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Introduction

RE S E A R C H  I S  P E R F O R M E D  to find answers to ques-
tions: what events from their lives do people remember

best?; can we judge people’s occupations from the way they
dress?; what effect does tiredness have on our performance of
different tasks? To help us develop answers to these questions
we often collect data. We distinguish between two types of data:
quantitative and qualitative. Quantitative data concerns numbers
or quantities that we have collected using measuring devices
such as timers, performance tests or questionnaires. Qualitat-
ive data concerns accounts, descriptions and explanations –
linguistic rather than numeric data. Most researchers focus
on either quantitative or qualitative data collection analysis
(and this book is exclusively concerned with the former) but
ultimately it is a combination of the two that will provide the
fullest insight into our research questions. Consider students
undertaking an examination. We might collect information on
how many hours they spend studying, how many books they
have read and how well they perform in the examination
(quantitative data) but we might also ask them for their own
explanations of how well they studied, how motivated they
were and why, along with what they thought about the experi-
ence of taking the examination (qualitative data).
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Sometimes, but not often, it is possible to look at that research data
and see what it is telling us. Usually, however, the implications of the data
are not so obvious, especially when we have collected a large amount of
data in numeric form. Simply looking at lots and lots of numbers is usually
uninformative and possibly confusing. We need to draw from it the relevant
information for the research question posed. This is where statistics can
help us. A mass of data can be described and summarised or different sets
of data can be compared by the calculation of appropriate statistics. Thus
statistical analysis should not be seen as either incomprehensible or esoteric,
but as a useful technique for helping the researcher in finding answers to the
questions set.

Much of this book is about the various statistics we calculate. Whilst
we shall see in Chapter 5 that it has a technical definition, a statistic is
essentially a number that has been systematically obtained. A ‘total’ is a
statistic. We can find a total for the number of apples in a bowl or children
in a school: we just add them up. Some statistics are easy to obtain (such as
the number of fingers on my left hand) whereas others are a little more
difficult to work out (such as the F-ratio in the analysis of variance –
something we shall be looking at later in the book). However, the purpose
of calculating these statistics is to tell us something we want to know: are
girls performing better than boys at school?; which of two types of cola
do people prefer? It is not the calculation of statistics that is intrinsically
interesting (we have computers to do this) but what the statistic tells us
about the questions we are interested in. However, the ability to choose
the appropriate statistic, and the ability to see whether our calculations are
correct or not, are both crucial factors in obtaining a valid answer to our
questions, rather than making an error: we don’t want to do the statistical
equivalent of asking the time and being told it’s Tuesday.

We invariably need to calculate statistics when we undertake certain
forms of research and having an understanding of what they are and why
we calculate them can make us much better able to critically analyse the
work of others. If someone informs you that the statistical analysis of their
research shows that pigs can fly, and people sometimes do make wild claims
as a result of their research, then you might be sceptical about their choice
or use of statistics. However, there are many cases where the claims are not
so obviously in error yet a simple knowledge of statistical analysis can
reveal a flaw.

The purpose of this book is to explain the logic behind statistical
techniques, when you would use them and how you would calculate them.
Often the latter tends to dominate one’s experience, and there is a desire to
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just get the thing worked out, but with calculators and computers it is easy
to put data into an analysis but less easy to know we have done it correctly.
It is understanding why one is calculating a particular statistic that is of
crucial importance to data analysis.

The book begins with an explanation of the statistics that help us to
describe data, examining what ‘frequency distributions’ can show us and
which summary statistics we can calculate. It then moves on to the importance
of the ‘normal distribution’ and hypothesis testing. The difference between
populations and samples is considered along with the use of information from
samples to estimate the details of populations. Subsequently the various tech-
niques are introduced that allow us to compare data from different samples.

The book can be read straight through to see the way in which the
statistical tests have been developed. These tests all have a logical basis,
and explanations are provided for the particular formulae that we use for
our calculations. Alternatively, the book can be dipped in and out of, pro-
viding enough information on each test so that readers requiring a specific
analysis can see why it has been developed and undertake an analysis on
their own data by following the worked examples provided.

The final chapter provides an introduction to the model underlying
many of our statistical tests. In the explanation of this model we can see
why many statistical tests require a particular set of assumptions. Whilst
this chapter does not contain any new statistical techniques to learn it is
hoped that the reader who does tackle this chapter will gain a deeper under-
standing of the principles underlying statistical techniques which can lead
to a greater appreciation of what in practice is happening when carrying out
a statistical analysis.
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A M A J O R  R E A S O N  F O R  C A L C U L A T I N G  statistics is to describe and
summarise a set of data. A mass of numbers is not usually very

informative so we need to find ways of abstracting the key information that
allows us to present the data in a clear and comprehensible form. In this
chapter we shall be looking at an example of a collection of data and
considering the best way of describing and summarising it.

One hundred students sit an examination. After the examination the
papers are marked and given a score out of one hundred. You are given the
results and asked to present them to a committee that monitors examination
performance. You are faced with the following marks:

22 65 49 56 59 34 9 56 48 62
55 52 78 61 50 62 45 51 61 60
54 58 59 47 50 62 44 55 52 80
51 49 58 46 32 59 57 57 45 56
90 53 56 53 55 55 41 64 33 0
38 57 62 15 48 54 60 50 54 59
67 58 60 43 37 54 59 63 68 60
46 52 56 32 75 57 58 47 45 52
55 51 50 50 69 63 64 49 56 52
37 60 71 26 30 57 56 55 58 61

Fortunately, you are told the sort of questions the committee might ask:

• Can you describe the results of the examination?
• Can you give us a brief summary of them?
• What is the average mark?
• What is the spread of scores?
• What is the highest and lowest mark?
• Here are last year’s results, how do this year’s compare?

You sit looking at the above table. The answers to the questions are not
obvious from the ‘raw’ data, that is, the original data before any statistics
have been calculated. We need to do something to make it clearer. The first
thing that we can do is to list the data in order, from lowest to highest:
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0 9 15 22 26 30 32 32 33 34
37 37 38 41 43 44 45 45 45 46
46 47 47 48 48 49 49 49 50 50
50 50 50 51 51 51 52 52 52 52
52 53 53 54 54 54 54 55 55 55
55 55 55 56 56 56 56 56 56 56
57 57 57 57 57 58 58 58 58 58
59 59 59 59 59 60 60 60 60 60
61 61 61 62 62 62 62 63 63 64
64 65 67 68 69 71 75 78 80 90

With this ordering certain things are more apparent: we can now see the lowest
and highest scores more easily, with the scores falling between 0 and 90.

Another thing we can do to improve our presentation is to add up the
number of people who achieved the same mark. We work out the frequency
of each mark. For example, 5 people scored 52 and only 1 scored 69. When
we do this it allows us to see that the most ‘popular’ mark was 56 with a
frequency of 7. We should not forget that there are a number of possible
marks that no one achieved: no one scored 8 or 35 for example, so each of
these marks has a frequency of 0.

We can present this information in graphical form if we convert it to a
histogram, where the frequency of a mark is represented as a vertical bar. In
the histogram, shown in Figure 2.1, we list out all the possible marks that a

FIGURE 2.1 Frequency distribution of the examination results
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student could get, 0 to 100, and draw a bar above each mark, with the length
of the bar corresponding to the frequency of the mark in the set of results.
For a mark of 55 we draw a bar of length 6 (as 6 students obtained a mark
of 55) and for 64 we draw a bar of length 2. This gives a clear visual
presentation of the results.

This histogram is called a frequency distribution, as we can see how
the marks are distributed across the range of possible marks. Frequency
distributions are very important in statistical analysis as they provide the
basic representation of our information. The frequency distribution is a
clear infor-mative chart, providing us with a way of showing the pattern of
the marks we obtained: their distribution across the range of possible values.
We might wish to present the frequency distribution to the committee as it
provides us with a graphical representation of the marks. But what it doesn’t
do is provide us with a summary of the findings.

Is there a single mark that best represents the results? Can we provide the
committee with a typical mark to summarise the findings? The most reason-
able mark to use here is a central or middle mark. In statistical terms we are
trying to find a measure of central tendency. The question we are now faced
with is: what is the central position in our frequency distribution?

One answer is simply to select the most frequent mark, the longest bar
in the histogram. This statistic is called the mode. As you can see from
Figure 2.1 the longest bar is at the mark of 56, where seven people obtained
this result in the examination. In this case 56 appears to be a reasonable
estimate of a central mark. However, the mode is not often used as a measure
of central tendency for a number of reasons. First, what do we do if there were
two marks each having the same high frequency? What if seven people had
scored 52 and seven 56, which one would we choose? Second, there will be
occasions where the mode clearly does not represent a central mark. Imagine
that we had ten very weak students who all scored zero in the examination,
yet the rest of the distribution was the same as in Figure 2.1. Even though
there would be a clustering of the marks in the 50s our mode would be zero.
In this case the mode would be a poor measure of central tendency.

Another measure of central tendency that is used more often than the
mode is the median. This is the score that comes in the middle of the list
when we have ordered it from lowest to highest. If we had nine students in
all then the median would be the fifth mark in the list. However, we have

Measures of ‘central tendency’
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one hundred students and, with an even number, there is no middle mark.
The middle lies halfway between the fiftieth and fifty-first marks. In our
example the fiftieth and fifty-first marks are both 55, so the median is 55.
(If the fiftieth and fifty-first marks had been different the median would be
halfway between them. We would simply add them up and divide by two to
get our median value.1)

The median is a good measure of central tendency as it picks up the
score in the middle position of the distribution. Its weakness, if indeed it is
a weakness, is that, like the mode, it does not use all the information given
by the marks. The median is simply the score where we cut our list into two
halves. The marks either side of the median could be anything below or
above the median respectively. If we found that someone who had had been
given a mark of 9 in the examination really had a mark of 29 or 39,
correcting this score would not change the median as 55 would still be the
middle mark in the list. The median would stay the same even if a number
of marks were changed (as long as a mark below the median was not
changed to a value higher than the median or vice versa). The median
doesn’t take account of the values of all the scores, only the value of the
score at the middle position.

Whilst we might regard the median as a better choice of a central
value than the mode, as it finds the score at the middle position rather than
the most frequent score, there is a third measure of central tendency that is
used far more often than either of the above two measures. This is the mean.

We express the formula for calculating the mean using special sym-
bols. We use the Greek letter µ (pronounced ‘mu’) for the mean, the Greek
letter capital sigma, ∑, to mean ‘the sum of’ (or ‘add up’), X to indicate a
score (in our example, an examination mark) and N for the number of
scores. The symbols ∑ X means ‘add up all the scores’. The mean, µ is the
sum of the scores divided by N:

µ = ∑ X

N

When we talk of an ‘average’ we are usually referring to the mean (although
the word ‘average’ is often used much more loosely than the word ‘mean’
which has its statistical definition). To calculate the mean we add up all the
marks and divide them by the number of students. Adding up all the marks
we arrive at 5262. Dividing this by 100 gives us a mean of 52.62.

One way of thinking about the mean is by analogy with a see-saw.
Imagine that the horizontal axis of our frequency distribution is a beam of
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wood going from 0 to 100 in length. Each of the marks is a student sitting
on the beam at the position specified by their mark (so there are seven
students sitting on the beam at 56 and one at 75 etc.). Where would you
have to put a supporting post under the beam to make a perfectly balanced
see-saw? The answer is at the mean position. We can see it as the value that
balances the scores either side of it. Any change in the marks (we move a
student along the beam) results in a change in the mean (the see-saw will tip
to one side unless we move the supporting post to a new position to restore
balance). So the mean is a statistic that is sensitive to all the scores about it,
unlike the median, as we saw above.

There is another point about the mean that we can see from the see-
saw analogy; that is, the mean is very sensitive to extreme values. A very
large score or a very small score will have a greater effect on where the
support post ends up than a mark in the middle of the distribution. If you
have a number of people sitting on a balanced see-saw it tips up much more
easily if a new person sits on an end rather than near the middle. Thus, the
mean position, like the supporting post of a see-saw, is determined both by
the number of scores and also by their distance from it.

In our example we now have three measures of central tendency, a mode of
56, a median of 55 and a mean of 52.62. Which do we choose? The answer
is: whichever we want. We simply choose the one that best represents a
central value in our distribution, for our purpose. Usually this results in us
picking the mean as it takes into account all the scores but there are occasions
when we choose the mode or median.

The mode is quick and easy to determine once we have created the
frequency distribution, so we might use it as a ‘rough and ready measure’
without the need for further calculation. Also we cannot calculate the median
or mean with some types of data. For example, if I am planning a trip for
a group of friends and I suggest a range of places to visit, I’ll probably
select the place chosen by the largest number. Note that we cannot calculate
a mean or a median here as the names of places cannot be put in numeric
order or added up.

We use the median when we have an abnormally large or small value
in our frequency distribution, which would result in the mean giving us a
rather distorted value for the central tendency. As an example, six aircraft
have the following maximum speeds: 450 km/h, 480 km/h, 500 km/h,

Comparing measures of central tendency
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530 km/h, 600 km/h and 1100 km/h. We can see that most have a max-
imum speed around 500 km/h but the inclusion of the supersonic aircraft
with a speed of 1100 km/h gives us a mean of 610 km/h. This number
might not be appropriate to use as a central value as 610 km/h is faster than
five out of the six aircraft can fly. If we take the median, which is 515 km/h
(halfway between 500 and 530) we have a more representative value for our
central point.

However, in most cases of data collection the mean is the measure
chosen. We shall see further reasons for the importance of the mean in
Chapter 5.

So far we have charted our data on a frequency distribution and found
measures of central tendency. Another useful statistic for summarising the
data is a measure of ‘spread’. It is important for a number of reasons to find
out how spread out the scores are. Two groups of students taking the same
examination could produce different frequency distributions yet the means
might be the same. How then can we express the difference in the distribu-
tions? It is almost certain that the marks for one group of students are more
spread out than the other. A small spread of results in a study is often seen
as a good thing, as it indicates that all the people (or whatever produces the
scores) are behaving similarly, and hence the mean value represents the
scores very well. A large spread may be a problem as it indicates that there
are large differences between the individual scores and the mean is there-
fore not so representative. Thus, we want a statistic that gives us a small
number when the scores are clustered together and a large number when the
scores are spread out.

The simplest measure of spread is the range. The range is the difference
between the highest and lowest scores. In our example the highest score is
a mark of 90 and the lowest is 0. The range is therefore 90.

This measure is a little crude, it sets the boundaries to the scores but
does not tell us anything about their general spread. Indeed, even if our
marks were evenly spread between 0 and 90 rather than clustered in the 50s,
our range would still be 90. The range uses information from only two

The range

Measures of ‘spread’
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scores, the rest could be anything between, so it is rather limited in what it
tells us.

Another way of looking at the spread is to calculate quartiles. We saw
earlier that the median cuts the ordered data into halves; the quartiles simply
cut the ordered data into quarters. The first quartile indicates the score one
quarter of the way up the list from the lowest. The second quartile indicates
the score two quarters up the list. It does not take very much to realise that
the second quartile is halfway up the list and is therefore the median. The
third quartile is the score three quarters up the list. The fourth quartile is all
the way to the end of the list and so it is the highest score.

From our ordered list of examination results, one quarter along the
list of a hundred scores lies between the twenty-fifth and the twenty-sixth
person’s marks, so the first quartile is midway between 48 and 49, which is
48.5. We already know that the second quartile (between the fiftieth and
fifty-first person’s marks) is 55 as we worked out the median above. The
third quartile is three quarters along the list so is between the seventy-fifth
and seventy-sixth person’s marks: this is 59.5.2 And of course the fourth
quartile is 90, as it’s the highest score. If we use the symbol Q for quartile,
we have Q1 = 48.5, Q2 = 55, Q3 = 59.5, Q4 = 90.

A slightly more sophisticated measure of spread than the range is the
interquartile range: that is the difference between the third and first quartile,
Q3 − Q1. In our example this is 59.5 − 48.5 = 11. This is the range of half
the scores, those in the middle of the distribution. The reason why the inter-
quartile range is used is that, unlike the range, it is not going to be affected
by one particularly high or low score and may represent the spread of the
distribution more appropriately. (Some people use the semi-interquartile
range, which is simply half the interquartile range. In our example this
is 5.5.)

Calculating quartiles is quite useful as it can tell us a few interesting
things about the distribution, in particular whether the distribution is sym-
metric about the median within the interquartile range. Q2 − Q1 tells us the
range of the quarter of scores below the median and Q3 − Q2 tells us the
range of the quarter of the scores above the median. In our example the first
is 6.5 and the second is 4.5. We have the scores bunched closer together in
the quarter above the median than in the quarter below the median, as 4.5 is
a smaller range than 6.5, for the same number of scores.

Quartiles
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It is worth noting here how each new statistic tells us something
different about the data. It may be something we already know by looking
at the distribution but often the statistic makes it clearer and more explicit,
with a number attached. However, these statistics do not miraculously appear.
They have been created by people attempting to find ways of best describ-
ing their data. When we wish to describe our data we choose the most
appropriate statistic for our purposes.

Calculating quartiles does not use all the information available from the
scores in the data, and again, as in our discussion of the median, some
scores could be different and we would still end up with the same interquartile
range. The question therefore is whether we can devise a measure of spread
that takes into account each and every score. It is in answer to this question
that a number of measures of spread have been developed. The common
feature of them is that they all begin with the mean (once again indicating
the importance of the mean). Their logic is as follows. If we take the mean
as our ‘central’ position then we can compare each of the scores with the
mean and find out how far each score varies or deviates from it. If we add
up the deviation of each of the scores from the mean we will have a
measure of the total variability in the data. If we want to we can then divide
this total by the number of scores to find the average deviation of a score
from the mean.

We can calculate the deviation of a score from the mean by simply work-
ing out X − µ, where X is a score and µ is the mean. We can do this for
every score. However, we have a problem: when we add them up to find the
total variability, the deviations tend to cancel each other out. In our example,
a mark of 55 gives a deviation from the mean of 55 − 52.62 = +2.38 and a
mark of 50 gives a deviation from the mean of 50 − 52.62 = −2.62. If we add
up these deviations we get 2.38 plus −2.62, which equals −0.24. Due to the
minus sign, two scores, both over two marks from the mean, end up giving
a deviation of less than one when added up. We do not want this; it is not a
statistic that reflects the variability as it really is. Indeed, as the mean is the
position of ‘balance’ in the scores, adding up all the deviations will give us
a total of zero as all the positive deviations exactly cancel out the negative
deviations. As the sum of the deviations of our scores always turns out to be
zero whatever scores we have, it is useless as a statistic as it certainly does
not provide us with a measure of how spread out the scores are.

Variation
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When we consider it, all that the minus sign of a deviation is telling us
is that the score is lower than the mean. We are not actually interested in
whether the score is higher or lower than the mean only how far away it is
from the mean. What we need to do is to find a way of adding up the devi-
ations so that they do not cancel each other out, so that we end up with a reason-
able estimate of the real variability of the scores. There are two solutions:

We can solve our problem by ignoring the minus sign altogether and treat
all the deviations as positive. If we get a deviation of −2.62 we call it +2.62.
We put two vertical lines round a formula to indicate that we take the
absolute value, that is, ignore a minus sign in the solution and treat it as
positive. Absolute deviation is |X − µ |. We add up the deviations for all the
scores. To find the average deviation we divide it by the number of scores,
denoted by N. We call this the mean absolute deviation and represent it by
the following formula:

Mean absolute deviation =
| |X

N

−∑ µ

For our examination results the mean absolute deviation is 9.15.

An alternative solution to taking absolute values is to square the deviations,
as the square of a number is always positive. The square of −2.16 is +4.67.
We then add up the square of each of the deviations to produce a sums of
squares: ∑(X − µ)2. This formula can be can be translated into English as:
‘find the deviation of each score from the mean, square each deviation, then
add up the squared deviations’. We can then divide this figure by the number
of scores (N ) to find the average of the squared deviations. This value is
called the variance.

Variance =
(   )X

N

−∑ µ 2

In our example the variance is 176.52.

1 Absolute deviation

2 Variance
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The variance gives us a figure for the average variability of the scores
about the mean, expressed as squared deviations. It also does what we want:
gives us a large figure for scores that are spread out and a smaller one for
scores that are closer together. Interestingly, as it is dealing with squared
deviations, the variance gives more weight to extreme scores. For example,
a score that deviates by 2 from the mean will contribute 4 to the variance
but a score 4 away from the mean will contribute 16 to the variance, so even
though the second score is only twice as far from the mean as the first it
contributes four times as much to the variance.

If we just wanted a measure of variability then variance is fine. How-
ever, note that the figure we calculated of 176.52 cannot be placed on the
frequency distribution as a distance from the mean. This is because the
variance is the average of the squared deviations, rather than the average
deviation. To bring the statistic back to the terms we started with we need to
find the square root. (As we squared the deviations earlier to get rid of the
minus signs we need to ‘undo’ this now it has served its purpose.) We call
this statistic, the square root of the variance, the standard deviation and
represent it by the symbol σ (the lower case Greek letter sigma).

Standard deviation, σ =
(   )X

N

−∑ µ 2

A simple example will show how we calculate the standard deviation.
Imagine that we only had 4 scores 2, 2, 3, 5 in our data. The mean is 3.
We work out σ as follows:

Score Deviation Squared deviation
X X − µ (X − µ)2

2 −1 1
2 −1 1
3 0 0
5 2 4

∑(X − µ)2 = 6

Dividing the sums of squares (∑(X − µ)2 = 6) by the number of scores
(N = 4) gives a variance of 1.5. Taking the square root of 1.5 gives us a
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standard deviation of σ = 1.22. In the examination example the standard
deviation of the one hundred marks is 13.29.

The standard deviation gives us a measure of spread about the mean. In
many cases most of the scores (about two-thirds) will lie within one standard
deviation less than and one standard deviation greater than the mean, that is,
in the range X − σ to X + σ. The standard deviation gives us a measure of
the ‘standard’ distance of a score from the mean in this set of data.

W A R N I N G ! The above formulae for variance and standard deviation are
used when are interested in these data only. When our data is a subset or a
sample of a larger set of data that we want it to represent then we use slightly
different formulae, the same as the above except that we would divide the
sums of squares by the degrees of freedom df, rather than the sample size n,
where df = n − 1. If it was the case that our one hundred students were not
the complete set we were interested in but were a sample drawn from one
thousand students taking the examination then we would use the different
formulae:

Variance =
(   )

–

X

n

−∑ µ 2

1

Standard deviation, σ =
(   )

–

X

n

−∑ µ 2

1

The reason for the difference is explained in Chapter 5 when we consider
samples. Most of the time we use the formulae with n − 1 (the degrees of
freedom) rather than n (the sample size) as most of the time we wish to use
our samples to generalise to a wider population rather than treating our data
as all that we are interested in.

As with the measures of central tendency, the measure of spread that is
most useful depends on the reasons for calculating it.

The range and interquartile range are both easy measures to calculate,
giving a limited but potentially adequate measure of spread. Their weakness
is that they do not take into account all the scores in the data and may be
limited in their ability to represent the true variability of the scores. The
range, in particular, may not reflect the general spread of results very well if
there is one very low or very high score.

Comparison of measures of spread
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The variance is a good measure of the variability in the data. It uses
all the scores and will give a small number if all the scores cluster round the
mean and a large number if they are spread out. As we shall see in the
chapters on the analysis of variance this statistic is extremely important in
some statistical analyses. However, when we are describing a set of data the
variance may not be particularly useful as a description of the spread of
scores as the number it produces is not of the same order as the scores. It is
expressed in terms of the squared deviations from the mean. In our example
the variance of 176.52 appears large but this may be because it is expressed
in terms of marks squared, not marks.

The mean absolute deviation and the standard deviation are both good
descriptive statistics of the spread of a set of scores. They both use the
information from all the scores and both produce a number that expresses
an ‘average’ deviation from the mean in the terms we want (in our example:
marks). As they are expressed in the same terms as the scores they are easy
to understand. We can, if we wish, plot these figures as a distance from the
mean on the frequency distribution, so they can be graphically represented
as well.

Why is it that the spread of a set of results is almost always expressed,
in research reports, as the standard deviation and rarely as the mean absolute
deviation? If the data we are describing is all we are interested in then
there is not a compelling argument. However, there is a distinct advantage
of using the standard deviation when our data is a sample of a larger set
(a population) that we wish it to represent. In our example, the 100 students
were the only ones we were interested in. If, however, 1000 students had
taken the examination and our 100 were a representative sample then we
would want to use the standard deviation. The reasons, which are dealt with
in Chapter 5, concern samples representing populations and the use of
sample statistics to estimate population values.

When describing a set of data we want to summarise the frequency distribu-
tion by two measures, one indicating a central value indicating the ‘average’
score and a second to indicate the spread of the scores. The two most
commonly used statistics for these measures, because of their usefulness,
are the mean and the standard deviation. We can summarise the examination
results by the following statistics: mean = 52.62 marks, standard deviation =
13.29 marks.

Describing a set of data: in conclusion
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Summary statistics neatly and briefly describe the data but in most cases
people want to use the information to make certain points. In our example
a committee member might be concerned about possible falling standards
or the effect of a change in the student selection procedure. The summary
statistics can then be used to help make a decision about such questions.
Notice that the points raised by the committee member both require a
comparison with the previous year’s results. The calculation of statistics
is often used to go beyond description to allow us to answer specific
research questions and this invariably involves comparing different sets of
results.

For our example, the previous year’s results for the same examination,
where 100 students also sat the examination, are shown below. Note that it
would not be easy to see any similarities or differences between the results
for the two years very well by simply looking at the two tables of raw data.
Both years have a mixture of marks in them and, whilst we might be able to
pick out certain interesting results, such as the highest and lowest, the tables
do not provide a good way of allowing us to make any comparisons between
the two sets of data.

24 56 54 56 55 43 55 52 45 58
54 52 65 50 60 57 47 62 7 58
51 60 53 81 59 61 56 63 57 49
68 61 39 59 49 63 54 60 57 60
66 53 36 50 59 52 37 70 66 30
61 50 55 55 65 58 51 22 68 57
87 64 50 35 56 54 60 72 58 51
46 62 56 15 63 59 39 60 58 76
65 36 4 59 57 53 49 69 64 53
38 58 48 58 66 62 56 54 61 63

Again, if we order the data and create a frequency distribution we might
begin to see where any differences lie. Figure 2.2 shows the frequency dis-
tribution of last year’s results. We can compare Figure 2.2 with Figure 2.1
by eye. The distribution of results looks similar over the two years. This in
itself might be useful evidence indicating a year on year consistency in
performance. However, simply looking by eye cannot really tell us how
similar the two distributions are, as we may miss subtle differences between
them. This is where statistics can help.

Comparing two sets of data with descriptive statistics
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If we consider measures of central tendency first, we can compare the
two years directly:

Last year This year

Mode 58 56
Median 56.5 55.0
Mean 54.25 52.62

We can see that all three measures have dropped a little since last year. The
mode could easily change by the effect of just a few students and so in this
case is not the most useful statistic. The median does indicate that the
central point was higher last year. The mean value shows a drop of 1.63
from last year to this. It may not seem a lot but remember the mean takes
into account all the students, so there is a reduction of 1.63 marks per
student. Now this could be due to a number of factors that are worth further
investigation, such as: are there less able students this year or is it a harder
examination this year? Before we do that we want to eliminate a simple
alternative reason. Maybe last year there were a few particular good students
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or this year a few poor ones. These occur now and again and do not indicate
that the general standards are changing. The way we can look at this is by
considering the spread: maybe the spread was wider in one of the two years
indicating a greater mixture of student ability in that year?

We can compare the various measures of spread:

Last year This year

Range 83 90
Interquartile range 10.5 11.0
Mean absolute deviation 8.82 9.15
Variance 169.93 176.52
Standard deviation 13.04 13.29

There was a narrower range last year with no one scoring as low as 0 or as
high as 90, but there was not much difference in the interquartile range and,
more particularly, the standard deviations are not very different from each
other. It might be worth investigating further to see why there was the
reduction in the mean performance. Notice that these results alone cannot
distinguish between reasons for a difference, they can only be used to argue
that one has occurred. The reason for the slightly lower marks, be it lower
ability students, a harder paper, stricter marking or whatever, requires the
skill of the researcher to find out.

As can be seen from the above figures, the mean and the standard
deviation are generally the most informative statistics for a particular dis-
tribution. These are the statistics that are most commonly chosen, but there
may be occasions when you think that other statistics are more appropriate
or will tell you more accurately what you want to know. This leads to an
important point: it is NOT worth calculating statistics until you know why
you are doing it and what you want the statistics to show. It could be that
the raw data tells you all you need to know, so do not bother calculating
statistics. However, most of the time it is not possible to see the important
characteristics of the data without some further analysis. Calculating the
appropriate statistics can help you decide the answers to the questions you
are asking. The difficulty in describing and analysing data is NOT calculat-
ing the statistics (we have computer programs that do this) but in knowing
the questions you wish to find answers for, and the statistics that help
inform those answers.
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Note also that calculating statistics only gives you information. It is up
to you how you interpret and use that information. A difference in means,
or standard deviations, might be useful information, but that is all. Calculating
statistics will not explain similarities and differences between distributions.
What the statistics do is to provide us with pieces of information we can
work with: they are tools to be used for our own purposes. After that we
must use our judgement.

Details on how to produce statistics to describe a set of data using the
SPSS computer statistical package can be found in Chapter 3 of Hinton
et al. (2004).

Up to now we have been calculating statistics using sets of examination
results. This is fine as examination results are the types of number that it
makes sense to calculate means and other statistics on. But this is not the
case for all types of number. We need to know what type of data we have
before we know what statistics we are able to calculate.

Sometimes numbers are used like names. For example, in a sports squad of
22 players the number 15 on the back of a player’s shirt simply allows us to
identify him or her during play. It does not mean that player number 15 is
better than players 1 to 14 or worse than players 16 to 22. It is meaningless
to calculate statistics on these numbers as they are only nominal, used as
names.

When we categorise someone or something we can use numbers to
label the categories. For example, if we classify people by eye colour we
might choose to label brown as 1, blue as 2, green as 3 and so on. Notice
that the numbers are arbitrarily assigned to colours: we could have chosen
other numbers or assigned the same numbers in a different way. The use of
these numbers is nominal. We cannot use these numbers to calculate statistics:
it is nonsense to say that the mean of a brown eyed person (1) and a green
eyed person (3) is a blue eyed person (2)!

Some important information about numbers

Nominal data
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We can use numbers to define an order of performance. For example, Susan
is the best chess player in the class, followed by Robert, Marie and Peter.
We can give Susan the top rank of 1, Robert 2, Marie 3 and Peter 4. These
numbers tell us the rank order but little else. They do NOT tell us that the
difference between 1 and 2 (Susan and Robert) is the same as the difference
between 3 and 4 (Marie and Peter) despite there only being one place
between them in the ranks. Susan could be the best player for her age in the
country whereas the other three might not be as good as others of their age
from nearby schools. Because of this we cannot calculate means and standard
deviations on ordinal data. Chapter 16 discusses ordinal data further and
considers how we can calculate statistics with it.

Time, speed, distance and temperature can all be measured on interval
scales and we have clocks, speedometers, tape measures and thermometers
to do it. They are called interval scales because the differences between the
consecutive numbers are of equal intervals: the difference between 1 and 2
is the same as the difference between 3 and 4 or 10 and 11. Unlike an
ordinal scale where these could be different, on an interval scale they are all
the same. For example, the difference between 6 and 7 minutes is the same
as the difference between 20 and 21 minutes, it is 1 minute in both cases.
When our numbers come from a scale with equal intervals then we can
calculate means and standard deviations.

Ratio data is a special kind of interval data. With interval data the zero
value can be arbitrary, such as the position of zero on some temperature
scales: the Fahrenheit zero is at a different position to that of the Celsius
scale, whereas with ratio data zero actually indicates the point where ‘nothing’
is scored on the scale, such as zero on a speedometer when there is no
movement, and so this zero means the same thing regardless of whether
we are measuring in miles per hour or kilometres per second. We can illus-
trate the difference in the following example. In an examination there are
100 questions of equal difficulty and students are required to get at least
50 correct answers to pass the examination. The examiner could choose to
label the pass mark as zero. A score of 0 indicates 50 correct answers, +1
indicates 51 correct answers, −1 indicates 49 correct answers and so on.
This is an interval scale with an arbitrary zero: the examiner chose where to

Ordinal data

Interval and ratio data
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put it. Now let us consider the same examination where zero indicates no
correct answers and the pass mark is given a score of 50. This time the zero
is nonarbitrary as it specifies a score of ‘nothing’ in terms of examination
performance. Here the interval scale becomes a ratio scale.

Only on a ratio scale, with a genuine zero, can we make claims to do
with ratios, such as: Susan’s score is twice as good as John’s, Robyn’s score
is one third of Peter’s. If Susan had scored 80 and John 40 on a ratio scale
examination then her score really is twice John’s score. On an interval
scale with zero set arbitrarily at 50 their scores are 30 and −10. With the
interval scale we would not have been able to make the ratio judgements
appropriately.

Many of our statistics require interval or ratio data. In the majority of
the book (up to Chapter 16) we shall be considering only data that is
interval or ratio as these types of data allow us to perform the largest range
of statistical tests. For this reason, researchers often choose to collect inter-
val or ratio data for analysis. With human subjects research often focuses on
how fast or how accurately a task can be performed, where both speed and
accuracy can be measured on ratio scales.
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If you received a mark of 58 in an examination would you know how well
you had done relative to the other candidates? Were you the best in the class
or the worst? Clearly this is a case where you need further information.
With the mean and standard deviation you can begin to answer these ques-
tions. If the mean is 52 and the standard deviation is 5 then your score is
one of the best. If, however, the mean is 59 and the standard deviation is
3 then you are a little below average but as the scores are clustered around
59 there are likely to be a lot of students with similar results.

If you took two examinations and received a 58 for Psychology and a
49 for Statistics, which would you be most pleased with? You might want
to use these results to help a decision on which subject to major in. You
could choose the 58 because it is numerically higher. But if you found out
that everyone else who took the Psychology examination scored over 60
and all the others who took the Statistics examination scored under 45 then
you might change your mind. Even though you received a higher mark for
Psychology the distributions of the two sets of scores are different. It could
be that the Statistics examination is especially hard this year and 49 is a
very high mark compared to the rest of the class, whereas 58 in Psychology
might be a relatively low mark.

You then find out that, for the Statistics examination, the mean is 45
and the standard deviation is 4, and for Psychology the mean is 55 and the
standard deviation is 6. This at least tells you that you are above average
in both subjects but it doesn’t tell you which yielded the higher class
position.

To compare two scores that come from different distributions we need
to standardise them. We do this by calculating a statistic called, not surpris-
ingly, a standard score (or z score). This expresses the score relative to the
mean in terms of the standard deviation. Thus a score of 58 is 3 away from
a mean of 55. With a standard deviation of 6, this distance is 3/6th of the
standard deviation. The score is half a standard deviation from the mean.
Essentially the standard score tells us how many standard deviations the
score is from the mean of the distribution. We calculate the standard score
using the following formula:

Comparing scores from different distributions
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The standard score, z =
X − µ

σ
,

where X is the score to be standardised, µ is the mean and σ is the standard
deviation of the distribution.

Standard scores can be compared, because, no matter what your dis-
tribution is like to start with, converting scores to z scores always results in a
distribution of z scores with a mean of 0 and a standard deviation of 1. If the
examination scores are converted to standard scores then we can compare
them and see which examination result gives the higher class position.

In Psychology, X = 58, µ = 55, σ = 6:

z =
X −

=
−

=
µ

σ
58 55

6

3

6
= 0.5

In Statistics, X = 49, µ = 45, σ = 4:

z =
X −

=
−

=
µ

σ
49 45

4

4

4
= 1.0

In Psychology you are half a standard deviation above the mean and in
Statistics you are one standard deviation above the mean. The higher z score
for Statistics means that you are higher in the class results for Statistics than
you are for Psychology.

In the previous chapter we compared two sets of examination results,
from this year and last year. Notice that this year a score of 59 gives the
following z score:

z =
59 52 62

13 29

6 38

13 29

  .

.

.

.

−
= = 0.48

For last year’s distribution a score of 59 produces the following z score:

z =
59 54 25

13 04

4 75

13 04

  .

.

.

.

−
= = 0.36

From these two z scores we can see that a score of 59 is higher up the
distribution this year (z = 0.48) than last year (z = 0.36), so 59 is a better
score this year than last, possibly because the examination is harder this
year (or one of the other reasons cited earlier).
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If I decided to collect data on, say, women’s heights I might initially measure
the height of a large number of women and plot the results as a frequency
distribution on a histogram. What would the distribution look like? I start
by choosing the steps for my histogram, i.e. deciding on the range of values
to include for each bar. I’ll choose 5 centimetre steps and include in the
same bar all the women whose height falls within a particular 5 cm band.
(To stop overlapping bands, the band includes heights from the lowest
point of the band up to but not including the highest point of the band:
for example, the band 160 cm to 165 cm covers the women’s heights from
160 cm up to but not including 165 cm, so the woman whose height is
exactly 165 falls into one band only – the 165 cm to 170 cm band.) When
I have collected the data and added up all the women whose height falls
within each 5 cm band I would find lots of women whose height was
between 160 and 165 cm, or between 165 cm and 170 cm but not many
between 135 cm and 140 cm or between 185 cm and 190 cm. There are not
as many very short or very tall women compared to those in-between. In
fact, the distribution would probably look like the histogram in Figure 3.1.
Notice the distribution has a hump in the middle and tails off symmetrically
either side.

If I then kept on measuring more and more women and also made my
steps smaller and smaller (instead of 5 cm I choose 2 cm bands, then I plot

FIGURE 3.1 The distribution of women’s height: histogram
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FIGURE 3.2 The distribution of women’s height

the heights within 1 cm bands, then 0.5 cm and so on until my bands
become extremely small) I would end up with a very large number of
women’s heights plotted on a histogram with very small steps. Eventually
my histogram would become a smooth curve, as in Figure 3.2.

It is remarkable how many times we end up with this same bell-
shaped curve, irrespective of which variable we are studying, be it women’s
heights, the foot size of ten year old boys or the gestation period of babies.
As the curve is produced so often it is called the Normal Distribution. The
interesting and very useful feature of this curve is that it is actually quite
simple to express mathematically and can be calculated using only the mean
and standard deviation. That is, we can work out the formula for a normal
distribution precisely with only the knowledge of the mean and standard
deviation.3

The normal distribution is very important for statistical analysis for
the following reasons.

1 Many of the things we study and measure in our research (although
not all) are assumed to be come from a population of scores that are
normally distributed (such as women’s heights). If we took all the men
in the population we would expect to get normal distributions for
height, weight, foot size, etc. We would expect normal distributions
for the women’s data as well.
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2 Many of the statistical tests that we shall be examining in the course of
the book make the assumption that the distributions they are investigat-
ing are normally distributed. Indeed these tests rely on this assumption:
without it the logic of the test fails.

3 Interestingly, even if a distribution is not a normal distribution, when
we take a large number of samples of the same size and plot their
means on a frequency distribution this distribution tends to become
a normal distribution. This again is extremely useful for statistical
analysis.

These points are examined further in Chapter 5 when we consider samples,
but the important thing to note here is that we have a lot of useful informa-
tion when we know the mean and standard deviation of a set of scores and
also that the distribution of the scores is a normal distribution.

As it is such a useful distribution people have drawn up tables of the normal
distribution. However, the values would be different for all the various
means and standard deviations we could get, and we would end up with lots
and lots of different tables. So the values in the table are for a normal
distribution with a mean of 0 and a standard deviation of 1. This normal
distribution is called the Standard Normal Distribution.

If scores come from a normal distribution (such as height, weight)
then converting the scores to standard scores (z scores) converts the dis-
tribution to the standard normal distribution. When we convert a score
from a normal distribution to a z score we can then look up the z score in
the standard normal distribution tables. This is given in Table A.1 of the
Appendix. This information can be remarkably useful in statistical analysis.

The table tells us how many scores in the distribution are higher than
the score we are examining. It does this by providing us with a figure for
the area under the standard normal curve beyond the z scores, shown in
Figure 3.3. The area underneath the whole curve is 1 (we have one whole
area, like a whole cake before we cut it into portions) and the z score (like
the knife cutting the cake) cuts it into two portions and the table tells us
what proportion of the whole area we have cut off beyond the z score. If we
subtract this value from 1 we know how much of the area is below the
z score. Also, as the curve is symmetrical the mean value cuts the area
into halves (so there is 0.5 of the area above the mean and 0.5 below).

The Standard Normal Distribution
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FIGURE 3.3 The Standard Normal Distribution

In this case, proportions are linked to probability. I am a 180 cm tall
man. Let us assume, for the sake of this example, that the proportion of men
taller than me in the population is a fifth. Now one fifth is 1 divided by 5,
which equals 0.2, so we can express the proportion of men taller than me as
0.2 of the whole population. From this information I also know that the
chance or probability of finding a man taller than me in the population is
also one in five or 0.2. The area under the standard normal distribution
curve is linked to probability in this way. The whole area under the curve
(1) is linked to the probability of 1. Probability values range from 0 to 1. A
probability of 1 is a certainty that something is the case. There is a certainty
that any man I find will have a height somewhere on the men’s height
distribution so the whole area (1) is certain to include him. A probability of
0 is a certainty that something is not the case. The probability of finding a
man twice my height (360 cm!) is so small as to be virtually zero. As we
move from a probability of 0 to a probability of 1 we go from taking none
of the area to taking larger and larger portions until we have the whole area.

When people talk about the chances of something happening they do
not often talk in terms of probabilities (‘the probability of me passing the
examination is 0.5’), rather they prefer to use percentages (‘I’ve a 50 per
cent chance of passing the examination’). There is a simple relationship
between probabilities and percentages, a percentage is a probability multiplied
by 100. Thus, a probability of 0.3 is the same as a 30 per cent chance.
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By looking at the area under the standard normal distribution curve
above or below a z score we are able to obtain the probability of finding a
score from the distribution larger or smaller than the score we have selected.
In this way we are able to work out a whole range of interesting probabilities
concerning scores from a normal distribution.

The distribution of scores in a Statistics examination is a normal distribution
with a mean of 45 and a standard deviation of 4. You receive a mark of 49.

(a) What is the probability of someone scoring higher than you?
(b) What percentage of people are above the mean but lower than you?

As we have a normal distribution, the calculation of z scores will convert
the distribution to the standard normal distribution. The score of 49 gives a
z score as follows:

z
x

=
−

=
−

=
µ

σ
49 45

4
1

The standard normal distribution table (Table A.1 in the Appendix) will
give us the probability of a score greater than a z score of 1. We look up the
z score of 1.00 in the table and get a figure of 0.1587, so the probability of
a score greater than 49 is 0.1587. (This means that you are in the top 16 per
cent of the class, as 0.1587 × 100 = 15.87 per cent of the scores are better
than yours.)

We know the area above the mean is 0.5 (half of the area) and the
probability of a score greater than a z score of 1.00 is 0.1587, so if we
subtract 0.1587 from 0.5 we will find the probability of a score above the
mean and below your score: 0.5 − 0.1587 = 0.3413. If we multiply this by
100 we will obtain the percentage: 0.3413 × 100 = 34.13 per cent. There are
34.13 per cent of the scores lower than your score but above the mean.

If you calculate a z score and it turns out to be a minus number, all this
means is that the score is less than the mean. As you can see from the

An example of using the standard normal distribution table

z scores of less than zero



S T A N D A R D  S C O R E S

33

standard normal distribution table you cannot look up negative z scores.
However, as we have seen, the normal distribution is symmetrical so the
proportion of scores greater than, say +1.52, is the same as the proportion
of scores less than −1.52. If you wish to look up a minus number in the
table ignore the minus and look up the number. The figure you get from the
table now tells you the probability of a score less than the z score. To find
the proportion of scores greater than the z score subtract the table figure
from 1. For example, if we calculated a z score of −1, this means the score
is below the mean. We cannot look up −1 in the tables. We ignore the
minus and look up 1 in the table. The probability value is 0.1587. This tells
us that the probability of a score lower than a z score of −1 is 0.1587 and the
probability of a z score greater than −1 is 1 − 0.1587 = 0.8413.
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