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Are Firm Mattresses Really Best?
Although it is commonly believed that firm mattresses can help persons with
low-back pain, experimental evidence was lacking. Medical researchers1 designed
a carefully designed experiment. Of the patients admitted to the study, 158 were
randomly selected to sleep on a new firm mattress and the others were given
new medium-firm mattresses. The patients were not told about the firmness of
their new mattresses although most perceived the correct firmness. The persons
who installed the new beds and the research assistants who collected the data
from patients were also kept unaware of the firmness of the mattresses.

This design includes meritable features: (1) the random assignment of treat-
ments (mattress firmness) and (2) the double blind feature where patient and
researcher are not told which treatment has been assigned.

The patients were asked to report whether or not they had low-back pain
upon arising during the 90-day follow-up period.

1Source: F. Kovacs et al., "Effect of firmness of mattress on chronic non-specific low-back pain: random-
ized, double-blind, controlled, multicentre trial," The Lancet 362 (November 15, 2003), pp. 1599–1604.

Courtesy of Roberta Johnson.

Low Back Pain

Firmness No Yes Total

Firm 36 122 158
Medium firm 55 95 150

The proportion with no low-back pain upon arising is .228 � 36/158 for
those who slept on firm mattresses and the proportion is .367 � 55/150 for
those who slept on medium-firm mattresses. These data provide convincing evi-
dence that medium-firm mattresses reduce low-back pain upon arising. The
P–value for the test of equality of the proportions, of persons in each population
who would answer No, versus a two-sided alternative is .008. In less than 1 in 100
times would chance variation give an observed difference this large or larger.
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1. INTRODUCTION

The expression categorical data refers to observations that are only classified into
categories so that the data set consists of frequency counts for the categories.
Such data occur abundantly in almost all fields of quantitative study, particularly
in the social sciences. In a study of religious affiliations, people may be classified
as Catholic, Protestant, Jewish, or other; in a survey of job compatibility,
employed persons may be classified as being satisfied, neutral, or dissatisfied with
their jobs; in plant breeding, the offspring of a cross-fertilization may be grouped
into several genotypes; manufactured items may be sorted into such categories as
“free of defects,” “slightly blemished,” and “rejects.” In all these examples, each
category is defined by a qualitative trait. Categories can also be defined by speci-
fying ranges of values on an original numerical measurement scale, such as
income that is categorized high, medium, or low and rainfall that is classified
heavy, moderate, or light.

The next three examples present the testing problems addressed in this
chapter under the umbrella term of chi-square, or , tests.

Example 1 One Sample Classified in Several Categories
The offspring produced by a cross between two given types of plants can be
any of the three genotypes denoted by A, B, and C. A theoretical model of
gene inheritance suggests that the offspring of types A, B, and C should be in
the ratio 1�2�1. For experimental verification, 100 plants are bred by crossing
the two given types. Their genetic classifications are recorded in Table 1. Do
these data contradict the genetic model?

Let us denote the population proportions or the probabilities of the
genotypes A, B, and C by , , and , respectively. Since the genetic
model states that these probabilities are in the ratio 1�2�1, our object is to
test the null hypothesis

Here the data consist of frequency counts of a random sample classified in
three categories or cells, the null hypothesis specifies the numerical values of

H0 �pA �
1
4
  pB �

2
4
  pC �

1
4

pCpBpA

�2 
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TABLE 1 Classification of Crossbred Plants

Genotype A B C Total

Observed frequency 18 55 27 100
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the cell probabilities, and we wish to examine if the observed frequencies
contradict the null hypothesis.

Example 2 Independent Samples Classified in Several Categories
To compare the effectiveness of two diets A and B, 150 infants were included
in a study. Diet A was given to 80 randomly selected infants and diet B to the
other 70 infants. At a later time, the health of each infant was observed and
classified into one of the three categories “excellent,” “average,” and “poor.”
From the frequency counts recorded in Table 2, we wish to test the null
hypothesis that there is no difference between the quality of the two diets.

The two rows of Table 2 have resulted from independent samples. For
a descriptive summary of these data, it is proper to compute the relative
frequencies for each row. These are given in Table 2(a).

The (unknown) population proportions or probabilities are entered in
Table 2( b). They allow us to describe the null hypothesis more clearly. The
null hypothesis of “no difference” is equivalent to the statement that, for each
response category, the probability is the same for diet A and diet B. Conse-
quently, we formulate

H0 �  pA1 � pB1   pA2 � pB2   pA3 � pB3

516 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

TABLE 2 (a) Relative Frequencies (from Table 2)

Excellent Average Poor Total

Diet A .46 .30 .24 1
Diet B .24 .47 .29 1

TABLE 2 Health under Two Different Diets

Sample
Excellent Average Poor Size

Diet A 37 24 19 80
Diet B 17 33 20 70

Total 54 57 39 150
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Note that although specifies a structure for the cell probabilities, it does
not give the numerical value of the common probability in each column.

Example 3 One Sample Simultaneously Classified According to Two Characteristics
Improperly disclosed personal information has become a major source lead-
ing to credit fraud. In a survey conducted to help investigate the pervasive-
ness of the problem, 395 respondents reported receiving notification that
their personal data had been compromised. Each of these cases were then
classified according to type of institution sending the notification and also
whether or not harm was caused to the person’s credit. Harm to credit pri-
marily includes instances of charging merchandise or taking money from
bank accounts. Attention was restricted to institutions categorized as

Government (federal, state and local)
Financial (bank, investment organization, credit firm, or insurance)
Other Commercial (Internet, retail, or communications company).

The cell frequencies for the two-way classification are given in Table 3.
Do the data indicate that the pattern of cases of harmed credit, caused by

the release of personal data, differs among the three types of organizations?

Unlike Example 2, here we have a single random sample, but each sampled
individual elicits two types of response: source of notification and whether or not
harm was done to credit. In the present context, the null hypothesis of “no differ-
ence’’ amounts to saying the outcome on credit and type of institution giving
notification are independent. In other words, whether or not harm was done is
unrelated to, or independent of, the type of institution that improperly disclosed
personal information. A formal specification of this null hypothesis, in terms of
the cell probabilities, is deferred until Section 4.

2

H0

TABLE 3 Type of Organization and Fraudulent Use of Personal Information

Government Financial Other Commercial Total

Harm 30 24 21 75
No Harm 182 104 34 320

Total 212 128 55 395

TABLE 2(b) Population Proportions or Probabilities

Excellent Average Poor Total

Diet A 1
Diet B 1pB3pB2pB1

pA3pA2pA1
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The resulting proportions are close to those reported in a 2006 survey by Harris Interactive.2
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Frequency count data that arise from a classification of the sample observa-
tions according to two or more characteristics are called cross-tabulated data or
a contingency table. If only two characteristics are observed and the contingency
table has r rows and c columns, it is designated as an r � c table. Thus, Tables 2
and 3 are both 2 � 3 contingency tables.

Although Tables 2 and 3 have the same appearance, there is a fundamental
difference in regard to the method of sampling. The row totals 80 and 70 in
Table 2 are the predetermined sample sizes; these are not outcomes of random
sampling, as are the column totals. By contrast, both sets of marginal totals in
Table 3 are outcomes of random sampling—none were fixed beforehand. To
draw the distinction, one often refers to Table 2 as a 2 � 3 contingency table
with fixed row totals. In Sections 3 and 4, we will see that the formulation of
the null hypothesis is different for the two situations.

2. PEARSON’S TEST FOR GOODNESS OF FIT

We first consider the type of problem illustrated in Example 1, where the data
consist of frequency counts observed from a random sample and the null
hypothesis specifies the unknown cell probabilities. Our primary goal is to test if
the model given by the null hypothesis fits the data, and this is appropriately
called testing for goodness of fit.

For general discussion, suppose a random sample of size n is classified into k
categories or cells labeled 1, 2, . . . , k and let , , . . . , denote the
respective cell frequencies. If we denote the cell probabilities by , , . . . , ,
a null hypothesis that completely specifies the cell probabilities is of the form

where are given numerical values that satisfy

From Chapter 5 recall that if the probability of an event is p, then the
expected number of occurrences of the event in n trials is np. Therefore, once
the cell probabilities are specified, the expected cell frequencies can be readily
computed by multiplying these probabilities by the sample size n. A goodness of
fit test attempts to determine if a conspicuous discrepancy exists between the
observed cell frequencies and those expected under . (See Table 4.)

A useful measure for the overall discrepancy between the observed and
expected frequencies is given by the chi-square or statistic.� 2

H0

� pk 0 � 1.
p10 � � � �p10 

 
, . . . , pk 0 

H0 �  p1 � p10 
 
, . . . , pk � pk 0 

pkp2p1

nkn2n1

�2
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TABLE 4 The Basis of a Goodness of Fit Test

Cells 1 2 � � � k Total

Observed frequency O � � � n
Probability under � � � 1
Expected frequency E

under n n � � � n npk 0p20p10H0

pk 0p20p10H0

nkn2n1
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where O and E symbolize an observed frequency and the corresponding
expected frequency. The discrepancy in each cell is measured by the squared
difference between the observed and the expected frequencies divided by the
expected frequency. The measure is the sum of these quantities for all cells.

The statistic was originally proposed by Karl Pearson (1857–1936), who
found the distribution for large n to be approximately a distribution with 
d.f. � k � 1. Due to this distribution, the statistic is denoted by and called
Pearson’s statistic for goodness of fit. Because a large value of the overall
discrepancy indicates a disagreement between the data and the null hypothesis,
the upper tail of the distribution constitutes the rejection region.

It should be remembered that Pearson’s test is an approximate test that
is valid only for large samples. As a rule of thumb, n should be large enough so
that the expected frequency of each cell is at least 5.

Example 4 Goodness of Fit for a Genetic Model
Referring to Example 1, test the goodness of fit of the genetic model to the
data in Table 1. Take � � .05.

SOLUTION Following the structure of Table 4, the computations for the statistic are
exhibited in Table 5 where the last line gives the calculation

�2 

�2

�2 

�2 

� 2
�2 

�2 
�2 

�2 

�2 � �
k

i � 1
 
( ni � n pi0 

)2

n pi 0
� �

cells
 
(O � E )2

E

Pearson’s Test for Goodness of Fit ( Based on Large n )

Null hypothesis

Test statistic

Rejection region

where is the upper � point of the distribution with

d.f. � k � 1 � (Number of cells) � 1

�2 ��
2

�2 � ��
2

�2 � �
k

i � 1
 
( ni � n pi0 )2

n pi 0
� �

cells
 
( O � E )2

E

H0 � p1 � p10 , . . . , pk � pk 0

�2
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�  1.96

�
cells

 
(  O � E )2

E
�  

( 18 � 25)2

25
�

(   55 � 50 )2

50
�

(  27 � 25 )2

25

.50� � .16 � 2.62
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We use the statistic with rejection region R� � 5.99 since 
5.99 with d.f. � 2 (Appendix B, Table 5). Because the observed � 2.62
is smaller than this value, the null hypothesis is not rejected at � � .05. We
conclude that the data in Table 1 do not contradict the genetic model.

The statistic measures the overall discrepancy between the observed fre-
quencies and those expected under a given null hypothesis. Example 4 demon-
strates its application when the frequency counts arise from a single random
sample and the categories refer to only one characteristic—namely, the geno-
type of the offspring. Basically, the same principle extends to testing hypotheses
with more complex types of categorical data such as the contingency tables
illustrated in Examples 2 and 3. In preparation for these developments, we state
two fundamental properties of the statistic:�2 

�2 

�2 
�.05

2   ��2 �2 
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TABLE 5 The Goodness of Fit Test for the Data in Table 1

Cell A B C Total

Observed frequency O 18 55 27 100
Probability under .25 .50 .25 1.0
Expected frequency E 25 50 25 100

1.96 .50 .16 2.62 � �2

d.f. � 2
( O � E )2

E

H0

�2 

Properties of Pearson’s Statistic

1. Additivity: If statistics are computed from independent samples,
then their sum is also a statistic whose d.f. equals the sum of the
d.f.’s of the components.

2. Loss of d.f. due to estimation of parameters: If does not com-
pletely specify the cell probabilities, then some parameters have to be
estimated in order to obtain the expected cell frequencies. In that
case, the d.f. of is reduced by the number of parameters estimated.

d.f. of � ( No. of cells) � 1 � ( No. of parameters estimated )�2 

�2 

H0

�2 
�2 

�2
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Exercises

2. PEARSON’S �2 TEST FOR GOODNESS OF FIT 521

Blood type O A B AB Total

Frequency 40 44 10 6 100

Color White Stainless Black Total

Frequency 63 56 31 150

13.1 Given below are the frequencies observed
from 320 tosses of a die. Do these data cast
doubt on the fairness of the die?

13.2 Recorded here is the frequency distribution
of the blood types of 100 persons who have
volunteered to donate blood at a plasma
center.

Test the goodness of fit of the model, which
assumes that the four blood types are equally
likely in the population of plasma donors. Use
� � .05.

13.3 Referring to the data in Exercise 13.2, test the
null hypothesis that the probability of the
blood types O, A, B, and AB is in the ratios
4�4�1�1. Use � � .05.

13.4 A market researcher wishes to assess consumers’
preference among three different colors available
on name-brand dishwashers. The following fre-
quencies were observed from a random sample
of 150 recent sales.

Test the null hypothesis, at � � .05, that all
three colors are equally popular.

13.5 A shipment of assorted nuts is labeled as
having 45% walnuts, 20% hazelnuts, 20%
almonds, and 15% pistachios. By randomly
picking several scoops of nuts from this ship-
ment, an inspector finds the counts shown at
the top of next column.
Could these findings be a strong basis for an 
accusation of mislabeling? Test at � � .025.

13.6 Cross-fertilizing a pure strain of red flowers
with a pure strain of white flowers produces
pink hybrids that have one gene of each type.
Crossing these hybrids can lead to any one
of four possible gene pairs. Under Mendel’s the-
ory, these four are equally likely, so 

P (white) � P (pink) � P (red) �

An experiment carried out by Correns, one of
Mendel’s followers, resulted in the frequencies
141, 291, and 132 for the white, pink, and red
flowers, respectively. (Source: W. Johannsen,
1909, Elements of the Precise Theory of Heredity,
G. Fischer, Jena.)

Do these observations appear to contradict
the probabilities suggested by Mendel’s theory?

13.7 According to the records of the National Safety
Council, accidental deaths in the United States
during 2005 had the following distribution ac-
cording to the principal types of accidents.

1
4

1
2

1
4

Face No. 1 2 3 4 5 6 Total

Frequency 39 63 56 67 57 38 320

Motor 
Vehicle Poison Falls Choking Drowning Other

40.5% 18.5% 15.7% 4.1% 3.2% 18.0%

Counts

Walnuts 95
Hazelnuts 70
Almonds 33
Pistachios 42

Total 240

Motor 
Vehicle Poison Falls Choking Drowning Other Total

356 207 125 33 26 161 908

In a particular geographical region, the acciden-
tal deaths, classified according to the principal
types of accidents, yielded the following
frequency distribution.

Do these data show a significantly different distri-
bution of accidental deaths as compared to that
for the entire United States? Test at � � .05.
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3. CONTINGENCY TABLE WITH ONE 
MARGIN FIXED (TEST OF HOMOGENEITY)

From each population, we draw a random sample of a predetermined sample
size and classify each response in categories. These data form a two-way contin-
gency table where one classification refers to the populations and the other to
the response under study. Our objective is to test whether the populations are
alike, or homogeneous, with respect to cell probabilities. To do so, we will deter-
mine if the observed proportions in each response category are nearly the same
for all populations.

Let us pursue our development of the test of homogenity with the data
of Table 2.

Example 5 Developing a Test to Compare Two Diets
Referring to Example 2, test the null hypothesis that there is no difference
between the quality of the two diets.

�2

�2

13.8 The following table, based on government data,
shows the frequency distribution of births by
day of the week for all registered births in the
United States in a recent year. Test the null
hypothesis, at � � .01, that all seven days of
the week are equally likely for childbirth.

522 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

Under the model of Bernoulli trials for the sex
of rabbits, the probability distribution of the
number of males per litter should be binomial
with 3 trials and p � probability of a male birth.
From these data, the parameter p is estimated as

(a) Using the binomial table for three trials and
determine the cell probabilities.

(b) Perform the test for goodness of fit.
(In determining the d.f., note that one pa-
rameter has been estimated from the data.)

*13.10 An alternative expression for Pearson’s . By
expanding the square on the right-hand side of

show that the statistic can also be expressed as

�2 � �
cells

 
O2

E
� n

�2 � �
cells

 
ni

2

npi 0
� n  that is, 

�2 

�2 � �
cells

 
( ni � npi 0 

)2

npi 0

�2

�2 

p � .4,

�
97
240

 �  .4

p̂ �
Total number of males in 80 litters
Total number of rabbits in 80 litters

Number of males in litter 0 1 2 3 Total

Number of litters 19 32 22 7 80

Number of Births (in 10,000) by Day 
of the Week, United States

Number of births

Mon. 62.81
Tues. 69.66
Wed. 70.11
Thurs. 69.91
Fri. 68.39
Sat. 45.47
Sun. 40.21

All Days 426.56

Source: J. Martin et al, “Births: Final Data for
2006,” National Vital Statistics Reports 57, No. 7
(2009),Table 17.

13.9 Observations of 80 litters, each containing
3 rabbits, reveal the following frequency distri-
bution of the number of male rabbits per litter.
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3. CONTINGENCY TABLE WITH ONE MARGIN FIXED (TEST OF HOMOGENEITY) 523

SOLUTION For ease of reference, the data in Table 2 are reproduced in Table 6. Here the
populations correspond to the two diets and the response is recorded in three
categories. The row totals 80 and 70 are the fixed sample sizes.

We have already formulated the null hypothesis of “homogeneity” or “no
difference between the diets” as [see Table 2(b)]

If we denote these common probabilities under by , , and , respec-
tively, the expected cell frequencies in each row would be obtained by multi-
plying these probabilities by the sample size. In particular, the expected
frequencies in the first row are 80 , 80 , and 80 , and those in the sec-
ond row are 70 , 70 , and 70 . However, the pi’s are not specified by .
Therefore, we have to estimate these parameters in order to obtain the
numerical values of the expected frequencies.

The column totals 54, 57, and 39 in Table 6 are the frequency counts of
the three response categories in the combined sample of size 150. Under ,
the estimated probabilities are

We use these estimates to calculate the expected frequencies in the first row
as

and similarly for the second row. Referring to Table 6, notice the interesting
pattern in these calculations:

Table 7(a) presents the observed frequencies O along with the expected
frequencies E. The latter are given in parentheses. Table 7(b) computes the
discrepancy measure for the individual cells. Adding these
over all the cells, we obtain the value of the statistic.�2 

( O � E )2 / E

Expected cell frequency �
Row total � Column total

Grand total

80 �
54

150
�

80 � 54
150

� 28.8  80 � 57
150

 � 30.4 80 � 39
150

� 20.8

p̂ 1 �
54

150
  p̂ 2 �

57
150

  p̂ 3 �
39

150

H0

H0p3p2p1

p3p2p1

p3p2p1H0

H0 � pA 1 � pB 1   pA 2 � pB 2   pA 3 � pB 3

TABLE 6 A 2 � 3 Contingency Table 
with Fixed Row Totals

Excellent Average Poor Total

Diet A 37 24 19 80
Diet B 17 33 20 70

Total 54 57 39 150

2.668 � 1.540 � .178
x2 � 2.335 � 1.347 � .156 �

� 8.224
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In order to determine the degrees of freedom, we employ the properties
of the statistic stated in Section 2. Our statistic has been computed
from two independent samples; each contributes 3 � 1 � 2 d.f. because
there are three categories. The added d.f. � 2 � 2 � 4 must now be reduced
by the number of parameters we have estimated. Since , , and satisfy
the relation there are really two undetermined para-
meters among them. Therefore, our statistic has d.f. � 4 � 2 � 2.

With d.f. � 2, the tabulated upper 5% point of is 5.99 (Appendix B,
Table 5). Since the observed � 8.224 is larger, the null hypothesis is 
rejected at � � .05. It would also be rejected at � � .025. Therefore, a signifi-
cant difference between the quality of the two diets is indicated by the data.

Having obtained a significant , we should now examine Tables 7(a)
and 7(b) and try to locate the source of the significance. We find that large
contributions to come from the “excellent” category, where the relative
frequency is 37/80, or 46%, for diet A and 17/ 70, or 24%, for diet B. These
data indicate that A is superior.

Motivated by Example 5, we are now ready to describe the test proce-
dure for an contingency table that has independent samples from r pop-
ulations that are classified in c response categories. As we have seen before, the
expected frequency of a cell is given by (row total � column total)/grand 

r � c
�2 

�2 

�2 

�2 
�2 

�2 
p1 � p2 � p3 � 1,

p3p2p1

�2 �2 

TABLE 7(a) The Observed and 
Expected Frequencies 
of the Data in Table 6

Excellent Average Poor

Diet A

Diet B 20
(18.2)

33
(26.6)

17
(25.2)

19
(20.8)

24
(30.4)

37
(28.8)

TABLE 7(b) The Values of ( O � E / E

Excellent Average Poor

Diet A 2.335 1.347 .156
Diet B 2.668 1.540 .178

8.224 � �2 

)2
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3. CONTINGENCY TABLE WITH ONE MARGIN FIXED (TEST OF HOMOGENEITY) 525

total. With regard to the d.f. of the for an table, we note that each of
the r rows contributes d.f.’s so the total contribution is Since

number of parameters have to be estimated,

Example 6 Conducting a Test of Homogeneity
A survey is undertaken to determine the incidence of alcoholism in different
professional groups. Random samples of the clergy, educators, executives,
and merchants are interviewed, and the observed frequency counts are given
in Table 8.

Construct a test to determine if the incidence rate of alcoholism appears
to be the same in all four groups.

�2

 � ( No. of rows � 1 ) � ( No. of columns � 1 )
 � ( r � 1 ) ( c � 1 ) 

d.f. of �2 � r  ( c � 1 ) � ( c � 1 ) 

c � 1
r ( c � 1 ).c � 1

r � c�2 

The Test of Homogeneity in a Contingency Table

Null hypothesis

In each response category, the probabilities are equal for all the popula-
tions.

Test statistic

d.f. � ( No. of rows � 1) � ( No. of columns � 1)

Rejection region

�2 � ��
2

�2 � �
cells

 
( O � E )2

E
     � 

O � Observed cell frequency

E �
Row total � Column total

Grand total

�2

TABLE 8 Contingency Table of Alcoholism 
versus Profession

Alcoholic Nonalcoholic Sample Size

Clergy 32(58.25) 268(241.75) 300
Educators 51(48.54) 199(201.46) 250
Executives 67(58.25) 233(241.75) 300
Merchants 83(67.96) 267(282.04) 350

Total 233 967 1200
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526 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

SOLUTION Let us denote the proportions of alcoholics in the populations of the clergy,
educators, executives, and merchants by , , , and , respectively. Based
on independent random samples from four binomial populations, we want to
test the null hypothesis

The expected cell frequencies, shown in parentheses in Table 8, are com-
puted by multiplying the row and column totals and dividing the results by
1200. The statistic is computed in Table 9. With d.f. � 3, the tabulated 
upper 5% point of is 7.81 so that the null hypothesis is rejected at � �
.05. It would be rejected also at � � .01, so the P–value is less than .01.

Examining Table 9, we notice that a large contribution to the statistic
has come from the first row. This is because the relative frequency of alco-
holics among the clergy is quite low in comparison to the others, as one can
see from Table 8.

Example 7 The Test for 2 � 2 Contingency Table
To determine the possible effect of a chemical treatment on the rate of seed
germination, 100 chemically treated seeds and 150 untreated seeds are sown.
The numbers of seeds that germinate are recorded in Table 10. Do the data
provide strong evidence that the rate of germination is different for the
treated and untreated seeds?

x2

�2 

�2 
�2 

H0 � p1 � p2 � p3 � p4

p4p3p2p1

TABLE 9 The Values of ( O � E /E
for the Data in Table 8

Alcoholic Nonalcoholic

Clergy 11.83 2.85
Educators .12 .03
Executives 1.31 .32
Merchants 3.33 .80

20.59 �

d.f. of � (4 � 1)(2 � 1) � 3�2 

�2 

)2

TABLE 10 Germination of Seeds

Germinated Not Germinated Total

Treated 84(86.40) 16(13.60) 100
Untreated 132(129.60) 18(20.40) 150

Total 216 34 250
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3. CONTINGENCY TABLE WITH ONE MARGIN FIXED (TEST OF HOMOGENEITY) 527

SOLUTION Letting and denote the probabilities of germination for the chemically
treated seeds and the untreated seeds, respectively, we wish to test the null
hypothesis � � versus � � . For the test, we calculate
the expected frequencies in the usual way. These are given in parentheses in
Table 10. The computed value of is

The tabulated 5% value of with d.f. � 1 is 3.84. Because the observed 
� .817 is smaller, the null hypothesis is

not rejected at � � .05. The rate of germination is not significantly different
between the treated and untreated seeds.

ANOTHER METHOD OF ANALYZING 
A 2 � 2 CONTINGENCY TABLE

In light of Example 7, we note that a 2 � 2 contingency table, with one margin
fixed, is essentially a display of independent random samples from two dichoto-
mous (i.e., two-category) populations. This structure is shown in Table 11,
where we have labeled the two categories “success” and “failure.” Here X and Y
denote the numbers of successes in independent random samples of sizes and

taken from population 1 and population 2, respectively.

If we let and denote the probabilities of success for populations 1 and 2,
respectively, our objective is to test the null hypothesis : � . The
sample proportions

provide estimates of and . When the sample sizes are large, a test of 
: � can be based on (see Section 6 of Chapter 10)p2p1H0

p2p1

p̂ 1 �
X
n1

  and  p̂ 2 �
Y
n2

p2p1H0

p2p1

n2

n1

�2 
�2 

d.f. � (2 � 1)(2 � 1) � 1

 � .817 

 �2 � .067 � .424 � .044 � .282

�2 

�2 p2p1H1p2p1H0

p2p1

TABLE 11 Independent Samples 
from Two Dichotomous Populations

No. of No. of Sample
Successes Failures Size

Population 1 X � X
Population 2 Y � Y n2n2

n1n1
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Test statistic

The level � rejection region is or according to
whether the alternative hypothesis is or Here 
denotes the upper � point of the N (0, 1) distribution.

Although the test statistics Z and

appear to have quite different forms, there is an exact relation between
them—namely,

Also, is the same as the upper � point of with d.f. � 1. For instance, with

� � .05, which is also the upper 5% point of 
with d.f. � 1 (see Appendix B, Table 5). Thus, the two test procedures are 
equivalent when the alternative hypothesis is two-sided. However, if the alterna-
tive hypothesis is one-sided, such as : 	 , only the Z test is appropriate.

Example 8 Conducting a Z test to Compare Two Proportions
Use the Z test with the data of Example 7. Also, determine a 95% confidence
interval for 

SOLUTION We calculate

Because the observed is smaller than the null hypothesis is
not rejected at � � .05. Note that agrees with the
result found in Example 7.�2 � .817

Z2 � (�.904)2 � .817
z.025 � 1.96,� Z �

 �
�.04

√ .864 � .136 � 1
100

�
1

150

� �.904

Z �
p̂ 1 � p̂ 2

√ p̂ (1 � p̂ ) � 1
n1

�
1
n2

Pooled estimate p̂ �
84 � 132

100 � 150
� .864

p̂ 1 �
84

100
� .84   p̂ 2 �

132
150

� .88

p1 � p2 .

p2p1H1

�2 z.025
2 � (1.96)2 � 3.8416,

�2 z� / 2
2

Z2 � �2 ( for a 2 � 2 contingency table )

�2 � �
cells

 
( O � E )2

E

z�p1 	 p2 .p1 
 p2 , p1 � p2 ,
Z � z�Z � �z� ,� Z � � z�/2 ,

Z �
p̂ 1 � p̂ 2

√ p̂ (1 � p̂ ) � 1
n1

�
1
n2

    where p̂ �
X � Y

n1 � n2
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For the confidence interval, we calculate

A 95% confidence interval for is

Exercises

�.04 
 1.96 � .045 � �.04 
 .09  or  ( �.13, .05  )

p1 � p2

 � .045 
� p̂ 1 

( 1 � p̂ 1 
)

n1
�

p̂ 2  
( 1 � p̂ 2 

)

n2
� � .84 � .16

100
�

.88 � .12
150

 p̂ 1 � p̂ 2 � �.04 

These proportions are close to those obtained in a recent
Gallup survey.

3 

13.11 Among a sample of 800 adult males, 414 said
they usually open all of their mail. Among 900
adult females, 532 said they usually open all of
their mail.

(a) Construct a two-way table based on these
frequencies.

(b) Formulate the null hypothesis.

(c) Conduct a test of your null hypothesis.
Use � � .05.

(d) Comment on the form of any departure
from the null hypothesis.

13.12 Chapter 3, Table 1, gives the counts of under-
classmen and for upperclassmen according to
hours worked.

(a) Formulate the null hypothesis of no dif-
ference in working hours.

�2 

3 

(b) Conduct a test of your null hypothesis.
Use � � .05.

(c) Comment on the form of any departure
from the null hypothesis.

13.13 Nausea from air sickness affects some travelers.
In a comparative study of the effectiveness
of two brands of motion sickness pills, brand
A pills were given to 45 persons randomly
selected from a group of 90 air travelers, while
the other 45 persons were given brand B pills.
The following results were obtained.

Do these observations demonstrate that the
two brands of pills are significantly different in
quality? Test at � � .05.

13.14 Refer to the hardness of mattresses data in the
chapter front piece. Confirm that these data
establish a difference in the proportions who
did not have lower back pain using:

(a) The test with level � � .01.

(b) The Z test with level � � .01. Calculate
the P–value.

13.15 A community paper in the Spanish language
was delivered to many sites in the San Francisco
Bay area. As a check on the circulation numbers

�2 

�2 

Degree of Nausea
None Slight Moderate Severe Total

Brand A 18 17 6 4 45
Brand B 11 14 14 6 45

No Work 10 Work
Job Hours More Than Total

or Less 10 Hours

underclass-
men 132 28 20 180
Upperclass-
men 124 44 52 220

Total 256 72 72 400
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Data: C13T6.txt

C1: 37 17

C2: 24 33

C3: 19 20

Dialog box:

Stat Tables Chisquare Test

Type C1-C3 in Columns containing

the table. Click OK.

QQ
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Change in Bone Mineral
Appreciable Little Appreciable

Loss Change Increase Total

Control 38 15 7 60
Therapy 22 32 16 70
Activity 15 30 25 70

Total 75 77 48 200

that are important to advertisers, a survey was
conducted at four drop sites. The number of
papers delivered to each site and the number
remaining after 3 days was recorded

(a) Formulate a null hypothesis of no differ-
ence in the proportions of papers taken
from the sites.

(b) Conduct a test of your null hypothesis.
Use � � .05.

(c) Let , , , and denote the proba-
bilities that a paper will be taken from
drop sites 1, 2, 3, and 4, respectively.
Construct the four individual 95% confi-
dence intervals and plot these intervals.

13.16 Using the data for site 1 and site 3 in Exercise
13.15, make a 2 � 2 table and test : �

versus : � at � � .05 using:

(a) The test.

(b) The Z test.

13.17 Referring to the data for site 3 and site 4 in
Exercise 13.15, make a 2 � 2 table and test

: � versus : 	 at � � .05:

(a) Is there strong evidence that the proba-
bility a paper will be taken from the
drop site is higher for site 3 than for
site 4? Answer by calculating the
P–value.

(b) Construct a 95% confidence interval for
� .

13.18 Osteoporosis, or a loss of bone minerals, is a
common cause of broken bones in the elderly.
A researcher on aging conjectures that bone
mineral loss can be reduced by regular physical
therapy or certain kinds of physical activity.
A study is conducted on 200 elderly subjects
of approximately the same age divided into
control, physical therapy, and physical activity
groups. After a suitable period of time, the
nature of change in bone mineral content is
observed.

p4p3

p4p3H1p4p3H0

�2
p3p1H1p3

p1H0

p4p3p2p1

�2 

Papers Delivered Papers Remaining

Site 1 50 17
Site 2 47 12
Site 3 48 7
Site 4 50 21 Do these data indicate that the change in bone

mineral varies for the different groups?

The Following Exercises May Require 
a Computer

13.19 Using the computer. The analysis of a contin-
gency table can be conveniently done on a
computer. For an illustration, we present here
a MINITAB analysis of the data in Table 6,
Example 5.

The output is as follows:

Chi-Square Test: C1, C2, C3

Expected counts are printed below
observed counts 
Chi-Square contributions are printed
below expected counts

C1 C2 C3 Total
1 37 24 19 80

28.80 30.40 20.80
2.335 1.347 0.156

2 17 33 20 70
25.20 26.60 18.20
2.668 1.540 0.178

Total 54 57 39 150

Chi-Sq � 8.224, DF � 2, P-Value � 0.016
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(a) Compare this output with the calcula-
tions presented in Example 5.

(b) Do Exercise 13.11 on a computer.

(c) Do Exercise 13.18 on a computer.

13.20 With reference to the sleep data in Table
D.10 of the Data Bank, make two categories

of snorers on the basis of the last variable:
those who responded three or more times
a week so their score is coded 4 or 5 and
those who responded less than three times
a week. Test the equality of proportions
for males and females using the test with
� � .05.

�2 

4. CONTINGENCY TABLE WITH NEITHER MARGIN FIXED
(TEST OF INDEPENDENCE)

When two traits are observed for each element of a random sample, the data
can be simultaneously classified with respect to these traits. We then obtain a
two-way contingency table in which both sets of marginal totals are random. An
illustration was already provided in Example 3. To cite a few other examples: A
random sample of employed persons may be classified according to educational
attainment and type of occupation; college students may be classified according
to the year in college and attitude toward a dormitory regulation; flowering
plants may be classified with respect to type of foliage and size of flower.

A typical inferential aspect of cross-tabulation is the study of whether the
two characteristics appear to be manifested independently or certain levels of one
characteristic tend to be associated or contingent with some levels of another.

Example 9 Developing a Test of Independence
Analyze the data in Example 3 concerning credit fraud and release of per-
sonal information.

SOLUTION The 2 � 3 contingency table of Example 3 is given in Table 12. Here a sin-
gle random sample of 395 persons, who were notified that personal credit in-
formation was released by the institution, were classified according to type of
institution and whether or not personal credit was harmed.

�2

TABLE 12 Type of Oraganization and Fraudulent Use of
Personal Information

Other
Government Financial Commercial Total

Harm 30 24 21 75
No Harm 182 104 34 320

Total 212 128 55 395

Dividing the cell frequencies by the sample size 395, we obtain the rela-
tive frequencies shown in Table 13(a). Its row marginal totals .190 and .810
represent the sample proportions of cases where credit harm was inflicted
and where it was not, respectively. Likewise, the column marginal totals show
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the sample proportions for the three types of institutions. For instance, Gov-
ernment was the source of proportion .537, or over half of the releases.

Imagine a classification of the entire population. The unknown popula-
tion proportions (i.e., the probabilities of the cells) are represented by the
entries in Table 13(b), where the suffixes H and N stand for Harm and No
Harm, and 1, 2, and 3 refer to “Government,” “Financial,” and “Other Com-
mercial” institutions. Table 13(b) is the population analogue of Table 13(a),
which shows the sample proportions. For instance

We are concerned with testing the null hypothesis that the two classifica-
tions are independent. Recall from Chapter 4 that the probability of the
intersection of independent events is the product of their probabilities. Thus,
the independence of the two classifications means that 

, and so on.
Therefore, the null hypothesis of independence can be formalized as

: Each cell probability is the product of the 
corresponding pair of marginal probabilities.

To construct a test, we need to determine the expected frequencies.
Under , the expected cell frequencies are

395 395 395
395 395 395 pN p3pN p2pN p1 

pH p3pH p2pH p1 

H0

�2 

H
 0

pH p2 

pH1 � pH p1 , pH2 �

Column marginal probability p1 � P( Government ) 
 Row marginal probability pH � P( Harm ) 

 Cell probability pH1 � P( Government and Harm )

532 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

TABLE 13(b) Probability of Each Cell

Other Row Marginal
Government Financial Commercial Probability

Harm
No Harm

1p3p2p1
Column marginal

probability

pN 
pN 3pN 2pN 1

pHpH 3pH 2pH 1

TABLE 13(a) Proportion of Observations in Each Cell

Other
Government Financial Commercial Total

Harm .076 .061 .053 .190
No Harm .461 .263 .086 .810

Total .537 .324 .139 1.000
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These involve the unknown marginal probabilities that must be estimated
from the data. Referring to Table 12, we calculate the estimates as

Then, the expected frequency in the first cell is estimated as

Notice that the expected frequency for each cell of Table 12 is of the form

Table 14(a) presents the observed cell frequencies along with the
expected frequencies shown in parentheses. The quantities 
and the statistic are then calculated in Table 13(b).

Having calculated the statistic, it now remains to determine its d.f. by in-
voking the properties we stated in Section 2. Because we have a single 

�2 

�2 
( O � E )2 / E

Row total � Column total
Grand total

 �
75 � 212

395
� 40.25

395 p̂H p̂1 � 395 �
75

395
�

102
395

 

p̂1 �
212
395

   p̂2 �
128
395

   p̂3 �
56

395

p̂H �
75

395
   p̂N �

320
395
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TABLE 14(a ) The Observed and Expected Cell Frequencies 
for the Credit Fraud Data in Table 12

Other
Government Financial Commercial

Harm

No Harm
34

(44.56)
104

(103.70)
182

(171.75)

21
(10.44)

24
( 24.30 )

30
(40.25)

TABLE 14(b) The Values of (O � E �E

Other
Government Financial Commercial Total

Harm 2.612 .004 10.672
No Harm .612 .001 2.501

16.402 � �2 

)2
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random sample, only the property (b) is relevant to this problem. Since
and we have really estimated 1 � 2

� 3 parameters. Hence,

We choose level of significance � � .05 and the tabulated upper 5%
point of with d.f. � 2 is 5.99. Because the observed is larger than the 
tabulated value, the null hypothesis of independence is rejected at � � .05.
In fact, it would be rejected even for � � .01.

Inspection of Table 14(b) reveals that moderately large contributions
from (i) the cell where Government released personal data has a smaller than
expected number of cases where credit is harmed and (ii) the cell where
Other Commercial institutions have smaller than expected number of cases
where credit is not harmed. However, a gigantic contribution to comes
from the cell where personal data released by Other Commercial institutions
has much larger than expected number of cases where credit was harmed.

In all cases where you are notified that your personal information has been
compromised, you need to check your credit reports and carefully read credit card
statements. This is particularly true if other commercial institutions are involved.

From our analysis of the contingency table in Example 9, the test of
independence in a general contingency table is readily apparent. In fact,
it is much the same as the test of homogeneity described in Section 3. The
expected cell frequencies are determined in the same way—namely,

and the test statistic is again

With regard to the d.f. of in the present case, we initially have d.f.
because there are r c cells into which a single random sample is classified. From
this, we must subtract the number of estimated parameters. This number is

because there are parameters among the row
marginal probabilities and parameters among the column marginal
probabilities. Therefore,

which is identical to the d.f. of for testing homogeneity. In summary, the 
test statistic, its d.f., and the rejection region for testing independence are the
same as when testing homogeneity. It is only the statement of the null hypothe-
sis that is different between the two situations.

�2�2 

 � ( No. of rows � 1 ) � ( No. of columns � 1 )
 � ( r � 1 ) ( c � 1) 
 � r c � r � c � 1 

d.f. of �2 � r c � 1 � ( r � 1 ) � ( c � 1 )

c � 1
r � 1( r � 1 ) � ( c � 1 )

r  c � 1�2 

�2 � �
cells

 
( O � E )2

E

Expected cell frequency �
Row total � Column total

Grand total

r � c
�2

�2 

�2 �2 

 � 2 
 � 6 � 1 � 3

d.f. of �2 � ( No. of cells ) � 1 � ( No. of parameters estimated )

p1 � p2 � p3 � 1,pH � pN � 1
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SPURIOUS DEPENDENCE

When the test leads to a rejection of the null hypothesis of independence, we
conclude that the data provide evidence of a statistical association between the
two characteristics. However, we must refrain from making the hasty interpreta-
tion that these characteristics are directly related. A claim of casual relationship
must draw from common sense, which statistical evidence must not be allowed
to supersede.

Two characteristics may appear to be strongly related due to the common
influence of a third factor that is not included in the study. In such cases, the
dependence is called a spurious dependence. For instance, if a sample of indi-
viduals is classified in a 2 � 2 contingency table according to whether or not
they are heavy drinkers and whether or not they suffer from respiratory trou-
ble, we would probably find a high value for and conclude that a strong sta-
tistical association exists between drinking habit and lung condition. But the
reason for the association may be that most heavy drinkers are also heavy
smokers and the smoking habit is a direct cause of respiratory trouble. This dis-
cussion should remind the reader of a similar warning given in Chapter 3 re-
garding the interpretation of a correlation coefficient between two sets of mea-
surements. In the context of contingency tables, examples of spurious
dependence are sometimes called Simpson’s paradox, which is discussed in
Chapter 3, Section 2.

Exercises

�2 

�2 
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The Null Hypothesis of Independence

: Each cell probability equals the product of the corresponding row
and column marginal probabilities.

H0

13.21 Applicants for public assistance are allowed an
appeals process when they feel unfairly
treated. At such a hearing, the applicant may
choose self-representation or representation
by an attorney. The appeal may result in an
increase, decrease, or no change of the aid rec-
ommendation. Court records of 320 appeals
cases provided the following data.

Test the null hypothesis that the appeals deci-
sion and the type of representation are inde-
pendent. Test at � � .05.

13.22 A consultant to all kinds of retailers suggests
that they have plenty of baskets available for
customers. He bases his suggestion on data
collected by watching video tapes from hid-
den cameras. Suppose that out of 200 cus-
tomers, 80 picked up a basket when they en-
tered the store. Among those who picked up
baskets 60 persons made purchases while
only 41 of those without baskets made a 
purchase.

Type of Amount of Aid
Representation Increased Unchanged Decreased

Self 59 108 17
Attorney 70 63 3 
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(a) Conduct a test of independence
between purchasing and the decision to
pick up a basket. Use � � .05.

(b) The consultant may be confusing associa-
tion with cause and effect. For instance,
do you think the decision to pick up a
basket has anything to do with the intent
to purchase when a person enters the
store? Comment.

13.23 A survey was conducted by sampling 400 per-
sons who were questioned regarding union
membership and attitude toward decreased
national spending on social welfare programs.
The cross-tabulated frequency counts are
presented.

Can these observed differences be explained by
chance or are attitude and membership status
associated?

13.24 A survey was conducted to study people’s
attitude toward television programs that show
violence. A random sample of 1200 adults
was selected and classified according to gen-
der and response to the question: Do you
think there is a link between violence on TV
and crime?

Do the survey data show a significant asso-
ciation between attitude and gender?

13.25 In a study of factors that regulate behavior, three
kinds of subjects are identified: overcontrollers,

�2 average controllers, and undercontrollers, with
the first group being most inhibited. Each sub-
ject is given the routine task of filling a box with
buttons and all subjects are told they can stop
whenever they wish. Whenever a subject indi-
cates he or she wishes to stop, the experimenter
asks, “Don’t you really want to continue?” The
number of subjects in each group who stop and
the number who continue are given in the fol-
lowing table.

Are controller group and continue/stop deci-
sion associated?

13.26 Out of 120 members of a club who res-
ponded to a survey, 80 said that the golfing
facilities were influential, 53 said the dining
facilities were influential, and 25 said both
were influential in their decision to join the
club.

(a) Construct a two-way table of frequen-
cies with two categories influential/not
influential for each facility, golf and
dining.

(b) Formulate the null hypothesis.

(c) Conduct a test of your null hypothe-
sis. Use � � .05.

(d) Comment on the form of any departure
from the null hypothesis.

The Following Exercises May Require 
a Computer

13.27 Using the computer. The analysis of a contin-
gency table becomes tedious especially when
the size of the table is large. Using a computer
makes the task quite easy. We illustrate this by
using MINITAB to analyze the data in Table 12,
Example 9.

�2 
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Response
Yes No Not Sure

Male 361 228 17
Female 433 141 20

Support Indifferent Opposed Total

Union 112 36 28 176
Nonunion 84 68 72 224

Total 196 104 100 400

Controller Continue Stop Total

Over 9 9 18
Average 8 12 20
Under 3 14 17

Total 20 35 55
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The output is as follows:

Chi-Square Test: C1, C2, C3

Expected counts are printed below ob-
served counts

KEY IDEAS AND FORMULAS 537

Data: C13T12.txt

C1: 30 182

C2: 24 104

C3: 21 34

Dialog box:

Stat Tables Chisquare Test

Type C1-C3 in Columns containing

the table. Click OK.

QQ

Chi-Square contributions are printed be-
low expected counts

C1 C2 C3 Total
1 30 24 21 75

40.25 24.30 10.44
2.612 0.004 10.672

2 182 104 34 320
171.75 103.70 44.56
0.612 0.001 2.501

Total 212 128 55 395

Chi-Sq � 16.402, DF � 2, 
P-Value � 0.000

(a) Compare this output with the calcula-
tions presented in Example 9.

(b) Do Exercise 13.24 on a computer.

13.28 Do Exercise 13.26 on a computer.

USING STATISTICS WISELY

1. Moderately large sample sizes are required to detect differences in propor-
tions. Usually, 50 to 100 observations from each population are needed.

2. Although the test statistic is the same for testing independence and for
testing equality of proportions, you should be clear which null hypothesis
you are testing. When you sample from separate populations, the test
concerns the equality of proportions. If a single sample is cross-classified
according to two characteristics, the test concerns independence.

3. Don’t routinely apply the inference procedures for comparing proportions
when it is obvious that the outcomes have a time order dependence.

KEY IDEAS AND FORMULAS

The term categorical data refers to observations that are only classified into
categories so the data consist of frequency counts for the categories. When the
frequency counts arise because observations are classified according to two or
more characteristics, they are called cross-tabulated data or a contingency table.
A chi-square ( ) statistic compares the observed frequencies with those
expected under a null hypothesis.

When a chi-square test of independence leads to the rejection of the null
hypothesis, we say we have established a statistical association. There is no assertion

�2

�2 

�2 

�2 
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of a causal relation as it may be a spurious dependence caused by a third variable.
Simpson's paradox is an example of spurious dependence caused when two cate-
gorical data sets collected from very different populations are combined.

Pearson’s � Test for Goodness of Fit

Data: Observed cell frequencies , . . . , from a random sample of size n
classified into k cells.

The null hypothesis specifies the cell probabilities

:

Test statistic

Rejection region

� Test of Homogeneity in an r � c Contingency Table

Data: Independent random samples from r populations, each sample classified in
c response categories.

Null hypothesis: In each response category, the probabilities are equal for all
the populations.

Test statistic

where for each cell

Rejection region

� Test of Independence in an r � c Contingency Table

Data: A random sample of size n is simultaneously classified with respect to two
characteristics, one has r categories and the other c categories.

Null hypothesis: The two classifications are independent; that is,
each cell probability is the product of the row and column marginal probabilities.

Test statistic and rejection region: Same as when testing homogeneity.

Limitation

All inference procedures of this chapter require large samples. The tests are
appropriate if no expected cell frequency is too small (� 5 is normally required).

�2 

2

� 2 � ��
2

 E �
Row total � Column total

Grand total

O � Observed cell frequency 

�2 � �
cells

 
( O � E )2

E
    d.f. � ( r � 1 )  ( c � 1 )

2

�2 � ��
2

�2 � �
cells

 
( ni � n pi 0 

)2

n pi 0
    d.f. � k � 1

p1 � p10 , . . . , pk � pk 0H0

nkn1

2
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TECHNOLOGY

Conducting a � test

MINITAB

Conducting a � test

We illustrate the calculation of the statistic with an example. Enter the
counts

30 42 28
9 10 31

in columns 1 to 3. Select the MINITAB commands

Stat  	 Tables  	 Chisquare Test.
Type C1–C3 in columns containing the table.
Click OK.

EXCEL

Calculating a � statistic

Enter observed values in a rectangular range of cells.
Enter the expected values in another rectangular range of cells.

Select Insert, then Function. Select Statistical, and then CHITEST.
Click OK.
With the cursor in the textbox for Actual_range, highlight the observed
values.
With the cursor in the textbox for Expected_range, highlight the expected
values.
Click OK.

The software will return the P–value.

TI-84/-83 PLUS

Calculating a � statistic

Enter the observed counts and expected values as matrices.

Select Matrix and then EDIT.
Press Enter and enter the number of rows, the number of columns, and the
entries for [A], the observed values.
Press 2nd Quit and select Matrix, then EDIT again.

2

2

�2 

2

2

TECHNOLOGY 539
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Select Matrix [B], press Enter and enter the number of rows, the number of
columns, and the expected values. Press 2nd Quit again.
Select STAT then TESTS and then  	 test.
Arrow down to select Calculate. Enter the appropriate matrix names
(matrices [A] and [B] are the defaults) and then press Enter.

The software returns the value of the statistic, the P–value, and the degrees
of freedom.

5. REVIEW EXERCISES

�2 

�2 

540 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

13.29 To examine the quality of a random number
generator, frequency counts of the individual
integers are recorded from an output of 500
integers. The concept of randomness implies
that the integers 0, 1, . . . , 9 are equally likely.
Based on the observed frequency counts, would
you suspect any bias of the random number gen-
erator? Answer by performing the test.

Integer 0 1 2 3 4 5 6 7 8 9 Total

Frequency 41 58 51 61 39 56 45 35 62 52 500

13.30 The following record shows a classification of
41,208 births in Wisconsin (courtesy of Professor
Jerome Klotz). Test the goodness of fit of the
model that births are uniformly distributed over
all 12 months of the year. Use � � .01.

�2 

It is conjectured that twice as many babies are
born during the Jan.–March quarter than any of
the other three quarters.At � � .10, test if these
data strongly contradict the stated conjecture.

13.32 A large midwestern university allows multiple
majors and most educators appreciate that dou-
ble majors are warranted in some circumstances.
Recently, however, there is more concern about
what a major means if a person has too many.
The data on majors for graduating seniors in the
College of Letters and Sciences, and the results
for an earlier academic year are

Jan. 3,478 July 3,476
Feb. 3,333 Aug. 3,495
Mar. 3,771 Sept. 3,490
Apr. 3,542 Oct. 3,331
May 3,479 Nov. 3,188
June 3,304 Dec.

Total 41,208
 3,321

Hepatitis No Hepatitis Total

Vaccinated 11 538 549
Not vaccinated 70 464 534

Total 81 1002 1083

13.31 The following table records the observed num-
ber of births at a hospital in four consecutive
quarterly periods.

Quarters Jan.–March April–June July–Sept. Oct.–Dec.

Number 55 29 26 41
of births

Treating these data as a random sample of graduating
seniors at similar institutions,

(a) perform a test to detect a difference in the popula-
tions for number of majors.Take � � .05.

(b) Let be the probability a 2007–2008 graduate
has multiple majors and let be the probability for

2001–2002. Perform a test for a difference.
Take � � .05.

13.33 Refer to Exercise 3.48 and the data concerning
a vaccine for type B hepatitis.

�2 

p2

p1

�2 

Number of majors
1 2 3

01–02 Year 2327 834 57

07–08 Year 2356 1059 88
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Do these data indicate that there is a different rate
of incidence of hepatitis between the vaccinated
and nonvaccinated participants? Use the test
for homogeneity in a contingency table.

13.34 Refer to the data in Exercise 13.33.

(a) Use the Z test for testing the equality of
two population proportions with a two-
sided alternative. Verify the relation �

by comparing their numerical values.

(b) If the alternative is that the incidence rate
is lower for the vaccinated group, which
of the two tests should be used?

13.35 To compare the effectiveness of four drugs in
relieving postoperative pain, an experiment was
done by randomly assigning 195 surgical pa-
tients to the drugs under study. Recorded here
are the number of patients assigned to each
drug and the number of patients who were free
of pain for a period of five hours.

(a) Make a 4 � 2 contingency table show-
ing the counts of patients who were free
of pain and those who had pain, and test
the null hypothesis that all four drugs are
equally effective. (Use � � .05.)

(b) Let , , , and denote the popula-
tion proportions of patients who would
be free of pain under the use of drugs
1, 2, 3, and 4, respectively. Calculate a
90% confidence interval for each of these
probabilities individually.

13.36 Using the data for drugs 1 and 3 in Exercise
13.35, make a 2 � 2 contingency table and test

: � versus : � at � � .05
employing:

(a) The test.

(b) The Z test.

13.37 Refer to the data for drugs 3 and 4 in Exercise
13.35.

�2 

p3p1H1p3p1H0

p4p3p2p1

�2 

�2 

�2 

(a) Is there strong evidence that drug 4 is
more effective in controlling postoperative
pain than drug 3? Answer by calculating
the P–value.

(b) Construct a 95% confidence interval for
the difference � .

13.38 In a study on the effect of diet and lifestyle on
heart disease, 96 patients with severe coronary
blockage were randomly assigned, 49 to an
experimental group and 47 to a control group.
The patients in the experimental group had a
low-fat vegetarian diet, regular exercise, and
stress-management training, whereas those in
the control group had a low-fat diet and mod-
erate exercise. The condition of their coronary
blockage was monitored throughout the study
period, and the following results were noted.

Analyze the data to determine if the changes in
coronary blockage were significantly different
between the two groups of patients.

13.39 Based on interviews of couples seeking divorces,
a social worker compiles the following data re-
lated to the period of acquaintanceship before
marriage and the duration of marriage.

Perform a test to determine if the data sub-
stantiate an association between the stability of
a marriage and the period of acquaintanceship
prior to marriage.

p3p4

5. REVIEW EXERCISES 541

No. of Patients
Free of Pain Assigned

Drug 1 23 53
Drug 2 30 47
Drug 3 19 51
Drug 4 29 44

Coronary Blockage
Group Worsened No Change Improved Total

Experimental 4 8 37 49
Control 8 25 14 47

96

Acquaintanceship Duration of Marriage
before Marriage � 4 years 	 4 years Total

Under year 11 8 19

years 28 24 52

Over 1 years 21 19 40

Total 60 51 111

1
2

1
2 –11

2

1
2
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13.40 By polling a random sample of 350 undergrad-
uate students, a campus press obtains the
following frequency counts regarding student
attitude toward a proposed change in dormi-
tory regulations.

Are attitude toward the proposal and gender
associated?

13.41 In a genetic study of chromosome structures,
132 individuals are classified according to the
type of structural chromosome aberration and
carriers in their parents. The following counts
are obtained.

Test the null hypothesis that type of aberration
is independent of parental carrier.

13.42 A random sample of 130 business executives
was classified according to age and the degree of
risk aversion as measured by a psychological test.

542 CHAPTER 13/ANALYSIS OF CATEGORICAL DATA

Favor Indifferent Oppose Total

Male 95 72 19 186
Female 53 79 32 164

Total 148 151 51 350

Carrier
Type of Aberration One Parent Neither Parent Total

Presumably 
innocuous 27 20 47

Substantially 
unbalanced 36 49 85

Total 63 69 132

Degree of Risk Aversion
Age Low Medium High Total

Below 45 14 22 7 43
45–55 16 33 12 61

Over 55 4 15 7 26

130

TABLE 14 Secretarial Positions

Offered Denied Total

Male 25 50 75
Female 75 150 225

Total 100 200 300

TABLE 15 Sales Positions

Offered Denied Total

Male 150 50 200
Female 75 25 100

Total 225 75 300

(a) Verify that the statistic for testing in-
dependence is zero for each of the data
sets given in Tables 14 and 15.

(b) For the pooled data given in Table 16,
compute the value of the statistic and
test the null hypothesis of independence.

(c) Explain the paradoxical result that there is
no sex bias in any job category, but the
combined data indicate sex discrimination.

�2 

�2 

Do these data demonstrate an association
between risk aversion and age?

13.43 Pooling contingency tables can produce spuri-
ous association. A large organization is being
investigated to determine if its recruitment is
sex-biased. Tables 14 and 15, respectively, show
the classification of applicants for secretarial and
for sales positions according to gender and result
of interview. Table 16 is an aggregation of the
corresponding entries of Table 14 and Table 15.

TABLE 16 Secretarial and Sales Positions

Offered Denied Total

Male 175 100 275
Female 150 175 325

Total 325 275 600
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Which Brand HDTV Has the Clearest Picture?

A good experimental design is to collect samples of several HDTVs of each brand and measure their picture
clarity. The statistical technique called “analysis of variance” enables us to verify differences among the brands.
© Ed Lallo/Index Stock Imagery.
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1. INTRODUCTION

In Chapter 10, we introduced methods for comparing two population means. When
several means must be compared, more general methods are required. We now
become acquainted with the powerful technique called analysis of variance
(ANOVA) that allows us to analyze and interpret observations from several popula-
tions. This versatile statistical tool partitions the total variation in a data set according
to the sources of variation that are present. In the context of comparing k population
means, the two sources of variation are (1) differences between means or treatments
and (2) within population variation (error). We restrict our discussion to this case,
although ANOVA techniques apply to much more complex situations.

In this chapter, you will learn how to test for differences among several
means and to make confidence statements about pairs of means.

2. COMPARISON OF SEVERAL TREATMENTS—
THE COMPLETELY RANDOMIZED DESIGN

It is usually more expedient in terms of both time and expense to simultaneously
compare several treatments than it is to conduct several comparative trials two at a
time. The term completely randomized design is synonymous with independent
random sampling from several populations when each population is identified as the
population of responses under a particular treatment. Let treatment 1 be applied to

experimental units, treatment 2 to units, . . . , treatment k to units. In a
completely randomized design, experimental units selected at random from the
available collection of n � � � ��� � units are to receive treatment 1,

units randomly selected from the remaining units are to receive treatment 2, and
proceeding in this manner, treatment k is to be applied to the remaining units.
The special case of this design for a comparison of k � 2 treatments has already
been discussed in Section 2 of Chapter 10. The data structure for the response mea-
surements can be represented by the format shown in Table 1, where is the jth
observation on treatment i. The summary statistics appear in the last two columns.

Before proceeding with the general case of k treatments, it would be
instructive to explain the reasoning behind the analysis of variance and the asso-
ciated calculations in terms of a numerical example.

Example 1 The Structure of Data from an Experiment 
for Comparing Four Means
Four models of high-end earbuds will be compared for sound reproduction.
There are 5 sets of earbud A, 4 of earbud B, 7 of earbud C, and 6 of earbud D
available for testing. The quality of sound reproduction can be determined
objectively by measuring audio signals received by a robot head wearing ear-
buds and then comparing them with the known signal wave that was sent.
Quantitatively, the measure of sound distortion called total harmonic distor-
tion is an overall measure of the discrepancy, in percent. Because the values

yij

nk

n2

nkn2n1

n1

nkn2n1
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An analysis of the results essentially consists of decomposing the observa-
tions into contributions from different sources. We reason that the deviation
of an individual observation from the grand mean, is partly due to
differences among the mean qualities of the brands and partly due to random

y i  j � y ,

546 CHAPTER 14/ANALYSIS OF VARIANCE (ANOVA)

TABLE 1 Data Structure for the Completely Randomized Design
with k Treatments

Observations Mean Sum of Squares

Treatment 1

Treatment 2

� � � �
� � � �
� � � �

Treatment k

Grand mean y �
Sum of all observations
n1 � n2 � ��� � nk

�
n1 y1 � ��� � nk yk

n1 � ��� � nk

�
nk

j � 1
 (  y k j � y k  

)2yky k 1 , y k  2 , . . . , yk nk

�
n2

j � 1
 ( y 2j � y 2 

)2y2y21 , y22 , . . . , y2n2

�
n1

j � 1
 ( y1j � y1 

)2y1y11 , y12 , . . . , y1n1

TABLE 2 Sound Distortion Obtained with Four Brands of Earbuds

Coating Observations Mean Sum of Squares

A 10, 15, 8, 12, 15

B 14, 18, 21, 15

C 17, 16, 14, 15, 17, 15, 18

D 12, 15, 17, 15, 16, 15

Grand mean y � 15

�
6

j � 1
 ( y 4 j � y 4 )2 � 14y4 � 15

�
7

j � 1
 ( y 3 j � y 3 

)2 � 12y3 � 16

�
4

j � 1
 ( y 2 j � y 2 )2 � 30y2 � 17

�
5

j � 1
 ( y 1j � y1)2 � 38y1 � 12

are substantially below 1% for high quality earbuds, we give the values for
distortion in hundredths of a percent so 10 is .1% and so on. Suppose the test
results for sound distortion produce the data in Table 2.

Two questions immediately come to mind. Does any significant difference
exist among the mean distortions obtained using the four brands of earbuds?
Can we establish confidence intervals for the mean differences between brands?
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variation in measurements within the same group. This suggests the following
decomposition.

For the data given in Table 2, the decomposition of all the observations can be
presented in the form of the following arrays:

Observations

Treatment
Grand mean effects

Residuals

For instance, the upper left-hand entries of the arrays show that

If there is really no difference in the mean distortions obtained using the
four brands of earbuds, we can expect the entries of the second array on the
right-hand side of the equation, whose terms are to be close to zero.
As an overall measure of the amount of variation due to differences in the treat-
ment means, we calculate the sum of squares of all the entries in this array, or

� 68

� 5 ( �3 )2 � 4 ( 2 )2 � 7 ( 1 ) 

2 � 6 ( 0 ) 

2

(�3 )2 � ��� � (�3 )2

n1 � 5

 
�

 
22 � ��� � 22

n2 � 4

 
�

 
12 � ��� � 12

n3 � 7

 
�

 
0 

2 � ��� � 0 

2

n4 � 6

y i � y ,

y11 � y � ( y 1 � y ) � ( y11 � y1 

)

10 � 15 � (�3 ) � (�2 )

� �
�2
�3

1
�3

3
1
0
0

�4
4

�2
2

0
�2
�1

0

3

1
1

�1
0

2�
( y  i j � y i 

)

� �
�3

2
1
0

�3
2
1
0

�3
2
1
0

�3
2
1
0

�3

1
0

1
0

1�� �
15
15
15
15

15
15
15
15

15
15
15
15

15
15
15
15

15

15
15

15
15

15�
( yi � y )y

�
10
14
17
12

15
18
16
15

8
21
14
17

12
15
15
15

15

17
16

15
15

18�
y i j

( y  i j � y i 

)�( yi � y )�y�y i j

Observation � �Grand
mean � � �Deviation due

to treatment � � (Residual)
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Thus, the sum of squares due to differences in the treatment means, also called
the treatment sum of squares, is given by

Treatment sum of squares �

The last array consists of the entries that are the deviations of
individual observations from the corresponding treatment mean. These devia-
tions reflect inherent variabilities in the material, fabrication, and the measuring
device and are called the residuals. The overall variation due to random errors is
measured by the sum of squares of all these residuals

Thus, we obtain

Error sum of squares � 

The double summation indicates that the elements are summed within each
row and then over different rows. Alternatively, referring to the last column in
Table 2, we obtain

Finally, the deviations of individual observations from the grand mean
are given by the array

The total variation present in the data is measured by the sum of squares of all
these deviations.

Note that the total sum of squares is the sum of the treatment sum of squares
and the error sum of squares.

It is time to turn our attention to another property of this decomposition,
the degrees of freedom associated with the sums of squares. In general terms:

 � 162

 � (�5  )2 � 0 

2 � ( �7   )2 � ��� � 0 

2

Total sum of squares � �
4

i � 1
 �

n i

j � 1
 ( y i j � y ) 

2

Deviations � �
�5
�1

2
�3

0
3
1
0

�7
6

�1
2

�3
0
0
0

0

2
1

0
0

3�
y i j � y

 � 38 � 30 � 12 � 14 � 94

 � �
7

j � 1
 ( y 3 j � y 3 )2 � �

6

j � 1
 ( y4 j � y4 

)2

Error sum of squares � �
5

j � 1
 ( y 1j � y 1 )2 � �

4

j � 1
 ( y 2 j � y 2 )2

�
4

i � 1
 �

ni

j � 1
 ( y i j � y i 

)2 � 94

(�2 )2 � 32 � (�4 )2 � ��� � 12 � 0 

2 � 94

y i j � y i

�
4

i � 1
 n i ( y i � y )2 � 68
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In our present example, the treatment sum of squares is the sum of four terms
where

the elements satisfy the single constraint

This equality holds because the grand mean is a weighted average of the treat-
ment means, or

Consequently, the number of degrees of freedom associated with the treatment
sum of squares is 4 � 1 � 3. To determine the degrees of freedom for the
error sum of squares, we note that the entries in each row of the
residual array sum to zero and there are 4 rows. The number of degrees of free-
dom for the error sum of squares is then 

Finally, the number of degrees of freedom for the total sum
of squares is � 1 � 22 � 1 � 21, because the
22 entries whose squares are summed satisfy the single constraint
that their total is zero. Note that the degrees of freedom for the total sum of
squares is the sum of the degrees of freedom for treatment and error.

We summarize the calculations thus far in Table 3.

Guided by this numerical example, we now present the general formulas
for the analysis of variance for a comparison of k treatments using the data
structure given in Table 1. Beginning with the basic decomposition

( y i j � y ) � ( y i � y ) � ( y i j � y i 
)

( yij � y )
( n1 � n2 � n3 � n4  )

22 � 4 � 18.
( n1 � n2 � n3 � n4 

) � 4 �

y i j � y i

y �
n1 y1 � n2 y2 � n3 y3 � n4 y4

n1 � n2 � n3 � n4

y

n1 

( y 1 � y ) � n 2 
( y 2 � y ) � n 3 

( y 3 � y ) � n 4 
( y4 � y ) � 0

n1 

( y1 � y )2 � n 2 

( y2 � y )2 � n3 

( y3 � y ) 

2 � n4 

( y4 � y )2,
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� 

Degrees of
freedom
associated with a
 sum of squares

 � � � 

Number of
elements
whose squares
 are summed

 � � � 

Number of linear
constraints
satisfied by the
 elements

 �

TABLE 3 ANOVA Table for 
Distortion Data

Source Sum of Squares d.f.

Treatment 68 3
Error 94 18

Total 162 21
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and squaring each side of the equation, we obtain

When summed over j � 1, . . . , the last term on the right-hand side of this 

equation reduces to zero due to the relation Therefore,

summing each side of the preceding relation over j � 1, . . . , and 
i � 1, . . . , k provides the decomposition

q q q

Total SS Treatment SS

It is customary to present the decomposition of the sum of squares and the
degrees of freedom in a tabular form called the analysis of variance table, abbre-
viated as ANOVA table. This table contains the additional column for the mean
square associated with a component, which is defined as

The ANOVA table for comparing k treatments appears in Table 4.

Mean square �
Sum of squares

d.f.

d.f. � �
k

i � 1
 n i � kd.f. � k � 1d.f. � �

k

i � 1
 n i � 1

Residual SS
or error SS

�
k

i � 1
 �

n i

j � 1
 ( y i j � y )2 � �

k

i � 1
 n i 

( y i � y )2 � �
k

i � 1
 �

n i

j � 1
 ( y i j � y i 

)2

n i

�
n i

j � 1
 ( y i j � y i 

) � 0.

n i

( y i j � y )2 � ( y i � y )2 � ( y i j � y i 

)2 � 2 ( y i � y ) ( y i j � y i 

)
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TABLE 4 ANOVA Table for Comparing k Treatments

Source Sum of Squares d.f. Mean Square

Treatment k � 1

Error

Total �
k

i � 1
 n i � 1�

k

i � 1
 �

ni

j � 1
 ( y i j � y )2

MSE �
SSE

�
k

i � 1
 n i � k

�
k

i � 1
 n i � kSSE � �

k

i � 1
 �

n i

j � 1
 ( y i j � yi 

) 

2

MST �
SST

k � 1
SS T � �

k

i � 1
 n i ( y i � y ) 

2
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GUIDE TO HAND CALCULATION

When performing an ANOVA on a calculator, it is convenient to express the
sums of squares in an alternative form. These employ the treatment totals

to calculate the sums of squares:

Notice that the SSE can be obtained by subtraction.

Example 2 Calculating Sums of Squares Using the Alternative Formulas
Obtain the Total SS, , and SSE for the data in Example 1 using the alter-
native form of calculation.

SOLUTION

and

Since

 SSE � Total SS � SST � 162 � 68 � 94

 SST �
( 60 ) 

2

5
�

( 68)2

4
�

( 112)2

7
�

( 90 )2

6
�

( 330 )2

22
� 68

 Total SS � 5112 �
( 330 )2

22
� 162

�
4

i � 1
 �

n i

j � 1
 y2

i j � (  10 )2 � ( 15 )2 � ��� � ( 16 )2 � ( 15 )2 � 5112

 � 5 � 4 � 7 � 6 � 22 � 60 � 68 � 112 � 90 � 330

n � n1 � n2 � n3 � n4T � T1 � T2 � T3 � T4

n4 � 6T4 � 12 � 15 � 17 � 15 � 16 � 15 � 90

n3 � 7T3 � 17 � 16 � 14 � 15 � 17 � 15 � 18 � 112

n2 � 4T2 � 14 � 18 � 21 � 15 � 68

n1 � 5T1 � 10 � 15 � 8 � 12 � 15 � 60

SST

SSE � Total SS � SST

SST � �
k

i � 1
 
T2

i

ni
�

T2

n

Total SS � �
k

i � 1
 �

n i

j � 1
 y2

i j �
T2

n
  where  n � �

k

i � 1
 n i

T � �
k

i � 1
 Ti � �

k

i � 1
 �

n i

j � 1
 y i j � Sum of all observations

Ti � �
n i

j � 1
 y i j � Sum of all responses under treatment i

2. COMPARISON OF SEVERAL TREATMENTS—THE COMPLETELY RANDOMIZED DESIGN 551

c14.qxd  10/15/09  11:35 AM  Page 551



(a) Obtain the arrays that show a decomposi-
tion for the observations.

(b) Find the sum of squares for each array.

(c) Determine the degrees of freedom for each
sum of squares.

(d) Summarize by an ANOVA table.

14.2 Subjects must press a button when they hear a
signal. The three treatments are three different
intensities of the signal. The time elapsed be-
tween presentation of the signal and when the
button is pushed, are recorded in hundredths of
a second. Suppose the data are

552 CHAPTER 14/ANALYSIS OF VARIANCE (ANOVA)

Treatment Observations

A 5 9
B 8 4
C 4 2
D 7 9

Treatment Observations

1 35, 24, 28, 21
2 19, 14, 14, 13
3 21, 16, 21, 14

Treatment Observations

A 7 5 4 4
B 6 1 2
C 2 1 0 1

Source Sum of Squares d.f.

Treatment 34 5
Error

Total 92 25

14.4 The abilities of six different brand athletic socks
to wick moisture are rated. The rating is based
on the time to reach 1% moisture content after
being subjected to a gentle mist. Use the rela-
tions for sums of squares and d.f. to complete
the following ANOVA table:

Treatment Observations

1 2 1 3
2 1 5
3 9 5 6 4
4 3 4 5

(a) Obtain the arrays that show a decomposi-
tion for the observations.

(b) Find the sum of squares for each array.

(c) Determine the degrees of freedom for each
sum of squares.

(d) Summarize by an ANOVA table.

14.5 Spots cannot always be removed by dry clean-
ing. Suppose the records from four different dry
cleaning establishments yield the following data
on number of unremovable spots per day.

14.1 Water collected in a single bottle from a river is
divided into eight specimens. Two specimens are
randomly selected and sent to Lab A, two to Lab
B, two to Lab C and two to Lab D. The amount
of heavy metals (ppm) is measured for each
specimen. Calling each lab a treatment, suppose
the data are

14.3 It was decided to vary the experiment in Exer-
cise 14.1 by dropping Lab D. Water from a sin-
gle collection bottle was divided into eleven
specimens. The amount of heavy metals (ppm)
is measured for each specimen. Suppose the
data are as follows and repeat Exercise 14.1.

Exercises

Provide a decomposition of the observations
and obtain the ANOVA table.

14.6 An ecologist, studying the southwestern Atlantic
salt marshes, concentrates on disturbance areas
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where dead vegetation creates a mat that kills
further growth of the dominant vegetation.
These areas provide a place for colonization by
nondominant vegetation. In three different salt
marshes, he randomly selects sampling plots and
counts the number of disturbance areas. Suppose
the summary statistics are,

Create the ANOVA table.

( n3 � 1 )s 

2
3 � �

9

j � 1
 ( y 3 j � y 3 

)2 � 25

y3 � 7n3 � 9

( n 2 � 1 )s 
2
2 � �

6

j � 1
 ( y 2 j � y 2 

)2 � 18

y2 � 2n2 � 6

( n1 � 1 )s 
2
1 � �

10

j � 1
 ( y 1 j � y 1 )2 � 30

y1 � 5n1 � 10
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The New Yorker Sports Illustrated National Geographic

where s 

2
i � �

n i

j � 1
 ( y i j � y i 

)2 / ( n i � 1 )

n3 � 20n2 � 20n1 � 20
s3 � 38.1s2 � 54.2s1 � 58.4
y3 � 75.5y2 � 92.9y1 � 94.4

Population Model for Comparing k Treatments

where � ith treatment mean. The errors are all independently
distributed as N (0, s ).

e  i  j� i

Yi j � � i � ei j  j � 1, . . . , n i    and  i � 1, . . . , k

3. POPULATION MODEL AND INFERENCES 
FOR A COMPLETELY RANDOMIZED DESIGN

To implement a formal statistical test for no difference among treatment effects,
we need to have a population model for the experiment. To this end, we assume
that the response measurements with the ith treatment constitute a random sam-
ple from a normal population with a mean of and a common variance of .
The samples are assumed to be mutually independent.

� 
2�i

14.7 Reading levels vary between different maga-
zines. To avoid difficulties caused by different
typefaces and sizes, an investigator just counted
the number of letters and punctuation signs.
Random samples of 20 sentences were selected
from The New Yorker, Sports Illustrated, and
National Geographic. The resulting summary
statistics are:

Present the ANOVA table for these data.

Before presenting the test for equality of means based on this model, we give a
second parametrization that previews the formulation of statistical models for more
complicated designs. For each i, the mean is considered to be the sum of an over-
all effect m, common to all treatments, and an effect due only to the ith treatment.

subject to the constraint �
k

i � 1
 n i 

a i � 0�i � � � ai

� i
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The right-hand side is estimated by in the decomposition
on page 547 and the estimated treatment effects satisfy the same constraint.

F DISTRIBUTION

The F test will determine if significant differences exist between the k sample
means. The null hypothesis that no difference exists among the k population
means can now be phrased as follows:

� � � � � � �

The alternative hypothesis is that not all the ’s are equal. Seeking a criterion
to test the null hypothesis, we observe that when the population means are all
equal, is expected to be small, and consequently, the treatment mean

square � is expected to be small. On the other
hand, it is likely to be large when the means differ markedly. The error mean
square, which provides an estimate of , can be used as a yardstick for deter-
mining how large a treatment mean square should be before it indicates signif-
icant differences. Statistical distribution theory tells us that under the ratio

has an F distribution with d.f. � ( k � 1, n � k ), where 
Notice that an F distribution is specified in terms of its numerator degrees of free-

dom � k � 1 and denominator degrees of freedom � n � k . We denote

which is also called the upper 100a-th percentage point.
The upper a � .05 and a � .10 points are given in Appendix B, Table 6,

for several pairs of d.f. With � 7 and � 15, for a � .05, we read from
column � 7 and row � 15 to obtain (7,15) � 2.71 (see Table 5).F.05v2v1

v2v1

F� 
( v1 , v2 

) � Upper � point of the F distribution with ( v1 , v2 
) d.f.

v2v1

n � � n  i .

F �
Treatment mean square

Error mean square
�

Treatment SS / ( k � 1 )

Error SS/� �
k

i � 1
 n i � k �

H0

�  

2

n i 
( y i � y )2 / ( k � 1 )

y i � y

� i

�
 k�2�1H0

y � (  y i � y  )
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TABLE 5 Percentage Points 
of F ( , ) Distributions 
a � .05

� � � 7 � � �

� �
� �
� �

15 � � � 2.71
�
�
�

v2

v1

v2v1
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We summarize the F test introduced above.

3. POPULATION MODEL AND INFERENCES FOR A COMPLETELY RANDOMIZED DESIGN 555

F Test for Equality of Means

Reject : � � � � � � if

where and ( k � 1, n � k ) is the upper a point of the F

distribution with d.f. � ( k � 1, n � k ).

F�n in � �
k

i � 1

F �
Treatment SS / ( k � 1 )

Error SS / ( n � k  )
� F� 

( k � 1, n � k )

�k�2�1H0

TABLE 6 ANOVA Table for the Data Given in Example 1

Source Sum of Squares d.f. Mean Square F-ratio

Treatment 68 3 22.67

Error 94 18 5.22

Total 162 21

22.67
5.22

� 4.34

The computed value of the F-ratio is usually presented in the last column of the
ANOVA table.

Example 3 The F Test for Testing the Null Hypothesis of No Difference
in Sound Distortion Means
Construct the ANOVA table for the data given in Example 1 concerning a
comparison of four brands of earbuds. Test the null hypothesis that the means
are equal. Use a � .05.

SOLUTION Using our earlier calculations for the component sums of squares, we con-
struct the ANOVA table that appears in Table 6.

A test of the null hypothesis � � � � is performed
by comparing the observed F value 4.34 with the tabulated value of F with 
d.f. � ( 3, 18 ). At a .05 level of significance, the tabulated value is found to
be 3.16. Because this is exceeded by the observed value, we conclude that
there is a significant difference among the four mean sound distortions.

Table 7 gives some typical output from a computer program where the
term factor is used instead of treatment. The MINITAB commands for obtain-
ing these results are given in Exercise 14.35.

�4�3�2�1H0
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Source Sum of Squares d.f.

Treatment 12 2
Error 104 41

Total 116 43

Source Sum of Squares d.f.

Treatment 23 5
Error 56 30

Total 79 35

TABLE 7 Computer Output: One-Way Analysis of Variance 
for Sound Distortion Data

One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 3 68.00 22.67 4.34 0.018
Error 18 94.00 5.22
Total 21 162.00

Exercises

14.8 Using the table of percentage points for the F
distribution, find

(a) The upper 5% point when � 7 and 
� 10.

(b) The upper 5% point when � 10 and 
� 7.

14.9 Using Appendix B, Table 6, find the upper 10%
point of F for

(a) d.f. � (3, 5) (b) d.f. � (3, 10)

(c) d.f. � (3, 15) (d) d.f. � (3, 30)

(e) What effect does increasing the denominator
d.f. have?

14.10 A psychologist investigating the connection be-
tween music and memory, randomly assigns sub-
jects to one of three treatment groups. The first
group hears white noise, the second Mozart, and
the third heavy metal. With the appropriate back-
ground sound turned on, subjects visually study a
picture. The picture is removed, the sound turned
off, and then the subjects are asked to answer a
questionnaire concerning the image. Suppose the
number of errors result in the following ANOVA
table,

v2

v1

v2

v1

Carry out the F test for equality of means taking
a � .10.

14.11 Based on the current General Social Survey, an
index is created from the few questions asking
about the degree of confidence in government.
Six age groups are compared. Suppose the val-
ues of the index result in the following
ANOVA table.

Carry out the F test for equality of means
taking a � .05.

14.12 Using the data from Exercise 14.1, test for
equality of means using a � .05.

14.13 Test for equality of means based on the data in
Exercise 14.2. Take a � .05.

14.14 Three bread recipes are to be compared with
respect to density of the loaf. Five loaves will
be baked using each recipe.

(a) If one loaf is made and baked at a time,
how would you select the order?

(b) Given the following data, conduct an F
test for equality of means. Take a � .05.
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4. SIMULTANEOUS CONFIDENCE INTERVALS

The ANOVA F test is only the initial step in our analysis. It determines if signifi-
cant differences exist among the treatment means. Our goal should be more
than to merely conclude that treatment differences are indicated by the data.
Rather, we must detect likenesses and differences among the treatments. Thus,
the problem of estimating differences in treatment means is of even greater
importance than the overall F test.

Referring to the comparison of k treatments using the data structure given in
Table 1, let us examine how a confidence interval can be established for � 
, the mean difference between treatment 1 and treatment 2. The statistic

has a t distribution with d.f. � n � k, and this can be employed to construct a
confidence interval for � . More generally:�2�1

T �
( Y1 � Y2 

) � ( �1 � �2 
)

� 
SSE

n � k
  � 

1
n1

�
1
n2

�2�1

4. SIMULTANEOUS CONFIDENCE INTERVALS 557

Recipe Observation

1 .95 .86 .71 .72 .74
2 .71 .85 .62 .72 .64
3 .69 .68 .51 .73 .44

Confidence Interval for a Single Difference

A 100(1 � a)% confidence interval for the difference of means
for treatment i and treatment i	 is given by

where

and is the upper a/2 point of t with d.f. � n � k.t�  
    2

S � √ MSE � � 

SSE
n � k

 ( Yi � Yi  	  

) � t �/ 2 S  � 

1
n i

�
1

n i 	

� i � � i 	 
,

14.15 Test for equality of means based on the data in
Exercise 14.3. Take a � .05.

14.16 Refer to the data on reading levels in Exer-
cise 14.7. Test for equality of means. Take 
a � .05.

If the F test first shows a significant difference in means, then some statisticians
feel that it is reasonable to compare means pairwise according to the preceding
intervals. However, many statisticians prefer a more conservative procedure
based on the following reasoning.
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Without the provision that the F test is significant, the preceding method
provides individual confidence intervals for pairwise differences. However,

with k � 4 treatments, there are pairwise differences 

and this procedure applied to all pairs yields six confidence statements, each hav-
ing a 100(1 � a)% level of confidence. It is difficult to determine what level
of confidence will be achieved for claiming that all six of these statements are
correct. To overcome this dilemma, procedures have been developed for several
confidence intervals to be constructed in such a manner that the joint probability
that all the statements are true is guaranteed not to fall below a predetermined
level. Such intervals are called multiple confidence intervals or simultaneous
confidence intervals. Numerous methods proposed in the statistical literature
have achieved varying degrees of success. We present one that can be used simply
and conveniently in general applications.

The procedure, called the multiple-t confidence intervals, consists of setting
confidence intervals for the differences in much the same way we
just did for the individual differences, except that a different percentage point is
read from the t table.

Operationally, the construction of these confidence intervals does not
require any new concepts or calculations, but it usually involves some nonstan-
dard percentage point of t. For example, with k � 3 and 1 � a � .95, if 

we want to set simultaneous intervals for all pairwise differences,

we require that the upper a/(2m) � .05/6 � .00833 point of a t distribution.

m � �k
 2 
� � 3

� i � � i 	

� i � � i 	 ,�4
 2 
� � 6
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Multiple-t Confidence Intervals

A set of 100(1 � a)% simultaneous confidence intervals for m number
of pairwise differences is given by

where m � the number of confidence statements, and 
� the upper a / (2m) point of t with d.f. � n � k.

Prior to sampling, the probability of all the m statements being
correct is at least 1 � a.

t� 
  2 m

S � √ MSE,

( Yi � Yi 	 
) � t� / 2 m 

 
S  � 

1
n i

�
1

n i 	

� i � � i 	

Example 4 Calculating Multiple-t Confidence Intervals to Reveal Which Means Differ
An experiment is conducted to determine the soil moisture deficit resulting
from varying amounts of residual timber left after cutting trees in a forest. The
three treatments are treatment 1�no timber left; treatment 2�2000 bd ft left;
treatment 3�8000 bd ft left. (Board feet is a particular unit of measurement of
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timber volume.) The measurements of moisture deficit are given in Table 8.
Perform the ANOVA test and construct 95% multiple-t confidence intervals
for the treatment differences.

SOLUTION Our analysis employs convenient alternative forms of the expressions for
sums of squares involving totals.

4. SIMULTANEOUS CONFIDENCE INTERVALS 559

TABLE 8 Moisture Deficit in Soil

Treatment Observations Total Mean

1 1.52 1.38 1.29 1.48 1.63
2 1.63 1.82 1.35 1.03 2.30 1.45
3 2.56 3.32 2.76 2.63 2.12 2.78

Grand total Grand mean
y � 1.944T � 33.05

y3 � 2.695T3 � 16.17
y 2 � 1.597T2 �  9.58
y1 � 1.460T1 �  7.30

TABLE 9 ANOVA Table for Comparison of Moisture Deficit

Sum of Mean
Source Squares d.f. Square F-ratio

Treatment 5.2791 2 2.640 20.8
Error 1.7725 14 .127

Total 7.0516 16

The total number of observations n � 5 � 6 � 6 � 17.

The ANOVA table appears in Table 9.

Error SS � Total SS � Treatment SS � 1.7725

 � 69.5322 � 64.2531 � 5.2791

Treatment SS � �
3

i � 1
 n i ( y i � y )2 � �

3

i � 1
 
T 

2
i

n i
�

T2

n

 � 71.3047 � 64.2531 � 7.0516

Total SS � �
3

i � 1
 �

n i

j � 1
 ( y i j � y )2 � �

3

i � 1
 �

n i

j � 1
 y 

2
i j �

T2

n

Because the observed value of F is larger than the tabulated value 
(2, 14) � 3.74, the null hypothesis of no difference in the treatment

effects is rejected at a � .05. In fact, this would be true at almost any signif-
icance level. In constructing a set of 95% multiple-t confidence intervals for 

pairwise differences, note that there are pairs, so

�

2m
�

.05
( 2 � 3 )

� .00833

� 

3 

2� � 3

F.05

c14.qxd  10/15/09  11:35 AM  Page 559



560 CHAPTER 14/ANALYSIS OF VARIANCE (ANOVA)

From Appendix B, Table 4, the upper .00833 point of t with d.f. � 14
is 2.718. The simultaneous confidence intervals are calculated as follows:

These confidence intervals indicate that treatments 1 and 2 do not differ
appreciably, but the mean for treatment 3 is considerably higher than the
means for treatments 1 and 2.

Exercises

 � ( .65, 1.82 )

�3 � �1: ( 2.695 � 1.460 ) � 2.718 � .356 � � 

1
6

�
1
5

 � ( .54, 1.66 )

�3 � �2: ( 2.695 � 1.597 ) � 2.718 � .356 � � 

1
6

�
1
6

 � ( � .45, .72 )

�2 � �1: ( 1.597 � 1.460 ) � 2.718 � .356 � � 
1
6

�
1
5

14.17 Taking a � .05 and n � k � 26, deter-
mine the appropriate percentile of the t dis-
tribution when calculating the multiple-t
confidence intervals with (a) m � 3 and ( b)
m � 5.

14.18 Construct the 90% multiple-t confidence
intervals using the sound distortion data in
Example 1.

14.19 As suggested in the photo on the front piece of
this chapter, consumers can rate new HDTVs.
Many Web sites use a five point scale. Although
the individual responses are not normal, the
central limit result applied to each of the four
samples does justify treating the treatment
means as if the normal assumption prevailed.
The summary statistics of ratings for four of the
most popular sets, at one Web site are

n4 � 15  y4 �  4.56
n3 � 30  y3 �  4.13
n2 � 20     y2 �    3.60      s � 1.56
n1 � 14  y1 �   4.50

Use a � .10 and determine:

(a) t intervals for each of the six differences
of means.

(b) The six multiple-t intervals.

14.20 Refer to the data on reading levels in Exercise
14.7.

(a) Calculate simultaneous confidence inter-
vals for the differences in means.

(b) Are you surprised by the conclusion
regarding reading levels? Give another
variable that might better quantify read-
ing levels.

14.21 Determine the expression for the length of the
t interval for � and the multiple-t

interval for � when m � 10. The ratio
of lengths does not depend on the data. Evalu-
ate this ratio for a � .10 and n � k � 15.

�2�1

�2�1
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TABLE 10 Residuals for the Data Given In Table 8

Treatment Residuals

1 .06 � .08 � .17 .02 .17
2 .03 .22 � .25 � .57 .70 � .15
3 � .14 .63 .07 � .07 � .58 .09

y i j � y i

0_0.6 _0.4 _0.2   0.2   0.4   0.6   0.8

0

0

Treatment 1

Treatment 2

0
Treatment 3

(b) Residuals with individual treatment

(a) Combined residual plot

Figure 1 Residual plots for the data given in Example 4.

5. GRAPHICAL DIAGNOSTICS AND DISPLAYS 
TO SUPPLEMENT ANOVA

In addition to testing hypotheses and setting confidence intervals, an analysis of
data must include a critical examination of the assumptions involved in
a model. As in regression analysis, of which analysis of variance is a special case,
the residuals must be examined for evidence of serious violations of the as-
sumptions. This aspect of the analysis is ignored in the ANOVA table summary.

Example 5 Plotting Residuals
Determine the residuals for the moisture data given in Example 4 ( see
Table 10) and graphically examine them for possible violations of the
assumptions.

SOLUTION
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The residual plots of these data are shown in Figure 1, where the combined dot
diagram is presented in (a) and the dot diagrams of residuals corresponding to
individual treatments appear in (b).

From an examination of the dot diagrams, the variability in the points for
treatment 1 appears to be somewhat smaller than the variabilities in the
points for treatments 2 and 3. However, given so few observations, it is diffi-
cult to determine if this has occurred by chance or if treatment 1 actually
has a smaller variance. A few more observations are usually necessary to
obtain a meaningful pattern for the individual treatment plots.

Fortunately, the ANOVA testing procedure is robust in the sense that
small or moderate departures from normality and constant variance do not
seriously affect its performance.

In addition to the ANOVA a graphical portrayal of the data, as a box plot
for each treatment, conveys important information available for making com-
parisons of populations.

Example 6 Box Plots Reveal Differences between Populations
The sepal width was measured on 50 iris flowers for each of three varieties,
Iris setosa, Iris versicolor, and Iris virginica. A computer calculation produced
the summary shown in the following ANOVA table.

562 CHAPTER 14/ANALYSIS OF VARIANCE (ANOVA)

Source SS d.f. F

Treatment 11.345 2 49.16
Error 16.962 147

Total 28.307 149

Treatment Sample Mean

Iris setosa 3.428
Iris versicolor 2.770
Iris virginica 2.974

Since (2, 147) � 3.05, we reject the null hypothesis of equal sepal
width means at the 5% level of significance.

F.05

A calculation of multiple-t confidence intervals shows that all population
means differ from one another (see Exercise 14.36). Display the data on the
three varieties in boxplots.
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SOLUTION The data are given in Exercise 14.36. Boxplots graphically display the varia-
tion in the sepal width measurements. From Figure 2, we see that the Iris
setosa typically has larger sepal width. R. A. Fisher, who developed analysis of
variance, used these data along with other lengths and widths to introduce
a statistical technique for identifying varieties of plants.

6. RANDOMIZED BLOCK EXPERIMENTS 
FOR COMPARING k TREATMENTS

Just as we can pair like subjects or experimental units to improve upon the pro-
cedure of taking two independent samples, we can also arrange, or block subjects
into homogeneous groups of size k when comparing k treatments. Then if each
treatment is applied to exactly one unit in the block and comparisons are only
drawn between treatment responses from the same block, extraneous variability
should be greatly reduced. It is this concept of blocking that underlies the
randomized block design.

The term “block design” originated from the design of agricultural field
trials, where “block” refers to a group of adjacent plots. A few typical exam-
ples for which the block design may be appropriate are clinical trials to com-
pare several competing drugs, where the experimental subjects are grouped
in blocks according to age group and severity of symptoms; psychological ex-
periments comparing several stimuli, where subjects may be blocked accord-
ing to socioeconomic background; and comparison of several techniques for
storing fruit or vegetables, where each incoming shipment is regarded as a
block.

As its name implies, randomization is a basic part of the block design. This
time, once the grouping of like experimental subjects in blocks is accom-
plished, we randomly select one subject from the first block to receive treat-
ment 1, one of the remaining subjects to receive treatment 2, and so on. The
same procedure is repeated with a new randomization for each of the remain-
ing blocks.
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2 3 4 5
Width

Iris setosa

Iris versicolor

Iris virginica

Figure 2 Boxplots for the three iris samples.
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Once the data are obtained, they can be arranged in rows according to the
treatments and in columns according to the blocks. If we designate the mea-
surement corresponding to treatment i and block j by , the data structure of a
randomized block design with b blocks and k treatments is shown in Table 11. The

y  i  j

row and column means are denoted by

and the overall mean, or

These means are shown in the margins of the table. Here an overbar on y indi-
cates an average and a dot in the subscript denotes that the average is taken over
the subscript appearing in that place.

We now discuss the analysis of variance for a randomized block design with
illustrative calculations based on the data given in Example 7.

Example 7 The Structure of Data from a Randomized Block Experiment
The cutting speeds of four types of tools are being compared in an experiment.
Five materials of varying degrees of hardness are to be used as experimental
blocks. The data pertaining to measurements of cutting time in seconds appear
in Table 12.

grand mean y  . . �
1
b k

 �
k

i � 1
 �

b

j � 1
 y i j

jth block (column) mean y . j �
1
k

 �
k

i � 1
 y i j

ith treatment (row) mean y i 

 . �
1
b

 �
b

j � 1
 y i j
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TABLE 11 Data Structure of a Randomized Block Design 
with b Blocks and k Treatments

Block Block Block Treatment
1 2 � � � b Means

Treatment 1 � � �
Treatment 2 � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

Treatment k � � �

Block means � � � y
 
.

 
.y

 
. by

 
. 2y

 
. 1

y k 
.y k by k2y k1

y 2 
.y 2 by 22y 21

y1.y 1by 12y 11
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TABLE 12 Measurements of Cutting Time According to Types 
of Tool (Treatments) and Hardness of Material (Blocks)

Block Treatment
Treatment 1 2 3 4 5 Means

1 12 2 8 1 7
2 20 14 17 12 17
3 13 7 13 8 14
4 11 5 10 3 6

Block means y . . �
200
20

� 10y .
 5 � 11y .

 4 � 6y .
 3 � 12y .

 2 � 7y .
 1 � 14

y4. �  7
y3. � 11
y2. � 16
y1. �  6

Decomposition of Observations

�   � � Residual

� �  �  � ( y i j � y  i  
. � y . j � y . .

 
)( y. j � y . .)( y i . � y . . )y . .y i j

Deviation
due to
block

Deviation
due to

treatment
Observation �

Grand
mean

TABLE 13 Decomposition of Observations 
for the Randomized Block Experiment in Table 12

� �

� �

� �
2
0

�2
0

�1
1

�1
1

0
�1

0
1

�1
0
1
0

0
0
2

�2
�� �

4
4
4
4

�3
�3
�3
�3

2
2
2
2

�4
�4
�4
�4

1
1
1
1
�

Residual
y i j � y i 

. � y .
 j � y . .

Block
Effect

y .
 j � y . .

� �
�4

6
1

�3

�4
6
1

�3

�4
6
1

�3

�4
6
1

�3

�4
6
1

�3
�� �

10
10
10
10

10
10
10
10

10
10
10
10

10
10
10
10

10
10
10
10
��

12
20
13
11

2
14
7
5

8
17
13
10

1
12
8
3

7
17
14
6
�

Treatment
Effect

y i 
. � y . .

Grand Mean
y . .

Observation
y i j

The observations form a two-way table, and their decomposition indicates
both a term for row (treatment) deviations and column (block) deviations.
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The number of distinct entries in the treatment effects array is k,
and the single constraint is that they must sum to zero. Thus, k � 1 degrees of
freedom are associated with the treatment sum of squares.

y i  
. � y . .

Sum of Squares Due to Treatment

with d.f. � k � 1.

 � b �
k

i � 1
 ( y i 

. � y . .
 

) 

2

SST � �
k

i � 1
 �

b

j � 1
 ( y i 

. � y . .
  
)2

TABLE 14 An Alternative Format of the Decomposition Table 
for a Randomized Block Experiment

Deviation of
Block Treatment Mean

Treatment 1 � � � j � � � b from Grand Mean

1
� � �
� � �
� � �
i � � � � � �

� � �
� � �
� � �
k

� � � � � �
Grand mean

y . .
( y .

 b � y . . 
)( y.

 j � y . .
 

)( y.1 � y..)
Deviation of
block mean

from grand mean

( y k 
. � y . .

 

)

( y i  
. � y . . 

)( y i j � y i 
. � y.

 j � y. . 
)

( y1 
. � y . . 

)

Taking the observation � 12 in Example 7, we obtain

Table 13 contains the results of the decomposition of all the observations. Table 14
gives an alternative format.

 � 10 � ( � 4 ) � ( 4 ) � ( 2 )

12 � 10 � ( 6 � 10 ) � ( 14 � 10 ) � ( 12 � 14 � 6 � 10 )

y 11
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In the array of treatment effects in Table 13, each entry appears b � 5 times,
once in each block. The treatment sum of squares for this example is then

with d.f. � 4 � 1 � 3.
In a similar manner, we obtain the block sum of squares.

SST � 5 ( �4 )2 � 5 ( 6 )2 � 5 ( 1 ) 

2 � 5 ( �3 ) 

2 � 310

Sum of Squares Due to Block

with d.f. � b � 1.

 � k �
b

j � 1
 (  y.j � y.. )2

SSB � �
k

i � 1
 �

b

j � 1
 (  y.j � y.. )2

Residual Sum of Squares or Error Sum of Squares

with d.f. � (b � 1)(k � 1).

SSE � �
k

i � 1
 �

b

j � 1
 ( y i  j � y i 

. � y .
 j � y . . )2

Referring to the array of block effects in Table 13, we find the block sum of
squares for our example to be

with d.f. � 5 � 1 � 4.
The number of degrees of freedom associated with the residual array is 

( b � 1)( k � 1). To understand why this is so, note that among the b � k
residuals, the following constraints are satisfied. One constraint is that the
sum of all entries must be zero. The fact that all row sums are zero introduces
k � 1 additional constraints. This is so because having fixed any k � 1 row
totals and the grand total, the remaining row total is automatically fixed. By
the same reasoning, b � 1 additional constraints arise from the fact that all
column totals are zero. Consequently, the number of degrees of freedom for
the residual is

b k � 1 � ( k � 1 ) � ( b � 1 ) � ( b � 1 )( k � 1 )

SSB � 4 (  4 )2 � 4 ( �3 )2 � 4 (  2 )2 � 4 ( �4 )2 � 4 ( 1 )2 � 184
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TABLE 15 ANOVA Table for a Randomized Block Design

Source Sum of Squares d.f. Mean Square F-Ratio

Treatments k � 1

Blocks b � 1

Residual (b � 1)(k � 1)

Total bk � 1�
k

i � 1
 �

b

j � 1
 ( y i j � y . .  )2

MSE �
SSE

( b � 1 )( k � 1 )
SSE � �

k

i � 1
 �

b

j � 1
( y i j �  y i .�  y .

  j � y . .  )2

MSB

MSE
MSB �

SSB

b � 1
SSB � k �

b

j � 1
 (  y .

 j � y . . )2

MST

MSE
MST �

SST

k � 1
SST � b �

k

i � 1
 ( y i 

. � y . . 
)2

TABLE 16 ANOVA Table for the Data Given in Example 7

Sum of Mean
Source Squares d.f. Square F-Ratio

Treatments 310 3 103.3 51.7
Blocks 184 4 46 23
Residual 24 12 2

Total 518 19

In our example,

with d.f. � ( 5 � 1)( 4 � 1 ) � 12.
Finally, the total sum of squares equals the sum of squares of each observa-

tion about the grand mean, or

with d.f. � bk � 1. In our example, we sum the square of each entry in the
array for and subtract the sum of squares of entries in the array.

With d.f. � (5)(4) � 1 � 19.This provides a check on our previous calculations,
because those sums of squares and degrees of freedom must sum to these totals.

These calculations are conveniently summarized in the ANOVA tables shown
in Table 15 for the general case and Table 16 for the data in our numerical example.
The last column of F-ratios will be explained after we discuss the population model.

� 518

�[ ( 10 ) 

2 � ( 10 )2 � ��� � ( 10 ) 

2 ]

Total sum of squares � ( 12 )2 � ( 2 )2 � ��� � ( 6 ) 

2

y . .y 
 i  j

Total sum of squares � �
k

i � 1
 �

b

j � 1
 ( y i j � y . .

 

)2 � �
k

i � 1
 �

b

j � 1
 y 

2 

i j � b k y2
 
. .

SSE � 22 � 0 

2 � ( �2 ) 

2 � 0 

2 � ��� � ( �2 ) 

2 � 24
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Again, a statistical test of treatment differences is based on an underlying
population model.

6. RANDOMIZED BLOCK EXPERIMENTS FOR COMPARING k TREATMENTS 569

Population Model for a Randomized Block Experiment

� m � � �

for i � 1, . . . , k and j � 1, . . . , b, where the parameters satisfy

and the ei j are random errors independently distributed as N(0, s).

�
k

i � 1
 � i � 0  �

b

j � 1
 
 j � 0

e 
 i  j
 j� iY 

 i  j

Observation �
Overall
mean

�
Treatment

effect
�

Block
effect

� Error

Reject � � � � � � � 0 (no treatment differences) if

Reject � � � � � � � 0 (no block differences) if

MSB

MSE
� F�( b � 1, ( b � 1 ) ( k � 1 ) )


 b
 1H0

MST

MSE
� F�( k � 1, ( b � 1 )( k � 1 ) )

� k� 1H0

Tests for the absence of treatment differences or differences in block effects
can now be performed by comparing the corresponding mean square with the
yardstick of the error mean square by using an F test.

To test the hypothesis of no treatment differences for the analysis of vari-
ance in Table 16, we find that the tabulated .05 point of F (3, 12) is 3.49, a value
far exceeded by the observed F-ratio for treatment effect. We therefore con-
clude that a highly significant treatment difference is indicated by the data. The
block effects are also highly significant, because the observed F value of 23 is
much larger than the tabulated value (4, 12) � 3.26.

Again, we stress that a serious violation of the model assumptions is likely to
jeopardize the conclusions drawn from the preceding analyses and a careful exami-
nation of the residuals should be an integral part of the analysis. In addition to plot-
ting the whole set of residuals in a graph, separate plots for individual treatments
and individual blocks should also be studied. When observations are collected over
time, a plot of the residuals versus the time order is also important.

F.05
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CONFIDENCE INTERVALS FOR TREATMENT DIFFERENCES

In addition to performing the overall F test for detecting treatment differences,
the experimenter typically establishes confidence intervals to compare specific
pairs of treatments. This is particularly important when the F test leads to a rejec-
tion of the null hypothesis, thus signifying the presence of treatment differences.

We next estimate the difference � of the mean responses of treat-
ments i and i	. Because is normally distributed with a mean of �

and a variance of

the ratio

has a t distribution with d.f. � (b � 1)(k � 1). This result can be used to
construct a confidence interval for an individual difference � .

When several such pairwise comparisons are to be integrated into a com-
bined confidence statement, the concept of simultaneous confidence intervals,
discussed in Section 4, is again applied.

Exercises

� i	� i

T �
(  Yi 

. � Y i	 

.
 

 ) � (  � i � �  i	 

)

√ MSE  √ 2  /  b

� 

2 � 

1
b

�
1
b

 � � �2 � 

2
b

 �
� i	

� iY i  
. � Y i 	 

.
� i	� i

Block
Treatment 1 2 3 4

1 11 10 7 0
2 7 8 7 2
3 15 6 13 10

Block
Treatment 1 2 3 4

1 35 24 28 21
2 19 14 14 13
3 21 16 21 14

14.22 Suppose you wish to compare three different
brands of tick collars for dogs. You have available
three of each of the breeds Poodle, Lab, Collie,
and Dachshund. Explain how you would assign a
brand of tick collar to each of the 12 dogs in or-
der to conduct a randomized block experiment.

14.23 The hours of relief are measured under a
placebo, Brand A, and Brand B sinus medicines.
Call these treatment 1, treatment 2, and treat-
ment 3, respectively. They are each given in
succession, in random order, to a subject with
two days between each treatment. Suppose
the data are

(a) Provide a decomposition for the observations
from this randomized block experiment.

(b) Find the sum of squares for each array.

(c) Determine the degrees of freedom by
checking the constraints for each array.

14.24 The yield, in pounds, of three types of heritage
tomatoes is obtained after planting them in
three equal sized plots within a site. The assign-
ment of type to a plot is random. A total of four
different sites are used. Suppose the data are

(a) Provide a decomposition for the observations
from this randomized block experiment.
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(b) Find the sum of squares for each array.

(c) Determine the degrees of freedom by
checking the constraints for each array.

14.25 Refer to Exercise 14.23. Present the ANOVA
table. What conclusions can you draw from the
two F tests? Take a � .05.

14.26 Refer to Exercise 14.24. Present the ANOVA
table. What conclusions can you draw from the
two F tests? Take a � .05.

14.27 Three loaves of bread, each made according to
a different recipe, are baked in one oven at the
same time. Because of possible uncontrolled
variations in oven performance, each baking is
treated as a block. This procedure is repeated
five times, and the following measurements of
density are obtained.

USING STATISTICS WISELY 571

(b) Perform an analysis of variance for these
data.

14.28 Referring to Exercise 14.27:

(a) Obtain simultaneous confidence intervals
for the pairwise differences in mean den-
sity for the three recipes. Take a � .05.

(b) Calculate the residuals and make a normal-
scores plot.

14.29 As part of a cooperative study on the nutri-
tional quality of oats, 6 varieties of oat kernels
with their hulls removed are subjected to a
mineral analysis. The plants are grown accord-
ing to a randomized block design, and the
measurements of protein by percent of dry
weight are recorded in Table 17.

(a) Perform an analysis of variance for these
data.

(b) Calculate and plot the residuals. Does the
model appear to be adequate?

14.30 Referring to Exercise 14.29, suppose that vari-
ety 6 is of special interest. Construct simultane-
ous 90% confidence intervals for the differences
between the mean of variety 6 and each of the
other means.

Block
Treatment 1 2 3 4 5 6

1 19.09 20.29 20.31 19.60 18.62 20.10
2 16.28 17.88 16.88 17.57 16.72 17.32
3 16.31 18.17 17.38 17.53 16.34 17.88
4 17.50 18.05 17.59 17.64 17.38 18.04
5 16.25 16.92 15.88 14.78 15.97 16.66
6 21.09 21.37 21.38 20.52 21.09 21.58

Data courtesy of D. Peterson, L. Schrader, and V. Youngs.

USING STATISTICS WISELY

1. When collecting data according to a one-way ANOVA design, conduct
the trials in random order if at all possible.

2. Do not routinely accept the analysis of variance generated by statistical
software. Instead, inspect the residuals for outliers or patterns indicating
that the variance is not constant across treatments.

Block
Recipe 1 2 3 4 5

1 .95 .86 .71 .72 .74
2 .71 .85 .62 .72 .64
3 .69 .88 .51 .73 .44

(a) How should the three oven positions of
the three loaves be selected for each trial?

TABLE 17 Protein (prct. dry wt.)
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KEY IDEAS AND FORMULAS

Several populations can be compared using the Analysis of variance (ANOVA).
A completely randomized design specifies taking independent random sam-

ples from each population.
All of the observations are assumed to have a common variance. Then the

ANOVA consists of a separation of the total sum of squares into components
due to different sources of variation.

When samples are taken from k populations the two sources of variation are
the within population variation or error and the differences between population
means or treatments. The jth observation on the ith treatment is . The error
variation is estimated using the residuals or � which are the deviations of
the observations from their respective sample means.

The total variation in the observations is expressed as

Total sum of squares

is partitioned into the two components:

1. Treatment sum of squares:

2. Error sum of squares:

This decomposition of sums of squares is summarized in an analysis of variance
(ANOVA) table. This table includes the mean square for each sum of squares.

Mean square

The F statistic � ( Treatment mean square ) / ( Error mean square )

which has an F distribution with k � 1 and n � k degrees of freedom.
To ensure an overall confidence level for all confidence intervals, it is desirable to

use a simultaneous (multiple) confidence intervals procedure when calculating con-
fidence intervals for the many mean differences. The multiple-t confidence intervals
for all m � k (k � 1)/2 statements about the mean differences � are

Fortunately, the one-way analysis of variance is robust with respect to small or
moderate departures from the assumptions of normal errors with common variance.

� Y i � Y i	 � t� / 2m � 

MSE
n � k

,  Y i � Y i	 � t� / 2 m � 

MSE
n � k

 �
�i	�i

�
Sum of squares

Degrees of freedom

SSE � �
k

i � 1
 �

n i

j � 1
 ( y i j � y i  

)2

SST � �
k

i � 1
 n i( y i � y )2

�
k

i � 1
 �

n i

j � 1
 ( y i j � y )2

� �
k

i � 1
 �

n i

j � 1
 ( y i j � y )2

y  i   j

y iy  i   j

y  i  j
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The technique of blocking, or grouping experimental units into homogeneous
sets, can reduce extraneous variation and sharpen comparisons among treatments.

The analysis of variance of a randomized block experiment is based on the

partition of the total sum of squares into three components:

1. Treatment sum of squares:

2. Block sum of squares:

3. Error sum of squares:

TECHNOLOGY

One-way analysis of variance (ANOVA)

MINITAB

We illustrate with the data from different populations in separate columns. For
example, with data from 3 populations in columns C1, C 2, and C 3:

Data

C1: 6 10 8
C2: 13 14 15 14
C3: 3 7 5

Stat Q ANOVA Q One-way (Unstacked)
Type C1–C3 in Responses (in separate columns:)
Click on Graphs. Select Three in one. Click OK.
Click OK.

In addition to the analysis, this produces a histogram of the residuals as well as a
plot of residuals versus fitted values.

EXCEL

Enter the data from the different populations in separate columns, for instance
A, B, C, etc., with a label in the first cell of each column.

SSE � �
k

i � 1
 �

b

j � 1
 ( y i j � y i 

. � y .
 j � y . .

 

)2

SSB � k �
b

j � 1
 ( y .

 j � y . . )2

SST � b �
k

i � 1
 ( y i 

. � y . .
 

)2

�
k

i � 1
�
b

j � 1
( y i  j � y . . )2
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Select Tools, then Data Analysis. Select Statistical and then Anova:Single
Factor.
Click OK. Highlight the columns and check Labels in First Row.
Enter Alpha and click OK.

The output includes the ANOVA table and P–value for test of equality of
the means.

TI-84/-83 PLUS

Store the data in lists, one for each population. With 3 populations enter data in
L1, L2, and L3.

Select STAT Q TESTS Q ANOVA.
Enter L1, L2, L3 and close the parenthesis to obtain ANOVA(L1, L2, L3).
Press Enter.

The software returns the value of the F statistic and the P–value, along with
other values from the ANOVA table.

7. REVIEW EXERCISES

574 CHAPTER 14/ANALYSIS OF VARIANCE (ANOVA)

Treatment 1 Treatment 2 Treatment 3

19 16 13
18 11 16
21 13 18
18 14 11

11 15
11

Fabric 1 Fabric 2 Fabric 3 Fabric 4

17.8 11.2 11.8 14.9
16.2 11.4 11.0 10.8
17.5 15.8 10.0 12.8
17.4 10.0 9.2 10.7
15.0 10.4 9.2 10.7

14.31 Food scientists investigated whether making a
cheese sauce by a continuous process or batch
process made any difference to taste. They also
included a third treatment, a carefully selected
ideal product, that served as a control. Treatment
1 is the ideal, treatment 2 is the continuous
process, and treatment 3 is the batch process.
Suppose the sensory ratings by trained testers are

14.33 Using the table of percentage points for the F
distribution, find
(a) The upper 5% point when d.f. � (7, 13).
(b) The upper 5% point when d.f. � (7, 20).
(c) The upper 10% point when d.f. � (7, 12).

14.34 As part of the multilab study, four fabrics are
tested for flammability at the National Bureau of
Standards. The following burn times in seconds
are recorded after a paper tab is ignited on the
hem of a dress made of each fabric.

Provide a decomposition for the observations
above from a completely randomized design
with three treatments.

14.32 Compute the sums of squares and construct
the ANOVA table for the data given in Exer-
cise 14.31.

(a) State the statistical model and present the
ANOVA table. With a � .05, test the null
hypothesis of no difference in the degree of
flammability for the four fabrics.
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Data

C1: 10 15 8 12 15
C2: 14 18 21 15
C3: 17 16 14 15 17 15 18
C4: 12 15 17 15 16 15

Dialog box:

Stat Q ANOVA Q One-way ( nstacked)
Type C1-C4 in Responses. Click OK.

U

The Output is as follows:

One-way ANOVA: C1, C2, C3, C4

SOURCE DF SS MS F P
FACTOR 3 68.00 22.67 4.34 0.018
ERROR 18 94.00 5.22
TOTAL 21 162.00

S = 2.285 R-Sq= 41.98%

LEVEL N MEAN STDEV
C1 5 12.000 3.082
C2 4 17.000 3.162
C3 7 16.000 1.414
C4 6 15.000 1.673

POOLED STDEV = 2.285

INDIVIDUAL 95% CIS FOR MEAN 
BASED ON POOLED STDEV

–+––––––--+––––––--+––––––--+––––––––
(––––––*––––––)

(–––––––*–––––––)
(–––––*–––––)

(––––––*––––––)
––––––––+–––––––––+–––––––––+––––––––

10.0    12.5    15.0    17.5

Use computer software to analyze the mois-
ture data in Table 8.

14.36 The iris data described in Example 6
are given in the stem-and-leaf diagrams 
below.

The MINITAB output for the analysis of the
iris data is given below.

LEAF UNIT � 0.10

SETOSA VERSICOLOR VIRGINICA

2 0

2 3 2 22333 2 2

2 2 4445555 2 5555

2 2 66677777 2 667777

2 9 2 8888889999999 2 8888888899

3 0000001111 3 00000000111 3 0000000000001111

3 2222233 3 2223 3 22222333

3 444444444555555 3 4 3 44

3 666777 3 6

3 888899 3 88

4 01

4 2

4 4

One-way ANOVA:

SOURCE DF SS MS F P
IRIS 2 11.345 5.672 49.16 0.000
ERROR 147 16.962 0.115
TOTAL 149 28.307

S = 0.3397 R-Sq = 40.08%

(b) If the null hypothesis is rejected, con-
struct simultaneous confidence intervals
to determine the fabric(s) with the lowest
mean burn time.

(c) Plot the residuals and comment on the
plausibility of the assumptions.

(d) If the tests had been conducted one at a
time on a single mannequin, how would
you have randomized the fabrics tested in
this experiment?

The Following Exercises Require a Computer

14.35 Using the computer. MINITAB can be used
for ANOVA. Start with the data on each treat-
ment, from Example 1, set in separate columns.
The sequence of commands and output is:
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Two-way Analysis of Variance

Analysis of Variance for Time
Source DF SS MS F P
Block 3 90.92 30.31 7.96 0.016
Treatment 2 71.17 35.58 9.35 0.014
Error 6 22.83 3.81
Total 11 184.92

Block Mean Treatment Mean
1 9.0 1 8.00
2 13.7 2 9.50
3 6.7 3 13.75
4 12.3

LEVEL N MEAN STDEV
1 50 3.4280 0.3791
2 50 2.7700 0.3138
3 50 2.9740 0.3225

POOLED STDEV = 0.3397

INDIVIDUAL 95% CIs FOR MEAN 
BASED ON POOLED STDEV

–––+–––––-–––––+–––––––––+––––––––+–––
(–––*–––)

(–––*–––)
(–––*–––)

–––+–––––––––––+–––––––––+––––––––+–––
2.75     3.00      3.25 3.50

(a) Identify the SSE and its degrees of free-
dom. Also locate s.

(b) Check the calculation of F from the given
sums of squares and d.f.

(c) Is there one population with highest mean
or are two or more alike? Use multiple-t
confidence intervals with a � .05.

14.37 Three different chemicals are compared on
their ability to make fabric stain-resistent. Four
bolts of cloth, manufactured weeks apart, are
used. Because the results are expected to vary
from bolt of cloth to bolt, three small samples
are cut from each bolt and a different chemical is
applied to each. The assignment of chemicals is
random. This process is repeated for each of the

four bolts. Suppose the measurement of stain-
resistance are

Block

Treatment 1 2 3 4

1 8 9 1 6
2 5 12 0 11
3 8 15 8 13

(a) Provide a decomposition for the observations
from this randomized block experiment.

(b) Find the sum of squares for each array.
(c) Determine the degrees of freedom by

checking the constraints for each array.

14.38 Refer to the output below concerning the time
(min) it took four different persons (blocks )
to complete three different tasks.
(a) Identify the SSE and its degrees of freedom.
(b) Are the block means different? Check the

calculation of F for blocks from the given
sums of squares and degrees of freedom.

(c) Are the mean task times different? Check
the calculation of F for treatments ( tasks )
from the given sums of squares and
degrees of freedom.

(d) Use multiple-t 95% confidence intervals
to investigate differences between mean
task times.
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