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IN  T H E  B O O K  S O  F A R  we have seen that frequency distributions can
be described by choosing appropriate statistics, usually the mean and

standard deviation. Furthermore, we can compare scores from different dis-
tributions by the use of standard scores. Finally, if scores are normally
distributed we can find out additional information about probability values
through the use of the standard normal distribution. Now we need to see
how we can exploit this information to help us answer the questions we
wish our research to answer. In this chapter we move from simply describing
data to seeing how we can use it to test hypotheses.

An hypothesis is a supposition: we state something we suppose to be the
case and then collect evidence that bears upon it. For example, we are
sitting talking with a group of friends about intelligence and one friend,
Peter, makes the surprising claim that his ‘genius’ is due to being hothoused
as a boy. Everyone laughs at this claim of genius but he continues seriously.
Hothousing, he explains, is where children are provided with lots of informa-
tion even before they can speak. He tells us that his mother used to show
him flashcards with pictures of different types of cars, buildings, and even
politicians and describe to him what they were as he gurgled back. Children
have untapped potential for learning at that age that is not exploited, he
argues. He even begins to get some of the sceptics to start to be swayed by
his view of the development of the intellect. Everyone is now interested so
we decide we want to test out Peter’s claim.

To do this we need to use a procedure called hypothesis testing. This
procedure underlies all the statistical tests that we shall be looking at in this
book. Hypothesis testing follows a logical sequence of stages from proposing
the hypothesis to deciding whether to accept or reject it.

The first problem we face is putting the hypothesis in a form that we
can test. There is no genius meter that we can attach to Peter to see if he
gives a genius reading. We have to find a way of expressing our hypothesis
in a form that can be tested. We might decide that intelligence can be
measured by the ability to solve mathematical problems or write essays on

Testing an hypothesis
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the current political situation. On this occasion we decide to operationally
define intelligence in terms of an Intelligence Quotient (IQ) test. Our opera-
tional definition is a redefinition of the original concept in terms of some-
thing we can measure, geniuses being those people who score very highly
on an IQ test. You might believe that this is a poor definition of genius
(given the criticisms of IQ tests) and you may be right. I would then demand
that you provide a more appropriate measure so we could continue. This
problem occurs often in research, different experimenters arguing for different
operational definitions. Clearly, we must use our judgement to produce a
suitable definition. In this case, Peter agrees that an IQ test is an acceptable
measure of his genius.

Peter’s argument is that hothousing enhanced his intellect; without the
hothousing he would not be so intelligent. Similarly, the rest of us who have
not had the advantage of being hothoused are not as intelligent as we would
have been had we had it. Therefore, the hypothesis we are testing is that
being hothoused (in the way Peter was) increases IQ. This is called the
research hypothesis. Note that we are being very specific here, there may be
different ways of being hothoused but we are only concerned with the form
that Peter experienced.

To decide whether this hypothesis is true or not all we need to do is to
compare two distributions: the distribution of IQ scores for everyone without
the benefit of Peter’s hothousing, which I’ll call the ‘usual-IQ’ distribution,
and the distribution of IQ scores for everyone with the benefit of Peter’s
hothousing, which I’ll call the ‘hothouse-IQ’ distribution. If we find that
the hothouse-IQ distribution is further up the IQ scale than the usual-IQ
distribution, giving a higher mean, then we can say that hothousing does
increase IQ scores. (We might not know why but we have shown that it
does.) In Figure 4.1 the two distributions are positioned to show an effect of
hothousing resulting in an IQ enhancement of 30 points, thus, in this example,
the research hypothesis is supported as hothousing shifts the usual-IQ dis-
tribution up the scale to produce the hothouse-IQ distribution.

If we found that hothousing had no effect then the hothouse-IQ dis-
tribution would be identical to the usual-IQ distribution. As a final possibility,
if hothousing actually resulted in a decrease of IQ then the hothouse-IQ
distribution would be lower on the IQ scale than the usual-IQ distribution
(to the left of it rather than the right as in Figure 4.1). Note that we have
identified three possibilities here: the hothouse-IQ distribution can be higher,
the same or lower than the usual-IQ distribution. Only if we found the first
of these would we accept Peter’s hypothesis, whereas if either of the other
two occurred we would reject it.
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FIGURE 4.1 A hothousing effect of 30 IQ points

This is all apparently very easy but of course impossible! How are we
going to find the hothouse-IQ distribution, given that this is the distribution
of IQ scores for everyone after they had been hothoused as a child like
Peter. The answer is we cannot. This distribution is something we simply
cannot find out. Indeed, we can only find out one score from this distribu-
tion and that is Peter’s score when we give him an IQ test.

Can we find out the usual-IQ distribution? It is simply too difficult to
give everyone an IQ test, so what can we do? One assumption we can make
is that IQ scores are normally distributed. If we do this then we will have
a distribution we know a lot about. We can justify the assumption on the
following grounds. First, as noted above, many human statistics are normally
distributed so why not intelligence, and, second, believing this to be the
case the creators of IQ tests deliberately constructed them to produce a
normal distribution of scores with a mean of 100 (µ = 100) and a standard
deviation of 15 (σ = 15).

Note that we either have to test everyone we are interested in to find a
particular distribution of scores (as in the examination example of Chapter
2) or make assumptions about the shape of the distribution. In the examination
example there were only 100 scores but in many cases we are considering
distributions comprising vast numbers of scores that are impossible to obtain,
such as IQ scores for the adult population of the country. Hence we have to
make assumptions about the distribution or else we cannot continue, and as
we shall see in Chapter 5, assuming a normal distribution is often quite valid.
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We now have one distribution we know about and one we do not.
Unfortunately, without the hothouse-IQ distribution we are unable to test
our research hypothesis. However, we are able to offer another hypothesis,
the null hypothesis. The null hypothesis predicts that the two distributions
are the same, that is, hothousing has no effect on IQ scores. Given that we
know what the usual-IQ distribution looks like we can assume that the
hothouse-IQ distribution is the same. If the null hypothesis is true then
Peter’s IQ score comes from the same distribution as the usual-IQ distribution.

We give Peter his IQ test and his score comes out at 120. We can find
the position of this score in the distribution by finding the z score.
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As we are assuming that the distributions are normal, we can look up this
z score in the standard normal tables (Table A.1 in the Appendix) to find
the probability of an IQ score higher than Peter’s. A z score of 1.33 gives a
probability of 0.0918. Given that we are assuming the distributions are the
same, this means that 9.18 per cent of the usual-IQ distribution, who have
not been hothoused, score higher than Peter who had. Can we use this
evidence to support the null hypothesis that the distributions are the same or
does the evidence supoprt the view that the distributions are different and
Peter is from a distribution higher than the usual-IQ distribution? The fact
that over 9 per cent of the usual-IQ population have higher IQ scores than
Peter’s doesn’t convince me of the effect of hothousing. I would expect
geniuses to be rarer than 9.18 per cent which is equivalent to 1 person in
every 11 from the usual-IQ distribution scoring higher than Peter. On this
evidence I accept the null hypothesis and say that we have not found evidence
to support Peter’s view of hothousing.

Now imagine that Peter had scored 145 instead of 120. This gives a z
score of 3 and a probability of 0.0013 of a score higher than Peter’s. This
means that only 0.13 per cent of the usual-IQ population score are better
than Peter. This small percentage, 0.13 per cent, tells us that only 1 person
in every 769 from the usual-IQ distribution scores higher than Peter. On this
evidence, if the two distributions are the same Peter is very unusual indeed.
A score as high as Peter’s score is so rare in the usual-IQ distribution that
it seems more likely that it belongs to a different, higher, distribution.
Here, the chances are that the null hypothesis is false. So I reject the null
hypothesis and accept the hypothesis that Peter’s score comes from a
hothouse-IQ distribution higher up the IQ scale than the usual-IQ distribution.
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Thus, hypothesis testing is a gamble on the basis of probabilities. If the
probability of Peter’s score coming from a distribution the same as the
usual-IQ distribution is very low I reject the null hypothesis, if the probabil-
ity is not very low I accept it.

If I accept the null hypothesis when the probability is 0.0918 and
reject it when the probability is 0.0013 then where is my dividing line, at
which probability do I switch from acceptance to rejection? The answer is:
where ever I choose! However, it has been agreed for reasons discussed in
Chapter 9, to conventionally reject the null hypothesis when the probability
is less than or equal to 0.05 (written as: ‘p < 0.05’ or ‘significant at p =
0.05’). This means that when a score from the unknown distribution could
only arise from the known distribution (i.e. the distributions are the same)
with a chance of less than 5 times in 100 then we reject the null hypothesis
and say that the score really does come from a different distribution. Essen-
tially we are gambling on the probability that a score (such as Peter’s IQ)
comes from a unknown distribution (hothouse-IQ) identical to the known
distribution (usual-IQ). When the chances are 1 in 20 or less (that is, a
probability of 0.05 or less, as 1 divided by 20 = 0.05) we switch our gamble
and bet that the distributions are different. Thus, the probability of 0.05 is
called the significance level. If the probability of Peter’s score is greater
than or equal to the significance level we accept the null hypothesis and if it
is lower than the significance level then we reject the null hypothesis.

The significance level of 0.05 means that we are more than 95 per cent
certain that we are correct in accepting that the distributions are different.
We are allowing ourselves to get it wrong, and claim there is a difference in
the distributions when there is not, on 5 per cent or fewer occasions, as such
an extreme score could only arise by chance (i.e. come from a distribution
identical to the known distribution) 5 per cent or less of the time. Some-
times we want to be even more certain that we are correct in claiming a
difference between the distributions. In these cases we take the significance
level of p = 0.01, accepting only 1 chance in 100 or less that we have got
it wrong. With this level of significance we can be 99 per cent or more
certain that we have made the right choice in claiming a difference in the
distributions.

We tested the hypothesis that the hothousing Peter received produced his
genius by the following steps:

A summary of the hypothesis testing
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1 We chose IQ as a measure of performance on which intelligence could
be judged. This is our operational definition.

2 We set up a research hypothesis: hothousing of the form Peter experi-
enced increases a person’s IQ.

3 We set up the null hypothesis: hothousing of the form Peter experi-
enced does not affect a person’s IQ.

4 We cannot test the research hypothesis as we do not know both dis-
tributions. We can test the null hypothesis as we know the usual-IQ
distribution and the null hypothesis assumes that the unknown hothouse-
IQ distribution is the same.

5 We gave Peter the IQ test and obtained his score.
6 We worked out the probability of a score as high or higher than

Peter’s from the usual-IQ distribution by looking up the z score in the
standard normal distribution table. We can only do this because we
have assumed that the usual-IQ scores are normally distributed.

7 If the probability of a score as high or higher than Peter’s is very
small, smaller than the significance level, then we say that it is very
rare for a score as high as Peter’s score to come from a distribution
the same as the known usual-IQ distribution and we reject the null
hypothesis, concluding that the hothouse-IQ distribution is different,
higher up the IQ scale. If the probability is not smaller than the signific-
ance level then we accept the null hypothesis and do not conclude
that there is a difference in the distributions.

Despite the variety of statistical tests that we examine in this book they all
follow the same basic logic. A research hypothesis predicts a difference in
distributions whereas a null hypothesis predicts that they are the same. If we
have the details of the two distributions we simply compare them. Usually
we do not have these details. However, we can continue the analysis when
one of the distributions is known and one unknown. One is known because
we are able to make the assumption that it is normally distributed and we
know about normal distributions. We select a significance level. This is our
decision criterion for accepting or rejecting the null hypothesis. This is
conventionally set at p = 0.05 or p = 0.01. We select the significance level
before we collect the data. It is like betting on a horse race. We don’t place
a bet until we know the odds. We collect the data that provides a score from
the unknown distribution. We look up the probability of a score such as this

The logic of hypothesis testing
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arising from the known distribution to decide whether to accept the null
hypothesis and conclude that the distributions are the same. If the probability
is lower than the significance level we reject the null hypothesis and say
that the chances favour the score coming from a different distribution to the
known distribution. If the probability is not lower than the significance level
then we accept the null hypothesis.

Hypothesis testing is about deciding whether an unknown distribution is the
same or different to a known distribution. There are three possible arrange-
ments of the two distributions:

1 The unknown distribution is the same as the known distribution.
2 The unknown distribution is higher up the scale than the known

distribution.
3 The unknown distribution is lower down the scale than the known

distribution.

We always test the null hypothesis (1, above) that the distributions are the
same but our research hypothesis can take a number of different forms. Our
research hypothesis could predict 2 (above). In fact this was the prediction
about the hothousing-IQ distribution, that it was higher up the scale than the
usual-IQ distribution. Alternatively, we might predict 3, that the unknown
distribution is lower than the known distribution. Imagine another friend
David had a serious head injury through a car accident. In this case we
might predict that this type of injury leads to a lower IQ than would have
been achieved without it. Finally, there are occasions when we predict
either 2 or 3. Here we are predicting that the unknown distribution will
be different to the known distribution but leaving open the possibility that
it will be higher or lower. A third friend Susan grew up eating her grand-
mother’s special diet. We might predict that this diet affected her intellec-
tual performance. However, we might not be sure whether to predict that
the special diet improves IQ (maybe Susan was getting just the right mix of
foods for intellectual growth) or reduces IQ (maybe Susan was missing out
on important vitamins).

In the hothousing and brain injury examples we are predicting a
direction to the difference in the distributions as the research hypothesis is
stating in which direction along the scale the unknown distribution will be

One- and two-tailed predictions
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shifted in relation to the known distribution. These predictions are called
one-tailed predictions. If you look back to Figure 4.1 you can see that the
hothouse distribution is expected to overlap with only the higher end of
the usual-IQ distribution, only one tail of the known distribution. If the
hothouse-IQ distribution turned out to be the same as the usual-IQ distribu-
tion or even resulted in lower IQ scores then our hypothesis would not be
supported. Only if the distribution is at the one-tail we are interested in, the
upper end of the usual-IQ distribution, is our hypothesis supported (as in
Figure 4.1). We infer this by observing whether Peter’s IQ score occurs so
far into the end of the upper tail (the top 5 per cent) of the usual-IQ
distribution that we can claim that his score comes from a different distribu-
tion, higher up the scale.

The brain injury example is also a one-tailed prediction as it follows
the same logic as the hothouse example, but here we are interested in the
lower tail of the known distribution. Only if David’s IQ falls into the bottom
5 per cent of the usual-IQ distribution would we accept the hypothesis that
the brain-injury-IQ distribution is lower than the usual-IQ distribution.

The diet example is a two-tailed prediction as we are hedging our bets,
we are saying that Susan’s diet might have reduced her IQ or enhanced it.
The diet-IQ distribution could overlap the lower tail of the usual-IQ dis-
tribution or the higher tail, either outcome supports our hypothesis of a
difference in distributions. Only if the two distributions are the same do we
accept the null hypothesis.

There are many instances where we are unable to make specific
directional, one-tailed predictions. For example, in an experiment on stress
and job satisfaction we might predict that a certain type of stress reduces
job satisfaction as it produces anxiety. However, it could also increase job
satisfaction if it results in interest and excitement. Where there is not enough
evidence to decide which hypothesis to follow, the experimenter might
decide to do a two-tailed test first of all, to see whether this type of stress
has any effect at all, be it positive or negative. In this case any difference in
the distributions would support the hypothesis.

When we undertake a one-tailed test we argue that if the test score has a
probability lower than the significance level then it falls within the tail-end
of the known distribution we are interested in. We interpret this as indicating
that the score is unlikely to have come from a distribution the same as the

Significance level and two-tailed predictions
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FIGURE 4.2 A one-tailed prediction and the significance level

known distribution but from a different distribution. If the score arises
anywhere outside this part of the tail cut off by the significance level we
reject the research hypothesis. This is shown in Figure 4.2. Notice that this
shows a one-tailed prediction that the unknown distribution is higher than
the known distribution. As an exercise try drawing this figure for a one-
tailed prediction where the unknown distribution is predicted to be lower
than the known distribution. (When you have tried this, look at Figure 6.1,
which shows a prediction of this kind.)

With a two-tailed prediction, unlike the one-tailed, both tails of the
known distribution are of interest, as the unknown distribution could be at
either end. However, if we set our significance level so that we take the
5 per cent at the end of each tail we increase the risk of making an error.
Recall that we are arguing that, when the probability is less than 0.05 that a
score arises from the known distribution, then we conclude that the distribu-
tions are different. In this case the chance that we are wrong, and the
distributions are the same, is less than 5 per cent. If we take 5 per cent at
either end of the distribution, as we are tempted to do in a two-tailed test,
we end up with a 10 per cent chance of an error, and we have increased the
chance of making a mistake.

We want to keep the risk of making an error down to 5 per cent
overall (our fixed amount of risk) as otherwise there will be an increase
in our false claims of differences in distributions which can undermine our
credibility with other researchers, who might stop taking our findings ser-
iously (one mustn’t cry wolf too often!). When we gamble on the unknown
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FIGURE 4.3 A two-tailed prediction and the significance level

distribution being at either tail of the known distribution, to keep the overall
error risk to 5 per cent, we must share out our 5 per cent between the two
tails of the known distribution, so we set our significance level at 2.5 per
cent at each end. If the score falls into one of the 2.5 per cent tails we then
say it comes from a different distribution. Thus, when we undertake a
two-tailed prediction the result has to fall within a smaller area of the tail
compared to a one-tailed prediction, before we claim that the distributions
are different, to compensate for hedging our bets in our prediction. This is
shown in Figure 4.3.

Hypothesis testing, as described here, where we are using a chosen
significance level to make our decision is often referred to as significance
testing. Whether we perform a one-tailed or a two-tailed test, the decision
to reject (or not to reject) the null hypothesis depends on which side of
the significance level our score falls. Significance testing has been extremely
useful in analysing research findings, as I hope you appreciate from the
example of Peter’s ‘genius’ above. However, we need to be aware of its
advantages and limitations, and these issues will be examined on page 71
and in Chapter 9.
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In the book so far we have been looking at what we call populations, that is
the complete set of the things we are interested in. The frequency distribu-
tions have included all the scores we are interested in, such as the scores of
all one hundred students who took the examination this year, the example
from Chapter 2. A population need not be a collection of people, even
though we are used to hearing the term used in this way, such as the
population of Britain. A population can be a complete set of anything. In
statistics it refers to a complete set of scores, such as the number of pages of
each book in a library, the IQ scores of fifteen year old girls living in
London, the number of goals scored in each football league match on a
particular Saturday, the times to complete a jigsaw by members of the
Robinson family, the number of food pellets eaten by each rat in an animal
learning experiment. The population is simply every member of the particular
category we wish to study.

Often, through the sheer size of the population we cannot study it
all. In this case we select a sample. A sample is a subset of a population.
Usually, we want to know about populations rather than samples yet we are
almost always only able to test samples. This is the fundamental problem of
statistical analysis. When and how can information from a sample give us
information about a population? The following sections will deal with this
key question. But first an example to illustrate the difficulty.

A doctor wishes to know the incidence of respiratory problems in
British men over the age of 50 years. This is a large population and extraor-
dinarily difficult to test them all. A sample must be tested instead. But the
doctor is not interested in the sample per se but what it tells him or her
about the population. If it is not possible to estimate details of the population
from the sample it is not worth studying it. What this doctor, and researchers
in general need to find is sample information that is useful for estimating
details of the population.

Populations and samples
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One of the difficulties of using samples to represent populations is the
selection of sample members. In most cases we want our sample to truly
represent the population so we can generalise our findings to the population
and claim the population will perform like the sample. If we have a sample
with the same characteristics as the population we will have a representative
sample. If the characteristics of the sample are different to those of the
population then any findings based on the sample could be biased and not
be generalisable to the population. Opinion pollsters will sometimes try to
get a representative sample of the voting population to question, making
sure that they have, for example, the same proportion of men and women in
the sample as there are in the population.

Consider the example of respiratory problems. Most people would
agree that a sample of men under 50 or a sample of women over 50 is
clearly not representative of the population we wish to generalise to. However,
will any group of men over 50 be acceptable? If we took all our men from
a hill top village where the air is clear, or from a coal mining town polluted
with coal dust we are likely to have a biased sample, as not all members of
the population live in a hill top village or a coal mining town. We would
need to take the sample from a range of locations, or from a place where
there is not a specific bias due to the location. We would need to consider
age as well. If our sample contained only men between 50 and 60 years old
could we generalise to a population where there are many men older than
60 in the population?

Any difference between the sample and the population could lead to a
problem of generalisation: location, age, occupation, class, whether they
smoke or not and so on. It is almost impossible to obtain a truly representative
sample, where every characteristic of the sample matches the population
characteristics. Rather than giving up, researchers do the best they can with
the available resources and try to be aware of any differences between the
sample and population. Here the judgement is not entirely statistical but
also depends on the researcher’s expertise in the subject. A medical practi-
tioner will know that certain factors are important with respect to respira-
tory problems, so will try to select a sample representative of the population
on these key factors, such as whether the person is a smoker or not, but not
on factors unlikely to be relevant to the study, such as a person’s hair
colour. It requires the professional judgement of the researcher (rather than
statistical knowledge) to make the decision on which characteristics the
sample must match the population on and which factors can be ignored.

Selecting a sample
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An alternative way of selecting a sample to represent a population is
through random selection. With a random sample the sample members are
selected at random from the entire population, with each member of the
population having an equal chance of being selected. If I take 100 ping
pong balls and write the numbers 1 to 100 on them, put them in a sack,
shake them up, then take five out without looking, I have a random sample
of five numbers from the population of numbers 1 to 100. Similarly, if I am
doing a survey, I might select names at random from the telephone directory
to select people to send the survey to. I have no idea who those people will
be, I am leaving it up to chance. By random selection I am not deliberately
biasing my sample, so any differences between the sample and the popula-
tion should be random and, therefore, not systematically influencing my
data in any way.

However, even so-called random sampling might not be quite so
random after all. If I am randomly selecting passers by in the street for a
survey, I am excluding all those people not passing by. If I perform my
survey at 3 pm then I will not get anyone whose occupation keeps them at
work at this time. I may not have a random selection of the population I am
interested in. Selecting numbers at random from a telephone book excludes
all those people not listed in the directory. If my population is ‘people listed
in the telephone book’ then it is fine, otherwise I need to be careful. Often
it is hard to collect a truly random sample of the population we are interested
in but, once again, we must do the best we can by deciding on the key
factors and selecting randomly within these factors.

In many cases it is not possible to be truly representative or random
but a good researcher will make it clear how the sample was selected so that
other researchers can decide if there was a systematic bias on an important
factor. Finally, there are a couple of useful points concerning a pragmatic
approach to sampling that many researchers adopt.

1 This is the only sample I have, or am able to test, so even though there
may be sampling problems I’ll test the sample anyway. If the results
are interesting I can investigate further, aware of the potential difficulties
in sampling.

It is called an opportunity sample when we simply select an available sample.
There are many experiments in psychology that use samples of psychology
students, who may not be representative of people in general. However,
often they are available for testing and if it turns out that something intriguing
comes up then other non-student samples can be tested as well. Furthermore
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we might decide that there is no serious reason to assume that the students
will perform differently to the general population on this experiment.

2 If I don’t find what I am interested in with a sample biased in my
favour then it is not worth spending more resources finding a more
representative sample.

If I am testing the hypothesis that people in Britain prefer the television to
radio I might deliberately be perverse and select a group of people who
have just bought a new radio. One might expect these people to be more
favourable to radio than the general population and if I found that they
preferred radio it would not be surprising. However, if I found that even
these people preferred the television despite my bias in favour of radio in
the sample selection then it is not unreasonable to infer that the general
population would also prefer the television.

At this point is worth explaining some terminology. To make the distinction
between sample details and population details, the word statistic is used to
refer to a sample figure and parameter for the population figure, so the
sample mean is a statistic but the population mean is a parameter. (In the
earlier chapters I have referred to a ‘statistic’ when I really should have
been using the term ‘parameter’. I did this because we are all familiar with
the term statistic but not parameter. It is only at this point in the book
that I believe the distinction should be made.) The term parameter for
population characteristics explains why the tests we shall be looking at until
Chapter 16 are referred to as parametric tests. In these tests we use sample
statistics as estimators of population parameters. The two most important
of these sample statistics are the sample standard deviation and the sample
mean.

Of the various measures of spread the mean absolute deviation and the
standard deviation both use information from all the scores. However, it has

Sample statistics and population parameters

Statistics and parameters

Sample standard deviation
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been found that the sample mean absolute deviation is an unstable estimator
of the population figure, that is, there is no consistent relationship between
the sample statistic and the population parameter. On the other hand the
standard deviation of a sample is a much more reliable estimator of the
population value. Because of this, when we do not know the population
standard deviation, we can use the sample standard deviation to estimate it.
This is a key reason for the preference for the standard deviation in statisti-
cal analysis.

The formula for a standard deviation of a population was given in
Chapter 1 and was designated by the symbol σ. However, if we apply that
formula to the sample scores we end up with a sample standard deviation
that underestimates the population value. To improve the estimate we change
the formula and always calculate a sample standard deviation by the formula:

Sample standard deviation (s) =
 

(   )X

n

−
−

∑ B 2

1

Notice we use ‘s’ rather than σ to indicate it is a sample standard deviation
rather than a population standard deviation. We also use the lower case ‘n’
for the sample size (the number of scores in the sample) and B for the mean
of the sample (to distinguish it from the population parameter µ).

The reason why we use n − 1 instead of n in the formula is a little
complicated but it helps when we consider the different purpose of the
sample and population standard deviations. In the latter case we are simply
seeking an average deviation and divide by the number of scores N. In the
former case we are seeking a good estimate rather than an average. This
estimate is more accurate when it is based not on the number of scores but
on the degrees of freedom, n − 1. Degrees of freedom concern the scores that
contain new information. As we have calculated the sample mean from the
sample scores we have used up some of the information in the scores. The
number of scores with new information, the degrees of freedom, is n − 1.

A simple example illustrates this fact. If I have a sample of four scores
(n = 4) with a sample mean of 5, how many scores must I tell you before
you can work out the rest? With 4 scores and a mean of 5 the total of the
scores is 20. If we label the four scores as X1, X2, X3, and X4 then:

X1 + X2 + X3 + X4 = 20

I tell you that one score is 6, X1 = 6, this gives us:
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6 + X2 + X3 + X4 = 20

X2 + X3 + X4 = 14

The other three scores could be any three numbers that add up to 14, there
is some freedom in what they could be. I now tell you that another score is
4, X2 = 4:

4 + X3 + X4 = 14

X3 + X4 = 10

It is still not certain what the other two scores are, they still have some
freedom, although now you know they add up to 10. The third score is 2,
X3 = 2. Given this information you can work out that the fourth score must
be 8:

2 + X4 = 10

X4 = 8

There is no freedom for this last score to vary. The final score can only
be 8 because we know that the mean is 5. As we started with the know-
ledge of the sample mean then only three (n − 1) of the scores give us any
new information, so there are only three (n − 1) degrees of freedom in this
sample.

In words, the sample standard deviation is the square root of the sums
of squares divided by the degrees of freedom. We shall meet these terms
often in our statistical analyses. The sums of squares, ∑(X − B)2, requires us

to calculate the sample mean first. However, we know that B =
∑ X

n
(which is the formula for the sample mean – add up all the scores in the

sample and divide by the sample size). If we replace B by 
∑ X

n
 in the sums

of squares formula we end up with an equivalent formula for the sample
standard deviation that does not require us to calculate the mean first:

Sample standard deviation (s) =
X

X

n
n

2
2

1

( )
−

−

∑∑
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In the formula ∑ X2 refers to the sum of the squared scores (we square each
of the scores first then add them up), whereas (∑ X )2 refers to the square of
the sum of the scores (we add up the scores before we square the total).

Notice that dividing by the degrees of freedom, n − 1, rather than the
sample size, n, makes less difference when the sample size is large but has
a much larger effect when the sample size is small. Dividing by 99 rather
than 100 will not change the calculation very much compared to dividing by
9 rather than 10. As we see below, small samples are not as good for
estimating population values as large samples.

We also want to know what a central figure is in the population but when
we only have a sample, rather than details of the population, we have to
estimate it with a statistic from the sample. Of the various measures of
central tendency (mode, median, mean), the sample mean is the best estimate
of the population value, again for reasons of stability. But how good an
estimate of µ is the sample mean B? It depends a lot on the size of the
sample, the larger the sample the better the sample mean is as an estimate of
the population mean. It also depends on the specific sample that we pick.
We can see this in the following example.

The population of IQ scores is normally distributed with a mean of
100 and a standard deviation of 15. If we took a sample of 20 people’s IQ
scores would our sample mean be 100? The answer is probably not. The
reason is that we might have a sample with a number of clever people in it
and so the sample mean would be higher than 100. Alternatively if we had
some less able people in the sample the mean would be lower. So sample
means will have a range of different values dependent on the scores we
select for our sample.

Imagine for a moment that we were able to select every possible
sample of 20 IQ scores and work out their sample means: what range of
values would we get and with what frequency? What would be the mean of
all these sample means?

So far we have only looked at the frequency distributions of scores,
but now we are interested not in the individual scores but in the mean of
every sample of size 20. If we plot this information as a frequency distribu-
tion, the curve determined by the number of sample means at each value,
we get the distribution of sample means. It turns out that the distribution of
sample means has some very interesting and useful characteristics.

Sample mean
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First, we find that, as we obtain more samples, the mean of the sample
means gets closer to the population mean. When we have selected all possible
samples we find that the mean of sample means is the same as the population
mean. Thus, if we collect the means of samples of 20 IQ scores, then the
mean of all the sample means will be 100. We refer to the mean of sample
means by the symbol µB. We use the Greek letter µ to show that it is still
a population mean and the subscript B to show that it is the mean of a
population of sample means.

Second, the distribution of sample means will tend to be a normal dis-
tribution. If the population of scores is normally distributed then the distri-
bution of sample means will definitely be normally distributed. Even if the
population of scores is not normally distributed the distribution of sample
means will still look rather like a normal distribution with a hump in the
middle and tails off to either side. The larger the samples we select the
closer the distribution approaches the normal distribution. This can be shown
by a mathematical proof, called the central limit theorem. Even though the
distribution of scores is not normally distributed, the distribution of sample
means will end up as a normal distribution as long as the samples are large
enough. When the sample size is 30 or more the sampling distribution
is almost exactly a normal distribution, regardless of whether the original
distribution was normally distributed or not. This is an extremely useful
piece of information for our statistical analysis as we now see.

Third, as the distribution of sample means is either normally distributed
or approximately normally distributed, we can work out the probability of
finding a sample with a particular mean value by calculating a z score for
our sample mean and looking up the probability in the standard normal
distribution tables.

Finally, we can easily work out the standard deviation of the distribu-
tion of sample means by a simple formula using the standard deviation of
the individual scores. We call this new standard deviation the standard error
of the mean and refer to it by the symbol σB. The standard error provides us
with the standard deviation of a sample mean from the population mean.

Standard error, σB =
σ
n

where σ is the standard deviation of the population and n is the sample size.
The standard error of the mean is precisely that, the standard distance,

or error, that a sample mean is from the population mean. In our statistical
tests we want to know how good an estimate the sample mean is of the
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population mean. The standard error tells us just that. Notice, as the sample
size (n) gets larger so the standard error gets smaller. Again this illustrates
that larger samples give better estimates of the population mean than smaller
samples.

The distribution of sample means turns out to be something we now
know a lot about without having to laboriously calculate means for all the
samples. The distribution of the sample means will be a normal distribution
(or similar to it) with a mean, µB, the same as the population mean, µ, and
a standard deviation, σB, the standard error of the mean, equal to the popula-
tion standard deviation divided by the square root of the sample size.

In the IQ example the distribution of sample means for samples of 20
scores will be a normal distribution with a mean of 100 and a standard error

of
15

20
, which is 3.35. As we have a normal distribution and we know

its mean and standard deviation we can calculate z scores and work out
probability values, just as we did for a score and a population in previous
chapters, but now we can do it with a sample mean and a population of
sample means (the sampling distribution of the mean).

To recap, we want to know about populations rather than samples but
usually we can only test samples. We want our sample to tell us about the
population. We therefore have to be careful in selecting our sample because
we would like to generalise from the sample to the population.

The sample mean and the sample standard deviation are the best esti-
mates of the population parameters but we use degrees of freedom rather
than sample size in calculating them as that improves their estimation.
Larger samples provide better estimations of population figures than smaller
samples. Degrees of freedom make more of a difference to the estimation
when the sample size is small than when it is large.

We can compare our sample to the population by calculating the sam-
pling distribution of the mean. This tells us what the distribution of sample
means would look like if we took every sample the same size as our own
(n) from the population and worked out their means. The sampling distribu-
tion of the mean turns out to be a distribution we know about because it
is almost certainly normally distributed and has a mean the same as the
population mean and a standard deviation, the standard error of the mean,
equal to the population mean divided by the square root of the sample size.

Summary
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As the distribution is normal and we know its mean and standard deviation
we can calculate z scores and work out probability values. This is exactly
what we need for hypothesis testing.

We shall see in the following chapters how the distribution of sample
means is extremely useful to hypothesis testing when we consider a sample
rather than a single score.
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There was a leak of the gas Cyadmine4 at a chemical works and the gas
cloud hung over the town of Newtoncastle for a number of days before
dispersing into the atmosphere. There were some complaints of sore throats
amongst the townspeople but the chemical company assured the public that
there are no adverse effects of Cyadmine on the human body. However, a
scientist who worked on the Cyadmine project has gone on record as saying
that Cyadmine could have an effect on pregnant women and their unborn
children. The company has dismissed the scientist’s claim as nonsense,
noting that the scientist was unable to specify what problems could arise.
There is not a universal confidence in the chemical company and there is
some concern in the affected areas especially from parents of young children.
A doctor in the large maternity hospital has been keeping an eye on babies
born in the nine months after the cloud passed over the town. She has noted
that the babies appear healthy on all the usual checks but is suspicious that
the Cyadmine could have affected their birth-weights as many of the babies
appear rather small at birth. The doctor is worried about any long-term
effects and wants to test whether the ‘Cyadmine babies’ are smaller at birth
than usual. Essentially, the doctor is making a one-tailed prediction: the
distribution of the birth-weights of the Cyadmine affected population will
be different to the distribution of the birth-weights of the unaffected popula-
tion with the overlap of the distributions occurring at the lower end of the
unaffected distribution.

To test this hypothesis we need details of the two birth-weight
populations. Comparing the two distributions will tell us whether there
is a difference between the two, specifically whether the mean of the
Cyadmine-affected population is lower on the birth-weight scale than the
unaffected population. The problem is collecting the details of the two
populations.

We may be lucky here, in that medical records are very detailed and
let us assume in this case that there are detailed records of birth-weights.
We find from the records that, for babies born in this country, the mean
birth-weight is 3.2 kg and the standard deviation is 0.9 kg. These are the
details we take for the population unaffected by Cyadmine.

An example
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The problem now is to collect details of the Cyadmine-affected popula-
tion. Essentially what we want to know is how the unaffected population
would be affected by Cyadmine were they to be affected by it, as the
doctor’s prediction is that the effect of Cyadmine is to shift everyone’s
birth-weight down the scale by a fixed amount. We can never get details
of this population, all we have are the babies of Newtowncastle who were
in the womb at the time of the leak. This is only a sample of the second
population. Not only that, but our sample is not necessarily representative
or random. We are unable to select freely from the Cyadmine-affected
population. Our sample could be influenced by other factors as well as, or
instead of, Cyadmine, such as a hospital inducing babies early, which might
also lead to lower birth-weights.

We decide to select one hundred of these babies, balancing home
births and hospital births, selecting a range of foetal ages when the cloud
appeared, and so forth, to try to select a sample that will not be systemat-
ically influenced by factors such as hospital practice, foetal age, etc. We
may not be able to account for all systematic differences, bar the Cyadmine
effects, between the sample and the unaffected population but we can
do our best to control for key confounding variables (see Chapter 7 for
further explanation of ‘confounding’). If we do find differences between
Cyadmine babies and unaffected babies it will be worth investigating
further to ascertain whether it is really due to Cyadmine or some other
reason. If we find no difference we might decide we need investigate no
further.

We obtain the birth-weights for the sample of Cyadmine babies and
calculate the sample mean. This turns out to be 3.0 kg. Can we compare this
mean with the population mean for the unaffected babies? The answer is no,
because we are not comparing like with like and this allows for the possib-
ility of bias. To explain this, let us consider the unaffected population for
a moment. Not all babies have the same birth-weight, some will be lighter
than others due to the normal spread of birth-weights. It is quite possible
that if you selected a sample of unaffected babies you might find their
sample mean lower than the population mean. By chance we might have
selected a group of babies with relatively low birth-weights despite the fact
that they come from a population with a higher mean birth-weight – we
could have just selected small babies. (I’m sure that you can see that,
equally, by chance, we might select a sample with a mean birth-weight
higher than the population mean.) Even though our sample of Cyadmine-
affected babies gave a sample mean lower than the unaffected population
mean, we cannot take this as evidence for the effect of Cyadmine on
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birth-weight. It might not be due to a difference in populations but simply
due to the nature of sampling.

If we cannot compare our sample mean with a population mean what
can we do? Recall that we can compare a score with a population of scores,
so we need to compare a sample mean with a population of sample means.
If we select all possible samples of size 100 from the unaffected population
and work out their sample means we can create a distribution of sample
means. In this way we are creating a ‘known distribution’, the distribution
of the mean for samples of size 100 from the unaffected population and an
‘unknown distribution’, the distribution of the mean for samples of size 100
from the affected population. Now we can compare these two populations
of sample means. If they are different, with the affected distribution having
a smaller mean, this will support the doctor’s hypothesis. Unfortunately, we
don’t have the details of these populations yet, in fact we only have one
value from the unknown population: the mean of our sample of 100 affected
babies.

Do we have details of the distribution of sample means for samples
of size 100 from the unaffected population? Here the answer is yes. For-
tunately, as we saw in the previous chapter, we don’t need to go out and
select every possible sample of size 100 from the unaffected population as
we know about sampling distributions – with a sample size greater than
30 the distribution of sample means will almost certainly be a normal dis-
tribution. Also, the mean of a sampling distribution, µB, is the same as the
population mean, µ, so it will be 3.2. And the standard deviation of the
sampling distribution, σB, the standard error, will be the population standard
deviation (σ = 0.9) divided by the square root of the sample size (n = 100),

so will be
0 9

100

.
= 0.09.

We have now created a logically identical framework for hypothesis
testing to the one we had in Chapter 4. We have a ‘score’ from an unknown
distribution, in this case our affected sample mean of 3.0, and we have a
known distribution, the sampling distribution of unaffected samples of the
same size. The distribution is known to be normally distributed with a mean
of 3.2 and a standard deviation of 0.09. All we need to do is choose a
significance level for the doctor’s hypothesis, find the z score, look up the
probability and make our decision as to whether the affected sample comes
from the same distribution as the unaffected samples or a lower one.

We find out how likely it is to get a sample of 100 unaffected babies
with a sample mean of 3.0 by working out the z score. Recall that a z score
is a score minus a population mean divided by the population standard
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deviation. Here the sample mean B is our ‘score’, the mean of the sampling
distribution, µB, and standard error, σB, are the mean and standard deviation
of the distribution we are interested in, so
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We can look up the probability of the z score in the standard normal distribu-
tion tables as our sampling distribution is normally distributed. Remember
the minus sign simply tells us that the score is lower than the mean of the
distribution. From the Table A.1 in the Appendix a z score of 2.22 gives a
probability of 0.0132. Thus, the probability of obtaining a sample mean as
low or lower than 3.0 kg from a sample of 100 unaffected babies is only
0.0132. This is well within the bottom 5 per cent of the unaffected sampling
distribution, well below the significance level of p = 0.05. We can conclude
that a sample mean of 3.0 kg is so rare in the unaffected population that our
affected sample mean of 3.0 kg indicates that the affected distribution is not
the same as the unaffected distribution, and we reject the null hypothesis,
concluding that Cyadmine-affected babies do have a lower birth-weight
than unaffected babies. This is shown graphically in Figure 6.1.

FIGURE 6.1 Hypothesis testing with a sample of Cyadmine-affected babies
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When we have a sample from an unknown population we cannot compare it
to a known population. We must find the sample mean, B. Then we find the
sampling distribution of the mean for all samples of the same size from the
known population. This distribution is usually a normal distribution with a
mean, µB, equal to the population mean µ, and a standard deviation (or
standard error), σB, equal to the population standard deviation, µ, divided by

the square root of the sample size, n .
Using this information in our example we tested the hypothesis that

the unknown distribution is lower on the scale than the known distribution.
As the known distribution is a normal distribution we worked out a z score
to find the probability of finding a sample mean from the known distribution
as small or smaller than the sample mean from the unknown distribution.
As the probability was smaller than the significance level we rejected the
null hypothesis and concluded that the unknown distribution is lower on
the scale than the known distribution: Cyadmine-affected babies do have a
lower birth-weight than unaffected babies.

The average number of purchases in a supermarket is 25 items. The company
would like to increase this figure and introduces an advertising campaign
to encourage shoppers to buy more products in the store. In the week after
the campaign a sample of 50 shoppers are tested to see if the number of
purchases has increased.

The following number of purchases were recorded:

30 44 19 32 25 30 16 41 28 45
28 20 18 31 15 32 40 42 29 35
34 22 30 27 36 26 38 30 33 24
15 48 31 27 37 45 12 29 33 23
20 32 28 26 38 40 28 32 34 22

The mean number of purchases for this sample is 30 items and the sample
standard deviation is 8.43.

Has the advertising campaign had an effect? As we saw above we
cannot compare the sample mean of the post-advertisement shoppers

In summary

When we do not have the known population
standard deviation
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(30 items) with the population mean of the pre-advertisement shoppers
(25 items) as one is a sample and the other a population. To compare a sample
mean with a distribution of sample means we must calculate the sampling
distribution of samples of size 50 from the pre-advertisement shoppers.
This distribution has a mean of µB = 25 (µB = µ, the same as the population

mean) and a standard error of σB =
σ
50

, where σ is the standard deviation

of the pre-advertisement population.
Our sampling distribution is almost certainly normally distributed so

we can look up a z score in the standard normal distribution table to find
the probability of finding a sample mean as large as 30 from the pre-
advertisement shoppers.
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Unfortunately, we are stuck, as in this case we do not know σ, the standard
deviation of the pre-advertisement shopper population. In order to continue
we have to make an estimate of σ. We assume that the effect of the advertis-
ing campaign is to shift the whole distribution of purchases up the scale:
that is, after the campaign the population mean is higher (people buy more
items) but that the standard deviation stays the same (the spread in the
number of purchases stays the same). The only standard deviation we have
is the post-advertisement sample standard deviation, s. Sample standard
deviations are quite stable estimates of the population figure so we could
use this to estimate the post-advertisement population standard deviation.
As we are assuming that the post-advertisement population has the same
standard deviation as pre-advertisement we can use our sample standard
deviation, s, as an estimate of the pre-advertisement population standard
deviation. (We are predicting that the effect of the advertisement will
be to shift the distribution up the scale but not change the shape of the
distribution in any way, so the standard deviation will remain the same.)
In order to use our sample standard deviation as an estimate of the popula-
tion parameter we must assume that our sample is not biased in any
way, such as made up only of wealthy shoppers, or it will not be a good
estimate. So we assume that our sample is randomly chosen from the
post-advertisement population. If this assumption is met then our sample
standard deviation should be a reasonable estimate of the pre-advertisement
population figure.
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To distinguish the fact that we do not have the population standard
deviation σ but are using s as an estimate, instead of calling the statistic z,
we call the new statistic t:

  

t s

n

=
−B µ

As we saw in the previous chapter a sample standard deviation has the
following formula:
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replacing s by its formula in the formula for t we get a new formula for t:
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Notice that t is influenced by the degrees of freedom of the sample (n − 1).
This is because t is not the same as z but an estimate of it. When the degrees
of freedom are small the t distribution is similar to a normal distribution but
flatter and more spread out. As the degrees of freedom get larger the t
distribution gets rapidly closer to a normal distribution and when the degrees
of freedom are infinite it is identical to the normal distribution. Figure 6.2
shows three t distributions for 1, 10 and infinity degrees of freedom. Even
at 10 degrees of freedom the t distribution is very similar to a normal distribu-
tion and at 30 degrees of freedom and above the differences are so small as
to be irrelevant.

We always look up a z score in the standard normal distribution tables.
We cannot do this with t as it is not a normal distribution. However, like the
standard normal distribution tables, the values of the t distribution have
been worked out. Indeed these have been worked out for the different t
distributions corresponding to the different degrees of freedom. We can
look up our calculated value of t in the table for the appropriate distribution
and find the probability of this value arising from the known distribution.
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FIGURE 6.2 Examples of the t distribution
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We can compare this value with our significance level and make a decision
whether to accept or reject the null hypothesis. Thus we are able engage in
hypothesis testing with a sample even when we do not know the standard
deviation of the known population.

In order to perform a t test we have to make three assumptions:

1 The known population is normally distributed. This is important as
(like a z score) we need our sampling distribution to be normally
distributed. If it is not then the t distribution in the table might not
provide us with the appropriate figures for our decision on the signi-
ficance of the t value we calculate. However, it is often stated that
the t test is ‘robust’: this is statistical jargon for saying that even if
the underlying sampling distribution is not normal the t test might still
provide a reasonably good figure for comparison. Certainly when the
sample size is 30 or more the sampling distribution will be very close
to normal, whatever the underlying population distribution.

2 The sample is randomly selected from the (unknown) population. We
want our sample standard deviation to be an unbiased estimate of the
population standard deviation, and hence a suitable estimate to use.
Otherwise it will affect our calculation of t.

3 The standard deviation of the unknown population is the same as the
known population. Only if we make this assumption can we take
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the sample standard deviation as an estimate of the standard deviation
of the known population.

Returning now to our example, the above assumptions are reasonable to
make here, as long as we have no reason to believe our sample 50 shoppers
was selected in a biased manner. We can now calculate t to find the
probability of finding a pre-advertisement sample with a mean as large as
30 items:

  

t

X
X

n
n n

( )

(   )

.
  .=

−

−

−

=
−
−

= =
∑∑

B µ

2
2

1

30 25

48482 45000

2450

5

1 1922
4 19

We must also work out the degrees of freedom: n − 1 = 50 − 1 = 49.
If we look at the table of t values given in Table A.2 of the Appendix

we note that, unlike the standard normal table, it does not have the figures
for the whole distribution. Otherwise we would have table after table, giving
all the values for each different t distribution. What the table shows is the
key values for each distribution, where the key values are the values of t
at the significance levels we commonly choose, i.e. which t value cuts off
exactly 5 per cent and which value cuts off 1 per cent of the tail of the
t distribution.

We have a one-tailed test (we are predicting the advertising campaign
will result in more purchases). Using a significance level of p = 0.05, we
look down the p = 0.05 column and along the row for 49 degrees of free-
dom and we find the t value is not there! There is a figure of 1.684 for
40 degrees of freedom and 1.671 for 60 degrees of freedom. The reason
for this is that, again, if every figure was listed the column would go on for
ever. We can see that there is there not much difference in these values
(0.013) so we know roughly what our value for 49 degrees of freedom will
be: somewhere between the two (1.671 and 1.684). We can find it out by a
process called linear interpolation, which is easier than it sounds! Between
40 and 60 is a gap of 20 and between 1.684 and 1.671 there is a gap of
0.013. So for every degree of freedom between 40 and 60 the difference in
the table is 0.013/20, which is 0.00065. For 9 degrees of freedom the gap is
9 × 0.00065, which is 0.00585. Therefore 49 degrees of freedom has a table
t value of 1.684 − 0.00585, which is 1.67815. (If you don’t want to do a
linear interpolation just take the larger of the two values in the table: 1.684.)
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As a t value of 1.67815 cuts off exactly 5 per cent of the tail of the t
distribution with 49 degrees of freedom, our value of t being larger will cut
off less of the tail and the probability of getting a t value of 4.19 from the
known distribution is less than 5 per cent, so we can reject the null hypo-
thesis and argue for a difference in the two distributions.

More simply we can conclude that, as our calculated value of t of
4.19, with 49 degrees of freedom, is larger than the table value of 1.67815
for a one-tailed test, at the p = 0.05 level of significance there is a significant
increase in the number of items purchased after the advertising campaign.
Notice that it is also significant at the more conservative p = 0.01 level
of significance and we would usually report the finding at the smaller
significance level to indicate how unlikely it is that the effect could have
occurred by chance. (See if you can work out by linear interpolation the table
value of t for 49 degrees of freedom for the p = 0.01 level of significance.
You should get a value of t of 2.40815.)

The t test is a test of significance and we seek evidence for a statistically
significant difference between populations based on the sample information
we have. An alternative approach is to use the sample information to estim-
ate the population parameters. Now you may say that we have already done
that by using our sample mean value as an estimate of the population value.
That is true but we can be a little more sophisticated by working out a
confidence interval for the mean. Rather than choosing a single value for
the population mean we can specify a range of values within which we are
confident that the value lies. We choose a level of confidence, usually either
95 per cent or 99 per cent confident, and then work out the range of values.
With a 95 per cent confidence interval we are saying that if we worked out
the confidence interval for 100 different samples from a population then
95 per cent of those confidence intervals would contain the population
mean value. So our confidence interval is a good estimate of where the true
mean lies.

In the above example we can work out the 95 per cent confidence
interval quite easily as we use the information we produced for the t cal-
culation to work it out. This is because for the t test the confidence interval
(CI) is specified as follows:

CI = Sample mean ± (critical t value × standard error of the mean)

Confidence intervals
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In this case the critical t value is the one that ‘captures’ the central 95 per
cent of the distribution, leaving only 5 per cent outside the range, so is the
two-tailed t value from the tables at p = 0.05, as this cuts off 0.025 from
each end of the distribution.5 We have 49 degrees of freedom so we can
now find the critical t value from the tables, which is 2.0116 (by linear
interpolation between the values for df = 40 and df = 60). We know the
sample mean is 30 and we know that the (estimated) standard error of the
mean is 1.1922 (as it is the bottom part of the t test formula).

So we have:

95%CI = 30 ± 2.0116 × 1.1922 = 30 ± 2.3982

which gives

95%CI = (27.6018, 32.3982)

This gives us a helpful indication of the position of the true population
mean. The narrower the confidence interval the more specific our estimate
of the population mean. Here we are confident that the population mean lies
between 27.6018 and 32.3982. Even the lowest of the two limits, 27.6018,
is still well above the 25 value for the pre-advertising purchases.

We can extend our confidence interval analysis to give the confidence
interval of the difference between our post- and pre-advertisement mean
values (B − µ). We use the same formula but replace the sample mean with
the difference in means:

CI = Difference in means ± (critical t value × standard error of the
difference in means)

The critical t value and the standard error are the same as in the previous
calculation and we know the value of µ so:

95%CI = (30 − 25) ± (2.0116 × 1.1922)

95%CI = (2.6018, 7.3982)

This provides us with a range of values that we are confident (95 per cent
of the time) contains the real difference in the populations. Notice that in
the ‘worst case’ (the lower limit) we still predict 2.60 more purchases after
the advertisement so we can be confident that it has had an effect. Had the
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lower limit been zero or even negative we would not be able to assume a
definite effect of the advertisement as the true difference could have been
zero.

The above confidence intervals have been worked out using the sample
statistic (the mean, or the difference in means), sample information (the
standard error) and the appropriate statistical distribution for the data (the t
distribution). We can calculate confidence intervals for many statistical analy-
ses using the same structure as above, but we write the general statement as
follows:

CI = Value of statistic ± critical value of appropriate distribution
× standard error of the statistic

We then need to select the appropriate statistic, critical value and standard
error to calculate the confidence interval. As we saw above, we work out
the statistic and the estimate of the standard error from our data, choose the
level of confidence we want (e.g. 90 per cent or 95 per cent) and then select
the correct critical value for that confidence level.

Significance tests and confidence intervals are both attempting to answer the
same question: what does our sample information tell us about the population
values and what can we conclude from it? In the first case, a significance
test, we are seeking whether the sample statistic exceeds a particular criterion
(the p = 0.05 significance level) to claim statistical significance (and reject
the null hypothesis). In the second case, confidence intervals, we are seeking
to find the range within which we can be confident that the population value
lies. If we look at confidence intervals of a difference we can examine this
range in relation to zero to give us an indication of whether we think the
difference is important or not. If the confidence interval contains zero then
the difference for the population values could well be zero and hence any
difference we found in the sample means is not important.

Significance tests have been traditionally used in data analysis in a
number of fields of study. However, confidence intervals are increasingly used.

The general structure of a confidence interval

Significance and confidence intervals
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This is because significance tests provide an ‘either–or’ outcome – either
the null hypothesis is rejected or it is not at a particular significance level –
whereas the confidence interval provides a range of values that provide a
useful estimate of the size of the difference.

In a real sense significance tests and confidence intervals are com-
plementary in that together they reveal a clearer picture of the data than
they might on their own. In many cases (with a highly significant finding,
for example) the conclusion is clear but where the finding is ‘close’ to
significance (with a probability of 0.06, for example, which we would say
is not significant) confidence intervals can help us evaluate the worth of
further investigation, particularly if, as we shall see in Chapter 9, there are
a number of factors that influence our statistical outcome.

The same logic applies whether we are testing a sample or we are testing
an individual score. However, with a sample the ‘score from the unknown
distribution’ becomes the sample mean from the unknown sampling distri-
bution and the ‘known distribution’ we compare it to is the distribution of
sample means from the known population for samples of the same size.
Once we have the details of the ‘score’ and the ‘known distribution’, then
the procedures are identical: we work out the z score and find the probability
in order to decide whether to accept or reject the null hypothesis. It is a little
more complicated if we do not have the standard deviation of the known
population but as long as we make the appropriate assumptions we can use
the sample standard deviation to estimate it. We then calculate t instead of
z. As the t distributions have all been worked out we can look up the critical
value of t, with the appropriate degrees of freedom, for our chosen level of
significance. If our calculated value is larger than the table value we can
reject the null hypothesis.

Confidence intervals provide an alternative way of representing our
findings as they provide a range of values within which we are confident
that the population value lies. We may choose this as an alternative to our
significance test or as supplementary information to it.

Hypothesis testing with one sample: in conclusion


