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Throughout this book I have been explaining how to perform a range of
statistical analyses. So the next piece of advice may seem a little unexpected:
don’t use up your valuable time undertaking statistical analysis when you
can get a computer to do it for you! There are many excellent statistics
programs, such as SPSS (see Hinton et al., 2004), the calculations are
done quickly with a degree of consistent accuracy that we can rarely match
as human beings. The key point I hope to have made in the book is
that it is important to know why and how statistical analysis operates,
the reasoning behind it, the assumptions made and the types of data that
particular analyses can deal with. This knowledge not only allows you to
perform the calculations with a calculator but it is also invaluable when
using a computer. If you do not understand what you are doing then using
a computer simply compounds the problem. When performing, say, a t
test by hand you might learn something about the operation and logic of
the test but with a computer the test gets ‘magically’ done and the result
appears like a rabbit out of a hat. If you didn’t know what you were doing
beforehand, you certainly will not be any the wiser afterwards. It is only
when we know what we are doing that the computer comes into its own.
The person who understands statistical analysis can appreciate what the
computer is doing, and more importantly, know when it is NOT DOING
what is really wanted.

A key thing to remember when using a computer is the acronym
GIGO – garbage in, garbage out. If you put a lot of nonsense into the
computer you will get a lot of nonsense out! Computers do not know when
you have made a mistake, in fact they do not ‘know’ anything, they simply
do as they are told. If you choose the wrong analysis, or type in the wrong
data, the computer program will still perform the analysis on that data. If
you do not realise your mistake then you can unknowingly take away the
results of an incorrect or inappropriate analysis. If this is for an important
research programme with much depending on the results then the ramifica-
tions of your mistake may be profound.

Undertaking data analysis by computer
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There are a number of checks you can perform to make sure that you
have input the data correctly into a computer program or computer file
for subsequent analysis. The first thing to do is to obtain a printout of the
data after it has been input into the computer. You will then be able to make
a check on the data that was actually analysed rather than the data you
hoped was analysed. Look at the printout and ask yourself the following
questions.

1 Are there any large numbers where you did not expect them? If you
leave your finger on a key for too long you might input that digit twice
by mistake. Check that numbers that should be 2 are not 22 or even
222.

2 Are there missing values where there should not be? When reading
down a list of numbers to input, it is quite possible to miss one out.
Check that the correct number of figures have been input.

3 Does the pattern of data look correct? Often with a large amount of
data you can see patterns on the page of numbers, such as all 1s in a
particular column. As you scan down the data is there an unusual
figure somewhere? If so, check that it is correct rather than an error
on input.

4 Has the data been input in the correct order for the analysis? This
can be a very important question. If the analysis is complex such as
a two factor mixed design ANOVA the data must be input in the
correct order. If not, the computer might analyse the data for the
independent factor as though it were the repeated measures factor and
vice versa.

Once the computer has performed the analysis the program will present a
display or a printout of the results of the analysis. When interpreting this
analysis keep in mind one question: is this what you expected when you
input the data? If not then why were your expectations out? This illustrates
why knowledge of statistical analysis is so useful. If you know that a certain
analysis cannot produce what you have obtained then you know there is an
error somewhere, whereas someone who has no knowledge of statistical
analysis might simply accept the result as correct.

Interpreting output

Errors in data input
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The first area to check is the means, totals, standard deviations, etc.
You may already have worked out the means of the various conditions
before performing the analysis. Does the computer come up with the same
values? Has it the correct means in the correct conditions? A basic check of
the simple calculations can confirm that the data has been input correctly
and the correct numbers are in the appropriate conditions.

Next check that the statistical analysis is the one you wanted. Often
the name of the analysis will appear on the output. Does it say ‘related
or repeated measures’ when you really wanted independent? Does it say
‘completely randomised or independent measures’ when you wanted to
perform a repeated measures analysis? Simply looking at the information
at the top of the output can often be the most useful. But always make sure
you know what analysis you want to perform before you ask the computer
to do it!

Occasionally the computer program will have an error in it. The chances
of a commercially available one containing a ‘bug’ are very small but if you
are using a helpful little program you downloaded from the Internet (often
written by academics then generously offered to others for free) then make
sure that the results match your expectations. Recall that there are certain
results you should never get, such as a negative value for a sums of squares
in an ANOVA summary table. Always check the data first but do not always
trust the program.

There are differences between the ways computer programs present
the results and the ways it is done when working out the analysis by hand.
The most common difference is in the presentation of the significance of
a finding. Computer programs often give the actual probability of the
result occurring by chance rather than whether it exceeds the significance
level or not. For example, rather than stating ‘p < 0.05’ or ‘significant at
p = 0.05’ the computer might display ‘p = 0.034215’, which is the actual
probability of the result under the null hypothesis. It is up to you to decide
whether this is significant at the significance level you have chosen. A
result with a probability 0.034215 is less than 0.05 so is significant at the
p = 0.05 level of significance but not at p = 0.01. Sometimes the computer
will output the probability as p = 0.000000. This appears to indicate that
the result could never occur under the null hypothesis, which is obviously
impossible. The true explanation lies in the way the computer displays
numbers. As there can never be a probability of zero that the data occurred
by chance it must be that the probability is so small that there is not enough
space for the computer to display enough decimal places. Therefore we
should replace the last zero with a 1 so that we read 0.000000 as 0.000001.
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We know that the probability is smaller than this so we are erring on the
side of safety in reporting this probability. If we incorrectly reported a
probability of zero other researchers would spot the error immediately
whereas more correctly reporting a probability of 0.000001 clearly indicates
a highly significant result. If you get a probability this low then check that
your calculated value of the statistic under test is very large (or very small
depending on the test) as we would expect with such a small probability
value.

Always be wary of unusual figures, especially ones you did not expect.
It is tempting to believe that a highly significant result must be true, particu-
larly if it is a ‘better’ result than you were hoping for. Do not be seduced
by the computer output. Is this really the result you would have expected
by looking at the data? In this book, mainly for illustration purposes most
of the statistical analyses have been found to be significant. It does not
work like this in research. Often there are many non-significant findings.
A significant finding is often cherished, particularly as it is more likely to be
published than a non-significant finding. Yet we should still treat significant
results with some scepticism as, if there is an error, the cost will be that
much greater.

There are a number of statistical analyses that are commonly used today
which would have only been undertaken by a statistician in the past. This is
due to the development of sophisticated computer programs for statistical
analyses and the advance of computer technology. The computing power
required to undertake complex analysis would have been owned only by
major institutions (such as universities) only two decades ago. And prior to
the advent of computers a statistician would have possibly taken days
to carry out certain calculations. Now a standard personal computer can
undertake these complex analyses in just a few seconds or less. The
major time-consuming activity is inputting the data rather than carrying out
the analysis. Thus it is outside the scope of this book to provide worked
examples for complex analyses that would take forever by hand but which
the modern computer can perform in considerably less time than it takes
to boil a kettle!

However, the reason why certain complex analyses are now popular
is that researchers are able to collect large amounts of data and then exam-
ine these data for underlying relationships between the various variables

Complex analyses
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under study. This is particularly the case when a number of participants
are asked to provide scores on a wide range of variables. This might be
a study in the laboratory where a group of people are tested on a number
of skilled tasks such as logic, mathematical, spatial and verbal tasks.
The research aim here is to find out which tasks are related, with the
implication that they might rely on the same cognitive processing systems.
Alternatively, a consumer questionnaire might be constructed where the
questions ask for both a range of background information as well as
finding out about the participants’ product use and product preference.
Indeed, the data layout in statistical computer programs often reflects
this format:

Variable 1 Variable 2 . . . Variable k

Participant 1

Participant 2

�

Participant n

In the following analyses I am going to use the data in the table below
for illustration purposes. In many real cases – for example questionnaire
data – a researcher will have a lot more data, often hundreds if not
thousands of data points. This is one reason why we usually would not
contemplate undertaking these analyses by hand. However, to demonstrate
the analyses the dataset will be small. I am also describing the data in rather
a general way, labelling the variables Question 1, Question 2, etc. to again
illustrate the wide applicability of the analyses. As long as the data satisfy
the assumptions of the test then we can see that the analyses are very
versatile and can be used in a number of different instances with a range
of research topics.

An example data input table
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Participant Question 1 Question 2 Question 3 Question 4 Question 5

1 1 1 7 8 6

2 3 4 3 3 5

3 3 3 8 7 8

4 4 2 2 1 2

5 5 5 2 2 2

6 7 5 4 5 6

7 7 7 7 7 4

8 6 8 9 9 8

9 9 7 5 5 4

10 8 10 10 9 7

Mean 5.30 5.20 5.70 5.60 5.20

Stand.dev. 2.54 2.82 2.91 2.88 2.20

Variance 6.4556 7.9556 8.4556 8.2667 4.8444

When we develop a questionnaire or other measure of a construct (such as
‘honesty’ or ‘verbal ability’) we want that measure to be both valid and reli-
able. A valid measure is one that genuinely measures the underlying construct.
This is not always easy to achieve and often there is debate in the literature
on the validity of a test, for example, do IQ tests really examine intelligence?
Deciding on the validity of a measure is an academic issue rather than one
for statistical analysis. However, reliability can be examined statistically.

When data are collected on a number of different measures we may be
interested in examining their reliability. Reliability is defined as the ability

Reliability
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of a measuring instrument to measure the concept in a consistent manner.
Imagine I had a tape measure and recorded a person’s height as 1 metre 65
centimetres. It would be most odd if I measured them a second time with
the same tape measure ten minutes later and read off a height of 1 metre 42
centimetres. The tape measure would be a highly unreliable measuring device.
Similarly we want a questionnaire to be reliable across people and occasions.
One way of testing reliability is to examine the ‘test–retest’ reliability. Does
the test give the same results on different occasions? All we need to do is
to give the test twice and correlate the findings. A high correlation indicates
a high level of reliability. However, it is not quite as simple as that, as the
participants may have remembered their answers from the first test and this
might influence the way they respond on the second test. To avoid this
some researchers construct two measures (version A and version B of their
questionnaire) with slightly different questions which they hope are equival-
ent. However, this may double the work.

Within a questionnaire (or indeed similarly structured dataset) we can
examine the internal reliability of the items within it. If the five questions in
the above questionnaire are measuring different aspects of the concept of
‘happiness’ then we can examine whether participants are responding to the
different items in a consistent manner. I have used the term item here rather
than question as it is a more general term and the item could be a question
or a score on any specific task. Thus, we can examine the internal reliability
of our questionnaire by looking at the relationships between the answers to
the different questions.

One measure of reliability is called ‘split-half’ reliability, where the
answers on the first half of the questionnaire are compared to the answers
on the second half of the questionnaire. So, if there is a high correlation
between the two halves of the questionnaire we can argue that there is
internal consistency in the questionnaire.

The most popular measure of internal consistency is Cronbach’s alpha,
which is a more sophisticated test of reliability than the split-half analysis as
it examines the average inter-item correlation of the items in the questionnaire.
It also takes into account the number of items in the questionnaire:

Cronbach’s α
(   )

( )

( )
=

−
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑k

k

i

sum1
1

var

var

where k is the number of items, var(i) is the variance of an item, and
var(sum) is the variance of the totals for each participant. (In the above
example participant 1 has a total of 23, and participant 2 has a total of 18).



C O M P L E X  A N A L Y S E S  A N D  C O M P U T E R S

303

Essentially, if all the items are measuring exactly the same thing
(without any error), we can refer to this as the ‘true score’, and the scores
will reflect this in the following way: all the individual item variances will
be identical and var(sum) will simply be k × var(i). This will result in α = 1.
However, at the other extreme, if there is no shared variance in the items,
then they are reflecting only ‘error’ rather than an underlying true score,
resulting in var(sum) = ∑ var(i) and α = 0.

In our example:

α
(   )

.   .   .   .   .

.
=

−
−

+ + + +⎡
⎣⎢

⎤
⎦⎥

5

5 1
1

6 4556 7 9556 8 4556 8 2667 4 8444

107 7778

= .0 8327

It is conventional to view an α of 0.7 or greater as indicating a reliable
scale, so we would view this limited questionnaire data as reliable.

Interestingly, we can argue that if the items are measuring the same
underlying dimension on the same scale then they should have the same
variance. If we make this assumption then we can calculate a slightly differ-
ent Cronbach’s alpha, called the standardised Chronbach’s alpha, based on
the inter-item correlations rather than on item variances. This is expressed
as follows:

Standardised Cronbach’s
  
α

  (   )
=

+ −
k

k

D

D1 1

where k is the number of items and D is the average inter-item correlation.
The inter-item correlations for the questionnaire example are shown in the
table below, referred to as the correlation matrix.

Question 1 Question 2 Question 3 Question 4 Question 5

Question 1 1 0.8434 0.1790 0.1551 −0.0517
Question 2 0.8434 1 0.4958 0.4494 0.2434
Question 3 0.1790 0.4958 1 0.9675 0.8090
Question 4 0.1551 0.4494 0.9675 1 0.8217
Question 5 −0.0517 0.2434 0.8090 0.8217 1
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There are 10 different correlations (of each question with another question),
giving the average iter-item correlation D, as 0.4913. Thus for our example:

Standardised α   .

  .   (   )
  .=

×
+ × −

=
5 0 4913

1 0 4913 5 1
0 8284

Notice that there is a small difference between our two alpha values. This is
due to the difference in the variances of the items rather than one alpha
being ‘better’ than the other. We would use the standardised alpha when we
have comparable items (i.e. measured on the same scale as in the example
here) or we have standardised the data, but otherwise we would report the
‘raw’ value based on the item variances.

A further reason why we undertake the analysis by computer is that we
can get a printout of the alpha value when a particular item is removed from
the analysis. If we do this for each item in turn then we can see which com-
bination of items gives the highest alpha value, and hence highest reliability.
This allows us to refine a questionnaire and maximise its reliability.

Details on how to perform a reliability analysis using the SPSS com-
puter statistical package can be found in Chapter 18 of Hinton et al.
(2004).

In the above example we found a high level of reliability of our items in the
questionnaire (α = 0.83) so we might wish to employ the questionnaire as it
is. However, if we had found a low reliability then it would have informed
us that the scores on the different items were not varying in a consistent
manner. The reason for this might be that different questions are ‘tapping’
different underlying factors. For example in developing a cognitive test
battery where a group of children are given four tests, of arithmetic, geometry,
verbal reasoning and story comprehension, we might find that there is a
high correlation between the scores on the arithmetic and geometry and
a high correlation between the verbal reasoning and story comprehension
scores but low correlations between the scores on arithmetic and verbal
reasoning, arithmetic and story comprehension, geometry and verbal reason-
ing, geometry and story comprehension. Thus, arithmetic and geometry scores

Factor analysis
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are correlated and verbal reasoning and story comprehension are correlated
indicating (possibly) two underlying factors that we might label ‘mathematical
ability’ and ‘language ability’.

Factor analysis is a procedure that examines the relationship between
the scores on the different items and uses the correlations between them to
specify where the relationships are strong enough to indicate underlying
factors. This is not a procedure that we would wish to undertake by hand. In
the past factor analysis would be the domain of statisticians who would take
many hours of calculation in order to determine the factors underlying a
dataset.

A factor analysis is essentially a data reduction technique as it is used
to see whether there is a set of factors that can explain the variation of the
variables under study. It is only useful if we can find fewer factors than
variables which are able to explain the variation in the data. It can be
undertaken for two reasons: exploratory (to discover underlying factors)
or confirmatory (to confirm factors already proposed). We shall look at
exploratory factor analysis in this example.

The first thing we need to consider is whether the data is suitable for a
factor analysis. Essentially we need samples large enough to ensure that the
correlations are a good representation of their population values. There are
a number of ‘rules of thumb’ proposed to indicate what constitutes a large
enough dataset: there should be at least 200 scores overall, with at least 10
scores per item and at least five times as many subjects as items. There
clearly are not enough scores in our example data to satisfy these criteria
but we shall continue for the purpose of illustration.

Two useful tests on the data are often carried out before a factor
analysis. The Kaiser–Meyer–Olkin (KMO) test examines the data for sampl-
ing adequacy. This gives a measure of the common variance amongst the
variables that the factors will be able to account for. The KMO statistic
ranges from 0 to 1. In our example, the KMO value is 0.655. Any value
over 0.6 is regarded as acceptable for a factor analysis as values below this
would mean that the factor analysis will not be able to account for much of
the variability in the data and so is not worth undertaking.

The second test is the Bartlett’s test of sphericity. This examines the
correlation matrix (see above). If there was no correlation at all between
any of the variables then the values in the correlation matrix would have 1s
down the diagonal with all the other values as zero. This is called an
identity matrix. Our example gives a Bartlett χ2 = 38.11, df = 10, p < 0.001.
This indicates that our correlation matrix is significantly different from an
identity matrix so there are correlations worth investigating.
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Now that we are confident that it is worth proceeding with the factor
analysis we undertake a principal component analysis to find the factors.
The scores on each item are standardised to a mean of 0 and a standard
deviation of 1. Thus, the variance of every item becomes 1. With 5 items
the total variance to explain is 5. Factors are then identified. Each factor has
an eigenvalue which gives a value or ‘weight’ of each factor, in terms of the
variance explained. These are shown in the following table.

Component Eigenvalue Percentage of Cumulative percentage
overall variance of variance

1 3.0838 61.6750 61.6750
2 1.5896 31.7925 93.4675
3 0.1956 3.9113 97.3789
4 0.1020 2.0393 99.4182
5 0.0291 0.5818 100.0000

Total 5.0000 100.0000

We can see from the table that 5 components or factors have been
identified. It is conventional to select only those factors with eigenvalues
greater than 1 as an eigenvalue of 1 indicates that a factor can only explain
as much variance as a single item. Only the first two factors are selected
as their eigenvalues are greater than 1. Notice also that they can explain
61.6750 per cent and 31.7925 per cent of the variance in the items, so
2 factors can explain over 93 per cent of the total variability in the five
items.

An alternative way of selecting the important factors is to produce
a ‘scree plot’ of the components against eigenvalues. Imagine the profile
of a mountain. If it was a real mountainside the scree falling down the
slope would settle at a point where the slope flattens out. In Figure 22.1
this would be at component 3. We then take factors before this ‘elbow’
in the graph. So, in Figure 22.1, we can identify two factors as important
from the scree plot, supporting the choice of factors from the table of
eigenvalues.

We can now look at the correlation of each of the items with our two
selected factors (shown in the following table, part (a), referred to as the
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FIGURE 22.1 Scree plot of the eigenvalues
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component matrix). Notice that Question 1 correlates 0.4105 with Factor 1
and 0.8850 with Factor 2.

(a) Unrotated (b) Rotated

Factor 1 Factor 2 Factor 1 Factor 2
Question 1 0.4105 0.8850 0.0349 0.9750
Question 2 0.6893 0.6858 0.3040 0.9236
Question 3 0.9498 −0.2239 0.9482 0.2306
Question 4 0.9395 −0.2617 0.9561 0.1922
Question 5 0.8096 −0.4663 0.9330 −0.0491

The unrotated values give us some idea of the relationship between items and
factors but we can make this much clearer by a procedure called rotation.
This rotates our factors to ‘line them up’ better with the variables. Imagine
placing a painting on a wall. You notice it is a little skewed so you rotate it
to line it up straight. Rotating factors is a little like this: we are not changing
the relationships – simply making them clearer. There are different methods
of rotation, with the second version of the component matrix, (b) above,
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showing the effect of a varimax rotation which endeavours to produce 1s
and 0s in the Factor columns of the component matrix. Now we have a
clearer picture with Questions 1 and 2 ‘loading’ onto Factor 2 and Questions
3, 4, and 5 loading onto Factor 1. Question 2 does load onto both Factors
but the rotation indicates that Factor 2 is the more important.

Finally we can ask how much of the variance in each of our items can
be explained by the two factors we have produced. We can answer this by
squaring the correlations in the component matrix and adding them for each
item. Should we take the unrotated or the rotated correlations? The answer is
that it does not matter: the rotation does not change the factors. I will take the
rotated values but you can work them out for the unrotated values if you wish.

Question 1: Variance explained = (−0.0349)2 + 0.97502 = 0.9518
Question 2: Variance explained = 0.30402 + 0.92362 = 0.9455
Question 3: Variance explained = 0.94822 + 0.23062 = 0.9522
Question 4: Variance explained = 0.95612 + 0.19222 = 0.9511
Question 5: Variance explained = 0.93302 + (−0.0491)2 = 0.8728

Remember that the variance in each item has been standardised to 1, so our
factors are able to explain a very large amount of the variability in the data.
The figures in the final column above are referred to as the communalities,
which provide a measure of the variability in that item shared with other
items, in our case supporting the factors we have produced.

In conclusion factor analysis examines the correlations between the
items in the dataset and produces a set of underlying factors. If we find
factors that can explain a lot of the variability in the items then we can
argue that our items can be reduced to the fewer factors we have elicited.
In our example, the factor analysis revealed two factors, one underlying
Questions 3, 4, and 5 and the second factor underlying Questions 1 and 2.

Details on how to perform a factor analysis using the SPSS computer
statistical package can be found in Chapter 17 of Hinton et al. (2004).

In many instances of data analysis we wish to compare different groups of
participants on our measuring device, such as a questionnaire, to examine

Multivariate analysis of variance (MANOVA)
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hypotheses such as, ‘Are younger adults going to score higher on happiness
than older adults?’ If we obtain an overall score on our measuring device
then the data is suitable for a univariate analysis: that is, analysing a single
dependent variable – the participant’s score on the test. We can then under-
take a univariate test such as a t test (if we have two groups of participants)
or an analysis of variance (if we have more). However, we may not produce
a composite score for the questionnaire but wish to analyse the different
questions as separate dependent variables. In this case we could do lots and
lots of univariate tests on each separate dependent variable. The problem
with this is that we will undertake lots of tests and increase the risk of
a Type I error. A solution to this is to perform a multivariate analysis of
variance (MANOVA) which allows the analysis of more than one dependent
variable. In the table below I have added an additional question from the
questionnaire where participants indicate their income level.

Participant Income Question Question Question Question Question
1 2 3 4 5

1 Low 1 1 7 8 6
2 Low 3 4 3 3 5
3 Low 3 3 8 7 8
4 Low 4 2 2 1 2
5 Low 5 5 2 2 2

Group mean 3.20 3.00 4.40 4.20 4.60

6 High 7 5 4 5 6
7 High 7 7 7 7 4
8 High 6 8 9 9 8
9 High 9 7 5 5 4

10 High 8 10 10 9 7

Group mean 7.40 7.40 7.00 7.00 5.80

Overall mean 5.30 5.20 5.70 5.60 5.20

We now have a single independent variable of ‘income’ and we could
examine the effect of this on the responses to each question by five separate
t tests. However, an alternative is to analyse the data employing a MANOVA
with the five questions as five dependent variables in the analysis.
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Like the ANOVA the MANOVA requires the assumptions of norm-
ally distributed populations and homogeneity of variances. However, as we
have a multivariate design we also have the assumption of homogeneity of
covariance, that is, the intercorrelations are similar across the conditions of
the variables.

The logic of the MANOVA follows that of the ANOVA but the
calculations involve matrix algebra which is beyond the scope of this book
(although see the end of Chapter 23). Our data table is actually a matrix
of responses. In a MANOVA we analyse the dependent variables in com-
bination to provide a composite dependent variable to test for the effect of
the independent variable. In an ANOVA we work out the sums of squares
for the ‘treatment’ and a sums of squares for the ‘error’. We then calculate
the mean square (or variance) for the treatment and the mean square for the
error to produce a variance ratio (or F value). In a MANOVA we still work
out the sums of squares but we also work out cross-products. With one
dependent variable Y, the sums of squares is ∑(Y − C )2. When there is more
than one dependent variable (Y1, Y2, etc.) we can still work out sums of
squares for each one, i.e. ∑(Y1 − C1)

2 for Y1, but we can also work out the
cross-products, with the cross product of Y1 and Y2 being (Y1 − C1)(Y2 − C2)
and then we work out a sums of cross-products. We have seen this type of
product before in the description of the Pearson correlation coefficient.
Essentially a cross-product is a measure of how much two variables co-
vary. A matrix called the ‘sums of squares and cross-products’ (SSCP) is
at the heart of the MANOVA just as the sums of squares is at the heart of
the ANOVA. So the MANOVA analyses the covariation of the dependent
variables. Thus, it is able to determine the effect of the independent variable
on the composite dependent variables.

Just like in an ANOVA, where we divide the total sums of squares
into the sums of squares between groups and the sums of squares within
groups, the total SSCP matrix (T) is calculated as well as an SSCP matrix
for the treatment effect between groups (B) and for the ‘error’ or within
groups (E). Now we would like to compare these last two: B and E in the
same way as we compare the sums of squares in an ANOVA. (Actually we
compare the mean squares in the ANOVA rather than the sums of squares
but the principle is the same.) Unfortunately, B and E are not single values
but matrices. However, there is a mathematical way of finding out the
variation of the values in a matrix and this is referred to as the determinant
of the matrix, with the notation |B | for the determinant of B, which returns
a single figure. This now allows us to work out a statistic to evaluate
the significance of the effect under investigation. (I appreciate that matrix
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mathematics may be a new concept but I think you can appreciate from the
above description the similarity in the logic of MANOVA and ANOVA.)

A number of different statistics have been produced for MANOVA
but the most commonly used is Wilks’ lambda which is calculated as
follows:

Wilks’ lambda Λ =
+

| |
| |

E
B E

This will range from 0 when there is no error (and all the variation is due
to the treatment effect) to 1 when the variation is due to error and there is
no treatment effect. So we are looking for a small value of Λ to indicate a
significant effect.

In comparison to the variance ratio (F ) in an ANOVA, where the F
value is the treatment effect plus error divided by the error, Λ is like an
upside down F ratio. Indeed, Λ can be converted to an F value quite easily
and so you will usually see an F value as well as a Λ value in a computer
printout for a MANOVA. In the above example, with income as the
independent factor and the five questions as the five dependent variables we
obtain Λ = 0.0542, p < 0.05 (which converts to F(5,4) = 13.9675). Thus we
have found an effect of income on the dependent variables.

We can then undertake separate one factor independent measures
ANOVAs on each question to examine the effect of income on them indi-
vidually. These give the following results:

Question 1 F(1,8) = 25.20 p < 0.01
Question 2 F(1,8) = 16.69 p < 0.01
Question 3 F(1,8) = 2.28 p > 0.05
Question 4 F(1,8) = 2.86 p > 0.05
Question 5 F(1,8) = 0.72 p > 0.05

From this array we can see that income is having a significant effect on the
first two questions but not the remaining three.

When we undertake a number of tests on the same data we often
correct the significance level for the increased risk of Type I errors. This is
called a Bonferroni correction and involves dividing the significance level
by the number of tests, so with five tests, instead of choosing the p = 0.05
level of significance we would choose p = 0.01 (see Chapter 12). In this
example the pattern of results of the univariate ANOVAs remains the same
even with the stricter criterion for significance.
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Details on how to perform a MANOVA using the SPSS computer
statistical package can be found in Chapter 12 of Hinton et al. (2004).

Whereas a MANOVA examines the effect of an independent variable or
variables on a number of dependent variables, a discriminant function analysis
works in the opposite direction by examining which combination of inde-
pendent variables is best able to predict a dependent variable. Interestingly,
a discriminant function analysis is a useful follow-up analysis after a signific-
ant independent measures MANOVA as it is actually employing the same
sums of squares and cross-products matrices as the MANOVA calculations.
For this reason it requires the same assumptions as a MANOVA.

Essentially the discriminant function analysis produces functions of the
independent variables that discriminate between the conditions of the depend-
ent variable. To undertake this analysis on the example the independent and
dependent variables are swapped round. The five questions are treated as
the independent variables in this analysis and income becomes the dependent
variable. Can we find functions of our five questions that are able to predict
a person’s income level? With only two income levels (low and high) there
will only be one function produced. If we had three or more income levels
then more than one function might emerge. With more than one function
each will explain a certain percentage of the variation in the data and the
functions (like factors in factor analysis) can be examined to see how much
variation they can explain (and whether this is a significant amount). Con-
ventionally functions are seen as worthy of further consideration if their
eigenvalue is over 1 and the canonical correlation is over 0.6. A canonical
correlation is essentially the correlation of the function with the depend-
ent variable – in this case the multiple correlation coefficient (R – see
Chapter 21). In the current example there is evidence of the strength of the
discrimination as the eigenvalue of the function is 17.4594 and the canon-
ical correlation is 0.9725, both high values. The significance of the function
is shown by Wilks’ lambda, in this case 0.0542, p < 0.01, so the function
is highly significant in being able to discriminate the two income condi-
tions. Notice also that this is exactly the same value of Wilks’ lambda we
produced in the MANOVA above, illustrating the link between the two
analyses.

Discriminant function analysis
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As we have only one function, this function is actually the multiple
regression equation. The unstandardised canonical discriminant function
coefficients (produced in this analysis) provide the regression coefficients,
so the function for our example can be expressed as:

Discriminant function = a + b1X1 + b2X2 + b3X3 + b4X4 + b5X5

Discriminant function

= −10.6089 + 1.4508 × Question1 − 0.0639 × Question2

− 1.1093 × Question3 + 1.5500 × Question4 + 0.1721 × Question5

The point about this function is that when we input the values of questions
1–5 for a participant in the equation it should provide us with an outcome
that we can use to classify the person into the categories of the dependent
variable (i.e. predict their income level). You can see from the following
table that the function is able to classify all the participants correctly: by
producing a negative value for all low income participants and a positive
value for all the high income participants.

Participant Income group Function

1 Low −3.5545
2 Low −4.3295
3 Low −3.0958
4 Low −5.2579
5 Low −2.4488
6 High 3.5726
7 High 2.8727
8 High 2.9278
9 High 4.8929

10 High 4.4202

The mean values of the function for each group, referred to as the group
centroids, provide information to make a classification. In this case the group
centroids are −3.7373 and +3.7373. As we have equal numbers of participants
in each group we can choose our cut-off point at the middle position between
them (i.e. their average = zero). (With unequal sample sizes we would
weight them by their sample size to find a weighted average position for the
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cut-off point.) We can now use the function to predict the income group
of a new participant once we have their results for Questions 1–5. If the
function gives a negative value we classify them as ‘low income’ and if the
function produces a positive value we classify them as ‘high income’. A
person who scores 7, 4, 8, 3, 5 on Questions 1–5 will score −4.0728 on the
function and hence we predict them to be in the low income group.

Finally, we can examine the structure matrix (the table below) that
shows the correlation of each variable with the function which, as in factor
analysis, allows us to see which variables correlate highly with the function.
The structure matrix has the correlation coefficients for each of the questions
in order of size, with Questions 1 and 2 showing the highest values, echoing
what we showed above in the MANOVA analysis.

Question Function

1 0.4284
2 0.3457
4 0.1431
3 0.1279
5 0.0718

In this particular example, we saw a simple case of discriminant function
analysis. With a more complex design we might find two or more functions
and therefore reveal a pattern of the underlying relationship between variables
responsible for a significant Wilks’ lambda.

The advent of fast computers, available to all, has meant that even the most
complicated statistical analysis can be undertaken on research data at the
touch of a button. However, the crucial point is not whether an analysis can
be done but whether it should be undertaken. The question for the researcher
is whether they have enough understanding of the analysis to decide if it is
appropriate for their data and whether they are able to correctly interpret the
output of the analysis when it is produced. It may well be that a relatively
simple analysis is able to properly demonstrate the key findings of a piece
of research in a clear and comprehensible manner.

Conclusion
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FO R  S O M E  P E O P L E  it a surprise to learn that the basic principles under-
lying the t test, the analysis of variance, correlation and regression, plus

the multivariate tests considered in the previous chapter, are the same – they
all are examples of the general linear model. The tests seem to have differ-
ent aims, the calculations appear to be different, the outcomes produce
different statistics, such as t, F or r, so that superficially they appear not the
same at all. However, underlying these different tests is a model of how we
expect the data to behave in order for us to perform the tests. Indeed, you
may have observed that the assumptions underlying the tests are very much
the same.

Now it is quite possible that you find this all very interesting but not
relevant to you. Just as a person can happily drive a car without understand-
ing the workings of the engine we can undertake statistics without knowing
about the general linear model. However, if the car breaks down and you
know the basics of the engine you might be able to get it going again
(especially if it’s a simple blockage or a lack of fuel) whereas not knowing
might lead to a costly wait for the breakdown truck. Similarly, a basic
understanding of the general linear model provides an awareness of what
is happening in a test and whether the data are appropriate to that test.
Understanding the general linear model can lead to an understanding of
why we have the assumptions of the statistical tests and what it means if
those assumptions are not met.

In everyday conversation, when we think of a model (and not a fashion
model) we often think of a small object such as a model car or a model of
the Eiffel Tower. Notice that these models are representations of the thing
they are modelling. Some models are very good representations, such as a
detailed scale model of the Eiffel Tower, and some are not, such as the
fluffy pink models of the Eiffel Tower you can buy in the souvenir shops of
Paris. Yet even the poor models have to resemble the original to some
extent – even the fluffy models of the Eiffel Tower have four feet and a

Models
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FIGURE 23.1 An orrery

pointed top. So models seek to represent the essential pattern of the thing
they are modelling.

A classic example of a model is an orrery. This is a model of the solar
system and you may have seen them in museums and collections of antiques.
The first one was made by the clockmaker John Rowley in 1712 for Charles
Boyle, the 4th Earl of Orrery (from whence it got its name). The one in
Figure 23.1 is based on an orrery in the Smithsonian Institution in Washington
DC.

To operate the model you turn the handle and the planets rotate around
the sun. Notice that the model had the extremely useful function of being
able to demonstrate in a simple manner the workings of the solar system –
how the planets move relative to each other, what a year means and so on.
In fact it is an extremely helpful teaching aid. However, at another level it is
a very poor model. The objects are not to scale – the sun at the centre would
need to be much, much bigger – and the real planets do not go round the
sun in circular orbits but in ellipses. It is certainly not a model you could
use to guide an astronaut in space.

Yet men have been to the moon and spacecraft have landed on other
planets and the space centres have needed models of the solar system to
get them there successfully. Clearly these models are enormously more
complicated than the simple orrery but more importantly these models are
no longer built by clockmakers in their workshops but are constructed by
using mathematics. They are no longer physical objects but mathematical
formulae, written down and stored on computer. If we want to estimate
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where Mars and Venus will be in six months time we no longer turn the
handle on the orrery and look at the new positions of the planets but input
the time data into the mathematical model on the computer and print out the
details of the new positions of the planets predicted by the model. If it is a
good model then the positions will be accurate predictions.

Models share the same features in that they attempt to represent the
relationships within a particular system (such as the movement of the
planets). As soon as we decide a system is not random we can seek out a
model to represent the pattern we observe. From the beginning of time
people have noted the rising and setting of the sun and the change of the
seasons and tried to make sense of the patterns they observe. Our current
mathematical models are quite impressive as we can use them to land a
spacecraft on another planet. But, who knows, in three hundred years time
they may look as crude and simplistic to the people of the future as the
orrery does to us today.

When we collect data we are not interested in the specific scores produced
at a specific time but what the collection of scores can tell us about the
relationships between variables in order to make predictions. The way we
do this is by assuming that there is an underlying relationship between the
variables and then we attempt to model that relationship. And, like the
orrery, we can decide if the model is any good or not.

One specific type of model that is central to statistical analysis is
referred to as a linear model. As we saw in Chapter 20, in its simplest case,
with only the relationship between two variables, a linear model is a straight
line. The mathematical formula for a straight line is Y = a + bX, where X
and Y are the variables, ‘a’ is a constant (the value of Y when X is zero, the
point at which the line crosses the Y axis) and ‘b’ is the slope of the line.

Imagine that you give a person a pack of playing cards and ask them
to sort the pack as quickly as they can (but without making mistakes) into
2 piles, one of red cards and one of black cards. You shuffle the pack
thoroughly and accurately measure the time it takes them to complete the
task. It takes them 20.8 seconds. Now you shuffle the pack again and, this
time, ask them to sort the cards into the four suits. This takes 31.2 seconds.
Finally you ask them to sort the pack into 8 piles: low hearts (ace to seven),
high hearts (8 to king), low diamonds, high diamonds, etc. This takes 41.6
seconds. We now plot these figures on a graph (Figure 23.2).

An example of a linear model
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FIGURE 23.2 A graph of card sorting times
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You can see that the X-axis is labelled ‘information units’ rather than
‘number of piles’. A single choice (two options: e.g. on/off or red/black)
contains one information unit (one ‘bit’ of information). Four choices involve
two information units (two bits) and eight choices involve three information
units (3 bits). The reason we use information units rather than number of
choices is that the researchers who first did this study in the early 1950s
noticed that the pattern of results when plotted on a graph in this way
followed a straight line. They obviously collected considerably more data
(which was much more varied) than the simple example I have given above.
The resulting model, a linear relationship between amount of information
and speed of processing, has immortalised the researchers who found it, and
it is referred to as the Hick–Hyman Law.

For our participant, we can work out the formula for the straight line
that passes through these three points, by putting the three points into the
formula Y = a + bX and working out ‘a’ and ‘b’ to give: Y = 10.40 + 10.40X,
which states that:

Sorting time = 10.40 + (10.40 × Information units)

We can now use this model to predict what we do not know. If the person had
to sort the pack into the high, middle and low numbers of each suit (12 choices
or 3.585 bits) we would expect them to take 10.40 + (10.40 × 3.585) =
47.68 seconds.
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Underlying most of our statistical techniques is the assumption that a linear
model represents the pattern of the relationship between variables. Without
this model we would not be able to draw the conclusions we do from our
statistical analysis. Just as the space scientists need their models to land a
spacecraft on Mars we need a model to make a statistical decision. In this
example we shall be taking a more complex case than the three points
considered in the card sorting example above, and in this new example our
points will not all lie neatly along a straight line.

A researcher is interested in the relationship between a child’s age and
their general knowledge. We shall assume, for the sake of argument, that
the researcher is able to appropriately select a suitable school and randomly
selects 6 children from classes across three school years: Class 1 (roughly
8 years old), Class 2 (roughly 9 years old) and Class 3 (roughly 10 years
old). Each child is given the same test of general knowledge and the scores
are recorded. The results are shown in the table below.

Class Child’s age in months General knowledge score

1 91 6
1 93 9
1 95 8
1 96 10
1 98 9
1 100 12
2 103 11
2 105 14
2 107 13
2 108 15
2 110 14
2 112 17
3 115 16
3 117 19
3 119 18
3 120 20
3 122 19
3 124 22

Modelling data
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FIGURE 23.3 A plot of the children’s general knowledge scores by age

Are the results random or is there a systematic relationship between age and
general knowledge score? Certainly it looks from the table that the scores
get larger as age increases. We can see this rather better if we plot the
results, as in Figure 23.3.

I could look at the data in the graph and say that these are the results
and that is that: what do we need a model for? I could claim that each point
is a true representation of the child’s age and score. However, this does not
tell us anything we really want to know. We are not really interested in the
finding that on Thursday February 21st John Peterson aged 8 years 4 months
scored 12 on a general knowledge test. What we really wish to learn is
whether there is an underlying relationship between age and general know-
ledge. If there is then we can use this relationship to make predictions about
what level of general knowledge we can expect in children we have not
tested. We can generalise our findings to a wider population.

When we look closely at the data it does look as though the scores
more or less follow a straight line. Notice that they are all contained within
a narrow band going from the bottom left to the top right of Figure 23.3 –
with no scores in the top left or bottom right. So I could propose that the
relationship between the general knowledge scores and age is linear (a
straight line in this case) and that the underlying model for the data is a
linear model. So, if the relationship between the variables really is a straight
line, then that line should lie somewhere in the middle of the points, as in
Figure 23.4.
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FIGURE 23.4 A proposed linear relationship between general knowledge and age

Now there is a problem here. None of the points actually lie on the
line! Does this mean that this straight line is a poor model of the relation-
ship between the general knowledge scores and age? Not necessarily. First
the points seem pretty close to the line (which surely indicates that the
model is not that bad). Second I could argue, the points would lie on the
line had it been a perfect world but we live in a world of error and chance.
Maybe one child under-performed due to having a cold and another did
better than usual because they guessed an answer correctly. There are a
number of factors in our everyday lives that make it messy rather than well
ordered. Maybe if we took away the messiness (or random errors) then the
underlying pattern would emerge (if there is one). I am suggesting that in an
ideal world all the points would lie along the line. In this example, it could
be that the scores have not quite fallen on the line due to these random
errors that occur in any human activity, such as research, despite our best
efforts at control (see Chapter 10 for a related argument).

I, therefore, argue that the underlying model of the relationship between
the general knowledge scores and age is a straight line and that the reason
the scores have not fallen exactly on the straight line is due to random error.
Hence each observed score is made up of that predicted by the model
(‘explained variation’) plus a random error (‘unexplained variation’).

Each point in Figure 23.5 shows a child’s general knowledge score.
Notice that a very large proportion of each general knowledge score can be
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FIGURE 23.5 Separating each score into predicted score plus residual

accounted for by the model (the sloping line) as the points more or less
follow the line. The ‘error’ scores – that is the difference between the actual
score and that predicted by the model – seem quite small. The size of the
error score is shown by the vertical bar joining the point to the line.

If we take one child’s general knowledge score, that I will call Y, then
we can explain most of that score by our model (i.e. a point on the straight
line where we would predict the score would be) which we can call Y ′. But,
because the score does not lie on the straight line, Y is not equal to Y ′. As
a result I argue that E, the difference between Y and Y ′, is the ‘error’, as
I believe that this is a result of random error, and cannot be explained by my
model. Another term for E is residual as each of these values is the residual
amount of the general knowledge score after we have taken away the amount
explained by the model. So for each score:

Actual score (Y ) = Predicted score (Y ′) + Residual (E)

I predicted a straight line as a model for the relationship between age and
general knowledge score. The problem is: which line? We can begin to
work out the answer to this by looking at Figure 23.6.

The model: the regression equation
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FIGURE 23.6 Different linear models

Model C is clearly not a good model as the line is way below the
actual data points. We can demonstrate this mathematically as the residuals
will all be positive values and their sum will be a large positive number.
Similarly Model A does not fit the data very well as, again, the residuals
will add to a large negative number. Adding them up will give us a large
but negative sum. Model B not only looks to be the best model as it lies
amongst the data points but also has smaller residual values than both
Models A and C. With some of the residuals positive (the point lies above
the line) and some negative (the point lies below the line), when we add up
the residuals they will cancel each other out. So our best fitting model will
be the straight line where the residuals add up to zero.

Another way of putting this is that the residuals have a mean of zero
for our best fitting line. This makes sense as, in this case, the ‘average’
amount of error will be zero. Looking back to Models A and C on the above
graph we can see that the residuals will not have a mean of zero as the
models are not a good fit for the data, with their mean values telling us how
far they are from the best model we can produce for the data. A mean of
zero also indicates that the line passes through the mean values for age and
general knowledge.

Unfortunately, if we now look at Models B, D and E we see all three
pass through the mean values for age and general knowledge (107.5 months
and a score of 14). All three models will have residuals that add up to zero
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(you can work them out if you wish) and the mean of their residuals will
also be zero. However, it does not require much observation to see that both
Models D and E are a very poor fit to the data. The difference between
Model B and Models D and E is that Model B is the model with the
smallest residuals.

We now need to find the equation of the line with the smallest residual
values, which add up to zero (Model B). We do this by working out the
regression of age on the general knowledge scores (described in Chapter 20),
which gives us the model of ‘best fit’ to the data. The linear regression
technique is built upon the assumption of a linear model and relies on the
in-built assumptions of linearity in order for it to produce its analysis. In
this case it finds the linear model that minimises the size of the residuals
and hence explains more variation in the data than any other linear model.

We are assuming that the observed general knowledge scores (Y ) are
a combination of the linear model (the regression line Y ′ ) plus the errors or
residuals (E) then:

Y = Y ′ + E

As we know the formula for a straight line we have: Y ′ = a + bX (where Y ′
is the predicted general knowledge score and X is the child’s age), so:

Y = a + bX + E

This gives us a formula for E:

E = Y − a − bX

Now we can add up all the residuals:

E Y a bX  (     )= − −∑∑
This sum needs to be zero for the ‘best fit’ line. But we also need to find the
values of ‘a’ and ‘b’ that result in the smallest residuals to get the best
fitting model (Model B rather than Model D or E). There is no point simply
adding up the residuals as they will cancel each other out to give a total of
zero. So to find the smallest residuals we square all the residual values to
get rid of the pluses and minuses and then find the line that gives us the
smallest value for the sum of the squared residuals (the ‘least squares method’
– see Chapter 20 – that finds the minimised value for ∑(Y − a − bX )2).
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The outcome of this analysis gives us the following formula for the
straight line that provides the best fitting straight line for the data:

Y ′ = −31.77 + 0.43X (To be more accurate,
a = −31.7665 and b = 0.4257)

This formula, our model, predicts:

General knowledge = −31.77 + (0.43 × Age)

We can now use this model to work out the values of the residuals by
putting the age values in the equation and finding the predicted general
knowledge scores. These are shown in the table below.

Child’s General knowledge General knowledge Residuals Squared
age in score from score predicted residuals
months the test by model

91 6 6.98 −0.98 0.96
93 9 7.83 1.17 1.37
95 8 8.68 −0.68 0.46
96 10 9.10 0.90 0.81
98 9 9.96 −0.96 0.92

100 12 10.81 1.19 1.42
103 11 12.08 −1.08 1.17
105 14 12.94 1.06 1.12
107 13 13.79 −0.79 0.62
108 15 14.21 0.79 0.62
110 14 15.06 −1.06 1.12
112 17 15.92 1.08 1.17
115 16 17.19 −1.19 1.42
117 19 18.04 0.96 0.92
119 18 18.90 −0.90 0.81
120 20 19.32 0.68 0.46
122 19 20.17 −1.17 1.37
124 22 21.02 0.98 0.96

Total 252 252 0 17.71



I N T R O D U C T I O N  T O  T H E  G E N E R A L  L I N E A R  M O D E L

327

The first point to note is that the residuals add up to zero, with some
positive residuals and some negative residuals that cancel each other out
when added up. Furthermore, the sum of the squared residuals (17.71) is
smaller for this line than any other.

There are two qualities of a good model. The first is that the model follows
the pattern of the data. If we plot the data on a graph and it follows an
S-shaped curve then a straight line might not be a very good model to apply.
We want to be convinced that a linear model is the appropriate model for
the data. This is where the residuals come into play. The decision on what
makes a good model and whether it is a good fit to the data is determined
first by the characteristics of the residuals.

Second the model needs to explain as much of the data as possible. If
the model can explain only 10 per cent of the variation in the scores we
might not consider it as good a model as one that can explain 90 per cent of
the variation. We shall be examining this second aspect later but first we
consider the characteristics of the residuals.

A good model is one where the error or residual values are random. If our
model leaves systematic variation in the residuals then the implication is
that there is a better model than the one we proposed that is able to take
account of this systematic variation as well.

We want the model to explain the data equally well regardless of
where we examine the data. If the model is a close fit to the data for the
first few points (leaving small residuals) but then is a poor fit to sub-
sequent points (resulting in large residuals) then it is not a good model.
This is where the equality of variance assumption (or homoscedasticity)
is required: the residuals should be randomly spread out at whichever
point of the model we examine. Thus, we predict that the variance of
the residuals at any point on the model should be the same – as there is
no systematic reason why they should be larger or smaller at one point or
another.

To be certain that our model is a good model and the residuals are
truly random we make three further assumptions about them:

Characteristics of the residuals

Selecting a good model
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• they add to zero and have a mean of zero;
• they are from a normally distributed population; and
• they are independent of each other.

We have seen from the above analysis that only a model where the residuals
add up to zero can provide an appropriate linear model for the data. Taking
the reverse position, if the residuals do not add up to zero then we know that
there is a better fitting model for the data. With the residuals summing to
zero we guarantee that the model maps onto the mean values of the data.

Given that we are assuming that the linear model underlies the data then the
errors (i.e. the residuals) should be random with a normal distribution. Think
about what a normal distribution means. If the errors are occurring randomly
then we should occasionally get a large positive residual and occasionally we
should get a large negative residual; however, most residuals should cluster
round zero. So the assumption that the residuals are drawn from a normal
distribution is the assumption that the residuals are indeed random (and
there are no systematic patterns in the data that the model has not accounted
for). If the residuals were not from a normally distributed population then
the model we are proposing may be an inappropriate model for these data.

If the sizes of the residuals were related to the order that the children were
tested or the class they were in, then there would be a non-random element
in the residuals. If the residuals got larger with increasing age of the child
then the residuals would not be independent of each other. This is a concern
because it demonstrates a relationship in the data not accounted for by the
model.

However, if the residuals are independent of each other then there is
no relationship between them and hence the ‘error’ remaining after we have

Characteristics of the residuals: they are independent of each other

Characteristics of the residuals: they are drawn from a normally
distributed population

Characteristics of the residuals: they add up to zero
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imposed the model is random, leaving no systematic variation to be explained.
Thus a good model explains all the systematic variation in the data, leaving
only random variation.

If we do not meet these assumptions then it is quite possible that the
residuals are not completely random and there is still some systematic
variation within them that could be accounted for by an alternative model.
Indeed the common assumptions we make with our statistical tests (homo-
geneity of variance, etc.) arise from these assumptions concerning the
residuals.

We have found, in our example, the linear model that best fits the data. No
other linear model is as good as the one we have worked out. The character-
istics of the residuals satisfy the assumptions. Now that we have found the
best linear model we can ask a second question: how good is it? To explain
what I mean, I’ll rephrase the question: how much of the data is now
explained by the model and how much of the data remains unexplained as
error data (shown by the residuals)?

If we look at Figure 23.7 we can see that the same model (the same
line) fits both sets of data (one indicated by the crosses +++++ and the second
indicated by the dots •). However, the crosses are more spread out around
the line compared to the dots. We can restate this by saying that the residuals
are larger for the first dataset than in the second. We can restate this again
by saying that for the first dataset there is more data unexplained by the
model than in the second.

This leads us on to the second judgement of a good model. A good
model takes into account the variation in the data. From the data we see that
as the children get older the general knowledge scores get higher. The
model should predict this. There are two related methods for examining
the amount of data explained by a linear model: linear correlation and the
analysis of variance. Both make the assumption that the underlying model
is linear, so they require the above assumptions concerning the residuals to
be met.

The variation in the data explained by the model

Conclusion
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FIGURE 23.7 The same linear model for two sets of data

We can examine whether a linear model is able to explain a lot or only a
little of the variation in the data by working out the linear correlation
coefficient. The technique it employs (described in Chapter 20) examines
the variation in the data measured on one variable in relationship to vari-
ation on the second variable. However, it can only do that by assuming that
the relationship between the two variables is linear, and then testing the
strength of that relationship. It cannot detect a complex non-linear correlation
– it will simply tell us that the data follows a linear relationship very badly.

In our example, the linear correlation of age and general knowledge
scores is r = 0.975, which is an extremely high correlation ( p < 0.01, for a
two-tailed prediction, df = 16). Essentially, this is telling us that, assuming
the relationship to be linear, the variation in the general knowledge scores
can be accounted for by the variation in age to a large extent. Recall from
Chapter 20 that r2 tells us the amount of the variation in one variable
explained by the other, so r2 = 0.951, which means that 95.1 per cent of
the variation in the general knowledge scores is explained by the variation
in age.

Put simply, the linear correlation undertakes the following analysis:
assuming an underlying linear relationship between the variables, how much
of the variation in the data can be attributed to that relationship and how

The linear model and correlation
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much cannot? With 95.1 per cent of the variation in the data accounted for
we can be confident that there is a linear relationship between these two
variables.

Interestingly, the correlation coefficient is the slope of the ‘best fit’
regression line for the z scores for general knowledge and age (see Chap-
ter 20 on z scores in the correlation calculation). A z score standardises a
score so that the mean becomes zero and the standard deviation becomes 1.
So instead of producing a regression for the actual scores we can produce
a regression line for the z scores. This will have a = 0, as the line passes
through (0, 0) because the means of the z scores will both be 0. It will have
b = 0.975, as r is the slope of the line.

For the z scores:

zY = 0 + 0.975zX

So:

The z score of general knowledge = 0.975 × the z score of age

The good thing about this is that it shows a strong linear relationship.
However, the formula is not very useful in making predictions about general
knowledge scores from age, as it is couched in terms of z scores, which is
why we use the standard regression equation.

We can also provide an answer to the question about how much of the
variation in the data is explained by the model by employing an analysis of
variance. The analysis of variance technique is built on the assumption of a
linear model. The ANOVA proportions the data into variance explained by
the model and the variance that remains unexplained (the error variance). In
the ANOVA we consider the variation of the scores from the mean to give a
measure of the variation in the general knowledge scores. The mean general
knowledge score is 14. If we take the first child’s score of 6 we find that
the model would predict 6.98 for this child. Thus, the model can explain
6.98 − 14 = −7.02 of the variation of this child’s score from the mean. We
then square this difference (we always do this to give us a measure of the
size of a difference and to get rid of the awkward minus signs at the same
time). For the first child this value is 49.35. Finally we add up these squared

The linear model and the analysis of variance
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differences to give us a ‘sums of squares’ for the amount of variation in the
data explained by our model. These figures are shown in the table below.

Class Child’s General General Explained Explained Residuals: Squared
age in knowledge knowledge variation variation unexplained residuals:
months score score from mean squared variation unexplained

predicted variation
by model squared

1 91 6 6.98 −7.02 49.35 −0.98 0.96
1 93 9 7.83 −6.17 38.11 1.17 1.37
1 95 8 8.68 −5.32 28.32 −0.68 0.46
1 96 10 9.10 −4.90 23.97 0.90 0.81
1 98 9 9.96 −4.04 16.36 −0.96 0.92
1 100 12 10.81 −3.19 10.20 1.19 1.42
2 103 11 12.08 −1.92 3.67 −1.08 1.17
2 105 14 12.94 −1.06 1.13 1.06 1.12
2 107 13 13.79 −0.21 0.05 −0.79 0.62
2 108 15 14.21 0.21 0.05 0.79 0.62
2 110 14 15.06 1.06 1.13 −1.06 1.12
2 112 17 15.92 1.92 3.67 1.08 1.17
3 115 16 17.19 3.19 10.20 −1.19 1.42
3 117 19 18.04 4.04 16.36 0.96 0.92
3 119 18 18.90 4.90 23.97 −0.90 0.81
3 120 20 19.32 5.32 28.32 0.68 0.46
3 122 19 20.17 6.17 38.11 −1.17 1.37
3 124 22 21.02 7.02 49.35 0.98 0.96

Total 252 252 0 342.29 0 17.71

(I have given the accurate total for the sixth column. If you added up the
figures to only two decimal places you would get a figure of 342.32 due to
rounding errors.)

Now we have both the ‘sums of squares’ for the general knowledge
scores explained by age (342.29) plus the ‘sums of squares’ for the error
term (the sum of the squared residuals: 17.71). Thus, of the total variation in
the data (total sums of squares = 360.00) we can explain 342.29 of it by the
linear model, leaving 17.71 unexplained. It is a simple matter to complete an
ANOVA summary table – we just need to supply the degrees of freedom to
finalise the calculations.
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THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean F Significance
variation freedom squares square

Model (linear
regression) 1 342.29 342.29 309.25 p < 0.01

Residual (error) 16 17.71 1.11

Total 17 360.00

The results of the analysis of variance tell us that the model can explain a
highly significant amount of the variation in the data.

We have employed a regression, correlation and analysis of variance
on our data. Each of these analyses assumes that there is a linear rela-
tionship between the two variables we have measured. In the example of
age and general knowledge all three statistical techniques have supported a
linear relationship between the two variables. A linear model is a good fit to
the data and it can explain a considerable amount of the variation in the
scores.

It is relatively easy to see the underlying assumption of a linear model
in a linear regression and linear correlation. However, it is not always
so clear that this assumption is also inherent in the analysis when we
are comparing samples (e.g. in a t test or ANOVA). We can illustrate
this assumption by once again looking at the general knowledge and
age data. We can use a one factor independent measures ANOVA to
compare the general knowledge scores for the different Classes (Class 1,
Class 2 and Class 3). By placing them in the category of Class rather
than taking their age we are placing all of the 6 children in each class at
the same position on the X-axis. But the same logic that we employed
above when looking at age still applies. We can see a plot of the data in
Figure 23.8.

Comparing samples (the analysis of variance once again)
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FIGURE 23.8 Plot of general knowledge scores for each class

Now we can do exactly as we did before with the scatterplot of
general knowledge scores and age. Is there a linear model that underlies
Figure 23.8? Although we do not normally think of undertaking a correla-
tion with category data like this, computer statistical programmes will often
print out the correlation coefficient r, or r2, with the ANOVA summary
table.

Correlating the general knowledge scores with Class produces a high
linear relationship between the two variables (r = 0.913, p < 0.01 for a
two-tailed prediction, df = 16) with r2 = 0.833, indicating that the variable
Class can explain 83.3 per cent of the variation in the general knowledge
scores. Even though we are comparing the categories Class 1, Class 2, and
Class 3, we are still examining the fit of a linear model.

We can find the best linear model to fit these data by performing a
regression analysis. The result of this gives us the following formula:

Y = 4 + 5X

So our ‘best fit’ linear model predicts:

General knowledge = 4 + 5 × Class

This model is shown in Figure 23.9.
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FIGURE 23.9 A linear model for the class data

Interestingly you can see, from Figure 23.9, why we have the equality of
variance assumption with comparisons and the homoscedasticity assump-
tion with correlations. We are assuming that the data is evenly spread around
the regression line in both cases.

Now that we have our model we can work out the general knowledge
scores as predicted by the model and the ‘error’ scores or residuals. Notice,
from the third column in the following table, that the scores predicted by the
model are the category means, so the predicted score for all the children in
Class 1 is the mean of Class 1 (a score of 9). The residuals are shown in the
sixth column. Just as we did in the previous analysis of variance, we work
out the variation from the mean for each data point predicted by the model
(as this is the variation the model is able to explain). We square these values
to produce a measure of explained variation. If we add these up we get a
‘sums of squares’ for the explained variation. We also square the residuals
to get a value for the size of the unexplained variation. Adding these up
gives us the ‘sums of squares’ for the error variation. These are also listed
in the table below.
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Class General General Explained Explained Residuals: Squared
knowledge knowledge variation variation unexplained residuals:
score score from squared variation unexplained

predicted mean variation
by model squared

1 6 9 −5 25 −3 9
1 9 9 −5 25 0 0
1 8 9 −5 25 −1 1
1 10 9 −5 25 1 1
1 9 9 −5 25 0 0
1 12 9 −5 25 3 9
2 11 14 0 0 −3 9
2 14 14 0 0 0 0
2 13 14 0 0 −1 1
2 15 14 0 0 1 1
2 14 14 0 0 0 0
2 17 14 0 0 3 9
3 16 19 5 25 −3 9
3 19 19 5 25 0 0
3 18 19 5 25 −1 1
3 20 19 5 25 1 1
3 19 19 5 25 0 0
3 22 19 5 25 3 9

Total 252 252 0 300 0 60

We now have all the information to draw up the analysis of variance
summary table:

THE ANOVA SUMMARY TABLE

Source of Degrees of Sums of Mean F Significance
variation freedom squares square

Model (linear
regression) 2 300.00 150.00 37.50 p < 0.01

Residual (error) 15 60.00 4.00

Total 17 360.00
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Analysing the data by Class rather than age divides the total sums of
squares (360.00) into that explained by the model (300.00) and the remainder
not explained by the model (60.00). It is clear that our underlying model
can account for a significantly large proportion of the variation in the data
( p < 0.01). Hence we can reject the null hypothesis that the means are
drawn from the same population distribution.

You may have wondered why in both of the above analyses of variance we
worked out the explained variation relative to the mean value. The answer
arises from the way we calculate variation in the data. If we simply square
the general knowledge scores and add them up we get a total of 3888. This
value would only be a measure of the total variability of the scores in the
data if the mean equals zero. Consider two scores 99 and 101. These scores
vary by 2, with 99 one below their mean of 100, and 101 one above their
mean of 100. Now consider two other scores 25 and 35. These vary by 10
with 25 five below their mean of 30, and 35 five above their mean of 30. It
is obvious that there is greater variation in the second two scores compared
to the first, despite the fact that 25 and 35 are smaller than 99 and 101. So
when considering the variation of scores in our data we are not interested
in their actual values but the amount of variation between them so that is
why we compare them to the mean. Sometimes you will see, in the output
of statistical computer programs, the sum of the squared scores referred to
as the ‘total’ and the sum of the squared scores-minus-the-mean as the
‘corrected total’ as it is the second of these two sums that gives us the
correct measurement of the total variability in the data. In our example
the corrected total is 360 (the value we have used in the above calculations
for the total variability in the scores). The difference between the total and
the corrected total, 3888 − 360 = 3528, is simply an indication of how far
the mean value differs from zero.

We now have undertaken two analyses of variance on the general
knowledge data. The first looked at the relationship between the general
knowledge scores and age and the second compared the general knowledge
scores across the three classes. In both cases the analyses were only possible
because we had postulated an underlying linear model for the data. The
models that best fitted the data were different in the two cases as the first
analysis included the age information whereas the second included only the
class information. However, given that the analysis was undertaken on the

Explaining variations in the data
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same general knowledge scores it is no surprise to see that the total varia-
tion in the data (the ‘sums of squares’) added up to 360 in both cases. With
the assumption of a linear model we were able to separate this into the
‘variability explained by the model’ and the unexplained variability in the
data. In our first analysis the ‘explained sums of squares’ was 342.29 and
the ‘unexplained sums of squares’ was 17.71. In the second analysis these
figures were 300 and 60 respectively.

Up to now we have deal with the simplest case of a linear model, that is,
a straight line relationship between two variables, shown by the formula
Y = a + bX. However, this is the simplest case of a much more general
model that can include not just one independent or X variable but many
independent variables (indeed we have seen two independent variables in
the two factor ANOVAs in Chapter 15). Furthermore, it also allows for
multiple Y or dependent variables. To illustrate this we need first to display
our model in terms of matrix representation.

Consider once again the general knowledge and age data. To find our linear
model we minimised the error for Y = a + bX + E, where Y is the test score
and X the age and E the error or residual. So for our children we can put
each of their scores into the formula, one at a time:

Y1 = a + bX1 + E1 � or with the � 6 = a + b × 91 + E1

Y2 = a + bX2 + E2 values of general 9 = a + b × 93 + E2

Y3 = a + bX3 + E3 knowledge and 8 = a + b × 95 + E3

M age inserted M
Y16 = a + bX16 + E16 20 = a + b × 120 + E16

Y17 = a + bX17 + E17 19 = a + b × 122 + E17

Y18 = a + bX18 + E18 22 = a + b × 124 + E18

(I have used the small dots to indicate that the rest of the values need to be
included here, otherwise I would have had to list out the formulae for all
eighteen children.)

Our two variable example using matrix representation

The general linear model
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We can represent this in matrix terms as follows:
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Using large bold characters to represent matrices rather than the smaller
letters we have been using to represent individual values we can replace the
matrices as follows:
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So, in matrix terms:

Y = XB + E

Employing matrix algebra (which is a little too complicated for this
book) we can find the values of ‘a’ and ‘b’ that minimise the error quite
easily as:

B = (X′X)−1X′Y

where X′ is the transpose of X and is worked out by swapping the rows and
columns of X, and the inverse matrix (a matrix raised to the power of −1)
can be calculated by a mathematical formula.

I hope you will appreciate that we are able work out the appropriate
values of ‘a’ and ‘b’ using matrix algebra (which I am not expecting you to
know about) using the information we already have. And it turns out that:

� or with the �

values of

general

knowledge

and age

inserted

(We have a column of
1s in the X matrix to
represent the intercept,
‘a’, in our model. If we
did not put in this column
then our line would be
forced to go through zero.)
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C Bb

SP

SSx

(You can see from Chapter 20 on regression that
these are the formulae for ‘a’ and ‘b’.)

Hopefully, even for readers not familiar with matrix algebra, it is clear that
all we have done is represent the same model but in a different way.

We can extend the linear model by looking at more than two variables. If
you refer back to Chapter 21 on multiple regression, we see that the formula
we employ is of the form:

Y = a + b1X1 + b2X2 + b3X3 + . . .

This is still a linear model as it still contains the intercept ‘a’ plus the slope
‘b’ but here we have a b-value for each of the X variables. Essentially the
linear model means that there are no squared or higher values of X in the
formula. As we are no longer working with only two variables the linear
model is no longer a straight line but a multidimensional space. However,
we can use the same logic to examine as many independent or X variables
as we wish in our analysis and perform multiple correlation and regression
operations as well as performing multifactorial analyses of variance, such as
a two factor analysis of variance.

This is still a linear model of the form:

Y = XB + E

In this case the X matrix is now
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and B

where n is the number of participants and k is the number of independent
variables so, for example, X12 is the value of participant 2 on the first
independent variable.

Multiple X variables
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We can generalise the linear model further to allow more than one Y variable
as well as more than one X variable. We refer to analysis involving multiple
dependent variables as multivariate analysis as compared to the single Y
variable or univariate analysis (as we saw in Chapter 22). But the matrix
notation does not change. We still have:

Y = XB + E

But in this case the Y matrix is now

Y Y Y

Y Y Y

Y Y Y

m

m

n n mn

11 21 1
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1 2
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M M M M

L

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where m is the number of dependent variables and Y21 is the score of the
first participant on the second dependent variable.

Thus, the model is now referred to as the General Linear Model as
it can include multiple independent and multiple dependent variables. You
may have noticed that in Chapter 22 on multivariate analyses there is mention
of matrices at various points in the discussions of complex analyses (such as
factor analysis and MANOVA).

The important point here is that, regardless of whether we are dealing
with one independent and one dependent variable or many of them, we can
map our data onto a linear model and, as long as we satisfy the assump-
tions of the model, we have a powerful tool for making sense of research
findings. Just as scientists use their models of the solar system to predict
the movements of the planets, we can use a linear model to predict the
relationships between our variables. We may be excited by the prospect
of exploring other planets but we need to get there safely first and we can
only do that with a good model. Similarly we may wish to discover excit-
ing relationships between variables in our own field of study and it is
well worth appreciating the role of the general linear model in the processes
of quantitative data analysis and how it helps us to reach conclusions to
our studies.

I hope this brief account of the underlying linear model in statistical
analysis has given you some insight into the construction and application of

The general linear model and multivariate analysis
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many statistical tests. In particular an awareness of the importance of residuals
is crucial to understanding the assumptions required for these tests. Unfortun-
ately, further explanation requires a deeper foray into matrix algebra, which
is beyond the scope of this book.


