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There are many occasions when we want to examine the effects of an
independent variable on the dependent variable when the data are nominal:
the numbers indicate the category the subject belongs to rather than a position
on an ordinal or interval scale. An experimenter interested in hair length of
female students might categorise hair length into two categories: long (on or
below the shoulder) and short (above the shoulder). Female students could
then be sampled to see whether there is a preference for long or short hair
on campus. Note that the data collected from the students is neither a score
nor a rating. The researcher is collecting frequency data, that is adding up
the number of participants in each category. If 100 female students were
randomly sampled and 62 had long hair and 38 short hair can we conclude
that there is a significant preference for long hair? The statistic examined in
this chapter, chi-square (χ2), allows us to analyse frequency data to answer
such questions. We are not limited in the number of (independent) categories
we choose, which makes this a very useful statistic, particularly when we
are undertaking questionnaires or surveys. If we wanted to compare liberals
and conservatives on, say, a proposed piece of new taxation legislation we
could ask a number of liberals and conservatives whether they are for or
against the legislation. Here we have four categories: liberals-for, liberals-
against, conservatives-for and conservatives-against, with their respective
frequency counts. If we included the category ‘don’t know’ for each political
group we would increase our categories to six.

The simplest way to view the χ2 statistic is as the square of the z statistic:

χ µ
σ

2 2
2

2
    

(   )
= =

−
z

X

χ2 is the square of the deviation of a score from its population mean divided
by the population variance, where the population is normally distributed.

Introduction to χχχχχ2

Nominal data, categories and frequency counts
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Just as we saw that the F statistic in its simplest case is t2 and therefore
never negative we also find that χ2, also a squared value, is always positive.
Like F we are only interested in the high values of the χ2 distribution but it
is always a two-tailed test in that a large positive z score or a large negative
z score both square to a large positive χ2.

In most cases we are testing samples rather than individual scores and
this is where χ2 turns out to be so useful in data analysis. If we select
mutually independent samples from which to obtain X then it turns out that
the sum of the individual χ2s is also a χ2:

χ µ
σ
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This means that we can find a χ2 for each sample and the sum of the χ2s
will also be a χ2. This allows us to compare samples against the sampling
distribution of χ2. However, the shape of the χ2 distribution depends on the
number of χ2s that are summed, so we must take into account the degrees of
freedom of the samples (the number of samples minus one). If we have four
categories then the degrees of freedom for χ2 is c − 1 = 3, where c is the
number of categories.

In the hair length example there are two categories (c = 2). The two
samples are mutually independent as a student cannot be in both categories.
Imagine that we tested 100 women students (N = 100). If there was no
preference for hair length then we would expect to find half the students
with long hair (probability, p1 = 0.5, where ‘long hair’ is Category 1) and
half the students with short hair (probability, p2 = 0.5, where ‘short hair’ is
Category 2). Thus, when the null hypothesis is true we would expect Np1

students (100 × 0.5 = 50) to have long hair and Np2 (50 as well) to have
short hair. Are the figures of 62 and 38 significantly different from the 50
we would expect in each category under the null hypothesis? This is where
χ2 comes in. The following formula turns out to approximate the χ2 dis-
tribution when the null hypothesis is true.

χ 2
2(   )

=
−⎛

⎝⎜
⎞
⎠⎟∑ X Np

Np
with c − 1 degrees of freedom

where X is the observed frequency count in a category and Np is the frequency
count we would expect when the null hypothesis is true.

This is not exactly a χ2 distribution but the approximation is very good
as long as we make sure that Np is at least 5, that is the expected frequency
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of each category under the null hypothesis must be at least 5. This formula
provides us with a distribution to compare our actual values to in order to
test the significance of our differences between frequency counts.

There are two categories in the hair length experiment, so we can
work out a χ2 using the new formula.

χ 2 1 1
2

1

2 2
2

2

2 262 50
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with df = c − 1 = 2 − 1 = 1 degree of freedom.
If we look up the tables for the χ2 distribution (Table A.7 in the

Appendix) the critical value for χ2 = 3.84 with df = 1 and p = 0.05. As the
calculated value is greater than the table value we can conclude that there is
a significant preference for long hair by the female students on campus.

The more usual way to express the above formula for χ2 is to rename
X as the observed frequency (O) and Np as the expected frequency (E) so
the χ2 formula that we use is:

χ 2
2

1
(   )

      =
−⎛

⎝⎜
⎞
⎠⎟

= −∑ O E

E
df cwith

In many cases we wish to examine whether a pattern of frequencies signific-
antly differs from an expected pattern of frequencies. Usually the expected
frequencies are those found when the null hypothesis is true but they do not
have to be, we can compare the observed frequencies with any pattern of
expected frequencies we wish to choose. This is why the test is called a
‘goodness of fit’ test: we can use it to decide if a set of observed frequencies
are a good fit for a particular pattern of expected frequencies.

An experimenter set out to test whether there is a difference in colour pre-
ference for cars. One hundred participants were given four pictures of cars,

Chi-square (χχχχχ2) as a ‘goodness of fit’ test

A worked example
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identical but for the colour, and asked to state their preference. The colours
presented were red, blue, black and white.

If there was no preference then we would expect each colour to be
chosen equally, so we would expect the probability of each category being
chosen to be 1/4 or p = 0.25 when the null hypothesis is true. With a total
(N ) of 100, we would expect each category to be chosen by Np of them,
100 × 0.25, which is 25. On performing the experiment, the researcher finds
48 participants choose the red car, 15 the blue, 10 the black and 27 the
white. Do these observed frequencies differ significantly from the expected
frequencies?

We compare the pattern of observed frequencies with that of the
expected frequencies by calculating χ2.

χ 2
2(   )
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  .
48 25

25

15 25

25

10 25

25

27 25

25
34 32

2 2 2 2

with df = c − 1 = 4 − 1 = 3.

From Table A.7, χ2 = 11.34, df = 3, p = 0.01. As our calculated value of
χ2 is greater than the table value we can reject the null hypothesis. There
is a significant difference ( p < 0.01) between the observed and expected
frequencies; the four colours are not equally preferred.

In most cases we will compare observed frequencies with those found under
the null hypothesis but there is one case in particular where we might choose
another set of expected frequencies. We are often making the assumption
with parametric tests that the sample or samples come from normally distrib-
uted populations. There might be occasions when we actually want to check
this out. This is where the χ2 goodness of fit test can be used.

Two hundred people were tested on a complex hand–eye co-ordination
test and the number of errors each participant made was measured. The scores
range from 22 to 69. The sample has a mean of B = 46.86 and a standard
deviation of s = 6. Does this sample differ significantly from the normal
distribution?

Testing the ‘goodness of fit’ to the normal distribution
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First we choose the categories to adopt. The more categories we
choose the more sensitive the test but we end up with fewer scores in each
category. With a range from 22 to 69 categories of size 5 will result in 10
categories. These are shown in the first column of the table below. The
boundaries of the categories are chosen at 0.5, half the smallest possible
difference between the scores. (The minimum possible difference between
the scores is 1, one error.) This is done so no two categories overlap. If I
had taken 25 as a category boundary then a score of 25 could go into both
the 20–25 and the 25–30 category but with 25.5 as a boundary it only goes
into the 20.5–25.5 category and not the 25.5–30.5. It also means that there
are no gaps between the categories, they cover the whole range. The next
thing to do is to allocate the 200 scores to their correct categories. These
are our observed frequencies and they are shown in the second column of
the table.

We now need to work out the expected frequencies. To do this we
convert the category boundaries to z scores using the z formula. Unfortun-
ately we do not have the population mean and standard deviation which
we need to work out a z score so we estimate them using the sample values,
B and s.

  
Estimated   

  .
z

X

s

X
=

−
=

−B 46 86

6

For the first category, scores of 20.5 and 25.5 convert to z scores of −4.39
and −3.56. We do this for all the category boundaries. These results are
shown in the third column of the table.

If we look these figures up in the standard normal distribution table
(Appendix A.1) we can find the probabilities associated with each score.
These probabilities are shown in the fourth column. (Recall that the prob-
ability of a z score less than −4 is so small as to be taken as zero.) The
difference in the probability between the category boundaries will tell us
the probability of finding a score in this category when the distribution is
normal. These are shown in the fifth column. (It is a little difficult finding
the probability of the category surrounding the mean as one z score is
positive and one negative. We simply take the difference of each from 0.5
and add the results.)

Multiplying the probability of finding a score in a category when the
distribution is normal ( p) by the number of participants (N = 200) will give
us the expected frequency in each category. These are shown in the sixth
column.



A N A L Y S I N G  F R E Q U E N C Y  D A T A :  C H I - S Q U A R E

253

Category Observed z score Diff. Expected χ2

boundary frequency Probability in prob. frequency

20.5 1 −4.39 0.0000 0.0002 0.04
25.5 −3.56 0.0002

25.5 2 −3.56 0.0002 0.0030 0.60
0.1317

30.5 −2.73 0.0032

30.5 2 −2.73 0.0032 0.0262 5.24
35.5 −1.89 0.0294

35.5 26 −1.89 0.0294 0.1152 23.04 #
0.380340.5 −1.06 0.1446 $

40.5 55 −1.06 0.1446 0.2644 52.88 #
0.085045.5 −0.23 0.4090 $

45.5 60 −0.23 0.4090 0.3201 64.02 #
0.252450.5 0.61 0.2709 $

50.5 34 0.61 0.2709 0.1960 39.20 #
0.689855.5 1.44 0.0749 $

55.5 16 1.44 0.0749 0.0633 12.66
60.5 2.27 0.0116

60.5 3 2.27 0.0116 0.0107 2.14 1.6823
65.5 3.11 0.0009

65.5 1 3.11 0.0009 0.0009 0.18
70.5 3.94 0.0000

We are nearly ready to calculate χ2, however, there are categories with
expected frequencies less than 5 and we must not allow this for the test to be
valid. What we can do to overcome this is to combine categories. If we com-
bine the top three categories to make one new one and also do the same with
the bottom three categories we end up with six categories all with expected
frequencies greater than 5. The new category 20.5–40.5 has an observed fre-
quency of 5 and an expected frequency of 5.88. the new category 55.5–70.5
has an observed frequency of 20 and expected frequency of 14.98. Finally,

χ 2
2

=
−⎛

⎝⎜
⎞
⎠⎟∑ (   )O E

E

= 0.1317 + 0.3803 + 0.0850 + 0.2524 + 0.6898 + 1.6823

χ2 = 3.2215

5
4
4
6
4
4
7

5
4
4
6
4
4
7
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The degrees of freedom are one less than the number of categories so are
6 − 1 = 5. However, in this case we did not know the population mean and
standard deviation and used our sample to estimate them. In doing this we
‘used up’ a degree of freedom on each estimation, so we take our degrees
of freedom as 3. From tables χ2 is 7.82, df = 3, p = 0.05. We can conclude
that as the calculated value is less than the table value we have not found a
significant difference between the distribution of our scores and a normal
distribution.

The χ2 test of independence operates in the same way as the goodness of
fit test in that it compares observed with expected frequencies, but in the
test of independence we are comparing two or more patterns of frequencies
to see if they are different from each other (independent or not). If we
sampled conservatives and liberals on new taxation legislation then we
could see if the pattern of frequencies ‘for’ and ‘against’ was different for
the conservatives compared to the liberals using the χ2 test.

A researcher wanted to test the difference of opinion between conservat-
ives and liberals on some new taxation legislation. In a survey, 120 people
were identified as conservatives and 80 as liberals. A question on the
survey asked whether the respondent agreed with the new taxation legis-
lation (‘for’), disagreed with it (‘against’), or had no opinion or did not
know about it (‘don’t know’). The results, the observed values, are shown
in the table below.

Observed For Against Don’t know Row totals
frequencies

Conservatives 78 30 12 120
Liberals 18 50 12 80
Column totals 96 80 24 200

A worked example

Chi-square (χχχχχ2) as a test of independence



A N A L Y S I N G  F R E Q U E N C Y  D A T A :  C H I - S Q U A R E

255

Notice that, with different numbers of conservatives and liberals, we would
not expect the same numbers in the various categories even under the null
hypothesis. As there are more conservatives than liberals the 12 conservat-
ives in the ‘don’t know’ category are 12/120 or 10 per cent of their group
whereas the 12 liberals in the same category are 12/80 or 15 per cent of
their group. Relatively more liberals gave this answer than conservatives.
What we would expect, when there is no difference between the groups in
their pattern of responses, is that there is the same proportion of each group
total in each category. We can work out the expected values, when the null
hypothesis is true, by the following formula.

The expected value of a cell
row total column total

overall total
=

×

A cell is a category, so we have six cells, c = 6. Let us take the first cell
(conservatives-for) as an example. If there was no difference between the
two political groups in terms of the proportion answering ‘for’ then the
96 people who actually responded ‘for’ should be divided into conservative
and liberal in proportion to their relative number. Out of the 200 people the
proportion of conservatives is 120/200. So, of the 96 people answering ‘for’
we would expect the following to be the number of conservatives if there is
no difference between the groups:

E   .=
×

=
96 120

200
57 6

We can do this for all the cells to produce the expected values.

Expected For Against Don’t know Row totals
frequencies

Conservatives 57.6 48.0 14.4 120
Liberals 38.4 32.0 9.6 80
Column totals 96 80 24 200

We now work out χ2 using the usual formula.
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χ2 = 7.23 + 6.75 + 0.4 + 10.84 + 10.13 + 0.6 = 35.95

To decide whether this is significant we must compare it to the appropriate
χ2 distribution. We have to be careful here, the degrees of freedom is not
the number of categories minus one, c − 1. This is because we are interested
in comparing the rows (the two political groups) on pattern of results across
the columns (the different opinions). This is a difference between the good-
ness of fit and test of independence. Here, we have 2 rows, R = 2, and two
columns, C = 3. For the test of independence the degrees of freedom is:

df = (R − 1)(C − 1)

In our example df = (2 − 1)(3 − 1) = 2. From tables χ2 = 9.21, df = 2,
p = 0.01. As our calculated value is greater than the table value we can
reject the null hypothesis at the p = 0.01 level of significance. There is a
significant difference in the patterns of responses of the conservatives and
liberals to the taxation legislation.

We must make sure that the expected frequencies are 5 or larger for
the χ2 distribution to be appropriate. In this case there was not a problem. If
the ‘don’t know’ responses had been too few for an expected frequency of
5 then we could leave out the ‘don’t know’ category and compare just the
‘for’ and ‘against’ for a valid test, or collect more data to make the frequencies
larger.

Being a squared value or a sums of squares χ2 will always be greater than
zero. However, the shape of the distribution will alter with changes in the
degrees of freedom. Under the null hypothesis we would expect the sums of
squares to be around zero but random variation will mean that they will not
always be exactly zero when the null hypothesis is true. If we sum a number
of positive values, each a little bigger than zero, the sum will gradually get
larger the more numbers we add. The more degrees of freedom there are,

The chi-square distribution
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FIGURE 19.1 The chi-square distribution
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then the more sums of squares we have and the larger these sums of squares
become.

When df = 1 we expect, under the null hypothesis, most results to be
close to zero with little difference between the observed and expected values
(see Figure 19.1). Consider what the standard normal distribution would
look like if we squared the values. Now when we increase the degrees of
freedom we are adding together a set of independent χ2s each with df = 1.
Taking df = 5, for example, we have a sum of five independent χ2s. Whilst
each individual χ2 will pile up close to zero, when added together their sum
will pile up further along the scale (see Figure 19.1). As we increase the
degrees of freedom the mean of the distribution moves up the scale. Whilst
the distribution is very asymmetrical when the degrees of freedom are small,
it becomes more symmetrical as df gets larger (see df = 10 in Figure 19.1).
When the degrees of freedom get as large as 30 and above the distribution
approximates the normal distribution. As a result of this tables of the χ2

distribution usually only go up to df = 30, as beyond that we can use the
tables of the normal distribution (Table A.7 in the Appendix).

In order that we compare our calculated value of χ2 with the appropriate
distribution we must make certain assumptions when performing a χ2 test.

The assumptions of the χχχχχ 2 test
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As with most distributions we must have randomly sampled from the popula-
tion otherwise a biased sample will affect the resultant statistic. For χ2 it is
crucial that we have mutually independent categories. Essentially we must
check that a subject could not possibly contribute to the frequency of more
than one cell.

The chi-square distribution is ‘continuous’, meaning that there are
no breaks in it, the curve is continuous. However, the values we calculate
in the χ2 test are not from a continuous scale but a discrete one. This is
because observed frequencies vary in discrete units. We can observe a
frequency of 10 or 11 but not 10.4 or 10.6. With degrees of freedom greater
than 1 and with expected frequencies of at least 5 (and preferably 10) this is
not a problem as the difference between the statistic and the true sampling
distribution is so small. This is why large cell frequencies are encouraged.
For example, the difference between 100 and 101 is small. It is a step of
1/100 or 1 per cent of the original frequency. However the step from 5 to 6
is 1/5 or 20 per cent, so is a large jump. Furthermore, because we are
limited by the size of these steps (we cannot step in smaller units than
whole numbers) any difference between observed and expected frequencies
(even as small as 1) will appear large when we have small cell frequencies
and χ2 will tend to be significant (and possibly a Type I error).

To compensate for this problem when df = 1 we can apply the Yates’
correction for discontinuity. This adjusts the χ2 formula in the following
manner.

Corrected   
(     . )χ 2

20 5
=

− −∑ | |O E

E

The lines either side of the O − E refer to the absolute value, meaning
that if the difference is negative we ignore the minus sign and treat it as
positive. Thus, the χ2 for every cell is reduced by 0.5 before it is squared.
This will result in a smaller calculated value of χ2 and will reduce the risk
of a Type I error. However, the Yates’ correction does tend to overcom-
pensate for discontinuity and may result in a more conservative decision
than necessary. As a simple rule, if a result is still significant with the
correction or still nonsignificant without it, then we can be confident in our
decision. It is only when a significant result becomes nonsignificant with
the correction that a problem arises. In this case we should be cautious
in making inferences from such a finding. As with any result that is
‘bubbling under’ (close but not quite significant) we should consider
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resolving the ambiguity by increasing the sample size or exploring the
question further.

Details on how to calculate the chi-square statistic using the SPSS
computer statistical package can be found in Chapter 14 of Hinton
et al. (2004).
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Do the students who spend the most time studying achieve the highest
marks in examinations and do those who spend the least time studying get
the lowest marks? What we are asking here is whether the variable study
time correlates with the variable examination performance. If we found that
this was the case then we would say that there is positive correlation between
the variables, that is, as a score on one variable increases so the correspond-
ing score on the other variable does the same. Sometimes we find a correla-
tion between two variables where as one goes up the other goes down. This
is termed a negative correlation. We are likely to find a negative correlation
between smoking and health as the more a person smokes the less healthy
that person tends to be.

If we find that two variables do correlate then we can use this
information to predict the value of a score on one variable by using the
corresponding score on the other variable. In this chapter we shall be look-
ing at how we can produce a regression equation to allow us to do this. If
we do not find a relationship between two variables we say that they are
uncorrelated and a change in one cannot be used to predict a change in the
other.

As an example we shall use the following data, giving the results of
ten first year university students, showing how much time they spent studying
(on average per week throughout the year) along with their end of year
examination mark (out of 100). Do these data show a correlation?

Introduction
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Student Study time Examination
mark

1 40 58
2 43 73
3 18 56
4 10 47
5 25 58
6 33 54
7 27 45
8 17 32
9 30 68

10 47 69

There appears to be a positive correlation when we look at these results by
eye but a clearer way to show this is to produce a scatterplot, that is a graph
of the data, where the axes are the two variables. Figure 20.1 provides a
scatterplot of these results.

Note that the points are not randomly scattered about the graph (which
we would expect if there was not a correlation) but generally fall within a
band, indicating a correlation. (To illustrate this, imagine cutting out a piece
of paper to cover up all, or most of, the points in the graph. We can do this,

FIGURE 20.1 Scatterplot of study time by examination performance
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in this case, with a fairly narrow strip of paper.) When this occurs we argue
that, but for random errors, the scores would have fallen along a line, the
regression line, and in our analysis we can calculate which line would ‘best
fit’ the data. In many cases, but not all, we assume that the line of best fit is
a straight line. When we make this assumption we are assuming that we
have a linear correlation, and we calculate a linear regression. This is also
referred to as a linear model as we are assuming that the model for the
relationship between the variables is a straight line (see Chapter 23 on linear
models). This is a reasonable assumption in our example as the points on
the graph fall within a band that appears straight. If the pattern of points
had been along a curved line there would still be a correlation but it would
not be linear. In this book I am only considering linear correlation and
regression.

What we need to do is to find a way to measure the strength of the
correlation. If all the points lie exactly along a straight line then we have
a perfect correlation. A correlation such as the one in Figure 20.1 is not
perfect as the points are more widely scattered but they still fall within a
fairly narrow band. This is a reasonable correlation, as we could infer that
the points would lie on a straight line but for random errors. As the points
become more scattered so the correlation gets weaker until we say that they
are randomly scattered, and there is no correlation at all. The measurement
we use to describe the degree with which the points cluster along a straight
line is the Pearson correlation coefficient, r.

In our example, as in most we examine, the two variables are measured on
different interval scales. This makes it difficult to decide how well the
scores on one variable correlate with the scores on the other variable. Is 30
hours per week as large a study time score as 60 out of 100 on examination
performance? To overcome this problem we need to standardise the scores.
We do this by finding the z scores of the scores on the two variables.18 The
standard scores find the position of a score relative to its mean in terms of
its standard deviation. By calculating standard scores we can compare the
relative position of each score on the distribution of the variable. Study time
has a mean of 29 and a standard deviation of 11.42. We will call this
variable X. Examination performance has a mean of 56 and a standard
deviation of 11.80. We will call this variable Y. The z scores for each
variable are shown in the table below.

Pearson r correlation coefficient
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Student Study time Study time Examination Examination Product of
z score mark z score the z scores

X zX Y zY zXzY

1 40 0.96 58 0.17 0.16
2 43 1.23 73 1.44 1.77
3 18 −0.96 56 0.00 0.00
4 10 −1.66 47 −0.76 1.26
5 25 −0.35 58 0.17 −0.06
6 33 0.35 54 −0.17 −0.06
7 27 −0.18 45 −0.93 0.17
8 17 −1.05 32 −2.03 2.13
9 30 0.09 68 1.02 0.09

10 47 1.58 69 1.10 1.74

We can now see whether the score on one variable corresponds to the
same position on its distribution as the score on the second variable for
each participant. Looking at the table above, the z scores tend to be similar
for each participant: a similar size of z score indicates a correlation and
the same sign (either both positive or both negative) indicates a positive
correlation. (Had the sizes been similar but the signs different we would
have been looking at a negative correlation.) How can we acknowledge
this similarity mathematically? One way is to multiply the z scores on
the two variables for each participant. When there is a correlation the size
of the z scores will be similar, so large numbers will be multiplied by
large numbers and small numbers by small numbers. With a positive cor-
relation we will mostly multiply z scores of the same sign together (either
both positive or both negative) to produce products that will be mostly
positive. With a negative correlation we will multiply mostly z scores
with different signs and the products will be mostly negative. Thus, if we
sum the products of the z scores (∑ zXzY) we should get a large positive
number when there is a positive correlation and a large negative number
when there is a negative correlation. If there is no correlation at all we
should get some positive products and some negative products which
will tend to cancel each other out and the sum ends up around zero.
If there is a perfect correlation the participants will get the same z score
on both variables. Multiplying these together is like squaring the z
scores of one of them. The sum of N squared z scores always equals N
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(try it!) so a perfect positive correlation will result in the sum of the pro-
duct of the z scores equalling N. When there is a perfect negative correlation
the sum will be −N. In our example, ∑ zXzY = 7.2, so it is a positive correla-
tion (above 0) but not perfect as N = 10 (we have 10 participants).

Finally, if we divide the sum of the products of the z scores by
N we produce a statistic that equals 1 when there is a perfect positive
correlation, −1 when there is a perfect negative correlation and 0 when
there is no correlation at all. This statistic is called the Pearson correlation
coefficient r.

r
z z

N

X Y= ∑

A positive correlation is shown by an r greater than zero and a negative
correlation by r less than zero. The strength of the correlation is shown
by how close r is to 1 (or −1 if the correlation is negative). In our example
r = 0.72, which is a high positive correlation as it is much closer to 1 than 0.
We will see whether it is significant in a moment.

The importance of r is that, as well as telling us the strength and
direction of a correlation, it also provides us with a formula for predicting
the scores on one variable by using the scores of the other variable. If we
plotted the z scores of the two variables on a scatterplot we would find
that r is the slope of the regression line (the straight line that best repre-
sents the linear relationship between the variables, the ‘line of best fit’),
the line we assume the z scores would fall along but for random error. If
we write the formula for the line on the graph that best fits the z scores
it is zY = rzX. Thus, given any z score on one variable we can use this
formula, now we know r, to predict what the z score would be on the other
variable if the scores fell along a straight line. This is all very well but
we are not actually interested in z scores! We need to get back to the
original scores.

We do not need to work out z scores to find r. We can use an altern-
ative formula that is identical to that above but involves only the original
scores.

A convenient way to work out r
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Pearson’s r
SP

SS SSX Y

=
×

SP is called the sums of products and gives a measures of how the scores of
the two variables vary together:

  
SP X Y XY

X Y

N
  (   )(   )    

( )( )
= − − = −∑ ∑ ∑∑

B C

SSX is the sums of squares of the scores of the first variable, labelled X (in
our example study time). This gives a measure of how these scores vary on
their own:

  
SS X X

X

N
X   (   )     

( )
= − = −∑ ∑ ∑

B 2 2
2

SSY is the sums of squares of the scores of the second variable, labelled Y (in
our example examination performance). This gives a measure of how these
scores vary on their own:

  
SS Y Y

Y

N
Y   (   )     

( )
= − = −∑ ∑ ∑

C 2 2
2

We can see that SP will be large if each X score is the same distance from
its mean B as each Y score is from its mean C. If the X and Y scores do not
vary together SP will be small and in the case of no correlation it will

become zero. The formula SS SSX Y× gives us a measure of individual

variability of the scores in the two variables. If we can explain all the
individual variability of the scores by the joint variability (SP) then

SS SSX Y× and SP will be the same size and r will be +1 for a positive

correlation and −1 for a negative correlation.
We can use our example to show the calculation:
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Participant X X2 Y Y2 XY

1 40 1600 58 3364 2320
2 43 1849 73 5329 3139
3 18 324 56 3136 1008
4 10 100 47 2209 470
5 25 625 58 3364 1450
6 33 1089 54 2916 1782
7 27 729 45 2025 1215
8 17 289 32 1024 544
9 30 900 68 4624 2040

10 47 2209 69 4761 3243

N = 10 ∑ X = 290 ∑ X2 = 9714 ∑ Y = 560 ∑ Y 2 = 32752 ∑ XY = 17211

The distribution of r

SP XY
X Y

N
    

( )( )
    = − = −

×
=∑ ∑∑

17211
290 560

10
971

SS X
X

N
X     

( )
    = − = −

×
=∑ ∑2

2

9714
290 290

10
1304

SS Y
Y

N
Y     

( )
    = − = −

×
=∑ ∑2

2

32752
560 560

10
1392

r
SP

SS SSX Y

  .=
×

=
×

=
971

1304 1392
0 72

We now have to work out the probability of finding a value of r as large
or larger than 0.72 by chance, that is when there really is no correlation
between the variables. Only then can we decide if we have found a significant
correlation.

When there is no correlation between two variables we would expect r to be
zero. However, there will be random variation around this point. We will,
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FIGURE 20.2 The distribution of Pearson’s r
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by chance, obtain values of r that deviate from zero but this will become
less likely as we get closer to +1 or −1. We can see from this that the
distribution of r under the null hypothesis will be symmetrical about a mean
of 0, tailing off towards +1 and −1. The distribution will be flatter when
there are fewer subjects and more bunched around the mean when there
are more subjects. When there are more subjects the effect of individual
subjects will have less influence on the correlation so there will be less
chance of r deviating so far from zero.

It is not the actual number of subjects that is important when considering
which distribution of r to compare our calculated value to, but the degrees
of freedom. For r the degrees of freedom is N − 2 (and not N − 1) for the
following reason. r is actually the slope of the ‘best fit’ regression line for
the z scores. We need the information from at least two points to draw a
specific straight line, so we have ‘used up’ two of our degrees of freedom
in finding this line. (In other tests we use up only one degree of freedom on
the sample mean.) The distribution of r is shown in Figure 20.2.

A prediction about a correlation can be one-tailed or two-tailed. A
one-tailed test specifically states whether the correlation will be positive or
negative, whereas a two-tailed prediction merely predicts a significant
correlation. We need to take account of this in setting the significance level.
In our example we are predicting a positive correlation, that examination
performance increases as study time increases, so we have a one-tailed test.
From the tables of r (Table A.9 in the Appendix), for a one-tailed test at
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p = 0.05, with 8 degrees of freedom, r = 0.5494. As our calculated value
of 0.72 is greater than the table value we can reject the null hypothesis and
claim a significant correlation between the variables.

There are books that separate linear correlation from linear regression by
putting them in different chapters. It can appear neater that way but we
should not lose sight of the fact that correlation and regression are like the
two sides of a coin. A linear correlation tells us how close the relationship
between two variables is to a straight line. A linear regression is the straight
line that best describes the linear relationship between the two variables.
With a high correlation we are able to see (more or less) where the regression
line occurs by drawing the scatterplot. It is not so obvious when the cor-
relation is weak as the points might be scattered more widely than a narrow
band. Yet even though we get a low correlation we can still ask: if there is
a linear relationship between these variables what would that line be?

With a regression line we can predict what a score on one variable will
be given a score of the other variable. We saw that r is the slope of the
regression line for the z scores but this is not what we want. We would like
to know the line of best fit for the actual scores so that we can predict a
score on one variable from the other directly without having to go through
the z scores.

We need a little algebra here, although it should not be too painful.
The formula for a straight line relationship between two variables X and Y,
is Y = a + bX, where ‘a’ and ‘b’ are constants (they always stay the same
even though X and Y vary) and X and Y are the two variables. You can
choose any numbers for a and b, then put any values of X you choose into
the equation, work out Y, plot X and Y on a graph and the points will fall
along a straight line every time. For example, if I choose, say a = 2 and
b = 3 then Y = 2 + 3X is a straight line. I can take any value of X, say 4, then
find Y = 2 + (3 × 4) = 14. I can do this for any value of X and if I plot X
and Y on a graph the points will fall along a straight line. When X = 0 then
Y = a (in my example when X = 0, Y = 2), so a is the point where the
straight line cuts the Y axis. The slope of the line is given by the constant
b, which tells us how steeply the line rises or falls. It is like walking along a
straight road going up or down hill. A slope of more than 1 is steep, as with
every step we take along the X axis we are going up hill, along the Y axis,
by at least the same amount and the line lies relatively close to the Y axis.

Linear regression
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A slope of less than 1 is shallow, as with every step along the X axis we
rise, along the Y axis, by less than that amount and the line lies closer to
the X axis than the Y axis. Try making up a few straight line equations and
plotting some points for each line on a graph with a horizonal X axis and a
vertical Y axis.

We can employ the straight line formula in working out the regression
line for the two variables under study. If there is a perfect correlation
(r = +1 or −1) then the points on the scatterplot will all lie along a straight
line. This is our regression line. More usually we do not get a perfect
correlation and the regression line is less obvious. With the linear model we
are assuming that the points would lie on a straight line but for the random
variation. So we need to work out what is the most likely straight line for
the data. Notice that a significant correlation gives us the confidence that
there is a genuine linear relationship between the two variables. When the
correlation is weak we can still work out a regression line but the linear
relationship might not be genuine.

First we must decide which variable to predict (in our case we choose
examination performance, variable Y ) and which variable to use for predic-
tion (study time, variable X ). The first stage in the logic of regression analysis
is to assume that the scores for variable X are correct and the reason why
the Y scores do not fall along a straight line is due to random error. We are
basing our analysis on the X scores. We express this in a formula in the
following way:

Y = Regression (on X ) + Error

Y = Y ′ + E

We are assuming that the actual Y scores are a combination of the ones
along the straight line (Y ′) plus a deviation from that straight line due to
error (E ). What we want to know is what Y values we would get if they
really did fall along a straight line and we could get rid of the error: what
are the values of Y ′ where Y ′ = Y − E? The straight line that we are looking
for is therefore:

Y ′ = a + bX

which is the regression line of Y on X without the error (E ). What we now
have to find are the appropriate values for a and b.

Next in the analysis we use the fact that the ‘line of best fit’ is the line
that gives the smallest error values. We do not want a line that is nowhere
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FIGURE 20.3 Finding the regression line by minimising the error values (E)

near the points on the scatterplot. The regression line should be the straight
line that goes closest to the data points. We want to find the line that
produces the smallest values for E, where E = Y − Y ′. A mathematical way
of putting it is to say that we want the line that ‘minimises’ E where E is the
distance of an actual data point from the regression line. Figure 20.3 shows
this for our example.

We work out the minimum values of E by a procedure called the least
squares method of linear regression. We could add up the error (Y − Y ′) for
each subject to produce ∑ E = ∑(Y − Y ′) but some errors will be positive
and some negative and so cancel each other out (as you can see from Figure
20.3), hiding the size of the error. To overcome this we square the errors
so that they all become positive, to produce the sums of squares: ∑ E2 =
∑(Y − Y ′)2. (Once again we can see the importance of ‘sums of squares’ at
the heart of a statistical analysis.) Now we need to find when this sums of
squares is at its smallest. We can replace Y ′ by a + bX in the sums of
squares to give a formula containing only X and Y, which are the values we
know rather than Y ′ which we want to find out: ∑(Y − a − bX )2. We now
want to know what values of a and b would minimise this formula so that
∑ E2 = ∑(Y − a − bX )2 is the smallest it can be. The way we do this is by
employing a mathematical technique called differentiation. (There is not
space to explain differentiation here, but for readers not familiar with it, all
that is necessary to know for the logic of the current argument is that this
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technique exists and helps us at this point in deriving the regression line.)
As a result of this, the above sums of squares is at its minimum when:

b
SP

SSX

= and a = C − bB

where B and C are the means of the scores of the two variables, and SP is
the sums of products and SSX the sums of squares for the scores on variable
X that we worked out in the calculation of r.

All we need to do now is work out a and b to produce the regression
line. For our example, looking back to the calculation of r, we have SP =
971, SSX = 1304, B = 29 and C = 56 so:

b    .= =
971

1304
0 7446 and a = 56 − (0.7446 × 29) = 34.4057

Finally, replacing a and b by their actual values in the formula for Y ′, we
are able to express the regression line by the following formula:

Y ′ = 34.41 + 0.74X (to two decimal places).

We can now use this formula to predict the values of Y (examination perfor-
mance) from the values of X (study time). Below is a table of the predicted
values of Y based on the regression on X.19

Student Study time Examination Predicted
mark examination mark

X Y Y ′

1 40 58 64.01
2 43 73 66.23
3 18 56 47.73
4 10 47 41.81
5 25 58 52.91
6 33 54 58.83
7 27 45 54.39
8 17 32 46.99
9 30 68 56.61

10 47 69 69.19
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We can also use the regression line to predict other values. For example,
no one studied for 35 hours per week. What examination mark would we
predict for someone who did study for this time? Using the formula for Y ′
we get: Y ′ = 34.41 + (0.74 × 35) = 60.31. We would expect a student who
studied for 35 hours per week to get a mark of 60.31 in the examination.

We have found b, the slope of the regression line, and r, the correlation
coefficient, which is the slope of the z scores regression line. There is a
simple relationship between the two:

b r
Y

X
= ⎛

⎝
⎞
⎠

standard deviation of 

standard deviation of 

b takes account of the fact that the two variables are measured on two
different scales, whereas r standardises them. In our example: b =

0 72
11 80

11 42
0 74.

.

.
  .⎛

⎝
⎞
⎠ = . So, whichever way we work out b we get the same

value.20

There is nothing in the logic of the regression analysis that prevents us from
performing the regression the other way round, by assuming the Y values
are correct and that it is the X values that deviate from a regression line due
to error. The logic works in the same way to predict X from Y by the
regression of X on Y. In this case we find X ′ = a + bY (which is also a

formula for a straight line), where b
SP

SSY

= and a = B − bC. In our example,

we find X′ = 0.70Y − 10.06. From this formula we can predict that someone
who obtained a 60 in the examination studied for (0.70 × 60) − 10.06 =
31.94 hours per week.

If we plot both the regression lines (Y on X, and X on Y ) on the same
graph we find, in our case, that they are close together (see Figure 20.4).
This is because the stronger the correlation the closer the regression lines
are to each other. With a perfect correlation the lines are the same. As the

Predicting X from Y

r and the slope of the regression line
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FIGURE 20.4 Regression of Y on X and the regression of X on Y

correlation gets weaker the regression lines separate until, when r = 0, the
lines are orthogonal, that is at right angles to each other and have no predictive
value as there is not a linear relationship between the variables.

We must be careful when we interpret a significant correlation coefficient.
The first point to note is that a smaller value of r is needed for significance
as N increases. With a df of 70 for a one-tailed test, or a df of 100 for a
two-tailed test, r is still significant (at p = 0.05) when it is as low as 0.2.
With correlation coefficients we need to ask not just is it significant but is it
big? One way of deciding the importance of the correlation is to consider
how much of the variability of the scores in one variable can be explained
(predicted) by the variability of the scores of the other variable. We might
have a significant correlation but if it only explains a tiny amount of the
variability then it may not be of much predictive worth.

Recall that Y = Regression on X + Error. We also find that the
variability of the Y scores (SSY = ∑(Y − C )2) equals the variability due to
the regression (SSregression = ∑(Y ′ − C )2) plus the variability due to error
(SSerror = ∑(Y ′ − Y)2). It is reasonable to ask how much of the total variabil-
ity of Y can be explained by that of the regression. We can express this as

The interpretation of correlation and regression
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Variability of X Variability of Y

r 2

FIGURE 20.5 The coefficient of determination (r 2)

SSregression as a proportion of SSY. How much of the total Y sums of squares
can be explained by the sums of squares of the regression on X? It turns out
that:

SS

SS

SP

SS SS
rregression

Y X Y

    = =
2

2

We find that the proportion of the variability in one set of scores that can
be explained by the regression is actually the square of the regression
coefficient, r2, called the coefficient of determination. We can represent r2

diagrammatically in Figure 20.5. A circle represents the total variability of
the scores for one variable. The overlap of the two circles indicates the
amount of variability of one variable that can be explained by the variability
of the other variable, r2.

With a perfect correlation of r = +1 or −1 then r2 = 1 and all variability
in the Y scores can be explained by the regression. The regression line is a
perfect predictor of the Y scores. A high correlation, such as r = 0.7, yields
an r2 of 0.49 which tells us not quite half of the variability in Y can be
explained by changes in X (and vice versa). With a correlation of 0.2 only
0.04 of the variability of the Y scores can be explained by the regression on
X, so, in this case, despite the statistical significance we have every right to
question the value of X as a predictor of Y.

We must be careful to check that our data has homoscedasticity when
we are undertaking a correlation. Homoscedasticity essentially means that
the relationship between the two variables stays the same at all points, with

Problems with correlation and regression
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the scores evenly spread along and around the regression line. Isolated
points and clusters can both have a powerful influence on the correlation
coefficient, and disguise the underlying relationship between the variables,
particularly if we use a limited range of scores from the variables.

An example will illustrate these points. A researcher predicts that
the more shop assistants smile at customers the more items are sold by the
assistant. Each assistant in a store is videotaped during one day and the
amount of smiling is calculated from the time an assistant greets a customer
to the moment the customer decides to buy or not to buy an item. The
researcher examined the correlation between the mean smiling time per
customer for each assistant (in minutes) and the total number of items sold
by each assistant during the day. The results for 9 assistants are shown
below.

Assistant Smiling time Items sold
X Y

1 0.4 16
2 0.8 12
3 0.8 20
4 1.2 16
5 1.4 34
6 1.8 30
7 2.2 26
8 2.6 22
9 3.0 38

When we take all 9 participants into account we find that r = 0.69 (SP =
43.56, SSX = 6.28, SSY = 627.56, df = 7). This is significant at p < 0.05 (from
Table A.9 in the Appendix we find that r = 0.5822, p = 0.05, df = 7, for a
one-tailed test). However, looking at the scatterplot, Figure 20.6, we see
that participant 9 is isolated from the rest. Without this participant r = 0.52
(SP = 20.80, SSX = 4.00, SSY = 400.00, df = 6) which is no longer significant
(as r = 0.6215, p = 0.05, df = 6, for a one-tailed test). Thus the effect of
participant 9 is to make the correlation significant yet participant 9 is not
typical, and so we should not take the result as practically useful despite its
statistical significance. This shows how one ‘outlier’ can strongly affect the
correlation.
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FIGURE 20.6 The scatterplot of smiling time by items sold

If we look at the scatterplot we can also see that the pattern of results
is not the same for all participants: the relationship between smiling and
items sold is not the same all along the regression line. If we limit our range
to participants 1 to 4 we find that r = 0 (SP = 0, SSX = 0.32, SSY = 32.00,
df = 2). There is no correlation at all for these participants alone. If we
now select only participants 5 to 8 we produce a correlation coefficient
of r = −1 (SP = −8.0, SSX = 0.8, SSY = 80, df = 2), which is a perfect negat-
ive correlation. These two clusters produce very different results which
illustrates why we do not want a limited range in our study. The lack of
homoscedasticity has resulted in a positive, zero and negative correlation
dependent on which participants we select.

A similar spread of data along the regression line provides evidence
that the correlation does in fact indicate a genuine underlying relationship
between the variables. Isolated points, clusters and a limited range can all
provide spurious correlations. We must look a little further than a statistic-
ally significant r when we are interpreting the meaning of a correlation.

We can always find a regression line for our data, regardless of the value of
r, but just because we can calculate it does not mean that it is of theoretical

The standard error of the estimate
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significance. To be confident that our predictions are based on a genuine
underling relationship we really want all the points to be close to the regres-
sion line. A way of determining how close the points are to the regression
line is to calculate the standard error of the estimate, which, for the regres-
sion of Y on X, is the standard deviation of the Y scores from the regression
line of Y on X. Recall that a variance is a sums of squares divided by a
degrees of freedom. So the error variance, the amount by which the Y scores

vary from the regression line, is 
SS

N
error

− 2
. We find the square root to produce

a standard deviation.

Standard error of the estimate  =
−

SS

N
error

2

We also know from above that SSY = SSregression + SSerror and r
SS

SS
regression

Y

2 = .

From these two formulae we can show that SSerror = (1 − r2)SSY. Replacing
SSerror in the formula for the standard error of the estimate we get:

Standard error of the estimate  
(   )

=
−

−
1

2

2r SS

N
Y

For the study time/examination performance example we have r2 = 0.52
and SSY = 1392, so the standard error of the estimate, the standard distance

of a Y score from the regression line is: 
(   ) (   . )1

2

1 0 52 1392

10 2

2−
−

=
−

−
r SS

N
Y

= 9.14.

There will be times when we wish to correlate data that is not measured on
a interval scale. As long as the data are ordinal we can perform a correlation
on the ranks using the Spearman rS correlation coefficient. Each set of
scores is ranked separately from lowest to highest. A Pearson’s r is then
calculated on the ranks. However, with ranks, as long as there are no ties,
we can use a simpler formula. There will be the same ranks for both sets of
scores so SSX = SSY. If we replace SSY with SSX in the formula for r we get:

The Spearman rS correlation coefficient
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r
SP

SS SS
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SS
X Y X

=
×

=

It is also the case that with ranks SP SS
D

X    = − ∑ 2

2
, where D is the dif-

ference between a subject’s ranks on the two variables. Furthermore, with

ranks, SS
N N

X =
−3

12
. Replacing SP and SSX in the formula for r we get:

Spearman’s     r
D

N N
S = −

−
∑

1
6 2

3

All we have to do for ranked data is work out rS. We then look up the figure
in the tables for rS at the chosen level of significance (Table A.10 in the
Appendix). In this case we do not use the degrees of freedom to find the
correct table value of rS but N, the number of ranks. As with all analyses on
ranks we have to be careful if there are many tied ranks and should consider
employing a more sensitive measure of the variable to reduce them. Altern-
atively, the original Pearson formula can be used.

The Spearman coefficient is useful if we are concerned that the scores
on two variables appear to correlate but not linearly. As long as the two
variables vary monotonically, that is as one increases the other also increases
consistently or as one increases the other decreases consistently, then the rS

coefficient can be used.

Two teachers were asked to rate the same six teenagers on the variable how
likely to do well academically at University on a 0–20 scale, from unlikely
to highly likely. The results are shown below. Is there a positive correlation
between the teachers’ ranking?

A worked example
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Teenager Teacher 1 Teacher 2 Teacher 1 Teacher 2 D D2

ratings ratings ranks ranks

1 15 8 4 3 1 1
2 12 13 3 5 −2 4
3 18 16 6 6 0 0
4 4 5 1 2 −1 1
5 8 2 2 1 1 1
6 17 10 5 4 1 1

∑ D2 = 8

The ratings for each teacher are ranked separately. From these we produce
the difference scores (D), showing the difference in ranks between the
teachers, and the squared difference scores (D2). The sum of the difference
scores, ∑ D2 = 8. There are 6 participants so N = 6. We now work out rS.

r
D

N N
S           .= −

−
= −

×
−

=∑
1

6
1

6 8

6 6
0 77

2

3 3

We have a one-tailed test as the prediction is for a positive correla-
tion. From Table A.10 in the Appendix, rS = 0.829, p = 0.05, N = 6 for a
one-tailed test. The calculated value does not exceed the table value so we
have not found a significant correlation in the rankings. (Notice how, with
a small number of subjects, we need a high value of the coefficient for
significance.)

Details on how to calculate a linear correlation and linear regression
using the SPSS computer statistical package can be found in Chapter 15
of Hinton et al. (2004).



S T A T I S T I C S  E X P L A I N E D

282



M U L T I P L E  C O R R E L A T I O N  A N D  R E G R E S S I O N

283

C
h
a
p
te

r
2
1

C h a p t e r  2 1

Multiple correlation

and regression

n Introduction to multivariate
analysis 284

n Partial correlation 284

n Multiple correlation 289

n Multiple regression 291



S T A T I S T I C S  E X P L A I N E D

284

Up to now we have looked at the correlation between two variables. Yet we
can consider the correlation between three or more variables, say IQ, school
grades, university grades and occupational performance. Dealing with many
variables at the same time is referred to as multivariate analysis. In this
chapter we shall be examining both correlation and regression with more
than two variables as this is often an important form of analysis when we
collect information about a number of factors (such as in a questionnaire or
survey) and we want to investigate the relationships between them. For
example, we might wish to study the relationship between housing quality,
housing density, social support networks and pollution levels on health.

In the previous chapter we analysed some example data to show a significant
correlation between study time and examination performance. We might
decide that a third variable, intelligence, could be influencing the correla-
tion. If intelligence positively correlates with study time, that is, the more
intelligent students spend the most time studying, and if it also positively
correlates with examination performance, that is, the more intelligent students
get the higher marks in the examination, then the correlation of study time
and examination performance might simply be due to the third factor, intel-
ligence. If this is the case then the relationship between study time and
examination performance is not genuine, in that the reason they correlate is
because they are both an outcome of intelligence. That is, the more intelligent
students both study more and get higher marks in the examination. If we
take out the effect of intelligence the relationship of study time to examina-
tion performance could disappear.

It is worth noting here that a correlation does not indicate a causal
relationship. We might find that over a period of years the number of houses
positively correlates with the amount of pollution in a town. It would be
wrong to claim that the houses cause the pollution or that more pollution
causes more houses. In this case, the correlation might arise due to a third

Introduction to multivariate analysis

Partial correlation
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factor population, which correlates with both. An increase in population
(and human activity) might result in both more houses and also greater
pollution. The correlation between houses and pollution is simply an outcome
of a third factor rather than an important correlation in its own right.

To answer the question of the influence of intelligence on the study
time/examination performance correlation we need to examine the correla-
tion of study time and examination performance after removing the effects
of intelligence. If the correlation disappears then we know it was due to the
third factor. We do this by calculating a partial correlation. The first stage
is to find out how well the factor intelligence correlates with study time
and examination performance separately. To find this out we measure the
students’ intelligence on a standard test of intelligence. The results of this
test along with the study times and examination marks are shown in the
following table.

Student Intelligence Study Examination
score time mark

1 118 40 58
2 128 43 73
3 110 18 56
4 114 10 47
5 138 25 58
6 120 33 54
7 106 27 45
8 124 17 32
9 132 30 68
10 130 47 69

Mean 122 29 56

Standard deviation 9.72 11.42 11.80

Using the techniques outlined in the previous chapter we find the following
correlation coefficients:

Study time and Examination performance r = 0.72
Study time and Intelligence r = 0.37
Examination performance and Intelligence r = 0.48
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The correlations indicate that intelligence is positively correlated with the
other two variables so there is reason to continue the investigation.

Recall from the previous chapter that the regression allows us to predict
one variable from a second. If we perform a regression of study time on
intelligence this will tell us what study time scores we would predict from
intelligence. Thus, the difference between the actual study time scores and
those predicted by intelligence should give us the study time scores with the
effects of intelligence removed. These differences are termed residuals rather
than ‘error’ here because, whilst the difference is an ‘error’ in the ability of
intelligence to predict study time, in this case it is what we are interested
in, that is, what is left (the residual variability in the scores) after taking out
the effects of intelligence on study time.

Performing a regression of study time on intelligence we get the
following equation: Study time = 0.44 × Intelligence − 24.50. From this
we can work out the predicted study time scores and then subtract them
from the actual scores to give the residuals. The following table shows
this (see Note 19).

Student Study time Study time predicted Residual
by intelligence study time

1 40 27.42 12.58
2 43 31.82 11.18
3 18 23.90 −5.90
4 10 25.66 −15.66
5 25 36.22 −11.22
6 33 28.30 4.70
7 27 22.14 4.86
8 17 30.06 −13.06
9 30 33.58 −3.58

10 47 32.70 14.30

This has removed the effect of intelligence from study time. We now need
to remove it from the examination performance. We follow the same method
and perform a regression of examination performance on intelligence.
This gives us the regression equation: Examination performance = 0.59 ×
Intelligence − 15.60. We use this equation to work out the residuals for
examination performance.
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Student Examination Examination Residual
mark mark predicted examination

by intelligence mark

1 58 54.02 3.98
2 73 59.92 13.08
3 56 48.30 6.70
4 47 51.66 −4.66
5 58 65.82 −7.82
6 54 55.20 −1.20
7 45 46.94 −1.94
8 32 57.56 −25.56
9 68 62.28 5.72

10 69 61.10 7.90

We can now correlate the residual study time scores with the residual
examination marks, having removed the effects of intelligence from the two
factors. The correlation of these scores yields an r of 0.665. This is called a
partial correlation as it is the correlation of study time and examination
performance having partialled out the effect of intelligence. In this case
the size of the correlation has been reduced but it is still significant (at
p = 0.05), so the original correlation was not entirely due to the third
variable, intelligence. There is still a significant relationship between the
amount of time spent studying and performance in the examination after we
have accounted for the effects of intelligence.

We can illustrate what we have done by representing the variability of
the scores of each variable by a circle. As we can see from Figure 21.1 the
three circles overlap. The area SE + SIE is the portion of the examination
performance variability explained by study time, the area SI + SIE the portion
of study time explained by intelligence and IE + SIE the portion of examina-
tion performance explained by intelligence. The size of these areas can be
found by calculating r2 for each correlation. When we remove the effects of
intelligence we take away the intelligence circle (I + SI + SIE + IE) leaving
S + SE of the study time variability and E + SE of the examination per-
formance variability. The partial correlation of study time and examination
performance, having removed the effect of intelligence, leaves us with the
area SE as the residual variability of examination performance explained by
the residual variability of study time.
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FIGURE 21.1 The variability of the scores on three variables

Fortunately, there is an easier method of calculating a partial correla-
tion, than finding the residuals, when we know the three separate correlation
coefficients. We label the variables as 1, 2 and 3 (rather than X and Y ) as
it makes it easier to label additional variables. I will label examination
performance as variable 1, study time as variable 2 and intelligence as
variable 3. The correlation coefficients are labelled as r12 for the correlation
of variables 1 and 2, r13 for the correlation of variables 1 and 3 and r23 for
the correlation of variables 2 and 3. The partial correlation of variables 1
and 2 having removed the effects of variable 3 is termed r12.3 and can be
calculated with the following relatively simple formula.

r
r r r

r r
12.3

12 13 23

13 23    
=

−
− −1 12 2

For our example,

r12.3

.   ( .   . )

. .
  .=

− ×
− −

=
0 72 0 48 0 37

1 0 48 1 0 37
0 665

2 2

We are not restricted to finding just the one partial correlation. We
can also find r13.2 (the correlation between examination performance and
intelligence having partialled out the effect of study time) and r23.1 (the
correlation of study time and intelligence having partialled out the effect of
examination performance) by using the same formula with the correlation
coefficients adjusted appropriately, so for r13.2 we would replace r12 with r13

and so on. Notice that some of these are more meaningful to work out than

Study time Examination
performance

SE

SIE
SI IE

S E

I

Intelligence
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others. Just because the statistical reasoning provides us with the possibility
of an analysis it does not mean that we decide it is worthwhile undertaking.

We can extend the analysis to partial out the effects of more than one
variable from a correlation. We can remove the effects of variable 4 if we
wish by the following formula:

r
r r r

r r
12.34

12.3 14.3 24.3

14.3 24.3    
=

−
− −1 12 2

Notice that the formula contains the partial correlations of the variables
having removed variable 3. The logic allows us to go on to remove variables
5, 6, etc. However, the formulae make one key assumption, that is, the
variables are linearly correlated with variables 1 and 2. We are extending
the linear model to all the variables. If this assumption is not valid we
will only partial out the linear components of the variables, not all their
effects.

We can use partial correlations to help us calculate a multiple correlation. A
multiple correlation coefficient, R, gives us a measure of how well three or
more variables correlate together. We do some relabelling again here. We
specify a particular variable to label as Y. This is the dependent variable and
we are calculating how it correlates with the rest. It is usually the variable
we wish to predict (as we shall see in multiple regression later). I shall
choose examination performance as this is an interesting one to predict. We
call the other variables 1, 2, 3, etc. We have only two others so I shall call
study time variable 1 and intelligence variable 2.

R is easier to explain if we work with R2, the coefficient of determina-
tion for the multiple correlation. We take each of the variables 1, 2, 3, etc.
in turn and find out what proportion of the Y variability it can explain that
has not already been explained by previous variables. Adding up these
portions gives us a measure of how much of the Y variability can be explained
by the combination of the other variables.

The first question we must ask is how much of the variability of the Y
scores (examination performance) can be explained by variable 1, study time?
This is simply the coefficient of determination of the correlation of the two
variables, r2

Y1. Now we ask how much of the remaining variability of Y
can be explained by variable 2, intelligence? It is not r2

Y2 as some of this

Multiple correlation
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area has already been explained. If we look back to the interlocking circles
in Figure 21.1 we see that r2

Y2 is the areas SIE and IE. Yet we have already
explained the areas SE and SIE by r2

Y1. We have already predicted the area
SIE so we do not want to do it twice. Because intelligence and study time
are correlated they both explain some of the same variability of examination
performance (the area SIE). To overcome this we remove the effect of study
time (variable 1) before finding out what of the remaining variability in the
examination performance can be explained by intelligence. The residual
portion of examination performance after removing the effects of study time
is 1 − r2

Y1 (that is, the whole area, I, minus that portion explained by study
time, leaving E + IE). The amount of the area 1 − r2

Y1 explained by intelli-
gence is the partial correlation of examination performance and intelligence
having removed the effect of study time. This is r2

Y2.1 (the area IE). Expressed
as a portion of the residual Y variability this amount (IE as a portion of
E + IE) is r2

Y2.1(1 − r2
Y1). In conclusion we can say that the amount of Y

variability explained by variables 1 and 2 is:

R2
Y.12 = r2

Y1 + r2
Y2.1(1 − r2

Y1)

(In terms of part of the examination performance circle in Figure 21.1, this
is SE + SIE for variable 1 plus IE for variable 2.)

The multiple correlation coefficient, RY.12, is simply the square root
of this figure. In our example, rY1 = 0.72 and rY2.1 = 0.33, so R2

Y.12 = 0.722 +
0.332(1 − 0.722) = 0.57, and the coefficient of multiple correlation, RY.12, is

0 57 0 75.   .= . This tells us that more of the variability in Y (examination
performance) can be explained by study time and intelligence (R2

Y.12 = 0.57)
than by study time alone (r2

Y1 = 0.52), although not a lot more.
We can calculate a multiple correlation coefficient for any number of

variables, with each new variable used to explain variability in Y unexplained
by any previous variable. For four variables, R2

Y.123 = R2
Y.12 + r2

Y3.12(1 − R2
Y.12)

where the Rs in the formula are themselves multiple correlation coeffi-
cients. The problem is that as each additional variable is brought in, we
chip away at the variability of Y so that R becomes larger. Yet as each new
variable is added we increase the risk of increasing R by random variation
rather than by genuine relationships. Therefore multiple correlations should
be undertaken with caution and when a large number of variables are used
as ‘predictor’ variables then a correction should be made to R to compen-
sate for the increased risk of error. (Statistical computer programs such as
SPSS provide an ‘Adjusted R’ value to correct for this – see Hinton et al.,
2004.)



M U L T I P L E  C O R R E L A T I O N  A N D  R E G R E S S I O N

291

We can test the significance of a multiple correlation by using a variance
ratio (F) test, comparing the estimated variance of the ‘explained variability’
to the estimated variance of the ‘unexplained variability’:

R

k
R

N k

2

21

1    

−
− −

where N is the number of subjects and k is the number of predictor vari-
ables. Thus,

F
R N k

k R

(    – )

(   )
=

−
−

2

2

1

1
with degrees of freedom k, N − k − 1

In our example, with R2 = 0.57, N = 10, k = 2, F(2,7) = 
0 57 10 2 1

2 1 0 57

. (     )

(   . )

− −
−

= 4.64. From the tables of the F distribution, Table A.3 in  the Appendix,
F(2,7) = 4.74, p = 0.05, so the multiple correlation is not significant at
p = 0.05. Note that if we had had the same value of R2 but just one more
participant (N = 11) the result would have been significant. This shows the
importance of sample size when dealing with correlations.

We can calculate a linear regression for more than two variables. Again we
need to label one of the variables as Y because this will be the dependent
variable. The other variables, the independent variables or predictor variables,
will be used to predict it. Instead of having a single variable X for the linear
regression we use a number of variables X1, X2, . . . , Xk for the regression,
where k is the number of predictor variables. To work out the regression
line we calculate the following linear equation:

Y = a + b1X1 + b2X2 + . . . + bkXk

I shall only consider the case of two predictor variables here, the simplest
case, to illustrate multiple regression. The logic is the same for more predictor

The significance of R2

Multiple regression
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variables but the calculation becomes rather complex and will not be
explained in this book.

With two predictor variables we wish to solve the equation:

Y = a + b1X1 + b2X2

Recall that with just one predictor variable, Y = a + bX, where b
s

s
rY

X
YX= ⎛

⎝⎜
⎞
⎠⎟

where sY and sX are the standard deviations of the scores of the two variables.20

In the two variable case we cannot work out b1 and b2 by using b
s

s
rY
Y11

1

= ⎛
⎝⎜

⎞
⎠⎟

and b
s

s
rY
Y22

2

= ⎛
⎝⎜

⎞
⎠⎟

 unless X1 and X2 are not correlated (where sY, s1 and s2

are the standard deviations of the three variables). The problem is that, as
in multiple correlation, we will have some overlap in the variability of Y
that the two predictor variables can explain. If we are not careful we will
count this variability twice, once with X1 and once with X2 and our pre-
diction will be distorted. The way to solve this problem is for the bs to be
partial regression coefficients, that is, coefficients where the effect of one
variable is partialled out when working out the b for the other. In the two
predictor case:

b
s

s
b

s

s
Y Y

1 1
1

2 2
2

    = ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

β βand

where β1 and β2 are the standard partial regression coefficients:

β β1 2 2 21 1
=

−
−

=
−
−

r r r

r

r r r

r
Y1 Y2 12

12

Y2 Y1 12

12

and

Just as r is the slope of the line when we convert X and Y to z scores in the
two variable case, β1 and β2 are the partial slopes of the regression of Y by
the predictor variables when all the scores are converted to z scores.

To complete the linear regression we use the following formula to find a:

a = C − b1B1 − b2B2

We can illustrate the calculation by predicting examination performance
(Y ) using study time (X1) and intelligence (X2) as predictor variables. We
first work out β1 and β2:
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β1 2

0 72 0 48 0 37

1 0 37
0 63

.   ( .   . )

  .
  .=

− ×
−

= β2 2

0 48 0 72 0 37

1 0 37
0 25

.   ( .   . )

  .
  .=

− ×
−

=

Next we work out b1 and b2 using the values for the standard deviations of
the variables (found from the table on p. 285):

b1 0 63
11 80

11 42
0 65  .

.

.
  .= ⎛

⎝
⎞
⎠ = b2 0 25

11 80

9 72
0 30  .

.

.
  .= ⎛

⎝
⎞
⎠ =

Finally we calculate a:

a = 56 − (0.65 × 29) − (0.30 × 122) = 0.55

We now have the equation for the multiple regression:19

Y ′ = 0.55 + 0.65X1 + 0.30X2

Replacing the symbols with the variable names gives us the formula for
predicting examination performance using study time and intelligence:

Examination mark = 0.55 + 0.65 Study time + 0.30 Intelligence

From this we can predict, for example, a student with an intelligence score
of 110 and who studies for 30 hours per week will obtain the following
examination mark:

Examination mark = 0.55 + (0.65 × 30) + (0.30 × 110) = 53.05

Thus, on the basis of the linear multiple regression we predict that the
student would get an examination mark of 53.05.

When our predictor variables are highly correlated with each other we have
what is referred to as multicollinearity. This can be a problem for multiple
regression. First, the predictors are explaining much the same variability in
the dependent variable Y. Consider the case of two predictor variables.
When the two variables are not correlated then the Y variability explained
by one is different to the Y variability explained by the other but when they
are correlated there is an overlap in the Y variability they explain. Second,

Multicollinearity
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we do not know which of the predictor variables is the more important due
to the common variability explained. With many predictor variables this
problem can arise quite easily. A solution to multicollinearity is to combine
variables into a single variable or to leave one out if it is essentially predict-
ing the same variability as another. As an example, imagine that you were
predicting a person’s height from other bodily dimensions, such as foot
length, forearm length, index finger length, etc. If you had included the
length of the left foot and the length of the right foot as two separate
variables then you might find that these two measurements are so highly
correlated that you really do not need or want both in your regression due to
multicollinearity. You might decide to include only the right foot length or
even the average of the two feet lengths for each person.

In our example we have included all the predictor variables in the regres-
sion, not surprisingly since there were only two, and this is called direct
regression. When there are more predictor variables, the researcher might
start by calculating the multiple regression by working out the equation
using the predictor variable that correlated most highly with the dependent
variable. Predictor variables are then added into the regression on the basis
of the additional variance they can explain. The process is terminated when
a variable no longer significantly increases R2. This is called forward regres-
sion. An alternative is to include all the predictor variables initially but to
remove variables one at a time, taking out the one that contributes the least
to R2, until removing a variable would significantly reduce R2. At which
point the regression calculation stops. This is called backward regression.
Stepwise regression combines the above two methods, adding variables and
taking others away at the same time. The reason why we use alternatives
to the direct method is that the most predictive regression is where few
variables explain lots of the variability in the dependent variable. Not only
is it parsimonious, it also means that we are not including a lot of additional
variables which contribute little to the prediction.

Details on how to calculate a multiple correlation and multiple regres-
sion using the SPSS computer statistical package can be found in
Chapter 16 of Hinton et al. (2004).

Calculating multiple regression


