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THE t TEST IS LIMITED in two ways. First, it allows a comparison
of only two samples at a time, such as old men versus young men on a
particular task. In many cases we want to compare a number of samples, not
just two, such as young men, middle-aged men and old men on the same
task, and the ¢ test cannot do this. Second, the 7 test examines the effect of
only one independent variable, such as age or teaching method, at a time
whereas we may want to compare them in combination. The analysis of
variance is similar to the 7 test but is without these restrictions. It is for this
reason that the analysis of variance (or ANOVA as it is known) is a very
popular statistical technique in a range of research fields.

Factors and conditions

In the following chapters I shall be referring to independent variables as
factors as that is the term used in the analysis of variance, so age, hair
colour and type of school attended are all examples of factors. The conditions
are the categories of the independent variable we choose to study. These are
also referred to by other terms such as groups, levels or treatments, but
I shall use conditions throughout. If we were investigating the independ-
ent variable of age we might select the conditions: 20 year olds, 40 year olds
and 60 year olds. These age groups are the three conditions of the factor
under study. We could, of course, choose different conditions for the variable
age if we wish.

The problem of many conditions and the t test

Consider the situation where you want to compare more than two conditions.
Rather than comparing children in a small school with children in a large
school, you might want to compare a range of schools of different sizes
(that we could label A, B, C, etc.). Similarly, you might want to compare
three different teaching methods (A, B and C) on a group of children. The
problem is to find a way to analyse the findings statistically. One solution
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would be to perform a number of ¢ tests, comparing each different pair of
conditions: A and B, B and C, C and A, when there are three conditions.
But we do not do this for the following reasons.

We have to perform three tests instead of one. If we had four condi-
tions we would have to undertake six different tests and if there were ten
conditions the number of tests would be forty-five! We really need one single
test that allows us to deal with more than two conditions simultaneously,
in fact a test that we do once and not have to do forty-five times.

The second and more important reason why we do not do lots of ¢ tests
is that the more ¢ tests we perform on the data the more likely we are to
make a Type I error (accept a result as significant when it occurred by
chance). With one test, with & = 0.05, we have a probability of 0.05 of
making a Type I error. This means we have a probability of 1 — a or 0.95 of
not making a Type 1 error. If we perform two tests, each at the 0.05 level
of significance, the probability of not making a Type I error becomes 0.95 x
0.95 = 0.90. The probability of making a Type I error in the tests is 1 — 0.90
= 0.10. Already the probability of making at least one Type I error has
doubled. With ten tests the probability of at least one Type I error rises to
0.40, or a 40 per cent chance.

If we want the overall significance level of a number of tests to be
0.05, then we have to set the significance level of each of the individual
tests at a much more conservative level. If, for example, we undertake five
tests then the significance level for each individual test has to be set at
p = 0.01 for the overall risk of a Type I error to be 0.05 (as 1 —0.99 x 0.99
% 0.99 x 0.99 x 0.99 = 0.05).

The alternative is to devise a single test which has the same effect
as the multiple comparisons but with an overall significance level set at
p = 0.05. It is this alternative test that we consider now.

Why do scores vary in an experiment?

If we look at a set of data we find that not all the scores are identical. Why
is there this variability in the data? The answer to this question holds the
key to the analysis of variance as a means of hypothesis testing. Let us take
an example to demonstrate this. We want to know the effect of the frequency
of a word in the language on anagram solution times. We select a number of
conditions, such as Common Words, Less Frequent Words, and Rare Words.
We might use a computer-based store of words in the language (accessible
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over the Internet, which gives the frequency of a word in a vast body of
text) to select words appropriate to our conditions. In choosing words we
make sure they differ in frequency but not in word length or other possible
confounding factors. We then record the time it takes participants to solve a
set of anagrams in each of the three conditions.

The null hypothesis predicts that the scores in all three conditions
come from the same distribution. If there are differences between the mean
solution times for the three conditions can we reject the null hypothesis
and claim a genuine difference between the distributions of solution times
according to word frequency? Unfortunately not, because even when the
null hypothesis is true we will still find that we do not get equal means in
the various conditions. What we need to find out is what causes the variation
in the scores and how we can detect when the variation has arisen because
of the manipulation of the factor, word frequency, and not for other reasons,
such as the chance variation we would expect even when the null hypothesis
is true.

Random variation in an experiment

It is unlikely that the participants in the same condition will produce exactly
the same time for solving the anagrams. These are scores from a distribution
and some participants will be fast and others slow rather than every one
producing the population mean. The result is a sample of scores from a
population and even if we select our sample randomly from the population
there will be unsystematic or random errors that can lead to differences in
the scores, and differences between the sample mean and the population
mean. Even when the null hypothesis is true we would still expect the scores
in the conditions to vary by random error and the means of the conditions to
vary for the same reason.

When the scores come from different subjects one major category of
random error is that of individual differences: participants will differ on
their anagram solving ability, crossword puzzle experience and so forth. We
can see from this why we need to select randomly from the population. If
we select in a biased way, such as choosing only good crossword puzzlers,
then their times would be systematically distorted from the population mean
making them a poor estimate of it and we would not be able to generalise
from our result to the wider population.

As well as individual differences, there will be a collection of other
random errors, due to the difficulty of setting up equivalent conditions for
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the participants. Someone might drop a pencil on the floor, another might
remember a word from the crossword in that morning’s newspaper and a
third might be distracted by a noise. These could influence the anagram
solution times. Thus we would expect scores to differ in an experiment due
to a range of random errors regardless of whether the null hypothesis is
true or not.

Systematic variation in the scores

If the null hypothesis is true and there are no differences in the populations
of solution times for the different conditions of word frequency then any
differences we find between condition means should be due to random error
only. However, when the null hypothesis is false, the scores between con-
ditions might be drawn from different populations (unlike the scores within
a condition) and when this is the case we should find systematic differences
between the conditions. We have deliberately chosen the anagrams so that
they differ on word frequency between the conditions. If Common Word
anagrams really are easier to solve than Less Frequent Word anagrams then
we would expect this difference in population means to be reflected in our
scores. If word frequency does affect solution times then we should expect
systematic differences in the scores between conditions (known as a treatment
effect). This is what we are looking for, evidence that there are genuine
differences in the population means of the anagram solution times between
the conditions.

Random errors and systematic differences

Scores in an experiment will vary due to random errors and systematic
differences. If we have selected our subjects appropriately we would expect
random errors to occur anywhere in the data rather than focused in any one
condition. However, if there is a genuine effect of the independent variable
and it does affect the scores then we would expect systematic differences
between the scores in the different conditions. The random errors will pro-
vide a certain level of variability in the data both within and between the
conditions, a sort of ‘background noise’ in the results. If the null hypothesis
is false and there really are differences between the conditions we would
expect this to appear as a systematic difference in the scores from the
different conditions, over and above the ‘background noise’.
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Look at the three examples of results to this experiment in the table
below.

(a) (b) (c)

CW LFW RW CW LFW RW CW LFW RW

17 16 19 18 18 40 20 30 40
16 18 25 21 18 44 19 30 41
22 21 19 16 20 38 21 31 39
16 18 25 21 18 42 20 29 41
23 24 18 18 23 37 21 29 40
20 23 20 20 23 39 19 31 39
Mean 19 20 21 19 20 40 20 30 40

(The initials CW, LFW and RW in the table stand for Common Words,
Less Frequent Words and Rare Words respectively. The scores are in
minutes.)

What can we say about the causes of the variability of the scores in
(a), (b) and (c)? The key thing is to decide whether there are systematic
differences in the scores between the conditions. In example (a) there are
differences between the condition means but only of 1. This is actually
quite small compared to the ‘background noise’ of the random variability:
there are both high and low scores in all three conditions. A set of results
like this could quite easily occur when the null hypothesis is true and there
are no genuine differences between the populations from which the samples
are drawn. Example (b) looks more indicative of an underlying difference,
but only between the Rare Words and the other conditions. All the high
scores are in the Rare Word condition and a mean of 40 differs by at least
10 from the other condition means and looks larger than the variability in
the data that could arise from random variability alone. In this example,
there appears to be a difference in the underlying population distribution for
Rare Words compared to the other two but not between Common Words
and Less Frequent Words. Finally, in example (c) we have large differences
between all three means that seem to dominate any random variability,
indicating that the three conditions have drawn samples from different
distributions.
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What we need to do now is to produce a statistic that formally analyses
the variability of the scores in an experiment, in an equivalent manner to
my informal ‘eyeballing’ of the above examples and allows us to decide
when the variability of the scores between conditions indicates genuine
differences between populations (such as in examples (b) and (c)) and when
it indicates only the random variation that we would expect by chance,
when the null hypothesis is true (example (a)).

Calculating the variability of scores

We need to express the variability of the scores statistically. Up to now
we have used the standard deviation to do this for a sample of scores:

Y(X - X)? . . o
=1 Now we are interested in comparing different sources of
n —

variability, to find whether there are systematic differences between con-
ditions as well as random variability in the data, rather than seeking a
standard difference from the mean. For this reason, and because we don’t
want to have to keep working out square roots, it is much easier for us to
use variance, the square of the standard deviation:

(X - X
Sample variance, s> = —2 1
n—

At the heart of the variance calculation is the sums of squares: >(X — X?).
This measures the variability of the scores from the mean of the sample.
When the scores vary wildly from the mean the sums of squares is large and
when they cluster round the mean the sums of squares is small. This is what
we want for our analysis of variability.

The sums of squares is also affected by the number of scores in the
sample. The more scores we have the larger the sums of squares, even
though the variability of the scores is no greater, as each extra score (unless
exactly the same as the mean) will add to it. Consider the two samples,
Sample 1 with scores 1, 1, 2, 3, 3 and Sample 2 with scores 1, 2, 3. Their
variability looks about the same, with scores deviating from the mean by no
more than 1. We can see from the table below that because there are more
scores in Sample 1 the sums of squares is much larger.
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Sample 1 Sample 2

X X-X (X-X) X X-X (X-X)

1 -1 1 1 -1 1

1 -1 1 0

2 0 0 3 1 1

3 1 1

3 1 1

Sums of squares = 2(X — X?) Sums of squares = 2(X — X?)

In order to take account of this we need to divide the sums of squares
by the degrees of freedom, df = n — 1, to produce an ‘average’ variability of
a score in the sample. (Recall from Chapter 5 that we use the degrees
of freedom when dealing with samples as this produces a better estimate
of the population parameter we are interested in.) There are five scores
in Sample 1 son=5and df=n — 1 =5 —1=4. This produces a variance
of 1. In Sample 2 n = 3 and df = 2. This also produces a variance of 1.
This matches our intuitive view that there is the same variability in these
two samples.

We are interested in the variability produced by different factors in our
data: random error and systematic differences and we can use the variance
formula to find it.

The process of analysing variability

The useful thing about sums of squares is that we can calculate it for
different portions of the data. We can work out the total sums of squares,
taking into account every single score irrespective of condition. Using the
data below, the overall mean is 10, taking into account all 18 scores, and the
total sums of squares is 328.
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Condition 1 Condition 2 Condition 3
5 11 14
6 10 15
7 9 17
5 11 13
3 9 17
4 10 14
Mean 5 10 15

We can also work out the sums of squares for the scores within a single
condition. The scores in Condition 1 have a mean of 5 and a sums of
squares of the six scores is 10, for Condition 2 the sums of squares is 4 and
for Condition 3 it is 14. If we add these up it will provide us with a measure
of the variability of the scores within the conditions. The within conditions
sums of squares is therefore 28 (the sum: 10 + 4 + 14). The scores also vary
between the conditions. If we take just the three condition means 5, 10 and
15 they have a mean of 10 and a sums of squares of 50. These are not scores
but means and each mean is composed of 6 scores so we multiply the figure
of 50 by 6 to get the variability of the scores (rather than the means) between
the conditions. The between conditions sums of squares is 300. If we use the
label SS,,,,, for the total sums of squares and S, conas A0 SS congs fOT the
within and between conditions sums of squares respectively, we can see that:

SSIotal = SSwith.('ondx + SShet.L'onds
328 =28 + 300

We can also separate the degrees of freedom in the same way. There are
18 scores in the experiment so the total degrees of freedom, df,,, = 18 — 1
= 17. There are 6 scores in each condition giving 6 — 1 = 5 degrees of
freedom within each condition. Adding up the degrees of freedom within
the three conditions we produce the within conditions degrees of freedom,
df vinconas» OF 15. There are 3 conditions so there are 3 — 1 = 2 between
conditions degrees of freedom, df,,,, ..., We also see that:

dfrotal = df with.conds + df bet.conds
17=15+2
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As we can partition both the sums of squares and the degrees of freedom
into components we can also work out the variance within and between the
conditions.

The variance ratio

What we want to do is to work out how much variability in the experiment
is due to our manipulation, that is, the systematic differences between the con-
ditions. The between conditions variance will tell us the ‘average’ variability
between the conditions. This will arise from systematic differences between
the conditions (if there are any) plus random errors (that will occur anywhere).
This is not enough on its own to detect a difference in populations because
this variance could be large for more than one reason; the systematic differ-
ences might be large or the random errors might be large, or both. What we
need to do now is estimate the size of the variability due to the random errors.

Within a condition the scores will only vary due to random errors but
not systematic differences (as the subjects within a condition will be perform-
ing in the same circumstances — we are not manipulating the independent
variable within a condition). Assuming that random errors affect all scores
equally (otherwise they would not be random) we can take the variance
within the conditions as an estimate of the variance due to random errors,
the error variance.’

Now if we compare the variance between conditions with the variance
within conditions we will have a statistic for uncovering systematic differ-
ences between our conditions if there are any. We call this statistic, F, the
variance ratio:

Between conditions variance

Variance ratio (F') = :
Error variance

This can also be expressed as follows:

. . Systematic differences + Error variance
Variance ratio (F') = y

Error variance

Note that the only difference between the top and the bottom of our equa-
tion is the systematic differences between the conditions, the error variance
affecting the top and bottom equally. If there really are systematic differences
between the conditions this should show up by a large value of F.



INTRODUCTION TO THE ANALYSIS OF VARIANCE

Alternatively, if the null hypothesis is true, and there are no differences
between the distributions that the samples are drawn from, then we would
expect to find no systematic differences between the conditions. Thus, when
the null hypothesis is true, we would expect:

P 0 + Error variance  Error variance

Error variance Error variance

When the null hypothesis is true we expect F to equal 1 as the top and
bottom of the equation are the same. When the null hypothesis is false we
expect to find systematic differences between conditions and F' to be greater
than 1, with large systematic differences producing a large value of F.

The F distribution

Clearly, we need to know how large our calculated value of F must be for
it to be significant at the level of significance chosen. What we need is the
sampling distribution of F when the null hypothesis is true. If we select
samples from the same distribution for our experimental conditions and
calculated F, what values of F would we get?

First, the F values would cluster around 1 as there are no systematic
differences between the conditions and the two variances making up the
equation are likely to be equal. Second, F will never be less than zero as it
is a ratio of numbers that have been squared and squares are never negative.
This also means that we are only interested in one tail of the F distribution,
the upper end: how much bigger than 1 the F value must be in order to
reject the null hypothesis.

Like the ¢ distribution F is also an estimate. We are using the variances
of samples to estimate population values. Again, like ¢, the accuracy of this
estimation will depend on the degrees of freedom of the estimate. Unlike ¢,
however, the F statistic depends on two variances, the between conditions
variance and the error variance, and so will be influenced by the degrees of
freedom of both. This means that there is a different F distribution for each
combination of the two degrees of freedom. Fortunately, the F distributions
are known and the critical values for significance have been calculated for
each combination (Table A.3 of the Appendix). As a result we can compare
our calculated value of F with the appropriate table value to decide whether
there are significant differences between the conditions or not.
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Frequency

F scores

FIGURE 10.1 An example of an F distribution (degrees of freedom = 4,8)

In order to use the F distribution for comparison we have to make
a number of assumptions: the samples for our conditions come from
normally distributed populations, the samples come from distributions with
equal variance, and the samples are randomly selected. These are very
much the same assumptions that underlie the ¢ test. When we perform the
analysis of variance we must make these assumptions too, otherwise it may
be inappropriate to compare our calculated value of F' with those in the
tables.

It is not surprising that I have been saying ‘like ¢’ throughout this
section, for there is a simple relationship between F and 7 in the case where
we can compare them (with two conditions): F = t*. There is a demonstration
of this in the next chapter. Figure 10.1 gives an example of an F distribution.
It may look a little strange but imagine that all the scores in a ¢ distribution
(such as in Figure 6.2) were squared. All the negative values would become
positive and it would turn into an F distribution like Figure 10.1. Another
point to note about the fact that F' is made up of squared numbers is that we
no longer have the distinction between one-tailed and two-tailed tests. The
squared values mean that any differences between the condition means will
add to the size of F. Our prediction for F' is simply that there are significant
systematic differences between the conditions somewhere. A large value of
F could mean that all the conditions differ significantly from each other or
it could mean that only one differs from the others. It often needs further
investigation to pin down the meaning of a significant F value.
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Conclusion

By studying the variability in the data we have produced a statistic, the
variance ratio F, that analyses the variance due to various factors in the
data. The variance between the conditions contains the systematic differ-
ences between the conditions that we are seeking out. It also comprises the
random errors that we expect with any data that we collect. Fortunately, we
can estimate this error variance by looking at the data that is not affected by
the systematic differences between conditions, the within conditions variance.
When we examine the ratio of these two variances we have a statistic that
provides an estimate of the systematic differences between conditions. If
the calculated value of F is greater than the critical value of the F distribution
at the chosen level of significance (say p = 0.05 or p = 0.01) then we can
reject the null hypothesis and conclude that there are significant differences
between at least some of the conditions.

By performing an analysis of variance we no longer have the problem
of increasing the risk of Type I errors, as all conditions are compared in the
one test, examined at a chosen level of significance. In the following chap-
ters we shall see how the analysis of variance can be used to analyse data
from a variety of different experimental designs.
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THE ONE FACTOR independent measures ANOVA is similar to the
independent ¢ test but allows us to compare more than two conditions.
It analyses data from an independent measures design, that is, employing
different subjects in each condition. If we wanted to compare only two
groups, such as 5 year old children to 7 year old children on a reading test
then we could use either the 7 test or the ANOVA. We would get the same
outcome regardless of which test we used. However, if we wanted to com-
pare more groups, say, 5, 6 and 7 year olds then we would undertake the
analysis of variance. (This form of ANOVA is also called the completely
randomised design ANOVA.)

Analysing variability in the independent measures ANOVA

In the previous chapter we saw that the variability of the scores between the
conditions arose from systematic differences between conditions plus ran-
dom errors. In the independent measures design there are different subjects
providing the scores for the different conditions, so part of the between
conditions variance will be due to individual differences between the subjects.
This is a random error as we are not systematically varying subjects across
the conditions. The other random errors can be termed experimental error as
we will always get some random errors in any experiment despite our attempts
to provide equivalent conditions for the subjects. The between conditions
variance can be seen as arising from three sources: systematic differences
between the conditions, individual differences and experimental error.

If we look at the variability of the scores within the conditions we see
that there are no systematic differences (if we have carried out the experi-
ment properly) but there are still different subjects within a condition so we
do expect variability due to individual differences. Again, as always, we
expect other random errors that once again we can term experimental error
as we expect it to occur at random anywhere in the experiment. The within
conditions variance thus comprises two components: individual differences
and experimental error. Therefore the within conditions variance provides
us with the ‘error variance’ we need as it is influenced by the same variability
as the between conditions variance apart from the systematic differences
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between conditions. Comparing the between conditions variance with the
within conditions variance will provide us with a variance ratio that we can
compute and compare with the distribution of F' in the search for an effect
of our independent variable on the dependent variable.

We want to produce an F that is the following ratio:

P Systematic differences + Error variance

Error variance
We can achieve this with the following:

Between conditions variance

Within conditions variance

This is because these variances only differ in the systematic differences
between the conditions:

P Systematic differences + Individual differences + Experimental Error

Individual differences + Experimental Error

To calculate F we must work out the between and within conditions variance.

The ANOVA summary table

The calculation of F requires us to build up the various components of
the analysis of variance: the sums of squares, the degrees of freedom, the
variances etc. In order to do this correctly and to display the results of the
calculation clearly we produce an ANOVA summary table.

The summary table lists the sources of the variation in the scores as
rows in the table. In the one factor independent measures ANOVA we are
concerned with the variance between conditions and within conditions. We
also need the total variability in the data in order to calculate the various
sums of squares required. The columns provide the intermediate stages in
the production of the variances needed for the variance ratio along with the
final calculation of F and whether it is significant or not. We need the sums
of squares and degrees of freedom to calculate variance. In the terminology
of the analysis of variance we refer to variance as mean square (MS). It is
simply an alternative label for the same thing. It can be considered more
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descriptive in this context because dividing the sums of squares by the
degrees of freedom produces an ‘average’ of the ‘squares’.

The significance or otherwise of the calculated value of F can be
indicated in the table in two ways. One, the specific probability of the F
score of this size arising from the null hypothesis can be given: for example,
p = 0.0145. In this case the reader can observe whether the probability is
larger or smaller than a chosen significance level, such as p = 0.05. Alterna-
tively, the probability can be given in relation to the significance level, such
as p < 0.05 to indicate that the F value is significant at the p = 0.05 level of
significance and p > 0.05 to indicate that it is not significant at the 0.05
significance level. I will use the latter convention.

For the one factor independent measures ANOVA the summary table
is laid out in the following manner:

THE ANOVA SUMMARY TABLE

128

Source of Degrees of ~ Sums of Mean Variance  Probability
variation freedom squares square ratio (F)

BetWeen Condiﬁons dfbef.conds Ssbetconds Msbetconds F p

Within conditions df..., SSerror MS.....

TOtG I dﬁofal Ssroia/

Notice that we only fill in the cells in the table we need for the variance
ratio calculation. For example, we do not need the total variance as this is
not required in the calculation of F. Below are listed the formulae for the
calculation.

Degrees of freedom:

dfip =N — 1 where N is the total number of scores.

Aot conas =k — 1 where k is the number of conditions.

dferror = dfroml - dfhet.conds

Sums of squares:



ONE FACTOR INDEPENDENT MEASURES

where Y X? is the sum of the
squared scores and (X, X)* is the
square of the sum of the scores.”

QX
SStotal = ZXZ - ZT

where T refers to a total of the
scores in a condition. Y, T? is the
sum of the squared totals of the
conditions and 7 is the number
of scores in each condition.

SSbet.c'onds =

sz B (2 X)?
N

n

SS error — N Stotal - SS bet.conds
Mean square:

MS _ SSber‘conds
bet.conds — d
ﬁ)et.conds

SS error
d.]i’ rror

MS(’ rror =

Variance ratio:

_ M. Sbet.conds
M Serror

F

We must always include the two degrees of freedom with our F value. We
write it thus:

F(df e conass Aforror) = calculated value

We compare the calculated value with the critical value in the F distribution
tables at our chosen level of significance. When we look up the table value
(Table A.3 in the Appendix) we use df,,,, ..., @s our first degrees of freedom
(the columns in the table) and df,,,,, as our second degrees of freedom (the
rows in the table). Our calculated value of F' is only significant if it is equal
to or larger than the table value.

ANOVA
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A worked example

A researcher was interested in the effects of hints on anagram solution. The
time it took a participant to solve five eight-letter anagrams was measured.
The same five anagrams were used in three conditions: First Letter (where
the first letter of the word was given), Last Letter (where the last letter was
given) and No Letter (where no help was given). Thirty participants were
chosen and ten were randomly allocated to each condition. The number of
minutes it took to solve the five anagrams was recorded. These results are
shown below. Is there an effect of type of hint (the independent variable) on

solution times (the dependent variable)?

First Letter Last Letter No Letter

Condition 1 Condition 2 Condition 3

X, X, X;

15 21 28

20 25 30

14 29 32

13 18 28

18 26 26

16 22 30

13 26 25

12 24 36

18 28 20

11 21 25
Mean X, = 15.00 X, = 24.00 X; = 28.00
Total T, =150 T, =240 T, =280
Squared total T} = 22500 T; = 57600 T3 = 78400

Sum of the scores (overall total): X, X = 670
Square of the sum of the scores: (X X)* = 448900
Sum of the squared scores: X, X* = 16210

Number of conditions: k = 3
Number of scores per condition: n = 10
Total number of scores: N = 30
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Degrees of freedom:

dfmm1=N—1=30_ 1 =29
dfhet.conds =k-1=3-1=2
df;rmr = dftotal - dfbm.cand: = 29 - 2 = 27

Sums of squares:

X 2
S = 2, X? - (ZN o 16210 — 48900

= 16210 — 149363.33 = 1246.67

oo 2T (XXP 22500 +57600 + 78400 _ 448900
bet.conds n N 1 0 30

= 15850 — 14963.33 = 886.67

S0 =SSt = SSpureonss = 1246.67 — 886.67 = 360.00

error
Mean square:

_ SSbEt.conds 886.67

MSher.conds - = = 44333
df;)ehconds 2
ws, = SSo _ 36000 .o
df;rmr
Variance ratio (F):
F — MSbet.condx — 44333 — 3326

MS,,, 1333

From the tables of the F distribution (Table A.3 in the Appendix) we find
that F(2,27) = 3.35, at p = 0.05. As our value of 33.26 is greater than the
table value we can reject the null hypothesis and claim that anagram solution
times are affected by the type of hint given. Note that the result is highly
significant, so we can adopt an even more conservative significance level.
From the tables F(2,27) = 5.49, at p = 0.01, so our finding is still significant
at p < 0.01.
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The fact that we have found a significant effect does not tell us which
conditions are significantly different although we can infer this by looking
at the means. We will be able to be more specific in the following chapter.
Also the F test has found significant differences between the conditions but
it does not give the cause. We hope the experiment is so well controlled that
it can only be due to fype of hint but if the researcher introduced any
inadvertent confounding factor this could also have produced the systematic
differences picked up by the analysis of variance.

THE ANOVA SUMMARY TABLE
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Source of Degrees of ~ Sums of  Mean Variance  Probability
variation freedom squares  square  ratio (F)

Between conditions 2 886.67 443.33 33.26 p < 0.01
Within conditions 27 360.00 13.33

Total 29 1246.67

The above table clearly summarises the analysis. It also allows us to check
our calculations: do the degrees of freedom and the sums of squares add up
to the correct totals? You must never get a negative sums of squares as a
sum of squares has to be positive. If you do, check the calculations, there is
definitely an error.

Rejecting the null hypothesis

When we reject the null hypothesis in an ANOVA, as we have done in the
example above, we are only concluding that there are systematic differences
between the conditions but not where they lie. In the case of three conditions
there are four alternative hypotheses to the null hypothesis:

1 All three conditions are significantly different, their samples come
from different population distributions.

2 Condition 1 is significantly different to conditions 2 and 3 but condi-
tions 2 and 3 are not significantly different. The sample in condition 1
comes from a different distribution to the samples of conditions 2 and 3.
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3 Condition 2 is significantly different to conditions 1 and 3 but conditions
1 and 3 are not significantly different. The sample in condition 2 comes
from a different distribution to the samples of conditions 1 and 3.

4 Condition 3 is significantly different to conditions 1 and 2 but conditions
1 and 2 are not significantly different. The sample in condition 3 comes
from a different distribution to the samples of conditions 1 and 2.

With more conditions the number of alternative hypothesis increases. A
significant F' value simply indicates that the null hypothesis is very unlikely
and hence we can reject it. We need to perform further tests to decide which
one of the alternative hypotheses to accept.

Unequal sample sizes

Researchers often organise the samples in the independent measures ANOVA
so that there are equal numbers of subjects in each condition. It is not
necessary but makes the calculation slightly easier. Yet the test, like the
independent ¢ test, allows for different sample sizes. The formulae given
above are for equal sample sizes. However, the only change we need to make
for unequal sample sizes is to the first term in the SS,,, ., formula. We

T? X)? X)?
replace SShet.candx = Zn - (ZN ) Wlth SSbe[.L'()ndX = 2 (%2) - (ZT)'

We have a different n for each sample and we divide the squared total of
each condition by its sample size before we add them up. A worked example
is shown below.

Unequal sample sizes usually occur when you have planned for equal
numbers in each condition but for some reason a subject is unable to provide
a score. In the anagram example we might find a person who simply cannot
solve an anagram no matter how much time allowed. One solution is to
replace the participant with another. However, the change to the formula is
so small that unequal sample sizes are not really a problem (as long as the
equal population variance assumption is still met).

A worked example
As an example of the calculation of unequal sample sizes I shall take the

data we used to calculate the independent ¢ test in Chapter 8. This compared
the effects of a sleeping pill on 6 men and 8 women. The scores for the men
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(Condition 1) were 4, 6, 5, 4, 5 and 6 extra hours slept and for the women
(Condition 2) were 3, 8,7, 6,7, 6, 7 and 6 extra hours.

Sum of the scores (overall total): X, X = 80
Square of the sum of the scores: (T, X)* = 6400
Sum of the squared scores: Y, X 2 =482

Number of conditions: k = 2
Number of scores per condition: n, = 6, n, = 8
Total of the scores in condition 1, 7, = 30 and the squared total,

T7 =900
Total of the scores in condition 2, T, = 50 and the squared total,
T; = 2500

Total number of scores: N = 14
Degrees of freedom:

dfya =N —-1=14-1=13
dfbet.cand.\‘zk_ 1=2-1=1

df;)r‘ror = df;otal - df;wt.conds =13-1=12

Sums of squares:

SSrotal = ZXZ ——

=482 — 457.14 = 24.86

72y O X» (900 2500\ 6400
SSperconss = 2, | — | = = + -
bet.conds N 6 8 14

=462.5 — 457.14 = 5.36

n

T? T? T3 .
where 2 — | =] — + — | as there are two conditions.
n noom

SSor =SS = SSpurconss = 24.86 — 5.36 = 19.50
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Mean square:

_ SShet.('onds 536

MS et.conds = = 5'36
peveond dﬁ)et.cand.\‘ 1
ms, =SS 1950 6o
d‘f;rr()r 12
Variance ratio (F):
F = MSbet.ronds — 5.36 =330
MS,  1.625
THE ANOVA SUMMARY TABLE
Source of Degrees of ~ Sums of  Mean Variance  Probability
variation freedom squares  square  ratio (F)
Between conditions 1 5.36 5.36 3.30 p > 0.05
Within conditions 12 19.50 1.625
Total 13 24.86

From the F distribution tables (Table A.3 in the Appendix) we find F(1,12)
= 4.75 at p = 0.05. As the calculated value of 3.30 is less than the table
value we cannot reject the null hypothesis at this level of significance.

The relationship of F to t

The example in the section above allows us to compare an ANOVA with an
independent ¢ test on the same two samples. If you look back to the ¢
calculations you can see the similarity in the calculations; for example note
the SS,,,,, of 1.625 in the bottom of the ¢ calculation. If we explored further
we could see how the two formulae are related. The calculated F of 3.30 is
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indeed the square of the calculated ¢ of 1.82.° Similarly, the table values of
F and t are also related in the same way and so we have the same outcome
whichever of the tests we perform on the data.

Details on calculating the one factor independent measures ANOVA
using the SPSS computer statistical package can be found in Chapter
10 of Hinton et al. (2004).

136



Chapter 12

= The Tukey test
(for all pairwise comparisons) 140

= The Scheffé test
(for complex comparisons) 144

137



138

WH EN WE COMPARE more than two groups in an ANOVA a signifi-
cant F' value does not indicate where the effect lies, simply that there
is an effect between the conditions somewhere. A researcher compared four
groups of children (6, 8, 10 and 12 year olds) on a test of social skills. She
found a significant F' value and concluded that the scores from the four
conditions were not drawn from the same distribution. But this conclusion
does not really provide the researcher with the information about which
ages show the significant differences. Let us assume that the means were
respectively 10, 12, 18 and 23 on the test (out of 50). Given that there is a
significance variance ratio it seems likely that the scores of the 6 year olds
differ significantly from those of the 12 year olds as this comparison provides
the largest difference in means. Is the difference between the 6 and 8 year
olds or 8 year olds and 10 year olds significant? And what about the smallest
difference, between the 6 and 8 year olds? The data needs to be inspected
further to find the source of the significant F value.

The way we answer these questions is to perform post hoc tests. The
name comes from the Latin, meaning ‘after this’. The first stage in the analysis
is to find a significant F' value in the ANOVA. Only then do we perform a
post hoc test. These tests are called multiple comparison tests as they allow
us to undertake various comparisons between the conditions. In the example
above we want to compare each of the four groups with each of the others
to show where the significant differences lie.

The problem with multiple comparisons is that the more comparisons
we make using the same data the greater the risk of making at least one
Type I error. We saw in Chapter 10 that this was the same problem we had
with undertaking multiple ¢ tests: when we start undertaking multiple tests
on the data we increase the risk of finding differences by chance. The
solution is to find a post hoc test that takes account of this increased risk
and controls for it.

There are a range of multiple comparison tests. Some of these ignore
the problem completely. The Least Significant Difference test takes no
account of the number of comparisons being made and the increased risk of
a Type I error is simply accepted. Other tests such as the Newman—Keuls
and the Duncan tests take account of the number of comparisons being
made and compute different values accordingly. At the more conservative
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end of the scale the Tukey and Scheffé tests allow all comparisons to be
made as the test corrects for the increased risk of Type I errors by reducing
the significance level of the individual comparisons. The simplest and most
conservative method is to apply a Bonferroni correction to the significance
level. For example, if a one factor independent measures ANOVA had
shown a significant F' value then follow-up ¢ tests on each of the 6 pairs of
conditions could be undertaken with a Bonferroni correction to the signific-
ance level for these tests. The Bonferroni correction requires us to divide
the significance level by the number of tests, so in this case we would
compare each test against the 0.05/6 level of significance (p = 0.0083)
rather than the 0.05 significance level. This does influence the power of the
test (see Chapter 9) and can be viewed as overly conservative due to the
reduction in power.

I am going to describe the Tukey and the Scheffé tests, both conservat-
ive tests, for the following reasons. Usually, after we have found a significant
varaince ratio in the ANOVA, we want to compare all the conditions to
find the interesting (significant) differences, such as in the social skills test
example above. The Tukey and Scheffé tests allow us to do this without
worrying unduly about the risks of Type I errors. Second, they are easy to
carry out, particularly the Tukey test. The fact that they set high critical
values for significance need not lead us to miss out on potentially significant
findings because we have set too rigorous a criterion for significance. We
might not accept some differences as significant when using these tests
when we would with some other tests but this does not have to be a problem
if we remember to use our judgment as researchers. If there is a difference
which does not quite reach significance using these tests yet we have reason
to believe that it is an important difference then, as in other cases of this
kind, we should trust our judgement and follow it up: replicate the experiment,
run more subjects, use a more sensitive design, essentially adopt measures
to improve the power of our test. If it is a genuine difference it will eventu-
ally show, even with a Tukey test. Statistics are only tools to help us. They
do not replace experimenter skill and intelligence. I happen to like a con-
servative test as it gives me confidence in the results of the analysis. But
I do not let it disturb my interest in the comparisons that ‘bubble under’ (do
not quite reach significance). I check these out in subsequent experiments.

The reason for presenting both the Tukey and the Scheffé tests is that
the Tukey test is more sensitive for pairwise comparisons, comparing two
conditions at a time, than the Scheffé test, in that it is more likely to accept
a difference as significant. The Scheffé test, however, is more sensitive
than the Tukey test for complex comparisons, combining conditions and
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comparing the composite condition with others, such as comparing the 8 year
olds with the combination of the 10 and 12 year olds on the social skills test.

The Tukey test (for all pairwise comparisons)

The Tukey HSD (honestly significant difference) test allows us to compare
each pair of conditions to see if their difference is significant. What the
Tukey test does is to look at the random variation that exists between any
pair of means. This is the standard error of the difference between pairs of
means. If we then compare a specific difference between two means with
this standard error we have a statistic for telling us how big the difference
between the mean is compared to the random variation between means. We
call this statistic g:

the difference between any two means

" the standard error of the difference between any two means

We already have a measure of the error variance that we can take from the
ANOVA, MS The standard deviation is the square root of the variance:

\ MS(’V ror

error*
~MS,,,,, and so the standard error of the differences in means is

where 7 is the number of subjects in each condition. Hence:

where X; and X; are any two means (the / and j standing for 1, 2, 3, etc. or
whichever means we choose to compare).

Notice the similarity of ¢ to . This is not by chance; the logic of the
two statistics is the same. With a ¢ test we use a different standard error for
every pair of means:

the difference between two means

* the standard error of the difference between the two means

With ¢, however, we are using a ‘general purpose’ standard error that
can be used for any pair of means. Like r we can find the distribution of ¢



MULTIPLE COMPARISONS

under the null hypothesis. Using this distribution we can decide whether
a specific difference in means is significant by observing whether the cal-
culated g exceeds the table value of ¢ for the level of significance chosen.
The Tukey test overcomes the problem of the increased risk of Type I errors
that occurs with multiple ¢ tests by setting an overall level of significance.
This means that the risk of a Type 1 error has a probability of, say, 0.05
when we compare every pair of means. Thus the Tukey test allows all
pairwise comparisons so we can work out ¢ for each pair of means know-
ing that the risk of a Type I error will not exceed 0.05. In the social skills
test example we can make six pairwise comparisons as we have four con-
ditions. If we had five age groups: 6, 8, 10, 12 and 14 year olds, as long
as we achieved a significant F' in the ANOVA, the Tukey test would allow
us to make every one of the 24 pairwise comparisons between condition
means.

Rather than working out a ¢ every time we compare a pair of means
we can rearrange the formula as follows:

M. Serror
n

If we no longer calculate ¢ but use the critical value (for significance) of ¢
from the table in the formula we can write:

An honestly significant difference between means, HSD = ¢ Moy

A

All we need to do is look up ¢ at the chosen significance level, work out
Tukey’s HSD and use HSD to compare any or all of the differences in
means. If a difference in means is greater than HSD then that difference is
significant (honestly!).

The statistic ¢ is called the Studentized range statistic (after a famous
statistician who wrote under the pseudonym of Student. You also see ¢ referred
to as Student’s ¢ for the same reason). We find the appropriate value of ¢ in
the table (Table A.4 in the Appendix) by deciding on the level of significance
we require (usually either 0.05 or 0.01), and then looking up the critical
value of ¢ in the table using df,,,,, the degrees of freedom of the error
variance in the ANOVA and &, the number of conditions in the experiment.

(Normally, with equal numbers of subjects in each condition the Tukey
HSD test is easy to undertake but with different sample sizes we cannot put
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a single n in the equation for HSD as there are different ns: n,, n,, etc. To
deal with this we can be cautious and simply take the smallest sample size
as n. A more sophisticated way of producing a single (‘average’) n is by the
following formula:

n=
1 1 1
—+— 4.+ —
n.n ny
where n, to n, are the sample sizes. However, we should be wary of using

the test with any but relatively small differences in sample sizes as the basic
assumptions of the test may be violated.)

A worked example

The anagram example of the previous chapter provides a good example as
we found a significant effect of type of hint on anagram solution times. The
significant F' value allows us to undertake post hoc tests, and see which differ-
ences in means are significant. The means are shown in the table below.

First Letter Last Letter No Letter
X, X, X,
Mean 15 24 28

Taking each pair of means we can work out the difference between them:

Difference of means X, X,

X, -9 -13
XZ _4

The differences in the table are calculated by subtracting the column mean
from the row mean. The fact that our differences are negative is a result of
the way we have subtracted the means. This indicates X, is faster than X, by
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9 minutes, etc. For the moment we are only concerned about the difference
in the size of the means not whether the difference is positive or negative at
this point. For the Tukey test we treat all the differences as positive.

From the ANOVA summary table we have df,,,, = 27 and MS,,,,, =
13.33. The number of conditions, &, is 3, and the number of participants in
each condition, n = 10. Selecting a significance level of p = 0.05, we can
work out HSD. From the tables (Table A.4 in the Appendix) at p = 0.05, for
k=3 and df,,, = 27, we find a value of ¢ of 3.51. (As df = 27 is not in the

table we take the figure midway between that for df = 24 and df = 30 for our
value for df = 27.)

HSD = ¢ MSerror =3.51x e"@ =351x1.15=4.04
n V10

The differences between the First Letter and No Letter conditions (13) and
the First Letter and Last Letter conditions (9) are highly significant at p =
0.05 as they both exceed HSD. The difference between the Last Letter and
No Letter conditions (4) is not significant at p = 0.05 but further investiga-
tions might find an effect here as the difference does approach significance
but does not reach it. Now we know where the significant differences lie we
check to see which way the differences occur (which condition produces the
faster times) for our conclusion.

We can conclude that the First Letter condition results in significantly
faster solution times than both the Last Letter and No Letter conditions. The
Last Letter times are not significantly faster than the No Letter condition
(although there appears be a non-significant tendency for the Last Letter
times to be faster).

We can very easily work out confidence intervals for our comparisons,
as we know the difference in means, we have the appropriate critical value
and we also have a standard error (see Chapter 6 for an introduction to
confidence intervals). So we can write the confidence interval as follows:

—_—
|
\“ MSEV ror

95%CI = X, = X, £ g

where X; and )?j are the two means we are comparing, ¢ is the critical value

| M,
(and we found that above) and V’& is the standard error of the compar-
n e
IMS.,,,.,
ison (which we also found out above). Furthermore, q\‘e‘ﬂ = HSD, so:
| n
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95%ClI =

+ HSD
95%CI = + 4.

X -X,
X, — X, +4.04
And now we can produce the confidence intervals for our three comparisons:

For X, — X,, 95%CI = -9 + 4.04, producing 95%CI = (~13.04, —4.96)
For X, — X5, 95%CI = —13 + 4.04, producing 95%CI = (—17.04, —8.96)
For X, — Xs, 95%CI = —4 + 4.04, producing 95%CI = (—8.04, +0.04)

It is interesting to note that for the first two comparisons the differences
are consistent across the confidence interval and even in the ‘worst case’ are
still quite large (4.96 and 8.96 seconds difference). However, the third
confidence interval includes zero so, even though the ‘best case’ gives us a
difference of 8.04 seconds, the difference might still be zero. Even though
the zero is near the end of the interval we cannot confidently exclude the
possibility. The confidence intervals are expressing the findings in a differ-
ent way to the significance test but the same implication arises: we can
be confident that only the first two differences imply genuine population
differences.

The Scheffé test (for complex comparisons)

Out of the ‘between conditions sums of squares’ the Scheffé test calculates
the part of it relevant to the comparison being made. From the sums of
squares of the comparison we can then go on to produce a mean square and
then an F value for the comparison. We can test this against the F distribu-
tion to see if the comparison is significant. To correct for the increase in the
risk of a Type I error that could arise with multiple comparisons we adjust
the size of the table value of F according to the Scheffé correction. The
calculated value of F for the comparison has to be larger than the corrected
table value before we can claim a significant difference between the con-
ditions being compared.

The Scheffé test is most useful for complex post hoc comparisons. In
the example of the social skills experiment cited at the beginning of this
chapter we shall assume that the researcher was interested in the difference
between the children under 10 years old and the 10 year old group. Here we
have a complex comparison, as two groups are being combined (the 6 and
8 year olds) to compare with the 10 year olds with one group being left out
of the comparison (the 12 year olds) altogether.
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The Scheffé test calculates a sums of squares for the comparison of
interest by the following formula:

Q. Ty

where the T's are the totals of the scores in the conditions (7 is the total of
the scores in condition 1, etc.), n is the number of subjects in each condition,
and the cs are the coefficients of the conditions (c, is the coefficient of
condition 1, etc.).

The choice of coefficients allows us to select the conditions we are
interested in, in the correct combination, and exclude the conditions we do
not wish to be included in the comparison. Essentially they ‘weight’ the
contribution of the condition to the comparison. The conditions on one side
of the comparison are given positive coefficients and the ones of the other
side given negative coefficients. In order to properly balance the com-
parison the coefficients must sum to zero, X, ¢ = 0. In an experiment with
three conditions where the comparison to be made is between condition 1
on one side with a combination of conditions 2 and 3 on the other then
the coefficients could be ¢, = +1, ¢, = —0.5, ¢; = —0.5. Notice that the sum
of the coefficients equal zero: ¢, + ¢, + ¢; =1 — 0.5 — 0.5 = 0. Conditions
2 and 3 are equally weighted on their side of the comparison, as each is
given the same coefficient of —0.5. The two sides of the comparison are
equally weighted with +1 on one side and —1 on the other. (The actual
numbers we choose for the coefficients can be anything as long as the above
restrictions are met, so we could have chosen +2, —1, —1 for the coefficients
or +10, =5, —5. We usually choose the ones that make the calculations
easiest.)

The choice of coefficients results in a sums of squares for the com-
parison only. This comparison is always between two new conditions that
are combinations of the experimental conditions. In the above paragraph
the two new conditions are: condition 1 from the original experiment as the
first new condition and a combination of conditions 2 and 3 as the second
new condition. As there are always two conditions in the comparison the
degrees of freedom for the comparison is always 1.

Hence the mean square for the comparison is:

_ SScomp _ SScomp
df;omp 1

M. Scomp = SScamp
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The calculated variance ratio for the comparison uses the error mean square
from the original ANOVA, so the F value for the comparison is:

M. Scomp
MSerror

F =

At this point we must select the correct table value to compare our
calculated F with. This depends on whether the comparison is planned
prior to the calculation of the ANOVA or whether it was unplanned; that
is, a post hoc comparison made after the significant ANOVA F value had
been found.

A planned comparison

With a planned comparison we are saying that, prior to knowing whether
the ANOVA F value was significant or not, we were interested in this
comparison in particular. In this case we are not concerned with the increased
risk of Type I errors with multiple comparisons as this is the only comparison
of interest. Hence we can look up the table value using the degrees of freedom
contributing to the comparison F value: df,,,, and df,,,,, at the chosen level
of significance.

omp

Unplanned comparisons

Unplanned comparisons are more usual in the use of the Scheffé test as post
hoc tests are used to seek out the interesting results after a significant
ANOVA. We may have certain comparisons in mind prior to the experiment
but the data can lead us to follow up the most interesting, and unexpected,
lines of research. As we wish to make any comparison post hoc we need to
correct for the increased risk of a Type I error. The Scheffé test does this by
creating a new, larger table value F’. Only if the calculated value exceeds
F’ can we say the comparison is significant. We calculate F’ by the follow-
ing formula: F* = (k — 1)F, where k is the number of conditions in the
original experiment and F is the table value used in the original ANOVA,
found using degrees of freedom k — 1 and k(n — 1). The calculation of F’
allows us to undertake any post hoc comparison without worrying about
increasing the risk of a Type I error.
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A worked example

At the beginning of this chapter I briefly mentioned a social skills study
looking at four different age groups of children. The researcher was looking
for an effect of age on the social skills test. The analysis produced the
following summary table for the one factor independent measures ANOVA,
with a highly significant F value:

THE ANOVA SUMMARY TABLE

Source of Degrees of  Sums of Mean Variance  Probability
variation freedom squares square ratio (F)

Between conditions 3 838.00 27933 12415 p < 0.01
Within conditions 28 630.00 22.50

Total 31 1468.00

In this experiment there were eight children in each condition. The totals of
the scores of the four conditions are shown below:

Condition 1 Condition 2 Condition 3 Condition 4
6 year olds 8 year olds 10 year olds 12 year olds
T, T, T, T,

80 96 144 184

The researcher decided post hoc that she wanted to know whether there was
a significant difference between the 10 year olds and the younger children,
combining the 6 and 8 year olds. To produce this comparison she chose the
coefficients ¢, = +1, ¢, = +1, ¢; = —2 and ¢, = 0. These coefficients exclude
condition 4 and combine conditions 1 and 2, which are then balanced on the
other side of the comparison to condition 3.

The sums of squares of the comparison is calculated from the
formula:
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_(@hi + o, + T + T, )

SScomp - 2 2 2 2
n(ct +c3 +c35 +c3)
oo - ((H1X80) + (+1x 96) + (=2 x 144) + (0 x 184)?
comp = 8((+1)2 + (+1)% + (=2)2 + (0)?)
_1192
_TH27 12344 a3
8% 6 43

As the degrees of freedom of the comparison is 1,

Sy 26133

= =261.33
dﬁ'amp 1

M Scomp

Using the error variance from the ANOVA,

b My 26133
MS,,, 2250

We now calculate F’:

F=(k-1DFk-1kn-1)=4-DF4-148-1))
= 3F(3,28)
From the tables F(3,28) = 2.95, p = 0.05, so
F’=3%295=28.85
As the calculated value of F is greater than F” we can conclude that there is
a significant difference in the performance of the 10 year olds compared

to the combination of the 6 and 8 year olds on the social skills test, with the
10 year olds scoring significantly higher than the younger children.
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