, what is the probability
that the batch will pass?
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7. A new method was tried by four analysts in triplicate.§

1 2 3 4

115 105 131 129

120 130 152 121

112 106 141 130

Perform an analysis of variance (one-way). Estimate the components of variance (between-
analyst and within-analyst variance). What is the variance of the mean assay result if three
analysts each perform four assays (a total of 12 assays)? What is the variance if four analysts
each perform duplicate assays (a total of eight assays)? If the first analysis by an analyst
costs $5 and each subsequent assay by that analyst costs $1, which of the two alternatives
is more economical?

8. Construct an X chart for the data of Table 12.2, using the moving average procedure. Use
the moving average to obtain X and R for the graph, from the first 15 batches. Plot results
for first 15 batches only.

9. Duplicate assays were run for quality control purposes for production batches. The first 10
days of production resulted in the following data: (a) 10.1, 9.8; (2) 9.6, 10.0; (3) 10.0, 10.1; (4)
10.3, 10.3; (5) 10.2, 10.8; (6) 9.3, 9.9; (7) 10.1, 10.1; (8) 10.4, 10.6; (9) 10.9, 11.0; (10) 10.3, 10.4.
(a) Calculate the mean, average range, and average standard deviation.
(b) Construct a control chart for the mean and range and plot the data on the chart.

10. What are the lower and upper limits for the range for the example of the moving average
discussed at the end of section 12.2.3?

11. What is the variance of the average of duplicate assays performed on the same tablet where
the between-tablet variance is 4.9 and the within tablet variance is 2.7? Compare this to the
variance of the average of singles assays performed on two different tablets.

12. How did 8 runs arise from the data in the example discussed in section 12.2.5?

13. For an assay that is being used to determine in-house limits, the within- and between-day
variances are estimated as 0.3% and 0.5%, respectively. Tablet heterogeneity is 4%. The
assay is performed in duplicate on the same day from the same composite.
(a) Compute the in-house limits if the official specifications are 90% and 110% and there

are 25 d.f. for the assay.
(b) Compute in-house limits if single assays are performed on two different composites on

the same day.
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