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TH E  I N D E P E N D E N T  M E A S U R E S  ANOVA assumes that the scores in
each condition are unrelated and the subjects have contributed a score

to only one of them. However, there are many cases when we want to use
the same subjects in all conditions. This is particularly useful as it matches
subjects with themselves across the conditions. An experiment on memory,
comparing retention of different types of words might use the same partici-
pants in each condition (as long as the carry-over effects of practice or fatigue
are controlled for). The analysis of variance that deals with this form of data
is called a repeated measures design and, as we see below, the calculations
are a little different to the independent measures design but the general
logic of the ANOVA remains the same.

A research programme was set up to develop user-friendly computer equip-
ment for those people with physical disabilities. Three new designs of com-
puter keyboard for people with difficulties in hand and finger movement
were developed and prototypes created. The research task was to decide
which of these prototypes is the most successful. Four potential users of the
new equipment agreed to take part in a test of the new keyboards. Each
participant was asked to use the keyboard to input a piece of text and the
number of errors was recorded. Three equally difficult pieces of text were
used so that a participant did not improve performance by practice on the
same piece of text. The choice of text and the order in which the keyboards
were tested by each participant was controlled for, to account for possible
confounding variables. The results of the experiment are shown below.

Participant Keyboard 1 Keyboard 2 Keyboard 3

1 5 6 10
2 1 2 3
3 0 4 5
4 2 4 6

Deriving the F value
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Notice that there is quite a bit of subject variability, with Participant 1
making the most mistakes and Participant 2 the least. Yet the repeated
measures design matches the subjects with themselves across the conditions
so that, even though they differ markedly from each other, the question is
whether they follow a similar pattern across the conditions, i.e. is one con-
dition the worst for all despite their differences in general accuracy?

If we performed an independent measures ANOVA on these data it
would not be informative as it assumes that there is subject variability both
between and within the conditions. We can see this by considering the way
we calculate F for the independent measures design:

F =
Between conditions variance

Within conditions variance

F
    

=
+ +

+
Systematic differences Individual differences Experimental error

Individual differences Experimental error

Now as there are no individual differences between the conditions in the
repeated measures design (as the subjects are the same) the same formula
with repeated measures would produce:

F =
Between conditions variance

Within conditions variance

=
+
+

Systematic differences Experimental error

Individual differences Experimental error

This is not a very useful measure of the systematic differences between
conditions as F is no longer sensitive to only this one factor but to the
individual differences which are now only in the bottom of the equation. A
large value of F could mean a large treatment effect but it could mean small
individual differences. A small value of F might not mean a lack of systematic
differences but simply large individual differences swamping the effect. If
we can get rid of the individual differences from the within conditions
variance (the bottom part of the formula) we will end up with an excellent
formula for a repeated measures design as it will be highly sensitive to
systematic differences between conditions.

F =
+Systematic differences Experimental error

Experimental error
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To produce this we need to find a way of removing the individual differences
from the within conditions variance so that we can calculate the appropriate
F value.

F =
−

Between conditions variance

Within conditions variance Individual differences

Removing the individual differences

When we look at the keyboard data we can see that, despite the individual
differences in the participants, there is a general pattern across the participants
with Keyboard 1 producing the lowest errors, Keyboard 2 more errors and
Keyboard 3 the most. So despite the different level of performance the
pattern across the conditions is similar for each of the participants. It is the
strength of this pattern, the systematic differences between the conditions,
we wish to measure.

The key to extracting the subject differences lies in the sums of squares.
So far (see Chapter 10) we have only calculated sums of squares for the
conditions: between conditions and within conditions. The table below shows
the means of the conditions so that we can calculate these sums of squares.

Participant Keyboard 1 Keyboard 2 Keyboard 3 Participant
mean

1 5 6 10 7
2 1 2 3 2
3 0 4 5 3
4 2 4 6 4
Condition 2 4 6 Overall mean
mean = 4

The sums of squares within each condition is as follows:

Keyboard 1 (5 − 2)2 + (1 − 2)2 + (0 − 2)2 + (2 − 2)2 = 14
Keyboard 2 (6 − 4)2 + (2 − 4)2 + (4 − 4)2 + (4 − 4)2 = 8
Keyboard 3 (10 − 6)2 + (3 − 6)2 + (5 − 6)2 + (6 − 6)2 = 26

The within conditions sums of squares = 14 + 8 + 26 = 48.
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The sums of squares between the condition means = (2 − 4)2 + (4 − 4)2

+ (6 − 4)2 = 8. As there are four participants per condition the between
conditions sums of squares = 4 × 8 = 32.

In the above calculations of sums of squares we have focused on the con-
ditions, which are the columns in the above table, and we have calculated the
within columns variation and the between columns variation in the scores. The
same logic can be applied to the rows, where the sums of squares can be
calculated within and between the rows. Notice that the rows are the subjects.
Within the rows the variability is not due to differences in subjects as within
a row it is always the same subject. However, the variation between the rows
is the variation between the subjects. This is a measure of the individual
differences between the participants, exactly what we are trying to find.

The sums of squares within each subject is as follows:

Subject 1 (5 − 7)2 + (6 − 7)2 + (10 − 7)2 = 14
Subject 2 (1 − 2)2 + (2 − 2)2 + (3 − 2)2 = 2
Subject 3 (0 − 3)2 + (4 − 3)2 + (5 − 3)2 = 14
Subject 4 (2 − 4)2 + (4 − 4)2 + (6 − 4)2 = 8

The within subjects sums of squares = 14 + 2 + 14 + 8 = 38.
The sums of squares between the subject means = (7 − 4)2 + (2 − 4)2

+ (3 − 4)2 + (4 − 4)2 = 14. As there are three conditions per subject the
between subjects sums of squares = 3 × 14 = 42.

Notice that however we work out the sums of squares the total is
always 80. We are not interested in the within subjects sums of squares for
the ANOVA but we now have a measure of the individual differences (the
between subjects sums of squares of 42). We can now remove the individual
differences from the within conditions sums of squares. The residual, our
error sums of squares, is 48 − 42 = 6.

As we are able to take out the between subjects variability from the within
conditions variability we no longer use the within conditions variance in our
calculation of F but employ the new, smaller, error term. Thus, in the repeated
measures design we have more chance of finding a significant effect as we
have removed the individual differences completely from the calculation.10

The summary table for a repeated measures ANOVA has two extra rows
compared to the independent measures ANOVA because we have to separate

The ANOVA summary table
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the within conditions sums of squares into the between subjects sums of
squares and the error sums of squares.

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions dfbet.conds SSbet.conds MSbet.conds F p

Within conditions dfwith.conds SSwith.conds

Between subjects dfbet.subjs SSbet.subjs

Error dferror SSerror MSerror

Total dftotal SStotal

Below are listed the formulae for the calculations.

Degrees of freedom:

dftotal = N − 1 where N is the total number of scores

dfbet.conds = k − 1 where k is the number of conditions

dfwith.conds = dftotal − dfbet.conds

dfbet.subjs = n − 1 where n is the number of subjects
per condition

dferror = (n − 1)(k − 1)

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

where ∑ X 2 is the sum of the squared
scores and (∑ X )2 is the square of
the sum of the scores8
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SS
T

n

X

N
bet conds

c

.    
( )

= −∑ ∑2 2

where Tc refers to a total of the
scores in a condition, e.g. Tc1

 is the
total of the scores in condition 1.
∑ Tc

2 is the sum of the squared
totals of the conditions

(Notice that we use Tc for the condition totals and not just T. This is to
distinguish them from the subject totals Ts.)

SSwith.subjs = SStotal − SSbet.conds

SS
T

n

X

N
bet subjs

s

.    
( )

= −∑ ∑2 2

where Ts refers to a total of the
scores for a subject, e.g. Ts1

 is the
total of the scores for subject 1.
∑ Ts

2 is the sum of the squared
totals of the subjects

SSerror = SSwith.conds − SSbet.subjs

Mean square:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

=

MS
SS

df
error

error

error

=

Variance ratio:

F
MS

MS
bet conds

error

.=

The degrees of freedom accompanying F are the between conditions and
error degrees of freedom.

F(dfbet.conds, dferror) = calculated value

We compare the calculated value with the critical value in the F distribution
tables at our chosen level of significance (Table A.3 in the Appendix).
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When we look up the table value we use dfbet.conds as our first degrees of
freedom (the columns in the table) and dferror as our second degrees of
freedom (the rows in the table). Our calculated value of F is only significant
if it is equal to or larger than the table value.

The keyboard example provides us with some illustrative data for calculat-
ing the repeated measures ANOVA. First we calculate the totals for the
formulae.

Participant Keyboard 1 Keyboard 2 Keyboard 3 Participant
totals

1 5 6 10 Ts1
= 21

2 1 2 3 Ts2
= 6

3 0 4 5 Ts3
= 9

4 2 4 6 Ts4
= 12

Condition Tc1
= 8 Tc2

= 16 Tc3
= 24 Overall total

totals ∑ X = 48

We also need:

The number of subjects per condition, n = 4
The number of conditions, k = 3
The total number of scores, N = 12
The overall total squared, (∑ X )2 = 2304
The sums of the squared scores, ∑ X 2 = 52 + 12 + . . . + 52 + 62

= 272

We next calculate the degrees of freedom:

dftotal = N − 1 = 12 − 1 = 11
dfbet.conds = k − 1 = 3 − 1 = 2
dfwith.conds = dftotal − dfbet.conds = 11 − 2 = 9
dfbet.subjs = n −1 = 4 − 1 = 3
dferror = (n −1)(k −1) = 3 × 2 = 6

A worked example
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Sums of squares:

SS X
X

N
total     

( )
          = − = − = − =∑ ∑2

2

272
2304

12
272 192 80

SS
T

n

X

N
bet conds

c

.     
( )     

= − =
+ +

−∑ ∑2 2 2 2 28 16 24

4

2304

12

= 224 − 192 = 32

SSwith.conds = SStotal − SSbet.conds = 80 − 32 = 48

SS
T

n

X

N
bet subjs

s

.     
( )

= −∑ ∑2 2

=
+ + +

−
      21 6 9 12

3

2304

12

2 2 2 2

= 234 − 192 = 42

SSerror = SSwith.conds − SSbet.subjs = 48 − 42 = 6

Note that most of the variability of the scores within the conditions occurs
due to individual differences. Our error sums of squares is consequently a
lot smaller than the within conditions sums of squares.

We can now work out the appropriate mean squares and variance
ratio:

MS
SS

df
bet conds

bet conds

bet conds
.

.

.

      = = =
32

2
2

MS
SS

df
error

error

error

      = = =
6

6
1

F
MS

MS
bet conds

error

      .= = =
16

1
16

We therefore have the following summary table:
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Between conditions 2 32 16 16 p < 0.01

Within conditions 9 48

Between subjects 3 42

Error 6 6 1

Total 11 80
(Between
+ within)

From the F distribution table, Table A.3 in the Appendix, F(2,6) = 10.92 at
p = 0.01. As our calculated value of F is greater than the table value we can
reject the null hypothesis at p = 0.01. We can conclude that there is a
significant difference between the keyboards on the number of errors made.

(This particular example was deliberately chosen so that the calculations
are very simple with whole numbers throughout. This is not typical of the
numbers we would normally obtain but shows the working of the repeated
measures ANOVA very clearly. For interest we can consider what would
have happened if these data had come from 12 different people rather than
the same four in each condition. We would have had to perform an inde-
pendent measures ANOVA and used the within conditions mean square as
our error variance. We can see from the above table that this value would
have been 48 divided by 9, which equals 5.33. This would have resulted in
an F value of 3 (16/5.33) which would not have been significant, as the
critical value of F(2,9) = 4.26 at p = 0.05. The effect of different keyboards
would have been lost in all the subject variability.)

We can perform post hoc tests on a repeated measures design ANOVA to
find the source of the significant differences. The only difference from the
independent measures design is choosing the appropriate error term in the

Multiple comparisons
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comparison. Whilst not universally agreed on, it is reasonable to use the
MSerror and dferror , as calculated in the ANOVA, in the Tukey calculation of
HSD and not the within conditions variance.

For the keyboard example, our means are: B1 = 2, B2 = 4, B3 = 6. We
have MSerror = 1, dferror = 6, n = 4, k = 3. In the tables of the Studentized
range statistic q = 4.34 for 3 conditions and 6 error degrees of freedom at
p = 0.05, so:

HSD    .   .   .   .= = = × =q
MS

n
error 4 34

1

4
4 34 0 5 2 17

The difference of 4 between means of Keyboards 1 and 3 is significant at
p = 0.05 as it is larger than 2.17. The other differences in means are not
significant. The size of the difference in means of 2 between Keyboards 1
and 2, and also between Keyboards 2 and 3, might reach significance if
more participants were tested so it is worth exploring these non-significant
differences further.

We can look at this information in a slightly different way by calculating
confidence intervals. Quite simply, the 95% confdence interval of a mean
difference is 95%CI = Bi − Bj ± HSD, where Bi and Bj are any two means
(the i and j standing for 1, 2, 3 etc. or which ever means we choose to
compare). So,

For B1 − B2, 95%CI = −2 ± 2.17, producing 95%CI = (−4.17, +0.17)
For B1 − B3, 95%CI = −4 ± 2.17, producing 95%CI = (−6.17, −1.83)
For B2 − B3, 95%CI = −2 ± 2.17, producing 95%CI = (−4.17, +0.17)

Notice that the confidence intervals for B1 − B2 and B2 − B3 contain zero so
this shows why we cannot claim a genuine difference in means for these
conditions for the population. However, the zero value is close to one end
of the confidence interval, plus, with so few participants (as our example is
for illustration purposes), we have low power in our test. A more powerful
test with larger sample sizes might show a larger effect.

Details on calculating the one factor repeated measures ANOVA using
the SPSS computer statistical package can be found in Chapter 10 of
Hinton et al. (2004).
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QU I T E  O F T E N  R E S E A R C H E R S  wish to study the effects of more
than one independent variable in their research rather than just a single

factor, such as observing the effects of age and experience on motorway
driving performance. Fortunately, the analysis of variance can be applied to
more than a single independent variable. In fact we could consider any
number of independent variables in an analysis, the problem being to explain
the complexity of the results. However, as we shall see, the two factor
analysis of variance offers advantages over studying the two independent
variables separately, particularly as the two factor design allows us to examine
the effect of the interaction of the two variables on the scores. In this
chapter we shall see the importance of an interaction in data analysis. This
will be explained via the use of the following example.

It has been suggested to the city Education Committee that one school
in the city (Old School) has gained a reputation for discouraging girls from
studying the sciences. A researcher is commissioned to investigate the matter.
The researcher chooses another school in the city (New School) that matches
Old School on the range of subjects pupils can choose to study (and also
matches Old School on a number of other appropriate factors, such as size,
standards, ages taught, ratio of boys to girls, etc. to control for confounding
factors). In this city the maximum choice for pupils occurs at the age of
fifteen and this is also when the pupils study the widest range of subjects.
The researcher randomly selects 20 fifteen year old boys and 20 fifteen year
old girls from each school and finds out how many science subjects they
have chosen to study. In this experiment there are two independent variables,
school and gender, and the dependent variable measured is number of science
subjects chosen.

The researcher is not particularly interested in the separate effects of
the independent variables, but a combination of the two: is the difference
between the boys and girls, in terms of the number of science subjects chosen,
significantly greater for Old School than for New School? A two factor
analysis of variance can be performed on the data to answer this question.

The two factor analysis of variance provides us with not one but three
variance ratios. The first two of these concern the main effects of the two
factors, that is, taking each factor separately and looking at its effect on the
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dependent variable. The main effect of school will tell us whether there is a
significant difference in the number of science subjects chosen at Old School
compared to New School (combining the boys’ and girls’ scores at each
school). This might be of interest, as it will tell us which school is more
science-oriented but it will not tell us the difference between the boys and
girls. The main effect of gender will tell us whether there is a significant
difference between the boys and girls on the number of science subjects
chosen. This will combine the boys from both schools and the girls from
both schools. Again this might tell us something about differences in science
subjects chosen based on gender but will not tell us how they differ between
the two schools.

What the two factor ANOVA also tells us is whether there is a signific-
ant interaction between the factors or not. A significant interaction occurs
when the effect of one factor is different at the different conditions of the
other factor. Thus, the effect of school on the choice of science subjects for
the boys is different to the effect of school on the choice of science subjects
for the girls. If we found that school had no effect on the boys then there
would be no difference in number of science subjects chosen whichever
school they went to. However, if there was an effect of school on the girls
with the Old School girls taking fewer science subjects than the New School
girls then we would find an interaction in support of the experimental
hypothesis. Here the effect of school is different for the two conditions of
gender. The best way to understand a significant interaction is to plot the
means for the various conditions on a graph, as in Figure 14.1, where the
interaction described above is shown.

It is worth noting that if we obtained the significant interaction of the
form shown in Figure 14.1 we would almost certainly have a significant
main effect of school, as overall there are more science subjects taken at
New School compared to Old School, and a significant main effect of
gender, as overall the boys took more science subjects than the girls, but
these main effects are only a by-product of the interaction, not important
results in their own right. It is clear from this interaction that at Old School
the girls are taking fewer science subjects than the boys whereas at New
School there is no such difference.

Even if we had found that the boys in New School chose more science
subjects than the girls the experimental hypothesis would still be supported
if the boy–girl difference was larger at Old School than at New School. The
interaction would again show a significant difference between the two schools
in the effect of gender on the science subjects chosen.
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FIGURE 14.1 An interaction of school by gender

When the effect of one factor upon another is additive then there is not an
interaction in the results. Look at the example data from the schools study
in Figure 14.2(a). There is a significant main effect of gender here (the girls
choose significantly more science subjects than the boys) but no effect of
school (the same number of science subjects are chosen at the two schools).
It does not matter which school we take, the effect of gender is the same:
changing from boy to girl adds one science subject to the mean score. In
the example data of Figure 14.2(b) there is a main effect of school, more
science subjects are chosen at New School and a main effect of gender, the
boys take more science subjects than the girls. But despite having a different
pattern of main effects to Figure 14.2(a) there is still no interaction. Going
from girls to boys (at either school) simply adds a set amount (0.5) to the
mean score. Similarly going from Old School to New School adds a set
amount (1) to the mean score, regardless of whether we look at the boys’
scores across the two school or the girls’ scores. In any graph of means
from a two factor experiment we can tell there is not an interaction when
the lines on the graph are parallel, as this indicates that the effects of the
factors are additive.

The examples in Figures 14.2(c) and 14.2(d) are clearly not additive
as the lines on the graphs are not parallel. In these cases we will find an

Interactions
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FIGURE 14.2(a) No interaction in the data

Old School

N
um

be
r 

of
 s

ci
en

ce
 s

ub
je

ct
s

5

4

3

2

1

0
New School

School

Boys

Girls

FIGURE 14.2(b) No interaction in the data again
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interaction and we can decide on its significance from the two factor ANOVA.
In Figure 14.2(c) there are no main effects but the interaction shows that the
gender effects reverse as we move from one school to the other. At Old
School the boys take one more science subject than the girls but at New
School it is the girls who take one more than the boys. In Figure 14.2(d) we
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FIGURE 14.2(c) An example of an interaction

also have an interaction as there is a wider boy–girl gap at Old School
compared to New School. There will also be a main effect of gender as
boys take more science subjects overall but not a main effect of school in
this example.

The above examples are not exhaustive but the basic rules apply
regardless of how many conditions we have for the two factors: parallel lines
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FIGURE 14.2(d) Another example of an interaction
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indicate additivity of factors and hence no interaction. When the lines are
not parallel we have an interaction which indicates (if significant) a different
effect of one factor at the different conditions of the other factor.

We have seen in the one factor ANOVA that it is the between conditions
variability that contains the systematic differences between conditions. It is
only the choice of the error term that differs when we choose repeated
measures as opposed to independent measures. The same is true of the
two factor ANOVA. However, in the two factor case we have systematic
differences that could arise from three possible sources: the effect of the
first factor (called Factor A, such as school ), the effect of the second factor
(called Factor B, such as gender) and the interaction of the two factors
(referred to as Factor A × B).

Just as we are able to partition the total sums of squares into two,
the between conditions sums of squares and the within conditions sums
of squares, we are also able to divide up the between conditions sums of
squares into the sums of squares due to Factor A, Factor B and Factor A × B.
Recall that the between conditions sums of squares is:

SS
T

n

X

N
bet conds.    

( )
= −∑ ∑2 2

This uses the totals for the conditions in the calculation of variability of the
scores between the conditions. If we used this formula for the two factor
design then it would indicate a significant difference between conditions but
not which factor is producing it. In our example we have four conditions
each with 20 subjects (n = 20): Old School-Boys, Old School-Girls, New
School-Boys and New School-Girls. If we consider for a moment that we
are only interested in Factor A (school ) then we combine the conditions
across Factor B to produce conditions of Factor A only: we combine Old
School-Boys with Old School-Girls and New School-Boys with New School-
Girls to give the conditions of Factor A, Old School (A1) and New School
(A2). We can then find a sums of squares for Factor A:

SS
T

bn

X

N
A

A= −∑ ∑
   

( )2 2

Dividing up the between conditions sums of squares
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This formula uses the totals of the conditions of Factor A (in this case TA1

and TA2
) and bn, the number of scores in each of the conditions of Factor A,

where b is the number of conditions of Factor B (in this case there are two:
Boys and Girls). Combining the 20 Old School-Boys and the 20 Old School-
Girls gives 40 (bn) subjects in Old School. We can then work out a mean
square using the degrees of freedom for Factor A (a − 1, where a is the
number of conditions of Factor A which, in this case, is 2).

We can do the same thing for Factor B, by combining the conditions
of Factor A within the conditions of Factor A. Old School-Boys are com-
bined with New School-Boys to produce condition B1, Boys, and Old School-
Girls and New School-Girls are combined to produce B2, Girls. We then
work out the formula for the sums of squares for Factor B:

SS
T

an

X

N
B

B= −∑ ∑
   

( )2 2

Dividing by the degrees of freedom (b − 1) gives us a mean square for
Factor B.

The interaction sums of squares can now be worked out. We do not
want to combine any conditions as we are interested in all the different
conditions of Factor A and Factor B, referred to as AB conditions. In our
example we have Old School-Boys (A1B1), Old School-Girls (A1B2), New
School-Boys (A2B1) and New School-Girls (A2B2). We can work out the
following sums of squares:

SS
T

n

X

N
bet conds

AB

.    
( )

= −∑ ∑2 2

Notice that this is the same formula as the overall between conditions sums
of squares. The only difference is one of labelling: the totals of conditions
are referred to as TAB, rather than T or Tc, as condition 1 is A1B1, condition
2 is A1B2, condition 3 is A2B1 and condition 4 is A2B2. This contains all the
variability in the scores due to Factor A, Factor B and the interaction Factor
A × B. If we now remove from it the sums of squares from Factor A and
Factor B then the remainder will provide us with the sums of squares of the
interaction:

SS
T

n

X

N
SS SSA B

AB

A B× = − − −∑ ∑
   

( )
    

2 2
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Dividing this by the degrees of freedom of the interaction, (a − 1)(b − 1),
gives us the interaction mean square.

All we need to do now is to find the appropriate error variances to
compare the mean squares to, in order to calculate F values for the three
factors. The choice of error mean square depends on whether the factors are
independent or repeated measures and the next chapter describes how this
is done.

If we find a significant interaction in a set of data we know that one factor
is having a different effect at the different conditions of the other factor. In
our schools example a significant interaction means that the effect of school
on Boys is different to the effect of school on Girls. We can, if we wish,
view it the other way round: the effect of gender is different on Old School
compared to the effect of gender on New School. Which way round we
choose to look at the interaction depends on our focus of interest. We are
concerned here with the effect of gender as we want to know what the
Boys–Girls difference is at Old School and how it compares to the Boys–
Girls difference at New School.

Following the discovery of a significant interaction we may choose to
look at the simple main effects of one factor at the conditions of the second
factor. Calculating simple main effects is like performing a single factor
ANOVA of one factor at each condition of the second factor. We can work
out the simple main effects of gender on Old School and the simple main
effects of gender on New School. For the simple main effects of gender on
Old School we completely ignore the results of New School and work out
a sums of squares between the Old School-Boys and the Old School-Girls.
We then work out a mean square and an F value for this simple main effect
which we compare to an appropriate table value. We can do the same for
the simple main effect of gender on New School by ignoring the Old School
results. If we had found the interaction as shown in Figure 14.1 we would
expect a significant effect of gender at Old School (as the girls take fewer
science subjects) but not a significant effect of gender at New School (where
boys and girls do not differ in the number of science subjects chosen). These
simple main effects would strongly support the experimental hypothesis.

The simple main effects of gender at Old School are only concerned
with Old School-Boys (A1B1) and Old School-Girls (A1B2). Notice that Factor
B (gender) varies between these two conditions but Factor A does not, it

Simple main effects
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stays at A1 (Old School), so we term this the simple main effect of B at A1.
The sums of squares of this simple main effect is calculated from the
following formula:

SS
T

n

T

bn
B at A

A B A   
1

1 1

2 2

= −∑

where ∑ T 2
A1B is sum of the squared totals of the A1 conditions: the squared

total of Old School-Boys (T 2
A1B1

) plus the squared totals of Old School-Girls
(T 2

A1B2
), and T 2

A1
 is the squared total of all the Old School participants (Boys

and Girls combined).
To find the sums of squares for the effects of B at A2 we work out a

similar formula but this time we are only concerned with New School (A2):

SS
T

n

T

bn
B at A

A B A   
2

2 2

2 2

= −∑

If we had wanted to find the simple main effects for Factor A instead of
Factor B all we would have done is use the same formula for the sums of
squares but replaced the Bs with As (and the b with a) and vice versa.

A two factor ANOVA allows us to examine the interaction of the two
factors. The way we do this is to separate the between conditions sums of
squares into the components due to the main effects of each factor and the
interaction. We can investigate a significant interaction further by looking at
the simple main effects of one factor at the various conditions of the other
factor, taken one at a time. In this way we can discover the source of the
interaction.

Conclusion
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Calculating

the two factor

ANOVA

n The two factor independent
measures ANOVA 172

n The two factor mixed design
ANOVA 181

n The two factor repeated
measures ANOVA 193

n A non-significant interaction 205
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TH E R E  A R E  T W O  I M P O R T A N T  considerations when calculating the
two factor ANOVA: first, it is necessary to lay out the data correctly

and second, the correct error terms must be chosen for the variance ratios.
In this chapter the three different types of two factor ANOVA are dealt
with: the two factor independent measures ANOVA where both the factors,
A and B, are independent measures; the two factor mixed design ANOVA
where Factor A is independent measures and Factor B is repeated measures,
and the two factor repeated measures ANOVA where both Factor A and
Factor B are repeated measures.

The simplest two factor ANOVA to calculate is where both factors are
independent measures. Here the between conditions variance has to be
separated into that arising from Factor A, Factor B and the interaction A × B,
as in all two factor ANOVAs. As there are individual differences in all sums
of squares calculations we can use the within conditions variance as the
error term for all three variance ratios. This makes the calculations relat-
ively easy. We, therefore, complete the following ANOVA summary table.

The two factor independent measures ANOVA

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A dfA SSA MSA FA pA

Factor B dfB SSB MSB FB pB

Interaction A × B dfA×B SSA×B MSA×B FA×B pA×B

Error (Within dferror SSerror

conditions)

Total dftotal SStotal
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Organising the results table is important for all ANOVAs but which factor
we choose as the rows and which as the columns is not as crucial for the
two factor independent measures ANOVA as for the other types of two
factor ANOVA, but it is important to get the various totals of the different
conditions and combination of conditions correct. The following data layout
is a good example to use for clarity and organisation.11

THE RESULTS TABLE

Factor B

Factor A Condition B1 Condition B2 ... Condition Bb

Condition A1 X1 X... ... X...

X2 X... ... X...

� � ... �

Xn X... ... X...

TA1B1
TA1B2

... TA1Bb
TA1

Condition A2 X... X... ... X...

X... X... ... X...

� � �

X... X... ... X...

TA2B1
TA2B2

... TA2Bb
TA2

� � � � �

Condition Aa X... X... X...

X... X... X...

� � �

X... X... Xabn

TAaB1
TAaB2

... TAaBb
TAa

TB1
TB2

TBb
∑ X

The results table
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Degrees of freedom:

dfA = a − 1 where a is the number of condition of
Factor A.

dfB = b − 1 where b is the number of conditions of
Factor B.

dfA×B = (a − 1)(b − 1)

dferror = ab(n − 1) where n is the number of scores in an AB
condition.

dftotal = N − 1 where N is the total number of scores in
the data.

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is TA1

2 + TA2

2 + . . . + TAa

2

SS
T

na

X

N
B

B
    

( )
= −∑ ∑2 2

where ∑ TB
2 is TB1

2 + TB2

2 + . . . + TBb

2

SS
T

n

X

N
SS SSA B

AB

A B× = − − −∑ ∑
    

( )
    

2 2

where ∑ T 2
AB is

T 2
A1B1

+ T 2
A1B2

+ . . . + T 2
AaBb

SSerror = SStotal − SSA − SSB − SSA×B

(There is an alternative formula for SSerror:

SS SS X
T

n
error with conds

AB
      .= = −∑ ∑2

2

Both formulae should give the same answer.)

The formulae for calculation
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Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
B

B

B

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
error

error

error

=

Variance ratio:

F df df
MS

MS
A A error

A

error

( , )  =

F df df
MS

MS
B B error

B

error

( , )  =

F df df
MS

MS
A B A B error

A B

error
× ×

×=( , )  

The F values are then compared to the table values (Table A.3 in the
Appendix) at the chosen level of significance.

(The above calculations are based on equal numbers of scores, n,
in each of the AB conditions. It is possible to perform this analysis with
unequal numbers of scores in each condition, as with the single factor
independent measures ANOVA, but it will not be dealt with in this
book.)

An expanding company wanted to know how to introduce a new type of
machine into the factory. Should it transfer staff working on the old machine

A worked example
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to operate it or employ new staff who had not worked on any machine
before? A researcher selected 12 staff who had experience of the old machine
and 12 staff who had no such experience. Half the participants from each
group were allocated to the new machine and half to the old machine.
The number of errors made by the participants over a set time period was
measured. These errors are shown below.

Experience on Machine
old machine

Old New

Novice 4 5
5 6
7 5
6 6
8 5
5 6

Experienced 1 8
2 9
2 8
3 8
2 7
3 9

What are the effects of the two factors experience on old machine and type
of machine on the dependent variable number of errors?

Both factors are independent measures as a participant took part in
only one experience/machine condition. I will label experience on old
machine as Factor A, with two conditions (a = 2) ‘novice’ (A1) and ‘experi-
enced’ (A2), and type of machine as Factor B, also with two conditions
(b = 2), ‘old machine’ (B1) and ‘new machine’ (B2). There are four AB
conditions each with six participants (n = 6), giving twenty-four participants
in all (N = 24).
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Factor A Factor B

B1 B2

A1 4 5
5 6
7 5
6 6
8 5
5 6

TA1B1
= 35 TA1B2

= 33 TA1
= 68

A2 1 8
2 9
2 8
3 8
2 7
3 9

TA2B1
= 13 TA2B2

= 49 TA2
= 62

TB1
= 48 TB2

= 82 ∑ X = 130

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dfB = b − 1 = 2 − 1 = 1

dfA×B = (a − 1)(b − 1) = (2 − 1)(2 − 1) = 1

dferror = ab(n − 1) = 2 × 2 × (6 − 1) = 20

dftotal = N − 1 = 24 − 1 = 23

Sums of squares:

SS X
X

N
total     

( )
  (         )  = − = + + + + −∑ ∑2

2
2 2 2 2

2

4 5 7 9
130

24
K

= 127.83

SS
T

nb

X

N
A

A
    

( )
    .= − =

+
×

− =∑ ∑2 2 2 2 268 62

6 2

130

24
1 50
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SS
T

na

X

N
B

B    
( )

    .= − =
+
×

− =∑ ∑2 2 2 2 248 82

6 2

130

24
48 17

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

=
+ + +

− − −
      

    .   .
35 33 13 49

6

130

24
1 50 48 17

2 2 2 2 2

= 60.16

SSerror = SStotal − SSA − SSB − SSA×B

= 127.83 − 1.50 − 48.17 − 60.16 = 18.00

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
1 50

1
1 50

MS
SS

df
B

B

B

    
.

  .= = =
48 17

1
48 17

MS
SS

df
A B

A B

A B
×

×

×
= = =    

.
  .

60 16

1
60 16

MS
SS

df
error

error

error

    
.

  .= = =
18 00

20
0 90

Variance ratio:

F
MS

MS
A

A

error

( , )    
.

.
  .120

1 50

0 90
1 67= = =

F
MS

MS
B

B

error

( , )    
.

.
  .120

48 17

0 90
53 52= = =

F
MS

MS
A B

A B

error
×

×= = =( , )    
.

.
  .120

60 16

0 90
66 84
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 1.50 1.50 1.67 p > 0.05
Factor B 1 48.17 48.17 53.52 p < 0.01
A × B 1 60.16 60.16 66.84 p < 0.01
Error 20 18.00 0.90

Total 23 127.83

From the tables of the F distribution (A.3 in the Appendix), F(1,20)
= 4.35 at p = 0.05 and F(1,20) = 8.10 at p = 0.01. We can conclude that
the effect of experience on an old machine is not significant at p = 0.05
(F(1,20) = 1.67), the effect of type of machine (F(1,20) = 53.52) and the
interaction (F(1,20) = 66.84) are both highly significant ( p < 0.01).

We can examine the interaction by calculating the mean values. The
table of means is shown below:

Experience Machine
on old

Old Newmachine
machine machine

Novice 5.83 5.50
Experienced 2.17 8.17

These values are plotted in Figure 15.1. The first point to note is that the
lines are not parallel so we have further evidence of the interaction. Notice
that the experienced workers, not surprisingly, made fewest errors on the
old machine. However, they made most errors on the new machine. This
looks like a case of negative transfer, where previously learnt skills can be
a hindrance rather than a help. An example of this occurs when a visitor
to Britain, experienced in a left-hand drive car, reaches down to change
gear with the wrong hand when driving a right-hand drive car. The novice
workers appear to perform with equal accuracy on both machines.
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FIGURE 15.1 The interaction of experience and machine on the number of errors

In this case the interaction is quite clear. However, for illustration the
simple main effects will be calculated for the effect of type of machine on
the two levels of experience. In the two factor independent design ANOVA
the error term is once again the single error term from the summary table:
MSerror = 0.90, dferror = 20. This error term is used in all the simple main
effects.

The simple main effect of type of machine on the novice operators, B
at A1:

SS
T

n

T

bn
B at A

A B A        .
1

1 1

2 2 2 2 235 33

6

68

2 6
0 33= − =

+
−

×
=∑

dfB at A1
= b − 1 = 2 − 1 = 1 (as it is the effect of B and B has

2 conditions)

MS
SS

df
B at A

B at A

B at A

   
.

  .
1

1

1

0 33

1
0 33= = =

F
MS

MS
B at A

B at A

error

    
.

.
  .

1

1
0 33

0 90
0 37= = =

with degrees of freedom dfB at A1
= 1 and dferror = 20.
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From the F distribution tables we know that F(1,20) = 4.35 at p = 0.05, so
we can conclude, as the calculated value of F is smaller, that we have not
found an effect of type of machine on the novice operators.

The simple main effect of type of machine on the experienced oper-
ators, B at A2:

SS
T

n

T

bn
B at A

A B A       .
2

2 2

2 2 2 2 213 49

6

62

2 6
108 00= − =

+
−

×
=∑

dfB at A2
= b − 1 = 2 − 1 = 1 (as it is the effect of B, and B has

2 conditions)

MS
SS

df
B at A

B at A

B at A

   
.

  .
2

2

2

108 00

1
108 00= = =

F
MS

MS
B at A

B at A

error

   
.

.
  .

2

2
108 00

0 90
120 00= = =

with degrees of freedom dfB at A1
= 1 and dferror = 20.

From the F distribution tables we know that F(1,20) = 8.10 at p = 0.01, so
we can conclude, as the calculated value of F is considerably larger, that we
have a found a highly significant effect of type of machine on the experi-
enced operators.

The simple main effects usually explain the cause of an interaction but
we can perform post hoc tests such as the Tukey or Scheffé tests if we wish.
We need to be careful to select the appropriate comparison and the correct
error term although it is particularly easy with the independent measures
design as we use just the one error term.

The two factor mixed design ANOVA involves one independent measures
factor and one repeated measures factor. This design is often used when we
want to compare independent groups across a number of ‘trials’, such as
comparing men and women on, say, alertness at different times of the day,
or two groups of students on their knowledge at different points throughout
the academic year.

The two factor mixed design ANOVA
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For consistency we label the independent measures factor as Factor
A and the repeated measures factor as Factor B. This is important as the
error calculations are different for the two types of factor. This leads us
to produce two error terms and this makes the calculations a little more
complex than for the independent measures design. In the summary table
below we see how the subjects’ variability, S, needs to be considered in the
calculations.

We designate the independent measures factor (Factor A) as the rows and
the repeated measures factor (Factor B) as the columns in the results table
so that the results from a single subject form one row of the table. We must
be careful to lay out our results consistently so that we do not analyse the
results of the two factors incorrectly. Also if we use a computer program to
analyse our data it could analyse the factors the wrong way round if the
layout is different.11

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F )

Factor A dfA SSA MSA FA pA

Error for A dferrorA SSerrorA MSerrorA

(S within A)

Factor B dfB SSB MSB FB pB

Factor A × B dfA×B SSA×B MSA×B FA×B pA×B

Error for B dferrorB SSerrorB MSerrorB

and A × B
(B × AS)

Total dftotal SStotal

The results table
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THE RESULTS TABLE

Factor B

Factor A Condition B1 Condition B2 ... Condition Bb

Condition A1 S1 X1 X... ... X... TS1

S2 X2 X... ... X... TS2

� � � � � �

Sn Xn X... ... X... TSn

TA1B1
TA1B2

... TA1Bb
TA1

Condition A2 Sn+1 X... X... ... X... TS...

Sn+2 X... X... ... X... TS...

� � � � � �

S2n X... X... ... X... TS...

TA2B1
TA2B2

... TA2Bb
TA2

� � � � � �

Condition Aa S... X... X... X... ...
S... X... X... X... ...
� � � � �

San X... X... Xabn TSan

TAaB1
TAaB2

... TAaBb
TAa

TB1
TB2

TBb
... ∑ X

Degrees of freedom:

dfA = a − 1 where a is the number of conditions of
Factor A.

dferrorA = a(n − 1) where n is the number of scores in an
AB condition.

The formulae for calculation



S T A T I S T I C S  E X P L A I N E D

184

dfB = b − 1 where b is the number of conditions of
Factor B.

dfA×B = (a − 1)(b − 1)

dferrorB = a(b − 1)(n − 1)

dftotal = N − 1 where N is the total number of scores
in the data.

Sums of squares:

SS X
X

N
total     

( )
= −∑ ∑2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is T 2

A1
+ T 2

A2
+ … + T 2

Aa

SS
T

b

X

N
SSerrorA

S

A    
( )

= − −∑ ∑2 2

where ∑ TS
2 is T 2

S1
+ T 2

S2
+ … + T 2

San

(The sums of squares between subjects, the first two components of the
error A sums of squares, comprises all the Factor A variation. If we take
away the variation between the A conditions, SSA, we are left with the
variation within the A conditions as our error term.)

SS
T

na

X

N
B

B    
( )

= −∑ ∑2 2

where ∑ TB
2 is T 2

B1
+ T 2

B2
+ … + T 2

Bb

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

where ∑ T 2
AB is

T 2
A1B1

+ T 2
A1B2

+ … + T 2
AaBb

SS X
T

b
SS SSerrorB

S
B A B        = − − −∑ ∑

×
2

2

(The variation within subjects, the first two components of the error B sums
of squares, contains the B and A × B variation. Removing the between
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condition variation for B and A × B leaves the error sums of squares for B
and A × B, unaffected by individual differences.)

Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
errorA

errorA

errorA

=

MS
SS

df
B

B

B

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
errorB

errorB

errorB

=

Variance ratio:

F df df
MS

MS
A A errorA

A

errorA

( , )  =

F df df
MS

MS
B B errorB

B

errorB

( , )  =

F df df
MS

MS
A B A B errorB

A B

errorB
× ×

×=( , )  

The F values are then compared to the table values (using Table A.3 in the
Appendix) at the chosen level of significance.

A company has introduced a new machine on the factory floor and it wants
to see how the workers gain skill on the machine. There is particular interest

A worked example
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in comparing the performance of workers experienced on the old machine
with that of novice operators who have not operated a machine on the
factory floor before. A researcher randomly selects 6 experienced operators
and 6 novices and monitors the errors they make on the new machine over
a three week period to see whether there are differences between the
two groups in their performance on the machine. The results are shown
below.

Participants Time

Week 1 Week 2 Week 3

Novices
1 7 6 5
2 4 4 3
3 6 4 4
4 7 6 5
5 6 5 4
6 4 2 2

Experienced
7 7 3 2
8 8 4 2
9 6 2 1

10 9 6 3
11 7 4 3
12 10 6 3

We have an independent factor experience which will be designated Factor
A, with ‘novice’ as A1 and ‘experienced’ as A2. The repeated measures
factor is time, so this is Factor B, with ‘Week 1’ as B1, ‘Week 2’ as B2 and
‘Week 3’ as B3. We can draw up the results table as follows.
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THE RESULTS TABLE

Factor B

Factor A B1 B2 B3

A1 S1 7 6 5 TS1
= 18

S2 4 4 3 TS2
= 11

S3 6 4 4 TS3
= 14

S4 7 6 5 TS4
= 18

S5 6 5 4 TS5
= 15

S6 4 2 2 TS6
= 8

TA1B1
= 34 TA1B2

= 27 TA1B3
= 23 TA1

= 84

A1 S7 7 3 2 TS7
= 12

S8 8 4 2 TS8
= 14

S9 6 2 1 TS9
= 9

S10 9 6 3 TS10
= 18

S11 7 4 3 TS11
= 14

S12 10 6 3 TS12
= 19

TA2B1
= 47 TA2B2

= 25 TA2B3
= 14 TA2

= 86

TB1
= 81 TB2

= 52 TB3
= 37 ∑ X = 170

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dferrorA = a(n − 1) = 2(6 − 1) = 10

dfB = b − 1 = 3 − 1 = 2

dfA×B = (a − 1)(b − 1) = (2 − 1)(3 − 1) = 2

dferrorB = a(b − 1)(n − 1) = 2(3 − 1)(6 − 1) = 20

dftotal = N − 1 = 36 − 1 = 35
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Sums of squares:
We can make our calculations easier if we work out the following

parts of the formulae first:

( )
    .

X

N

2 2170

36
802 78

∑ = =

T

nb
A
2 2 284 86

6 3
802 89

∑ =
+
×

=  .

T

na
B
2 2 2 281 52 37

6 2
886 17

∑ =
+ +

×
=

    
  .

T

b
S
2 2 2 2 218 11 14 19

3
852 00

∑ =
+ + + +

=
    . . .    

  .

T

n
AB
2 2 2 2 2 2 234 27 23 47 25 14

6
907 33

∑ =
+ + + + +

=
          

  .

∑X2 = 72 + 42 + . . . + 32 + 32 = 962.00

Now we can work out the sums of squares:

SS X
X

N
total     

( )
  .   .   .= − = − =∑∑ 2

2

962 00 802 78 159 22

SS
T

nb

X

N
A

A    
( )

  .   .   .= − = − =∑ ∑2 2

802 89 802 78 0 11

SS
T

b

X

N
SSerrorA

S
A    

( )
    .   .   .= − − = − −∑ ∑2 2

852 00 802 78 0 11

= 49.11

SS
T

na

X

N
B

B    
( )

  .   .   .= − = − =∑ ∑2 2

886 17 802 78 83 39



C A L C U L A T I N G  T H E  T W O  F A C T O R  A N O V A

189

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

= 907.33 − 802.78 − 0.11 − 83.39 = 21.05

SS X
T

b
SS SSerrorB

S
B A B        = − − −∑ ∑

×
2

2

= 962.00 − 852.00 − 83.39 − 21.05 = 5.56

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
0 11

1
0 11

MS
SS

df
errorA

errorA

errorA

    
.

  .= = =
49 11

10
4 91

MS
SS

df
B

B

B

    
.

  .= = =
83 39

2
41 70

MS
SS

df
A B

A B

A B
×

×

×
= = =    

.
  .

21 05

2
10 53

MS
SS

df
errorB

errorB

errorB

    
.

  .= = =
5 56

20
0 28

Variance ratio:

F
MS

MS
A

A

errorA

( , )    
.

.
  .110

0 11

4 91
0 02= = =

F
MS

MS
B

B

errorB

( , )    
.

.
  .2 20

41 70

0 28
148 93= = =

F
MS

MS
A B

A B

errorB
×

×= = =( , )    
.

.
  .2 20

10 53

0 28
37 61



S T A T I S T I C S  E X P L A I N E D

190

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 0.11 0.11 0.02 p > 0.05

ErrorA 10 49.11 4.91

Factor B 2 83.39 41.70 148.93 p < 0.01

Factor A × B 2 21.05 10.53 37.61 p < 0.01

ErrorB 20 5.56 0.28

Total 35 159.22

In conclusion, the main effect of experience (F(1,10) = 0.02) is not significant
(F(1,10) = 4.96 at p = 0.05), whereas the main effect of time (F(2,20) =
148.93) and the interaction (F(2,20) = 37.61) are both highly significant
(F(2,20) = 5.85 at p = 0.01).

As we have found a significant interaction we can look at the means to
see the source of the interaction. The means are listed in the table below and
plotted in Figure 15.2.

Experience Time

Week 1 Week 2 Week 3

Novice 5.67 4.50 3.83
Experienced 7.83 4.17 2.33

We can see that, taken over the three weeks, the total number of errors of
the two groups of operators does not differ by very much which is why
there was no main effect of experience. All the operators made fewer errors
over time, which is responsible for the highly significant effect of time. The
highly significant interaction is interesting, as the experienced operators
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FIGURE 15.2 The interaction of time and experience on machine operator errors

began by making more errors than the novices but by Week 2 had caught
them up and at Week 3 were making fewer errors. The initial difficulty for
them might have been due to negative transfer (see page 179) from the old
machine to the new but after a while their experience began to help them
and they leapt ahead. Clearly this is speculation but it is consistent with the
outcome of the analysis.

With the mixed design ANOVA, when we have a significant interaction,
we are much more likely to look at the simple main effects of the independent
measures factor at the various conditions of the repeated measures factor
than vice versa. In our example it is more interesting to look at the effect of
experience at Week 1 and then at Week 2, and Week 3 rather than looking
at the effect of time on novice operators, and then on experienced operators.
I shall therefore only look at the simple main effects of Factor A.12 The
simple main effects allow us to look at the effect of experience on the errors
at one week only, ignoring the data from the other weeks. In this design we
work out a different error term for each simple main effect.

The simple main effect of experience at Week 1:

SS
T

n

T

an
A at B

AB B      
1

1 1

2 2 2 2 234 47

6

81

2 6
= − =

+
−

×
∑

= 560.83 − 546.75 = 14.08
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dfA at B1
= a − 1 = 2 − 1 = 1

MS
SS

df
A at B

A at B

A at B

    
.

  .
1

1

1

14 08

1
14 08= = =

SS T
T

n
errorA at B AB S

AB
    

1 1

12
2

= −∑ ∑

= 72 + 42 + . . . + 72 + 102 − 560.83

= 581 − 560.83 = 20.17

where ∑ T 2
AB1S is the sum of the squared scores of each subject in each A

condition (novice and experienced) at B1 (Week 1).

dferrorA at B1
= a(n − 1) = 2(6 − 1) = 10

MS
SS

df
errorA at B

errorA at B

errorA at B

    
.

  .
1

1

1

20 17

10
2 02= = =

F
MS

MS
A at B

A at B

errorA at B

( , )  
1

1

1

110 =

= =
.

.
  .

14 08

2 02
6 97 (from Table A.3, F(1,10) = 4.96, p = 0.05)

There is a significant ( p < 0.05) simple main effect of experience at Week 1.
We can conclude that the experienced operators are making significantly
more errors than the novice operators in Week 1.

We replace B1 with B2 in the above calculations to find the simple
main effect of experience at Week 2. FAatB2

(1,10) = 0.14, so there is not a
significant difference between the errors made by the operators in Week 2.
We calculate the simple main effect of experience at Week 3 in the same
way and FAatB3

(1,10) = 6.64, which is significant at p = 0.05. In Week 3
there is a significant difference in the number of errors made between the
two groups of operators, with the experienced operators making signific-
antly fewer errors. Thus, the simple main effects have confirmed the source
of the interaction observed by ‘eyeballing’ the graph in Figure 15.2.
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The advantage of having repeated measures on both the factors under study
is that we can perform a two factor analysis with relatively few subjects. It
also allows us to extract out the subjects’ variability and consider whether
the subjects are performing at similar levels.

The calculation of the two factor ANOVA is most complex when
we have repeated measures on both factors. This is because we have
to calculate a different error term for each of the three factors under study
(A, B and A × B). In this design we are able to extract the variation between
subjects, so subjects (S) can be seen as a random (independent measures)
factor in the analysis. To produce an error term for a factor we select the
interaction of S with the factor under test. This is shown in the summary
table below.

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F )

Factor A dfA SSA MSA FA pA

Factor B dfB SSB MSB FB pB

Subjects S dfS SSS (MSB) (FS) (pS)

Factor A × B dfA×B SSA×B MSA×B FA×B pA×B

Error for A dferrorA SSerrorA MSerrorA

(A × S)

Error for B dferrorB SSerrorB MSerrorB

(B × S)

Error for A × B dferrorAB SSerrorAB MSerrorAB

(A × B × S)

Total dftotal SStotal

The two factor repeated measures ANOVA
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I have include the mean square and F for the subjects in parentheses as we
only need to calculate these when we are concerned that there are significant
individual differences between the subjects.

In the mixed design we arranged the data so that columns in the results
table refer to the repeated measures factor. We keep the same pattern
when both factors are repeated by laying out the table in the format shown
below, with the subjects as the rows and the conditions of Factors A and B
as the columns. As both factors are repeated measures it does not matter
which we choose as Factor A and Factor B as long as we are consistent
throughout.11

We also calculate two additional tables to aid the calculations: the AS matrix
and the BS matrix. We work out the former by adding up the scores across
B, and the latter by adding up the scores across A. For subject 1, TA1S1

 is
the total of the scores in condition A1 summed across B, so it is the sum
of subject 1’s scores in conditions A1B1 to A1Bb. Similarly, TB1S1

 is the sum of
subject 1’s scores in conditions A1B1 to AaB1.

THE RESULTS TABLE

Condition A1 ... Condition Aa

Subjects Condition ... Condition ... Condition ... Condition TS

B1 Bb B1 Bb

S1 X1 Xb X.. X.. TS1

S2 X.. X.. X.. X.. TS2

S3 X.. X.. X.. X.. TS3

� � � � � �

Sn X.. X.. X.. Xabn TSn

TA1B1
... TA1Bb

... TAaB1
... TAaBb

∑ X

The results table
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AS Matrix BS Matrix

Subject A1S ... AaS Subject B1S ... BbS

S1 TA1S1
... TAaS1

S1 TB1S1
... TBbS1

S2 TA1S2
... TAaS2

S2 TB1S2
... TBbS2

S3 TA1S3
... TAaS3

S3 TB1S3
... TBbS3

� � � � � � � �

Sn TA1Sn
... TAaSn

Sn TB1Sn
... TBbSn

TA1
... TAa

TB1
... TBb

Degrees of freedom:

dfA = a − 1 where a is the number of conditions
of Factor A.

dfB = b − 1 where b is the number of conditions
of Factor B.

dfS = n − 1 where n is the number of subjects.

dfA×B = (a − 1)(b − 1)

dferrorA = (a − 1)(n − 1)

dferrorB = (b − 1)(n − 1)

dferrorAB = (a − 1)(b − 1)(n − 1)

dftotal = N − 1 where N is the total number of scores
in the data.

Sums of squares:

SS X
X

N
total     

( )
= − ∑∑ 2

2

SS
T

nb

X

N
A

A
    

( )
= −∑ ∑2 2

where ∑ TA
2 is T 2

A1
+ T 2

A2
+ … + T 2

Aa

The formulae for the calculation
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SS
T

na

X

N
B

B    
( )

= −∑ ∑2 2

where ∑ TB
2 is T 2

B1
+ T 2

B2
+

… + T 2
Bb

SS
T

ab

X

N
S

S    
( )

= −∑ ∑2 2

where ∑ TS
2 is T 2

S1
+ T 2

S2
+

… + T 2
Sn

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

where ∑ T 2
AB is T 2

A1B1
+

T 2
A1B2

+ … + T 2
AaBb

SS
T

b

X

N
SS SSerrorA

AS
A S    

( )
    = − − −∑ ∑2 2

where ∑ T 2
AS is T 2

A1S1
+ …

+ T 2
AaSn

+ … + T 2
AaS1

 ... +
T 2

AaSn

SS
T

a

X

N
SS SSerrorB

BS
B S    

( )
    = − − −∑ ∑2 2

where ∑ T 2
BS is T 2

B1S1
+ …

+ T2
B1Sn

+ … + T 2
BbS1

… +
T 2

BbSn

SSerrorAB = SStotal − SSA − SSB − SSS − SSA×B − SSerrorA − SSerrorB

Mean square:

MS
SS

df
A

A

A

=

MS
SS

df
B

B

B

=

MS
SS

df
S

S

S

=

MS
SS

df
A B

A B

A B
×

×

×
=

MS
SS

df
errorA

errorA

errorA

=
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MS
SS

df
errorB

errorB

errorB

=

MS
SS

df
errorAB

errorAB

errorAB

=

Variance ratio:

F df df
MS

MS
A A errorA

A

errorA

( , )  =

F df df
MS

MS
B B errorB

B

errorB

( , )  =

F df df
MS

MS
S S errorAB

S

errorAB

( , )  =

F df df
MS

MS
A B A B errorAB

A B

errorAB
× ×

×=( , )  

The F values are then compared to the table values at the chosen level of
significance.

In a factory a machine produces two kinds of product, one that requires the
operator to follow a complex set of instructions and one that is very simple
to make. There are two shifts in the factory, a day shift and a night shift.
The factory manager wants the factory to make the products with the min-
imum of errors. A researcher decides to study the effect of shift (day versus
night) and product (complex versus simple to make) on the errors made
by the operators. All operators work both shifts on a rotation system. Six
operators are randomly selected and their error performance is measured
during a day shift and a night shift. Appropriate balancing is undertaken so
that carry-over effects from one shift to another are controlled for by testing
three operators on the day shift first and three on the night shift first. The
number of errors made during a shift are shown in the table below.

A worked example
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Operator Complex product Simple product

Day shift Night shift Day shift Night shift

1 5 9 3 2
2 5 8 2 4
3 7 7 4 5
4 6 10 5 4
5 4 8 3 3
6 6 9 5 6

There are repeated measures on both factors so the repeated measures
ANOVA can be used to test the effect of the independent variables
on performance. Due to the way I have laid out the conditions above,
I shall label product as Factor A, with ‘complex product’ as A1 and ‘simple
product’ as A2, and shift as Factor B, with ‘day shift’ as B1 and ‘night
shift’ as B2. There are two conditions of Factor A (a = 2), two of Factor
B (b = 2), six participants (n = 6) and twenty-four scores in total
(N = 24).

First we produce the results table:

Participants Condition A1 Condition A2

Condition Condition Condition Condition
B1 B2 B1 B2 TS

S1 5 9 3 2 TS1
= 19

S2 5 8 2 4 TS2
= 19

S3 7 7 4 5 TS3
= 23

S4 6 10 5 4 TS4
= 25

S5 4 8 3 3 TS5
= 18

S6 6 9 5 6 TS6
= 26

TA1B1
= 33 TA1B2

= 51 TA2B1
= 22 TA2B2

= 24 ∑ X = 130

The AS and BS matrices can be created from the results table.
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AS Matrix BS Matrix

Participant A1S A2S Participant B1S B2S

S1 14 5 S1 8 11
S2 13 6 S2 7 12
S3 14 9 S3 11 12
S4 16 9 S4 11 14
S5 12 6 S5 7 11
S6 15 11 S6 11 15

TA1
= 84 TA2

= 46 TB1
= 55 TB2

= 75

We can now calculate the F values:

Degrees of freedom:

dfA = a − 1 = 2 − 1 = 1

dfB = b − 1 = 2 − 1 = 1

dfS = n − 1 = 6 − 1 = 5

dfA×B = (a − 1)(b − 1) = (2 − 1)(2 − 1) = 1

dferrorA = (a − 1)(n − 1) = (2 − 1)(6 − 1) = 5

dferrorB = (b − 1)(n − 1) = (2 − 1)(6 − 1) = 5

dferrorAB = (a − 1)(b − 1)(n −1) = (2 − 1)(2 − 1)(6 − 1) = 5

dftotal = N − 1 = 24 − 1 = 23

Sums of squares:

We can make the calculations easier if we work out the components of the
formulae first:

( )
    .

X

N

2 2130

24
704 17

∑ = =

T

nb

A
2 2 284 46

6 2
764 33

∑ =
+
×

=  .
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T

na
B
2 2 255 75

6 2
720 83

∑ =
+
×

=  .

T

ab
S
2 2 2 2 2 2 219 19 23 25 18 26

2 2
719 00

∑ =
+ + + + +

×
=

          
  .

T

n
AB
2 2 2 2 233 51 22 24

6
791 67

∑ =
+ + +

=
      

  .

T

b
AS
2 2 2 2 2 2 214 13 14 9 6 11

2
783 00

∑ =
+ + + + + +

=
            

  .
K

T

a
BS
2 2 2 2 2 2 28 7 11 14 11 15

2
738 00

∑ =
+ + + + + +

=
            

  .
K

X2 820 00∑ = .

We can now work out the sums of squares:

SS X
X

N
total     

( )
  .   .   .= − = − =∑ ∑2

2

820 00 704 17 115 83

SS
T

nb

X

N
A

A    
( )

  .   .   .= − = − =∑ ∑2 2

764 33 704 17 60 16

SS
T

na

X

N
B

B    
( )

  .   .   .= − = − =∑ ∑2 2

720 83 704 17 16 66

SS
T

ab

X

N
S

S    
( )

  .   .   .= − = − =∑ ∑2 2

719 00 704 17 14 83

SS
T

n

X

N
SS SSA B

AB
A B× = − − −∑ ∑

    
( )

    
2 2

= 791.67 − 704.17 − 60.16 − 16.66 = 10.68
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SS
T

b

X

N
SS SSerrorA

AS
A S    

( )
    = − − −∑ ∑2 2

= 783.00 − 704.17 − 60.16 − 14.83

= 3.84

SS
T

a

X

N
SS SSerrorB

BS
B S    

( )
    = − − −∑ ∑2 2

= 738.00 − 704.17 − 16.66 − 14.83

= 2.34

SSerrorAB = SStotal − SSA − SSB − SSS − SSA×B − SSerrorA − SSerrorB

= 820.00 − 60.16 − 16.66 − 14.83 − 10.68 − 3.84 − 2.34

= 7.32

Mean square:

MS
SS

df
A

A

A

    
.

  .= = =
60 16

1
60 16

MS
SS

df
B

B

B

    
.

  .= = =
16 66

1
16 66
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SS

df
S

S

S

    
.

  .= = =
14 83

5
2 97

MS
SS

df
A B

A B

A B
×

×
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= = =    

.
  .

10 68

1
10 68

MS
SS

df
errorA

errorA

errorA

    
.

  .= = =
3 84

5
0 77

MS
SS

df
errorB

errorB

errorB

    
.

  .= = =
2 34

5
0 47

MS
SS

df
errorAB

errorAB

errorAB
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  .= = =
7 32

5
1 46
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Variance ratio:

F
MS

MS
A

A

errorA

( , )    
.

.
  .15

60 16

0 77
78 13= = =

F
MS

MS
B

B

errorB

( , )    
.
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  .15

16 66

0 47
35 45= = =

F
MS

MS
S

S

errorAB

( , )    
.

.
  .5 5

2 97

1 46
2 03= = =

F
MS

MS
A B

A B

errorAB
×

×= = =( , )    
.

.
  .15

10 68

1 46
7 32

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean Variance Probability
variation freedom squares square ratio (F)

Factor A 1 60.16 60.16 78.13 p < 0.01

Factor B 1 16.66 16.66 35.45 p < 0.01

Subjects S 5 14.83 2.97 2.03 p > 0.05

Factor A × B 1 10.68 10.68 7.32 p < 0.05

ErrorA 5 3.84 0.77

ErrorB 5 2.34 0.47

ErrorAB 5 7.32 1.46

Total 23 115.83

In conclusion there is a highly significant effect of Factor A ( product)
with F(1,5) = 78.13, and of Factor B (shift) with F(1,5) = 35.45 (compared
to a table value of F(1,5) = 16.26, p = 0.01). The interaction of product
and shift (F(1,5) = 7.32) is significant at the p = 0.05 level of significance
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(F(1,5) = 6.61, p = 0.05). The effect of subjects (F(5,5) = 2.03) is not sign-
ificant (F(5,5) = 5.05, p = 0.05) which indicates no significant differences
between the participants in their level of performance.

The mean number of errors in each condition is shown in the table
below.

Complex product Simple product

Day shift Night shift Day shift Night shift

5.50 8.50 3.67 4.00

These means are plotted in Figure 15.3 to help us interpret the interaction.
More errors are made on the complex product than the simple product
(producing the effect of product) and more errors are made on the night
shift (producing the effect of shift). However, from Figure 15.3 we can see
that the difference in the errors between the day and night shifts is much
greater on the complex product. More errors are made at night relative to
the day for the complex product in comparison to day–night difference for
the simple product.

FIGURE 15.3 The interaction of product and shift on machine operator errors
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We can perform the simple main effects of shift on the two products
separately to confirm the above interpretation of the significant interaction.
There is a different error term of each simple main effect but the same
formula is used with the As and Bs adjusted accordingly, whichever of the
two factors we choose.13 First, the simple main effect of shift (Factor B) on
the complex product (A1).

SS
T

n

T

bn
B at A

A B A            
1

1 1

2 2 2 2 233 51

6

84

2 6
615 588 27= − =

+
−

×
= − =∑

dfB at A1
= b − 1 = 2 − 1 = 1

MS
SS

df
B at A

B at A

B at A

    
.

  .
1

1

1

27 00

1
27 00= = =

SS T
T

n

T

b

T

bn
errorB at A A BS

A B A S A        
1 1

1 1 12
2 2 2

= − − +∑ ∑ ∑

where ∑ T 2
A1BS = 52 + 52 + 72 + … + 102 + 82 + 92 = 626

T

n

A B1

2

615
∑ = (from above)

T

b

A S1

2 2 2 2 2 2 214 13 14 16 12 15

2
593

∑ =
+ + + + +

=
          

T

bn
A1

2

588= (from above)

SSerrorB at A1
= 628 − 615 − 593 + 588 = 6

dferrorB at A1
= (b − 1)(n − 1) = (2 − 1)(6 − 1) = 5
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      .
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1

1
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5
1 20= = =
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B at A

errorB at A
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.

.
  .

1

1

1
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27 00
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22 50= = =
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We can conclude that there is a highly significant effect ( p < 0.01) of shift
on the errors made on the complex product. Observing the means we see
that there is a significant increase in errors during the night shift compared
to the day shift.

We can perform the simple main effect of shift (Factor B) on the
simple product (A2) in the same way by replacing A1 in the formulae
with A2. We find that FB at A2

(1,5) = 0.47, so we have not found a significant
difference between the number of errors made on the simple product between
the two shifts ( p > 0.05).

In the examples chosen for the three types of two factor ANOVA there has
always been a significant interaction. This has been done to illustrate what
an interaction entails and also how we can examine the simple main effects
to explore the source of the interaction. There will be many cases when the
interaction will not be significant, because the effect of the factors is either
additive or non-significant. In these cases we can examine the main effects
in more detail if we wish by post hoc tests, such as the Tukey or Scheffé as
long as we select the appropriate error term for the analysis. In the Tukey
for example we would use the mean square error of a significant factor if we
wanted to consider the differences in means for the conditions of that factor.

Details on how to calculate the different types of two factor ANOVAs
using the SPSS computer statistical package can be found in Chapter 11
of Hinton et al. (2004).

A non-significant interaction
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