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HYPOTHESIS TESTING with a single sample is used when we know
about a particular population and wish to decide whether the sample
comes from a different population or not. In most research we do not have
details of any populations at all. All we know about are the samples we
can obtain. In the majority of cases hypothesis testing is about comparing
samples rather than comparing a sample mean with a sampling distribution.
In the Cyadmine example considered in the previous chapter we had the
details of a birth-weight population unaffected by the gas. More usually
we will not have this information and can only collect a sample of babies
affected by the gas and a sample of babies unaffected by it for comparison.
We, of course, increase the problems of sample selection when we have two
samples rather than one, as each is required to represent a population.
Indeed, it is the fact that we want to use our samples to estimate populations
that causes problems in sample selection, for we do not want to introduce
biases that make our samples untypical of their population.

When we have two samples, not only do we wish them to represent
their respective populations but we also want them to be comparable. For
example, if we are comparing forty year old men and women on their degree
of fitness we would not select women who were athletes and men who were
taxi drivers as the samples are not comparable. Any difference in fitness
could be due simply to occupation rather than gender. It is this problem of
comparability we consider now.

Designing experiments to compare samples

The reason we undertake experiments is to test hypotheses. A major cause
for concern is whether the experiment is really examining the hypothesis we
wish it to test, to the exclusion of all others, or whether we have introduced
a bias in some way. Poor sample selection can lead to an ambiguous experi-
ment if we are unable to decide whether, say, a difference in fitness is due
to occupation or gender.
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Experimental variables

All experiments look at the effects of variables or factors, the terms are used
synonymously. Variables are, not surprisingly, things that vary! Temperature,
reaction time, teaching methods, gender, class, drinking habits, accuracy of
performance are just a few examples.

In the simplest case of hypothesis testing we want to know whether
a single score comes from a known population distribution or from a dif-
ferent population distribution. An example is comparing the reaction time
of someone after a head injury with the population of reaction times from
the uninjured population. We can also compare a sample mean with a
known distribution of sample means. As an example we might compare the
mean IQ score of a group of children taught by a new teaching method with
the distribution of means of samples of the same size of children taught by
the traditional method. In both these cases we need a known distribution.

More usually we will compare two or more samples of subjects to
decide whether they come from the same or different populations, for example
do men and women differ on their memory for faces? Note the word subject
in this context simply refers to a member of a sample. A subject could be
anything. Quite often it will be a person but it could be an animal (if we are
studying rats learning mazes or dogs learning tricks) or indeed anything we
want to study (bolts made by one machine in one sample and bolts made by
another machine in a second sample). The use of the term ‘subject’” has been
criticised in the study of psychology when referring to people who agree
to take part in research. The modern terminology for such a person is
participant as it is viewed as more respectful of these helpful individuals,
without whom there would be little psychological research. However, in
statistical analysis we refer to ‘between subjects’ and ‘within subjects’ for
particular types of designs or calculations, so the term continues to have
currency in this context. Where it is clear that it is people taking part in a
study I will refer to them as participants rather than subjects.

In the examples we have considered so far each experiment has
at least two factors. In the Cyadmine gas example we have the variable
Cyadmine, varying between ‘affected’ and ‘unaffected’ and birth-weight,
varying between the individuals we are measuring. In the memory experiment
above we have gender, either ‘men’ or ‘women’, and memory for faces,
which we vary along the scale devised to measure it.

In an experiment there can be one or more independent variables. These
are the variables for which the experimenter selects the values in advance.
With the variable Cyadmine we chose to look at two values: affected and
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unaffected (rather than looking at, say, badly affected, moderately affected
and slightly affected). With the variable gender we selected men and women
(rather than boys and girls). The experimenter controls the values of the
independent variables and the samples are selected so that they differ on
these values.

As well as independent variables there is also the dependent variable
in an experiment. This is the variable we measure and on which we obtain
the scores. Whilst the researcher selects what factor will be the dependent
variable in the experiment (birth-weight, reaction time, IQ score, memory
for faces) the researcher cannot control the values of that variable. We do
not know in advance what the scores will be on this variable. This is the
point of performing the experiment. Let us consider another example of the
two sample case: two groups of children engage in different methods of
learning a second language. Is one method better than the other? In statistical
terms we want to find a suitable dependent variable (such as amount learnt)
that is dependent (i.e. influenced by) the independent variable (learning
method) to see if the values of the dependent variables differ in our two
samples to such an extent that we can conclude that the sample scores come
from different distributions, and one method leads to a greater amount
learnt than the other.

The problem of equivalent conditions

Experiments are all about predicting relationships between independent and
dependent variables. A research hypothesis is a prediction that the dependent
variable will vary with (depend on) changes in the independent variable.

Imagine we set up an experiment to test whether girls are better than
boys at map reading. The first problem is deciding what we mean by ‘map
reading’. Reading a road map to get into town? Reading an ordnance survey
map to cross a moor? There is not an easy answer to the question. We must
make a choice and state it clearly. As we saw in Chapter 4, we must
operationally define map reading ability for the purpose of our experiment,
such as ‘the time it takes a child to get from a specific church, across the
fields to a specified post office, using an ordnance survey map only’. We
have to attempt to arrange the conditions equally for the children, such as
making sure that they are all unfamiliar with the route. And this highlights
a second problem.

What if we find a difference between the boys and the girls on map
reading ability: can we infer a relationship between gender and map reading
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ability? Not necessarily; the reason being the difficulty of arranging equivalent
conditions for the boys and girls. If the girls had undertaken the task
in bright daylight and the boys in the dusk we would not be surprised if
the boys were worse. In this case the independent variable gender was
confounded by another variable daylight. Likewise, if all the boys were
from an orienteering club and the girls had never seen a map before then a
difference between them would not necessarily indicate a relationship of
map reading ability to gender but to experience.

Confounding is an example of a systematic error. The experimental
conditions are consistently different for the two samples due to other
independent variables as well as the one under test. In addition to systematic
errors influencing an experiment we also have random errors. These occur
in an unsystematic way: a gust of wind makes it temporarily hard for one
boy to read his map, a road is busy when one girl tries to cross but is quiet
for another.

As it appears that we can never produce equivalent conditions for all
the participants in the study should we abandon experimentation altogether?
Unfortunately there is no research method without problems and there are
ways of dealing with these difficulties. Systematic errors can be avoided
when we are aware of them and it is the skill of the researcher to spot them.
We can deliberately select our participants so that they are matched on a
confounding variable. In our example, for each boy that has some map
reading experience we match him with a girl who has had the same amount
of experience. In this way the samples no longer differ on experience and
it should no longer bias our results in favour of one sample. We can also
monitor the daylight and make sure that the children perform in similar
daylight conditions. By being a little more sophisticated in the design and
operation of the experiment we can remove relevant systematic errors.

It is unlikely that we would match the children on hair colour as this is
a factor we would not expect to influence this experiment. In matching we
take account of only the factors we believe to be relevant. Again we can see
it is one’s expert knowledge of one’s own discipline rather than statistical
knowledge that guides these judgements. This is why an experiment should
always be accurately reported, stating how the samples were matched.
Another researcher might argue that an important confounding factor was
not controlled for in the experiment.

We cannot control for random errors. However, our statistical tests are
deliberately designed to help us decide if there is a difference between our
samples above the level of any ‘background noise’ caused by these random
errors, and we set a significance level to do this. We do not expect every
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Related

boy to get the same score, nor every girl. We expect a distribution of scores:
not every boy runs at the same speed, not every girl trips up on the way.
Random errors produce a distribution of scores across each sample. Statistical
tests look for systematic differences between samples due to the independent
variable above the random variation within a sample.

or independent samples

Sometimes, as in the map reading experiment, there are different par-
ticipants in each sample. This is not surprising for the variable gender, as
most children are either a boy or a girl, not both. In other experiments it is
possible use the same participants in each sample. An example of this might
be an experiment on the effect of temperature on reading comprehension
where we test the participants’ comprehension at two different temperatures.
When a participant contributes a score to only one sample the experiment
is called an unrelated, independent or between-subjects design and when the
participants contribute a score to each sample the experiment is called a
related, repeated measures or within-subjects design.

Consider an experiment where a researcher is trying to find out whether
it is harder to understand the writing of Joseph Conrad (reputed to be dif-
ficult) compared to Charles Dickens. The researcher might select pieces
written by the two authors (matched on length at least) and give them to a
group of participants to read, followed by a comprehension test. This is a
related design, as each person is in both samples. This has the advantage
of matching the participants with themselves, so reducing possible errors
due to differences between individuals (we will not have all the English
enthusiasts in one sample). However, there are other problems to watch for.
If the participants read the Dickens piece first followed by the Conrad they
might perform worse on the Dickens, not due to comprehensibility, but
because they read it first and it is not so fresh in their minds. We have
introduced the confounding factor memory time into the experiment. To
overcome this we must counterbalance the order of presentation, so half the
participants read the Dickens first and half the Conrad. By this counterbal-
ancing we will have controlled for confounding factors such as memory
time, tiredness, boredom, experience of the test, etc.

The advantage of an independent design is that there are no carry-
over effects from one sample to the next, whereas the disadvantage is that
there may be systematic differences between the samples and therefore we
must take care in our sample selection. In many cases we have to have an
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independent design as we are testing an independent variable such as gender
or occupation where participants can only be a member of one sample:
people are normally working as either a doctor or a nurse but not both.

The interpretation of sample differences

Essentially, in designing experiments, we would like to select our subjects
randomly from the largest population possible. If we do this then our results
have the greatest generalisability. However we also have the greatest chance
of confounding. Researchers compromise (as they must using any method-
ology) and lose some generalisability in favour of greater control over the
variables involved. In the Cyadmine example we considered babies born in
a single town where the gas cloud rested. This sample might not generalise
to all Cyadmine-affected babies. Maybe there is something specific to the
location that influenced the impact of the gas in some way. Yet this should
not stop the researcher carrying out the test. Important information can still
be found and it would also need to be demonstrated that the location does
have an influence on the effects of Cyadmine.

Finally, in this section, we wish to design experiments that actually
test out the hypothesis we are interested in! (It is amazing how many do
not.) If we wish to test whether a reading scheme improves children’s
reading performance we cannot simply test them before and after they have
taken part in the scheme. Any differences might be due to the fact that
the children are older rather than the reading scheme as such. We have
the confounding factor of age. To overcome this we match two groups of
children on reading ability and then give one, the experimental group, the
reading scheme but not the other, the control group. If the performance of
the experimental group improves more than that of the control group then
we may be able to relate it to the reading scheme as we have controlled for
the effects of age by the selection of the control group.

In all experiments we are trying to establish relationships between the
independent and dependent variables, controlling for extraneous variables
that could influence this relationship. We must be careful when we do find
a relationship that our interpretation is not in error. Experiments do not
establish causal relationships, they only support or do not support testable
hypotheses. For example, we might hypothesise that men and women differ
on a certain factor. If we find a significant difference it supports our hypo-
thesis but does not tell us why. The answer may be genetic, social or even a
confounding factor that we have not taken account of.
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The reason for undertaking experiments is to give us some systematic
data on which to base our judgements and test our ideas. The more we learn
about experimental methods the more sophisticated our judgements can be
in assessing the worth of our findings. And it is the statistical analysis
which helps us to decide what we have actually found out.
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A TEACHER READ ABOUT a new reading scheme introduced in
another country and wondered whether it could be used here. There
were reports in the educational literature of the other country that the
New Scheme resulted in better reading performance from the children. The
problem was that these data were for another language. The teacher wanted
to find out if the New Scheme was better than the Old Scheme currently
being used in the classroom in this country.

The teacher decided to teach half the class on the New Scheme and
half on the Old Scheme on the next class intake. The children were randomly
allocated to the two schemes, to avoid biasing the samples due to factors
such as intelligence. In this way the two samples were assumed to system-
atically differ only on the variable under study: reading scheme. The teacher
can now compare the samples. Yet the teacher is not really interested in the
samples as such but the population of children these samples are drawn
from. Is the New Scheme better for children of this age rather than just this
class? The question is whether the population distribution for the New
Scheme is higher up a scale of reading performance than the distribution for
the Old Scheme. This is a one-tailed prediction that the New Scheme will
result in better performance than the Old Scheme. Unfortunately the teacher
has no details of these populations, they are both unknown.

How can these samples be used to test the hypothesis? First of all we
can ask whether the samples are representative of the populations we want
to generalise to. How are the pupils selected for this school? What social
groups do they come from? These factors might limit the generalisation.
Second, we can look at the performance of the two samples on a test of
reading. If the difference between the samples is small we might be sceptical
of a difference in populations but if the difference is big we might decide
that the finding indicates a likely difference in the populations. The problem
we face is: how big must a difference be before we reject the null hypothesis
and decide the samples really do come from populations with different
distributions.

We can attack the problem in the following way. Let us assume
that the two samples really do come from the same distribution, the null
hypothesis is true and there is no difference in reading performance between
the populations. What differences would we expect between two samples
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Sample 1 mean larger

Sample 1 mean smaller
than Sample 2 mean

than Sample 2 mean

0

Sample 1 mean minus Sample 2 mean

FIGURE 8.1 The distribution of the difference between sample means

simply by chance alone? We can find this out if we take the mean of every
possible sample, of the size we are interested in, and compare it with the
mean of every other possible sample of this size. These differences (in
sample means) will tell us what differences we would expect when the null
hypothesis is true. If we plot these differences we get the distribution of
differences between sample means. Like the distribution of sample means
this will tend to be a normal distribution as it is a sampling distribution.
This will be especially the case if our sample size is large. The mean of this
distribution will be zero because, when we take samples from the same
distribution the differences will pile up around zero as there will be little or
no difference between most sample means. Only occasionally will there be
a large difference, say, when one sample has all the good readers and the
other all the bad readers. The distribution of differences between sample
means when the null hypothesis is true is shown in Figure 8.1.

Now, lo and behold, we have a known distribution: a normal distribu-
tion with a mean of zero. We also have a score to test: ‘the difference in our
sample means’. Hypothesis testing is all about comparing a score with a
known distribution. If the probability is high that our difference in sample
means comes from this distribution then the chances are that the null
hypothesis is true. If there is a low probability of finding a difference such
as ours from this distribution then the chances are that our samples come
from different population distributions, and the null hypothesis can be
rejected. All we need to do now is to construct a z score for the ‘score’ (the
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difference between our sample means) and we can find the probability of
this score coming from the ‘known distribution’ (the distribution of differ-
ences between sample means) to find the probability of the null hypothesis
being true.

A z score needs a score, a mean and a standard deviation. Our ‘score’
is the difference in sample means. If we call the mean of Sample 1 X, and
the mean of Sample 2 X, then the difference in sample means is X, — X,.
The mean and standard deviation of the distribution of differences in sample
means, when the null hypothesis is true, are given the following symbols:
Uxx, and Oy _g,, respectively. (As it is the standard deviation of a distribu-
tion concerning sample means we must remember that of 5, is a standard
error. It gives us the standard distance of a difference in sample means from
the mean of the differences in sample means.) And we so can write the
following formula for z:

(X, — X,) — Ug,x,

O%,-x,

Now we know that uy 5 = 0, so we can write z as follows:

(X,-%)-0_X X,

All we need to do now is look up the z score in the standard normal table to
find the appropriate probability value. The problem is that we do not know
Oy,_x,» We will have to estimate it. How do we estimate the standard error
of the distribution of differences between sample means when the null
hypothesis is true? We have to use our samples. We replace Oy, _g, in the
formula with sy _g, which is the standard error of the difference between
our sample means. It may look a little different to the one we created in
Chapter 6 but we have the 7 statistic once again, as an estimate of z by using
sample information to estimate the population standard error. The difference
is only in the appearance of the formula: we still have a ‘score’ (X, — X,)
minus a mean (which in this case is zero) divided by an estimated standard
error (Sy,_g,):

X -X
t = 1 2
X=X,
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Recall from Chapter 6 that we know all about the ¢ distribution so we are
able to find probability values in the tables. We must not forget that the ¢
distribution is influenced by the degrees of freedom of the samples, as
the larger the samples the closer the distribution approximates the normal
distribution. We must work out the degrees of freedom of our samples if
we are to compare our calculated ¢ value to the correct ¢ distribution.

We now have a statistic we can work out using the information from
our samples and we will be able to use it to make decisions concerning the
population distributions: just the thing for hypothesis testing using two
samples. Essentially, sy _g, is (an estimate of ) how much we would expect
our means to differ by chance (when they come from the same distribution)
whereas X, — X, is the actual difference in means. (X, — X,)/sy_x, tells
us how much bigger our difference in means is relative to the difference
expected by chance alone. The larger this ratio the greater our confidence that
the mean difference is not due to chance but due to two different population
distributions. The tricky thing is working out sg,_g but in subsequent sections
we will see how this is done.

The assumptions of the two sample f test

The basic assumptions of the ¢ test are the same whichever ¢ test we are
undertaking. We require the sampling distribution to be normally distributed
so we usually assume that our samples come from normally distributed
populations. Fortunately, the ¢ test is robust so that even if the distributions
are only vaguely normal: humped in the middle and tailing off to the sides,
then the ¢ test is still likely to be valid. This is especially true for large
samples (greater than 30). Again, we must assume that the samples are
randomly chosen from their populations so that we can use sample statistics
(mean, standard deviation) as unbiased estimates of the population parameters.
Finally, we assume that the two samples come from populations with equal
variances (and equal standard deviations as one is simply the square root of
the other) to allow us to use the sample information to estimate population
standard deviations. Thus, we are assuming that any effect of the independent
variable is to shift the distribution of the dependent variable along the scale
(i.e. alter the population mean) but not change its shape (its variance, or
standard deviation).
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Related or independent samples

As we saw in the previous chapter, related samples involve subjects providing
scores for both samples, whereas with independent samples each subject
contributes a score to only one sample. The way we calculate the two
sample 7 test depends on whether the two samples are related or independent:
there are different formulae that take account of the various differences this
entails. For example, if we have 10 subjects in our two samples, for related
samples we require only 10 different subjects as they are used twice, whereas
with independent samples we require 20 subjects, 10 for each sample. The
details of the different formulae are shown below.

The related t test

We start with our formula for #:

- X - X,

S%,-X,
We can work out X, — X, easily enough. The difficulty is to work out
sy-x,- Recall that the standard deviation of a distribution of sample means
is called a standard error of the mean. sy _g is still a standard error, as it
is still based on sample means, and so can be expressed as the standard
deviation of the difference between the scores divided by the square root of

the sample size:

_ SXI_XZ

X-X, \/;

We now need to work out the standard deviation of the difference in sample
scores, sy_x,. The difference in sample scores is easy to calculate with
related samples. For each subject we can calculate a difference score d
simply by subtracting the subject’s score in Sample 2 from their score in
Sample 1: d = X, — X,. We can legitimately do this as the samples are
related. Consider the example of comparing the length of a night’s sleep. If
a person sleeps 8 hours on Monday and 7 hours on Tuesday the difference
for that person is 1 hour of sleep. The difference score for the participant is
8 — 7 = 1. We then find the standard deviation of the difference scores:
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q 2
“‘zdz _(Etnd)
SXI—Xzzsd:\“‘

n-—1

Here we have the usual standard deviation formula. With n subjects in each
sample there are n difference scores. We can now produce a formula for
S%-x,» the standard error, by dividing the above formula by NCE

| S ay
_ ZdZ _T

nn-1)

S%-X,

And now finally we have our formula for the two sample related ¢ test:

o X-%

Q. d)y?

Zdz _T
nn-1)

Note that, whilst the formula looks very different to the z formula, it
is still a score (X, — X,) minus a population mean (0) divided by a
standard deviation, although in this case it’s rather a complex standard
deviation: the estimate of the standard error of the difference in sample
means.

A worked example

A teacher believed that the children in her class were better at their work
in the morning than in the afternoon. She decided to test this out by using
a mathematics test as this required the children to concentrate. If there was
a post-lunch dip in performance the test should pick it up. She chose a
random sample of 8 children from the class and gave them two tests matched
on their difficulty. The samples were balanced on the two versions of the
test, and at what time they were tested first, to control for carry-over effects.
The tests gave a score out of 10, the higher the score the better the perform-
ance. The results were as follows:
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Participant Morning Afternoon

0NN AW~
AN LN AT NP
W s WhkBRNDWD

This is a related two sample ¢ test as all participants contributed a score to
both samples.
We must now find the values to fit into the formula:

o X-%
, (Qay
Zd _z:n
n(n—1)

We can now relabel the columns, with Sample 1 for Morning and Sample 2
for Afternoon and find the means (X, and X,), the difference scores (d), the
sum of the difference scores (X d), the square of the sum of the difference
scores ((X d)?), the squared difference scores (d?), and the sum of the squared
difference scores (2, d?). The number of participants in each sample is 7.

Participant Sample 1 Sample 2 Difference Squared d
X, X, d d’

1 6 5 1 1

2 4 2 2 4

3 3 4 -1 1

4 5 4 1 1

5 7 3 4 16

6 6 4 2 4

7 5 5 0 0

8 6 3 3 9

n=2_8 X, =525 X, =35 2d=12 > d*=36

(X d) =144
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Inserting the figures into the ¢ formula we get:

5.25-3.75 1.50 1.50 1.50
t= = — = = —2.65
144 36 —18  +/0.321 0.567
36 — —— |
8 V56
88 — 1

The degrees of freedom (df) for a related ¢ test is always n — 1, so df = 7.

This is a one-tailed test as the prediction was that the children would
perform better in the morning, and the prediction is that the scores in
Sample 1 are larger than in Sample 2. As can be seen from the means
this is the case but we need to test the significance of the difference. At
the p = 0.05 level of significance, we find from the ¢ distribution tables
(Table A.2 in the Appendix) that r = 1.895, df = 7 for a one-tailed test.

The calculated value of ¢ of 2.65 being greater than the table value
of 1.895 allows us to reject the null hypothesis, at the p = 0.05 level of
significance, and conclude that the pupils did perform significantly better on
the mathematics test in the morning compared to the afternoon.

Sometimes we find that the calculated ¢ has a minus sign. This simply
indicates that the mean of Sample 1 is smaller than the mean of Sample 2.
If we had found a minus sign in the above example we could have rejected
the one-tailed prediction straight away as it would have meant better scores
in the afternoon. If we had predicted that Sample 2 has the larger scores,
or made a two-tailed prediction, we simply ignore the minus sign when
comparing the calculated value with the table value.

The independent f test

We again start with our formula for #: u The difficulty with independ-
SX,-X
ent samples is working out sy_x . How we 2do this is explained below. Now
this does include some rather horrible formulae, so, if you wish, do not
worry about following the derivation of the formula for the independent
t test, feel free to skip the mathematics. If you understand the logic that
we have to find a formula for sy _g, and that this formula, though rather
cumbersome, is still an estimated standard error of the difference in sample
means then that’s fine.
We cannot produce difference scores as we did for the related ¢ test.

(If the samples are unrelated we cannot work out a difference score. If one
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person sleeps 8 hours on Monday and another person sleeps 7 hours on
Tuesday it is meaningless to subtract one from the other as they are from
different participants.) Indeed we may have different numbers of subjects
in the two samples (n, and n,). We are helped out in this case by a math-
ematical finding called the Variance Sum Law, which provides us with a
relationship between sx,_g, and the standard deviations of the two samples
(s, and s,):

The importance of this is that we cannot work out sg 5 but we can work out
s, and s,. Thus, we are able to produce a formula for the independent ¢ that
we can calculate.

Our problems are not over yet in developing the formula for . We
know that a sample standard deviation is a better estimate of the population
parameter the larger the sample size and also that the ¢ test assumes that the
samples come from populations with equal standard deviations. From this
we can infer that when we have samples of different sizes the larger one is
likely to provide a better estimate of the population standard deviation than
the smaller one. What we do is to weight the contribution of the two sample
standard deviations by their sample size (more accurately, their variances
by their degrees of freedom) and produce a population estimate based on
the weighted average of the sample standard deviations, s,,:

(m —Dst — (n, — 1s3
(m =1+ (n, = 1)

2 —

w

Now, instead of using the sample standard deviations in the formula for
sx.-x, we replace them both with s,,:

We now expand s,, in the formula:

o (mi-vg—mm-ns) (1 1
A AR R T
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o X

1_1

Finally, we replace s, with \“ and s, with

yx - T

}’12—1

, the standard deviation formulae for two samples.

After a little tidying up, we obtain the formula for calculating sx,_x :

( (
_ZXIZ_Z zxz_z 11
S”f\ (=1 +(m -1 (Tn?)

|

At last we are able to produce the formula for the two sample independent #:
X - X,
X,)? X, )?
le <2 D) ZXZ—(Z )

? n, (1 1)
7+7
(1—1)+(n2—1) noom

t =

This is unfortunately rather a large formula to calculate but I hope you can
see how and why it was required by the above logic. Also on many occasions
we can use computer programs to aid us in our calculations. As demonstrated
below, ¢ can be calculated without too much difficulty with just a calculator.
But the point here is that, while the formula looks very different from the
z formula, it is still an estimate of z being a ‘score’ (X, — X,) minus a mean
(Ug_x, = 0) divided by a standard deviation (sx,_x,).

It is important to recall that we are using the assumption that the two
samples come from populations with equal variances (and hence equal stand-
ard deviations). If this is not the case it is inappropriate to average our standard
deviations for estimation. Only if the larger sample variance is more than
three times the other would we usually decide not to perform the test.

As the samples are unrelated, the degrees of freedom of the independ-
ent ¢ test is the sum of the degrees of freedom of each sample: (n, — 1) +

(n, — 1).
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A worked example

A new sleeping pill was being tested on a number of volunteers. It was
predicted that it would have a differential effect on men and women. There
were six men and eight women who agreed to take part in the experiment.
Over a two week period they took either a placebo (a pill that had no effect)
or the sleeping pill. Participants were not aware of which pill they were
taking each night. The number of extra hours slept during the seven ‘pill
nights’ compared to the seven ‘placebo nights’ was calculated. The men
slept 4, 6, 5, 4, 5 and 6 extra hours and the women slept 3, 8, 7, 6, 7, 6, 7
and 6 extra hours. Is the prediction supported?
We must find the values to fit into the ¢ formula:

X, - X,
(2 X, Q. X,
[Sx- B 5y Z0

: n, (1 1)
7+7
(1_1)+(n2_1) nonm

I shall label the men as Sample 1 and the women as Sample 2.

Sample 1 Sample 2

X, X7 X, X3

4 16 3 9

6 36 8 64

5 25 7 49

4 16 6 36

5 25 7 49

6 36 6 36
7 49
6 36

n =6 n,=38

> X, =30 Y X2 =154 >X,=50 Y X7 =328

X, =50 X, =6.25

(X X))*= 900 (X X,)* = 2500




HYPOTHESIS TESTING WITH TWO SAMPLES

Inserting the figures into the ¢ formula we get:

o 5.00 — 6.25
6 8 1.1
G-+ (@®-1 (6 8)
~ -1.25
(154 —150 + 328 — 312.5) (1 . 1)
\ 5+7 6 8
-1.25 -125  -125

-1.82

T 1625 %0292 /0474 0.688

The degrees of freedom, df =(n, — 1)+ (n,—1)=(6-1)+ (8 -1) =12.

The minus sign simply indicates that Sample 2 (women) has the larger
scores. As we are testing a two-tailed test we simply treat it as +1.82. From
the tables of the ¢ distribution ¢t = 2.179, df = 12, p = 0.05 (from Table A.2
in the Appendix). As our calculated ¢ value of 1.82 is not greater than the
table value of 2.18 we cannot reject the null hypothesis: we have not found
a significant difference in the extra sleep between men and women at the
5 per cent level of significance.

It is an interesting result however. Notice that the difference in means
is 1.25 in favour of the women. The difference in means we would expect
by chance is 0.688 (the bottom part of the ¢ calculation). Even though this is
not significant at p = 0.05 the actual probability is 0.0945, which is still
quite small. There might actually be a genuine effect here ‘bubbling under’
but not quite strong enough to pick up in these data. If we had more
participants or had made a one-tailed prediction we might have achieved
significance. The reasons why this might be are explained in the next chapter.

Confidence intervals

We can work out confidence intervals for the differences in the mean values
when we are comparing two samples. Recall from Chapter 6 that:

CI = Difference in means * (critical ¢ value X standard error of
the difference in means)
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For the example of the related ¢ test given in this chapter, we calculate the
95 per cent confidence interval as follows:

95%CI = (5.25 — 3.75) £ (2.365 x 0.567)
95%CI = 1.50 = 1.341
95%CI = (0.159, 2.841)

The critical ¢ value (2.365) is found in the tables for p = 0.05 for a
two-tailed test with df = 7. The standard error calculation (0.567) is the
denominator in the formula for the calculated ¢ value. Notice that the interval
does not include the zero so we can confidently conclude that the difference
between the sample means is not zero but a positive value.

For the example of the independent ¢ test the 95 per cent confidence
interval is calculcated thus:

95%CI = (5 — 6.25) = (2.179 x 0.688)
95%CI = -1.25 £ 1.499
95%CI = (-2.749, 0.249)

The critical value of ¢ of 2.179 is found from the tables at p = 0.05 for a
two-tailed test, df = 12. Again, the standard error value (0.688) is taken
from the ¢ calculation. Notice that in this example the confidence interval
includes the zero value. In this case we are not confident that the ‘true’
difference in the means is different from zero. Just as the ¢ value did not
reach significance so the confidence interval, whilst mostly below zero, still
contains zero within it. Both analyses are telling us that we do not have
enough evidence from these data to claim a difference in the sample means.

Details on how to undertake the two sample ¢ test using the SPSS
computer statistical package can be found in Chapter 7 of Hinton et al.
(2004).
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Type | and Type Il errors

Hypothesis testing is like digging for treasure on a treasure island. The
significance level sets the probability that we have actually found treasure
rather than made a mistake. We are very conservative here (that is why we
only accept a 5 in 100 chance of making a mistake). We do not wander
about picking up any old piece of rusting metal we chance upon and claim
that we have found treasure. Our fellow treasure hunters would soon get fed
up with us. We want to be sure that when we claim to have found treasure
then we are correct. In hypothesis testing we do not want to make a Type |
error: that is, claim that we have found a significant difference between the
population distributions when there is not one. We do not want to claim that
we have found treasure when we have not. That is why we set the signifi-
cance level at a small probability level.

In the one-tailed prediction illustrated in Figure 9.1 we are saying that
if the ‘score’ falls beyond the significance level then it belongs to a different
distribution to the known distribution, the unknown distribution. You can
see in this example, where the unknown distribution really is different to the
known distribution, that a score beyond the significance level is more likely
to come from the unknown distribution than the known distribution as more

Significance level

Known distribution Unknown distribution

FIGURE 9.1 The risk of a Type | and Type Il error
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of it is beyond the significance level. However, there is still a small risk that
such a score comes from the known distribution. The area labelled « is the
size of this risk, the risk of a Type I error, which is the amount of the known
distribution the ‘wrong’ side of the significance level. We specify the size
of this risk by setting the significance level. By setting a significance level
at p = 0.05 we are saying that only 5 per cent of the known distribution lies
beyond it.

If the score falls below the significance level we accept the null
hypothesis that the score comes from the known distribution. Looking again
at Figure 9.1 we can see that 95 per cent of the known distribution lies
below the significance level. Also there is more of the known distribution
below the significance level than the unknown distribution, so the chances
are that if a score lies this side of the significance level it comes from the
known distribution and we are correct in accepting the null hypothesis.

We must be clear in understanding what ‘accepting the null hypothesis’
entails. All acceptance means is that we have not found a significant differ-
ence in our experiment. In fact some authors (Cohen, 1988, p. 16., see also
Wilkinson and the Task Force on Statistical Inference, 1999) have argued
that it is wrong to say that we accept the null hypothesis, rather we should
always say ‘we have failed to reject the null hypothesis’ as this is a more
accurate account of the situation — we have not found enough evidence to
allow us to reject the null hypothesis. We have certainly not demonstrated
that the null hypothesis is true. We can claim that we do not have the
evidence to say it is not true, and there is a subtle difference between the
statements. Again, if we dig for treasure on a desert island and do not find
it, it does not mean that it is not there somewhere. When we ‘accept the null
hypothesis’ we are only saying that we have not found a big enough differ-
ence for us to reject the possibility that the difference arose by chance. The
probability of the difference arising by chance is too large for us to claim a
genuine difference in the distributions. If we do not find treasure there are
two possible reasons: one, there is no treasure there or, two, there is treasure
but we have not found it. Similarly, if we do not find a significant difference
when testing an hypothesis it could be that there really is no difference in
the distributions or that there is a difference and we have missed it. In the
former case all is well, we have not found a difference when there was not
one to find. In the latter case we have committed a Type II error. We have
not found a difference in the distributions by our test when there was a
genuine difference to be found.

If a score falls below the significance level then we accept the null
hypothesis that the score comes from the known distribution. However,
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there is a risk that the score comes from the unknown distribution (as part
of the unknown distribution lies below the significance level). The risk of
making a Type II error is the amount of the unknown distribution below the
significance level. This is the area labelled f in Figure 9.1. Note that the
risk of a Type II error, B, may well be larger than o. Researchers do not
want to make claims that turn out to be false so are happier to make Type 11
errors than Type I errors. We would prefer to miss out on the treasure
occasionally rather than make a false claim. Most scientists publish their
significant results and these results are scrutinised by others so it is deemed
better to err on the side of caution rather than make a potentially embarrass-
ing claim. It is tempting to think that all we need do to avoid a mistake is to
set a very small value for ¢, say, 0.01 or 0.001. However, this would be an
error as statistical testing is not just about keeping the risk of a Type I error
low but also about the balance between the risk of Type I and Type 11
errors. As we shall see below (in the discussion of power) ignoring the risk
of a Type II error could mean that our study, involving all the time and
effort to carry it out, is simply not powerful enough to find the effects we
are looking for — so we are wasting our time and effort.

Essentially we want a significance level that separates the known dis-
tribution from the unknown distribution. If we could find a position along
the scale where all the known distribution fell to one side of the significance
level and all the unknown distribution fell to the other side, then we would
not make a Type I or Type II error as the significance level would separate
the distributions perfectly. But, because of the overlap of the two distributions,
some of the known distribution () falls the ‘wrong’ side of the significance
level as does some of the unknown distribution (). If a score falls below
the significance level we ‘accept the null hypothesis’ as most of the known
distribution (1 — @) lies below it, with only 3 of the unknown distribution.
If a score falls beyond the significance level we reject the null hypothesis
as only o of the known distribution lies beyond it along with 1 — 3 of the
unknown distribution. Although we risk these two types of error, we want
the probability to favour the correct judgement.

Statistical power

For a moment let us assume that there really is treasure hidden on the desert
island. With a good map and proper digging equipment there is an excellent
chance of finding it. This is the analogy for a well-designed study, properly
carried out. Yet without a map and only a child’s bucket and spade the
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chances of finding the treasure are slim. Similarly with the statistical analyses
of our data. Some are very likely to find a difference in the two distributions
whereas others may be unlikely to find it even though it is really there. The
tests differ in their power. The power of a statistical test refers to its ability
to find a difference in distributions when there really is one. In this case the
unknown distribution is genuinely different to that of the known distribution.
What are our chances of finding it? A score that actually comes from the
unknown distribution will only be claimed to have come from the unknown
distribution when that score is beyond the significance level. So we will
correctly assign scores that belong to the part of the unknown distribution
beyond the significance level. This is the whole of the unknown distribution
excluding . We call this area the power of the test.

The power of atest=1—f3

The power tells us the probability of finding the unknown distribution when
it is really there. The more of the unknown distribution that lies beyond the
significance level, the smaller 3 becomes and the larger 1 — . A more powerful
statistical test is more likely to find a significant result than a less powerful
test. Employing the treasure hunting analogy, a more powerful test is more
likely to find the treasure when it is really there: it is the mechanical digger
compared to the child’s bucket and spade.

There is a problem that sometimes gets overlooked in statistical analysis.
We do not want to use a test that is low in power as it is not likely to find
a genuine difference in distributions. We may have constructed an excellent
experiment only to fail to find a significant result due to the low power
of our statistical test. Interestingly, ‘power’ became an increasingly important
topic in statistical analysis in the latter part of the twentieth century, primarily
due to the work of Jacob Cohen (e.g. Cohen, 1988), who has argued that
much research has been carried out without a consideration of power in the
design stage to the detriment of the research process. As a result of Cohen’s
work more researchers consider ‘power’ in the early stages of their research
planning.

The power of a test
When undertaking research we want to have a good chance of finding an

effect if there really is one to be found. In treasure hunting terms it would
be helpful to know we are starting out with a mechanical excavator. Yet
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there are many occasions when researchers set out with the statistical
equivalent of buckets and spades. Clearly we want a powerful test but how
can we achieve it?

The first thing to decide is what is the level of power we want?
Crudely, just as we want « to be very small we also want 1 — f3 to be very
large — the more powerful the test the better. But just like our consideration
of o, we need to get the balance right. We want high power but not to the
detriment of all other considerations. Cohen (1988) suggests that a power of
0.80 is a suitable value for a test of high power. As a result a power of 0.80
has become something of the conventional value for 1 — f3, just as 0.05 is
the conventional value for .

The problem is how do we design a study with the required power
as many studies published in the journals have been shown to have much
lower power than 0.80? The answer is that power is related to three factors
that we can control: the size of ¢, the size of the effect we are looking for
and, third, the size of the samples we select.

The choice of o level

The simplest way to increase the power of a test is to increase the size of o.
We usually set the significance level at p = 0.05, that is o« = 0.05, but if we
increase the level to say p = 0.10 or p = 0.20 then it has the effect of shifting
more of the unknown distribution beyond the significance level. As « gets
bigger f gets smaller and hence 1 — 3 gets bigger. However, while this
reduces the risk of a Type II error it increases the chances of a Type I error.
A significance level of p = 0.10 means that we will claim an effect erron-
eously ten times in a hundred rather than five in a hundred. And we don’t
want to do this for the reasons stated earlier: researchers would prefer to
miss an effect than falsely claim one that could affect their reputation. Type
I and Type 11 errors are inextricably linked, a reduction in one increases the
other. Yet we can consider whether we really want to set a significance
value as low as 0.01 or even 0.001. As Cohen (1988) points out, if we end
up with such low power that the ratio of S to o is in the hundreds, then this
implies we are stating that a Type II error is hundreds of times worse than
a Type I error. If we don’t really believe this, we may be happy to set our o
value to a higher value (e.g. 0.05) and have a more powerful test.
However, there is a way of reducing 8 without increasing o: be more
specific in our prediction. A one-tailed test is more powerful than a two-
tailed test. In the latter case we have to consider both tails of the distribution
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and we hedge our bets as to the position of the unknown distribution. For an
overall significance level of 0.05 we must set the cut-off point at each tail at
p =0.025. It is like performing two one-tailed tests at the same time, one on
each tail. If the unknown distribution really is higher than the known dis-
tribution we will only find it if it is beyond the p = 0.025 significance level.
With a one-tailed test, we can focus on only one tail and at that tail « is
twice the size (0.05) than for a two-tailed test. Shifting from a two-tailed to
a one-tailed test increases 1 — . (We should note that this does make our
one-tailed prediction more powerful but we now have no power in detecting
the effect if the result goes the ‘wrong way’.)

Effect size

A crucial factor affecting ‘power’ is the size of the effect we are looking
for. If we look at Figure 9.1 we can see that the amount of overlap between
the two distributions is the cause of our difficulty in setting a significance
level with a low o and a high 8. When there is a lot of overlap the risk of
a Type II error, missing a genuine difference, increases. If the overlap
between the distributions can be reduced, then f8 is reduced and we also
reduce the chance of a Type II error and increase power. If there was no
overlap between the distributions we would have no difficulty setting our
significance level as we could position it between the two distributions.
Sadly we will always have overlapping distributions but we can look at
specifying how much overlap we have and designing studies to maximise
their power.

Overlapping population distributions

The amount of overlap between two distributions depends on two factors:
the difference between the population means and the size of the standard
deviations. If the means are far apart then the overlap is less than when they
are close together. Also if the standard deviations are small then the overlap
is less than when they are large. (Recall that we always assume that the two
distributions have the same standard deviation.) We can sum up the overlap
by defining the effect size d (from Cohen, 1988). This is a standardised
measure of the difference between the means in terms of standard deviation
units. Using the label u, as the mean of the known distribution and u, as the
mean of the unknown distribution, and o as their standard deviation, we can
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express the effect size, when predicting the one-tailed hypothesis that the
unknown distribution will have the larger mean, as follows:

q=H—H
c

Effect size,

For example, with u, = 100, u, = 110, and o = 15, then the effect size
d = 0.67. Just like the z score d is a standardised measure and does not
depend on the measuring units we are using.

We need to know the size of the effect we are investigating in order to
work out the power of our test at the design stage (a priori). You might
think: how do I know the size of the effect before I have done the study?
One source of information is past studies. If we were examining the speed
of recognising different types of words we can look at the literature on the
topic to see what other people have found in related studies. We can use
these studies to get an estimate of the size of the effect we are looking for.
If there is little background literature — you are studying a new area — then
a pilot study might be worth carrying out to ‘get a feel’ for the type of
results you might get.

Cohen (1988) makes the distinction between ‘small’ (d = 0.2),
‘medium’ (d = 0.5) and ‘large’ effects (d = 0.8) as helpful guide to evaluating
the size of a predicted difference. He suggests that, rather than trying to
work out a specific effect size by estimating means and standard deviations
we can consider whether we expect a small, medium or large effect. He
argues that, for new areas of research, effects are often small, partly because
we may not have developed sophisticated measuring devices or experimental
control leading to relatively large standard deviations. So, if we believe that
the effect we are looking for is small then we can reasonably assume an
effect size of 0.2. Cohen suggests that medium effects are ‘visible to the
naked eye’ (Cohen, 1988, p. 26), meaning that we are aware of a difference
such as that between experienced machine operators and novices as it is
pretty clear to see but we want to examine it in detail. In cases like this we
can assume a medium effect size of 0.5. Finally, there are the large effects
which are blatantly obvious, or ‘grossly perceptible’ as Cohen (1988, p. 27)
puts it, and uses as his example the height difference between 13 and 18 year
old girls. If we believe that the effect we are looking for is large Cohen
recommends that we select an effect size of 0.8.

In our example we do not have to estimate the effect size as I have
stated the population means and standard deviations which we would not
normally have. It is interesting to note that in Cohen’s terms we are predicting
a medium-to-large effect as d lies between 0.5 and 0.8.
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Influencing effect size

You might be tempted to argue that you cannot change the effect size at
all — surely a small effect is a small effect. However, if we consider for
a moment what we actually mean by effect size then we can see how to
influence it. A large effect size indicates only a small overlap between
distributions whereas a small effect size indicates a large overlap of the
distributions. What we need to do, therefore, to increase the power of a test,
and increase the effect size, is to increase the difference between the means
of the distributions or reduce their standard deviations.

The one major way to decrease the overlap between distributions is to
design your studies well. It is very important to consider what a good design
entails — essentially it is one that minimises error or random variability in
the study and maximises the accuracy of measurement of the variables
under study.

The more you reduce random variability in the study (by proper con-
trols in the design and procedure) the greater will be the size of the effect.
Imagine we are examining face recognition. We might study it in a natural
setting such as an airport. However, we might choose to use computer
displays with accurate timing and keypad responses in a quiet laboratory
with no distractions in order to reduce the random variability in the study.

The effect of the sensitivity of the measuring device can crucially
affect the power of a test. If we are investigating happiness then we might
decide to use a more complex questionnaire than simply asking people if
they are happy or not. Similarly, if we are testing a subtle effect such as
speed of reading different passages of text then we may wish to use a more
accurate time than a stopwatch. The reason for this is that the error in
starting and stopping the stopwatch might be a second or two which could
swamp an effect of only a few hundred milliseconds. If we can increase the
accuracy of the measured times then we are more likely to find the effect (if
there is one.)

Sample size

When we are studying samples to represent populations we use sampling
distributions to represent our known and unknown distributions. The stand-
ard deviation of a sampling distribution, the standard error of the mean,
decreases as the sample size increases. This is because the standard error is
based on both the population standard deviation and the sample size:
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With a small sample size, such as 10, the standard error is:

o,=—2 =9 —0320
Jlo 316

The standard error here is just under one third of the population standard
deviation. With a larger sample of, say, 50, the standard error becomes:

GX=;=L=O.14G
\50  7.07

This is just under a seventh of the population standard deviation. By increas-
ing the sample size from 10 to 50 we have reduced the standard error by
over a half (from a third to a seventh of the population figure). Increasing
the sample size has reduced the spread of the distribution.

An increase in sample size has the effect of reducing the overlap
between the distributions by reducing their standard deviations. As a result
of this, more of a genuinely different unknown distribution ends up beyond
the significance level (and there is an increase in power). Compare the
distributions in Figure 9.2 with those of Figure 9.1. This shows the effect of

Significance level

Known distribution Unknown distribution

_

FIGURE 9.2 The effect of increasing the sample size on the overlap of
the distributions
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reducing the standard error by half as a result of an increase in sample size.
The overlap is considerably reduced.

We can illustrate the effect of sample size on statistical power by
the following example. Assume that the known population is a normal dis-
tribution with a mean of 100 and a standard deviation of 15. We will also
assume that the unknown population is genuinely different with a mean of
110. In this case the population is not unknown any more so we would not
need to perform any statistics as we know all we need to know — but this is
for illustration only!

First we shall examine the situtation when a sample of 10 is used.
The sampling distributions of the two populations will have means of
100 and 110 but their standard deviations will be the standard error:

o 15
Y on o
5 per cent of the known distribution. As the distribution is normally distrib-
uted we can use the z tables (Table A.1 in the Appendix) to find which z cuts
off 0.05 of the distribution. This gives a value of z = 1.65. Remember than
z is expressed in standard deviation units, so the significance level is 1.65
standard deviations above the mean of 100. The standard deviation, the
standard error, of the known distribution is 4.74, so the significance level is
therefore 1.65 x 4.74 =7.82 above the mean of the known distribution, so is
located at 107.82 on the scale.

We now perform a similar process in reverse on the unknown distribu-
tion to work out B and then 1 — 8. The significance level at 107.82 positions
it 2.18 below the mean of the unknown distribution (110) on the scale. We
convert this to standard deviation units to find z. As we assume the standard
deviations of the two distributions are the same, the standard error of the

=4.74. The p = 0.05 significance level cuts off the last

unknown distribution is also 4.74, and the significance level is i =0.46

standard deviations below the mean. When we look up this figure in the
z tables we find that p = 0.32. There is 0.32 of the unknown distribu-
tion below the significance level, so B = 0.32 and the power of the test is
1 — B =0.68. There is 68 per cent of the unknown distribution above the
significance level. So using a sample size of 10 gives a power of 0.68.
We can do the same calculations for a sample size of 50. In this
case the standard error is oy = g - Lj = 2.12. The significance level is
\no 50
1.65 x 2.12 = 3.50 above the mean of the known distribution, at 103.50.
This is 6.50 below the mean of the unknown distribution, which gives a
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z of E = 3.07. From the standard normal tables this gives p = 0.0011, so

B =0.0011 and the power of the test (1 — ) is 0.9989. With a sample size
of 50 we now have 99.89 per cent of the unknown distribution above the

significance level. So changing the sample size from 10 to 50 has increased
the power from 0.68 to 0.9989.

Choosing a sample size for a statistical test

An important decision for a researcher is deciding the appropriate number
of participants for a study. This is where the work of Cohen (1988) is
particularly helpful. As noted above, power is related to significance level,
effect size and sample size. We can turn this relationship around and see
that sample size is a function of significance level, power and effect size.

A researcher was investigating different visual displays for monitoring
equipment for hospitals. Two different types of display were to be com-
pared in the laboratory to see which one led to the fewest errors in reading
the display. The researcher wanted to know how many participants to use.
The researcher decided on a 0.05 level of significance for a two-tailed test.
The level of power required was chosen as 0.8 and it was assumed that the
effect size would be medium so 0.5 was specified as the effect size. A ¢ test
was to be carried out on the error data.

Can we carry out a calculation like the one in the above section to
find the answer to our question? The answer is both yes and no. Yes, we
can carry out a calculation to find the number of participants and no, it
is not the same as the above section as that was worked out using popula-
tion data which we do not have here. When we are comparing two samples
we use the ¢ distribution as the appropriate distribution for our analysis.
However, there is a complication as the ¢ distribution we usually employ
for a ¢ test calculation is based on samples drawn from the same dis-
tribution, i.e. when the samples come from the same population. This is
the ¢ distribution assuming no effect. Yet in our power analysis we are
proposing an effect. So we have to use a special ¢ distribution for our
power analysis called a noncentral ¢ distribution. In order to do this we
need to calculate the noncentrality parameter 6 which is quite easy as it

X
is a function of d (the effect size) and the sample sizes (6 = d x u,
n + n,
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where n, and n, are the sizes of the samples. With the noncentrality
parameter (8), the significance level () and the degrees of freedom (df)
the power values can be calculated and, by a little reorganisation of the
calculations, the sample size can be produced for a specific level of
power.

Unfortunately, power analysis is not something to do by hand as we
need to use distribution tables for the noncentral distribution. Cohen (1988)
provided sets of useful tables that can be used to find the appropriate values.
However, there are a number of easy-to-use software packages that can
work out the power calculation and required sample sizes. A number of
these are available free (for noncomercial use) e.g. GPOWER® which is
very easy to use. The required values for the significance level, the effect
size and the power are input and the output gives the required sample sizes.
Using such a software package we can find that for an unrelated two-
tailed test, using the 0.05 level of significance, examining a medium effect
(d =0.5) and seeking a power of 0.8 we need 128 participants in total or 64
in each sample.

Quite often we will find that in order to achieve the power required
the sample sizes will be very large. If we had been examining a small effect
(d = 0.2) in the above example we would have needed 788 participants in
total or 394 in each sample. If we decide that it is not feasible to use groups
of this size we can undertake a compromise power analysis. Rather than
seek a sample size for a specific power (e.g. 0.8) we decide on the balance
of risk we are willing to accept between a Type I and a Type II error: the
ratio of 3 to o where q = f8/c. If we decide that q = 3 is the balance of risk
we can work with and we can afford to test 100 participants in each group
then we can work out the power for this compromise. In this case the power
is 0.5, so would be a test of medium power. We might be content with this
compromise solution.

Finally, I have focused on the power calculations for a two sample
t test. However, we can work out both an effect size and a noncentral
distribution for a range of other statistics included in this book. So we
can work out the power (or the sample size for a specific power) for the
different tests we shall be considering. Fortunately, the software packages
allow us to examine the power of different tests by including a menu
where we simply select the statistical test we wish to perform. In the
table below the ‘conventional’ effect size values for small, medium and
large effects (from Cohen, 1988) are shown for a number of key statistical
tests.
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Test Effect Small Medium Large
size effect effect effect

t test d 0.2 0.5 0.8

Correlation r 0.1 0.3 0.5

ANOVA f 0.1 0.25 0.4

Multiple

correlation

and regression f? 0.02 0.15 0.35

Chi-square w 0.1 0.3 0.5

Conclusion

Hypothesis testing involves making a decision concerning whether two dis-
tributions are the same or different. To make this decision we use a decision
criterion, the significance level. Due to the overlap of the distributions the
significance level cannot separate them completely when they are genuinely
different to each other. As a result we end up with ¢ of the known distribu-
tion and B of the unknown distribution the ‘wrong” side of it. To limit the
risk of Type I errors we set our significance level so that o = 0.05, giving
us a 5 in 100 chance, or smaller, of falsely rejecting the null hypothesis.
We don’t want to make Type I errors (and sometimes we are even more
conservative, setting the significance level at p = 0.01, reducing the risk to
0.01).

This leaves f3, the risk of making a Type II error. We do not have the
same control over B as we do with a, as the distribution is unknown. Yet we
do not want to use a test that is low in power, 1 — 3, as it reduces our chances
of finding a real effect when it is there. Unfortunately, researchers do too
often use tests of low power. To increase the power of our test we can do
three things: design better studies, choose one-tailed tests, look for big effects,
and increase the number of subjects.

When trying to decide whether the power of a test is adequate there
are a couple of useful points to consider. Select the largest sample size you
can sensibly test. If you have limited resources, time or access to subjects
these restrictions may have priority. Then check the power of your test. If
the power of your test is too low then you may be wasting your time
continuing. However, consider the balance of risk of Type I and Type 1l
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errors. You may wish to continue with the research as you have a reason-
able compromise of ¢ and B. If you find a significant effect then you do not
need any more subjects. If the test yields no significant differences yet is
unexpected, or approaches significance, then repeat the test when you can
test more subjects. It is worth increasing sample size to increase both the
power of the test and your confidence in the findings. The new subjects may
confirm the previous results or produce a significant difference. One of the
major ways of deciding whether a finding is worthwhile or not is to replicate
(repeat) it. If a difference continues to be significant then other researchers
are more likely to accept its validity.

To recap for a moment: all we are doing is trying to decide if a ‘score’
comes from one distribution or another. The overlap in distributions, when
the distributions are different, makes it difficult to avoid the risk of error
in setting our decision criterion, the significance level. We set the risk of
a Type I error () by choosing the significance level. Yet we should not
ignore f3, the risk of a Type II error, as it is no fun trying to dig up treasure
with a plastic bucket and spade. Increasing the power of a test reduces 3
and gives us a better chance of finding treasure when it really is there.
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