Appendix A

Scientific Units: The Metric System

Much of the work chemists do involves measuring - things like the mass, volume, or length of a substance.

Because chemists must be able to communicate their measurements to other chemists all over the world, they need to speak the same measurement language. This language is the SI system of measurement (from the French Systeme International), commonly referred to as the metric system. There are actually minor differences between the SI and metric systems, but for the most part, they're interchangeable.

The SI system is a decimal system. There are base units for mass, length, volume, and so on, and there are prefixes that modify the base units. For example, kilo- means 1,000 ; a kilogram is 1,000 grams, and a kilometer is 1,000 meters.

This appendix lists the SI prefixes, base units for physical quantities in the SI system, and some useful SI-English conversions.

SI Prefixes

Use Table A-1 as a handy reference for the abbreviations and meanings of various SI prefixes.

Table A-1	Si (Metric) Prefixes	
Prefix	Abbreviation	Meaning
Tera-	T	$1,000,000,000,000$ or 10^{12}
Giga-	G	$1,000,000,000$ or 10^{9}
Mega-	M	$1,000,000$ or 10^{6}

Table A-1 (continued)		
Prefix	Abbreviation	Meaning
Kilo-	K	1,000 or 10^{3}
Hecto-	H	100 or 10^{2}
Deka-	Da	10 or 10^{1}
Deci-	D	0.1 or 10^{-1}
Centi-	C	0.01 or 10^{-2}
Milli-	M	0.001 or 10^{-3}
Micro-	μ	0.000001 or 10^{-6}
Nano-	N	0.000000001 or 10^{-9}
Pico-	P	0.000000000001 or 10^{-12}

Lenqth

The base unit for length in the SI system is the meter. The exact definition of meter has changed over the years, but it's now defined as the distance that light travels in a vacuum in $1 / 299,992,458$ of a second. Here are some SI units of length:

1 millimeter $(\mathrm{mm})=1,000$ micrometers ($\mu \mathrm{m}$)
1 centimeter $(\mathrm{cm})=10$ millimeters (mm)
1 meter (m) $=100$ centimeters (cm)
1 kilometer (km) $=1,000$ meters (m)
Some common English to SI system length conversions are
1 mile (mi) $=1.61$ kilometers (km)
1 yard $(\mathrm{yd})=0.914$ meters (m)
1 inch (in) $=2.54$ centimeters (cm)

The base unit for mass in the SI system is the kilogram. It's the weight of the standard platinum-iridium bar found at the International Bureau of Weights and Measures. Here are some SI units of mass:

1 milligram $(\mathrm{mg})=1,000$ micrograms $(\mu \mathrm{g})$
1 gram (g) $=1,000$ milligrams (mg)
1 kilogram (kg) $=1,000$ grams (g)
Some common English to SI system mass conversions are
1 pound (lb) $=454$ grams (g)
1 ounce (oz) $=28.4$ grams (g)
1 pound (lb) $=0.454$ kilograms (kg)
1 grain (gr) $=0.0648$ grams (g)
1 carat (car) $=200$ milligrams (mg)

Volume

The base unit for volume in the SI system is the cubic meter. But chemists normally use the liter. A liter is $0.001 \mathrm{~m}^{3}$. Here are some SI units of volume:

1 milliliter $(\mathrm{mL})=1$ cubic centimeter $\left(\mathrm{cm}^{3}\right)$
1 milliliter $(\mathrm{mL})=1,000$ microliters $(\mu \mathrm{L})$
1 liter $(\mathrm{L})=1,000$ milliliters (mL)
Some common English to SI system volume conversions are
1 quart (qt) $=0.946$ liters (L)
1 pint $(\mathrm{pt})=0.473$ liter (L)
1 fluid ounce (fl oz) $=29.6$ milliliters (mL)
1 gallon (gal) $=3.78$ liters (L)

Temperature

The base unit for temperature in the SI system is Kelvin. Here are the three major temperature conversion formulas:

Celsius to Fahrenheit: ${ }^{\circ} \mathrm{F}=(9 / 5)^{\circ} \mathrm{C}+32$
Fahrenheit to Celsius: ${ }^{\circ} \mathrm{C}=(5 / 9)(\mathrm{F}-32)$
Celsius to Kelvin: ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273$

Pressure

The SI unit for pressure is the pascal, where 1 pascal equals 1 newton per square meter. But pressure can also be expressed in a number of different ways, so here are some common pressure conversions:

1 millimeter of mercury (mm Hg) $=1$ torr
1 atmosphere (atm) $=760$ millimeters of mercury (mm Hg) $=760$ torr
1 atmosphere (atm) $=29.9$ inches of mercury (in Hg)
1 atmosphere (atm) $=14.7$ pounds per square inch (psi)
1 atmosphere (atm) = 101 kilopascals (kPa)

Energy

The SI unit for energy (heat being one form) is the joule, but most folks still use the metric unit of heat, the calorie. Here are some common energy conversions:

1 calorie $(\mathrm{cal})=4.184$ joules (J)
1 food Calorie (Cal) $=1$ kilocalorie (kcal) $=4,184$ joules (J)
1 British thermal unit $(B T U)=252$ calories $(\mathrm{cal})=1,053$ joules (J)

Appendix B
 How to Handle Really Big or Really Small Numbers

Exponential Notation

hose who work in chemistry become quite comfortable working with very large and very small numbers. For example, when chemists talk about the number of sucrose molecules in a gram of table sugar, they're talking about a very large number. But when they talk about how much a single sucrose molecule weighs in grams, they're talking about a very small number. Chemists can use regular longhand expressions, but they become very bulky. It's far easier and quicker to use exponential or scientific notation.

In exponential notation, a number is represented as a value raised to a power of ten. The decimal point can be located anywhere within the number as long as the power of ten is correct. In scientific notation, the decimal point is always located between the first and second digit - and the first digit must be a number other than zero.

Suppose, for example, that you have an object that's $\mathbf{0 . 0 0 1 2 5}$ meters in length. You can express that number in a variety of exponential forms:
$0.00125 \mathrm{~m}=0.0125 \times 10^{-1} \mathrm{~m}$, or $0.125 \times 10^{-2} \mathrm{~m}$, or $1.25 \times 10^{-3} \mathrm{~m}$, or $12.5 \times 10^{-4} \mathrm{~m}$, and so on.

All these forms are mathematically correct as numbers expressed in exponential notation. In scientific notation, the decimal point is placed so that there's one digit other than zero to the left of the decimal point. In the preceding example, the number expressed in scientific notation is $1.25 \times 10^{3} \mathrm{~m}$. Most scientists automatically express numbers in scientific notation.

Here are some positive and negative powers of ten and the numbers they represent:

$$
\begin{aligned}
& 1 \times 10^{0}=1 \\
& 1 \times 10^{1}=10 \\
& 1 \times 10^{2}=1 \times 10 \times 10=100 \\
& 1 \times 10^{3}=1 \times 10 \times 10 \times 10=1,000 \\
& 1 \times 10^{4}=1 \times 10 \times 10 \times 10 \times 10=10,000 \\
& 1 \times 10^{5}=1 \times 10 \times 10 \times 10 \times 10 \times 10=100,000 \\
& 1 \times 10^{10}=1 \times 10 \times 10=10,000,000,000 \\
& 1 \times 10^{-1}=1 / 10=0.1 \\
& 1 \times 10^{-2}=1 / 100=0.01 \\
& 1 \times 10^{-3}=1 / 1000=0.001 \\
& 1 \times 10^{-10}=1 / 10,000,000,000=0.0000000001
\end{aligned}
$$

Addition and Subtraction

To add or subtract numbers in exponential or scientific notation, both numbers must have the same power of ten. If they don't, you must convert them to the same power. Here's an addition example:
$\left(1.5 \times 10^{3} \mathrm{~g}\right)+\left(2.3 \times 10^{2} \mathrm{~g}\right)=\left(15 \times 10^{2} \mathrm{~g}\right)+\left(2.3 \times 10^{2} \mathrm{~g}\right)=$

$$
17.3 \times 10^{2} \mathrm{~g} \text { (exponential notation) }=1.73 \times 10^{3} \mathrm{~g} \text { (scientific notation) }
$$

Subtraction is done exactly the same way.

Multiplication and Division

To multiply numbers expressed in exponential notation, multiply the coefficients (the numbers) and add the exponents (powers of ten):

$$
\begin{aligned}
& \left(9.25 \times 10^{-2} \mathrm{~m}\right) \times\left(1.37 \times 10^{-5} \mathrm{~m}\right)=(9.25 \times 1.37) \times \\
& 10^{(-2+5)}=12.7 \times 10^{-7}=1.27 \times 10^{-6}
\end{aligned}
$$

Appendix B: How to Handle Really Big or Really Small Numbers

To divide numbers expressed in exponential notation, divide the coefficients and subtract the exponent of the denominator from the exponent of the numerator:

$$
\begin{aligned}
& \left(8.27 \times 10^{5} \mathrm{~g}\right) \div\left(3.25 \times 10^{3} \mathrm{~mL}\right)=(8.27 \div 3.25) \times \\
& 10^{53} \mathrm{~g} / \mathrm{mL}=2.54 \times 10^{2} \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

Raising a Number to a Power

To raise a number in exponential notation to a certain power, raise the coefficient to the power and then multiply the exponent by the power:
$\left(4.33 \times 10^{-5} \mathrm{~cm}\right)^{3}=(4.33)^{3} \times 10^{-5 \times 3} \mathrm{~cm}^{3}=81.2 \times 10^{-15} \mathrm{~cm}^{3}=8.12 \times 10^{-14} \mathrm{~cm}^{3}$

Using a Calculator

Scientific calculators take a lot of drudgery out of doing calculations. They enable you to spend more time thinking about the problem itself.

You can use a calculator to add and subtract numbers in exponential notation without first converting them to the same power of ten. The only thing you need to be careful about is entering the exponential number correctly. I'm going to show you how to do that right now:

I assume that your calculator has a key labeled EXP. The EXP stands for $\times 10$. After you press the EXP key, you enter the power. For example, to enter the number 6.25×10^{3}, you type 6.25 , press the EXP key, and then type 3 .

What about a negative exponent? If you want to enter the number 6.05×10^{-12}, you type 6.05, press the EXP key, type 12 , and then press the $\%$ key.

When using a scientific calculator, don't enter the $\times 10$ part of your exponential number. Press the EXP key to enter this part of the number.

Appendix C

Unit Conversion Method

you'll find that it's often unclear how to actually set up chemistry problems to solve them. A scientific calculator will handle the math, but it won't tell you what you need to multiply or what you need to divide.

That's why you need to know about the unit conversion method, which is sometimes called the factor label method. It will help you set up chemistry problems and calculate them correctly. Two basic rules are associated with the unit conversion method:

Rule 1: Always write the unit and the number associated with the unit. Rarely in chemistry will you have a number without a unit. Pi is the major exception that comes to mind.

Rule 2: Carry out mathematical operations with the units, canceling them until you end up with the unit you want in the final answer. In every step, you must have a correct mathematical statement.

How about an example so you can see those rules in action? Suppose that you have an object traveling at 75 miles per hour, and you want to calculate its speed in kilometers per second. The first thing you do is write down what you start with:

75 mi

Note that per Rule \#1, the equation shows the unit and the number associated with it.

Now convert miles to feet, canceling the unit of miles per Rule \#2:

$$
\frac{75 \mathrm{~h} \mathrm{i}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{ft}}{1 \mathrm{hij}}
$$

Next, convert feet to inches:

$$
\frac{75 \mathrm{hii}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{Ht}}{1 \mathrm{~min}} \times \frac{12 \mathrm{in}}{1 \text { ht }}
$$

Convert inches to centimeters:

$$
\frac{75 \mathrm{hii}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{ft}}{1 \mathrm{hii}} \times \frac{12 \mathrm{~h}}{1 \mathrm{ht}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{~h}}
$$

Convert centimeters to meters:

$$
\frac{75 \mathrm{hiv}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{ht}}{1 \text { hivi }} \times \frac{12 \mathrm{~h}}{1 \mathrm{ht}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{~h}} \times \frac{1 \mathrm{~m}}{100 \mathrm{c} \text { wi }}
$$

And convert meters to kilometers:

$$
\frac{75 \mathrm{hixi}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{H}}{1 \text { hil }} \times \frac{12 \mathrm{~h}}{1 \mathrm{~h}} \times \frac{2.54 \mathrm{ckg}}{1 \text { ha }} \times \frac{1 \mathrm{~h}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}
$$

Stop and stretch. Now you can start working on the denominator of the original fraction by converting hours to minutes:

$$
\frac{75 \mathrm{hil}}{1 \mathrm{hr}} \times \frac{5,280 \mathrm{dt}}{1 \mathrm{hi}} \times \frac{12 \mathrm{~h}}{1 \mathrm{ht}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{hm}} \times \frac{1 \mathrm{~h}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}
$$

Next, convert minutes to seconds:

Now that you have the units of kilometers per second (km/s), you can do the math to get the answer:

$$
0.033528 \mathrm{~km} / \mathrm{s}
$$

Note that you can round off your answer to the correct number of significant figures. Appendix D gives you details on how to do so, if you're interested.
The rounded-off answer to this problem is

$$
0.034 \mathrm{~km} / \mathrm{s} \text { or } 3.4 \times 10^{-2} \mathrm{~km} / \mathrm{s}
$$

Note that although the setup of the preceding example is correct, it's certainly not the only correct setup. Depending on what conversion factors you know and use, there may be many correct ways to set up a problem and get the correct answer.

Now I want to show you one more example to illustrate an additional point. Suppose that you have an object with an area of 35 inches squared, and you want to figure out the area in meters squared. Again, the first step is to write down what you start with:

$$
\frac{35.0 \mathrm{in}^{2}}{1}
$$

Now convert from inches to centimeters, but remember that you have to cancel inches squared. You must square the inches in the new fraction, and if you square the unit, you have to square the number also. And if you square the denominator, you have to square the numerator, too:

$$
\frac{35.0 \mathrm{in}^{2}}{1} \frac{(2.54 \mathrm{~cm})^{2}}{(1 \mathrm{in})^{2}}
$$

Now convert from centimeters squared to meters squared in the same way:

$$
\frac{35.0 \mathrm{in}^{2}}{1} \frac{(2.54 \mathrm{~cm})^{2}}{(1 \mathrm{mq})^{2}} \times \frac{(1 \mathrm{~m})^{2}}{(100 c \mathrm{x})^{2}}
$$

Now that you have the units of meters squared $\left(\mathrm{m}^{2}\right)$, you can do the math to get your answer:

$$
0.0225806 \mathrm{~m}^{2}
$$

And if you want to round off your answer to the correct number of significant figures (see Appendix D for details), you get

$$
0.023 \mathrm{~m}^{2} \text { or } 2.3 \times 10^{-2} \mathrm{~m}^{2}
$$

With a little practice, you'll really like and appreciate the unit conversion method. It got me through my introductory physics course!

340 Chemistry For Dummies

Appendix D

Significant Figures and Rounding Off

Abstract

ignificant figures (no, I'm not talking about some supermodel) are the number of digits that you report in the final answer of the mathematical problem you are calculating. If I told you that one student determined the density of an object to be $2.3 \mathrm{~g} / \mathrm{mL}$ and another student figured the density of the same object to be $2.272589 \mathrm{~g} / \mathrm{mL}$, I bet that you would naturally believe that the second figure was the result of a more accurate experiment. You might be right, but then again, you might be wrong. You have no way of knowing whether the second student's experiment was more accurate unless both students obeyed the significant figure convention. The number of digits that a person reports in his or her final answer is going to give a reader some information about how accurately the measurements were made. The number of the significant figures is limited by the accuracy of the measurement. This appendix shows you how to determine the number of significant figures in a number, how to determine how many significant figures you need to report in your final answer, and how to round your answer off to the correct number of significant figures.

Numbers: Exact and Counted Versus Measured

If I ask you to count the number of automobiles that you and your family own, you can do it without any guesswork involved. Your answer might be 0 , 1,2 , or 10 , but you would know exactly how many autos you have. Those are what are called counted numbers. If I ask you how many inches there are in a foot, your answer will be 12. That is an exact number. Another exact number is the number of centimeters per inch - 2.54 . This number is exact by definition. In both exact and counted numbers, there is no doubt what the answer is. When you work with these types of numbers, you don't have to worry about significant figures.

Now suppose that I ask you and four friends to individually measure the length of an object as accurately as you possibly can with a meter stick. You then report the results of your measurements: 2.67 meters, 2.65 meters, 2.68 meters, 2.61 meters, and 2.63 meters. Which of you is right? You are all within experimental error. These measurements are measured numbers, and measured values always have some error associated with them. You determine the number of significant figures in your answer by your least reliable measured number.

Determining the Number of Significant Figures in a Measured Number

Here are the rules you need to determine the number of significant figures, or sig. figs., in a measured number.

- Rule 1: All nonzero digits are significant. All numbers, one through nine, are significant, so 676 contains three sig. figs., 5.3×10^{5} contains two, and 0.2456 contains four. The zeroes are the only numbers that you have to worry about.
Rule 2: All of the zeroes between nonzero digits are significant. For example, 303 contains 3 sig. figs., 425003704 contains nine, and 2.037×10^{-6} contains four.
- Rule 3: All zeros to the left of the first nonzero digit are not significant. For example, 0.0023 contains two sig. figs. and 0.0000050023 contains five (expressed in scientific notation it would be 5.0023×10^{-6}).

Rule 4: Zeroes to the right of the last nonzero digit are significant if there is a decimal point present. For example, 3030.0 contains five sig. figs., 0.000230340 contains six, and 6.30300×10^{7} also contains six sig. figs.

- Rule 5: Zeroes to the right of the last nonzero digit are not significant if there is not a decimal point present. (Actually, a more correct statement is that I really don't know about those zeroes if there is not a decimal point. I would have to know something about how the value was measured. But most scientists use the convention that if there is no decimal point present, the zeroes to the right of the last nonzero digit are not significant.) For example, 72000 would contain two sig. figs and 50500 would contain three.

Reporting the Correct Number of Significant Figures

In general, the number of significant figures that you will report in your calculation will be determined by the least precise measured value. What values qualify as the least precise measurement will vary depending on the mathematical operations involved.

Addition and subtraction

In addition and subtraction, your answer should be reported to the number of decimal places used in the number that has the fewest decimal places. For example, suppose you're adding the following amounts:

$$
2.675 \mathrm{~g}+3.25 \mathrm{~g}+8.872 \mathrm{~g}+4.5675 \mathrm{~g}
$$

Your calculator will show 19.3645, but you are going to round off to the hundredths place based on the 3.25, because it has the fewest number of decimal places. You then round the figure off to 19.36 .

Multiplication and division

In multiplication and division, you can report the answer to the same number of significant figures as the number that has the least significant figures.
Remember that counted and exact numbers don't count in the consideration of significant numbers. For example, suppose that you are calculating the density in grams per liter of an object that weighs 25.3573 (6 sig. figs.) grams and has a volume of 10.50 milliliters (4 sig. figs.). The setup looks like this:
$(25.3573 \mathrm{grams} / 10.50 \mathrm{~mL}) \times 1000 \mathrm{~mL} / \mathrm{L}$
Your calculator will read 2414.981000. You have six significant figures in the first number and four in the second number (the $1000 \mathrm{~mL} / \mathrm{L}$ does not count because it is a exact conversion). You should have four significant figures in your final answer, so round the answer off to $2415 \mathrm{~g} / \mathrm{L}$. Only round off your final answer. Do not round off any intermediate values.

Rounding Off Numbers

When rounding off numbers, use the following rules:
\checkmark Rule 1: Look at the first number to be dropped; if it is 5 or greater, drop it and all the numbers that follow it, and increase the last retained number by 1 . For example, suppose that you want to round off 237.768 to four significant figures. You drop the 6 and the 8 . The 6 , the first dropped number, is greater than 5 , so you increase the retained 7 to 8 . Your final answer is 237.8 .
Rule 2: If the first number to be dropped is less than 5, drop it and all the numbers that follow it, and leave the last retained number unchanged. If you're rounding 2.35427 to three significant figures, you drop the 4 , the 2 , and the 7 . The first number to be dropped is 4 , which is less than 5 . The 5 , the last retained number, stays the same. So you report your answer as 2.35 .

Index

- A •

accidents, nuclear power plants, 78
acetone, 245
acetylene (ethyne), alkyne
hydrocarbon, 240
acid deposition, 290
acid ionization constant, 199
acid rain, 209, 290, 297-300, 307-308
acid-base reactions, 201
acidosis, 208
acids
amphoteric, 201-202
antacids, 209-210
Arrhenius theory, 195-196
blue litmus testing, 203
Bronsted-Lowery theory, 196-197
carboxylic, 243-244
concentration, 197
diprotic, 198
ethanoic, 243
formic, 243
household sources, 194
indicators, 202-203
macroscopic view, 193-194
methanoic, 243
microscopic view, 195-197
monoprotic, 198
neutral litmus testing, 203
neutralization reaction, 195
pH scale, 205-209
strength, 197
strong varieties, 197-198
titration procedure, 203-204
weak varieties, 199-200
activation energy, 80, 123
activity series, common metals, 128
actual yield, 173
addition, 334, 343
addition polymers, 261-265
additives, gasoline, 254-255
aerobic bacteria, water pollution, 310
aftershaves, consumer chemistry, 281-282
agents, 150-151
agriculture, 309-310
air conditioners, 292-293
air pollution, 289-300
airplane glue, methyl ethyl ketone, 245
alcohols, 242-243
aldehydes, 244-245
alkali metals, 60, 62-63, 86
alkaline earth metals, 60, 62-63
alkaloids, naturally occurring amines, 246
alkalosis, 208
alkanes, 232-238, 249
alkenes, 239-240, 249
alkynes, 240
alloys, 102
alpha emission, 69
alpha particle, 69
aluminum cans, electrochemistry use, 147
aluminum chlorohydrate, 279
ambergris, perfume ingredient, 282
amides, 246
amines, 246
ammonia, 113-114, 277
amphetamines, amines use, 246
amphoteric, 201-202
amphoteric surfactant, 272
anaerobic bacteria, water pollution, 311
analytical chemistry, 10
analyzation, chemist activity, 13
angular momentum quantum number, 40, 41-43
anionic surfactant, 272
anions, 51, 90-91, 128
anode, 157
antacids, 209-210

346
 Chemistry For Dummies

antilog relationship, 207
antimatter, 71
antiperspirants, 278-279
ants, formic acid source, 243
applied chemistry, 12
aqueous solution, 127
aquifer zone, water recycling, 303
Archimedes Principle, volume measurement, 25, 317
aromatic compounds, 319
aromatic hydrocarbons, 241
Arrhenius theory, 195-196
art preservationist, chemistry field, 14
aspartame, 320
asphalt, petroleum refining process, 249
aspirin, development history, 287-288
astringent, 279
atmosphere, air pollution, 289-290
atmospheric pressure, 214-216
atomic bombs, nuclear fission use, 76
atomic mass, 56
atomic mass units (amu), 32, 166
atomic number, $34,53,66$
atomic structures
atomic number, 34
Bohr model, 38-40
Carbon 12 scale, 32
electrons, 32-33, 38-48
ions, 33, 50-51
isotopes, 49-50
mass number, 34
neutrons, 32-33
nucleus, 33-38
positive versus negative charge, 33
protons, 32-33
quantum mechanical model, 40-44
subatomic particles, 31-33
valence electrons, 48, 63
atomic weight, 34,56
atoms
atomic number, 34
Carbon 12 scale, 32
central, 106
counting by weighing, 165-166
defined, 20, 31-32
electrons, 38-48
ions, $33,50-51$
isotopes, 49-50
mass number, 34
normally neutral charge, 33
nuclear chemistry component, 66
nucleus, 33-38
oxidation state, 91-92
subatomic particles, 31-32
Aufbau Principle, 45-46
automobile air conditioners, 292-293
automobile batteries, 158-159
automobiles, pollution, 307
automotive trim, polypropylene, 263
Avogadro, Amedeo (Avogadro's
Law/number), 167, 222-224, 321

- B •
bacterial growth, biochemical reaction, 142
Bakelite, formaldehyde use, 245
baking soda, formic acid neutralizer, 243-244
balancing, 131-134, 152-155
barometers, 214-215
bases
amphoteric, 201-202
Arrhenius theory, 195-196
baking soda, 243-244
Bronsted-Lowery theory, 196-197
concentration, 197
household sources, 194
indicators, 202-203
macroscopic view, 193-194
microscopic view, 195-197
neutral litmus testing, 203
neutralization reaction, 195
red litmus testing, 203
strength, 197
strong varieties, 198
weak varieties, 201
basic research, 12
bathrooms, chemicals, 278-286
batteries, electrochemistry use, 147
battery cases, polypropylene, 263
bearings, polytetrafluoroethylene, 265
benxophenone, sunscreen ingredient, 283
benzene, 241, 253, 319
Bequeral, Henri (radioactivity), 319
beta emission, 69-70
beta particle, 69
bicarbonates, antacid, 209
binary compounds, 103-104
binary metal hydride, 151
biochemical reaction, 142
biochemistry, 10
biodegradable, 275
biological oxygen demand (BOD), 310-311
biotechnology, 10
bleach, laundry room uses, 276
blends, gasoline, 252
blue litmus paper, acid testing, 203
body powders, consumer chemistry, 280
Bohr, Niels (Bohr model), 38-40, 321
boiling point (bp), 18, 186
boiling point elevation, 186-187
bomb calorimeter, 161
bonding
coordinate-covalent bond, 196
covalent, 89, 99-120
electrons, 108
hydrogen, 115
ionic, 85-87
metallic, 102
nonpolar covalent, 111
polar covalent, 111, 113-114
bottle caps, 262
bottles, 263, 266
Boyle, Robert (Boyle's Law), 217-218
branched hydrocarbons, 234-235
branched polymers, 259
break-even point, nuclear fusion, 81-82
breeder reactors, nuclear fission use, 79-80
bromine, magnesium, 94-95

Bronsted-Lowery theory, 196-197, 201
buffers, controlling $\mathrm{pH}, 208-209$
builders, detergent compound, 274
buret, 204
burning, 130
butane, 133-134, 234, 248-249

- C -

calcium hydrogen phosphate, 278
calcium sulfide, depilatory ingredient, 286
calcium thioglycolate, depilatory, 286
calculators, using, 335
calorie (cal), 29-30, 161, 332
Carbon 12 scale, atomic mass units, 32
Carbon 14, radioactive dating uses, 74
carbon tetrachloride, 238
carbonates, antacid, 209
carboxylic acids, 243-244
carpeting, polypropylene, 263
catalysts, 143-145
catalytic converters, 255
catalytic cracking, petroleum, 249-251
catalytic reforming, refining process, 251
cationic surfactant, 272
cations, 50, 69, 88-92
cellulose (wood), 258-259
Celsius (C) scale, temperature, 28-29
centi (c), SI system, 22
central atom, 106
chain reactions, nuclear fission, 75-76
chalk, toothpaste ingredient, 278
Charles, Jacques (Charles's Law), 219-220
chemical bond, 27, 89
chemical change, 9
chemical equations, 122
chemical properties, 23
chemical reactions
activation energy, 123
balancing, 131-134
balancing by inspection, 132
burning butane, 133-134
catalysts, 143-145
chemical equations, 122

Chemistry For Dummies
chemical reactions (continued)
chemical equilibrium, 134-136
chemical kinetics, 140-145
coefficients, 122
collision theory, 123-126
combination, 126-127
combustion, 130
concentration of the reactants, 141
decomposition, 127
defined, 9
double displacement, 129-130
dynamic chemical equilibrium, 135
endothermic, 123, 125-126
equilibrium constant, 135-136
exothermic, 123-125
Haber process, 131-136
heterogeneous catalysis, 143-144
homogeneous catalysis, 144-145
intermediate compounds, 124
limiting reactants, 174-175
mechanism, 124
metathesis, 129-130
mole concepts, 169-175
nature of the reactants, 140-141
neutralization, 130
particle size of the reactants, 141
percent yield, 173-174
precipitation, 129
pressure of gaseous reactants, 141
products, 122-123
reactants, 122-123
reactive site, 124
redox, 131
reduction-oxidation, 131
single displacement, 127-128
stoichiometry, 171-173
synthesis, 121
temperature influence, 142-143
transition state, 124-125
Chemical Rubber Company (CRC) Handbook, 226
chemistry nerds, 321-324
chemists, 12-14
chlorine, 45, 85-87
chlorofluorocarbons, ozone, 292-293
chloroform, halogenated hydrocarbon, 238
chrome bumpers, electrochemistry use, 147
chrome plating, water pollution, 307
chromium compounds, water pollution, 307
cinnamates, sunscreen ingredient, 283
civetone, perfume ingredient, 282
classification, 53
Clean Air Act of 1970, 254-255, 297
Clean Water Action Plan of 1998, 306
cleaners, kitchen chemistry, 277
Cobalt-60, gamma radiation emitter, 70
coco butter, skin softener, 279
codes, plastic recycling, 269
coefficients, 122, 132, 134
cold cream formulation, 279
colligative properties, 186-190
collision postulate, 213
collision theory, 123-126
colloids, 191
colognes, consumer chemistry, 281-282
colors, 24, 39
combination reactions, 126-127
combined gas law, 221-222
combustion reactions, 130, 161-162
combustion, redox reaction, 147
components, book sections, 3-5
composition postulate, 212
compounds
binary covalent, 103-104
counting by weighing, 165-166
cycloalkanes, 238
defined, 20-21
detergents, 274
empirical formula, 168-169
fixatives, 281-282
formula weights, 166
intermediate, 124
ionic, 94-97
isomers, 106, 234
macromolecules, 257
molecular weight, 166
percentage composition data, 168
concentrated, 179
concentration, 197
concentration units, 179-185
condensation, 18, 19
condensation polymerization, 266-268
condensation polymers, 266-268
condensed structural formulas, 110
condenses, 302
conductivity tester, 97-98
consumer chemistry, 271-286
containment, nuclear fusion control, 81
conversions
calorie (cal)/joule (J), 30
Fahrenheit/Celsius scales, 29
SI system to English, 22-23, 330
coordinate-covalent bond, 196
corrosion inhibitors, 274
counted numbers, 341
counting, by weighing, 165-166
covalent bonding, 89
covalent bonds, 99-116
covalent compounds, 166
covalently bonded, 51
creams, consumer chemistry, 279
crenation, 190
crisscross rule, ionic compounds, 95-96
critical mass, nuclear fission, 75-76
Crosslinked polyethylene (CLPE), 261-262
crosslinked polymers, 259
crystal lattice, 16
cubic meter, measurement unit, 331
Curie, Marie (radioactivity), 322
cycloalkanes, 238

- D

Dalton, John (atomic theory), 322
Dalton's Law, 225-226
Daniell, John Frederic (Daniell cells), 156-157
decomposition reactions, 127
dehydration reaction, 245
delocalized, 241
denaturing, 242
density, 25-26
deodorants, consumer chemistry, 278-279
depilatories, consumer chemistry, 286
deposition, 19
detergents, 274-275, 277, 284
deuterium, 49, 80
diatomic, 100, 151
diatomic molecule, 100
diesel fuel, petroleum refining process, 249
diethyl ether, 245
dilute, 179
dipole-dipole interaction, 115
diprotic acids, 198
direct electron transfer, 155
direct relationship, 219
dishwashing detergents, kitchen, 277
disinfectants, amines use, 246
dispersion force, intermolecular force, 115
dissociates, 198
distillation, 248
disulfide bonds, 283, 286
division, 334-335, 343
double displacement reactions, 129-130
drink glasses, polystyrene, 264
drinking water, treatment methods, 314
dry ice, sublimination process, 19
ductile, 57
dyes, 246, 285
dynamic chemical equilibrium, 135

- E.

educators, chemistry field, 14
egg cartons, polystyrene, 264
elastomers, polymer classification, 260
electricity
conductivity tester, 97-98
electrochemistry use, 147
nuclear power plants, 77-79
positive versus negative charge, 33
electrochemical cells, 155-159
electrochemistry
combustion reactions, 161-162
electrochemical cells, 155-159
electroplating, 159-160
LEO goes GER phrase, 150
oxidation rules, 151-152
redox reactions, 148-155
electrodes, 156
electrolytes, 51, 97-98, 160
electrolytic cells, 159-160
electromagnetic spectrum, 39
electron capture, 71
electron clouds, 40
electron configurations
alkali metals, 62-63
alkaline earth metals, 62-63
bromide anion, 94-95
bromine, 94
chlorine, 48,86
halogens, 62-63
magnesium, 94
magnesium cation, 94
noble gases, 62-63
oxygen, 46
sodium, 86
electron-dot formulas, 101, 106-108, 110
electronegativity, 111
electron-pair geometry, 117
electrons, 32-33, 38-48, 63, 66, 87, 108
electroplating, 159-160
electrostatic attraction, 89
electrostatic precipitators, 299
elements
atomic number, 34
defined, 20
electronegativities, 111-113
isotope representation, 66
mass number, 34
periodic table (illustrated), 54-55
periodic table arrangements, 56-64
table of, 35-37
emollients, skin softeners, 279
empirical formula, 105, 168
emulsion, 279
end note, perfume mixtures, 282
endothermic, 123, 125-126
energy
activation, 123
conversions, 332
defined, 26
electromagnetic spectrum, 39
heat versus temperature, 29-30
kinetic, 26-27, 82, 123
Law of Conservation of Energy, The, 27
measurement methods, 27-30
potential, 27
energy level diagram, electrons, 45-47
energy levels, 39, 43-44
environmental chemist, 14
Environmental Protection Agency (EPA), 306
enzymes, detergent compound, 274
equations
balancing the nuclear reaction, 67
burning butane, 133-134
chemical, 122
combination reactions, 126-127
combustion reactions, 130
decomposition reactions, 127
density of a substance, 24
double displacement reactions, 129
electron capture, 71
Fahrenheit/Celsius conversions, 29
Haber process, 131-136
ideal gas, 224-225
ionic, 128
net-ionic, 150-151
neutralization reactions, 130
positron emission, 70
precipitation reactions, 129
radioactive half-life, 73
Radon-222 (Rn-222), 69
redox reactions, 131
single displacement reactions, 127-128
sublimination, 19
water from gas to solid, 18
water from solid to liquid, 18
equilibrium constant, 135-136
equilibrium system, 136-140
esters, 244
ethanoic acid, 243
ethanol, 243
ethers, 245-246
ethyl alcohol, 242
ethyne (acetylene), 240
eutrophication, 309
evaporates, 302
exact numbers, 341
excite state, 39
exothermic, 123, 124-125
expanded structural formula, 233-234
experiment, 11
exponential notation, 333-334
extensive properties, 24
eye shadow, consumer chemistry, 280-281

- F

face powders, consumer chemistry, 280
factor label method, 337-339
Fahlberg (saccharin), 320
Fahrenheit (F) scale, temperature, 28-29
families. See groups
Faraday, Michael (electrochemistry), 322
ferric ion, 97
fibers, polymer classification, 260
Fiedler-Weiss, Dr. Virginia (Minoxidil), 320
fillers, detergent compound, 274
filtering, drinking water treatment, 314
fission, 75
fissionable, 75
fixatives, perfume compounds, 281-282
flashlight cells, 157-158
food wraps, 261
force postulate, 213
forces, 115
forensic chemist, 14
formaldehyde, 242,245
formic acid, 243
formula weights, 166
formulas
condensed structural, 110
covalent bonds, 104-110
defined, 94
electron-dot, 101, 106-108
empirical, 105, 168-169
expanded structural, 233-234
KISS principle, 106
Lewis, 101, 108-110
molecular (true), 105-106, 233-234
structural, 106-110, 233-234
temperature conversions, 331
toothpaste, 278
true (molecular), 105-106
fossil fuels, 289
fractional distillation, petroleum, 248-249
fragment, 82
freezing, 18,19
freezing point (fp), 19, 187
freezing point depression, 187-188
Freon-12, chlorofluorocarbons, 292-293
freons, halogenated hydrocarbon, 238
Frey, Art (sticky notes), 320
functional groups, 242-246
fusion, 80
fusion torch, 82

-G

gain of electrons, 149
gain of hydrogen, 150
gain of oxygen, oxidation component, 149
galvanic cells, 155-156
gamma emission, 70
gas, water physical state, 114
gaseous diffusion, 226-227
gaseous pressure, reactants, 141
gases
atmospheric pressure, 214-216
Avogadro's Law, 222-224
Boyle's Law, 217-218
gases (continued)
Charles's Law, 219-220
combined gas law, 221-222
Dalton's Law, 225-226
gaseous diffusion, 226-227
Gay-Lussac's Law, 220-221
Graham's Law, 226-227
greenhouse, 293-295
ideal, 214
ideal gas equation, 224-225
Kinetic Molecular theory of Gases, 211-214
laws, 216-227
microscopic view, 211-214
noble, 61
state of matter, 17
stoichiometry, 225
gaskets, silicones, 268
gasohol, 243
gasoline, 249, 252-255
Gay-Lussac, Joseph-Louis (Gay-Lussac's Law), 220-221
geometry, molecular, 117
global warming, 294-295
gold, pure substance, 20
Goodyear, Charles (rubber
vulcanization), 318
Graham, Thomas (Graham's Law), 226-227
gram (g), SI system, 22
greases, petroleum refining process, 249
greenhouse effect, air pollution, 293-295
grocery bags, 261
ground state, 39
groundwater, water recycling, 303
groups (families), 60-63

- H

Haber process, 131-136
hair care, consumer chemistry, 283-386
hair spray, ozone depletion, 291-293
half-life, 71-74
half-reactions, 148
halogenated hydrocarbons, 238
halogens, 60, 62-63
heat capacity, water, 304
heat of vaporization, water property, 305
heat versus temperature, 29-30
heating oil, petroleum, 249
heavy metals, water pollution, 306-307
helium, isoelectronic with hydrogen, 100
hemolysis, 190
heterogeneous catalysis, 143-144
heterogeneous mixtures, 21
high-density polyethylene (HDPE), 261-262
historical work preservationist, 14
homogeneous catalysis, 144-145
homogeneous mixtures, 21
Hula-Hoop, high density polyethylene, 262
Hund's Rule, 46
hydrated aluminum chloride, 279
hydration, 240
hydrocarbons, 232-241
hydrogen, 20-21, 49-50, 100-101
hydrogen bomb, nuclear fusion use, 80
hydrogen bonding, 115-116
hydrogen bonds, water properties, 303-305
hydrogen fluoride, 113-114
hydrogen peroxide, hair bleach use, 285
hydrogenation, 240
hydrologic cycle (water cycle), 302-303
hydrophilic, 272
hydrophobic, 272
hydroxides, antacid, 209
hypertonic, 190
hypothesis, 11
hypotonic, 190
$-1-$
ice, 16, 17, 304
ideal gas, 214
ideal gas equation, 224-225
inch, English system, 23
indicators, 202-205
indirect electron transfer, 156
indole, perfume ingredient, 282
indoor-outdoor carpeting, 263
industrial research chemist, 14
Industrial Revolution, 289-290
industry, 306, 307, 310
infectious agents, water pollution, 308
ingredient, 21
inner transition metals, 64
inorganic chemistry, 10-11
inorganic compounds, naming, 96
insulation, polystyrene, 264
intensive properties, 24
intermediate compounds, 124
intermolecular force, 115
International Union of Pure and Applied Chemistry (IUPAC) rules, 235-236
lodine-131, beta particle emitter, 69-70
ion-electron method, 152-155
ion-exchange resin, water softeners, 275
ionic bonds, 85-87, 101-102
ionic compounds, 94-97, 129, 166
ionic equations, 128
ionic salts, 51
ionically bonded, 51
ionize, 82, 195
ions
anions, 51, 89-91
cations, 50, 69, 88-90
conductivity tester, 97-98
defined, $33,50,87-88,128$
electron configurations, 51
ferric, 97
ionic bonds, 85-89
ionic compounds, 94-97
isoelectronic, 51
monoatomic, 51
naming conventions, 92
oxidation state, 91-92
polyatomic, 51, 92-93
Iron, electron configuration, 48
irregular solids, measuring volume, 317
isobutane, branched hydrocarbon, 234-235
isoelectronic, $51,63,88$
isomers, 106, 234-235
isooctane, octane rating scale, 252-253
isopropyl alcohol, 242
isotonic, 190
isotopes, 49-50, 66-75

- 7 -

jet fuel, petroleum refining process, 249
joule (J), SI system, 30, 332

- K•

Kekule, Fredrich (benzene structure), 319
Kelvin (K) scale, temperature, 28-29, 331
kerosene, petroleum refining process, 249
ketones, 244-245
kilo (k), SI system, 22
kilocalorie (kcall), 29, 30
kilogram (kg), SI system, 22, 330
kilometer (km), SI system, 22
kinetic energy
catalysts, 143-145
collision theory component, 123
defined, 26-27
heat versus temperature, 29-30
measurement methods, 28-29
radioactive particles, 82
temperature effects, 142-143
Kinetic Molecular Theory of Gases, 211-214
kinetics, 140
KISS principle (Keep It Simple, Silly), 106
kitchen, consumer chemistry, 277

lake, 281
landfills, heavy metal contamination source, 306, 308-309
lanolin, skin softener, 279
laundry room
bleach, 276
detergents, 274-275
soaps, 273
surfactants, 272
water softeners, 275-276
Lavoisier, Antoine (father of chemistry), 322
Law of Conservation of Energy, The, 27
Law of Conservation of Mass, 131
laws
Avogadro's Law, 222-224
Boyle's Law, 217-218
Charles's Law, 219-220
combined gas, 221-222
Dalton's Law, 225-226
gases, 216-227
Gay-Lussac's Law, 220-221
Graham's Law, 226-227
Le Chatelier, Henri, (Le Chatelier's
Principle), 136-140
lead acetate, hair coloring, 285
lead, water pollution, 306-307
leisure suits, polyester, 266
length, $\mathrm{SI} /$ English conversion, 22, 330
LEO goes GER (Lose Electrons Oxidation:
Gain Electrons Reduction), 150
Lewis formula, 101, 108-110
lids, crosslinked polyethylene (CLPE), 262
like-dissolves-like, rule of solubility, 177
limiting ingredient, 174
line spectrum, 39
linear polymers, 259
lipstick, consumer chemistry, 281
liquids
boiling point, 186
freezing point, 187
state of matter, 16-17
vapor pressure, 186
water physical state, 114
liter (L), SI system, 23
litmus paper, acid-base testing, 203
London force, intermolecular force type, 115
London smog, 295
Los Angeles smog, 295
loss of electrons, oxidation component, 148-149
loss of hydrogen, oxidation component, 149
loss of oxygen, reduction component, 150
lotions, consumer chemistry, 279
low-density polyethylene (LDPE), addition polymerization, 261
l-pentene, octane rating scale, 253
lubricating oils, petroleum refining process, 249
LUST (leaking underground storage tanks), water pollution, 309
macromolecules, 257
macroscopic level, solids, 16
macroscopic view, 12, 193-194
magnesium, combining with bromine, 94-95
magnetic quantum number, 43
malleable, 57
man-made decay, radioactivity, 66-68
man-made isotopes, 67-68
manometers, atmospheric pressure measurement method, 216
marsh gas, petroleum refining process, 248-249
mascara, consumer chemistry, 280-281
mass
atomic mass units (amu), 32
English conversions, 331
extensive property, 24
measuring, 330-331
SI/English conversion, 22
subatomic particles, 32
mass defect, 75
mass number, 34, 66
matter
change of state, 17-19
defined, 9
measurement methods, 22-23
mixtures, 21
positive versus negative charge, 33
pure substances, 20-21
states of, 16-17
mauve dye, 318
measured numbers, significant numbers, 342
measurements
atmospheric pressure, 214-216
atomic mass units (amu), 32
bomb calorimeter, 161
chemist activity, 13
energy, 27-30
SI (Systeme International) system, 22-23
Sl/English conversions, 22-23
specific gravity (sg), 24
medical tracers, 74
medicine cabinet, consumer chemistry, 287
melanin, 283
Melmac, formaldehyde use, 245
melting, 17
melting point (mp), 17
Mendeleev, Dmitri (periodic table), 53, 323
mercaptan, natural gas additive, 238
mercury, water pollution, 307
mesosphere, 291
metal ions, lipstick ingredient, 281
metallic bonding, 102
metalloids, 57-59
metals
activity series, 128
alkali, 60
alkaline earth, 60
ductile property, 57
inner transition, 64
malleable property, 57
periodic table classification, 57-59
transition, 64
water pollution 306-307
metathesis reactions, 129-130
meter (m), SI system, 22, 330
methanoic acid, 243
methanol, 242
methyl alcohol, 242
methyl ethyl ketone, 245
methyl tert-butyl ether (MTBE), octane booster, 255
metric system
energy measurement, 332
length, 330
mass, 330-331
pressure measurement, 332
SI prefixes, 329-330
temperature conversion formulas, 331
micelles, 272
microscopic level, solids, 16
microscopic view, 12, 195-197, 211-214
middle note, perfume mixtures, 282
milk jugs, 261-262
milli (m), SI system, 22
milligram (mg), SI system, 22
mining, heavy metal contamination source, 306, 307
Minoxidil
hair growth, 320
male pattern baldness treatment, 287
mixtures, 21
model proving, chemist activity, 13
models
Bohr, 38-40
defined, 11
quantum mechanical, 40-44
modified equilibrium constants, 202
molality (m), 184
molarity (M), 182-184
mole, 167
mole concept
Avogadro's number, 167
chemical reactions, 169-175
empirical formula, 168-169
limiting reactants, 174-175
molality (m), 184
molarity (M), 182-184
percent yield, 173-174
percentage composition, 168
reaction stoichiometry, 171-173
real world uses, 167-169
molecular (true) formula, covalent bonds, 105-106
molecular formulas, alkanes, 233-234
molecular geometry, 117
molecular level, 10
molecular weights, 166
molecules
defined, 100, 103
electron-pair geometry, 117
intermolecular force, 115
molecular geometry, 117
right/left handed, 318

356
 Chemistry For Dummies

momentum, 40
monatomic, 51, 151
monoatomic anions, 90-91
monoatomic cations, 89-90
monoprotic acids, 198
mothballs (naphthalene), 19, 241
motion postulate, Kinetic Molecular
Theory of Gases, 212-213
Motoring octane value, gasoline, 254
multiplication, 334, 343
multipurpose cleaners, kitchen
chemistry, 277
muratic acid, cautions/concerns, 277

-N.

nail polish, consumer chemistry, 281
naphthalene (mothballs), aromatic
compound, 241
natural decay, radioactivity, 68-71
natural gas, petroleum refining process, 248-249
natural gasoline, petroleum refining process, 249
natural logarithm, 73
natural monomers, 258-259
Nature of the Chemical Bond, The (Linus Pauling), 323
negative charge, subatomic particles, 33
negligible concept, quantities, 212
net-ionic equations, 150
neutral litmus paper, acid-base
testing, 203
neutralization reaction, 130, 195
neutron rich, 68
neutrons
mass number, 34
neutral charge, 33
nuclear chemistry component, 66
subatomic particle, 32-33
n-heptane, octane rating scale, 252-253
nitrocellulose, nail polish ingredient, 281
noble gases
electron configurations, 62-63
properties, 61
Radon-222, 82
nonbonding electrons, 108
nonelectrolytes
covalently bonded, 51
described, 51, 97-98
nonionic surfactant, 272
nonmetals
covalent bonds, 101-102
periodic table classification, 57-59
properties, 57
non-point sources, water pollution, 305
nonpolar covalent bonds, 111
nonrenewable resources, petroleum, 247
nonstick coatings, polytetrafluoroethylene, 265
normal (straight-chained) alkanes, 232-233
notes, perfume mixtures, 282
n-pentene, octane rating scale, 253
nuclear chemistry
alpha emission, 69
alpha particle, 69
antimatter, 71
atoms, 66
balancing the nuclear reaction, 67
beta emission, 69-70
beta particle, 69-70
electron capture, 71
electrons, 66
fission, 74-80
gamma emission, 70
isotopes, 66
medical tracers, 74
natural radioactive decay, 68-71
neutron rich isotopes, 68
neutrons, 66
nuclear fusion, 80-82
nucleus, 66
positron emission, 70-71
protons, 66
radiation effects, 82
radioactive dating, 74
radioactive half-lives, 71-74
radioactivity, 66-74
radon, 82
reaction arrow, 67
safe handling, 73-74
transmutation, 67
nuclear fission, 76-80
nuclear fusion, $80-82$
nuclear glue, 33
nuclear reaction, 67
nucleus, 33-34, 38, 66
numbers, 333-344
nylon stockings, polyamides, 266-267

- 0

octane rating scale, gasoline, 252-254
octet rule, 63, 87
oil of wintergreen, 244
optical brighteners, detergent, 274
optically active molecules, 318
orbitals, 40
organic chemistry, 11, 231-246
osmosis, 189
osmotic pressure, 188-190
osteoporosis, 210
oxidation, 148-149, 151-152
oxidation number method, 152
oxidation state, atoms, 91-92
oxidizing agent, 150
oxygen, 21, 46
oxygenate, 255
ozone layer, air pollution effects, 291

- P -

packing material, polystyrene, 264
para-aminobenzoic acid (PABA), 283
parachutes, polyamides, 267
paraffin-based waxes, petroleum, 249
particle size, reactants, 141
particulates, 289-290
parts per million (ppm), 184-185
pascal, measurement unit, 332
Pasteur, Louis (optically active molecules), 318
Pauling, Linus (The Nature of the Chemical Bond), 323
percent composition, 179-182
percent yield, mole concept, 173-174
percentage composition, 168
percentages, 179-182
perfumes, consumer chemistry, 281-282
periodic table, 54-64
periodicity, 53
periods, periodic table component, 56
Perkin, William (mauve dye), 318
permanents, consumer chemistry, 286
peroxides, 151, 245
petroleum, 247-251
petroleum jelly, skin softener, 279
pH scale, 206-209
phase changes, 17-18
phenol, aromatic compound, 241
phenolphthalein, 203-205
photochemical smog, 290, 295-297
photosynthesis, 147, 289
physical chemistry, 11
physical properties, 23
physical states, water, 114
pine oil, kitchen chemistry, 277
pipes, polyvinyl chloride, 264
plastic rope, polypropylene, 263
plastics, 260, 268-269
Plunkett, Roy (Teflon), 319
plutonium-239, fissionable isotope, 75
point sources, water pollution, 305
polar covalent bonding, 113-115
polar covalent bonds, 111
polishes, silicones, 268
Polonium-204, electron capture, 71
Polonium-218, radon health issues, 82
polyamides, 266-267
polyatomic, 51, 151
polyatomic ions, 92-93
polyester, condensation polymer, 266
polyethylene, 261-262
polymerization, 240
polymers, 257-268
polypropylene, 263
polystyrene, 263-264
polytetrafluoroethylene, 264-265
polyvinyl chloride, 264
positive charge, subatomic particles, 33
positron emission, 70-71
postulates, 212-214
potable water, 301
Potassium-40, positron emission, 70
potential energy, 27
pounds (lbs), English system, 23
power plants, 77-79
precipitation reactions, 129-130
preignition, gasoline, 252
pressure, 213-216
primary sewage treatment, 311-312
principal quantum number, 41
products, 122, 124-130, 135-136
professions, chemistry fields, 13-14
proof, 181
propane, petroleum, 248-249
properties
alkali metals, 60
alkaline earth metals, 60
boiling point elevation, 186-187
chemical, 23
colligative, 185-190
extensive, 24
families (groups), 60
freezing point depression, 187-188
halogens, 60
intensive, 24
metalloids, 57
metals, 57
noble gases, 61
nonmetals, 57
osmotic pressure, 188-190
physical, 23
semimetals, 57
vapor pressure lowering, 186
water, 114, 303-305
protons, 32-34, 66
pure chemistry, 12
pure substances, 20

qualitative analysis, 10,85
quality control chemist, 13
quantitative analysis, 10
quantities, negligible concept, 212
quantized, 39
quantum mechanical model, 40-44
quantum numbers, 40-44
quantum theory, 40

- R•

racemic acid, 318
radiation, 82
radiation burn, 82
radical reactive site, polymers, 261
radioactive dating, 74
radioactivity, $33,66-74,82,319$
radon, health issues, 82
Radon-222, 60, 82
reactants, 122-131, 135-136, 140-141
reaction arrow, 67
reaction mechanism, 124
reactions, 239-240, 245
reactive site, 124
readers, author's assumptions, 2-3
recycling, plastics, 268-269
red litmus paper, base testing, 203
redox (reduction-oxidation) reactions
balancing equations, 152-155
bleaches, 276
combustion, 161-162
defined, 131, 148
Leo goes GER phrase, 150
net-ionic equations, 150-151
oxidation, 148-149
oxidation rules, 151-152
reduction, 149-150
reducing agent, 151
refined, 248
refinery, 248
refrigerants, chlorofluorocarbons, 292-293
Research octane rating, gasoline, 254
respiration, redox reaction, 147
reverse osmosis, 189
ring systems, alkanes, 238
Roman numerals, valence electrons, 63-64
ropes, polypropylene, 263
rounding off numbers, 344
rubber vulcanization, 318
rules
IUPAC, 235-236
oxidation numbers, 151-152
solubility, 177
runoff, water recycling, 303
Rutherford, Ernest (atom nucleus), 33, 323

- S

S-35, man-made isotope, 67
saccharin, 320
sales representative, chemistry field, 14
salt bridge, 156
salts, 51,89
sandwich bags, 261
sandwich wrap, polyethylene, 261-262
saponification, 273
saturated solutions, 178-179
scales, temperature, 28-29
Schlatter, James (aspartame), 320
science, 10,12
scientific method, 11
scientific notation, 333
scientific units, 329-332
scrubbers, 300
sea of electrons, 102
Seaborg, Glenn (transuranium), 324
seals, silicones, 268
secondary sewage treatment, 311
semimetals, properties, 57
semipermeable membrane, 188
serendipity, 287
sewage treatment, 311-314
shampoos, consumer chemistry, 284
shapes, VESPR theory, 117-120
shells, Bohr model, 39
Shroud of Turin, Carbon 14 dating, 74
SI prefixes, 329-330
SI system of measurement, 329-332
significant figures, 341-343
silicon valley, 57
silicones, condensation polymer, 267-268
simulated leather, polyvinyl chloride, 264
single displacement reactions, 127-128
skin care, consumer chemistry, 279-283
smog, air pollution, 295-297
soaps, laundry room uses, 273
sodium, combining with chlorine, $85-87$
sodium fluoride, toothpaste ingredient, 278
sodium perborate, detergent, 274
sodium sulfide, depilatory ingredient, 286
soft drink bottles, polyester, 266
solid air fresheners, 19
solids, 16, 25-26, 114
solubility, 177
solutes, 177
solutions
buffers, 208-209
colligative properties, 185-190
colloids, 191
concentrated, 179
concentration units, 179-185
crenation, 190
defined, 21,177
dilute, 179
hemolysis, 190
hypertonic, 190
hypotonic, 190
isotonic, 190
like-dissolves-like rule, 177
molality, 184
solutions (continued)
molarity, 182-184
parts per million (ppm), 184-185
percent composition, 179-182
pH scale, 205-209
proof, 181
saturated, 178-179
solutes, 177
solvents, 177
supersaturated, 178-179
versus suspension, 191
unsaturated, 178-179
volume/volume percentage, 181-182
weight/volume percentage, 180-181
weight/weight percentage, 180
solvent, 177, 305
specific gravity (sg), 24
spectroscope, 39
spin pairing, electrons, 46
spin quantum number, 43
spotty ignition, gasoline, 252
stannous, toothpaste ingredient, 278
starch, natural monomer, 258-259
states of matter, 16-17
steam, 17
sticky notes, 320
stoichiometric ratio, 172
stoichiometry, 171, 225
storm surges, global warming effect, 294
straight-chained alkanes, 232-233
straight-chained heptane, 252-253
straight-run gasoline, petroleum, 249
stratosphere, air pollution effects, 291
strength, 197
stress, 136
strong acids, 197-198
strong bases, 198
structural formulas, 106-110, 233-234
Styrofoam cups, polystyrene, 263-264
subatomic particle, 31-34, 38-44, 48-51, 63
subcritical, 75
sublimination, 19
subshells, quantum mechanical model, 41
substances, density equation, 24
substituent groups, 235
subtraction, 334, 343
Sun Protection Factor (SPF) rating, 283 sunscreen, consumer chemistry, 283
suntan lotion, consumer chemistry, 283
supersaturated solutions, 178-179
surface tension, water property, 303
surfactants, laundry room uses, 272
surgical implants, silicones, 268
suspension, 191
suspension agents, detergent, 274
synthesis, 1, 121, 165
synthesization, chemist activity, 13
synthesize, 13
Systeme International (SI) system, 22-23, 329-332

-T

Table of Elements, 35-37
table salt, ionic bonds, 85-87
talc, body/face powder ingredient, 280
tar, petroleum refining process, 249
technology, 12
Teflon, 319
temperatures
boiling point of water (at sea level), 18
Celsius scale, 28-29
chemical kinetics, 142-143
conversion formulas, 331
Fahrenheit scale, 28-29
global warming, 294-295
versus heat, 29-30
Kelvin scale, 28-29
melting point of ice, 17
nuclear fusion control issue, 81
specific gravity component, 24
terpenes, kitchen chemistry, 277
tertiary sewage treatment, 313-314
tetraethyl lead, gasoline additive, 254
tetraethyl lead, water pollution, 307
theoretical chemistry, 13
theoretical yield, 173
theory, 11
theory proving, chemist activity, 13
thermal inversion, 295-296
thermal pollution, 178, 310
thermoplastic polymers, 259-260
thermosetting polymers, 260
thermosphere, 291
time, nuclear fusion control issue, 81
titanium dioxide, 278, 283
titration procedure, 203-204
toothpaste, consumer chemistry, 278
top note, perfume mixtures, 282
toys, 262
transition metals, 64
transition state, collision theory, 124-125
transmutation, 67
transuranium elements, 324
trash bags, 261
triple bond, 102
tritium, nuclear fusion, 80
troposphere, air pollution effects, 290-291
true (molecular) formula, 105-106
TV cabinets, 262
Tyndall effect, 191

- U •

Uncertainty Principle, 40
unionized, 199
unit conversion method, 337-339
unsaturated hydrocarbons, 239-240
unsaturated solutions, 178-179
uranium-235, fissionable isotope, 75
urea, organic synthesis development, 231
UV rays, 283, 291

- U

valence electrons, 48, 63-64
Valence Shell Electron-Pair Repulsion (VESPR), 117-120
valve seats, polytetrafluoroethylene, 265
vanishing cream formulation, 279
vapor pressure, 186
vapor pressure lowering, 186
Viagra, development history, 287
volatility, 252
voltaic cells, 155-156
volume, 23-25, 317, 331
volume postulate, 212
volume/volume percentage, 181-182
vulcanization, rubber, 318

W.

wastes, nuclear fission problem, 78-79
wastewater, treatment methods, 311-314
water
amphoteric, 201-202
aquifer, 303
Archimedes Principle, 25
boiling point temperature, 18
compounds, 20-21
condensation, 302
covalent bonds, 114-116
dipole-dipole interaction, 115
electron-dot formula, 106-108
evaporation, 302
gas to solid phase change, 18
groundwater, 303
heat of vaporization, 305
high heat capacity, 304
hydrogen bonding, 115-116
hydrogen bonds, 303-305
hydrologic cycle, 302-303
ice state, 304
intermolecular forces, 115
Lewis formula, 108
physical states, 114
polar covalent bonding, 114-115
properties, 114, 303-305
runoff, 303
solid to liquid phase change, 18
solvent uses, 305
water (continued)
specific gravity component, 24
surface tension property, 303
surfactants, 272-275
VSEPR theory, 117-120
water cycle (hydrologic cycle), 302-303
water dissociation constant, 202
water molecules, 16
water pollution, 306-314
water softeners, laundry room, 275-276
waxes, silicones, 268
weak acids, 199-200
weak bases, 201
Web sites
American Chemical Society, 325
chemistry.About.Com, 326
ChermClub.com, 328
Exploratorium, The, 328
Institute of Chemical Education, 328
Material Safety Data Sheets (MSDS), 326
water (continued)
specific gravity component, 24
surface tension property, 303
surfactants, 272-275
VSEPR theory, 117-120
water cycle (hydrologic cycle), 302-303
water dissociation constant, 202
water molecules, 16
water pollution, 306-314
water softeners, laundry room, 275-276
waxes, silicones, 268
weak acids, 199-200
weak bases, 201
Web sites
American Chemical Society, 325
chemistry.About.Com, 326
ChermClub.com, 328
Exploratorium, The, 328
Institute of Chemical Education, 328
Material Safety Data Sheets (MSDS), 326

Plastics.com, 327
U.S. Environmental Protection

Agency, 326
Webbook, 327
Webelements.com, 327
weight, counting objects by, 165-166
weight/volume percentage, 180-181
weight/weight percentage, 180
weighted average, 50,56
Wohler, Friedrich (urea compound), 231
wood (methyl) alcohol, 242

- 8
yields, actual versus theoretical, 173-174

$\rightarrow 7$

zinc oxide, sunscreen ingredient, 283
zinc peroxide, deodorant ingredient, 279

GARDEN, FOOD \& WINE

545-5295-3

0-7645-5130-2

0-7645-5250-3

Also available:
Bartending For Dummies
(0-7645-5051-9)
Christmas Cooking For
Dummies
(0-7645-5407-7)
Cookies For Dummies
(0-7645-5390-9)
Diabetes Cookbook For
Dummies
(0-7645-5230-9)

Also available:

Accounting For Dummies (0-7645-5314-3)
Business Plans Kit For Dummies
(0-7645-5365-8)
Managing For Dummies (1-5688-4858-7)
Mutual Funds For Dummies
(0-7645-5329-1)
QuickBooks All-in-One Desk Reference For Dummies
(0-7645-1963-8)

Resumes For Dummies
(0-7645-5471-9)
Small Business Kit For
Dummies
(0-7645-5093-4)
Starting an eBay Business
For Dummies
(0-7645-1547-0)
Taxes For Dummies 2003
(0-7645-5475-1)

S, SPORTS, HOBBIES \& PETS

Also available:
Cats For Dummies
(0-7645-5275-9)
Chess For Dummies
(0-7645-5003-9)
Dog Training For Dummies
(0-7645-5286-4)
Labrador Retrievers For
Dummies
(0-7645-5281-3)
Martial Arts For Dummies
(0-7645-5358-5)
Piano For Dummies
(0-7645-5105-1)

Grilling For Dummies
(0-7645-5076-4)
Home Maintenance For
Dummies
(0-7645-5215-5)
Slow Cookers For Dummies
(0-7645-5240-6)
Wine For Dummies
(0-7645-5114-0)

e wherever books are sold. ww.dummies.com or call 1-877-762-2974 to order direct

Pilates For Dummies
(0-7645-5397-6)
Power Yoga For Dummies
(0-7645-5342-9)
Puppies For Durnmies (0-7645-5255-4)
Quilting For Dummies (0-7645-5118-3)
Rock Guitar For Dummies (0-7645-5356-9)
Weight Training For Dummies (0-7645-5168-X)

A world of resources to help you grow

TRAVEL

0-7645-5453-0

0-7645-5438-7

0-7645-5444-1

EDUCATION \& TEST PREPARATION

0-7645-5194-9

0-7645-5325-9

0-7645-5249-X

HEALTH, SELF-HELP \& SPIRITUALITY

0-7645-5154-X

0-7645-5302-X

0-7645-5418-2

Also available:

The ACT For Dummies (0-7645-5210-4)
Chemistry For Dummies
(0-7645-5430-1)
English Grammar For Dummies
(0-7645-5322-4)
French For Dummies (0-7645-5193-0)
GMAT For Dummies (0-7645-5251-1)
Inglés Para Dummies (0-7645-5427-1)

Italian For Dummies (0-7645-5196-5)
Research Papers For [(0-7645-5426-3)
SAT I For Dummies
(0-7645-5472-7)
U.S. History For Dumr (0-7645-5249-X)
Worid History For Du (0-7645-5242-2)

Also available:

The Bible For Dummies
(0-7645-5296-1)
Controlling Cholesterol
For Dummies
(0-7645-5440-9)
Dating For Dummies
(0-7645-5072-1)
Dieting For Dummies
(0-7645-5126-4)
High Blood Pressure For Dummies
(0-7645-5424-7)
Judaism For Dummies
(0-7645-5299-6)

Also available:

America's National Parks For
Dummies
(0-7645-6204-5)
Caribbean For Dummies
(0-7645-5445-X)
Cruise Vacations For
Dummies 2003
(0-7645-5459-X)
Europe For Dummies
(0-7645-5456-5)
Ireland For Dummies
(0-7645-6199-5)

France For Dummies (0-7645-6292-4)
Las Vegas For Dummi (0-7645-5448-4)
London For Dummies (0-7645-5416-6)
Mexico's Beach Resor For Dummies
(0-7645-6262-2)
Paris For Dummies
(0-7645-5494-8)
RV Vacations For Dum (0-7645-5443-3)

DUMMIES

Plain-English solutions for everyday challenges

\& BUSINESS COMPUTER BASICS

645-0838-5

0-7645-1663-9

0-7645-1548-9

Also available:

Excel 2002 All-in-One Desk Reference For Dummies (0-7645-1794-5)
Office XP 9-in-1 Desk
Reference For Dummies
(0-7645-0819-9)
PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Troubleshooting Your PC
For Dummies
(0-7645-1669-8)

Upgrading \& Fixing PCs For Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)
Word 2002 For Dummies
(0-7645-0839-3)

NET \& DIGITAL MEDIA

545-0894-6

0-7645-1642-6

0-7645-1664-7

Get smart! Visit www.dummies.com

- Find listings of even more Dummies titles

- Browse online articles, excerpts, and how-to's
- Sign up for daily or weekly e-mail tips
- Check out Dummies fitness videos and other products
- Order from our online bookstore

Also available:
CD and DVD Recording
For Dummies
(0-7645-1627-2)
Digital Photography All-in-One Desk Reference For Dummies
(0-7645-1800-3)
eBay For Dummies (0-7645-1642-6)
Genealogy Online For
Dummies
(0-7645-0807-5)
Internet All-in-One Desk Reference For Dummies (0-7645-1659-0)

Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies (0-7645-0846-6)
Paint Shop Pro For Dummies
(0-7645-2440-2)
Photo Retouching \&
Restoration For Dummies
(0-7645-1662-0)
Photoshop Elements For
Dummies
(0-7645-1675-2)
Scanners For Dummies
(0-7645-0783-4)

Helping you expand your horizons and realize your potent

GRAPHICS \& WEB SITE DEVELOPMENT

0-7645-1651-5

0-7645-1643-4

0-7645-0895-4

Also available:
Adobe Acrobat 5 PDF
For Dummies
(0-7645-1652-3)
ASP.NET For Dummies
(0-7645-0866-0)
ColdFusion MX for Dummies
(0-7645-1672-8)
Dreamweaver MX For
Dummies
(0-7645-1630-2)
FrontPage 2002 For Dummies
(0-7645-0821-0)
HTML 4 For Dummies (0-7645-0723-0)
illustrator 10 For Dum (0-7645-3636-2)
PowerPoint 2002 For Dummies
(0-7645-0817-2)
Web Design For Dumm (0-7645-0823-7)

0-7645-0746-X

0-7645-1626-4

0-7645-1657-4

LINUX, NETWORKING \& CERTIFICATION

Also available:

Access 2002 For Dummies (0-7645-0818-0)
Beginning Programming
For Dummies
(0-7645-0835-0)
Crystal Reports 9 For
Dummies
(0-7645-1641-8)
Java \& XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)

Also available:
A+Certification For Dummies (0-7645-0812-1)
CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies
(0-7645-1635-3)

JavaScript For Dumm (0-7645-0633-1
Oracle9i For Dummie: (0-7645-0880-6)
Perl For Dummies (0-7645-0776-1)
PHP and MySQL For Dummies
(0-7645-1650-7)
SQL For Dummies (0-7645-0737-0)
Visual Basic. .NET For Dummies
(0-7645-0867-9)

See how chemistry works in everything from soaps to medicines to petroleum

 Whether you're taking a chemistry course or you're curious about what chemists do, this fun and easy guide will get you up to speed in matter and energy, elements and atoms, acids and gases, and much more. You'll understand the basic concepts and discover how chemistry affects our day-to-day lives - from the home to the environment.John T. Moore Ed.D. has been a teacher for more than thirty years. Numerous grants have permitted him to focus on the professional development of elementary and middle school teachers in science.

Explanations in plain English

For more plain-Engl advice, see:
Algebra
DUMMIES

English Gra DUNM

Biology DUMMIES

"Get in, get out" information

Get smal
 @ www.dummies.

\checkmark Find listings of all our b
Choose from many diff subject categories
\checkmark Sign up for eTips at etips.dummies.com

