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The Highest Roller Coasters Are Fastest
Some roller coasters are designed to twist riders and turn them upside down. Oth-
ers are designed to provide fast rides over large drops. Among the 12 tallest roller
coasters in the world, the maximum height (inches) is related to top speed (miles
per hour). Each data point, consisting of the pair of values (height, speed), repre-
sents one roller coaster. The fitted line predicts an increase in top speed of .19 miles
per hour for each foot of height, or 19 miles per hour for each 100 feet in height.

This relation can be used to predict the top speed of the next 410 foot
roller coaster.
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1. INTRODUCTION

Except for the brief treatment in Sections 5 to 8 of Chapter 3, we have
discussed statistical inferences based on the sample measurements of a single
variable. In many investigations, two or more variables are observed for each
experimental unit in order to determine:

1. Whether the variables are related.

2. How strong the relationships appear to be.

3. Whether one variable of primary interest can be predicted from obser-
vations on the others.

Regression analysis concerns the study of relationships between quantita-
tive variables with the object of identifying, estimating, and validating the rela-
tionship. The estimated relationship can then be used to predict one variable
from the value of the other variable(s). In this chapter, we introduce the subject
with specific reference to the straight-line model. Chapter 3 treated the subject
of fitting a line from a descriptive statistics viewpoint. Here, we take the addi-
tional step of including the omnipresent random variation as an error term in
the model. Then, on the basis of the model, we can test whether one variable
actually influences the other. Further, we produce confidence interval answers
when using the estimated straight line for prediction. The correlation coefficient
is shown to measure the strength of the linear relationship.

One may be curious about why the study of relationships of variables has
been given the rather unusual name “regression.” Historically, the word regression
was first used in its present technical context by a British scientist, Sir Francis Gal-
ton, who analyzed the heights of sons and the average heights of their parents.
From his observations, Galton concluded that sons of very tall (short) parents
were generally taller (shorter) than the average but not as tall (short) as their
parents. This result was published in 1885 under the title “Regression Toward
Mediocrity in Hereditary Stature.” In this context, “regression toward mediocrity”
meant that the sons’ heights tended to revert toward the average rather than
progress to more extremes. However, in the course of time, the word regression
became synonymous with the statistical study of relation among variables.

Studies of relation among variables abound in virtually all disciplines of sci-
ence and the humanities. We outline just a few illustrative situations in order to
bring the object of regression analysis into sharp focus. The examples progress
from a case where beforehand there is an underlying straight-line model that is
masked by random disturbances to a case where the data may or may not reveal
some relationship along a line or curve.

Example 1 A Straight Line Model Masked by Random Disturbances
A factory manufactures items in batches and the production manager wishes
to relate the production cost y of a batch to the batch size x. Certain costs
are practically constant, regardless of the batch size x. Building costs and
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administrative and supervisory salaries are some examples. Let us denote the
fixed costs collectively by F. Certain other costs may be directly proportional
to the number of units produced. For example, both the raw materials and
labor required to produce the product are included in this category. Let C
denote the cost of producing one item. In the absence of any other factors,
we can then expect to have the relation

In reality, other factors also affect the production cost, often in unpredictable
ways. Machines occasionally break down and result in lost time and added
expenses for repair. Variation of the quality of the raw materials may also cause
occasional slowdown of the production process. Thus, an ideal relation can be
masked by random disturbances. Consequently, the relationship between y and
x must be investigated by a statistical analysis of the cost and batch-size data.

Example 2 Expect an Increasing Relation But Not Necessarily a Straight Line
Suppose that the yield y of tomato plants in an agricultural experiment is to
be studied in relation to the dosage x of a certain fertilizer, while other con-
tributing factors such as irrigation and soil dressing are to remain as constant
as possible. The experiment consists of applying different dosages of the fer-
tilizer, over the range of interest, in different plots and then recording the
tomato yield from these plots. Different dosages of the fertilizer will typically
produce different yields, but the relationship is not expected to follow a pre-
cise mathematical formula. Aside from unpredictable chance variations, the
underlying form of the relation is not known.

y � F � Cx
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Fine but you are an exception. Statistics1, based on extensive data,
confirm that earnings typically increase with each additional step 
in education Vahan Shirvanian, www.CartoonStock.com

1 Median weekly earnings in 2008, Bureau of Labor Statistics, Current Population Survey.

c11.qxd  10/15/09  11:16 AM  Page 442

http://www.CartoonStock.com


Example 3 A Scatter Diagram May Reveal an Empirical Relation
The aptitude of a newly trained operator for performing a skilled job depends
on both the duration of the training period and the nature of the training
program. To evaluate the effectiveness of the training program, we must
conduct an experimental study of the relation between growth in skill or
learning y and duration x of the training. It is too much to expect a precise
mathematical relation simply because no two human beings are exactly alike.
However, an analysis of the data of the two variables could help us to assess
the nature of the relation and utilize it in evaluating a training program.

These examples illustrate the simplest settings for regression analysis where
one wishes to determine how one variable is related to one other variable.
In more complex situations several variables may be interrelated, or one variable
of major interest may depend on several influencing variables. Regression analy-
sis extends to these multivariate problems. (See Section 3, Chapter 12.) Even
though randomness is omnipresent, regression analysis allows us to identify it
and estimate relationships.

2. REGRESSION WITH A SINGLE PREDICTOR

A regression problem involving a single predictor (also called simple regression)
arises when we wish to study the relation between two variables x and y and use
it to predict y from x. The variable x acts as an independent variable whose val-
ues are controlled by the experimenter. The variable y depends on x and is also
subjected to unaccountable variations or errors.

For clarity, we introduce the main ideas of regression in the context of a
specific experiment. This experiment, described in Example 4, and the data set
of Table 1 will be referred to throughout this chapter. By so doing, we provide a
flavor of the subject matter interpretation of the various inferences associated
with a regression analysis.
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Notation

x � independent variable, also called predictor variable, explanatory
variable, causal variable, or input variable

y � dependent or response variable
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Example 4 Relief from Symptoms of Allergy Related to Dosage
In one stage of the development of a new drug for an allergy, an experiment
is conducted to study how different dosages of the drug affect the duration of
relief from the allergic symptoms. Ten patients are included in the experi-
ment. Each patient receives a specified dosage of the drug and is asked to
report back as soon as the protection of the drug seems to wear off. The
observations are recorded in Table 1, which shows the dosage x and duration
of relief y for the 10 patients.

Seven different dosages are used in the experiment, and some of these
are repeated for more than one patient. A glance at the table shows that y
generally increases with x, but it is difficult to say much more about the form
of the relation simply by looking at this tabular data.

For a generic experiment, we use n to denote the sample size or the number
of runs of the experiment. Each run gives a pair of observations (x, y) in which
x is the fixed setting of the independent variable and y denotes the correspond-
ing response. See Table 2.

We always begin our analysis by plotting the data because the eye can easily
detect patterns along a line or curve.
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TABLE 1 Dosage x (in Milligrams) and 
the Number of Hours of Relief y
from Allergy for Ten Patients

Dosage Duration of Relief
x y

3 9
3 5
4 12
5 9
6 14
6 16
7 22
8 18
8 24
9 22
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The existence of any increasing, or decreasing, relationship is readily appar-
ent and preliminary judgments can be reached whether or not it is a straight-line
relation.

The scatter diagram of the observations in Table 1 appears in Figure 1. This
scatter diagram reveals that the relationship is approximately linear in nature; that
is, the points seem to cluster around a straight line. Because a linear relation is the
simplest relationship to handle mathematically, we present the details of the sta-
tistical regression analysis for this case. Other situations can often be reduced to
this case by applying a suitable transformation to one or both variables.
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First Step in the Analysis

Plotting a scatter diagram is an important preliminary step prior to
undertaking a formal statistical analysis of the relationship between two
variables.
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Figure 1 Scatter diagram of the data of Table 1.

TABLE 2 Data Structure 
for a Simple Regression

Setting of the
Independent Variable Response

� �
� �
� �

ynxn

y3x3

y2x2

y1x1
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3. A STRAIGHT LINE REGRESSION MODEL

Recall that if the relation between y and x is exactly a straight line, then the
variables are connected by the formula

where indicates the intercept of the line with the y axis and represents
the slope of the line, or the change in y per unit change in x (see Figure 2).

Statistical ideas must be introduced into the study of relation when the points
in a scatter diagram do not lie perfectly on a line, as in Figure 1. We think of these
data as observations on an underlying linear relation that is being masked by
random disturbances or experimental errors due in part to differences in severity of
allergy, physical condition of subjects, their environment, and so on. All of the
variables that influence the response, days of relief, are not even known, yet alone
measured. The effects of all these variables are modeled as unobservable random
variables. Given this viewpoint, we formulate the following linear regression model
as a tentative representation of the mode of relationship between y and x.

�1�0

y � �0 � �1 x
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β0

β1

x

y

y =
 

x

0β + 1β

Figure 2 Graph of straight line y � � x.�1�0

Statistical Model for a Straight Line Regression

We assume that the response Y is a random variable that is related to the
input variable x by

where:

1. denotes the response corresponding to the ith experimental run in
which the input variable x is set at the value .

2. , . . . , are the unknown error components that are superim-
posed on the true linear relation. These are unobservable random

ene1

xi

Yi

Yi � �0 � �1  x i � ei   i � 1, . . . , n
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The mean of the response , corresponding to the level xi of the con-
trolled variable, is � .

Further, according to this model, the observation is one observation
from the normal distribution with mean � and standard deviation �.
One interpretation of this is that as we attempt to observe the true value on
the line, nature adds the random error e to this quantity. This statistical model
is illustrated in Figure 3, which shows a few normal distributions for the re-
sponse variable Y for different values of the input variable x. All these distribu-
tions have the same standard deviation and their means lie on the unknown
true straight line � . Aside from the fact that � is unknown, the line
on which the means of these normal distributions are located is also unknown.
In fact, an important objective of the statistical analysis is to estimate this line.

�
 1 

x �
 0

�
 1 

x i�
 0

Yi

�
 1 

x i�
 0

Yi
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variables, which we assume are independently and normally distrib-
uted with mean zero and an unknown standard deviation �.

3. The parameters and , which together locate the straight line, are
unknown.

�1�
 0

y

y = x

x

+0β 1β

Figure 3 Normal distributions of Y with means on a
straight line.

Exercises

11.1 Plot the line on graph paper by
locating the points for and 
What is its intercept? What is its slope?

11.2 A store manager has determined that the
monthly profit y realized from selling a particu-
lar brand of car battery is given by

where x denotes the number of these batteries
sold in a month.

(a) If 41 batteries were sold in a month, what
was the profit?

(b) At least how many batteries must be sold
in a month in order to make a profit?

y � 12 x � 75

x � 4.x � 1
y � 3 � 2 x 11.3 Identify the predictor variable x and the response

variable y in each of the following situations.

(a) A training director wishes to study the
relationship between the duration of train-
ing for new recruits and their performance
in a skilled job.

(b) The aim of a study is to relate the carbon
monoxide level in blood samples from
smokers with the average number of ciga-
rettes they smoke per day.

(c) An agronomist wishes to investigate the
growth rate of a fungus in relation to the
level of humidity in the environment.

( continued )
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(d) A market analyst wishes to relate the
expenditures incurred in promoting a
product in test markets and the subsequent
amount of product sales.

11.4 Identify the values of the parameters , ,
and � in the statistical model

where e is a normal random variable with mean
0 and standard deviation 5.

11.5 Identify the values of the parameters , ,
and � in the statistical model

where e is a normal random variable with mean 0
and standard deviation 3.

11.6 Under the linear regression model:

(a) Determine the mean and standard devia-
tion of Y, for x � 4, when � 1,

� 3, and � � 2.

(b) Repeat part (a) with x � 2.

11.7 Under the linear regression model:

(a) Determine the mean and standard devia-
tion of Y, for x � 1, when � 2,

� � 3, and � � 4.

(b) Repeat part (a) with x � 2.

�
 1

�
 0

�
 1

�
 0

Y � 6 � 3x � e

�
 1�

 0

Y � 4 � 3x � e

�
 1�

 0
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11.8 Graph the straight line for the means of the
linear regression model

having � �3, � 4, and the normal
random variable e has standard deviation 3.

11.9 Graph the straight line for the means of a
linear regression model 
having � 7 and � 2.

11.10 Consider the linear regression model

where � �2, � �1, and the normal
random variable e has standard deviation 3.

(a) What is the mean of the response Y when
x � 3? When x � 6?

(b) Will the response at x � 3 always be
larger than that at x � 6? Explain.

11.11 Consider the following linear regression model

where � 4, � 3, and the normal random
variable e has the standard deviation 4.

(a) What is the mean of the response Y when
x � 4? When x � 5?

(b) Will the response at x � 5 always be
larger than that at x � 4? Explain.

�
 1�

 0

Y � �0 � �1x � e,

�
 1�

 0

Y � �0 � �1x � e

�
 1�

 0

Y � �0 � �1x � e

�
 1�

 0

Y � �0 � �1x � e

4. THE METHOD OF LEAST SQUARES

Let us tentatively assume that the preceding formulation of the model is cor-
rect. We can then proceed to estimate the regression line and solve a few
related inference problems. The problem of estimating the regression parame-
ters and can be viewed as fitting the best straight line of the y to x rela-
tionship in the scatter diagram. One can draw a line by eyeballing the scatter
diagram, but such a judgment may be open to dispute. Moreover, statistical
inferences cannot be based on a line that is estimated subjectively. On the
other hand, the method of least squares is an objective and efficient method
of determining the best fitting straight line. Moreover, this method is quite
versatile because its application extends beyond the simple straight line
regression model.

Suppose that an arbitrary line is drawn on the scatter diagram
as it is in Figure 4. At the value of the independent variable, the y value pre-
dicted by this line is whereas the observed value is . The discrepancyyib0 � b1 x i

x i

y � b0 � b1 x

�
 1�

 0
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between the observed and predicted y values is then 
which is the vertical distance of the point from the line.

Considering such discrepancies at all the n points, we take

as an overall measure of the discrepancy of the observed points from the trial line
The magnitude of D obviously depends on the line that is drawn.

In other words, it depends on and , the two quantities that determine the trial
line. A good fit will make D as small as possible. We now state the principle of least
squares in general terms to indicate its usefulness to fitting many other models.

For the straight line model, the least squares principle involves the determi-
nation of and to minimize.

D � �
n

i � 1
 ( yi � b0 � b1x i 

)2

b1b0

b1b0

y � b0 � b1 

x.

D � �
n

i � 1
 di

2 � �
n

i � 1
 ( yi � b0 � b1x i )

2

di  ,yi � b0 � b1x i �
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y = b0 + b1x

b0 + b1xi

di = (yi – b0 – b1xi)

yi

xi x

y

Figure 4 Deviations of the observations from a line
y � b0 � b1x.

The Principle of Least Squares

Determine the values for the parameters so that the overall discrepancy

is minimized.
The parameter values thus determined are called the least squares 

estimates.

D � � (Observed response � Predicted response)2
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The particular values and that minimize the sum of squares are 
denoted by and respectively. The over a parameter indicates that it is
an estimate of the parameter. They are called the least squares estimates of
the regression parameters and . The best fitting straight line or best
fitting regression line is then given by the equation

where the hat over y indicates that it is an estimated quantity.
To describe the formulas for the least squares estimators, we first introduce

some basic notation.

The quantities and are the sample means of the x and y values; and
are the sums of squared deviations from the means, and is the sum of

the cross products of deviations. These five summary statistics are the key
ingredients for calculating the least squares estimates and handling the infer-
ence problems associated with the linear regression model. ( The reader may
review Sections 5 and 6 of Chapter 3 where calculations of these statistics
were illustrated.)

The formulas for the least squares estimators are

SxySyy

Sxxyx

ŷ � �̂0 � �̂1 
x

�1�0

ˆ�̂1 ,�̂0

b1b0
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Basic Notation

Sx y � � (x � x )(  y � y ) � � x y �
�� x��� y�

n

Syy � � ( y � y )2 � � y2 �
�� y�

2

n
 

Sxx � � ( x � x )2 � � x2 �
�� x�

2

n
 

x �
1
n

 � x  y �
1
n

 � y

Least squares estimator of 

Least squares estimator of 

�̂ 1 �
Sx y

Sx x

�1

�̂ 0 � y � �̂ 1 x

�0
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The estimates and can then be used to locate the best fitting line:

As we have already explained, this line provides the best fit to the data in the
sense that the sum of squares of the deviations, or

is the smallest.
The individual deviations of the observations from the fitted values

are called the residuals, and we denote these by 

Some residuals are positive and some negative, and a property of the least
squares fit is that the sum of the residuals is always zero.

In Chapter 12, we will discuss how the residuals can be used to check the
assumptions of a regression model. For now, the sum of squares of the residuals
is a quantity of interest because it leads to an estimate of the variance of the
error distributions illustrated in Figure 3. The residual sum of squares is also
called the sum of squares due to error and is abbreviated as SSE.

The second expression for SSE, which follows after some algebraic manipula-
tions (see Exercise 11.24), is handy for directly calculating SSE. However, we
stress the importance of determining the individual residuals for their role in
model checking (see Section 4, Chapter 12).

An estimate of variance is obtained by dividing SSE by n � 2. The
reduction by 2 is because two degrees of freedom are lost from estimating the
two parameters and .�1�0

�  

2

�  

2

ê i .ŷ i � �̂0 � �̂1x i

y  i

�
n

i � 1
 ( yi � �̂0 � �̂1x i 

) 

2

�̂ 1�̂ 0
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Fitted (or estimated) regression line

ŷ � �̂ 0 � �̂ 1 

x

Residuals

ê i � y i � �̂0 � �̂1 

x i   i � 1, . . . , n

The residual sum of squares or the sum of squares due to error is

SSE � �
n

i � 1
 ê i

2 � Sy y �
Sx y

2

Sx x
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In applying the least squares method to a given data set, we first compute
the basic quantities , , and . Then the preceding formulas can be
used to obtain the least squares regression line, the residuals, and the value of
SSE. Computations for the data given in Table 1 are illustrated in Table 3.

Sx ySy ySx xx , y ,

452 CHAPTER 11/REGRESSION ANALYSIS I

TABLE 3 Computations for the Least Squares Line, SSE, and 
Residuals Using the Data of Table 1

x y xy Residual 

3 9 9 81 27 7.15 1.85
3 5 9 25 15 7.15 �2.15
4 12 16 144 48 9.89 2.11
5 9 25 81 45 12.63 �3.63
6 14 36 196 84 15.37 �1.37
6 16 36 256 96 15.37 .63
7 22 49 484 154 18.11 3.89
8 18 64 324 144 20.85 �2.85
8 24 64 576 192 20.85 3.15
9 22 81 484 198 23.59 �1.59

Total 59 151 389 2651 1003 .04 (rounding error)

Sx y � 1003 �   

59 � 151
10

� 112.1

SSE � 370.9 �
(112.1)2

40.9
� 63.6528Sy y � 2651 �  

(151)2

10
� 370.9

�̂0 � 15.1 � 2.74 � 5.9 � �1.07Sx x � 389 �
(59)2

10
� 40.9

�̂1 �
112.1
40.9

� 2.74y � 15.1x � 5.9,

ê�̂ 0 � �̂ 1xy 

2x2

Estimate of Variance

The estimator of the error variance is

S2 �
SSE

n � 2

�  

2

The data in the first two columns yield the next three columns. Then, the sum
of entries in a column are obtained so , , and can be calculated.
From these, , and SSE are obtained.�̂ 0, �̂ 1

Sx ySy ySx xx  , y  ,
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4. THE METHOD OF LEAST SQUARES 453

y = –1.07 + 2.74x

y

25

20

15

10

5

0 2 4 6 8 10 x

Figure 5 The least squares regression line for the
data given in Table 1.

The equation of the line fitted by the least squares method is then

Figure 5 shows a plot of the data along with the fitted regression line.
The residuals are computed in

the last column of Table 3. The sum of squares of the residuals is

which agrees with our previous calculations of SSE, except for the error due to
rounding. Theoretically, the sum of the residuals should be zero, and the differ-
ence between the sum .04 and zero is also due to rounding.

The estimate of the variance is

The calculations involved in a regression analysis become increasingly
tedious with larger data sets. Access to a computer proves to be a considerable
advantage. Table 4 illustrates a part of the computer-based analysis of linear
regression using the data of Example 4 and the MINITAB package. For a more
complete regression analysis, see Table 5 in Section 6.4.

s2 �
SSE

n � 2
�

63.6528
8

� 7.96

�  

2

�
n

i � 1
 ê i

2 � (1.85)2 � (�2.15)2 � (2.11)2 � � � � � (�1.59)2 � 63.653

ê i � yi � ŷ i � y i � 1.07 � 2.74 x i

ŷ � �1.07 � 2.74 x
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Exercises
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Data: C11T3 txt

C1: 3 3 4 5 6 6 7 8 8 9

C2: 9 5 12 9 14 16 22 18 24 22

Dialog box:

Stat Regression Regression

Type C2 in Response

Type C1 in Predictors. Click OK.

Output:

Regression Analysis

The regression equation is

y � �1.07 � 2.74x

QQ

TABLE 4 Regression Analysis of the Data in Table 1, 
Example 4, Using MINITAB

11.12 A student collected data on the number of
large pizzas consumed, y, while x students are
watching a professional football game on TV.
Suppose that the data from five games are:

x 2 5 6 3 4

y 1 6 10 3 5

(a) Construct a scatter diagram.

(b) Calculate and .

(c) Calculate the least squares estimates
and

(d) Determine the fitted line and draw the
line on the scatter diagram.

11.13 The office manager at a real estate firm makes a
pot of coffee every morning. The time before it
runs out, y, in hours depends on the number of
persons working inside that day, x. Suppose
that the pairs of (x, y) values from six days are:

x 1 2 3 3 4 5

y 8 4 5 3 3 1

�̂ 1 .
�̂ 0

Sy  yx , y , Sx x 
 
, Sx y 

 
,

(a) Plot the scatter diagram.

(b) Calculate and .

(c) Calculate the least squares estimates 
and 

(d) Determine the fitted line and draw the
line on the scatter diagram.

11.14 Refer to Exercise 11.12.

(a) Find the residuals and verify that they
sum to zero.

(b) Calculate the residual sum of squares SSE by

(i) Adding the squares of the residuals.

(ii) Using the formula 
SSE �

(c) Obtain the estimate of .

11.15 Refer to Exercise 11.13.

(a) Find the residuals and verify that they
sum to zero.

(b) Calculate the residual sums of squares
SSE by

�  

2

Sx y
2  / Sx xSy  y �

�̂ 1 .
�̂ 0

Sy  yx , y , Sx x 
 
, Sx y 

 
,
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(i) Adding the squares of the 
residuals.

(ii) Using the formula 
SSE �

(c) Obtain the estimate of .

11.16 A help desk devoted to student software prob-
lems also receives phone calls. The number of
persons that can be served in person, within
one hour, is the response y . The predictor vari-
able, x , is the number of phone calls answered.

x 0 1 2 3 4

y 7 8 5 4 1

(a) Calculate and .

(b) Calculate the least squares estimates 
and 

(c) Determine the fitted line.

(d) Use the fitted line to predict the number of
persons served when 3 calls are answered.

�̂1 .
�̂0

Sy  yx , y , Sx x 
 
, Sx y 

 
,

�  

2

Sx  y
2  / Sx xSy  y �
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11.17 A student hourly employee does small secretar-
ial projects. The number of projects she com-
pletes in a day is the response variable y. The
number of hours she works in a day is the pre-
dictor variable x.

x 1 2 4 6 7

y 4 3 6 8 9

(a) Calculate and .

(b) Calculate the least squares estimates 
and 

(c) Determine the fitted line.
(d) Use the fitted line to predict the number

of projects completed when she works 6.5
hours.

11.18 Crime is becoming more of a problem on
many college campuses. The U.S. Department
of Education reports data on alleged crimes at
universities and colleges. Table 5 gives the data

�̂1 .
�̂0

Sy  yx , y , Sx x 
 
, Sx y 

 
,

TABLE 5 Crime at the Largest Universities

Enrollment Forcible
University (1000) Rape Robbery Burglary Arson

Ohio State 52.57 65 11 212 17
Minnesota 50.88 12 7 272 3
Central Florida 48.40 3 1 43 0
Michigan State 46.05 18 11 122 1
Pennsylvania State 43.25 8 3 112 7
Wisconsin-Madison 41.56 7 5 167 6
Florida State 40.56 10 8 69 3
Washington-Seattle 40.22 0 3 70 3
Florida International 38.18 3 5 90 1
Arizona 37.22 8 0 43 0
San Diego State 35.70 10 4 61 1
California-Berkeley 34.94 4 24 74 11
Rutgers-New Brunswick 34.80 4 4 97 5
Georgia 33.83 1 0 17 0
Boston 32.05 7 1 62 0
North Carolina State-Raleigh 31.80 6 8 57 1
San Francisco State 30.13 9 1 45 1
Purdue University-Indianapolis 29.85 1 0 93 0
California-Davis 29.80 7 9 42 2
Iowa 29.12 6 1 36 1

c11.qxd  10/15/09  11:16 AM  Page 455



from the year 2007, for the twenty universities
with the largest enrollments.

When y is the number of burglaries and the
predictor variable x is enrollment, we have

(a) Obtain the equation of the best fitting
straight line.

(b) Calculate the residual sum of squares.

(c) Estimate .

11.19 Refer to the crime data in Exercise 11.18, Table 5.

When y is the number of robberies and the
predictor variable x is arson incidents, we have

(a) Obtain the equation of the best fitting
straight line.

(b) Calculate the residual sum of squares.

(c) Estimate .

11.20 The data on female wolves in Table D.9 of the
Data Bank concerning body weight ( lb) and
body length (cm) are

Weight 57 84 90 71 77 68 73

Body length 123 129 143 125 122 125 122

(a) Obtain the least squares fit of body
weight to the predictor body length.

(b) Calculate the residual sum of squares.

(c) Estimate .�  2

�  2

Sx x � 358.55  Sx y � 290.10    Sy y � 618.2
 n � 20  x � 3.15  y � 5.30 

�  2

Sx x � 994.038 Sx y � 6191.04   Sy y � 76,293.2
 n � 20  x � 38.046  y � 89.20
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5. THE SAMPLING VARIABILITY OF THE LEAST SQUARES 
ESTIMATORS—TOOLS FOR INFERENCE

It is important to remember that the line obtained by the
principle of least squares is an estimate of the unknown true regression line y �

In our drug evaluation problem (Example 4), the estimated line is

Its slope suggests that the mean duration of relief increases by 2.74
hours for each unit dosage of the drug. Also, if we were to estimate the expected
duration of relief for a specified dosage milligrams, we would naturallyx* � 4.5

�̂1 � 2.74

ŷ � �1.07 � 2.74 x

�0 � �1 
x.

ŷ � �̂0 � �̂1 
x

11.21 Refer to the data on female wolves in Exercise
11.20.

(a) Obtain the least squares fit of body length
to the predictor body weight.

(b) Calculate the residual sum of squares.

(c) Estimate .

(d) Compare your answer in part (a) with
your answer to part (a) of Exercise 11.20.
Should the two answers be the same?
Why or why not?

11.22 Using the formulas of and SSE, show that
SSE can also be expressed as

(a)

(b)

11.23 Referring to the formulas of and show
that the point lies on the fitted regres-
sion line.

11.24 To see why the residuals always sum to zero,
refer to the formulas of and and verify
that

(a) The predicted values are

(b) The residuals are

Then show that 

(c) Verify that 

2 �̂1 
Sx y � Sy y � Sx y

2  / Sx x .

�
n

i � 1
 ê i

2 � Sy y � �̂ 1
2 Sx x �

�
n

i � 1
 ê i � 0.

( yi � y ) � �̂1( xi � x )ê i � yi � ŷ i �

�̂1(  xi � x ) .ŷ i � y �

�̂1 �̂0

( x , y )
�̂1 ,�̂0

SSE � Syy � �̂1
2 Sxx

SSE � Syy � �̂1Sxy

�̂1

�  2
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5. THE SAMPLING VARIABILITY OF THE LEAST SQUARES ESTIMATORS—TOOLS FOR INFERENCE 457

1. The standard deviations (also called standard errors) of the least
squares estimators are

To estimate the standard error, use

S � � 

SSE
n � 2

  in place of �

S.E.( �̂1) �
�

√ Sx x

   S.E.( �̂ 0) � � � 1
n

�
x2

Sx x

2. Inferences about the slope are based on the t distribution

Inferences about the intercept are based on the t distribution

T �
�̂0 � �0

S � 

1
n

�
x2

Sx x

   d.f. � n � 2

�0

T �
�̂1 � �1

S / √ Sx x

   d.f. � n � 2

�1

3. At a specified value the expected response is � x*.
This is estimated by with

Estimated standard error

S � 

1
n

�
(x* � x )2

Sx x

�̂0 � �̂1 x*
�1�0x � x*,

use the fitted regression line to calculate the estimate 
11.26 days. A few questions concerning these estimates naturally arise at this point.

1. In light of the value 2.74 for could the slope of the true regres-
sion line be as much as 4? Could it be zero so that the true regression
line is which does not depend on x? What are the plausible
values for ?

2. How much uncertainty should be attached to the estimated duration of
11.26 days corresponding to the given dosage 

To answer these and related questions, we must know something about the
sampling distributions of the least squares estimators. These sampling distributions
will enable us to test hypotheses and set confidence intervals for the parameters

and that determine the straight line and for the straight line itself. Again, the
t distribution is relevant.

�1�0

x* � 4.5?

�1

y � �0 ,

�1�̂1 ,

�1.07 � 2.74 � 4.5 �
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6. IMPORTANT INFERENCE PROBLEMS

We are now prepared to test hypotheses, construct confidence intervals, and
make predictions in the context of straight line regression.

6.1. INFERENCE CONCERNING THE SLOPE 

In a regression analysis problem, it is of special interest to determine whether
the expected response does or does not vary with the magnitude of the input
variable x. According to the linear regression model,

Expected response � � x

This does not change with a change in x if and only if � 0. We can therefore
test the null hypothesis � � 0 against a one- or a two-sided alternative,
depending on the nature of the relation that is anticipated. If we refer to the
boxed statement (2) of Section 5, the null hypothesis � � 0 is to be
tested using the test statistic

Example 5 A Test to Establish That Duration of Relief Increases with Dosage
Do the data given in Table 1 constitute strong evidence that the mean dura-
tion of relief increases with higher dosages of the drug?

SOLUTION For an increasing relation, we must have � 0. Therefore, we are to test 
the null hypothesis � � 0 versus the one-sided alternative � � 0.
We select 	 � .05. Since � 1.860, with d.f. � 8 we set the rejection 
region R�T 
 1.860. Using the calculations that follow Table 3, we have

 s 

2 �
SSE

n � 2
�

63.6528
8

� 7.9566,  s � 2.8207

 �̂1 � 2.74

t.05

�1H1�1H0

�1

T �
�̂1

S / √Sx x

   d.f. � n � 2

�1H0

�1H0

�1

�1�0

�1
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Inferences about � x* are based on the t distribution

T �
( �̂ 0 � �̂1 x* ) � ( �0 � �1 x* )

S � 

1
n

�
( x* � x )2

Sx x

   d.f. � n � 2

�1�0
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The observed t value is in the rejection region, so is rejected. Moreover, 6.213
is much larger than � 3.355, so the P–value is much smaller than .005.

A computer calculation gives There is strong
evidence that larger dosages of the drug tend to increase the duration of relief
over the range covered in the study.

A warning is in order here concerning the interpretation of the test of 
� � 0. If is not rejected, we may be tempted to conclude that y

does not depend on x. Such an unqualified statement may be erroneous. First,
the absence of a linear relation has only been established over the range of the
x values in the experiment. It may be that x was just not varied enough to in-
fluence y. Second, the interpretation of lack of dependence on x is valid only if
our model formulation is correct. If the scatter diagram depicts a relation on a
curve but we inadvertently formulate a linear model and test � � 0,
the conclusion that is not rejected should be interpreted to mean “no lin-
ear relation,” rather than “no relation.” We elaborate on this point further in
Section 7. Our present viewpoint is to assume that the model is correctly for-
mulated and discuss the various inference problems associated with it.

More generally, we may test whether or not is equal to some specified
value , not necessarily zero.�10

�1

H0

�1H0

H0�1H0

P[T � 6.213] � .0001.
t.005

H0

Test statistic      t �
2.74
.441

� 6.213 

Estimated S.E.( �̂1 

) �
s

√ Sx x

�
2.8207

√40.90
� .441

6. IMPORTANT INFERENCE PROBLEMS 459

The test of the null hypothesis

is based on

T �
�̂1 � �10

S / √ Sxx

   d.f. � n � 2

H0 : �1 � �10

A 100(1 � 	)% confidence interval for is

where is the upper 	/2 point of the t distribution with d.f. � n � 2.t	�2

� �̂1 � t	 / 2 
S

√ Sxx

 ,  �̂1 � t	 / 2 
S

√  Sx x

 �
�1

In addition to testing hypotheses, we can provide a confidence interval for
the parameter using the t distribution.�1
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Example 6 A Confidence Interval for 
Construct a 95% confidence interval for the slope of the regression line in
reference to the drug trial data of Table 1.

SOLUTION In Example 5, we found that and The required
confidence interval is given by

We are 95% confident that by adding one extra milligram to the dosage, the
mean duration of relief would increase somewhere between 1.72 and 3.76 hours.

6.2. INFERENCE ABOUT THE INTERCEPT 

Although somewhat less important in practice, inferences similar to those out-
lined in Section 6.1 can be provided for the parameter . The procedures are 
again based on the t distribution with d.f. � n � 2, stated for in Section 5.
In particular,

To illustrate this formula, let us consider the data of Table 1. In Table 3, we
have found and Also,
Therefore, a 95% confidence interval for is calculated as

Note that represents the mean response corresponding to the value 0 for the 
input variable x. In the drug evaluation problem of Example 4, the parameter is
of little practical interest because the range of x values covered in the experiment
was 3 to 9 and it would be unrealistic to extend the line to In fact, the esti-
mate does not have an interpretation as a (time) duration of relief.

6.3. ESTIMATION OF THE MEAN RESPONSE 
FOR A SPECIFIED x VALUE

Often, the objective in a regression study is to employ the fitted regression in
estimating the expected response corresponding to a specified level of the input
variable. For example, we may want to estimate the expected duration of relief for
a specified dosage x* of the drug. According to the linear model described in

�̂0 � �1.07
x � 0.

�
 0

�
 0

� �1.07 � 6.34  or  ( �7.41, 5.27 )

�1.07 � 2.306 � 2.8207 � 1
10

�
( 5.9 )2

40.9

�
 0

s � 2.8207.Sx x � 40.9.x � 5.9,�̂0 � �1.07,

�̂0

�
 0

�0

2.74 � 2.306 � .441 � 2.74 � 1.02  or  (1.72, 3.76)

s / √Sx x � .441.�̂1 � 2.74

�1
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A 100(1 � 	)% confidence interval for is

� �̂0 � t	 / 2 S � 1
n

�
x2

Sx x
 ,  �̂0 � t	 / 2 S � 1

n
�

x2

Sxx
 �

�
 0
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Section 3, the expected response at a value x* of the input variable x is given
by � . The expected response is estimated by � which is the
ordinate of the fitted regression line at Referring to statement (3) of
Section 5, we determine that the t distribution can be used to construct confi-
dence intervals or test hypotheses.

Example 7 A Confidence Interval for the Expected Duration of Relief
Again consider the data given in Table 1 and the calculations for the regression
analysis given in Table 3. Obtain a 95% confidence interval for the expected
duration of relief when the dosage is (a) and (b) 

SOLUTION (a) The fitted regression line is

The expected duration of relief corresponding to the dosage mil-
ligrams of the drug is estimated as

A 95% confidence interval for the mean duration of relief with the dosage
is therefore

We are 95% confident that 6 milligrams of the drug produces an average
duration of relief that is between about 13.31 and 17.43 hours.

 � 15.37 � 2.06  or  ( 13.31, 17.43 )
15.37 � t.025 � .893 � 15.37 � 2.306 � .893 

x* � 6

 � 2.8207 � .3166 � .893 

Estimated standard error � s � 1
10

�
( 6 � 5.9 )2

40.9
 

 �̂0 � �̂1 
x* � �1.07 � 2.74 � 6 � 15.37 hours

x* � 6

ŷ � �1.07 � 2.74x

x* � 9.5.x* � 6

x � x*.
�̂1  x*�̂0�1  x*�0
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A 100(1 � 	)% confidence interval for the expected response � is

�̂0 � �̂1 x* � t	 / 2 S � 1
n

�
( x* � x )2

Sx x

�1 
x*�0

To test the hypothesis that � � , some specified value, we use

T �
�̂0 � �̂1  

x* � 
0

S � 1
n

�
( x* � x )2

Sx x

   d.f. � n � 2


 0�1  
x*�0
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(b) Suppose that we also wish to estimate the mean duration of relief under the
dosage We follow the same steps to calculate the point estimate.

A 95% confidence interval is

We are 95% confident that 9.5 milligrams of the drug produces an 
average of 20.76 to 29.16 hours of relief. Note that the interval is much
larger than the one for 6 milligrams.

The formula for the standard error shows that when x* is close to the stan-
dard error is smaller than it is when x* is far removed from This is confirmed by
Example 7, where the standard error at x* � 9.5 can be seen to be more than
twice as large as the value at x* � 6. Consequently, the confidence interval for
the former is also wider. In general, estimation is more precise near the mean 
than it is for values of the x variable that lie far from the mean.

Caution concerning extrapolation: Extreme caution should be exercised in
extending a fitted regression line to make long-range predictions far away from
the range of x values covered in the experiment. Not only does the confidence
interval become so wide that predictions based on it can be extremely unreli-
able, but an even greater danger exists. If the pattern of the relationship be-
tween the variables changes drastically at a distant value of x, the data provide
no information with which to detect such a change. Figure 6 illustrates this sit-
uation. We would observe a good linear relationship if we experimented with
x values in the 5 to 10 range, but if the fitted line were extended to estimate
the response at x* � 20, then our estimate would drastically miss the mark.

x

x.
x ,

24.96 � 2.306 � 1.821 � 24.96 � 4.20  or  ( 20.76, 29.16 )

 � 1.821 

Estimated standard error � 2.8207 � 1
10

�
( 9.5 � 5.9 )2

40.9
 

 �̂0 � �̂1x* � �1.07 � 2.74 � 9.5 � 24.96 days

x* � 9.5.
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Predicted

True relation

y

5 10 20 x

Figure 6 Danger in long-range prediction.
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6.4. PREDICTION OF A SINGLE RESPONSE 
FOR A SPECIFIED x VALUE

Suppose that we give a specified dosage x* of the drug to a single patient and we
want to predict the duration of relief from the symptoms of allergy. This problem
is different from the one considered in Section 6.3, where we were interested in
estimating the mean duration of relief for the population of all patients given the
dosage x*. The prediction is still determined from the fitted line; that is, the pre-
dicted value of the response is as it was in the preceding case. How-
ever, the standard error of the prediction here is larger, because a single observation
is more uncertain than the mean of the population distribution. We now give the
formula of the estimated standard error for this case.

The formula for the confidence interval must be modified accordingly. We call
the resulting interval a prediction interval because it pertains to a future
observation.

Example 8 Calculating a Prediction Interval for a Future Trial
Once again, consider the drug trial data given in Table 1. A new trial is to be
made on a single patient with the dosage x* � 6.5 milligrams. Predict the
duration of relief and give a 95% prediction interval for the duration of relief.

SOLUTION The predicted duration of relief is

Since with d.f. � 8, a 95% prediction interval for the new
patient’s duration of relief is

This means we are 95% confident that this particular patient will have relief
from symptoms of allergy for about 9.9 to 23.6 hours.

In the preceding discussion, we have used the data of Example 4 to illus-
trate the various inferences associated with a straight-line regression model.
Example 9 gives applications to a different data set.

 � 16.74 � 6.85  or  ( 9.89, 23.59 )

 16.74 � 2.306 � 2.8207 � 1 �
1

10
�

( 6.5 � 5.9 )2

40.9

t.025 � 2.306

�̂0 � �̂1 
x* � �1.07 � 2.74 � 6.5 � 16.74 hours

�̂0 � �̂1 
x*
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The estimated standard error when predicting a single observation y at a
given x* is

S � 1 �
1
n

�
( x* � x )2

Sx x
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Example 9 Prediction after Fitting a Straight Line Relation of a Human
Development Index to Internet Usage
One measure of the development of a country is the Human Development
Index (HDI) which combines life expectancy, literacy, educational attain-
ment, and gross domestic product per capita into an index whose values lie
between 0 and 1, inclusive.

We randomly selected fifteen countries, of the 152 countries, below the
top twenty-five most developed countries on the list. HDI is the response
variable y , and Internet usage per 100 persons, x , is the predictor variable
The data, given in Exercise 11.31, have the summary statistics

n =  15                     =    9.953      = .6670

(a) Determine the equation of the best fitting straight line.

(b) Do the data substantiate the claim that Internet usage per 100 per-
sons is a good predictor of HDI and that large values of both vari-
ables tend to occur together?

(c) Estimate the mean value of HDI for 18 Internet users per 100 per-
sons and construct a 95% confidence interval.

(d) Find the predicted y for x =  43 Internet users per 100 persons.

SOLUTION

(a)

So, the equation of the fitted line is

(b) To answer this question, we decide to test  : = 0  versus : >
0.The test statistic is

We select 	 � .01. Since with d.f. � 13, we set the right-
sided rejection region R�T ≥ 2.650. We calculate

SSE � Sy y �
Sx y

2

Sx x
� .41772 �

(  20.471)2

1173.46
� .06060

t.01 � 2.650

T �
�̂1

S / √ Sx x

�1H1�1H0

ŷ � .493 � .0174x

�̂0 � y � �̂1  x � .6670 � .017445 � 9.953 � .4934

�̂1 �
Sx y

Sx x
�

20.471
1173.46

� .017445 

 Sx x � 1173.46  Sy y � 20.471 Sx y � .41772 
yx
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The t statistic has the value

Since the observed is greater than 2.650, is rejected with 
	 � .01. The P–value is much less than .0001.

We conclude that larger values of Internet users per 100 persons signifi-
cantly increases the expected HDI, within the range of values of x included
in the data.

(c) The expected value of the HDI corresponding to x*  =  18 Internet users
per 100 is estimated as

and its

Since for d.f. � 13, the required confidence interval is

We are 95% confident that the expected value of HDI, for x* =  18, is between
.756 and .859.

(d) Since is far above the largest value of 26.2 users per 100, it is
not sensible to predict y at x =  43 using the fitted regression line. Here a
formal calculation gives

which is a nonsensical result for an index that should not exceed 1. As men-
tioned earlier, extrapolation typically gives unreliable results.

Regression analyses are most conveniently done on a computer. A more
complete selection of the output from the computer software package
MINITAB, for the data in Example 4, is given in Table 6.

Predicted HDI � .4934 � .01745( 43 ) � 1.244

x � 43

.8075 � 2.160 � .0238 � .8075 � .0514     or   ( .756, .859 ) 

t.025 � 2.160

Estimated S.E. � s � 

1
15

�
(18 � 9.953)2

1173.46
� .0238

�̂0 � �̂1  x* � .4934 � .01745(18 ) � .8075

H0t � 8.77

t �
.01744
.00199

� 8.77

Estimated S.E. ( �̂1) �
s

√ Sx x

�
.0683

√ 1173.46
� .00199

s � � 

SSE
n � 2

� � 

.06060
13

� .0683
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TABLE 7 SAS Computer Output for the Data in Example 4

MODEL: MODEL 1
DEPENDENT VARIABLE: Y

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB � F

MODEL 1 307.24719 307.24719 38.615 0.0003
ERROR 8 63.65281 7.95660
C TOTAL 9 370.90000

ROOT MSE 2.82074 R-SQUARE 0.8284

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER � 0 PROB

INTERCEP 1 �1.070905 2.75091359 �0.389 0.7072
X1 1 2.740831 0.44106455 6.214 0.0003

� � T �

The output of the computer software package SAS for the data in Example 4
is given in Table 7. Notice the similarity of information in Tables 6 and 7. Both
include the least squares estimates of the coefficients, their estimated standard
deviations, and the t test for testing that the coefficient is zero. The estimate of 
is presented as the mean square error in the analysis of variance table.

�  

2

TABLE 6 MINITAB Computer Output for the Data in Example 4

THE REGRESSION EQUATION IS
Y � �1.07 � 2.74X

PREDICTOR COEF STDEV T-RATIO P
CONSTANT �1.071 2.751 �0.39 0.707
X 2.7408 0.4411 6.21 0.000

S � 2.821 R-SQ � 82.8%

ANALYSIS OF VARIANCE

SOURCE DF SS MS F P
REGRESSION 1 307.25 307.25 38.62 0.000
ERROR 8 63.65 7.96
TOTAL 9 370.90
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Example 10 Predicting the Number of Situps after a Semester of Conditioning
University students taking a physical fitness class were asked to count the
number of situps they could do at the start of the class and again at the end
of the semester.

Refer to the physical fitness data, on numbers of situps, in Table D.5 of
the Data Bank.

(a) Find the least squares fitted line to predict the posttest number of
situps from the pretest number at the start of the conditioning class.

(b) Find a 95% confidence interval for the mean number of posttest situps
for persons who can perform 35 situps in the pretest. Also find a 95%
prediction interval for the number of posttest situps that will be per-
formed by a new person this semester who does 35 situps in the
pretest.

(c) Repeat part (b), but replace the number of pretest situps with 20.

SOLUTION The scatter plot in Figure 7 suggests that a straight line may model the
expected value of posttest situps given the number of pretest situps. Here x is
the number of pretest situps and y is the number of posttest situps. We use
MINITAB statistical software to obtain the output

Regression Analysis: Post Situps versus Pre Situps

The regression equation is
Post Situps = 10.3 � 0.899 Pre Situps

Predictor Coef SE Coef T P
Constant 10.331 2.533 4.08 0.000
Pre Situps 0.89904 0.06388 14.07 0.000

S  � 5.17893 R-Sq  � 71.5%

Analysis of Variance

Source DF SS MS F P
Regression 1 5312.9 5312.9 198.09 0.000
Residual Error 79 2118.9 26.8
Total 80 7431.8

Predicted Values for New Observations

New
Obs Pre Sit Fit SE Fit 95% CI 95% PI
1 35.0 41.797 0.620 (40.563, 43.032) (31.415, 52.179)
2 20.0 28.312 1.321 (25.682, 30.941) (17.673, 38.950)

From the output and �

� 26.8 is the estimate of .�   

2( 5.1789 ) 

2
s  

2ŷ � �̂0 � �̂1x � 10.3 � 0.899 x
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We have selected the option in MINITAB to obtain the two confi-
dence intervals and prediction intervals given in the output. The predic-
tion intervals pertain to the posttest number of situps performed by a 
specific new person. The first is for a person who performed 35 situps in 
the pretest. The prediction intervals are wider than the corresponding
confidence intervals for the expected number of posttest situps for the 
population of all students who would do 35 situps in the pretest. The 
same relation holds, as it must, for 20 pretest situps.

Exercises
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11.25 We all typically go to the shortest line in the
grocery store. Data were collected on the num-
ber of carts ahead in line and the total time to
check out (minutes), including time in line, on
five occasions.

(a) Calculate the least squares estimates 
and Also estimate the error variance .

(b) Test � � 0 versus � � 0
with 	 � .05.

(c) Estimate the expected y value corre-
sponding to carts and give a 90%
confidence interval.

11.26 Refer to Exercise 11.25. Construct a 90%
confidence interval for the intercept . Inter-
pret.

11.27 Refer to Exercise 11.25. Obtain a 95% confi-
dence interval for . Interpret.�1

�
 0

x � 3

�1H1�1H0

�  

2�̂1 .
�̂0

Number Time to 
of Carts Check Out

1 5
2 11
3 9
4 14
5 16
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Figure 7 Scatter plot of number of situps.
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11.28 An engineer found that by adding small
amounts of a compound to rechargeable bat-
teries during manufacture, she could extend
their lifetimes. She experimented with differ-
ent amounts of the additive ( g ) and measured
the hours they lasted in a laptop.

(a) Calculate the least squares estimates 
and Also estimate the error 

variance .

(b) Test : � 1 versus � � 1
with 	 � .05.

(c) Estimate the expected y value corre-
sponding to and give a 95%
confidence interval. Interpret.

(d) Construct a 90% confidence interval for
the intercept . Interpret.

11.29 For a random sample of seven homes that are
recently sold in a city suburb, the assessed
values x and the selling prices y are

(a) Plot the scatter diagram.
(b) Determine the equation of the least

squares regression line and draw this line
on the scatter diagram.

(c) Construct a 95% confidence interval for
the slope of the regression line. Interpret.

11.30 Refer to the data in Exercise 11.29.
(a) Estimate the expected selling price of homes

that were assessed at $290,000 and con-
struct a 95% confidence interval. Interpret.

(b) For a single home that was assessed at
$290,000, give a 95% prediction interval
for the selling price. Interpret.

�0

x � 3.5

�1H1�1H0

�  

2
�̂1 .�̂0

11.31 One measure of the development of a country
is the Human Development Index (HDI). Life
expectancy, literacy, educational attainment,
and gross domestic product per capita are
combined into an index between 0 and 1, in-
clusive with 1 being the highest development.
The United Nations Development Program re-
ports values for 177 countries. We randomly
selected fifteen countries, below the top
twenty-five. Both HDI and the predictor vari-
able x = Internet usage per 100 persons are ob-
tained from their reports.

6. IMPORTANT INFERENCE PROBLEMS 469

Amount Life 
of Additive (hours)

0 1.9
1 2.0
2 2.5
3 2.6
4 3.0

($1000)
x y

283.5 288.0
290.0 291.2
270.5 276.2
300.8 307.0

($1000)
x y

310.2 311.0
294.6 299.0
320.0 318.0

TABLE 8 Human Development Index

Country Internet/100 HDI

Bahrain 21.3 .866
Poland 26.2 .870
Uruguay 14.3 .852
Bulgaria 20.6 .824
Brazil 19.5 .800
Ukraine 9.7 .788
Dominican Republic 16.9 .799
Moldova 9.6 .708
India 5.5 .619
Madagascar 0.5 .533
Nepal 0.4 .534
Tanzania 0.9 .467
Uganda 1.7 .505
Zambia 2.0 .434
Ethiopia 0.2 .406

Source: Human Development 2007–2008 reports at
UNDP web site http://hdr.undp.org

n =  15             =  9.953      =  .6670

(a)  Obtain a 95% confidence interval for the
mean HDI when Internet usage per 100 per-
sons is 22. Compare the width of the interval
with that of the interval in Example 9.

(b)  Obtain a 95% prediction interval for a single
country with Internet usage 22 per one hun-
dred persons. Interpret.

(c)  Does your analysis show that Internet avail-
ability causes HDI to increase?

 Sx x � 1173.46  Sx y � 20.471 Sy y � .41772 
yx
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11.32 Refer to Exercise 11.31.

(a)  Obtain the least squares estimates by fit-
ting a straight line to the response Inter-
net usage using the predictor variable
HDI.

(b)  Test, with 	 = .05, : = 0 versus a
two-sided alternative.

(c)  Obtain a 95% confidence interval for the
mean Internet usage per 100 persons,
when the HDI is .650. Interpret.

(d)  Obtain a 95% prediction interval for Inter-
net usage in a single country with HDI
.650. Interpret.

11.33 According to the computer output in Table 9:

(a) What model is fitted?

(b) Test, with 	 � .05, if the x term is
needed in the model.

11.34 According to the computer output in Table 9:

(a) Predict the mean response when

(b) Find a 90% confidence interval for
the mean response when 
You will need the additional information
n �  30, x �  8354, and 

( � x ) � 97,599,296.2xi�

x � 5000.

x � 5000.

�1H0

TABLE 9 Computer Output for Exercises 11.33 and 11.34

THE REGRESSION EQUATION IS
Y � 994 � 0.104X

PREDICTOR COEF STDEV T-RATIO P
CONSTANT 994.0 254.7 3.90 0.001
X 0.10373 0.02978 3.48 0.002

S  � 299.4 R-SQ � 30.2%

ANALYSIS OF VARIANCE

SOURCE DF SS MS F P
REGRESSION 1 1087765 1087765 12.14 0.002
ERROR 28 2509820 89636
TOTAL 29 3597585

11.35 According to the computer output in Table 10:

(a) What model is fitted?

(b) Test, with 	 � .05, if the x term is
needed in the model.

11.36 According to the computer output in 
Table 10:

(a) Predict the mean response when 

(b) Find a 90% confidence interval for
the mean response when You will
need the additional information n � 25,
x � 1.793, and 

(c) Find a 90% confidence interval for the
mean response when Interpret.

11.37 Consider the data on male wolves in Table D.9
of the Data Bank concerning age (years) and
canine length (mm).

(a) Obtain the least squares fit of canine
length to the predictor age.

(b) Test � � 0 versus � � 0
with 	 � .05.

(c) Obtain a 90% confidence interval for the
canine length when age is x �  4.

(d) Obtain a 90% prediction interval for the
canine length of an individual wolf when
the age is x � 4.

�1H1�1H0

x � 2.

� 1.848.( xi � x )2�

x � 3.

x � 3.

c11.qxd  10/15/09  11:16 AM  Page 470



7. THE STRENGTH OF A LINEAR RELATION

To arrive at a measure of adequacy of the straight line model, we examine how
much of the variation in the response variable is explained by the fitted regres-
sion line. To this end, we view an observed as consisting of two components.

In an ideal situation where all the points lie exactly on the line, the residuals are
all zero, and the y values are completely accounted for or explained by the lin-
ear dependence on x.

We can consider the sum of squares of the residuals

to be an overall measure of the discrepancy or departure from linearity. The
total variability of the y values is reflected in the total sum of squares

of which SSE forms a part. The difference

Sy y � �
n

i � 1
 ( yi � y )2

SSE � �
n

i � 1
 ( yi � �̂0 � �̂1x i )2 � Sy y �

Sx y
2

Sx x

y i
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TABLE 10 Computer Output for Exercises 11.35 and 11.36

THE REGRESSION EQUATION IS
Y � 0.338 � 0.831X

PREDICTOR COEF STDEV T-RATIO P
CONSTANT 0.3381 0.1579 2.14 0.043
X 0.83099 0.08702 9.55 0.000

S � 0.1208 R-SQ  � 79.9%

ANALYSIS OF VARIANCE

SOURCE DF SS MS F P
REGRESSION 1 1.3318 1.3318 91.20 0.000
ERROR 23 0.3359 0.0146
TOTAL 24 1.6676

� �

Observed Explained by Residual or
y value linear relation deviation from

linear relation

( yi � �̂0 � �̂  1 x i 
)( �̂0 � �̂1x i 

)yi
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472 CHAPTER 11/REGRESSION ANALYSIS I

forms the other part. Paralleling the decomposition of the observation , as a
residual plus a part due to regression, we consider a decomposition of the vari-
ability of the y values.

The first term on the right-hand side of this equality is called the sum of
squares (SS) due to regression. Likewise, the total variability is also called
the total SS of y. In order for the straight line model to be considered as provid-
ing a good fit to the data, the SS due to the linear regression should comprise a
major portion of . In an ideal situation in which all points lie on the line, SSE
is zero, so is completely explained by the fact that the x values vary in the
experiment. That is, the linear relationship between y and x is solely responsible
for the variability in the y values.

As an index of how well the straight line model fits, it is then reasonable to
consider the proportion of the y variability explained by the linear relation

= 

From Section 6 of Chapter 3, recall that the quantity

is named the sample correlation coefficient. Thus, the square of the sample cor-
relation coefficient represents the proportion of the y variability explained by
the linear relation.

r �
Sx y

√Sx x Sy y

SS due to linear regression
Total SS of y

�
Sx y 

2 / Sx x

Sy y
�

Sx y 

2

Sx xSy y
R2

Sy y

Sy y

Sy y

Sy y � ( Sy y � SSE ) � SSE

yi

 �
Sx y

2

Sx x
 

Sy y � SSE � Sy y � � 
Sy y �

Sx y
2

Sx x
 �

Decomposition of Variability

� � SSE

Total Variability explained Residual or
variability of y by the linear relation unexplained

variability

Sx y
2

Sx x
Sy y
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Example 11 The Proportion of Variability in Duration Explained by Dosage
Let us consider the drug trial data in Table 1. From the calculations provided
in Table 3,

Fitted regression line

How much of the variability in y is explained by the linear regression model?

SOLUTION To answer this question, we calculate

This means that 83% of the variability in y is explained by linear regression,
and the linear model seems satisfactory in this respect.

Example 12 Proportion of Variation Explained in Number of Situps
Refer to physical fitness data in Table D.5 of the Data Bank. Using the data
on numbers of situps, find the proportion of variation in the posttest number
of situps explained by the pretest number that was obtained at the beginning
of the conditioning class.

SOLUTION Repeating the relevant part of the computer output from Example 10,

The regression equation is
Post Situps  � 10.3  � 0.899 Pre Situps

Predictor Coef SE Coef T P
Constant 10.331 2.533 4.08 0.000
Pre Situps 0.89904 0.06388 14.07 0.000

S  � 5.17893 R-Sq  � 71.5%

r 2 �
Sx y

2

Sx xSy y
�

( 112.1 )2

40.9 � 370.9
� .83

ŷ � �1.07 � 2.74 x

Sx x � 40.9  Sy y � 370.9  Sx y � 112.1

7. THE STRENGTH OF A LINEAR RELATION 473

The strength of a linear relation is measured by

=

which is the square of the sample correlation coefficient r.

r 2 �
Sx y

2

Sx x Sy y
R2

The value of r is always between –1 and 1, inclusive whereas is always
between 0 and 1.

r  

2
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Analysis of Variance

Source DF SS MS F P
Regression 1 5312.9 5312.9 198.09 0.000
Residual Error 79 2118.9 26.8
Total 80 7431.8

we find R-Sq  � 71.5%, or proportion .715. From the analysis-of-variance
table we could also have calculated

Using a person’s pretest number of situps to predict their posttest number of
situps explains that 71.5% of the variation is the posttest number.

When the value of is small, we can only conclude that a straight line rela-
tion does not give a good fit to the data. Such a case may arise due to the
following reasons.

1. There is little relation between the variables in the sense that the scatter
diagram fails to exhibit any pattern, as illustrated in Figure 8a. In this
case, the use of a different regression model is not likely to reduce the
SSE or explain a substantial part of .Sy y

r  

2

Sum of squares regression
Total sum of squares

�
5312.9
7431.8

� .715

y

x
(a)

y

x
(b)

Figure 8 Scatter diagram patterns:
(a) No relation. (b) A nonlinear relation.
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7. THE STRENGTH OF A LINEAR RELATION 475

2. There is a prominent relation but it is nonlinear in nature; that is, the
scatter is banded around a curve rather than a line. The part of that
is explained by straight line regression is small because the model is
inappropriate. Some other relationship may improve the fit substan-
tially. Figure 8b illustrates such a case, where the SSE can be reduced by
fitting a suitable curve to the data.

Exercises

Sy y

11.38 Refer to Exercise 11.18 and Table 5 for crimes
during the year 2007, at the twenty universi-
ties with the largest enrollments. When pre-
dicting number of burglaries from the predic-
tor enrollment, we have

Determine the proportion of variation in y that
is explained by linear regression.

11.39 Refer to Exercise 11.20 and Table 5 for crimes
during the year 2007, at the twenty universi-
ties with the largest enrollments. When y is the
number of robberies and the predictor variable
x is arson incidents, we have

n � 20
� 358.55 � 290.10 � 618.2

Determine the proportion of variation in y that
is explained by linear regression.

11.40 Refer to Example 9 and Exercise 11.31, con-
cerning the prediction of a human develop-
ment index by Internet usage, where

n � 15
� 1173.46 � 20.471 � .41772

Determine the proportion of variation in y that
is explained by linear regression.

11.41 Refer to Exercise 11.40 but consider the predic-
tion of Internet usage when the human develop-
ment index is the predictor variable.
(a) Determine the proportion of variation in In-

ternet usage that is explained by linear re-
gression.

(b) Compare your answer in Part (a) with that
of Exercise 11.40. Comment.

11.42 Refer to Exercise 11.25.
(a) What proportion of the y variability is

explained by the linear regression on x?

Sy ySx ySx x

y � .6670x � 9.953

Sy ySx ySx x

y � 5.30x � 3.15

 Sx x � 994.038   Sx y � 6191.04   Sy y � 76,293.2 
 n � 20  x � 38.046  y � 89.20

(b) Find the sample correlation coefficient.

11.43 Refer to Exercise 11.28.

(a) What proportion of y variability is
explained by the linear regression on x?

(b) Find the sample correlation coefficient.

11.44 Refer to Exercise 11.33. According to the
computer output in Table 9, find the propor-
tion of y variability explained by x. Also,
calculate from the analysis of variance
table.

11.45 Refer to Exercise 11.35. According to the
computer output in Table 10, find the propor-
tion of y variability explained by x.

11.46 Consider the data on wolves in Table D.9 of
the Data Bank concerning body length (cm)
and weight ( lb). Calculate the correlation
coefficient r and for

(a) all wolves.

(b) male wolves.

(c) female wolves.

(d) Comment on the differences in your an-
swers. Make a multiple scatter diagram
(see Chapter 3) to clarify the situation.

*11.47 (a) Show that the sample correlation coeffi-
cient r and the slope of the fitted
regression line are related as

(b) Show that SSE � (1 � ) .

*11.48 Show that the SS due to regression,
can also be expressed as �̂ 1

2 Sx x .
Sx y

2 / Sx x ,

Sy yr  

2

r �
�̂1 √Sx x

√Sy y

�̂1

r  

2

R2
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8. REMARKS ABOUT THE STRAIGHT LINE MODEL ASSUMPTIONS

A regression study is not completed by performing a few routine hypothesis
tests and constructing confidence intervals for parameters on the basis of the
formulas given in Section 5. Such conclusions can be seriously misleading if
the assumptions made in the model formulations are grossly incompatible with
the data. It is therefore essential to check the data carefully for indications of
any violation of the assumptions. To review, the assumptions involved in the for-
mulation of our straight line model are briefly stated again.

1. The underlying relation is linear.

2. Independence of errors.

3. Constant variance.

4. Normal distribution.

Of course, when the general nature of the relationship between y and
x forms a curve rather than a straight line, the prediction obtained from fitting
a straight line model to the data may produce nonsensical results. Often, a
suitable transformation of the data reduces a nonlinear relation to one that is
approximately linear in form. A few simple transformations are discussed in
Chapter 12. Violating the assumption of independence is perhaps the most
serious matter, because this can drastically distort the conclusions drawn from
the t tests and the confidence statements associated with interval estimation.
The implications of assumptions 3 and 4 were illustrated earlier in Figure 3.
If the scatter diagram shows different amounts of variability in the y values for
different levels of x, then the assumption of constant variance may have been
violated. Here, again, an appropriate transformation of the data often helps to
stabilize the variance. Finally, using the t distribution in hypothesis testing and
confidence interval estimation is valid as long as the errors are approximately
normally distributed. A moderate departure from normality does not impair
the conclusions, especially when the data set is large. In other words, a viola-
tion of assumption 4 alone is not as serious as a violation of any of the other
assumptions. Methods of checking the residuals to detect any serious violation
of the model assumptions are discussed in Chapter 12.

USING STATISTICS WISELY

1. As a first step, plot the response variable versus the predictor variable.
Examine the plot to see if a linear or some other relationship exists.

2. Apply the principal of least squares to obtain estimates of the coeffi-
cients when fitting a straight line model.

3. Determine the 100(1  � 	 )% confidence intervals for the slope and in-
tercept parameters. You can perform a test of hypotheses and look at
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P–values to decide whether or not the parameters are zero. If not, you
can use the fitted line for prediction.

4. Don’t use the fitted line to make predictions beyond the range of the
data. The model may be different over that range.

5. Don’t assume a large , or correlation, implies a causal relationship.

KEY IDEAS AND FORMULAS

In its simplest form, regression analysis deals with studying the manner in
which the response variable y depends on a predictor variable x. Sometimes,
the response variable is called the dependent variable and predictor variable is
called the independent or input variable.

The first important step in studying the relation between the variables y and x
is to plot the scatter diagram of the data ( ), i � 1, . . . , n. If this plot indi-
cates an approximate linear relation, a straight line regression model is formulated:

� � �              

The random errors are assumed to be independent, normally distributed, and
have mean 0 and equal standard deviations �.

The least squares estimate and least squares estimate are obtained 
by the method of least squares, which minimizes the sum of squared deviations
� The least squares estimates and determine the
best fitting regression line which serves to predict y from x.

The differences Observed response � Predicted response are
called the residuals.

The adequacy of a straight line fit is measured by , which represents the
proportion of y variability that is explained by the linear relation between y and
x. A low value of only indicates that a linear relation is not appropriate—
there may still be a relation on a curve.

Least squares estimators

Best fitting straight line

Residuals

ê i � yi � ŷ i � yi � �̂0 � �̂1 
xi

ŷ � �̂0 � �̂1 x

�̂1 �
Sx y

Sx x
   �̂0 � y � �̂1 x

r  

2

r  

2

yi � ŷ i �

ŷ � �̂0 � �̂1 x ,
�̂1�̂0( yi � b0 � b 1 x  i )2.

�̂1�̂0

ei�1x i�0Yi

Response � A straight line in x � Random error

xi , yi

r  

2

KEY IDEAS AND FORMULAS 477
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Residual sum of squares

Estimate of variance �2

Inferences
1. Inferences concerning the slope are based on the

and the sampling distribution

A 100(1 � 	)% confidence interval for is

To test � � , the test statistic is

2. Inferences concerning the intercept are based on the

and the sampling distribution

A 100(1 � 	 )% confidence interval for is

�̂0 � t	 / 2 S � 
1
n

�
x2

Sx x

�0

T �
�̂0 � �0

S � 

1
n

�
x2

Sx x

   d.f. � n � 2

Estimated S.E. � S � 

1
n

�
x2

Sx x

Estimator �̂0 

�0

T �
�̂1 � �10

S / √ Sx x

   d.f. � n � 2

�10�1H0

�̂1 � t	/2 
S

√Sxx

�1

T �
�̂1 � �1

S / √ Sx x

   d.f. � n � 2

Estimated S.E. �
S

√ Sx x

Estimator �̂1 

�1

S2 �
SSE

n � 2

SSE � �
n

i � 1
 ê i

2 � Sy y �
Sx y 

2

Sx x
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3. At a specified the expected response is � x*. Inferences
about the expected response are based on the

A 100(1 � 	 )% confidence interval for the expected response at x* is
given by

4. A single response at a specified is predicted by with

A 100(1 � 	 )% prediction interval for a single response is

Decomposition of Variability

The total sum of squares is the sum of two components, the sum of squares

due to regression and the sum of squares due to error

Variability explained by the linear relation �

Residual or unexplained variability � SSE

Total y variability �

The strength of a linear relation, or proportion of y variability explained by
linear regression

Sample correlation coefficient

r �
Sx y

√Sx x Sy y

r 2 �
Sx y

2

Sx x 
Sy y

Sy y

Sx y
2

Sx x
� �̂ 1

2  Sx x

Syy �
S2

xy

Sxx
� SSE

S2
x y /Sx x

Sy y

�̂0 � �̂1 x* � t	 / 2 S � 1 �
1
n

�
( x* � x )2

Sx x

Estimated S.E. � S � 1 �
1
n

�
( x* � x )2

Sx x

�̂0 � �̂1  x*x � x*

�̂0 � �̂1 x* � t	 / 2 S � 

1
n

�
( x* � x )2

Sx x

Estimated S.E. � S � 

1
n

�
( x* � x )2

Sx x

Estimator �̂0 � �̂1 x* 

�1�0x � x*,
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TECHNOLOGY

Fitting a straight line and calculating the correlation coefficient

MINITAB

Fitting a straight line—regression analysis

Begin with the values for the predictor variable x in C1 and the response vari-
able y in C2.

Stat � Regression � Regression.
Type C2 in Response. Type C1 in Predictors.
Click OK.

To calculate the correlation coefficient, start as above with data in C1 and C2.

Stat � Basic Statistics � Correlation.
Type C1 C2 in Variables. Click OK.

EXCEL

Fitting a straight line—regression analysis

Begin with the values of the predictor variable in column A and the values of
the response variable in column B. To plot,

Highlight the data and go to Insert and then Chart.
Select XY(Scatter) and click Finish.
Go to Chart and then Add Trendline.
Click on the Options tab and check Display equation on chart.
Click OK.

To obtain a more complete statistical analysis and diagnostic plots, instead use
the following steps:

Select Tools and then Data Analysis.
Select Regression. Click OK.
With the cursor in the Y Range, highlight the data in column B.
With the cursor in the X Range, highlight the data in column A.
Check boxes for Residuals, Residual Plots, and Line Fit Plot. Click OK.

To calculate the correlation coefficient, begin with the first variable in column A
and the second in column B.

Click on a blank cell. Select Insert and then Function
(or click on the icon).
Select Statistical and then CORREL.
Highlight the data in column A for Array1 and highlight the data in column B
for Array2. Click OK.

fx
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TI-84/-83 PLUS

Fitting a straight line—regression analysis

Enter the values of the predictor variable in L1 and those of the response variable in L2.

Select STAT, then CALC, and then 4�LinReg (ax  �  b).
With LinReg on the Home screen, press Enter.

The calculator will return the intercept a, slope b, and correlation coefficient r.
If r is not shown, go to the 2nd 0 :CATALOG and select Diagnostic. Press
ENTER twice. Then go back to LinReg.

9. REVIEW EXERCISES
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11.49 Concerns that were raised for the environment
near a government facility led to a study of
plants. Since leaf area is difficult to measure,
the leaf area ( ) was fit to

using a least squares approach. For data collected
one year, the fitted regression line is

and Comment on the size of
the slope. Should it be positive or negative, less
than one, equal to one, or greater than one?

11.50 Last week’s total number of hours worked by a
student, y, depends on the number of days, x,
he reported to work last week. Suppose the
data from nine students provided

x 1 1 1 2 3 3 3 4 5

y 8 6 7 10 15 12 13 19 18

(a) Plot the scatter diagram.
(b) Calculate and 
(c) Determine the equation of the least

squares fitted line and draw the line on
the scatter diagram.

(d) Find the predicted number of hours y
corresponding to days.

11.51 Refer to Exercise 11.50.

(a) Find the residuals.

(b) Calculate the SSE by (i) summing the
squares of the residuals and also (ii) using
the formula SSE �

(c) Estimate the error variance.

Sy y � Sx y
2 / Sx x .

x � 3

Sx y 
 
.x , y , Sx x 

 
, Sy y 

 
,

s 
2 � ( 0.3 )2.

ŷ � .2 � 0.5 x

x � Leaf length � Leaf width

cm2

11.52 Refer to Exercise 11.50.

(a) Construct a 95% confidence interval for
the slope of the regression line.

(b) Obtain a 90% confidence interval for
the expected y value corresponding to

days.

11.53 An experiment is conducted to determine how
the strength y of plastic fiber depends on the
size x of the droplets of a mixing polymer in
suspension. Data of (x, y ) values, obtained
from 15 runs of the experiment, have yielded
the following summary statistics.

(a) Obtain the equation of the least squares
regression line.

(b) Test the null hypothesis � � �2
against the alternative � � �2,
with 	 � .05.

(c) Estimate the expected fiber strength for
droplet size x � 10 and set a 95% confi-
dence interval.

11.54 Refer to Exercise 11.53.

(a) Obtain the decomposition of the total
y variability into two parts: one 
explained by linear relation and one not
explained.

(b) What proportion of the y variability is
explained by the straight line regression?

(c) Calculate the sample correlation coeffi-
cient between x and y.

�1H1

�1H0

Sx x � 5.6  Sx y � �12.4  Sy y � 38.7
y � 54.8x � 8.3

x � 4
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11.55 A recent graduate moving to a new job col-
lected a sample of monthly rent (dollars ) and
size ( square feet ) of 2-bedroom apartments in
one area of a midwest city.

(a) Plot the scatter diagram and find the least
squares fit of a straight line.

(b) Do these data substantiate the claim that
the monthly rent increases with the size
of the apartment? (Test with 	 � .05).

(c) Give a 95% confidence interval for the
expected increase in rent for one addi-
tional square foot.

(d) Give a 95% prediction interval for the
monthly rent of a specific apartment hav-
ing 1025 square feet.

11.56 Refer to Exercise 11.55.

(a) Calculate the sample correlation coefficient.

(b) What proportion of the y variability is
explained by the fitted regression line?

11.57 A Sunday newspaper lists the following used-
car prices for a foreign compact, with age x
measured in years and selling price y measured
in thousands of dollars.

(a) Plot the scatter diagram.

(b) Determine the equation of the least
squares regression line and draw this line
on the scatter diagram.

(c) Construct a 95% confidence interval for
the slope of the regression line.

11.58 Refer to Exercise 11.57.

(a) From the fitted regression line, determine
the predicted value for the average selling

price of a 5-year-old car and construct a
95% confidence interval.

(b) Determine the predicted value for a 
5-year-old car to be listed in next week’s
paper. Construct a 90% prediction interval.

(c) Is it justifiable to predict the selling price
of a 15-year-old car from the fitted regres-
sion line? Give reasons for your answer.

11.59 Again referring to Exercise 11.57, find the sam-
ple correlation coefficient between age and sell-
ing price. What proportion of the y variability is
explained by the fitted straight line? Comment
on the adequacy of the straight line fit.

11.60 Refer to Table 5 for crimes on campus during
the year 2007. When predicting number of
arson incidents from the predictor number of
robberies, we have

(a) Find the equation of the least squares
regression line.

(b) Calculate the sample correlation coeffi-
cient between x and y.

(c) Comment on the adequacy of the straight
line fit.

The Following Exercises Require a Computer

11.61 Using the computer. The calculations involved
in a regression analysis become increasingly
tedious with larger data sets. Access to a com-
puter proves to be of considerable advantage.
We repeat here a computer-based analysis of
linear regression using the data of Example 4
and the MINITAB package.

The sequence of steps in MINITAB:

� x2 � 1180  � x y � 624  � y2 � 557
 n � 20  x � 5.30  y � 3.15

Size Rent

900 750
925 775
932 820
940 820

Size Rent

1000 850
1033 875
1050 915
1100 1040

x y

1 17.9
2 13.9
2 14.9
4 14.0
4 9.8

x y

5 9.9
7 6.6
7 6.7
8 7.0

Data: C11T3.txt

C1: 3 3 4 5 6 6 7 8 8 9
C2: 9 5 12 9 14 16 22 18 24 22
Dialog box:

Stat Regression Regression
Type C2 in Response
Type C1 in Predictors. Click OK.

QQ
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produces all the results that are basic to a
linear regression analysis. The important
pieces in the output are shown in Table 11.

Compare Table 11 with the calculations
illustrated in Sections 4 to 7. In particular,
identify:

(a) The least squares estimates.

(b) The SSE.

(c) The estimated standard errors of and .

(d) The t statistics for testing : � 0
and : � 0.

(e) .

(f) The decomposition of the total sum of
squares into the sum of squares explained
by the linear regression and the residual
sum of squares.

11.62 Consider the data on all of the wolves in Table
D.9 of the Data Bank concerning body length
(cm) and weight ( lb). Using MINITAB or
some other software program:

(a) Plot weight versus body length.

(b) Obtain the least squares fit of weight to
the predictor variable body length.

(c) Test � � 0 versus � � 0
with 	 � .05.

�1H1�1H0

r  

2

�1H0

�0H0

�̂1�̂0

11.63 Refer to Exercise 11.62 and a least squares fit us-
ing the data on all of the wolves in Table D.9 of
the Data Bank concerning body length (cm) and
weight ( lb). There is one obvious outlier, row 18
with body length 123 and weight 106, indicated
in the MINITAB output. Drop this observation.

(a) Obtain the least squares fit of weight to
the predictor variable body length.

(b) Test : � 0 versus : � 0
with 	 � .05.

(c) Comment on any important differences
between your answers to parts (a) and
(b) and the answer to Exercise 11.62.

11.64 Many college students obtain college degree
credits by demonstrating their proficiency on
exams developed as part of the College Level
Examination Program (CLEP). Based on their
scores on the College Qualification Test
(CQT), it would be helpful if students could
predict their scores on a corresponding por-
tion of the CLEP exam. The following data
(courtesy of R. W. Johnson) are for Total
CQT score and Mathematical CLEP
score.

(a) Find the least squares fit of a straight line.

(b) Construct a 95% confidence interval for
the slope.

y �
x �

�1H1�1H0

9. REVIEW EXERCISES 483

TABLE 11 MINITAB Regression Analysis of the Data in Example 4

THE REGRESSION EQUATION IS
Y � �1.07 � 2.74x

PREDICTOR COEF STDEV T-RATIO P
CONSTANT �1.071 2.751 �0.39 0.707
X 2.7408 0.4411 6.21 0.000

S � 2.821 R-SQ � 82.8%

ANALYSIS OF VARIANCE

SOURCE DF SS MS F P
REGRESSION 1 307.25 307.25 38.62 0.000
ERROR 8 63.65 7.96
TOTAL 9 370.90
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(c) Construct a 95% prediction interval for
the CLEP score of a student who obtains
a CQT score of 150.

(d) Repeat part (c) with and

11.65 Crickets make a chirping sound with their wing
covers. Scientists have recognized that there is
a relationship between the frequency of chirps
and the temperature. Use the 15 measurements
for the striped ground cricket to:
(a) Fit a least squares line.
(b) Obtain a 95% confidence interval for the

slope.
(c) Predict the temperature when 

chirps per second.
x � 15

x � 195.
x � 175

11.66 Use MINITAB or some other software to
obtain the scatter diagram, correlation coeffi-
cient, and the regression line of the final time
to run 1.5 miles on the initial times given in
Table D.5 of the Data Bank.

11.67 Use MINITAB or some other software pro-
gram to regress the marine growth on freshwa-
ter growth for the fish growth data in Table
D.7 of the Data Bank. Do separate regression
analyses for:

(a) All fish.

(b) Males.

(c) Females.

Your analysis should include (i) a scatter dia-
gram, (ii) a fitted line, (iii) a determination if

differs from zero. Also (iv) find a 95% confi-
dence interval for the population mean when
the freshwater growth is 100.

11.68 The data on the maximum height (feet) and
top speed (mph) of the 12 highest roller coast-
ers, displayed in the chapter opener, are

�1

x y

170 698
147 518
166 725
125 485
182 745
133 538
146 485
125 625
136 471
179 798

x y

174 645
128 578
152 625
157 558
174 698
185 745
171 611
102 458
150 538
192 778

Chirps (per second) Temperature (°F)
(x) (y)

20.0 88.6
16.0 71.6
19.8 93.3
18.4 84.3
17.1 80.6
15.5 75.2
14.7 69.7
17.1 82.0
15.4 69.4
16.3 83.3
15.0 79.6
17.2 82.6
16.0 80.6
17.0 83.5
14.4 76.3

Source: G. Pierce, The Songs of Insects, Cambridge,
MA: Harvard University Press, 1949, pp. 12–21.

Height Speed

456 128
420 120
415 100
377 107
318 95
310 93
263 81
259 81
249 78
245 85
240 79
235 85

(a) Use MINITAB or some other software pro-
gram to determine the proportion of varia-
tion in speed due to regression on height.

(b) What top speed is predicted for a new
roller coaster of height 425 feet?

(c) What top speed is predicted for a new
roller coaster of height 490 feet?
What additional danger is there in this
prediction?

484 CHAPTER 11/REGRESSION ANALYSIS I
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Micronutrients and Kelp Cultures: 
Evidence for Cobalt and Manganese Deficiency

in Southern California Deep Seawater
Abstract. It has been suggested that naturally occurring copper and zinc concentra-
tions in deep seawater are toxic to marine organisms when the free ion forms are
overabundant. The effects of micronutrients on the growth of gametophytes of the eco-
logically and commercially significant giant kelp Macrocystis pyrifera were studied
in defined media. The results indicate that toxic copper and zinc ion concentrations
as well as cobalt and manganese deficiencies may be among the factors controlling
the growth of marine organisms in nature.

A least squares fit of gametophytic growth data in the defined medium gener-
ated the expression

(1)

where Y is mean gametophytic length in micrometers. The fit of the experimen-
tal data to Eq. (1) was considered excellent.

Here, several variables are important for predicting growth.

�18x2
Co � 6xCux2

Zn � 6xCux2
Mn

 �7xZnxCu � 15x2
Zn � 27x2

Mn � 12x2
Cu

Y � 136 � 8xMn � 5xCu � 7xCo 

Source: J. S. Kuwabara, “Micronutrients and Kelp Cultures: Evidence for Cobalt and Manganese
Deficiency in Southern California Deep Sea Waters,” Science, 216 (June 11, 1982), pp. 1219–1221.
Copyright © 1982 by AAAS.

© David Hall/Photo Researchers, Inc.
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1. INTRODUCTION

The basic ideas of regression analysis have a much broader scope of application
than the straight line model of Chapter 11. In this chapter, our goal is to extend
the ideas of regression analysis in two important directions.

1. To handle nonlinear relations by means of appropriate transformations
applied to one or both variables.

2. To accommodate several predictor variables into a regression model.

These extensions enable the reader to appreciate the breadth of regression
techniques that are applicable to real-life problems. We then discuss some
graphical procedures that are helpful in detecting any serious violation of the as-
sumptions that underlie a regression analysis.

2. NONLINEAR RELATIONS AND 
LINEARIZING TRANSFORMATIONS

When studying the relation between two variables y and x, a scatter plot of the
data often indicates that a relationship, although present, is far from linear. This
can be established on a statistical basis by checking that the value of is small
so a straight line fit is not adequate.

Statistical procedures for handling nonlinear relationships are more compli-
cated than those for handling linear relationships, with the exception of a spe-
cific type of model called the polynomial regression model, which is discussed
in Section 3. In some situations, however, it may be possible to transform the
variables x and/or y in such a way that the new relationship is close to being lin-
ear. A linear regression model can then be formulated in terms of the trans-
formed variables, and the appropriate analysis can be based on the transformed
data.

Transformations are often motivated by the pattern of data. Sometimes,
when the scatter diagram exhibits a relationship on a curve in which the y values
increase too fast in comparison with the x values, a plot of or some other frac-
tional power of y can help to linearize the relation. This situation is illustrated in
Example 1.

Example 1 Transforming the Response to Approximate a Linear Relation
To determine the maximum stopping ability of cars when their brakes are
fully applied, 10 cars are driven each at a specified speed and the distance
each requires to come to a complete stop is measured. The various initial
speeds selected for each of the 10 cars and the stopping distances recorded
are given in Table 1. Can the data be transformed to a nearly straight line 
relationship?

√y

r 2
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SOLUTION The scatter diagram for the data appears in Figure 1. The relation deviates
from a straight line most markedly in that y increases at a much faster rate at
large x than at small x. This suggests that we can try to linearize the relation
by plotting or some other fractional power of y with x.√ y

488 CHAPTER 12/REGRESSION ANALYSIS II

TABLE 1 Data on Speed and Stopping Distance

20 20 30 30 30 40 40 50 50 60

16.3 26.7 39.2 63.5 51.3 98.4 65.7 104.1 155.6 217.2
Stopping

distance y (ft)

Initial speed x
(mph)

We try the transformed data given in Table 2. The scatter diagram 
for these data, which exhibits an approximate linear relation, appears in
Figure 2.

√ y

TABLE 2 Data on Speed and Square Root of Stopping Distance

x 20 20 30 30 30 40 40 50 50 60

4.037 5.167 6.261 7.969 7.162 9.920 8.106 10.203 12.474 14.738y� � √ y

y

200

150

100

50

0 10 20 30 40 50 60 x

Figure 1 Scatter diagram of the data given 
in Table 1.
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With the aid of a standard computer program for regression analysis
(see Exercise 12.27), the following results are obtained by transforming the
original data.

Thus, the equation of the fitted line is

The proportion of the y� variation that is explained by the straight line
model is

A few common nonlinear models and their corresponding linearizing trans-
formations are given in Table 3.

r2 �
( 381.621 )2

(1610 ) ( 97.773 )
� .925

ŷ� � � .167 � .237x

�̂1 � .237�̂0 � � .167

Sxy� � 381.621Sy�y� � 97.773Sxx � 1610

y� � 8.604x � 37
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y

15

10

10 20 30 40 50 60

5

0
x

Figure 2 Scatter diagram of the transformed data
given in Table 2.

TABLE 3 Some Nonlinear Models and Their Linearizing Transformations

Transformed Model

Nonlinear Model Transformation

(a)

(b)

(c)

(d) �1 � b�0 � ax� � √xy� � yy � a � b√x

�1 � b�0 � ax� � xy� �
1
y

y �
1

a � b x

�1 � b�0 � log ax� � log xy� � log yy � a xb
�1 � b�0 � loge ax� � xy� � loge yy � ae bx

y� � �0 � �1x�
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In some situations, a specific nonlinear relation is strongly suggested by ei-
ther the data or a theoretical consideration. Even when initial information about
the form is lacking, a study of the scatter diagram often indicates the appropri-
ate linearizing transformation.

Once the data are entered on a computer, it is easy to obtain the trans-

formed data 1/y, loge y, , and . Note is obtained by taking the

square root of . A scatter plot of versus x or any number of others
can then be constructed and examined for a linear relation. Under relation (a) in
Table 3, the graph of y versus x would be linear.

We must remember that all inferences about the transformed model are
based on the assumptions of a linear relation and independent normal errors
with constant variance. Before we can trust these inferences, this transformed
model must be scrutinized to determine whether any serious violation of these
assumptions may have occurred (see Section 4).

Exercises

loge

loge√ yy1/2
y1/4y1/4y1/2

490 CHAPTER 12/REGRESSION ANALYSIS II

Temperature x Failure Time y
( ) (thousand hours)

180 7.3, 7.9, 8.5, 9.6, 10.3
210 1.7, 2.5, 2.6, 3.1
230 1.2, 1.4, 1.6, 1.9
250 .6, .7, 1.0, 1.1, 1.2

�C

12.1 Developers have built a small robotic vehicle that
can travel over rough  terrain. They recorded the
time y, in minutes, that it takes to travel  a fixed dis-
tance over various but similar terrains. For a fixed
run, the  robot’s motor is set at a nominal speed x,
in feet per second, but this varied from run to run.

x .5 1 2 4 5 6 7

y 4.6 3.2 2.1 1.7 .9 .7 .8

(a) Plot the scatter diagram.

(b) Obtain the best fitting straight line and
draw it on the scatter diagram.

(c) What proportion of the y variability is
explained by the fitted line?

12.2 Refer to the data of Exercise 12.1.

(a) Consider the reciprocal transformation
y� � 1/y and plot the scatter diagram of
y� versus x.

(b) Fit a straight line regression to the trans-
formed data.

(c) Calculate and comment on the ade-
quacy of the fit.

12.3 Find a linearizing transformation in each case.

(a) y �
1

(a � bx)3

r 2

(b)

12.4 An experiment was conducted for the purpose
of studying the effect of temperature on the
life-length of an electrical insulation. Specimens
of the insulation were tested under fixed tem-
peratures, and their times to failure recorded.

(a) Fit a straight line regression to the trans-
formed data

(b) Is there strong evidence that an increase
in temperature reduces the life of the
insulation?

(c) Comment on the adequacy of the fitted
line.

x� �
1
x
  and  y� � log y

1
y

� a �
b

1 � x
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12.5 In an experiment (courtesy of W. Burkholder)
involving stored-product beetles (Trogoderma
glabrum) and their sex-attractant pheromone,
the pheromone is placed in a pit-trap in
the centers of identical square arenas. Marked

beetles are then released along the diagonals
of each square at various distances from the
pheromone source. After 48 hours, the pit-
traps are inspected. Control pit-traps contain-
ing no pheromone capture no beetles.

(a) Plot the original data with y � number
of beetles captured. Also plot y with x �

(distance).

(b) Fit a straight line by least squares to the
appropriate graph in part (a).

(c) Construct a 95% confidence interval for
.

(d) Establish a 95% confidence interval for the
mean at a release distance of 18 cm.

�1

loge

3. MULTIPLE LINEAR REGRESSION 491

Release
Distance No. of Beetles

(centimeters) Captured out of 8

6.25 5, 3, 4, 6
12.5 5, 2, 5, 4
24 4, 5, 3, 0
50 3, 4, 2, 2

100 1, 2, 2, 3

3. MULTIPLE LINEAR REGRESSION

A response variable y may depend on a predictor variable x but, after a
straight line fit, it may turn out that the unexplained variation is large, so 
is small and a poor fit is indicated. At the same time, an attempt to transform
one or both of the variables may fail to dramatically improve the value of .
This difficulty may well be due to the fact that the response depends on
not just x but other factors as well. When used alone, x fails to be a good
predictor of y because of the effects of those other influencing variables. For
instance, the yield of a crop depends on not only the amount of fertilizer
but also on the rainfall and average temperature during the growing season.
Cool weather and no rain could completely cancel the choice of a correct
fertilizer.

To obtain a useful prediction model, one should record the observations
of all variables that may significantly affect the response. These other
variables may then be incorporated explicitly into the regression analysis.
The name multiple regression refers to a model of relationship where the
response depends on two or more predictor variables. Here, we discuss the
main ideas of a multiple regression analysis in the setting of two predictor
variables.

Suppose that the response variable y in an experiment is expected to be
influenced by two input variables and , and the data relevant to these
input variables are recorded along with the measurements of y. With n
runs of an experiment, we would have a data set of the form shown in
Table 4.

x2x1

r 2

r 2
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492 CHAPTER 12/REGRESSION ANALYSIS II

By analogy with the simple linear regression model, we can then tentatively
formulate:

This model suggests that aside from the random error, the response varies
linearly with each of the independent variables when the other remains fixed.

The principle of least squares is again useful in estimating the regression
parameters. For this model, we are required to vary , , and simultane-
ously to minimize the sum of squared deviations

The least squares estimates and are the solutions to the following
equations, which are extensions of the corresponding equations for fitting the
straight line model (see Section 4 of Chapter 11.)

�̂2�̂1 ,�̂0 ,

�
n

i � 1
 ( yi � b0 � b1xi1 � b2 xi2 )2

b2b1b0

A Multiple Regression Model

� � � � i � 1, . . . , n

where and are the values of the input variables for the i th experi-
mental run and is the corresponding response.

The error components are assumed to be independent normal
variables with mean 0 and variance .

The regression parameters , , and are unknown and so is .�2 �2�1�0

�2 
ei

Yi

xi2xi1

eixi2�2xi1�1�0Yi

TABLE 4 Data Structure for Multiple Regression 
with Two Input Variables

Experimental Input Variables Response
Run y

1
2
� � � �
� � � �
� � � �
i
� � � �
� � � �
� � � �
n ynxn2xn1

yixi2xi1

y2x22x21

y1x12x11

x2x1
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where , , and so on, are the sums of squares and cross products of devia-
tions of the variables indicated in the suffix. They are computed just as in a straight
line regression model. Methods are available for interval estimation, hypothesis test-
ing, and examining the adequacy of fit. In principle, these methods are similar to
those used in the simple regression model, but the algebraic formulas are more com-
plex and hand computations become more tedious. However, a multiple regression
analysis is easily performed on a computer with the aid of the standard packages
such as MINITAB, SAS, or SPSS. We illustrate the various aspects of a multiple
regression analysis with the data of Example 2 and computer-based calculations.

Example 2 Interpreting the Regression of Blood Pressure on Weight and Age
We are interested in studying the systolic blood pressure y in relation to
weight and age in a class of males of approximately the same height.
From 13 subjects preselected according to weight and age, the data set listed
in Table 5 was obtained.

x2x1

S12S11

�̂0 � y � �̂1 x1 � �̂2 x2

�̂1 S12 � �̂2 S22 � S2y

�̂1 S11 � �̂2 S12 � S1y
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TABLE 5 The Data of � Weight
in Pounds, � Age, and 
y � Blood Pressure
of 13 Males

y

152 50 120
183 20 141
171 20 124
165 30 126
158 30 117
161 50 129
149 60 123
158 50 125
170 40 132
153 55 123
164 40 132
190 40 155
185 20 147

x2x1

x2

x1

Use a computer package to perform a regression analysis using the model

Yi � �0 � �1 xi1 � �2 xi2 � ei
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SOLUTION To use MINITAB, we first enter the data of , , and y in three different
columns and then use the regression command,

With the last command, the computer executes a multiple regression analysis.
We focus our attention on the principal aspects of the output, as shown in 
Table 6.

x2x1
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Data: C12T5.txt

C1: 152 183 171 � � � 185

C2: 50 20 20 � � � 20

C3: 120 141 124 � � � 147

Dialog box:

Stat Q Regression Q Regression

Type C3 in Response.

Type C1 and C2 in Predictors.

Click OK.

TABLE 6 Regression Analysis of the Data in Table 5: 
Selected MINITAB Output

➀ THE REGRESSION EQUATION IS
Y � � 65.1 � 1.08 X1 � 0.425 X2

PREDICTOR COEF STDEV T-RATIO P
CONSTANT � 65.10 14.94 � 4.36 0.001
X1 ➁ 1.07710 0.07707 13.98 0.000
X2 0.42541 0.07315 ➃ 5.82 0.000

➂ S � 2.509 ➄ R-SQ � 95.8%

ANALYSIS OF VARIANCE

SOURCE DF SS MS F P
REGRESSION 2 1423.84 711.92 113.13 0.000
ERROR 10 ➅ 62.93 6.29
TOTAL 12 1486.77 
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We now proceed to interpret the results in Table 6 and use them to make
further statistical inferences.

(i) The equation of the fitted linear regression is

➀

This means that the mean blood pressure increases by 1.08 if
weight increases by one pound and age remains fixed. Simi-
larly, a 1-year increase in age with the weight held fixed will only
increase the mean blood pressure by .425.

(ii) The estimated regression coefficient and the corresponding esti-
mated standard errors are

➁

➂ Further, the error standard deviation s is estimated by s � 2.509
with

These results are useful in interval estimation and hypothesis tests
about the regression coefficients. In particular, a 100(1 � a)%
confidence interval for a coefficient b is given by

where is the upper a/2 point of the distribution with d.f. � 10.

For instance, a 95% confidence interval for is

To test the null hypothesis that a particular coefficient b is zero, we
employ the test statistic

These t-ratios appear in Table 6. Suppose that we wish to examine
whether the mean blood pressure significantly increases with age.
In the language of hypothesis testing, this problem translates to one
of testing � � 0 versus � 	 0. The observed value of the 

➃ test statistic is t � 5.82 with d.f. � 10. Since this is larger than the
tabulated value � 2.764, the null hypothesis is rejected in favor
of , with a � .01. In fact, it is rejected even with a � .005.H1

t.01

�2H1�2H0

t �
Estimated coefficient � 0

Estimated S.E.
  d.f. � 10

� 1.07710 
 .17171  or  ( .905, 1.249 )
1.07710 
 2.228 � .07707

�1

t� 
  2

Estimated coefficient 
 t� / 2 ( Estimated S.E. )

 � 10
 � 13 � 2 � 1

Degrees of freedom � n � ( No. of input variables ) � 1

Estimated S.E. ( �̂2 

) � .07315�̂2 � .42541

Estimated S.E. ( �̂1 

) � .07707�̂1 � 1.07710

Estimated S.E. ( �̂0 

) � 14.94�̂0 � �65.10

x2x1

ŷ � �65.1 � 1.08x1 � .425x2
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(iii) In Table 6, the result “R-SQ � 95.8%” or

➄

tells us that 95.8% of the variability of y is explained by the fitted
multiple regression of y on and . The “analysis of variance”
shows the decomposition of the total variability �
1486.77 into the two components.

➅ 1486.77 � 1423.84 � 62.93

Total variability Variability explained Residual or
of y by the regression of unexplained

y on and variability

Thus,

and is estimated by � 62.93/10 � 6.293, so s � 2.509
[checks with s from (ii)].

s2�  

2

R2 �
1423.84
1486.77

� .958

x2x1

( yi � y  )2 �

x2x1

R2 � .958
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TABLE 7 A Regression Analysis of the Data in Example 2 Using SAS

MODEL: MODEL 1
DEPENDENT VARIABLE: Y

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB	F

MODEL 2 1423.83797 711.91898 113.126 0.0001
ERROR 10 ➅ 62.93126 6.29313
C TOTAL 12 1486.76923

➂ ROOT MSE 2.50861 ➄ R-SQUARE 0.9577

PARAMETER ESTIMATES

PARAMETER STANDARD T FOR H0:
VARIABLE DF ESTIMATE ERROR PARAMETER � 0 PROB

INTERCEP 1 � 65.099678 14.94457547 � 4.356 0.0014
X1 1 ➁ 1.077101 0.07707220 13.975 0.0001
X2 1 0.425413 0.07315231 ➃ 5.815 0.0002

	 � T �
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The square of the multiple correlation coefficient gives the proportion
of variability in y explained by the fitted multiple regression.

The output from the SAS package is given in Table 7. The quantities
needed in our analysis have been labeled with the same circled numbers as in
the MINITAB output.

Example 3 Computer-Aided Regression Analysis—Two Predictors
The times for 81 students to complete a rowing test both before and after com-
pleting a one-semester conditioning course are given in Table D.5 in the Data
Bank. It may be that not only the pretest rowing time but also gender would be
useful for predicting the posttest rowing time. Perform a regression analysis.

SOLUTION We use MINITAB to obtain the output

Regression Analysis: Post row versus Pre row, Gender

The regression equation is
Post row � 97.3 � 0.726 Pre row � 32.1 Gender

Predictor Coef SE Coef T P
Constant 97.33 31.68 3.07 0.003
Pre row 0.72573 0.05487 13.23 0.000
Gender 32.083 9.756 3.29 0.002

S  � 31.8137 R-Sq  � 85.7% R-Sq(adj)  � 85.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 471547 235774 232.95 0.000
Residual Error 78 78945 1012
Total 80 550492

Which variables should be used to predict posttest rowing time? Reading
from the column of P–values for the individual coefficients, the largest is only
.003. The constant term and the coefficients of pretest rowing time and gender
are significantly different from 0.All three terms are needed in the model.

The plot of residuals versus fit in Figure 3 on page 498 reveals a constant
width band so there is no evidence against the assumption of constant vari-
ance. The one large negative residual is case 17 and the two large positive
residuals are cases 29 and 70.

POLYNOMIAL REGRESSION

A scatter diagram may exhibit a relationship on a curve for which a suitable lin-
earizing transformation cannot be constructed. Another method of handling
such a nonlinear relation is to include terms with higher powers of x in the
model Y � � � e. In this instance, by including the second power
of x, we obtain the model

�1 x�0

R2
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i � 1, . . . , n

which states that aside from the error components , the response y is a
quadratic function (or a second-degree polynomial ) of the independent vari-
able x. Such a model is called a polynomial regression model of y with x, and
the highest power of x that occurs in the model is called the degree or the
order of the polynomial regression. It is interesting to note that the analysis
of a polynomial regression model does not require any special techniques
other than those used in multiple regression analysis. By identifying x and 
as the two variables and , respectively, this second-degree polynomial
model reduces to the form of a multiple regression model:

i � 1, . . . , n

where and In fact, both these types of models and many
more types are special cases of a class called general linear models [1, 2].

Before we talk about the general linear model, let’s look at an example
which analyzes a second-degree polynomial model.

Example 4 Fitting a Quadratic Relation of a Human Development Index to
Internet Usage
Refer to Chapter 11, Example 9, concerning the development of a country
measured by the Human Development Index (HDI) and the predictor variable
Internet usage per 100 persons. Although we randomly selected only fifteen
countries, of the 152 countries, below the twenty-five most developed there is
still an indication that the relation is increasing less rapidly for high Internet us-
age. Fit a quadratic and test whether or not squared term is required.

SOLUTION We fit the quadratic model using
MINITAB and obtain the output.

Yi � �0 � �1 xi � �2 xi
2 � ei 

xi 2 � x2
i  .xi 1 � x i

Yi � �0 � �1xi1 � �2 xi2 � ei 

x2x1

x 
2

ei

Yi � �0 � �1xi � �2 x 
2 

i � e i 
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Figure 3 Residuals of posttest row times versus fits.
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The regression equation is
HDI � 0.452 � 0.0356 Internet � 0.000789 Internet Sq

Predictor Coef SE Coef T P
Constant 0.45213 0.02315 19.53 0.000
Internet 0.035648 0.005557 6.41 0.000
Internet Sq �0.00078930.0002322 -3.40 0.005

S  � 0.0507320 R-Sq  � 92.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 0.38684 0.19342 75.15 0.000
Residual Error 12 0.03088 0.00257
Total 14 0.41772

According to the output, the estimated coefficient of is =  �.0007893 
and the t test for testing : =  0 versus : 0 has P� value 

P [T  < �3.4]  �  P [T  > 3.4]  =  .005 

as indicated under P in the MINITAB output. This gives strong evidence that a
quadratic term is needed. Note that the proportion of variation in HDI explained
by Internet usage has increased to .926 as indicated in the output R-Sq  =  92.6%.

The data and fitted curve, shown in Figure 4, illustrate the bend in the
straight line relation at the few higher values of Internet usage. The quadratic
fit is still not ideal because it starts to turn down over the range of the experi-
ment, whereas the underlying relation is likely to always increase. This reminds
us that there is no “true model,” but proposed models are only approximations.

��2H1�2H0

�̂2x 
2

3. MULTIPLE LINEAR REGRESSION 499

Figure 4 Quadratic Fit to HDI by Internet Usage
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GENERAL LINEAR MODEL

By virtue of its wide applicability, the multiple linear regression model plays a
prominent role in the portfolio of a statistician. Although a complete analysis
cannot be given here, the general structure of a multiple regression model merits
further attention. We have already mentioned that most least squares analyses of
multiple linear regression models are carried out with the aid of a computer.
All the programs for implementing the analysis require the investigator to pro-
vide the values of the response and the p input variables , . . . , for each
run i � 1, 2, . . . , n. In writing 1 � , where 1 is the known value of an extra 
“dummy” input variable corresponding to , the model is�0

�0

x i px i 1yi
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Input variables

� 1 � �0 � xi1 �1 � xi2 �2 � � � � � xip �p �
Observation

Yi

Error

ei

This is called a linear model because it is linear in the ‘s. That is, there are no
terms such as or .

The basic quantities can be arranged in the form of these arrays, which are
denoted by boldface letters.

Observation Input variables

Only the arrays y and X are required to obtain the least squares estimates of b0 ,
, . . . , that minimize

The input array X is called the design matrix.
In the same vein, setting

e � �
e1
e2
�

�

�

en

�   and  � � �
�0
�1
�

�

�

�p

�
�
n

i � 1
 ( yi � b0 � x i1 b1 � ��� � x i p  bp)2

�p�1

y � �
y1
y2
�

�

�

yi
�

�

�

yn

�   X � �
1
1
�

�

�

1
�

�

�

1

x11
x21

�

�

�

xi1
�

�

�

xn1

���

���

���

���

���

���

���

���

���

���

x1p
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�

�

�

xip
�
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we can write the model in the suggested form

Design
Observation matrix Parameter Error

y � X � � e

which forms the basis for a thorough but more advanced treatment of regression.

Exercises

3. MULTIPLE LINEAR REGRESSION  501

12.6 A student fit the regression model Y � �

� � e to data  from the fifty states
and Washington, D.C., so n =  51.The response  y
= median income in thousands of dollars and the
two predictor variables are =  median monthly
housing costs for home owners and =  percent-
age of persons below the poverty level in the last
twelve  months.The least squares estimates are

Predict the response for

(a)

(b)

(c)

12.7 Consider the multiple linear regression model

where � � 2, � � 1, � 3, and
the normal random variable e has standard de-
viation 3. What is the mean of the response Y
when � 3 and � � 2?

12.8 In Exercise 12.6, suppose that the residual sum
of squares (SSE) is 167.7 and the SS due to
regression is 2538.7.

(a) Estimate the error standard deviation s.
State the degrees of freedom.

(b) Find and interpret the result.

12.9 Refer again to Exercise 12.6 and assume that the
assumptions about the model prevail. The esti-
mated standard errors of and are .00107,
and .0977, respectively.
(a) Determine a 95% confidence interval for

.

(b) Test � � .0140 versus � 	

.0140, with a � .05.
�1H1�1H0

�2

�̂2�̂1 ,

R2

x2x1

�2�1�0

Y � �0 � �1  
x1 � �2  x2 � e

x1 � 1400,  x2 � 15

x1 � 1200,  x2 � 15

x1 � 1200,  x2 � 13

�̂0 � 38.413  �̂1 � .0166  �̂2 � 1.008

x2

x1

�2 x2�1 x1

�0
12.10 Consider the data on all of the wolves in Table

D.9 of the Data Bank concerning age (years)
and canine length (mm).

(a) Obtain the least squares fit of the straight
line regression model Y � � �
e to predict canine length from age.

(b) Obtain the least squares fit of the multi-
ple regression model Y � � �

� e to predict canine length using
age and body length .

(c) What is the predicted canine length for a
wolf of age 2.5 and body length 127?

(d) What proportion of the y variability is
explained by the fitted model in Part (b)?

(e) Obtain 95% confidence intervals for ,
, and .

12.11 Consider the response variable miles per gallon on
highways and the two predictor variables 
engine volume (l) and size of battery (v).
Using the government 2009 Fuel Economy Guide,
and the data on  hybrid-electric cars and SUVs,
we obtain the regression analysis given  in Table 8.

(a) Identify the least squares estimates 
and 

(b) What model is suggested from this analysis?

(c) What is the proportion of y variability
explained by the regression on and ?

(d) Estimate .

12.12 Laptop computers are advertised every week
by several stores. From  one Sunday paper in
March 2009, the response variable hard disk
size(GB) and the two predictor variables 

read-only memory(GB) and screen
size (in) were recorded. The output from a re-
gression  analysis is given in Table 9, page 502.

x2 �x1 �

� 
2

x2x1

�̂2 .
�̂1 ,�̂0 ,

x2 �

x1 �

�2�1

�0

x2x1

�2  x2

�1  x1�0

�1  x�0
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TABLE 8 Computer Output of a Regression Analysis to Be Used for Exercise 12.11

Regression Analysis: y versus x1, x2

The Regression equation is
y � 45.3 � 3.22 x1 � 0.0207 X2

Predictor Coef SE Coef T P
Constant 45.299 2.345 19.32 0.000
x1 �3.2243 0.4562 �7.07 0.000
x2 �0.020661 0.008574 �2.41 0.026

S � 3.40356 R-SQ � 79.5%

Analysis of Variance

Source DF SS MS F P
Regression 2 897.53 448.77 38.74 0.000
Error 20 231.68 11.58
Total 22 1129.22

TABLE 9 Computer Output of a Regression Analysis to Be Used for Exercise 12.12

Regression Analysis: y versus x1, x2

The regression equation is
Y � � 258 � 61.7 X1 � 20.7 X2

Predictor Coef SE Coef T P
Constant �257.8 117.9 �2.19 0.048
x1 61.71 13.03 4.74 0.000
x2 20.716 7.204 2.88 0.013

S � 35.3371 R-Sq � 72.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 42361 21180 16.96 0.000
Residual Error 13 16233 1249
Total 15 58594

(a) How many laptops were included in the
analysis?

(b) Identify the least squares estimates 
and 

(c) What model is suggested from this
analysis?

(d) What is the proportion of y variability
explained by the regression on and

?x2

x1

�̂2 
 
.�̂1 

 
,

�̂0  ,

12.13 With reference to Exercise 12.11:

(a) Test � � 0 versus � � 0
with a � .05.

(b) Test � � 0 versus � � 0
with a � .05.

(c) Estimate the expected y value correspond-
ing to � 3.2 and � 200.

(d) Construct a 90% confidence interval for
the intercept .�0

x2x1

�2H1�2H0

�1H1�1H0
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12.14 With reference to Exercise 12.12:

(a) Test � � 0 versus � � 0
with a � .05.

(b) Test � � 0 versus � � 0
with a � .05.

�2H1�2H0

�1H1�1H0

(c) Estimate the expected y value correspond-
ing to � 2.0 and � 16.5.

(d) Construct a 90% confidence interval for
the intercept .�0

x2x1

4. RESIDUAL PLOTS TO CHECK 
THE ADEQUACY OF A STATISTICAL MODEL

General Attitude Toward a Statistical Model

A regression analysis is not completed by fitting a model by least squares,
providing confidence intervals, and testing various hypotheses. These steps
tell only half the story: the statistical inferences that can be made when the
postulated model is adequate. In most studies, we cannot be sure that a par-
ticular model is correct. Therefore, we should adopt the following strategy.

1. Tentatively entertain a model.

2. Obtain least squares estimates and compute the residuals.

3. Review the model by examining the residuals.

Step 3 often suggests methods of appropriately modifying the model. We then
return to step 1, where the modified model is entertained, and this iteration is
continued until a model is obtained for which the data do not seem to contra-
dict the assumptions made about the model.

Once a model is fitted by least squares, all the information on variation that
cannot be explained by the model is contained in the residuals

where yi is the observed value and denotes the corresponding value predicted
by the fitted model. For example, in the case of a simple linear regression
model, .

Recall from our discussion of the straight line model in Chapter 11 that we
have made the assumptions of independence, constant variance, and a normal
distribution for the error components . The inference procedures are based on
these assumptions. When the model is correct, the residuals can be considered
as estimates of the errors that are distributed as N(0, s).

To determine the merits of the tentatively entertained model, we can exam-
ine the residuals by plotting them in various ways. Then if we recognize any
systematic pattern formed by the plotted residuals, we would suspect that some
assumptions regarding the model are invalid. There are many ways to plot the
residuals, depending on what aspect is to be examined. We mention a few of
these here to illustrate the techniques. A more comprehensive discussion can be
found in Chapter 3 of Draper and Smith [2].

ei

ei

ŷ i � �̂0 � �̂1 xi 

ŷ i

ê i � yi � ŷ i     i � 1, 2, . . . , n
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HISTOGRAM OR DOT DIAGRAM OF RESIDUALS

To picture the overall behavior of the residuals, we can plot a histogram for a large
number of observations or a dot diagram for fewer observations. For example, in a
dot diagram like the one in Figure 5a, the residuals seem to behave like a sample

504 CHAPTER 12/REGRESSION ANALYSIS II

(a)
0

(b)
0

Residuals e

Residuals e

Figure 5 Dot diagram of residuals.
(a) Normal pattern. (b) One large residual.

from a normal population and there do not appear to be any “wild” observations.
In contrast, Figure 5b illustrates a situation in which the distribution appears to be
quite normal except for a single residual that lies far to the right of the others. The
circumstances that produced the associated observation demand a close scrutiny.

PLOT OF RESIDUAL VERSUS PREDICTED VALUE

A plot of the residuals versus the predicted value often helps to detect the in-
adequacies of an assumed relation or a violation of the assumption of constant er-
ror variance. Figure 6 illustrates some typical phenomena. If the points form a hori-
zontal band around zero, as in Figure 6a, then no abnormality is indicated. In
Figure 6b, the width of the band increases noticeably with increasing values of 
This indicates that the error variance tends to increase with an increasing
level of response. We would then suspect the validity of the assumption of constant
variance in the model. Figure 6c shows residuals that form a systematic pattern. In-
stead of being randomly distributed around the axis, they tend first to increase
steadily and then decrease. This would lead us to suspect that the model is inade-
quate and a squared term or some other nonlinear x term should be considered.

PLOT OF RESIDUAL VERSUS TIME ORDER

The most crucial assumption in a regression analysis is that the errors are
independent. Lack of independence frequently occurs in business and economic
applications, where the observations are collected in a time sequence with the
intention of using regression techniques to predict future trends. In many other
experiments, trials are conducted successively in time. In any event, a plot of the

ei

ŷ

� 
2

ŷ .

ŷ iêi
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residuals versus time order often detects a violation of the assumption of inde-
pendence. For example, the plot in Figure 7 exhibits a systematic pattern in that
a string of high values is followed by a string of low values. This indicates that
consecutive residuals are (positively) correlated, and we would suspect a viola-
tion of the independence assumption. Independence can also be checked by
plotting the successive pairs where indicates the residual from
the first y value observed, indicates the second, and so on. Independence is
suggested if the scatter diagram is a patternless cluster, whereas points clustered
along a line suggest a lack of independence between adjacent observations.

ê2

ê1( êi  , êi � 1 
) ,
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e

y

(a)

e

y

(b)

e

y

(c)

Figure 6 Plot of residual versus predicted value.
(a) Constant spread. (b) Increasing spread.
(c) Systematic curved pattern.

Figure 7 Plot of residual versus time order.

e

Time order
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The MINITAB regression four-in-one graphics option created four residual
plots, including the three in Figure 8 using the data and fit from Example 3.
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Figure 8 Three residual plots for posttest rowing time using MINITAB.

It is important to remember that our confidence in statistical inference
procedures is related to the validity of the assumptions about them.
A mechanically made inference may be misleading if some model
assumption is grossly violated. An examination of the residuals is an
important part of regression analysis, because it helps to detect any incon-
sistency between the data and the postulated model.

If no serious violation of the assumption is exposed in the process of
examining residuals, we consider the model adequate and proceed with the rele-
vant inferences. Otherwise, we must search for a more appropriate model.
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KEY IDEAS AND FORMULAS 507

USING STATISTICS WISELY

1. Always, as a first step, plot the response variable versus the predictor
variable. If there is more than one predictor variable, make separate plots
for each. Examine the plot to see if a linear or other relationship exists.

2. Do not routinely accept the regression analysis presented in computer out-
put. Instead, criticize the model by inspecting the residuals for outliers and
moderate to severe lack of normality. A normal-scores plot is useful if there
are more than 20 or so residuals.That plot may suggest a transformation.

3. Plot the residuals versus predicted value to check the assumption of con-
stant variance. Plot the residuals in time order if that is appropriate.A trend
over time would cast doubt on the assumption of independent errors.

KEY IDEAS AND FORMULAS

When a scatter diagram shows relationship on a curve, it may be possible to
choose a transformation of one or both variables such that the transformed data
exhibit a linear relation. A simple linear regression analysis can then be per-
formed on the transformed data.

Multiple regression analysis is a versatile technique of building a prediction
model with several input variables. In addition to obtaining the least squares fit,
we can construct confidence intervals and test hypotheses about the influence
of each input variable.

A polynomial regression model is a special case of multiple regression
where the powers x , , , and so on, of a single predictor x play the role of
the individual predictors.

The highest power of x that occurs in the model is called the degree or
order of the regression model. A quadratic function, or second-degree polyno-
mial, is commonly fit as an alternative to a straight line.

Both the polynomial regression model and the multiple regression with sev-
eral predictors are special cases of general linear models.

The measure , called the square of the multiple correlation coefficient,
represents the proportion of y variability that is explained by the fitted multiple
regression model.

To safeguard against a misuse of regression analysis, we must scrutinize the
data for agreement with the model assumptions. An examination of the residu-
als, especially by graphical plots, including a dot diagram or histogram, a plot
versus predicted value, and a plot versus time order, is essential for detecting
possible violations of the assumptions and also identifying the appropriate mod-
ifications of an initial model.

R2 �
Regression SS

Total SS

R2

x 3x 

2
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TECHNOLOGY

Regression with two or more predictors and quadratic regression

MINITAB

Regression with two or more predictors

Begin with the values for the two predictor variables in C2 and C3 and the
response variable y in C1.

Stat  Q Regression  Q Regression.
Type C1 in Response. Type C2 and C3 in Predictors.
Select Graphs. Click Four in one. Click OK.
Click OK.

The graphics step produces four residual plots: including histogram, residual
versus fit, and residual versus order.

Transforming data

We illustrate with the predictor variable x in C2 and transforming to log(x),
where the logarithm is base 10 in C3.

Calc  Q Calculator.
Type C3 in Store results in variable and LOGT(C2) in Expression.
Click OK.

Fitting a quadratic regression model

With the values of x in C1 and the y values in C2, you must select:

Stat  Q Regression  Q Fitted Line Plot.
Enter C2 in Response ( Y) and enter C1 in Predictor ( X ).
Under Type of Regression Model choose Quadratic. Click OK.

TI-84/-83 PLUS

Fitting a quadratic regression model

Enter the values of the predictor variable in L1 and those of the response vari-
able in L2.

Select STAT, then CALC, and then 5: QuadReg (ax  � b).
With LinReg on the Home screen press Enter.

The calculator will give a, b, and c in the equation

y � � bx � cax2

508 CHAPTER 12/REGRESSION ANALYSIS II
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5. REVIEW EXERCISES 509

Time x
(days) No. Type 1 No. Type 2

17 137 586 .23
31 278 479 .58
45 331 167 1.98
59 769 227 3.39
73 976 75 13.01

y �
No. Type 1

No. Type 2

5. REVIEW EXERCISES

12.15 An environmental scientist identified a point
source for E. Coli at the edge of a stream. She
then measured y = E. Coli, in colony forming
units per 100 ml water, at different distances, in
feet, downstream from  the point source. Sup-
pose she obtains the following pairs of ( x , y).

x 100 150 250 250 400 650 1000 1600

y 21 20 24 17 18 10 11 9

(b) Determine if a linear relation is plausible
for the transformed data y� �  y.

(c) Fit a straight line regression to the trans-
formed data.

12.18 Refer to the 2007 campus crime data in Chap-
ter 11, Table 5. Obtaining  the least squares fit
to the response y = number of arson incidents,
using the two predictor variables = robbery
and = forceable rape, gives the results

(a) Predict the response for

(i) � 7 and � 5

(ii) � 15 and � 11
(b) Estimate the error standard deviation s

and state the degrees of freedom.
(c) What proportion of the y variability is

explained by the fitted regression?
12.19 Refer to Exercise 12.18. The estimated stan-

dard errors of and were .1085 and .0451,
respectively.
(a) Obtain a 90% confidence interval for b1 .
(b) Test � � .10 versus � .10

with a � .05.
12.20 A second-degree polynomial 

is fitted to a response y, and the following
predicted values and residuals are obtained.
�̂2  x

2
ŷ � �̂0 � �̂1  x �

��2H1�2H0

�̂2�̂1

x2x1

x2x1

SSE � 113.15
SS due to regression � 245.40

�̂0 � � .3780 �̂1 � .3401       �̂2 � .1826

x2

x1

log10

(a) Transform the x values to x� � x
and plot the scatter diagram of y versus x�.

(b) Fit a straight line regression to the trans-
formed data.

(c) Obtain a 90% confidence interval for the
slope of the regression line.

(d) Estimate the expected y value corre-
sponding to x � 300 and give a 95%
confidence interval.

*12.16 Obtain a linearizing transformation in each case.

(a)

(b)

12.17 A genetic experiment is undertaken to study
the competition between two types of female
Drosophila melanogaster in cages with one male
genotype acting as a substrate. The independent
variable x is the time spent in cages, and the de-
pendent variable y is the ratio of the numbers
of type 1 to type 2 females. The following data
(courtesy of C. Denniston) are recorded.

y � eaxb

y �
1

(1 � aebx )2

log10

Residuals

4.01 .28
5.53 � .33
6.21 � .21
6.85 .24
8.17 � .97
8.34 .46
8.81 .79
9.62 � 1.02

10.05 1.35
10.55 � 1.55
10.77 .63
10.77 1.73
10.94 � 2.14
10.98 1.92
10.98 � 1.18

ŷ

(a) Plot the scatter diagram of y versus x and
determine if a linear model of relation is
appropriate.
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Do the assumptions appear to be violated?

12.21 The following predicted values and residuals are
obtained in an experiment conducted to deter-
mine the degree to which the yield of an impor-
tant chemical in the manufacture of penicillin is
dependent on sugar concentration (the time
order of the experiments is given in parentheses).

(a) Plot the residuals against the predicted
values and also against the time order.

(b) Do the basic assumptions appear to be
violated?

12.22 An experimenter obtains the following residuals
after fitting a quadratic expression in x.

Do the basic assumptions appear to be violated?

12.23 An interested student used the method of
least squares to fit the straight line 

x to gross national product, y,
in real dollars. The results for 26 recent years,
x � 1, 2, . . . , 26, appear below. Which
assumption(s) for a linear regression model
appear to be seriously violated by the data?
(Note: Regression methods are usually not
appropriate for this type of data.)

264.3 � 18.77
ŷ �

510 CHAPTER 12/REGRESSION ANALYSIS II

x � 1 x � 2 x � 3 x � 4 x � 5

� .1 1.3 � .1 0 � .2
0 � .2 � .3 .2 0

� .2 � .1 .1 � .1 � .2
.6 � .3 .4 0 � .2

� .1 .1 � .1 � .2 � .3
.1 � .1

The Following Exercises Require a Computer

12.24 Consider the data on male wolves in Table D.9
of the Data Bank concerning age (years) and
canine length (mm).

(a) Obtain the least squares fit of canine
length to the predictor age.

(b) Obtain the least squares fit of canine
length to a quadratic function of the pre-
dictor age. The MINITAB commands are

Data: DBT9.txt
C2: 4 2 4 � � � 0
C6: 28.7 27.0 27.2 � � � 24.5
Dialog box:

Stat Q Regression Q Fitted line plot
Type C6 in Response.
Type C2 in Predictor.
Click Quadratic. Click OK.

Predicted Residual

2.2(9) � 1
3.1(6) � 2
2.5(13) 3
3.3(1) � 3
2.3(7) � 1
3.6(14) 5
2.6(8) 0
2.5(3) 0
3.0(12) 3
3.2(4) � 2
2.9(11) 2
3.3(2) � 5
2.7(10) 0
3.2(5) 1

Year y Residual

1 309.9 283.1 26.8
2 323.7 301.9 21.8
3 324.1 320.6 3.5
4 355.3 339.4 15.9
5 383.4 358.2 25.2
6 395.1 376.9 18.2
7 412.8 395.7 17.1
8 407 414.5 � 7.5
9 438 433.2 4.8

10 446.1 452.0 � 5.9
11 452.5 470.8 � 18.3
12 447.3 489.5 � 42.2
13 475.9 508.3 � 32.4
14 487.7 527.1 � 39.4
15 497.2 545.8 � 48.6
16 529.8 564.6 � 34.8
17 551 583.4 � 32.4
18 581.1 602.1 � 21.0
19 617.8 620.9 � 3.1
20 658.1 639.7 18.4
21 675.2 658.4 16.8
22 706.6 677.2 29.4
23 725.6 696.0 29.6
24 722.5 714.7 7.8
25 745.4 733.5 11.9
26 790.7 752.3 38.4

ŷ
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5. REVIEW EXERCISES 511

the meaning of the coefficients and

(b) Give 95% confidence intervals for and
.

(c) Obtain R2 and interpret the result.

12.27 Refer to the data of speed x and stopping
distance y given in Table 1. The MINITAB
commands for fitting a straight line regression
to and x arey� � √y

�2

�1

�̂2 .
�̂1

Data: C12T1.txt

C1: 20 20 30 30 30 40 40 50 50 60

C2: 16.3 26.7 39.2 63.5 51.3 98.4 65.7 104.1 155.6 217.2

Dialog box:

Calc Q Calculator

Type SQRT(C2) in the Expression box.

Type C3 in Store box. Click OK.

Stat Q Regression Q Regression

Type C3 in Response.

Type C1 in Predictors. Click OK.

(c) What proportion of the y variability is ex-
plained by the quadratic regression model?

(d) Compare the estimated standard devia-
tions, s, of the random error term in parts
(a) and (b).

12.25 The resident population of the United States
has grown over the last  100 years from 1910
to 2010 but the growth has not been linear.
The  response variable is y = population in mil-
lions and, to simplify the calculations, the pre-
dictor variable is x =  year  2 1900.

x 10 20 30 40 50 60

y 92.2 106.0 123.2 132.2 151.3 179.3

x 70 80 90 100 110

y 203.3 226.5 248.7 281.4 310.2

(a) Fit a quadratic regression model Y � �
� � e to these data.

(b) What proportion of the y variability is ex-
plained by the quadratic regression model?

(c) Test : � 0 versus � 	 0 with
a � .05.

12.26 Listed below are the price quotations for a
midsize foreign used car along with their age
and odometer mileage.

�1H1�1H0

�2  
x2�1  

x
�0

Mileage Price y
Age (thousand (thousand

(years) miles) miles)

1 14 17.9
2 44 13.9
2 20 14.9
4 36 14.0
4 66 9.8
5 59 9.9
7 100 6.6
7 95 6.7
8 38 7.0

x1

x2

Perform a multiple regression analysis of these
data. In particular

(a) Determine the equation for predicting
the price from age and mileage. Interpret

(a) Obtain the computer output and identify
the equation of the fitted line and the
value of (see Example 1).

(b) Give a 95% confidence interval for the slope.

(c) Obtain a 95% confidence interval for the
expected y� value at x � 45.

12.28 A forester seeking information on basic tree
dimensions obtains the following measure-
ments of the diameters 4.5 feet above the
ground and the heights of 12 sugar maple
trees (courtesy of A. Ek). The forester wishes
to determine if the diameter measurements
can be used to predict the tree height.
(a) Plot the scatter diagram and determine if

a straight line relation is appropriate.

(b) Determine an appropriate linearizing trans-
formation. In particular, try x� � log x ,
y� � log y .

(c) Fit a straight-line regression to the trans-
formed data.

r  

2
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512 CHAPTER 12/REGRESSION ANALYSIS II

(a) Ignoring the data of GPA and the first
midterm score, fit a simple linear regres-
sion of y on . Compute .

(b) Fit a multiple linear regression to predict
the final examination score from the
GPA and the scores in the midterms.
Compute .

(c) Interpret the values of and obtained
in parts (a) and (b).

12.30 Refer to Exercise 11.64.

(a) Fit a quadratic model Y � � �

� e to the data for CLEP scores y
and CQT scores x.

(b) Use the fitted regression to predict the
expected CLEP score when x � 160.

(c) Compute for fitting a line and for
fitting a quadratic expression. Interpret
these values and comment on the
improvement of fit.

*12.31 Write the design matrix X for fitting a multiple
regression model to the data of Exercise 12.26.

*12.32 Write the design matrix X for fitting a quadratic
regression model using the data of Exercise
12.25.

12.33 Refer to the physical conditioning data given
in Table D.5 of the Data Bank. Use MINITAB
or some other package to fit a regression of the
final number of situps on the initial number of
situps and the gender of the student.

12.34 Refer to the physical fitness data in Table D.5
of the Data Bank. Use both the data on the
pretest run time and gender for predicting the
posttest run time. Obtain the least squares fit
and plot the residuals versus fitted value.

R2r  

2

�2  x 

2
�1  x�0

R2r  

2
R2

r  

2x2

y

87 25 2.9 60
100 84 3.3 80
91 52 3.5 73
85 60 3.7 83
56 76 2.8 33
81 28 3.1 65
85 67 3.1 53
96 83 3.0 68
79 60 3.7 88
96 69 3.7 89

x3x2x1 y

93 60 3.2 44
92 69 3.1 53

100 86 3.6 86
80 67 3.5 59

100 96 3.8 81
69 51 2.8 20
80 75 3.6 64
74 70 3.1 38
79 66 2.9 77
95 83 3.3 47

x3x2x1

(d) What proportion of variability is ex-
plained by the fitted model?

12.29 Recorded here are the scores and in two
midterm examinations, the GPA , and the
final examination score y for 20 students in a
statistics class.

x3

x2x1

Diameter x ( inches) Height y (feet)

.9 18
1.2 26
2.9 32
3.1 36
3.3 44.5
3.9 35.6
4.3 40.5
6.2 57.5
9.6 67.3

12.6 84
16.1 67
25.8 87.5
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