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CO N S I D E R  T H E  F O L L O W I N G  S I T U A T I O N . A researcher is interested
in investigating a number of possible differences in behaviour between

boys and girls in the classroom. One of the hypotheses the researcher wants
to test is that girls are more attentive in class than boys. Whilst the researcher
has access to a class of children that are suitable for testing it is not possible
to video the classroom and analyse the recordings. Although aware of the
problems, the researcher decides that the only solution in this specific case
is to rely on the teacher’s opinion. The teacher is asked to rate each of the
children in the class in terms of their attentiveness on a scale of 0–100. The
teacher is not, for obvious reasons, informed of the hypothesis of the test
until after completing the task. In a class of ten children the following
results are produced:

Child Teacher’s
rating

Susan 67
Linda 55
John 26
Mary 70
Peter 36
Ian 57
Trevor 32
Andrew 65
Helen 59
Christine 24

I have plotted the results on the 0–100 scale below and indicated the
teacher’s rating of each child by their initial. It does look here as though
there are more of the girls at the high end of the attentiveness scale and more
of the boys at the lower end. And if these data were of the sort we have
been considering up to now we could compare these results on a t test.
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0 10 20 30 40 50 60 70 80 90 100

Girls C L H S M
Boys J T P I A

The problem is that, in this case, we are making an assumption about the
data which may not be valid. The problem has to do with using any form
of rating scale. On the basis of the numbers there appears to be a small
difference between Christine and John and a large difference between Mary
and Linda. Also the difference between Christine and John, of 2, is the same
as the difference between Andrew and Susan. The assumption that we are
making is that the teacher is using the rating scale as an interval scale,
where the numbers progress in equal intervals along the scale, with the
difference between consecutive numbers always the same. (See Chapter 2
on different types of numbers.)

Why cannot we assume that the teacher is using the rating scale as an
interval scale? There are two reasons. First, the teacher is not a clock or a
thermometer or a tape measure. These are all measuring devices that have
been deliberately designed to measure in equal intervals. Human beings may
not be able to judge differences in the same formal way as other devices.
Second, we cannot check the teacher in the same way as we can calibrate a
clock to check that it is working properly.

In reality the teacher might see Christine and John as more similar
than Andrew and Susan. Also the difference between Peter and Linda could
be seen as the same as the difference between John and Trevor, even though
the gap between Peter and Linda is numerically greater. It is quite possible
that an interval scale is not being used. An interval scale is like a tape
measure made out of rigid material, the intervals are always the same. Now
consider a tape measure made out of an elastic material. The teacher’s ‘tape
measure’ (the rating scale) might be stretched at certain points and squashed
at others, providing quite a different scale. The teacher’s rating scale could
in reality look like the scale below.

0 10 20 30 40 50 60 70 80 90 100

Girls C LH S M
Boys J T P I A
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When we have doubts about whether a scale is interval or not we
should assume that it is not, otherwise we risk producing erroneous conclu-
sions in our data analysis. Unfortunately, this produces another problem.
All the statistical tests that we have examined so far in the book (z, t test,
ANOVA) assume that the dependent variable has been measured on an
interval scale. In fact they require it, in order that means, standard deviations
and other statistics can be properly calculated. Without an interval scale
these calculations are meaningless.

We can see the problem of calculating statistics in the above example.
To the teacher the difference between Andrew and Susan is larger than
the difference between Christine and John as the ‘tape measure’ is stretched
more between 60 and 70 than between 20 and 30. Even though both differ-
ences are written as 2 the Andrew–Susan difference is a larger ‘2’ than
the Christine–John ‘2’. Calculating a mean, or a standard deviation, is
clearly inappropriate as the numbers do not reflect the underlying scale
being used.

We can refer to two kinds of data here: that which comes from an
interval scale and we can perform statistics on, and that which comes from
an ordinal scale. Interval data is usually obtained from experiments where
the dependent variable is measured on a formal measuring device, such as
reaction times, weight loss, certain test scores and so forth. We can perform
parametric tests on these data, such as t tests or an ANOVA. Parametric
tests require interval data. The other important feature of parametric tests is
that they make parametric assumptions, assumptions concerning character-
istics of the underlying populations that the samples come from. These
include the assumptions that populations are normally distributed and that
samples come from distributions with equal variance. All the tests attempt
to estimate unknown population parameters by using the sample statistics
and these parameters are constrained by the assumptions. If we believe that
the assumptions of the parametric tests are not met then it is inappropriate
to use them as they may not test the hypothesis properly. When we are
concerned that our data is not interval or that the parametric assumptions
might not be valid we employ a nonparametric test instead, one that does
not make the interval assumption about the scale of measurement nor any
assumptions about the underlying distributions.

How can we analyse data nonparametrically? The first point to note,
for the reasons cited above, is that we cannot use the actual numbers in our
analysis. We cannot perform calculations on the raw data or make assump-
tions about the underlying population distributions. What we can assume
about the numbers produced in a rating scale, such as the one the teacher
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used, is that these numbers allow us to rank order the data. Whilst we are
unable to decide what the difference between ratings of 24 and 26 means
to the teacher, what we can say is that the teacher rates the person who
scored 26 as more attentive than the one who is rated at 24. Ratings are
therefore ordinal data, they place the subjects into a specific order. We can
look at the teacher’s ratings of the children and say, from the numbers, that
Mary is rated as the most attentive and Christine the least. Indeed we are
able to rank order the participants on the basis of the ratings. In the table
below I have ranked the children from least attentive (rank 1) to most
attentive (rank 10).

Child Teacher’s Rank
rating

Susan 67 9
Linda 55 5
John 26 2
Mary 70 10
Peter 36 4
Ian 57 6
Trevor 32 3
Andrew 65 8
Helen 59 7
Christine 24 1

We can be confident that the information we have extracted from the
data, the ranks, is valid as long as the data is ordinal. In analysing the ranks
we will not be making any assumptions about intervals or underlying distri-
butions. Essentially, all nonparametric analyses compare the ranks obtained
in the different conditions of the independent variable. We can compare
the ranks of the girls to those of the boys. If the girls receive all the high
ranks and the boys the low ones then this can be used in support of the
experimental hypothesis. How and when we can decide that one set of ranks
is significantly different from another set of ranks lies at the heart of the
various nonparametric tests. In many cases statisticians have developed
nonparametric tests that can be undertaken instead of a particular parametric
test when its assumptions are not met. The following table gives the
nonparametric equivalents of the most popular parametric tests.
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Number of samples Parametric test Nonparametric test

Two (independent) Independent t test Mann–Whitney U test
Two (related) Related t test Wilcoxon signed-ranks

test
Two or more One factor Kruskal–Wallis test
(independent measures) independent measures

ANOVA
Two or more One factor Friedman test
(repeated measures) repeated measures

ANOVA

When working out ranks it is usual in statistical analysis to give the lowest
score a rank of 1 and work up through the scores, giving the highest score
the top rank. In a number of tests it does not matter whether the data are
ranked from the top down or from the bottom up but when it does matter
the bottom up ranking is required. It is therefore a good idea to get into the
habit of ranking in this way.

It often occurs that more than one subject achieves the same score
in a test. In this case it is sensible to give these subjects the same rank.
The way to do this is to find out how many subjects have the same raw
score. We will refer to this number as s, so if three subjects scored the
same score then s = 3. The rank we are about to allocate is labelled r. If we
had ranked the first five scores before we got to the tied scores then r = 6.
The formula for calculating the rank to give to the tied subjects is as
follows:

rank  
  (   )    (     )

=
+ + + + + −r r r s

s

1 1K

With s = 3 and r = 6 then: rank  
    

=
+ +

=
6 7 8

3
7. The three subjects are all

given a rank of 7.
Looking at the example it is easy to see the reason for giving out these

ranks. If the numbers had been different they would have been given the

Calculating ranks
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ranks 6, 7 and 8. As they are the same we give then an equal share of these
three ranks. The next rank to be allocated is r + s. In our example, the next
rank to be allocated is 9.

Sometimes the rank allocated to identical values will not be a whole
number. If two subjects have identical scores and the next ranking to be
allocated is 6 then both subjects would be given a rank of 6.5. It is only
when scores are tied in this way that we obtain ranks that are not whole
numbers.

There are a number of calculations that we can perform with ranks.
These calculations can then be used in the construction of statistical tests.
Calculations with ranks rather than scores are often simpler as, say, ten
scores can be anything but ten ranks are always the numbers 1 to 10. With
ranks we only need to know the number of scores and then we can work
out a range of rank statistics. If the number of scores is n, and R refers to a
rank, then:

1 The sum of all the ranks ( )  
(   )

R
n n

is
+∑ 1

2
If we have 10 ratings (n = 10) and rank them then R∑ =
10 10 1

2
55

 (   )+
=

2 The sum of the top n1 ranks, where n1 + n2 = n is n n
n n

1 2
1 1 1

2

(   )
+

+

Again, with n = 10, if we wish to sum the top 3 ranks then n1 = 3,

n2 = 7. The sum of the top three ranks = × +
+

= (   )  
 (   )

3 7
3 3 1

2
27.

3 The mean of the ranks, which is
R

n

n∑⎛

⎝⎜
⎞

⎠⎟
=

+  1

2

When n = 10 the mean of the ranks =
+

=  .
10 1

2
5 5

4 The sum of the squared ranks ( )  
(   )(   )

R
n n n

2
1 2 1

6∑ + +
is  as long as

there are no tied ranks. For this reason there are some statistics that
become less valid the more tied ranks there are.

Calculations using ranks
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When n = 10 the sum of the squared ranks =
+ +

=
(   )(   )10 10 1 20 1

6
385

(as long as none of the ranks are tied).

In the following chapters we will use these calculations in the nonparametric
analysis of data.
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AC O M P A R I S O N  B E T W E E N  two samples, comparing two conditions
of an independent variable on a dependent variable, would normally

be analysed by a t test if we were able to make the assumptions that the t
test requires about the data in our samples. When we cannot make those
assumptions and can only assume that the data are ordinal, we have to build
a nonparametric analysis based on the rank ordering of the data. In this
chapter we will consider the nonparametric equivalents of the related and
independent t tests, namely the Mann–Whitney U test and the Wilcoxon
signed-ranks test.

The teacher’s ratings of pupils’ attentiveness from the previous chapter
provide us with a suitable example of a two sample case with independent
samples. We cannot assume that the teacher’s ratings are based on an interval
scale, nor can we assume any underlying distributions concerning these
ratings. The statistical analysis has to be based on the ranks. The rank ordering
of the participants is shown below.

Pupil Rank

Mary 10
Susan 9
Andrew 8
Helen 7
Ian 6
Linda 5
Peter 4
Trevor 3
John 2
Christine 1

The Mann–Whitney U Test (for independent samples)
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The researcher’s hypothesis was that the girls would be rated as
more attentive. If this was the case then we would expect the girls’ ranks
to be higher than the boys’ ranks. Alternatively, if the boys were more
attentive then they should achieve the higher ranks. And if there was no
difference between the groups on attentiveness then we would expect the
boys and girls to be evenly spread amongst the ranks. One way of finding
out whether the groups are clustered at the top or bottom of the ranks is to
find out how many participants from one group have a higher rank than
each member of the other group. If we look at the table below we can see
that no boys are above Mary and Susan, one above Helen, two above Linda,
and five above Christine. We can do this for the boys as well and this is also
shown in the table.

Pupil Rank Boys above Girls above

Mary 10 0
Susan 9 0
Andrew 8 2
Helen 7 1
Ian 6 3
Linda 5 2
Peter 4 4
Trevor 3 4
John 2 4
Christine 1 5

Total 8 17

Now if all five girls had been at the top of the rankings their total
would have been 5 × 0 = 0 (as they would have had no boys above any of
them) and the boys would have scored 5 × 5 = 25 (as all five of them would
have had five girls above them). If the boys had all been at the top then the
totals would have been reversed. With the researcher’s one-tailed test we
are focusing on the girls’ total being small, indicating their ranks are at the
top. If the girls score 0 then it seems reasonable to conclude that there is a
genuine difference between the girls’ and boys’ ratings. If the girls scored
25 then clearly they are not ranked higher than the boys. When the score is
midway between the two (12 or 13) then the two groups are mixed in their
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ranking. Our total for the girls is 8: is this low enough to conclude that they
are genuinely higher in the ranks as a group?

The analysis we are developing here is that of the Mann–Whitney U
test (for two independent samples). It compares the actual ranks achieved
with the ‘best possible ranks’, that is what the group would have scored if
all its members had been at the top of the ranks.

To work out the calculations we shall label the girls as Sample 1 with
a sample size of n1 = 5 and the boys as Sample 2, with n2 = 5. If the girls
had occupied the top n1(5) ranks then they would have had a rank total of
10 + 9 + 8 + 7 + 6 = 40, or as a formula:

n n
n n

1 2
1 1 1

2
5 5

5 5 1

2
40

(   )
      

(   )
+

+
= × +

+
=

How close did the girls get to this? If we add up the actual ranks of the girls
we find they achieved:

R1 10 9 7 5 1 32∑ = + + + + =            

The top ranks minus the actual ranks for Sample 1 is 40 − 32 = 8. We refer
to this figure as U1, U1 = 8.

We can also find a U for the boys. If they had occupied the top n2

ranks then they would have had a rank total of:

n n
n n

1 2
2 2 1

2
5 5

5 5 1

2
40

(   )
      

(   )
+

+
= × +

+
=

The boys’ actual rank total is: ∑ R2 = 8 + 6 + 4 + 3 + 2 = 23. For the boys
U2 = 40 − 23 = 17.

Notice that we have arrived at the same figures of 8 and 17 as in the
table above. The is because the two analyses are the same. The Mann–
Whitney U statistic is the difference between the sample’s actual ranks and
the maximum ranks they could have got, with a small value of U indicating
a group is close to the top. It is calculated using the formulae:

U n n
n n

R1 1 2
1 1

1

1

2
    

(   )
= +

+
− ∑ U n n

n n
R2 1 2

2 2
2

1

2
    

(   )
= +

+
− ∑

As a check it is worth noting that U1 + U2 = n1n2.
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To decide whether there is a significant difference between the samples we
need the probability of obtaining the two values of U when there really is
no difference between the populations the samples are drawn from. What
range of values, and with what probabilities, would we expect for U when
the null hypothesis is true?

Imagine for a moment that we had only tested two girls and two boys
and we had obtained a U for the girls of 1 and a U for the boys of 3. What
is the probability of getting this result by chance rather than as a result of a
genuine difference in populations? We can see that there are six possible
ways in which we can order two boys and two girls:

Rank Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

4 Girl Girl Girl Boy Boy Boy
3 Girl Boy Boy Girl Girl Boy
2 Boy Girl Boy Girl Boy Girl
1 Boy Boy Girl Boy Girl Girl
U(Girls) 0 1 2 2 3 4
U(Boys) 4 3 2 2 1 0

When the null hypothesis is true we would expect each of these possibilities
to occur with equal probability. As there are six of them each one has a
probability of 1/6 or 0.167. We can now work out the probability of getting
a U value by chance. There is only one way for the girls to get a U of 0, 1,
3, or 4 so each has a probability of 0.167, but two ways of getting a U of 2,
with a probability of 0.33. In hypothesis testing we are concerned with
probabilities greater than or less than a certain value. In this example it is
the girls’ score of 1. The probability of getting 1 or less by chance is the
probability of getting 1 (0.167) plus the probability of getting 0 (0.167),
which equals 0.33. If we choose the p = 0.05 level of significance then we
can say that the probability of getting 1 or less by chance is so large (0.33)
that it is not significant at p = 0.05.

Returning to our example of 5 boys and 5 girls, we can do the same
calculation of probabilities. It is more tedious to work out as there are
252 different ways of ordering these samples but the logic is the same.
When the null hypothesis is true each possibility is equally likely and we are

The significance of U
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able to work out the probability of achieving a certain value. There is
one way of the girls obtaining a U of 0, so this has a probability of 1/252
or 0.004, one way of obtaining a U of 1 (probability = 0.004), two ways
of obtaining a U of 2 (probability 0.008) and so on, as shown in the table
below.

Number of ways Probability of Probability of
of getting this getting this value getting this value

U value by chance by chance or lower by chance

0 1 0.004 0.004
1 1 0.004 0.008
2 2 0.008 0.016
3 3 0.012 0.028
4 5 0.020 0.048 Ô p < 0.05
5 7 0.028 0.076

I stopped calculating U at 5 for two reasons. One, it is getting rather
hard work and two, if we look at the last column, we have found out which
values of U occur by chance with a probability less than 0.05 (our signific-
ance level). With five boys and five girls a value of U of 4 or less can be
taken as significant (at p = 0.05) as it is occurs by chance with a probability
less than the significance level.

Fortunately we do not have to work the probability tables ourselves,
they have been worked out and the critical value of U is listed for the level
of probability chosen (see Table A.5 in the Appendix). You will see that for
small values of n1 and n2 no critical value is given, there is a dash instead.
As we saw with two boys and two girls, it is not possible with these small
sample sizes to obtain a value with a probability lower than the significance
level of p = 0.05.

In looking up the values in the table we must decide whether we are
testing a one- or two-tailed prediction. In this example we have a one-tailed
prediction: we test the girls’ value of U(U1) as we are not interested in the
boys’ value. If we specify a two-tailed test then we simply select the smaller
of U1 and U2 to compare with the table value. When looking up the value in
the table it is important to remember that we want the calculated value to be
equal to or smaller than the table value to be significant for the reason given
above.
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We can now look up the table value (Table A.5) to compare with the
calculated value of U for the girls. For a one-tailed test, with n1 = 5 and
n2 = 5, the critical value of U is 4 at a significance level of p = 0.05. As the
girls’ value is larger (8) we cannot reject the null hypothesis at this level of
significance. We have not found a difference in the girls and boys in the
teacher’s ratings of the attentiveness.

When the null hypothesis is true, any variation in the ranks between the two
samples will have arisen from chance factors. Clearly we want to know
what differences we would expect by chance in order to make a decision
about our calculated value, so we need to know the distribution of U when
the null hypothesis is true. As we saw above a value of U is calculated for
each sample. The possible values of U range from 0 up to n1n2 but when the
null hypothesis is true we would not expect the extreme values very often and

we would expect both values of U to be similar, around 
n n1 2

2
, the midpoint

of the distribution. As we saw above it is not too difficult to work out the
distributions for small values of n1 and n2. These values are shown in the
tables. However, when the sample sizes are large (both 20 or more) then
the distribution of U turns out to approximate a normal distribution with:

µ σ      
(     )

= =
+ +n n n n n n1 2 1 2 1 2

2

1

12
and

With these large samples, we can work out a z score for the calculated value
of U and look up the probability in the standard normal tables (Table A.1),
where z is calculated as follows:

z
U

n n

n n n n(     )
=

−

+ +

1 2

1 2 1 2

2
1

12

We have to be a little careful in our use of U. The more tied values we have
the more inaccurate the test becomes. If we do get a lot of tied values then it
is worth questioning the use of the dependent variable; is it too crude a meas-
ure to differentiate between the subjects and rank order them appropriately?

The distribution of U
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1 Rank all the scores from lowest to highest.
2 Calculate a U value for each sample using the following formulae:

U n n
n n

R1 1 2
1 1

1

1

2
    

(   )
= +

+
− ∑ U n n

n n
R2 1 2

2 2
2

1

2
    

(   )
= +

+
− ∑

3 Compare the smaller value with the critical value in the table (Table A.5
in the Appendix). The calculated value must be equal to or smaller
than the table value for significance. (In a one-tailed test, if the sample
predicted to have the highest ranks does not produce the smallest of
the two U values then it certainly will not be significant!)

Two social clubs, the Hilltop Social Club and the Valley Social Club, decide
to join forces and hire a coach to take them to see a Shakespearian play in
the nearby city. One of the club secretaries decides to find out how much the
members enjoyed the play, so on the coach home asks everyone to rate their
enjoyment of the play on a 0 to 100 scale. The members of Valley Social
like to see themselves as very cultured people so the club secretary predicts
that they will rate their enjoyment of the play higher than the members of
Hilltop. Is the secretary’s prediction supported by the following data?

Hilltop Social Valley Social
Club Club

23 46
54 45
35 62
42 62
14 75
24 50
38 80

55
33

A worked example

Procedure for calculating the Mann–Whitney U statistic
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We are not going to make any assumptions about the data (except that it
is ordinal) or about the underlying distributions of the populations, so will
perform a Mann–Whitney U test.

First we rank the rating values across all conditions, taking into
account ties:

Sample 1 Sample 2

Hilltop Rank Valley Rank

23 2 46 9
54 11 45 8
35 5 62 13.5
42 7 62 13.5
14 1 75 15
24 3 50 10
38 6 80 16

55 12
33 4

n1 = 7 ∑ R1 = 35 n2 = 9 ∑ R2 = 101

We work out the two values of U:

U n n
n n

R1 1 2
1 1

1

1

2
7 9

7 7 1

2
35 56    

(   )
        

(   )
    = +

+
− = × +

+
− =∑

U n n
n n

R2 1 2
2 2

2

1

2
7 9

9 9 1

2
101 7    

(   )
        

(   )
    = +

+
− = × +

+
− =∑

The prediction is one-tailed so the Valley value is the U we choose. As this
is the smaller value the data do follow the direction predicted. To decide
if this is significant we look up the critical value using n1 and n2. From
Table A.5, U = 9, n1 = 7, n2 = 9, p = 0.01 for a one-tailed test. As the cal-
culated value of 7 is lower than the table value we can conclude that the
members of Valley Social Club gave significantly higher ratings of their
enjoyment of the play than the members of Hilltop Social Club.
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The nonparametric test for comparing two related samples is the Wilcoxon
signed-ranks test. This will be explained by considering an example. A
teacher wanted to test the effect of a new television programme designed
to encourage children’s interest in mathematics. A group of nine children
(n = 9) were asked to rate their interest in mathematics on a 0 to 10 scale
before and after the programme. The results are shown below.

Interest in mathematics

Child Before After

1 2 4
2 5 8
3 5 4
4 2 8
5 3 7
6 2 9
7 7 4
8 7 7
9 4 9

The Wilcoxon test often has the words matched pairs in its title. This
is because each score is matched in one sample with a score in the second
sample, in this example the children are matched with themselves. We
match the pairs in order to produce a difference score. It is not unreasonable
to assume that the scores of a matched pair can be compared despite any
differences in the way in which the rating scale is being used between the
children. If there really is a beneficial effect of the television programme
(the one-tailed prediction is correct) then we would expect the interest
ratings to be consistently higher after the programme than before. This con-
sistency should show up as a set of negative differences when we subtract
the rating after the programme from the rating before the programme.

A mixture of equal positive and negative differences would indicate
a lack of consistency in the differences between the samples, with some
children’s interest going up and others’ going down after the programme.
This is what we would expect with the null hypothesis. So, for significance

The Wilcoxon signed-ranks test (for related samples)
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we are looking for a consistent pattern where most difference scores are of
the same sign, either mostly positive or mostly negative.

The differences are shown in the table below. Notice that child 8 pro-
duces a difference score of zero. This cannot be used to support negative dif-
ferences or positive differences so we reject this participant from the analysis
as the data is unhelpful to our decision making. We reduce n by one to 8.

Before After Sign of Size of Rank of
Child Sample 1 Sample 2 difference difference difference

1 2 4 − 2 2
2 5 8 − 3 3.5
3 5 4 + 1 1
4 2 8 − 6 7
5 3 7 − 4 5
6 2 9 − 7 8
7 7 4 + 3 3.5
8 7 7 0
9 4 9 − 5 6

The Wilcoxon test does not just compare the sign of the differences, it
also compares the size of the differences. Clearly the inconsistent differ-
ences (in our example the positive ones) are more of a problem to the
research hypothesis if they are large rather than if they are small, as they are
harder to explain away. The Wilcoxon test considers this by ranking the
size of the differences (their absolute values) by ignoring the sign of the
differences and treating them all as positive for ranking purposes. The ranks
are shown in column six of the above table.

The inconsistent differences, the two positive differences (+) have
ranks of 1 and 3.5. Are these small enough for us to conclude that this result
is very unlikely to have occurred by chance? What is the probability of
getting such ranks by chance? What we do in the Wilcoxon test is to look
at the sum of the inconsistent ranks, 1 + 3.5 = 4.5, which we call T. What
is the probability of getting a T as small as 4.5 when the null hypothesis
is true? We are interested in T being small for significance as it indicates
a high degree of consistency: when T is zero there is no inconsistency in
the ranking and the higher of each pair of scores is always in the same
sample.
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By chance each rank could be positive (+) or negative (−), so we have
two equal possibilities for each participant when the null hypothesis is true.
With eight participants that gives us 28 = 256 different possibilities in total.
How many of these possibilities have positive rank totals as small as or
smaller than 4.5? There is only one way of achieving a positive rank total
of zero (every difference is negative), so the probability of getting zero by
chance is 1/256 or 0.004. There is only one way of getting a positive rank
total of 1 (the lowest difference is positive and the rest are negative) and
one way of a positive rank total of 2 (the second lowest difference is
positive and the rest are negative). We can get a positive rank total of 3 in
two ways: either the third lowest rank is the only positive one or the lowest
two ranks are positive and the rest negative. We can work out further values
as in the table below.

Number of ways Probability of Probability of getting
of getting this value getting this value this value or lower

T by chance by chance by chance

0 1 0.004 0.004
1 1 0.004 0.008
2 1 0.004 0.012
3 2 0.008 0.020
4 2 0.008 0.027
5 3 0.012 0.039 Ô p < 0.05
6 3 0.012 0.051

(Slight differences between the sums of the figures in columns 3 and 4 are
due to rounding of the third decimal place.)

Notice that the probability gets larger than 0.05 with a T of 6, but the
probability of obtaining a T of 5 and below is less than 0.05. In our example
with a T of 4.5 we can reject the null hypothesis at the p = 0.05 level of
significance and conclude that there is a significant increase in the ratings of
mathematical interest after the programme.

Fortunately, we do not have to work out the probability values under
the null hypothesis every time. Tables of these have been constructed
(Table A.6 in the Appendix). Our example was a one-tailed prediction but
if we had performed a two-tailed test we would have to consider both the
sum of the negative ranks and the sum of the positive ranks and taken the
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smaller value as T. The critical value of T for significance would also have
to take into account both tails of the distribution (i.e. the chances of getting
a small T with positive values or negative values) and hence be more
conservative than for the one-tailed test. We have to remember that when
we look up T we need the calculated value to be equal to or lower than the
table value for significance.

For small values of n, less than 25, we have the tables of the critical
values of T when the null hypothesis is true. However, the distribution of
T approximates a normal distribution as n (the number of subjects) gets
larger with:

µ σ(   )
    

(   )(   )
=

+
=

+ +n n n n n1

4

1 2 1

24
and

Hence, when n is 25 or larger, we can test the significance of T by calculating
a z score and comparing it to the standard normal distribution tables, where

z
T

n n

n n n

(   )

(   )(   )
=

− +

+ +

1

4
1 2 1

24

We must be cautious in the use of T when we are dealing with data that
includes more than a few tied ranks as it is unlikely to be appropriate to use.
In this case we should examine the measure of the dependent variable and
see if we can make it more sensitive, to produce more distinction between
the difference scores and hence fewer tied ranks.

1 Calculate a difference score for each subject, the score in Sample 1
minus the score in Sample 2. When a subject has a zero difference
score we remove the subject from the analysis and reduce the size of n
by 1 in each case.

Procedure for calculating the Wilcoxon signed-ranks test

The distribution of T
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2 Rank the difference scores from lowest to highest, ignoring the sign.
3 Sum the ranks of the positive differences (∑ R+) and sum the ranks of

the negative differences (∑ R−). The smaller of the positive and negative
sums of ranks is the calculated value of T. (If a one-tailed prediction
has been made the smaller of the two values should be consistent with
the prediction. If it is not then it certainly is not significant.) It is worth

checking that ∑ R+ + ∑ R− =
n n(   )+ 1

2
, as both sides of the equation

add up to the sum of the ranks.
4 Compare the calculated value of T with the critical value in the table

(Table A.6), using n to find the correct value, at the chosen level of
significance. The calculated value of T must be equal to or smaller
than the value in the table for significance.

An interview panel of ten interviewers were asked to rate the two final
candidates on a scale of 1 to 20 in terms of their suitability for a vacant post.
Is one candidate rated significantly higher than the other by the interviewers?

Interviewer Candidate 1 Candidate 2

1 14 10
2 17 7
3 12 14
4 16 6
5 14 14
6 10 4
7 17 10
8 12 4
9 6 11

10 18 6

We shall make no assumptions about the data or the population dis-
tributions except that the data is ordinal and so perform a Wilcoxon signed-
ranks test to examine the hypothesis. First we work out the difference
scores (Candidate 1 − Candidate 2) for each participant (interviewer). Zero

A worked example
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differences are excluded from the analysis and the differences are ranked on
their size as in the table below.

Interviewer Candidate 1 Candidate 2 Sign of Size of Rank
difference difference

1 14 10 + 4 2
2 17 7 + 10 7.5
3 12 14 − 2 1
4 16 6 + 10 7.5
5 14 14 0
6 10 4 + 6 4
7 17 10 + 7 5
8 12 4 + 8 6
9 6 11 − 5 3

10 18 6 + 12 9

Interviewer 5 is rejected from the analysis as the difference score is zero, so
the number of participants, n, is now 9. We next calculate the sum of ranks
for the positive differences and the negative differences.

∑ R+ = 2 + 7.5 + 7.5 + 4 + 5 + 6 + 9 = 41

∑ R− = 1 + 3 = 4

No specific prediction is being made so it is a two-tailed test. We take the
smaller value for the calculated value of T, so T = 4. At the p = 0.05 level
of significance, with n = 9, the table value of T is 5 for a two-tailed test. As
the calculated value of T is smaller than the table value we can say that the
interviewers significantly favour Candidate 1 in their ratings.
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WH E N  T H E  D A T A  F O R  A N A L Y S I S  is not from an interval scale or
the assumptions of the ANOVA are not met, we have to perform a

nonparametric test. With a one factor design where we are analysing more
than two samples we perform either the Kruskal–Wallis test, if the samples
are independent, or the Friedman test, if the samples are related. These tests
are the nonparametric equivalents of the one factor independent measures
ANOVA and the one factor repeated measures ANOVA.

The Kruskal–Wallis test performs an analysis that is very similar to an
analysis of variance on the ranks. The test is performed when the assump-
tions of the parametric ANOVA cannot be made. An example of such data
occurs in the following illustration. A researcher was interested in differ-
ences in attractiveness and the selection of candidates for jobs. As well as
examining female attractiveness a number of experiments were undertaken
on male attractiveness. One of the questions considered was whether differ-
ent types of facial hair led to different judgements of male attractiveness
by women. A female personnel officer in a large company agreed to rate
photographs of men’s faces on attractiveness on a 0 to 50 scale, with a high
value indicating a high level of attractiveness. Out of a large pool of photo-
graphs of different men, five men with beards, five men with moustaches
and five clean shaven men were randomly selected. (The photographs in the
pool had been matched on age, hairstyle and tidiness.) If we examine the
data below can we observe an effect of facial hair on the attractiveness
judgements?

Kruskal–Wallis test (for independent measures)
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Facial hair

Beard Moustache Clean shaven

Rating Rank Rating Rank Rating Rank

5 1 9 3 23 10
6 2 16 6 28 12

10 4 19 8 35 13
15 5 25 11 44 14
17 7 20 9 47 15

T1 = 19 T2 = 37 T3 = 64

As we have independent measures on the factor facial hair we rank all
the scores in the data, irrespective of condition. These ranks are shown
above. If there was no difference between the conditions we would expect
the ranks to be evenly scattered across them. If there is an effect of the
independent variable we would expect there to be systematic differences
between the conditions, such as all the high ranks in one condition. We
need to find a way of measuring the clustering of similar ranks within
specific conditions.

If we had been performing an ANOVA we would work out F, where

F
MS

MS
bet conds

error

.= . However, in the Kruskal–Wallis test we calculate a slightly

different statistic on the ranks, called H, where

H
SS

MS
bet conds

total

.=

We use the usual formulae for working out sums of squares and mean
square but as we are dealing with ranks we can work out much simpler
formulae for them in our calculation of H.

We know that SS X
X

N
total     

( )
= −∑ ∑2

2

but as we are dealing with

ranks (R) rather than scores (X), with no tied ranks we can replace some of
the terms in the formulae:
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X R
N N N

2 2
1 2 1

6∑ ∑= =
+ +

    
(   )(   )

 and

X R
N N∑ ∑= =

+
    

(   )1

2

From this we have that ( )   ( )   
(   )

X R
N N

2 2
2 21

4∑ ∑= =
+

Substituting these formulae for ranks into the formula for the total sums of
squares we get:

SS
N N N

total

(   )(   )
=

+ −1 1

12

As the total degrees of freedom in the data is N − 1, then:

MS
N N

total

(   )
=

+ 1

12

This means that whatever data we collect, the MStotal of the ranks will be a
fixed value for N. We can see why H is calculated rather than F here. MStotal

provides us with a fixed value of ‘average’ variance that we get with N
ranks regardless of the effect of the independent variable. If we measure
the between conditions variability against this fixed value we can see how
much greater the variability between the conditions actually is. For example,
with an N of 15 the MStotal will always be 20 (when there are no tied ranks).

From the usual formula for sums of squares:

SS
T

n

X

N
bet conds.    

( )
= −∑ ∑2 2

When we substitute the ranks formula for (∑ X 2) we get:

SS
T

n

N N
bet conds.    

(   )
= −

+∑ 2 21

4

where T is the total of the ranks in a condition and ∑ T2 = T 1
2 + T 2

2 + . . . + T k
2,

k being the number of conditions, and n the number of scores in each condition.
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From these calculations we can work out a relatively simple formula
for H:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

H is a formula which tells us how much variability there is between the
conditions (the sums of squares) compared to the ‘average’ variance in the
ranks. As MStotal is always fixed for N the important degrees of freedom is
that between conditions, df = dfbet.conds = k − 1 as H is influenced by the
number of conditions under study.

In the facial hair example, N = 15, n = 5, k = 3, T1 = 19, T2 = 37,
T3 = 64 and

H df
(   )

    
  (   )  . ,   =

+
×

+ +
− + = =

12

15 15 1

19 37 64

5
3 15 1 10 26 2

2 2 2

So the variability between the ranks of the conditions (the between con-
ditions sums of squares) is 10.26 times larger than the ‘average’ variance
(the total mean squares) in the ranks.

Just like the independent measures ANOVA we can have a different number
of subjects in each condition. If this is the case then the formula for H is:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

where ∑ = + +
T

n

T

n

T

n
k

k

2
1
2

1

2

      K , and n1 to nk are the number of subjects in

conditions 1 to k.

We can ask why we find H rather than F when we have ranks. There are a
number of reasons. As noted above, MStotal is a fixed value for N. In our

The distribution of H

Unequal sample sizes
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example, with N = 15, it will always be 20 regardless of the number of
conditions and the variability between them. We can therefore use MStotal

as a benchmark with which to compare the actual variability of the ranks
between the conditions. If there is no variability between the conditions
SSbet.conds will be zero as the total of ranks within each condition will be the
same, and if there is lots of variability between the conditions then SSbet.conds

will be large, as the similar ranks will cluster within specific conditions. But
how large is large? This is why we compare it to MStotal. In our example,
when we calculate them separately we find SSbet.conds = 205.2 and MStotal

= 20, so SSbet.conds is over 10 times larger than MStotal, implying that the
variability between conditions is not random, and indicates an effect of
facial hair on the judgements of attractiveness. We now need to find the
distribution of H under the null hypothesis to find the value of H required
for significance.

This is where we can see how useful H is as a statistic. It turns out that
the distribution of H is known, as H closely approximates a distribution
called the chi-square (χ2) distribution, which is known. As long as we have
at least 5 scores in each condition H is accurate to two decimal places.14 We
shall be looking at the χ2 distribution in more detail in the next chapter but
it is worth noting the following: z is a deviation from a mean divided by a
standard deviation. If we square z then z2 is a squared deviation divided by
a variance. A distribution of z2 is a χ2 distribution. A sum of z2s is also a χ2

distribution, and a sum of z2s is a sums of squares divided by a variance,
which is what we have with H.

Clearly, the size of H depends on the number of conditions and so we
must look up the significance of H using df = dfbet.conds = k − 1. Fortunately
the χ2 distribution has been worked out for different degrees of freedom.
In our example with df = 2 we can look up the appropriate value of χ2.
From the tables of the χ2 distribution, Table A.7 in the Appendix, χ2 = 9.21,
p = 0.01, df = 2. As our calculated value of H is larger than the table value
we can conclude that there is a significant difference (at p = 0.01) between
the different conditions of facial hair in the judgements of attractiveness.

If we have tied ranks we really should use the original formulae on the
ranks for SSbet.conds and MStotal. When we use the formula for H with tied
ranks the calculated value for H will tend to be smaller than it really should
be and we might miss a significant difference. To compensate we may wish

Tied ranks
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to employ a correction C, where: C
t

N N
    = −

∑
−

1
3

, and the corrected value

of H
H

C
c = . In the formula for C, N is the total number of scores in the data

(as above) but ∑ t = ∑(t i
3 − ti), which means that for each group of tied ranks

i, ti is their number. Consider the following ranks: 1, 2.5, 2.5, 4, 5, 7, 7, 7,
9, 10. Here there are two sets of tied ranks: 2 at 2.5 and 3 at 7, so:

∑ t = ∑(t i
3 − ti) = (23 − 2) + (33 − 3) = 6 + 24 = 30, giving

C      .= −
−

=1
30

10 10
0 97

3
, so our calculated value of H would be divided by

0.97 which would give us a slightly higher value for comparison with the
table value for significance.

However, it is only when the calculated value is close to significance
that this would arise and we should always pay attention to results that only
just miss significance. In most cases we can work out the value of H using
the simpler formula without worrying about tied ranks, as long as there are
not too many of them.

1 Rank all the scores in the experiment, irrespective of condition.
2 Add up the ranks for each condition to produce a rank total for each

condition: T1, . . . , Tk where k is the number of conditions.

3 Calculate H using the formula: H
N N

T

n(   )
=

+
× ∑12

1

2

− 3(N + 1),

which allows for different numbers of subjects in each condition. N is
the total number of subjects and n1, . . . , nk are the number of subjects
in the k conditions.

4 The calculated value of H must equal or exceed the table value of χ2

with k − 1 degrees of freedom at the chosen level of significance to
reject the null hypothesis. Table A.7 in the Appendix gives the critical
values of the χ2 distribution.

A group of 18 people who found it hard to relax agreed to take part in a test
of three relaxation techniques, a pill to aid restfulness, hypnosis and exercise.

A worked example

Procedure for calculating the Kruskal–Wallis test
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After a week employing the technique the participants were asked to rate
their ability to relax on a 50 point scale (ranging from 0 much worse, 25 no
change, through to 50 much better than before). Six people undertook the
pill methods, five hypnosis and seven exercise. Is there an effect of relaxa-
tion method on their ratings?

The data are shown in the table below with their ranks.

Condition 1 Condition 2 Condition 3

Pill Rank Hypnosis Rank Exercise Rank

14 2.5 29 11 44 18
10 1 38 15 30 12
18 4 27 9 40 16
22 6 25 7 28 10
14 2.5 26 8 33 13
20 5 35 14

42 17

n1 = 6 T1 = 21 n2 = 5 T2 = 50 n3 = 7 T3 = 100

We now calculate H:

H
N N

T

n
N

(   )
    (   )=

+
× − +∑12

1
3 1

2

=
+

+ +⎛
⎝⎜

⎞
⎠⎟

− +
(   )

      (   )
12

18 18 1

21

6

50

5

100

7
3 18 1

2 2 2

H  ( .     . )    .= + + − =
12

342
73 5 500 1428 57 57 13 25

Degrees of freedom, df = k − 1 = 3 − 1 = 2.
From the χ2 tables, at p = 0.01, χ2 = 9.21, df = 2. As the calculated

value of 13.25 is greater than the table value (Table A.7 in the Appendix)
we can conclude that there is a significant difference (at p = 0.01) between
the relaxation methods on the participants’ ratings.
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We can perform a post hoc multiple comparison test after a significant
Kruskal–Wallis test in a similar manner to a Tukey test. From Chapter 12
we can write: Tukey’s honestly significant difference = q × standard error,
where q is the Studentized range statistic. We use a variation of this called
the Nemenyi test to compare pairs of samples following a Kruskal–Wallis
test, where, instead of comparing the sample means, we compare the sample
rank totals. Futhermore the standard error (SE) is now calculated as follows:

SE  
( )(   )

=
+n nk nk 1

12
, where k is the number of conditions and n the number

of scores in each condition. We look up the value of q in Table A.4 using
the significance level (usually 0.05), the number of samples k and, in this
case, the infinity line of the degrees of freedom (∞). If the difference
between a pair of rank totals (e.g. T1 and T2) is greater than q × SE then the
difference between the conditions is significant at the chosen significance
level.

The problem with the Nemenyi test is that it requires all samples to be
of the same size (n). With unequal sample sizes we can use Dunn’s test with

SE  
(   )

=
+

+
⎛
⎝⎜

⎞
⎠⎟

N N

n ni j

1

12

1 1

where ni and nj are the sample sizes of the two conditions.15 We must
compare the mean rank for our conditions rather than the rank totals (e.g.

for condition 1 the mean rank will be 
T

n
1

1

). A difference in mean ranks must

be greater than Q × SE. Q is the statistic for differences in mean ranks and
the values of Q are found in the table overleaf for the different values of k
at the significance levels of 0.05 and 0.01.16

Post hoc multiple comparisons following the Kruskal–Wallis test
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Critical values of the Q statistic
k p = 0.05 p = 0.01

2 1.960 2.576
3 2.394 2.936
4 2.639 3.144
5 2.807 3.291
6 2.936 3.403
7 3.038 3.494
8 3.124 3.570
9 3.196 3.635

10 3.261 3.692

In the above worked example, the mean ranks are:

  
A A1 2      . ,       . ,= = = = = =

T

n

T

n
1

1

2

2

21

6
3 50

50

5
10 00

  
A3       .= = =

T

n
3

3

100

7
14 29

For a significance level of p = 0.05, with three conditions (k = 3), Q = 2.394.

For condition 1 versus condition 2: SE  
(   )

    .=
+

+⎛
⎝

⎞
⎠ =

18 18 1

12

1

6

1

5
3 23, so

Q × SE = 7.73. Hence the difference in mean ranks for conditions 1 and 2
of 6.5 is not significant at p = 0.05. For condition 1 versus condition 3,
SE = 2.97 and Q × SE = 7.11. The difference in mean ranks of 10.79 is
significant at p = 0.05. Finally, for conditions 2 and 3, SE = 3.13, giving
Q × SE = 7.49. Hence their difference in mean ranks of 4.29 is not significant
at p = 0.05.

The Friedman test is a nonparametric test that can be performed when we
cannot make the assumptions necessary for the parametric one factor repeated
measures ANOVA. In this test the analysis is performed on the ranks. As

The Friedman test (for related samples)
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there are repeated measures the scores are ranked within each subject rather
than across all the scores. In the example below six personnel officers were
asked to rate, on a 0–10 scale, colours of business suits in terms of profes-
sional image. Three suit colours were chosen for the conditions: brown,
black and blue.

Suit colour

Brown Black Blue
Rank

Participant Rating Rank Rating Rank Rating Rank total

1 5 1 8 2 9 3 6
2 4 1 6 3 5 2 6
3 3 1 4 2 9 3 6
4 5 2 4 1 8 3 6
5 4 1 5 2 6 3 6
6 5 2 3 1 7 3 6

T1 = 8 T2 = 11 T3 = 17

If there was no difference in the samples we would expect the ranks to
be evenly spread amongst the conditions. If there is an effect of the inde-
pendent variable then we would expect similar ranks to cluster in specific
conditions. In the above example most the Rank 1s are in the ‘brown’
condition, most of the Rank 2s in the ‘black’ condition and most of the
Rank 3s in the ‘blue’ conditions so we would expect our statistic to indicate
a significant difference between the conditions.

With the one way repeated measures ANOVA we work out F but in
the Friedman test we work out χ r

2 which is a chi-square on the ranks, where

χ r
bet conds

with subjs

SS

MS
2 .

.

=

Notice from the above table that when we rank the data for each participant
there is no variation between the subjects (SSbet.subjs = 0) as the rank total for
each subject is always the same, in our case they all add up to 6. So all the
variation in the ranks is within the subjects (SStotal = SSwith.subjs). We can see
from this the similarity of the Kruskal–Wallis and the Friedman tests.
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The formula for SSwith.subjs is:

SS X
T

k
with subjs

S

.     = −∑ ∑2
2

As we are dealing with ranks, if there are no tied ranks:

X R
nk k k

T
nk k

S
2 2 2

2 21 2 1

6

1

4∑ ∑ ∑= =
+ +

=
+

    
(   )(   )

    
(   )

and

These formulae for ranks are slightly different for those shown in Chapter
16 as we are ranking within each subject, not across all the scores in the
experiment. We can now replace the ANOVA formula for scores with the
replacement formulae for ranks.

SS
nk k k nk k

with subjs.

(   )(   ) (   )
=

+ +
−

+1 2 1

6

1

4

2

Simplifying the formula we get:

SS
nk k k

with subjs.

(   )(   )
=

+ −1 1

12

The degrees of freedom within the subjects is n(k – 1), so:

MS
k k

with subjs.

(   )
=

+ 1

12

This is a fixed value for each value of k. With three conditions, as in our
example, MSwith.subjs will always be 1.

The sums of squares between the conditions can be worked out from
the following formula:

SS
T

n

X

nk
bet conds.     

( )
= −∑ ∑2 2

where nk = N the total number of scores and T1, . . . , Tk are the totals of the
scores in each condition.
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As we have ranks, assuming no ties, we can replace ∑ X with 
nk k(   )+ 1

2
in the formula and T becomes the total of the ranks in a condition:

SS
T

n

nk k
bet conds.     

(   )
= −

+∑ 2 21

4

And finally,

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k  with k − 1 degrees of freedom

In our business suit colour example, n = 6, k = 3, T1 = 8, T2 = 11,
T3 = 17:

χr
2

12

6 3 3 1  (   )
=

× +
(82 + 112 + 172) − 3 × 6(3 + 1) = 7, with df = 2

As with the Kruskal–Wallis H statistic, χ r
2 compares the between conditions

sums of squares to a fixed value, the ‘average’ variance in the ranks. If the
null hypothesis is true we would expect the variability between conditions
to be zero. When the null hypothesis is false we would expect the between
conditions variability to be large. Our definition of large in this case is taken
relative to the fixed value MSwith.subjs.

Again, as with the Kruskal–Wallis H statistic, χ r
2 approximates the χ 2

distribution, with the appropriate distribution found using the degrees of
freedom between the conditions, k − 1. However, when there are few condi-
tions and a small number of subjects (k = 3 and n < 10 or k = 4 and n < 5)
then the χ 2 distribution is not such a good fit for χ r

2.17 In these cases we
must work out the various probabilities for χ r

2 when the null hypothesis is
true. Let us take, for example, the case where k = 3 and n = 3. For each
subject there are six ways in which the ranks 1, 2, and 3 could be arranged
across the three conditions, so for three subjects there are 6 × 6 × 6 = 216
ways of arranging the ranks in total. The maximum value of χ r

2 is 6. This
occurs when, for every subject, the same rank is in the same condition. This
can occur in six ways. This gives us a probability of 6/216 or p = 0.028 of

The distribution of χ r
2
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obtaining a value of χ r
2 = 6 by chance. The next largest value of χ r

2 is 4.67
and the probability of obtaining this value is larger than 0.05. Thus, with
k = 3 and n = 3 only χ r

2 = 6 is significant at p = 0.05. The critical values of
χ r

2 for small sample sizes are shown in Table A.8 in the Appendix.
The example of the business suits is a small sample case with k = 3 and

n = 6. The table value for p < 0.05, is 7. As the calculated value of χ r
2 = 7

is the same we can conclude that there is a significant effect (at p = 0.05)
of business suit colour on the judgements of professional image.

We must be careful if there are a lot of tied ranks in the data as this
might make the analysis inaccurate. Fortunately as we are ranking within
each subject this is not likely to occur often. However, if there are more
than a few tied ranks it is worth considering whether it is possible to make
the dependent variable more sensitive and reduce the number of ties.

1 Set out the data with the subjects as rows and the conditions as columns.
2 Rank each of the n subjects’ scores separately, from lowest to highest.
3 Work out the rank total (T ) for each condition: T1, . . . , Tk, where k is

the number of conditions.
4 Calculate χ r

2 using the following formula:

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k with k − 1 degrees of freedom.

5 The calculated value of χ r
2 must be larger than or equal to the appropriate

table value of χ2 (Table A.7 in the Appendix) or larger or equal to the
value of χ r

2 in the small samples table (Table A.8).

Ten people stay at a hotel where they eat all their meals. On one day they
are asked to rate the quality of food for the three meals, breakfast, lunch
and dinner, on a scale of 0 to 100 (from bad to good). Is there a difference
between the three meals in their rated quality?

The results of the ratings are shown in the table below. The data is
assumed only to be ordinal and no assumptions are made about the underlying
distributions.

A worked example

Procedure for calculating the Friedman test
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Breakfast Lunch Dinner

Participant Rating Rank Rating Rank Rating Rank

1 50 1 58 3 54 2
2 32 2 37 3 25 1
3 60 1 70 3 63 2
4 41 1 66 3 59 2
5 72 1 73 2 75 3
6 37 3 34 2 31 1
7 39 1 48 3 44 2
8 25 2 29 3 18 1
9 49 2 54 3 42 1

10 51 1 63 2 68 3
n = 10
k = 3 T1 = 15 T2 = 27 T3 = 18

The ratings are ranked for each participant as in the table above and the
total of the ranks in each condition is calculated. We now calculate χ r

2:

χr
2 2

12

1
3 1

(   )
  (   )=

+
− +∑nk k

T n k

=
× ×

+ +
    

(     )
12

10 3 4
15 27 182 2 2 − 3 × 10 × 4

= 0.1 × 1278 − 120 = 7.8 with df = k − 1 = 3 − 1 = 2

From Table A.7, p = 0.05, df = 2, χ2 = 5.99. As our calculated value of χ r
2

is larger than the table value of χ2 we can conclude that there is a significant
difference between the meals in terms of the ratings of meal quality.

We can employ a Nemenyi test, a variation of the Tukey test, to undertake
pairwise comparisons of the conditions after a significant Friedman test. In
this test we compute a standard error (SE) using the formula:

Post hoc multiple comparisons following a Friedman test
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SE  
(   )

=
+nk k 1

12

We then look up the appropriate value of the Studentized range statistic q
from Table A.4 using the chosen significance level (e.g. 0.05), the number
of conditions k, and the infinity row for the degrees of freedom (∞). If a
difference in the rank totals of two conditions is larger than q × SE then we
can claim a significant difference between the conditions.

In the above example, with n = 10 and k = 3, SE  
    (   )

=
× × +10 3 3 1

12
=

3.16 and q = 3.31 at p = 0.05. From these values we work out that q × SE
= 10.46. As T1 = 15, T2 = 27 and T3 = 18 we can conclude the following.
There is a significant difference between conditions 1 and 2 (as the rank
total difference of 12 is greater than 10.46), but the differences between
conditions 1 and 3 (rank total difference of 3) and between conditions 2 and
3 (rank total difference of 9) are not significant at p = 0.05.

Details on how to calculate the Kruskal–Wallis and Friedman tests
using the SPSS computer statistical package can be found in Chapter 13
of Hinton et al. (2004).


