

Statistics Explained

2nd Edition Perry R. Hinton

Also available as a printed book see title verso for ISBN details

Statistics Explained

2nd Edition

Statistics Explained

2nd Edition

Perry R. Hinton

First published 2004 by Routledge 27 Church Road, Hove, East Sussex BN3 2FA

Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001

Routledge is an imprint of T&F Informa plc

This edition published in the Taylor & Francis e-Library, 2005.

"To purchase your own copy of this or any of Taylor & Francis or Routledge's collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk."

Copyright © 2004 Routledge

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

This publication has been produced with paper manufactured to strict environmental standards and with pulp derived from sustainable forests.

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data Hinton, Perry R. (Perry Roy), 1954– Statistics explained / by Perry R. Hinton. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-415-33284-2 – ISBN 0-415-33285-0 (pbk.) 1. Psychometrics-Textbooks. I. Title. BF39.H54 2004 519.5-dc22 2003027026

ISBN 0-203-49678-7 Master e-book ISBN

ISBN 0-203-57455-9 (Adobe eReader Format) ISBN 0-415-33285-0 (pbk) ISBN 0-415-33284-2 (hbk) To Anna, Anthony and Emma

Contents

List of figures	XV
Preface	xvii
Preface to the Second Edition	xix

Introduction

Descriptive statistics

Measures of 'central tendency'	8
Measures of 'spread'	11
Describing a set of data: in conclusion	17
Comparing two sets of data with descriptive	
statistics	18
Some important information about numbers	21

3 Standard scores

Comparing scores from different distributions	26
The Normal Distribution	28
The Standard Normal Distribution	30

4 Introduction to hypothesis testing	35
Testing an hypothesis	36
The logic of hypothesis testing	41
One- and two-tailed predictions	42
5 Sampling	47
Populations and samples	48
Selecting a sample	49
Sample statistics and population parameters	51
Summary	56
6 Hypothesis testing with one sample	59
An example	60
When we do not have the known population standard deviation	64
Confidence intervals	69
Hypothesis testing with one sample: in conclusion	72
7 Selecting samples for comparison	73
Designing experiments to compare samples	74
The interpretation of sample differences	79
8 Hypothesis testing with two samples	81
The assumptions of the two sample <i>t</i> test	85
Related or independent samples	86
The related t test	86
The independent <i>t</i> test	89
Confidence intervals	93
Confidence intervals))

95

Type I and Type II errors	96
Statistical power	98
The power of a test	99
The choice of α level	100
Effect size	101
Sample size	103
Conclusion	108
10 Introduction to the analysis	
of variance	111
Factors and conditions	112
The problem of many conditions and the <i>t</i> test	112
Why do scores vary in an experiment?	113
The process of analysing variability	118
The <i>F</i> distribution	121
Conclusion	123
11 One factor independent	
measures ANOVA	125
Analysing variability in the independent measures	
ANOVA	126
Rejecting the null hypothesis	132
Unequal sample sizes	133
The relationship of F to t	135
12 Multiple comparisons	137
i z monipie tomparisons	13/

9 Significance, error and power

The Tukey test (for all pairwise comparisons)	140
The Scheffé test (for complex comparisons)	144

13 One factor repeated measures ANOVA	149
Deriving the <i>F</i> value Multiple comparisons	150 158
14 The interaction of factors in the analysis of variance	161
Interactions Dividing up the between conditions sums of squares Simple main effects Conclusion	164 167 169 170
15 Calculating the two factor ANOVA	171
The two factor independent measures ANOVA The two factor mixed design ANOVA The two factor repeated measures ANOVA A non-significant interaction	172 181 193 205
16 An introduction to nonparametric analysis	207
Calculating ranks	212
17 Two sample nonparametric analyses	215
The Mann–Whitney U test (for independent samples) The Wilcoxon signed-ranks test (for related samples)	216 224

18 One factor ANOVA for ranked data

231

247

Kruskal-Wallis test (for independent measures)	232
The Friedman test (for related samples)	240

19 Analysing frequency data: chi-square

Nominal data, categories and frequency counts	248
Introduction to χ^2	248
Chi-square (χ^2) as a 'goodness of fit' test	250
Chi-square (χ^2) as a test of independence	254
The chi-square distribution	256
The assumptions of the χ^2 test	257

20 Linear correlation and regression

261

283

Introduction	262
Pearson r correlation coefficient	264
Linear regression	270
The interpretation of correlation and regression	275
Problems with correlation and regression	276
The standard error of the estimate	278
The Spearman r_s correlation coefficient	279

21 Multiple correlation and regression

Introduction to multivariate analysis	284
Partial correlation	284
Multiple correlation	289
Multiple regression	291

22 Complex analyses and
computers295Undertaking data analysis by computer296

Complex analyses	299
Reliability	301
Factor analysis	304
Multivariate analysis of variance (MANOVA)	308
Discriminant function analysis	312
Conclusion	314

23 An introduction to the general linear model

315

Models	316
An example of a linear model	318
Modelling data	320
The model: the regression equation	323
Selecting a good model	327
Comparing samples (the analysis of variance once again)	333
Explaining variations in the data	337
The general linear model	338

Notes	343
Glossary	347
References	357

Appendix: Acknowledgements and statistical tables

359

A.1	The standard normal distribution tables	362
A.2	Critical values of the t distribution	363
A.3	Critical values of the F distribution	364
A.4	Critical values of the Studentized range statistic, q	366
A.5	Critical values of the Mann–Whitney U statistic	367
A.6	Critical values of the Wilcoxon T statistic	369

A.7	Critical values of the chi-square (χ^2) distribution	370
A.8	Table of probabilities for χ_r^2 when k and n are small	371
A.9	Critical values of the Pearson <i>r</i> correlation coefficient	372
A.10	Critical values of the Spearman r_s ranked correlation	
	coefficient	373

Index

375

Figures

2.1	Frequency distribution of the examination results	7
2.2	Frequency distribution of last year's examination results	19
3.1	The distribution of women's height: histogram	28
3.2	The distribution of women's height	29
3.3	The Standard Normal Distribution	31
4.1	A hothousing effect of 30 IQ points	38
4.2	A one-tailed prediction and the significance level	44
4.3	A two-tailed prediction and the significance level	45
6.1	Hypothesis testing with a sample of Cyadmine-	
	affected babies	63
6.2	Examples of the <i>t</i> distribution	67
8.1	The distribution of the difference between sample means	83
9.1	The risk of a Type I and Type II error	96
9.2	The effect of increasing the sample size on the overlap	
	of the distributions	104
10.1	An example of an F distribution (degrees of	
	freedom = 4,8)	122
14.1	An interaction of school by gender	164
14.2a	No interaction in the data	165
14.2b	No interaction in the data again	165
14.2c	An example of an interaction	166
14.2d	Another example of an interaction	166

FIGURES

15.1	The interaction of experience and machine on the number	
	of errors	180
15.2	The interaction of time and experience on machine	
	operator errors	191
15.3	The interaction of product and shift on machine	
	operator errors	203
19.1	The chi-square distribution	257
20.1	Scatterplot of study time by examination performance	263
20.2	The distribution of Pearson's r	269
20.3	Finding the regression line by minimising the error	
	values (E)	272
20.4	Regression of Y on X and the regression of X on Y	275
20.5	The coefficient of determination (r^2)	276
20.6	The scatterplot of smiling time by items sold	278
21.1	The variability of the scores on three variables	288
22.1	Scree plot of the eigenvalues	307
23.1	An orrery	317
23.2	A graph of card sorting times	319
23.3	A plot of the children's general knowledge scores by age	321
23.4	A proposed linear relationship between general knowledge	
	and age	322
23.5	Separating each score into predicted score plus residual	323
23.6	Different linear models	324
23.7	The same linear model for two sets of data	330
23.8	Plot of general knowledge scores for each class	334
23.9	A linear model for the class data	335

Preface

This book sets out to explain the major statistical analyses used by undergraduate students in psychology. It should also satisfy many of the statistical requirements of students of social and life sciences, education, health, business and communication; indeed anyone with a need to understand statistical analysis. The examples in the book are varied but there is a focus on analysing data about people. The book examines many important statistical techniques, providing explanations of how and why they are used.

When I was an undergraduate myself I learnt the appropriate statistics to analyse my experimental data but was frustrated that the books I read simply told me to do this, do that, like a cookbook, with no explanation of why I was using such strange formulae or calculating numbers in the manner suggested. As a graduate student I needed a more detailed knowledge of statistics and there were some excellent books for the new researcher. The only problem was that they were very weighty tomes, as thick as an encyclopaedia and comprehensive to match. There were pages and pages of mathematical formulae that tended to make the heart quail.

I discovered that the apparently mysterious formulae and calculations actually made sense: indeed, they made common sense and the logic of statistical tests was no more difficult than understanding a theory in psychology. As a lecturer I noticed that there was a tendency for students to view statistical tests as difficult and esoteric. In part this was because they knew the formulae for calculating the tests but did not know 'how' or 'why' the tests were as they were. Over the years as a lecturer I have gained much satisfaction from students exclaiming: 'so that's what it means!' when an explanation is given. And often these are students who had the view that statistics was something they would not be able to understand. Yet this is not the case. Statistics are actually remarkably sensible - they make good sense. The key to understanding statistics is to understand how and why they were developed, what they set out to do, and how they do it. Unfortunately this is sometimes missing. Unlike many theories and explanations of human behaviour and experience which by their nature are the subject of fierce debate, statistics are simply techniques to be used where necessary. A statistical test is a tool, like any other, and so can be used wisely or foolishly. If we know what it is for we can use it well. Few of us would choose to use a fork to drink soup vet people choose inappropriate statistical tests to analyse data. But statistical tests are like spoons and forks. If you know what they can do and how to use them, there is no mystery, you just get on and use them. But like any other tool it does take a little while to understand how and why it works as it does, and then to get the hang of using it oneself. Once the tools have been mastered they becomes easier to use.

I hope that, for students facing the purchase of a statistics book, this book will be able to provide an account of statistical analysis where the mysterious formulae are explained, but without weighing down the reader!

I would like to thank Sue Wilkinson for encouraging me to write this book, Margaret Manning for many interesting statistical discussions and David French for helping me find the time to write it. I would especially like to thank Paul Hartmann for many helpful comments on the text. I have taught an undergraduate course on the *Analysis of Experiments* for a number of years and the feedback, questions and criticisms of the many students who have taken the course have helped me to understand the problems and delights of learning statistics. I have learnt a lot. This book is a response to that experience and I thank them too. Finally, I would like to thank Anna, Anthony and Emma, without whose support I could never have written this book.

Preface to the Second Edition

I have been very pleased with the success of the first edition of this book. I found it particularly gratifying when one of my students said that she could hear me speaking when she read the book. I hope other readers have felt like her, that the book reads like someone talking – hopefully a friendly, helpful voice – as I believe that the best way of learning is having someone explain the material to me clearly. Despite the wonders of new technology we should strive to maintain that personal contact between teacher and student, and writer and reader. I was therefore in a quandary when asked to do a second edition. I had received a number of complimentary letters and emails from lecturers and students so I felt the book was doing its job well. As the old adage says 'if it's not broken don't mend it' and the age of a book shouldn't undermine its value - indeed one of my own favourite books on statistics is Siegel (1956) despite the excellent new editions. However, there are changes I want to make based on the experience of the passing years along with the constructive comments of my readers. I have also produced, with colleagues, a companion volume on the computer statistics package SPSS, which informed some of my thoughts on the new edition (Hinton et al., 2004). I hope my voice still comes through clearly and comprehensibly.

Since the first edition the debate has developed around the importance of significance testing (Wilkinson and Task Force on Statistical Inference, 1999). Most academic papers are only published if the findings within them are statistically significant. This may be giving a distorted picture of the overall outcome of research, as we do not know how many studies did not find a significant effect. So a greater prominence should be given to both confidence intervals and statistical power in the reporting of findings. The findings of one study showing a significant finding may in the long run be far less important than a broader understanding of the size of an effect that emerges with a number of studies. I have therefore gone into more detail in explaining 'power' in Chapter 9 and also introduced the calculation of confidence intervals into the book. However, I think that students need to understand the basics of significance testing first so that they are able to understand the issues and engage in the debate from a position of knowledge. I have, therefore, maintained the structure and explanation of significance testing from the first edition of the book.

I have also included a final chapter that introduces the reader to the general linear model. Whilst it is quite possible to happily undertake statistical analysis without knowing about the general linear model, I hope this chapter provides, for the interested reader, a bridge between a good understanding of the statistical techniques and a more in-depth understanding of the underlying principles of most of our statistical analyses. I have found that the assumptions of statistical tests often appear strange but that some appreciation of this underlying model reveals what the assumptions are all about.

I would also like to thank the many students (hundreds in fact) on the undergraduate course in *Research and Experimentation II* who, for seven years, were able to interrogate the author of their set textbook. I appreciated their (generally) kind comments and I am glad that the book helped a number of them to realise that statistics were not so alien after all. I have many happy memories of teaching on that course with my colleagues Victoria West and Alfredo Gaitan, who I would also like to thank. Thanks also to Ian Robertson for our many discussions on teaching and learning, especially on how to make topics clear and comprehensible. Finally, I would especially like to thank Charlotte Brownlow, Isabella McMurray and Bob Cozens, the other members of the *SPSS Explained* team, without whose enthusiasm, support and friendship I might not have taken on the task of writing this new edition.