Nomenclature of Polyfunctional Organic Compounds

With more than 37 million organic compounds known and several thousand more being created daily, naming them all is a real problem. Part of the problem is due to the sheer complexity of organic structures, but part is also due to the fact that chemical names have more than one purpose. For Chemical Abstracts Service (CAS), which catalogs and indexes the worldwide chemical literature, each compound must have only one correct name. It would be chaos if half the entries for $\mathrm{CH}_{3} \mathrm{Br}$ were indexed under " M " for methyl bromide and half under " B " for bromomethane. Furthermore, a CAS name must be strictly systematic so that it can be assigned and interpreted by computers; common names are not allowed.

People, however, have different requirements than computers. For peoplewhich is to say chemists in their spoken and written communications-it's best that a chemical name be pronounceable and that it be as easy as possible to assign and interpret. Furthermore, it's convenient if names follow historical precedents, even if that means a particularly well-known compound might have more than one name. People can readily understand that bromomethane and methyl bromide both refer to $\mathrm{CH}_{3} \mathrm{Br}$.

As noted in the text, chemists overwhelmingly use the nomenclature system devised and maintained by the International Union of Pure and Applied Chemistry, or IUPAC. Rules for naming monofunctional compounds were given throughout the text as each new functional group was introduced, and a list of where these rules can be found is given in Table A.1.

Table A.1	Nomenclature Rules for Functional Groups		
Functional group	Text section	Functional group	Text section
Acid anhydrides	10.1	Aromatic compounds	5.2
Acid halides	10.1	Carboxylic acids	10.1
Alcohols	8.1	Cycloalkanes	2.7
Aldehydes	9.2	Esters	10.1
Alkanes	2.3	Ethers	8.1
Alkenes	3.1	Ketones	9.2
Alkyl halides	7.1	Nitriles	10.1
Alkynes	3.1	Phenols	8.1
Amides	10.1	Sulfides	8.8
Amines	12.1	Thiols	8.8

Naming a monofunctional compound is reasonably straightforward, but even experienced chemists often encounter problems when faced with naming a complex polyfunctional compound. Take the following compound, for instance. It has three functional groups, ester, ketone, and $\mathrm{C}=\mathrm{C}$, but how should it be named? As an ester with an -oate ending, a ketone with an -one ending, or an alkene with an -ene ending? It's actually named methyl 3-(2-oxocyclohex-6-enyl)propanoate.

The name of a polyfunctional organic molecule has four parts-suffix, parent, prefixes, and locants-which must be identified and expressed in the proper order and format. Let's look at each of the four.

Name Part 1. The Suffix: Functional-Group Precedence

Although a polyfunctional organic molecule might contain several different functional groups, we must choose just one suffix for nomenclature purposes. It's not correct to use two suffixes. Thus, keto ester $\mathbf{1}$ must be named either as a ketone with an -one suffix or as an ester with an -oate suffix, but it can't be named as an -onoate. Similarly, amino alcohol 2 must be named either as an alcohol (-ol) or as an amine (-amine), but it can't be named as an -olamine or -aminol.

2.

The only exception to the rule requiring a single suffix is when naming compounds that have double or triple bonds. Thus, the unsaturated acid $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ is but-3-enoic acid, and the acetylenic alcohol $\mathrm{HC} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ is pent-5-yn-1-ol.

How do we choose which suffix to use? Functional groups are divided into two classes, principal groups and subordinate groups, as shown in Table A.2. Principal groups can be cited either as prefixes or as suffixes, while subordinate groups are cited only as prefixes. Within the principal groups, an order of priority has been established, with the proper suffix for a given compound determined by choosing the principal group of highest priority. For example, Table A. 2 indicates that keto ester 1 should be named as an ester rather than as a ketone because an ester functional group is higher in priority than a ketone. Similarly, amino alcohol 2 should be named as an alcohol rather than as an amine. Thus, the name of $\mathbf{1}$ is methyl 4 -oxopentanoate, and the name of $\mathbf{2}$ is 5 -aminopentan-2-ol. Further examples are shown:

1. Methyl 4-oxopentanoate (an ester with a ketone group)

2. Methyl 5-methyl-6-oxohexanoate (an ester with an aldehyde group)

3. 5-Aminopentan-2-ol (an alcohol with an amine group)

4. 5-Carbamoyl-4-hydroxypentanoic acid (a carboxylic acid with amide and alcohol groups)

5. 3-Oxocyclohexanecarbaldehyde
(an aldehyde with a ketone group)

Classification of Functional Groups ${ }^{\text {a }}$		
Functional group	Name as suffix	Name as prefix
Principal groups	-oic acid	carboxy
Carboxylic acids	-carboxylic acid	
Acid anhydrides	-oic anhydride -carboxylic anhydride	-
Esters	-oate -carboxylate	alkoxycarbonyl
Thioesters	-thioate -carbothioate	alkylthiocarbonyl
Acid halides	-oyl halide -carbonyl halide	halocarbonyl
Amides	-amide -carboxamide	carbamoyl
Nitriles	-nitrile -carbonitrile	cyano
Aldehydes	-al -carbaldehyde	oxo
Ketones	-one	oxo
Alcohols	-ol	hydroxy
Phenols	-ol	hydroxy
Thiols	-thiol	mercapto
Amines	-amine	amino
Imines	-imine	imino
Ethers	ether	alkoxy
Sulfides	sulfide	alkylthio
Disulfides	disulfide	-
Alkenes	-ene	-
Alkynes	-yne	-
Alkanes	-ane	-
Subordinate groups		
Azides	-	azido
Halides	-	halo
Nitro compounds	-	nitro
${ }^{\text {aprincipal groups are listed in order of decreasing priority; subordinate groups have }}$ no priority order.		

Name Part 2. The Parent: Selecting the Main Chain or Ring

The parent, or base, name of a polyfunctional organic compound is usually easy to identify. If the principal group of highest priority is part of an open chain, the parent name is that of the longest chain containing the largest number of principal groups. For example, compounds $\mathbf{6}$ and $\mathbf{7}$ are isomeric aldehydo amides, which must be named as amides rather than as aldehydes according to Table A.2. The longest chain in compound 6 has six carbons, and the substance is therefore named 5 -methyl-6-oxohexanamide. Compound 7 also has a chain of six carbons, but the longest chain that contains both
principal functional groups has only four carbons. The correct name of 7 is 4-oxo-3-propylbutanamide.

6. 5-Methyl-6-oxohexanamide

7. 4-Oxo-3-propylbutanamide

If the highest-priority principal group is attached to a ring, the parent name is that of the ring system. Compounds $\mathbf{8}$ and $\mathbf{9}$, for instance, are isomeric keto nitriles and must both be named as nitriles according to Table A.2. Substance 8 is named as a benzonitrile because the -CN functional group is a substituent on the aromatic ring, but substance 9 is named as an acetonitrile because the -CN functional group is on an open chain. The correct names are 2 -acetyl-(4-bromomethyl)benzonitrile (8) and (2-acetyl-4-bromophenyl)acetonitrile (9). As further examples, compounds 10 and 11 are both keto acids and must be named as acids, but the parent name in (10) is that of a ring system (cyclohexanecarboxylic acid) and the parent name in (11) is that of an open chain (propanoic acid). The full names are trans-2-(3-oxopropyl)cyclohexanecarboxylic acid (10) and 3-(2-oxocyclohexyl)propanoic acid (11).

8. 2-Acetyl-(4-bromomethyl)benzonitrile

10. trans-2-(3-oxopropyl)cyclohexanecarboxylic acid

9. (2-Acetyl-4-bromophenyl)acetonitrile

11. 3-(2-Oxocyclohexyl)propanoic acid

Name Parts 3 and 4. The Prefixes and Locants

With the parent name and the suffix established, the next step is to identify and give numbers, or locants, to all substituents on the parent chain or ring. These substituents include all alkyl groups and all functional groups other than the one cited in the suffix. For example, compound 12 contains three different functional groups (carboxyl, keto, and double bond). Because the carboxyl group is highest in priority and because the longest chain containing the functional groups has seven carbons, 12 is a heptenoic acid. In addition, the main chain has a keto (oxo) substituent and three methyl groups. Numbering from the end nearer the highest-priority functional group, 12 is named (E)-2,5,5-trimethyl-4-oxohept-2-enoic acid. Look back at some of the other
compounds we've named to see other examples of how prefixes and locants are assigned.

12. (E)-2,5,5-Trimethyl-4-oxohept-2-enoic acid

Writing the Name

Once the name parts have been established, the entire name is written out. Several additional rules apply:

1. Order of prefixes. When the substituents have been identified, the main chain has been numbered, and the proper multipliers such as $d i$ - and tri- have been assigned, the name is written with the substituents listed in alphabetical, rather than numerical, order. Multipliers such as $d i$ - and tri- are not used for alphabetization purposes, but the prefix iso- is used.

2. 5-Amino-3-methylpentan-2-ol
3. Use of hyphens; single- and multiple-word names. The general rule is to determine whether the parent is itself an element or compound. If it is, then the name is written as a single word; if it isn't, then the name is written as multiple words. Methylbenzene is written as one word, for instance, because the parent-benzene-is itself a compound. Diethyl ether, however, is written as two words because the parent-ether-is a class name rather than a compound name. Some further examples follow:

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{Mg}-\mathrm{CH}_{3}
$$

14. Dimethylmagnesium (one word, because magnesium is an element)

15. 4-(Dimethylamino)pyridine (one word, because pyridine is a compound)

16. Isopropyl 3-hydroxypropanoate (two words, because "propanoate" is not a compound)

17. Methyl cyclopentanecarbothioate (two words, because "cyclopentanecarbothioate" is not a compound)
18. Parentheses. Parentheses are used to denote complex substituents when ambiguity would otherwise arise. For example, chloromethylbenzene has two substituents on a benzene ring, but (chloromethyl)benzene has only one complex substituent. Note that the expression in parentheses is not set off by hyphens from the rest of the name.

19. p-Chloromethylbenzene

20. (Chloromethyl)benzene

21. 2-(1-IMethylpropyl)pentanedioic acid

Additional Reading

Further explanations of the rules of organic nomenclature can be found online at http://www.acdlabs.com/iupac/nomenclature/ and in the following references:

1. "A Guide to IUPAC Nomenclature of Organic Compounds," CRC Press, Boca Raton, FL, 1993.
2. "Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H," International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979.

APPENDIXB

Glossary

Abstract

Absorbance (Section 13.5): In optical spectroscopy, the logarithm of the intensity of the incident light divided by the intensity of the light transmitted through a sample; $A=\log I_{0} / I$.

Absorption spectrum (Section 13.2): A plot of wavelength of incident light versus amount of light absorbed. Organic molecules show absorption spectra in both the infrared and ultraviolet regions of the electromagnetic spectrum.

Acetal (Section 9.8): A functional group consisting of two -OR groups bonded to the same carbon, $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{OR}^{\prime}\right)_{2}$. Acetals are often used as protecting groups for ketones and aldehydes.

Acetyl group (Section 9.2): The $\mathrm{CH}_{3} \mathrm{CO}$ - group.
Acetylide anion (Section 4.11): The anion formed by removal of a proton from a terminal alkyne, $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}$:-

Achiral (Section 6.2): Lacking handedness. A molecule is achiral if it has a plane of symmetry and is thus superimposable on its mirror image.

Acid anhydride (Section 10.7): A functional group with two acyl groups bonded to a common oxygen atom, $\mathrm{RCO}_{2} \mathrm{COR}^{\prime}$.

Acid halide (Section 10.7): A functional group with the general formula RCOX, where X is a halogen.

Acidity constant, $\boldsymbol{K}_{\mathbf{a}}$ (Section 1.10): A measure of acid strength in water. For any acid HA, the acidity constant is given by the expression
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

Activating group (Section 5.7): An electron-donating group such as hydroxyl (-OH) or amino $\left(-\mathrm{NH}_{2}\right)$ that increases the reactivity of an aromatic ring toward electrophilic aromatic substitution.

Activation energy, $\boldsymbol{E}_{\text {act }}$ (Section 3.8): The difference in energy between ground state and transition state. The amount of activation energy required by a reaction determines the rate at which the reaction proceeds.

Active site (Section 15.10): The pocket in an enzyme where a substrate is bound and undergoes reaction.

Acyl group (Sections 5.5 and 9.2): A name for the -COR group.

Acyl phosphate (Section 10.12): A functional group with an acyl group bonded to a phosphate, $\mathrm{RCO}_{2} \mathrm{PO}_{3}{ }^{2-}$.

Acylation (Section 5.5): The introduction of an acyl group, -COR, onto a molecule. For example, acylation of an aromatic ring yields a ketone, acylation of an alcohol yields an ester, and acylation of an amine yields an amide.

Acylium ion (Section 5.5): A resonance-stabilized carbocation in which the positive charge is located at a carbonylgroup carbon, $\mathrm{R}-\mathrm{C}^{+}=\mathrm{O} \longleftrightarrow \mathrm{R}-\mathrm{C} \equiv \mathrm{O}^{+}$. Acylium ions are intermediates in Friedel-Crafts acylation reactions.

1,2-Addition (Sections 4.8 and 9.10): The addition of a reactant to the two ends of a double bond.

1,4-Addition (Sections 4.8 and 9.10): The addition of a reactant to atoms 1 and 4 of a conjugated diene or conjugated enone.

Addition reaction (Section 3.5): The reaction that occurs when two reactants combine to form a single new product with no atoms left over.

Adrenocortical hormone (Section 16.4): A steroid hormone secreted by the adrenal glands. There are two types of adrenocortical hormones: mineralocorticoids and glucocorticoids.

Alcohol (Chapter 8): A compound with an -OH group bonded to a saturated, $s p^{3}$-hybridized carbon atom.

Aldaric acid (Section 14.7): The dicarboxylic acid that results from oxidation of an aldose.

Aldehyde (Section 9.1): A compound containing the -CHO functional group.

Alditol (Section 14.7): The polyalcohol that results from reduction of the carbonyl group of a monosaccharide.

Aldol reaction (Section 11.8): A carbonyl condensation reaction between two ketones or aldehydes leading to a β-hydroxy carbonyl product.

Aldonic acid (Section 14.7): The monocarboxylic acid that results from mild oxidation of an aldose.

Aldose (Section 14.1): A simple sugar with an aldehyde carbonyl group.

Alicyclic (Section 2.7): An aliphatic cyclic hydrocarbon, or cycloalkane.

Aliphatic (Section 2.2): A nonaromatic hydrocarbon such as a simple alkane, alkene, or alkyne.

Alkaloid (Section 12.7): A naturally occurring compound that contains a basic amine functional group.

Alkane (Section 2.2): A compound that contains only carbon and hydrogen and has only single bonds.

Alkene (Chapter 3 Introduction): A hydrocarbon that contains a carbon-carbon double bond, $\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}$.

Alkoxide ion (Section 8.2): The anion RO^{-}formed by deprotonation of an alcohol.

Alkyl group (Section 2.2): The partial structure that remains when a hydrogen atom is removed from an alkane.

Alkyl halide (Chapter 7 Introduction): A compound with a halogen atom bonded to a saturated, $s p^{3}$-hybridized carbon atom.

Alkylamine (Section 12.1): An amino-substituted alkane, $\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}$, or $\mathrm{R}_{3} \mathrm{~N}$.

Alkylation (Sections 5.5 and 11.6): The introduction of an alkyl group onto a molecule. For example, aromatic rings can be alkylated to yield arenes ($\mathrm{ArH} \rightarrow \mathrm{ArR}$), and enolate anions can be alkylated to yield α-substituted carbonyl compounds.

Alkyne (Chapter 3 Introduction): A hydrocarbon that has a carbon-carbon triple bond.

Allylic (Section 4.8): The position next to a double bond.
α-Amino acid (Section 15.1): A compound with an amino group attached to the carbon atom next to the carboxyl group, $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}$.
$\boldsymbol{\alpha}$ Anomer (Section 14.6): The cyclic hemiacetal form of a sugar that has the hemiacetal -OH group on the side of the ring opposite the terminal $-\mathrm{CH}_{2} \mathrm{OH}$.
$\boldsymbol{\alpha}$ Helix (Section 15.8): A common secondary structure of a protein in which the chain coils into a spiral.
$\boldsymbol{\alpha}$ Position (Chapter 11 Introduction): The position next to a carbonyl group.
$\boldsymbol{\alpha}$-Substitution reaction (Section 11.2): A reaction that results in substitution of a hydrogen on the α carbon of a carbonyl compound.
α, β-Unsaturated carbonyl compound (Section 9.10): A compound containing the $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ functional group.

Amide (Section 10.10):A compound containing the $-\mathrm{CONR}_{2}$ functional group.

Amine (Section 12.1): An organic derivative of ammonia, $\mathrm{RNH}_{2}, \mathrm{R}_{2} \mathrm{NH}$, or $\mathrm{R}_{3} \mathrm{~N}$.

Amino acid (Section 15.1): See α-Amino acid.
Amino sugar (Section 14.8): A sugar with one of its -OH groups replaced by $-\mathrm{NH}_{2}$.

Amphiprotic (Section 15.1): Capable of acting as either an acid or a base.

Amplitude (Section 13.2): The height of a wave from midpoint to peak.

Anabolism (Section 17.1): Metabolic reactions that synthesize larger molecules from smaller precursors.

Androgen (Section 16.4): A steroid male sex hormone such as testosterone.

Angle strain (Section 2.9): The strain introduced into a molecule when a bond angle is deformed from its ideal value.

Anomeric center (Section 14.6): The hemiacetal carbon atom in the cyclic pyranose or furanose form of a sugar.

Anomers (Section 14.6): Cyclic stereoisomers of sugars that differ only in their configurations at the hemiacetal (anomeric) carbon.

Anti stereochemistry (Section 4.4): The opposite of syn. An anti addition reaction is one in which the two ends of the double bond are attacked from different sides.

Anticodon (Section 16.9): A sequence of three bases on tRNA that read the codons on mRNA and bring the correct amino acids into position for protein synthesis.

Antisense strand (Section 16.8): The noncoding strand of double-helical DNA that does not contain the gene.

Aromatic (Section 5.1): The class of compounds that contain a benzene-like six-membered ring with three double bonds.

Aryl group (Section 5.2): An aromatic substituent group, Ar-.

Arylamine (Section 12.1): An amino-substituted aromatic compound, ArNH_{2}.

Axial position (Section 2.10): A bond to chair cyclohexane that lies along the ring axis perpendicular to the rough plane of the ring.

Backbone (Section 15.3): The repeating series of $-\mathrm{N}-\mathrm{CH}-\mathrm{CO}-$ atoms that make up a protein chain.

Base peak (Section 13.1): The most intense peak in a mass spectrum.

Basicity constant, $\boldsymbol{K}_{\mathbf{b}}$ (Section 12.3): A value that expresses the strength of a base in water solution. The larger the K_{b}, the stronger the base.

Benzoyl group (Section 9.2): The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ - group.
Benzyl group (Section 5.2): The $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ - group.
Benzylic position (Section 5.8): The position next to an aromatic ring.
$\boldsymbol{\beta}$ Anomer (Section 14.6): The cyclic hemiacetal form of a sugar that has the hemiacetal -OH group on the same side of the ring as the terminal $-\mathrm{CH}_{2} \mathrm{OH}$.
$\boldsymbol{\beta}$-Oxidation pathway (Section 17.2): A series of four enzyme-catalyzed reactions that cleave two carbon atoms at a time from the end of a fatty-acid chain.
$\boldsymbol{\beta}$-Pleated sheet (Section 15.8): A protein secondary structure in which the chain folds back on itself so that two sections of the chain run parallel.

Bimolecular reaction (Section 7.5): A reaction whose rate-limiting step occurs between two reactants.

Boc derivative (Section 15.7): A butyloxycarbonyl N-protected amino acid.

Bond angle (Section 1.6): The angle formed between two adjacent bonds.

Bond length (Section 1.5): The equilibrium distance between the nuclei of two atoms that are bonded to each other.

Bond strength (Section 1.5): The amount of energy needed to break a bond to produce two radical fragments.

Branched-chain alkane (Section 2.2): An alkane that contains a branching connection of carbons as opposed to a straight-chain alkane.

Bromonium ion (Section 4.4): A species with a divalent, positively charged bromine, $\mathrm{R}_{2} \mathrm{Br}^{+}$.

Brønsted-Lowry acid (Section 1.10): A substance that donates a hydrogen ion (proton, H^{+}) to a base.

Brønsted-Lowry base (Section 1.10): A substance that accepts a hydrogen ion, H^{+}, from an acid.

C-Terminal amino acid (Section 15.3): The amino acid with a free $-\mathrm{CO}_{2} \mathrm{H}$ group at one end of a protein chain.

Cahn-Ingold-Prelog sequence rules (Sections 3.4 and 6.5): A series of rules for assigning relative rankings to substituent groups on a double-bond carbon atom or on a chirality center.

Carbanion (Section 7.3): A carbon-anion, or substance that contains a trivalent, negatively charged carbon atom ($\mathrm{R}_{3} \mathrm{C}:^{-}$).

Carbocation (Section 3.7): A carbon-cation, or substance that contains a trivalent, positively charged carbon atom having six electrons in its outer shell $\left(\mathrm{R}_{3} \mathrm{C}^{+}\right)$.

Carbohydrate (Section 14.1): A polyhydroxy aldehyde or polyhydroxy ketone. Carbohydrates can be either simple sugars such as glucose or complex sugars such as cellulose.

Carbonyl condensation reaction (Section 11.7): A reaction between two carbonyl compounds in which the α carbon of one partner bonds to the carbonyl carbon of the other.

Carbonyl group (Section 9.1): The $\mathrm{C}=\mathrm{O}$ functional group.

Carboxyl group (Section 10.1): The $-\mathrm{CO}_{2} \mathrm{H}$ group.

Carboxylate ion (Section 10.3): The anion of a carboxylic acid, $\mathrm{RCO}_{2}{ }^{-}$.

Carboxylic acid (Section 10.1): A compound containing the $-\mathrm{CO}_{2} \mathrm{H}$ functional group.

Carboxylic acid derivative (Chapter 10 Introduction): A compound in which an acyl group is bonded to an electronegative atom or substituent that can act as a leaving group in a substitution reaction. Esters, amides, and acid halides are examples.

Catabolism (Section 17.1): Metabolic reactions that break down large molecules.

Catalyst (Section 3.9): A substance that increases the rate of a chemical transformation by providing an alternative mechanism but is not itself changed in the reaction.

Chain-growth polymer (Section 10.13): A polymer produced by chain reaction of a monofunctional monomer.

Chair conformation (Section 2.9): A three-dimensional conformation of cyclohexane that resembles the rough shape of a chair. The chair form of cyclohexane has neither angle strain nor eclipsing strain.

Chemical shift (Section 13.9): The position on the NMR chart where a nucleus absorbs. By convention, the chemical shift of tetramethylsilane is set at zero and all other absorptions usually occur downfield (to the left on the chart).

Chiral (Section 6.2): Having handedness. A chiral molecule does not have a plane of symmetry, is not superimposable on its mirror image, and thus exists in right- and left-handed forms.

Chiral environment (Section 6.10): Chiral surroundings or conditions in which a molecule resides.

Chirality center (Section 6.2): An atom (usually carbon) that is bonded to four different groups. Also called a stereocenter.

Cis-trans isomers (Sections 2.8 and 3.3): Stereoisomers that differ in their stereochemistry about a double bond or a ring.

Citric acid cycle (Section 17.4): The metabolic pathway by which acetyl CoA is degraded to CO_{2}.

Claisen condensation reaction (Section 11.10): A carbonyl condensation reaction between two esters leading to formation of a β-keto ester product.

Coding strand (Section 16.8): The sense strand of doublehelical DNA that contains the gene.

Codon (Section 16.9): A three-base sequence on the mRNA chain that encodes the genetic information necessary to cause specific amino acids to be incorporated into proteins.

Coenzyme (Section 15.9): A small organic molecule that acts as an enzyme cofactor.

Cofactor (Section 15.9): A small, nonprotein part of an enzyme necessary for biological activity.

Complex carbohydrate (Section 14.1): A carbohydrate composed of two or more simple sugars linked together by acetal bonds.

Condensed structure (Section 2.2): A shorthand way of drawing structures in which $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds are understood rather than shown explicitly.

Configuration (Section 6.5): The three-dimensional arrangement of atoms bonded to a chirality center.

Conformation (Section 2.5): The exact three-dimensional shape of a molecule at any given instant, assuming that rotation around single bonds is frozen.

Conformers (Section 2.5): Conformational isomers that interconvert by bond rotation.

Conjugate acid (Section 1.10): The product that results when a base accepts H^{+}.

Conjugate (1,4) addition reaction (Section 9.10): The addition of a nucleophile to the β carbon atom of an α, β-unsaturated carbonyl compound.

Conjugate base (Section 1.10): The anion that results from dissociation of an acid.

Conjugation (Section 4.8): A series of alternating single and multiple bonds with overlapping p orbitals.

Constitutional isomers (Section 2.2): Isomers such as butane and 2-methylpropane, which have their atoms connected in a different order.

Coupled reactions (Section 17.1): Two reactions that share a common intermediate so that the energy released in the favorable step allows the unfavorable step to occur.

Coupling constant, \boldsymbol{J} (Section 13.12): The magnitude of the spin-spin splitting interaction between nuclei whose spins are coupled.

Covalent bond (Section 1.4): A bond formed by sharing electrons between two nuclei.

Cycloalkane (Section 2.7): An alkane with a ring of carbon atoms.

D Sugar (Section 14.3): A sugar whose hydroxyl group at the chirality center farthest from the carbonyl group points to the right when the molecule is drawn in Fischer projection.

Deactivating group (Section 5.7): An electron-withdrawing substituent that decreases the reactivity of an aromatic ring toward electrophilic aromatic substitution.

Decarboxylation (Section 11.6): The loss of $\mathrm{CO}_{2} . \beta$-Keto acids decarboxylate readily on heating.

Dehydration (Section 8.4): Elimination of water from an alcohol to yield an alkene.

Dehydrohalogenation (Section 7.7): Elimination of HX from an alkyl halide to yield an alkene on treatment with a strong base.

Delta ($\boldsymbol{\delta}$) scale (Section 13.9): The arbitrary scale used for defining the position of NMR absorptions; $1 \delta=1 \mathrm{ppm}$ of spectrometer frequency.

Deoxy sugar (Section 14.8): A sugar with an -OH group missing from one carbon.

Deoxyribonucleic acid (DNA) (Section 16.5): The biopolymer consisting of deoxyribonucleotide units linked together through phosphate-sugar bonds. Found in the nucleus of cells, DNA contains an organism's genetic information.

Deshielding (Section 13.9): An effect observed in NMR that causes a nucleus to absorb downfield because of a withdrawal of electron density from the nucleus.

Dextrorotatory (Section 6.3): An optically active substance that rotates the plane of polarization of plane-polarized light in a right-handed (clockwise) direction.

Diastereomers (Section 6.6): Non-mirror-image stereoisomers; diastereomers have the same configuration at one or more chirality centers but differ at other chirality centers.

1,3-Diaxial interaction (Section 2.11): The strain energy caused by a steric interaction between axial groups three carbon atoms apart in chair cyclohexane.

Digestion (Section 17.1): The first stage of catabolism, in which food molecules are hydrolyzed to yield fatty acids, amino acids, and monosaccharides.

Disaccharide (Section 14.9): A complex carbohydrate formed by linking two simple sugars through an acetal bond.

Disulfide (Section 8.8): A compound of the general structure RSSR'.

DNA (Section 16.5): See Deoxyribonucleic acid.
Double bond (Section 1.8): A covalent bond formed by sharing two pairs of electrons between atoms.

Double helix (Section 16.6): The structure of DNA in which two polynucleotide strands coil around each other.

Doublet (Section 13.12): A two-line NMR absorption caused by spin-spin splitting when the spin of the nucleus under observation couples with the spin of a neighboring magnetic nucleus.

Downfield (Section 13.9): The left-hand portion of the NMR chart.
\boldsymbol{E} geometry (Section 3.4): A term used to describe the stereochemistry of a carbon-carbon double bond in which higher-ranked groups on each carbon are on opposite sides of the double bond.

E1 reaction (Section 7.8): A unimolecular elimination reaction in which the substrate spontaneously dissociates to give a carbocation intermediate, which loses a proton in a separate step.

E1cB reaction (Section 7.8): A unimolecular elimination reaction in which a proton is first removed to give a carbanion intermediate, which then expels the leaving group in a separate step.

E2 reaction (Section 7.7): A bimolecular elimination reaction in which $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{X}$ bond cleavages are simultaneous.

Eclipsed conformation (Section 2.5): The geometric arrangement around a carbon-carbon single bond in which the bonds on one carbon are parallel to the bonds on the neighboring carbon as viewed in a Newman projection.

Edman degradation (Section 15.6): A method for selectively cleaving the N -terminal amino acid from a peptide.

Electromagnetic spectrum (Section 13.2): The range of electromagnetic energy, including infrared, ultraviolet, and visible radiation.

Electron-dot structure (Section 1.4): A representation of a molecule showing valence electrons as dots.

Electron-transport chain (Section 17.1): The final stage of catabolism, in which ATP is produced.

Electronegativity (Section 1.9): The ability of an atom to attract electrons in a covalent bond. Electronegativity generally increases from right to left and from bottom to top of the periodic table.

Electrophile (Section 3.6): An "electron-lover," or substance that accepts an electron pair from a nucleophile in a polar bond-forming reaction.

Electrophilic addition reaction (Section 3.7): The addition of an electrophile to an alkene to yield a saturated product.

Electrophilic aromatic substitution reaction (Section 5.3): The substitution of an electrophile for a hydrogen atom on an aromatic ring.

Electrophoresis (Sections 15.2 and 16.10): A technique for separating charged organic molecules, particularly proteins and amino acids, by placing them in an electric field.

Electrostatic potential map (Section 1.9): A molecular representation that uses color to indicate the calculated charge distribution in the molecule.

Elimination reaction (Section 3.5): The reaction that occurs when a single reactant splits apart into two products.

Embden-Meyerhof pathway (Section 17.3): An alternative name for glycolysis.

Enantiomers (Section 6.1): Stereoisomers that have a mirror-image relationship, with opposite configurations at all chirality centers.

Enantioselective synthesis (Chapter 6 Interlude): A method of synthesis from an achiral precursor that yields only a single enantiomer of a chiral product.
$\mathbf{3}^{\prime}$-End (Section 16.5): The end of a nucleic acid chain that has a free sugar hydroxyl group.
$\mathbf{5}^{\prime}$ - End (Section 16.5): The end of a nucleic acid chain that has a phosphoric acid unit.

Energy diagram (Section 3.8): A graph depicting the energy changes that occur during a reaction.

Enol (Section 11.1): A vinylic alcohol, $\mathrm{C}=\mathrm{C}-\mathrm{OH}$.
Enolate ion (Sections 9.10 and 11.1): The resonancestabilized anion of an enol, $\mathrm{C}=\mathrm{C}-\mathrm{O}^{-}$.

Enone (Section 11.9): An unsaturated ketone.
Entgegen (\boldsymbol{E}) (Section 3.4): A term used to describe the stereochemistry of a carbon-carbon double bond in which higher-ranked groups on each carbon are on opposite sides of the double bond.

Enzyme (Section 15.9): A biological catalyst. Enzymes are large proteins that catalyze specific biochemical reactions.

Epoxide (Section 4.6): A three-membered ring ether functional group.

Epoxy resin (Chapter 8 Interlude): A polymer prepared by reaction of a bisphenol with epichlorohydrin.

Equatorial position (Section 2.10): A bond to cyclohexane that lies along the rough equator of the ring. (See Axial position.)

Essential amino acid (Section 15.1): An amino acid that must be obtained in the diet.

Essential monosaccharide (Section 14.8): One of eight monosaccharides essential for life and obtained in the diet.

Essential oil (Chapter 3 Interlude): The fragrant mixture of liquids extracted from many plants.

Ester (Section 10.9): A compound containing the $-\mathrm{CO}_{2} \mathrm{R}$ functional group.

Estrogen (Section 16.4): A female steroid sex hormone.
Ether (Section 8.1): A compound with two organic groups bonded to the same oxygen atom, $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$.

Exon (Section 16.8): A section of DNA that contains genetic information.

Fat (Section 16.1): A solid triacylglycerol derived from an animal source.

Fatty acid (Section 16.1): A long straight-chain carboxylic acid found in fats and oils.

Fibrous protein (Section 15.8): A protein that consists of polypeptide chains arranged side by side in long threads.

Fingerprint region (Section 13.3): The complex region of the infrared spectrum from $1500 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$.

Fischer esterification reaction (Section 10.6): The acidcatalyzed reaction of an alcohol with a carboxylic acid to yield an ester.

Fischer projection (Section 14.2): A method for depicting the configuration of a chirality center using crossed lines. Horizontal bonds come out of the plane of the page, and vertical bonds go back into the plane of the page.

Fishhook arrow (Section 3.6): A half-headed curved arrow used to show the movement of a single electron in a radical reaction.

Fmoc derivative (Section 15.7): A fluorenylmethyloxycarbonyl N-protected amino acid.

Formyl group (Section 9.2): A - CHO group.
Frequency, $\boldsymbol{\nu}$ (Section 13.2): The number of electromagnetic wave cycles that travel past a fixed point in a given unit of time, usually expressed in reciprocal seconds, s^{-1}, or hertz.

Friedel-Crafts reaction (Section 5.5): The introduction of an alkyl or acyl group onto an aromatic ring by an electrophilic substitution reaction.

Functional group (Section 2.1): An atom or group of atoms that is part of a larger molecule and has a characteristic chemical reactivity.

Furanose (Section 14.5): The five-membered ring structure of a simple sugar.

Geminal (Section 9.7): Referring to two groups attached to the same carbon atom.

Globular protein (Section 15.8): A protein that is coiled into a compact, nearly spherical shape.

Glycerophospholipid (Section 16.3): A lipid that contains a glycerol backbone linked to two fatty acids and a phosphoric acid.

Glycoconjugate (Section 14.7): A molecule in which a carbohydrate is linked through its anomeric center to another biological molecule such as a lipid or protein.

Glycol (Section 4.6): A diol, such as ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$.

Glycolipid (Section 14.7): A biological molecule in which a carbohydrate is linked through its anomeric center to a lipid.

Glycolysis (Section 17.3): A series of ten enzymecatalyzed reactions that break down a glucose molecule into two pyruvate molecules.

Glycoprotein (Section 14.7): A biological molecule in which a carbohydrate is linked through its anomeric center to a protein.

Glycoside (Section 14.7): A cyclic acetal formed by reaction of a sugar with another alcohol.

Green chemistry (Chapter 12 Interlude): The design and implementation of chemical products and processes that reduce waste and attempt to eliminate the generation of hazardous substances.

Grignard reagent (Section 7.3): An organomagnesium halide, RMgX .

Ground-state electron configuration (Section 1.2): The lowest-energy electron configuration of a molecule or atom.

Halogenation (Sections 4.4 and 5.3): The reaction of halogen with an alkene to yield a 1,2-dihalide addition product or with an aromatic compound to yield a substitution product.

Hemiacetal (Section 9.8): A functional group consisting of one -OR and one -OH group bonded to the same carbon.

Hertz (Hz) (Section 13.2): The standard unit for frequency; the number of waves that pass by a fixed point per second.

Heterocycle (Sections 5.9 and 12.6): A cyclic molecule whose ring contains more than one kind of atom.

Hormone (Section 16.4): A chemical messenger secreted by a specific gland and carried through the bloodstream to affect a target tissue.

Hybrid orbital (Section 1.6): An orbital derived from a combination of atomic orbitals. Hybrid orbitals, such as the $s p^{3}, s p^{2}$, and $s p$ hybrids of carbon, are strongly directed and form stronger bonds than atomic orbitals do.

Hydration (Section 4.3): Addition of water to a molecule, such as occurs when alkenes are treated with strong aqueous acid.

Hydrocarbon (Section 2.2): A compound that has only carbon and hydrogen.

Hydrogen bond (Section 8.2): An attraction between a hydrogen atom bonded to an electronegative element and an electron lone pair on another atom.

Hydrogenation (Section 4.5): Addition of hydrogen to a double or triple bond to yield a saturated product.

Hydrophilic (Section 16.2): Water-loving; attracted to water.

Hydrophobic (Section 16.2): Water-fearing; not attracted to water.

Hydroquinone (Section 8.5): 1,4-dihydroxybenzene.
Hydroxylation (Section 4.6): The addition of one or more -OH groups to a molecule.

Imine (Section 9.9): A compound with a $\mathrm{R}_{2} \mathrm{C}=\mathrm{NR}$ functional group; also called a Schiff base in biochemistry.

Inductive effect (Section 1.9): The electron-attracting or electron-withdrawing effect that is transmitted through α bonds.

Infrared (IR) spectroscopy (Section 13.3): A kind of optical spectroscopy that uses infrared energy. IR spectroscopy is particularly useful in organic chemistry for determining the kinds of functional groups in molecules.

Integration (Section 13.11): A means of electronically measuring the ratios of the number of nuclei responsible for each peak in an NMR spectrum.

Intermediate (Section 3.8): A species that is formed during the course of a multistep reaction but is not the final product.

Intron (Section 16.8): A section of DNA that does not contain genetic information.

Ionic bond (Section 1.4): A bond between two ions due to the electrical attraction of unlike charges.

Isoelectric point, $\mathbf{p} \boldsymbol{I}$ (Section 15.2): The pH at which the number of positive charges and the number of negative charges on a protein or amino acid are exactly balanced.

Isomers (Section 2.2): Compounds with the same molecular formula but different structures.

Isotopes (Section 1.1): Atoms of the same element that have different mass numbers.

IUPAC system of nomenclature (Section 2.3): Rules for naming compounds, devised by the International Union of Pure and Applied Chemistry.

Kekulé structure (Section 1.4): A representation of a molecule in which a line between atoms represents a covalent bond.

Keto-enol tautomerism (Section 11.1): The equilibration between a carbonyl form and vinylic alcohol form of a molecule.

Ketone (Section 9.1): A compound with two organic substituents bonded to a carbonyl group, $\mathrm{R}_{2} \mathrm{C}=\mathrm{O}$.

Ketose (Section 14.1): A simple sugar with a ketone functional group.

Krebs cycle (Section 17.4): An alternative name for the citric acid cycle, by which acetyl CoA is degraded to CO_{2}.

L Sugar (Section 14.3): A sugar whose hydroxyl group at the chirality center farthest from the carbonyl group points to the left when the molecule is drawn in Fischer projection.

Lactam (Chapter 10 Interlude): A cyclic amide.
$\mathbf{L D}_{\mathbf{5 0}}$ (Chapter 1 Interlude): The amount of a substance per kilogram body weight that is lethal to 50% of test animals.

Leaving group (Section 7.4): The group that is replaced in a substitution reaction.

Levorotatory (Section 6.3): An optically active substance that rotates the plane of polarization of plane-polarized light in a left-handed (counterclockwise) direction.

Lewis acid (Section 1.12): A substance with a vacant lowenergy orbital that can accept an electron pair from a base.

Lewis base (Section 1.12): A substance that donates an electron lone pair to an acid.

Lewis structure (Section 1.4): A representation of a molecule showing covalent bonds as a pair of electron dots between atoms.

Lindlar catalyst (Section 4.11): A hydrogenation catalyst used to convert an alkyne to a cis alkene.

Line-bond structure (Section 1.4): A representation of a molecule showing covalent bonds as lines between atoms.
$\mathbf{1} \rightarrow \mathbf{4}$ Link (Section 14.9): An acetal link between the C1 carbonyl group of one sugar and the C 4 hydroxyl group of another sugar.

Lipid (Chapter 16 Introduction): A naturally occurring substance isolated from plants or animals by extraction with a nonpolar organic solvent.

Lipid bilayer (Section 16.3): The double layer of phospholipids that forms a cell membrane.

Locant (Sections 2.3 and 3.1): A number in the IUPAC name of a compound that specifies the point of attachment of a substituent to the parent chain or the position of a functional group in the chain.

Lone-pair electrons (Section 1.4): A nonbonding electron pair that occupies a valence orbital.

Magnetic resonance imaging, MRI (Chapter 13 Interlude): A medical diagnostic technique based on nuclear magnetic resonance.

Major groove (Section 16.6): The larger of two grooves in double-helical DNA.

Malonic ester synthesis (Section 11.6): The synthesis of a carboxylic acid by alkylation of an alkyl halide, followed by hydrolysis and decarboxylation.

Markovnikov's rule (Section 4.1): A guide for determining the regiochemistry (orientation) of electrophilic addition reactions. In the addition of HX to an alkene, the hydrogen atom bonds to the alkene carbon that has fewer alkyl substituents.

Mass spectrometry (Section 13.1): A technique for measuring the mass, and therefore the molecular weight (MW), of ions.

Mechanism (Section 3.6): A complete description of how a reaction occurs. A mechanism accounts for all reactants and all products and describes the details of each individual step in the overall reaction process.

Mercapto group (Section 8.8): An alternative name for the thiol group, -SH .

Meso compound (Section 6.7): A compound that contains one or more chirality centers but is nevertheless achiral because it has a symmetry plane.

Messenger RNA (mRNA) (Section 16.8): The kind of RNA transcribed from DNA and used to carry genetic messages from DNA to ribosomes.

Meta, \boldsymbol{m} - (Section 5.2): A naming prefix used for 1,3-disubstituted benzenes.

Metabolism (Section 17.1): A collective name for the many reactions that go on in the cells of living organisms.

Micelle (Section 16.2): A spherical cluster of soap-like molecules that aggregate in aqueous solution. The ionic heads of the molecules lie on the outside where they are solvated by water, and the organic tails bunch together on the inside of the micelle.

Minor groove (Section 16.6): The smaller groove in dou-ble-helical DNA.

Molar absorptivity (Section 13.5): A quantitative measure of the amount of UV light absorbed by a sample.

Molecular ion (Section 13.1): The cation produced in the mass spectrometer by loss of an electron from the parent molecule. The mass of the molecular ion corresponds to the molecular weight of the sample.

Molecule (Section 1.4): A neutral collection of atoms held together by covalent bonds.

Monomer (Sections 4.7 and 10.13): The starting unit from which a polymer is made.

Monosaccharide (Section 14.1): A simple sugar.
Monoterpene (Chapter 3 Interlude): A ten-carbon lipid.
Multiplet (Section 13.12): A pattern of peaks in an NMR spectrum that arises by spin-spin splitting of a single absorption because of coupling between neighboring magnetic nuclei.

Mutarotation (Section 14.6): The change in optical rotation observed when a pure anomer of a sugar is dissolved in water and equilibrates to an equilibrium mixture of anomers.
$n+1$ rule (Section 13.12): The signal of a proton with n neighboring protons splits into $n+1$ peaks in the NMR spectrum.
\mathbf{N}-Terminal amino acid (Section 15.3): The amino acid with a free $-\mathrm{NH}_{2}$ group at one end of a protein chain.

Natural gas (Section 2.4): A naturally occurring hydrocarbon mixture consisting chiefly of methane, along with smaller amounts of ethane, propane, and butane.

Natural product (Chapter 2 Interlude): A catchall term generally taken to mean a small molecule found in bacteria, plants, and other living organisms.

New molecular entity, NME (Chapter 2 Interlude): A new biologically active chemical substance approved for sale as a drug by the U.S. Food and Drug Administration.

Newman projection (Section 2.5): A means of indicating stereochemical relationships between substituent groups on neighboring carbons by looking end-on at a carboncarbon bond.

Nitration (Section 5.4): The substitution of a nitro group onto an aromatic ring.

Nitrile (Section 10.11): A compound with a $-\mathrm{C} \equiv \mathrm{N}$ functional group.

Node (Section 1.1): A surface of zero electron density within an orbital. For example, a p orbital has a nodal plane passing through the center of the nucleus, perpendicular to the axis of the orbital.

Nonbonding electron (Section 1.4): A valence electron not used for bonding.

Nonessential amino acid (Section 15.1): One of the eleven amino acids that are biosynthesized by humans.

Normal (n) alkane (Section 2.2): A straight-chain alkane, as opposed to a branched alkane.

NSAID (Chapter 5 Interlude): A nonsteroidal anti-inflammatory drug, such as aspirin or ibuprofen.

Nuclear magnetic resonance (NMR) spectroscopy (Section 13.7): A spectroscopic technique that provides information about the carbon-hydrogen framework of a molecule.

Nucleic acid (Section 16.5): A biopolymer, either DNA or RNA, made of nucleotides joined together.

Nucleophile (Section 3.6): An electron-rich species that donates an electron pair to an electrophile in a polar bondforming reaction. Nucleophiles are also Lewis bases.

Nucleophilic acyl substitution reaction (Section 10.5): A reaction in which a nucleophile attacks a carbonyl compound and substitutes for a leaving group bonded to the carbonyl carbon.

Nucleophilic addition reaction (Section 9.5): A reaction in which a nucleophile adds to the electrophilic carbonyl group of a ketone or aldehyde to give an alcohol.

Nucleophilic substitution reaction (Section 7.4): A reaction in which one nucleophile replaces another attached to a saturated carbon atom.

Nucleoside (Section 16.5): A nucleic acid constituent, consisting of a sugar residue bonded to a heterocyclic purine or pyrimidine base.

Nucleotide (Section 16.5): A nucleic acid constituent, consisting of a sugar residue bonded both to a heterocyclic purine or pyrimidine base and to phosphoric acid.

Nylon (Section 10.13): A polyamide step-growth polymer, usually prepared by reaction between a diacid and a diamine.

Olefin (Chapter 3 Introduction): An alternative name for an alkene.

Optical activity (Section 6.3): The ability of a chiral molecule in solution to rotate plane-polarized light.

Optical isomers (Section 6.4): An older, alternative name for enantiomers. Optical isomers are isomers that have a mirror-image relationship.

Orbital (Section 1.1): A region of space occupied by a given electron or pair of electrons.

Organic chemistry (Chapter 1 Introduction): The chemistry of carbon compounds.

Organohalide (Chapter 7 Introduction): A compound that contains one or more halogen atoms bonded to carbon.

Organometallic compound (Section 7.3): A compound that contains a carbon-metal bond. Grignard reagents, RMgX , are examples.

Ortho, o- (Section 5.2): A naming prefix used for 1,2-disubstituted benzenes.

Oxidation (Section 4.6): The addition of oxygen to a molecule or removal of hydrogen from it.

Oxirane (Section 4.6): An alternative name for an epoxide.

Para, \boldsymbol{p} - (Section 5.2): A naming prefix used for 1,4-disubstituted benzenes.

Paraffin (Section 2.4): A common name for an alkane.

Parent peak (Section 13.1): The peak in a mass spectrum corresponding to the molecular ion and thus representing the molecular weight of the compound.

Peptide (Chapter 15 Introduction): A short amino acid polymer in which the individual amino acid residues are linked by amide bonds. (See Protein.)

Peptide bond (Section 15.4): An amide bond in a peptide chain.

Peroxyacid (Section 4.6): A compound with the $-\mathrm{CO}_{3} \mathrm{H}$ functional group.

Petroleum (Section 2.4): A complex mixture of naturally occurring hydrocarbons derived from the decomposition of plant and animal matter.

Phenol (Section 8.1): A compound with an -OH group bonded to an aromatic ring, ArOH .

Phenoxide ion (Section 8.2): The anion of a phenol, ArO^{-}.

Phenyl group (Section 5.2): The $-\mathrm{C}_{6} \mathrm{H}_{5}$ group, often abbreviated as -Ph.

Phospholipid (Section 16.3): A lipid that contains a phosphate residue.

Phosphoric acid anhydride (Section 17.1): A substance that contains a $\mathrm{PO}_{2} \mathrm{PO}$ link, analogous to the $\mathrm{CO}_{2} \mathrm{CO}$ link in carboxylic acid anhydrides.

Phosphorylation (Sections 14.7 and 17.1): A reaction that transfers a phosphate group from a phosphoric anhydride to an alcohol.
$\mathbf{P i}(\pi)$ bond (Section 1.8): A covalent bond formed by sideways overlap of two p orbitals.
$\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$ (Section 1.10): The negative common logarithm of the K_{a}; used to express acid strength.

Plane of symmetry (Section 6.2): A plane that bisects a molecule such that one half of the molecule is the mirror image of the other half. Molecules that contain a plane of symmetry are achiral.

Plane-polarized light (Section 6.3): Light that has its electric waves oscillating in a single plane rather than in random planes.

Plasticizer (Section 10.2): A small organic molecule added to polymers to act as a lubricant between polymer chains.

Polar covalent bond (Section 1.9): A covalent bond in which the electrons are shared unequally between the atoms.

Polar reaction (Section 3.6): A reaction in which bonds are made when a nucleophile donates two electrons to an electrophile, and in which bonds are broken when one fragment leaves with both electrons from the bond.

Polarity (Section 1.9): The unsymmetrical distribution of electrons in a molecule that results when one atom attracts electrons more strongly than another.

Polycyclic aromatic compound (Section 5.9): A molecule that has two or more benzene rings fused together.

Polyester (Section 10.13): A polymer prepared by reaction between a diacid and a dialcohol.

Polymer (Sections 4.7 and 10.13): A large molecule made up of repeating smaller units.

Polymerase chain reaction (PCR) (Section 16.11): A method for amplifying small amounts of DNA to prepare larger amounts.

Polysaccharide (Section 14.10): A complex carbohydrate that has many simple sugars bonded together by acetal links.

Polyunsaturated fatty acid (Section 16.1): A fatty acid with more than one double bond in its chain.

Primary, secondary, tertiary, quaternary (Sections 2.2, 8.1, and 12.1): Terms used to describe the substitution pattern at a specific site. A primary site has one organic substituent attached to it, a secondary site has two organic substituents, a tertiary site has three, and a quaternary site has four.

	Carbon	Carbocation	Hydrogen	Alcohol	Amine
Primary	RCH_{3}	$\mathrm{RCH}_{2}{ }^{+}$	RCH_{3}	$\mathrm{RCH}_{2} \mathrm{OH}$	RNH_{2}
Secondary	$\mathrm{R}_{2} \mathrm{CH}_{2}$	$\mathrm{R}_{2} \mathrm{CH}^{+}$	$\mathrm{R}_{2} \mathrm{CH}_{2}$	$\mathrm{R}_{2} \mathrm{CHOH}$	$\mathrm{R}_{2} \mathrm{NH}$
Tertiary	$\mathrm{R}_{3} \mathrm{CH}$	$\mathrm{R}_{3} \mathrm{C}^{+}$	$\mathrm{R}_{3} \mathrm{CH}$	$\mathrm{R}_{3} \mathrm{COH}$	$\mathrm{R}_{3} \mathrm{~N}$

Primary structure (Section 15.8): The amino acid sequence of a protein.

Protecting group (Section 9.8): A group that is temporarily introduced into a molecule to protect a functional group from reaction elsewhere in the molecule.

Protein (Chapter 15 Introduction): A large biological polymer containing 50 or more amino acid residues.

Protein Data Bank (Chapter 15 Interlude): A worldwide online repository of X-ray and NMR structural data for biological macromolecules. To access the Protein Data Bank, go to http://www.rcsb.org/pdb/.

PTH (Section 15.6): A phenylthiohydantoin derived from a terminal amino acid during Edman degradation.

Pyranose (Section 14.5): The six-membered ring structure of a simple sugar.

Quartet (Section 13.12): A set of four peaks in an NMR spectrum, caused by spin-spin splitting of a signal by three adjacent nuclear spins.

Quaternary: See Primary.

Quaternary ammonium salt (Section 12.1): A compound with four organic substituents attached to a positively charged nitrogen, $\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{X}^{-}$.

Quaternary structure (Section 15.8): The highest level of protein structure, involving a specific aggregation of individual proteins into a larger cluster.

Quinone (Section 8.5): A cyclohexa-2,5-diene-1,4-dione.
\boldsymbol{R} configuration (Section 6.5): The configuration at a chirality center as specified using the Cahn-Ingold-Prelog sequence rules.
\mathbf{R} group (Section 2.2): A generalized abbreviation for an organic partial structure.

Racemic mixture (Section 6.8): A 50:50 mixture of the two enantiomers of a chiral substance.

Radical (Section 3.6): A species that has an odd number of electrons, such as the chlorine radical, Cl .

Radical reaction (Section 3.6): A reaction in which bonds are made by donation of one electron from each of two reagents, and in which bonds are broken when each fragment leaves with one electron.

Reaction intermediate (Section 3.8): A substance formed transiently during the course of a multistep reaction.

Reaction mechanism (Section 3.6): A complete description of how a reaction occurs.

Rearrangement reaction (Section 3.5): The reaction that occurs when a single reactant undergoes a reorganization of bonds and atoms to give an isomeric product.

Reducing sugar (Section 14.7): A sugar that reduces Ag^{+} in the Tollens test or Cu^{2+} in the Fehling or Benedict tests.

Reduction (Section 4.5): The addition of hydrogen to a molecule or the removal of oxygen from it.

Reductive amination (Section 12.4): A method for synthesizing amines by treatment of an aldehyde or ketone with ammonia or an amine and a reducing agent.

Refining (Section 2.4): The process by which petroleum is converted into gasoline and other useful products.

Regiospecific (Section 4.1): A term describing a reaction that occurs with a specific orientation to give a single product rather than a mixture of products.

Replication (Section 16.7): The process by which doublestranded DNA uncoils and is replicated to produce two new copies.

Replication fork (Section 16.7): The point of unraveling in a DNA chain where replication occurs.

Residue (Section 15.3): An amino acid in a protein chain.
Resolution (Section 6.8): Separation of a racemic mixture into its pure component enantiomers.

Resonance forms (Section 4.9): Structural representations of a molecule that differ only in where the bonding electrons are placed.

Resonance hybrid (Section 4.9): The composite structure of a molecule described by different resonance forms.

Restriction endonuclease (Section 16.10): An enzyme that is able to cut a DNA strand at a specific base sequence in the chain.

Ribonucleic acid (RNA) (Sections 16.5 and 16.8): The biopolymer found in cells that serves to transcribe the genetic information found in DNA and uses that information to direct the synthesis of proteins.

Ribosomal RNA (rRNA) (Section 16.8): A kind of RNA that makes up ribosomes.

Ring-flip (Section 2.11): The molecular motion that converts one chair conformation of cyclohexane into another chair conformation, thereby interconverting axial and equatorial bonds.

RNA (Sections 16.5 and 16.8): See Ribonucleic acid.
S configuration (Section 6.5): The configuration at a chirality center as specified using the Cahn-Ingold-Prelog sequence rules.

Saccharide (Section 14.1): A sugar.
Salt bridge (Section 15.8): The ionic attraction between charged amino acid side chains that helps stabilize a protein's tertiary structure.

Sanger dideoxy method (Section 16.10): A method for sequencing DNA strands.

Saponification (Section 10.9): An old term for the baseinduced hydrolysis of an ester to yield a carboxylic acid salt.

Saturated (Section 2.2): A compound that has only single bonds.

Sawhorse representation (Section 2.5): A manner of representing stereochemistry that uses a stick drawing and gives an oblique view of the conformation around a single bond.

Schiff base (Section 17.5): An alternative name for an imine, $\mathrm{R}_{2} \mathrm{C}=\mathrm{NR}^{\prime}$, used primarily in biochemistry.

Secondary: See Primary.
Secondary structure (Section 15.8): The level of protein substructure that involves organization of chain sections into ordered arrangements such as β-pleated sheets or α helices.

Semiconservative replication (Section 16.7): A description of DNA replication in which each new DNA molecules contains one old strand and one new strand.

Sense strand (Section 16.8): The coding strand of doublehelical DNA that contains the gene.

Sequence rules (Sections 3.4 and 6.5): A series of rules for assigning relative rankings to substituent groups on a double-bond carbon atom or on a chirality center.

Sesquiterpene (Chapter 3 Interlude): A 15-carbon lipid.
Shielding (Section 13.8): An effect observed in NMR that causes a nucleus to absorb toward the right (upfield) side of the chart. Shielding is caused by donation of electron density to the nucleus.

Side chain (Section 15.1): The substituent bonded to the α carbon of an α-amino acid.

Sigma ($\boldsymbol{\sigma}$) bond (Section 1.8): A covalent bond formed by head-on overlap of atomic orbitals.

Simple sugar (Section 14.1): A carbohydrate like glucose that can't be hydrolyzed to smaller sugars.

Skeletal structure (Section 2.6): A shorthand way of writing structures in which carbon atoms are assumed to be at each intersection of two lines (bonds) and at the end of each line.
$\mathbf{S}_{\mathbf{N}} 1$ reaction (Section 7.6): A nucleophilic substitution reaction that takes place in two steps through a carbocation intermediate.
$\mathbf{S}_{\mathbf{N}} 2$ reaction (Section 7.5): A nucleophilic substitution reaction that takes place in a single step by backside displacement of the leaving group.

Solid-phase synthesis (Section 15.7): A technique of synthesis whereby the starting material is covalently bound to a solid polymer bead and reactions are carried out on the bound substrate. After the desired transformations have been effected, the product is cleaved from the polymer.
$\boldsymbol{s p}$ Hybrid orbital (Section 1.8): A hybrid orbital derived from the combination of an s and a p atomic orbital. The two $s p$ orbitals that result from hybridization are oriented at an angle of 180° to each other.
$\boldsymbol{s p} \boldsymbol{p}^{\mathbf{2}}$ Hybrid orbital (Section 1.8): A hybrid orbital derived by combination of an s atomic orbital with two p atomic orbitals. The three $s p^{2}$ hybrid orbitals that result lie in a plane at angles of 120° to each other.
$\boldsymbol{s p} \boldsymbol{p}^{\mathbf{3}}$ Hybrid orbital (Section 1.6): A hybrid orbital derived by combination of an s atomic orbital with three p atomic orbitals. The four $s p^{3}$ hybrid orbitals that result are directed toward the corners of a regular tetrahedron at angles of 109° to each other.

Specific rotation, $[\alpha]_{\mathbf{D}}$ (Section 6.3): The amount by which an optically active compound rotates plane-polarized light under standard conditions.

Sphingomyelin (Section 16.3): A phospholipid that has sphingosine as its backbone rather than glycerol.

Spin-spin splitting (Section 13.12): The splitting of an NMR signal into a multiplet because of an interaction between nearby magnetic nuclei whose spins are coupled. The magnitude of spin-spin splitting is given by the coupling constant, J.

Staggered conformation (Section 2.5): The three-dimensional arrangement of atoms around a carbon-carbon single bond in which the bonds on one carbon bisect the bond angles on the second carbon as viewed end-on.

Statins (Chapter 17 Interlude): A drug that blocks the ability of the body to synthesize cholesterol.

Step-growth polymer (Section 10.13): A polymer in which each bond is formed independently of the others. Polyesters and polyamides (nylons) are examples.

Stereocenter (Section 6.2): An atom in a molecule that is a cause of chirality. Also called a chirality center.

Stereochemistry (Sections 2.8 and 6.1): The branch of chemistry concerned with the three-dimensional arrangement of atoms in molecules.

Stereoisomers (Section 2.8): Isomers that have their atoms connected in the same order but have different three-dimensional arrangements. The term includes both enantiomers and diastereomers.

Steric strain (Section 2.11): The strain imposed on a molecule when two groups are too close together and try to occupy the same space.

Steroid (Section 16.4): A lipid whose structure is based on a characteristic tetracyclic carbon skeleton with three 6 -membered and one 5 -membered ring.

STR loci (Chapter 16 Interlude): Short tandem repeat sequences of noncoding DNA that are unique to every individual and allow DNA fingerprinting.

Straight-chain alkane (Section 2.2): An alkane whose carbon atoms are connected without branching.

Substitution reaction (Section 3.5): The reaction that occurs when two reactants exchange parts to give two products.

Sulfide (Section 8.8): A compound that has two organic groups bonded to the same sulfur atom, $R-S-R^{\prime}$.

Symmetry plane (Section 6.2): A plane that bisects a molecule such that one half of the molecule is the mirror image of the other half. Molecules containing a plane of symmetry are achiral.

Syn stereochemistry (Section 4.5): The opposite of anti. A syn addition reaction is one in which the two ends of the double bond react from the same side.

Tautomers (Section 11.1): Isomers that interconvert spontaneously, usually with the change in position of a hydrogen.

Terpenoid (Chapter 3 Interlude): A lipid that is formally derived by head-to-tail polymerization of isoprene units.

Tertiary: See Primary.

Tertiary structure (Section 15.8): The level of protein structure that involves the manner in which the entire protein chain is folded into a specific three-dimensional arrangement.

Thioester (Section 10.12): The sulfur analog of an ester, RCOSR'.

Thiol (Section 8.8): A compound with the -SH functional group.

Thiolate ion (Section 8.8): The sulfur analog of an alkoxide ion, RS^{-}.

Thiophenol (Chapter 8 Introduction): The sulfur analog of a phenol, Ar-SH.

TMS (Section 13.9): Tetramethylsilane, used as an NMR calibration standard.

Transamination (Section 17.5): A reaction in which the $-\mathrm{NH}_{2}$ group of an amine changes places with the keto group of an α-keto acid.

Transcription (Section 16.8): The process by which the genetic information encoded in DNA is read and used to synthesize RNA in the nucleus of the cell.

Transfer RNA (tRNA) (Section 16.8): A kind of RNA that transports amino acids to the ribosomes, where they are joined together to make proteins.

Transition state (Section 3.8): An activated complex between reactants, representing the highest energy point on a reaction curve.

Translation (Section 16.9): The process by which the genetic information transcribed from DNA onto mRNA is read by tRNA and used to direct protein synthesis.

Triacylglycerol (Section 16.1): A lipid, such as that found in animal fat and vegetable oil, that is a triester of glycerol with long-chain fatty acids.

Tricarboxylic acid cycle (Section 17.4): An alternative name for the citric acid cycle by which acetyl CoA is degraded to CO_{2}.

Triple bond (Section 1.8): A covalent bond formed by sharing three pairs of electrons between atoms.

Triplet (Section 13.12): A symmetrical three-line splitting pattern observed in the ${ }^{1} \mathrm{H}$ NMR spectrum when a proton has two equivalent neighbor protons.

Ultraviolet (UV) spectroscopy (Section 13.5): An optical spectroscopy employing ultraviolet irradiation. UV spectroscopy provides structural information about the extent of electron conjugation in organic molecules.

Unimolecular reaction (Section 7.6): A reaction step that involves only one molecule.

Unsaturated (Section 3.1): A molecule that has one or more double or triple bonds and thus has fewer hydrogens than the corresponding alkane.

Upfield (Section 13.9): The right-hand portion of the NMR chart.

Uronic acid (Section 14.7): The monocarboxylic acid formed by oxidizing the $-\mathrm{CH}_{2} \mathrm{OH}$ end of a sugar without affecting the -CHO end.

Valence bond theory (Section 1.5): A theory of chemical bonding that describes bonds as resulting from overlap of atomic orbitals.

Valence shell (Section 1.4): The outermost electron shell of an atom.

Vegetable oil (Section 16.1): A liquid triacylglycerol derived from a plant source.

Vinyl monomer (Section 4.7): A substituted alkene monomer used to make a chain-growth polymer.

Vinylic (Section 4.11): Referring to a substituent directly attached to a double-bond carbon atom.

Vitamin (Section 15.9): A small organic molecule that must be obtained in the diet and that is required for proper growth.

Vulcanization (Chapter 4 Interlude): A technique for cross-linking and hardening a diene polymer by heating with a few percent by weight of sulfur.

Wave equation (Section 1.1): A mathematical expression that defines the behavior of an electron in an atom.

Wave function (Section 1.1): A solution to the wave equation for defining the behavior of an electron in an atom. The square of the wave function defines the shape of an orbital.

Wavelength, λ (Section 13.2): The length of a wave from peak to peak.

Wavenumber, \tilde{v} (Section 13.2): A unit of frequency measurement equal to the reciprocal of the wavelength in centimeters, cm^{-1}.

Wax (Section 16.1): A mixture of esters of long-chain carboxylic acids with long-chain alcohols.

Williamson ether synthesis (Section 8.4): The reaction of an alkoxide ion with an alkyl halide to yield an ether.

X-ray crystallography (Chapter 15 Interlude): A technique using X rays to determine the structure of molecules.
\boldsymbol{Z} geometry (Section 3.4): A term used to describe the stereochemistry of a carbon-carbon double bond in which the two higher-ranked groups on each carbon are on the same side of the double bond.

Zaitsev's rule (Section 7.7): A rule stating that E2 elimination reactions normally yield the more highly substituted alkene as major product.

Zusammen (\boldsymbol{Z}) (Section 3.4): A term used to describe the stereochemistry of a carbon-carbon double bond in which the two higher-ranked groups on each carbon are on the same side of the double bond.

Zwitterion (Sections 1.11 and 15.1): A neutral dipolar molecule whose positive and negative charges are not adjacent. For example, amino acids exist as zwitterions, $\mathrm{H}_{3} \mathrm{~N}^{+}-\mathrm{CHR}-\mathrm{CO}_{2}{ }^{-}$.

Answers to Selected In-Chapter Problems

The following answers to in-chapter problems are meant only as a quick check. Full answers and explanations for all problems, both in-chapter and end-of-chapter, are provided in the accompanying Study Guide and Solutions Manual.

Chapter 1

1.1 (a) 1
(b) 2
(c) 3
1.2 (a) B: $1 s^{2} 2 s^{2} 2 p$
(b) P: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
(c) $\mathrm{O}: 1 s^{2} 2 s^{2} 2 p^{4}$
(d) Ar: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

1.4

1.5 (a) CCl_{4}
(b) AlH_{3}
(c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(d) SiF_{4}
1.6 (a)

(b)

(c)

$1.7 \mathrm{C}_{2} \mathrm{H}_{7}$ has too many hydrogens for a compound with two carbons.
1.8

1.9 A carbon atom is larger than a hydrogen atom.
1.10 All bond angles are approximately 109°.

1.11

1.12 The CH_{3} carbon is $s p^{3}$, the double-bond carbons are $s p^{2}$, and the $\mathrm{C}=\mathrm{C}-\mathrm{C}$ bond angle is approximately 120°.

1.13 The CH_{3} carbon is $s p^{3}$, the triple-bond carbons are $s p$, and the $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ bond angle is approximately 180°.
1.14 All carbons are $s p^{2}$, and all bond angles are approximately 120°.
1.15

1.16 (a) H
(b) Br
(c) Cl
1.17 (a) C is $\delta+, \mathrm{Br}$ is $\delta-$
(b) C is $\delta+, \mathrm{N}$ is $\delta-$
(c) H is $\delta+, \mathrm{N}$ is $\delta-$
(d) C is $\delta+, \mathrm{S}$ is $\delta-$
(e) Mg is $\delta+$, C is $\delta-$
(f) C is $\delta+, \mathrm{F}$ is $\delta-$
$1.18 \mathrm{CCl}_{4}$ and $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{TiCl}_{3}<\mathrm{MgCl}_{2}$
1.19

1.20 (a) Formic acid: $K_{\mathrm{a}}=1.8 \times 10^{-4}$; picric acid: $K_{\mathrm{a}}=0.42$
(b) Picric acid is stronger.
1.21 Water is the stronger acid.
1.22 (a) No
(b) No
1.23 Lewis acids: (c), (d), (e); Lewis bases: (b), (f); both: (a)
1.24 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}{ }^{+} \mathrm{Cl}^{-}$; $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{HCl} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{Cl}^{-} ;\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}+\mathrm{HCl} \longrightarrow$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PH}^{+} \mathrm{Cl}^{-}$
(b) $\mathrm{HO}^{-}+\mathrm{CH}_{3}{ }^{+} \longrightarrow \mathrm{HO}-\mathrm{CH}_{3} ; \mathrm{HO}^{-}+\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3} \longrightarrow$
$\mathrm{HO}-\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}{ }^{-}$;
$\mathrm{HO}^{-}+\mathrm{MgBr}_{2} \longrightarrow \mathrm{HO}-\mathrm{MgBr}_{2}{ }^{-}$
1.25 Most basic

Chapter $2 \quad 2.1$ (a) Carboxylic acid, double bond
(b) Carboxylic acid, aromatic ring, ester
(c) Aldehyde, alcohol
2.2 (a) $\mathrm{CH}_{3} \mathrm{OH}$
(b)

(c)

(d) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(e)

$\mathrm{CH}_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(f) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}=\mathrm{CH}_{2}$
2.3 Amine

2.4
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

2.5 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(b)

2.6

2.7 (a)

(b)

(c)

2.8 (a)

(b)

(c)

2.9 (a) Pentane, 2-methylbutane, 2,2-dimethylpropane
(b) 3,4-Dimethylhexane
(c) 2,4-Dimethylpentane
(d) 2,2,5-Trimethylheptane
2.10 (a)

(b)

(c)

(d)

2.11 3,3,4,5-Tetramethylheptane
2.12

Most stable conformation Least stable conformation (staggered) (eclipsed)
2.13

Staggered butane

Eclipsed butane
2.14 The first staggered conformation of butane is the most stable.
2.15
(a) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
(b) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$
(c) $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$
2.16
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ (b)

2.17

2.18 (a) 1,4-Dimethylcyclohexane
(b) 1-Ethyl-3-methylcyclopentane
(c) Isopropylcyclobutane
2.19 (a)

(b)

(c)

(d)

$2.20 \mathrm{H}_{3} \mathrm{C}$

Cis

Trans
2.22 The two hydroxyl groups are cis; the two carbon chains are trans.
2.23 (a) cis-1,2-Dimethylcyclopentane
(b) cis-1-Bromo-3-methylcyclobutane
2.24

Axial

Equatorial
2.25

Axial (less stable)

Equatorial (more stable)
2.26 Axial and equatorial positions alternate on each side of a ring.

2.27 Axial and equatorial positions alternate on each side of a ring.

2.28 Less stable
Chapter 3
3.1 (a) 3,4,4-Trimethylpent-1-ene
(b) 3-Methylhex-3-yne
(c) 4,7-Dimethylocta-2,5-diene
(d) 6-Ethyl-7-methylnon-4-ene
3.2
(a) 1,2-Dimethylcyclohexene
(b) 4,4-Dimethylcycloheptene
(c) 3-Isopropylcyclopentene
3.3 (a)

(b)

(d)

3.4 (a) 2,5-Dimethylhex-3-yne
(b) 3,3-Dimethylbut-1-yne
(c) 3,3-Dimethyloct-4-yne
(d) 2,5,5-Trimethylhept-3-yne
3.5 (a) 2,5,5-Trimethylhex-2-ene
(b) 2,2-Dimethylhex-3-yne
(c) 2-Methylhepta-2,5-diene
(d) 1-Methylcyclopenta-1,3-diene
3.6 Compounds (c), (d), (e), and (f) can exist as pairs of isomers.
3.7 (a) cis-3,4-Dimethylhex-2-ene
(b) trans-6-Methylhept-3-ene
3.8 (a) -Br
(b) -Br
(c) $-\mathrm{CH}_{2} \mathrm{CH}_{3}$
(d) -OH
(e) $-\mathrm{CH}_{2} \mathrm{OH}$
(f) $-\mathrm{CH}=\mathrm{O}$
3.9 (a) Z
(b) E
(c) E
$3.10 Z$
3.11 (a) Substitution
(b) Elimination
(c) Addition
3.12 (a)

(b)

(c)

(d)

3.13 Electrophile: (a), (c); nucleophile: (b), (d), (e)
3.14 Boron is a Lewis acid/electrophile because it has only six outer-shell electrons.
$\begin{aligned}: \ddot{F} & : \ddot{B}: \ddot{F}: \\ : & : 口:\end{aligned}$
$3.15\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$is the intermediate.

3.16 2-Chloropentane and 3-chloropentane

$3.17 E_{\text {act }}=60 \mathrm{~kJ} / \mathrm{mol}$ is faster.

Chapter 4

4.1 (a) Chlorocyclohexane
(b) 2-Bromo-2-methylpentane
(c) 4-Methylpentan-2-ol
(d) 1-Bromo-1-methylcyclohexane
4.2 (a) Cyclopentene
(b) 1-Ethylcyclohexene or ethylidenecyclohexane
(c) Hex-3-ene
(d) Vinylcyclohexane (cyclohexylethylene)
4.3 (a)

(b)

4.4 (a)

(b)

(c)

4.5 (a) But-1-ene or but-2-ene
(b) 3-Methylpent-2-ene or 2-ethylbut-1-ene
(c) 1,2-Dimethylcyclohexene or 2,3-dimethylcyclohexene
4.6 trans-1,2-Dibromo-1,2-dimethylcyclohexane
4.7

4.8 (a) 2-Methylpentane
(b) 1,1-Dimethylcyclopentane
4.9 (a)

(b)

4.10 (a) 2-Methylpropene
(b) Hex-3-ene
4.11

4.12 1,4-Dibromobut-2-ene and 3,4-dibromobut-1-ene
4.13 4-Chloropent-2-ene, 3-chloropent-1-ene, 1-chloropent-2-ene
4.14

and

More stable
4.15
(a)

(b)

(c)

4.16 (a) 6-Methylhept-3-yne
(b) 3,3-Dimethylbut-1-yne
(c) 5-Methylhex-2-yne
(d) Hept-2-en-5-yne
4.17 (a) 1,2-Dichloropent-1-ene
(b) 4-Bromohept-3-ene and 3-bromohept-3-ene
(c) cis-6-Methylhept-3-ene

4.18 Octan-4-one

4.19 (a) Pent-1-yne
(b) Hex-3-yne
4.20 (a) 1-Bromo-3-methylbutane + acetylene
(b) 1-Bromopropane + prop-1-yne, or bromomethane + pent-1-yne
(c) Bromomethane + 3-methylbut-1-yne

Chapter 5 5.1 The two structures are resonance forms, not isomers

5.2 (a) meta
(b) para
(c) ortho
5.3 (a) m-Bromochlorobenzene
(c) p-Bromoaniline
(e) 1-Ethyl-2,4-dinitrobenzene
(b) (3-Methylbutyl)benzene
(d) 2,5-Dichlorotoluene
(f) 1,2,3,5-Tetramethylbenzene
5.4 (a)

(d)

(d)

(b)

(c)

$5.5 o-, m$-, and p-bromotoluene
5.6

$5.7 p$-Xylene has one kind of ring position; o-xylene has two.
5.8 Three
5.9 (a) Ethylbenzene
(b) 2-Ethyl-1,4-dimethylbenzene
5.10 (a) tert-Butylbenzene
(b) Propanoylbenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
5.11 (a) Nitrobenzene $<$ toluene $<$ phenol
(b) Benzoic acid $<$ chlorobenzene $<$ benzene $<$ phenol
(c) Benzaldehyde $<$ bromobenzene $<$ benzene $<$ aniline
5.12 (a) m-Chlorobenzonitrile (b) o - and p-Bromochlorobenzene
5.13 (a) m-Nitrobenzenesulfonic acid
(b) o - and p-Bromobenzenesulfonic acid
(c) o - and p-Methylbenzenesulfonic acid
(d) m-Carboxybenzenesulfonic acid
(e) m-Cyanobenzenesulfonic acid
5.14

Ortho

Meta

Para

5.15 Ortho

Meta

Para

5.16 (a) m-Chlorobenzoic acid
(b) o-Benzenedicarboxylic acid

5.18 (a) 1. $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3} ; 2 . \mathrm{CH}_{3} \mathrm{COCl}, \mathrm{AlCl}_{3}$
(b) $1 . \mathrm{Cl}_{2}, \mathrm{FeCl}_{3} ; 2 . \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
5.19 (a) $1 . \mathrm{Br}_{2}, \mathrm{FeBr}_{3} ; 2 . \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3} \quad$ (b) $1.2 \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3} ; 2 . \mathrm{Br}_{2}, \mathrm{FeBr}_{3}$ 5.20 1. $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3} ; 2 . \mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O} ; 3 . \mathrm{Cl}_{2}, \mathrm{FeCl}_{3}$

Chapter 6 6.1 Chiral: screw, shoe

6.2 Chiral: (b), (c)
6.3 Chiral: (b)

6.5 (a)

(b)

6.6 Levorotatory

$6.7+16.1$
6.8 (a) $-\mathrm{OH},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH},-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{H}$
(b) $-\mathrm{OH},-\mathrm{CO}_{2} \mathrm{CH}_{3},-\mathrm{CO}_{2} \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}$
(c) $-\mathrm{NH}_{2},-\mathrm{CN},-\mathrm{CH}_{2} \mathrm{NHCH}_{3},-\mathrm{CH}_{2} \mathrm{NH}_{2}$
(d) $-\mathrm{SSCH}_{3},-\mathrm{SH},-\mathrm{CH}_{2} \mathrm{SCH}_{3},-\mathrm{CH}_{3}$
6.9 (a) S
(b) S
(c) R
6.10

$6.11 S$
6.12 (a) R, R
(b) S, R
(c) R, S
6.13 Molecules (b) and (c) are enantiomers (mirror images). Molecule (a) is the diastereomer of (b) and (c).
6.14 (a) R, R
(b) S, R
(c) R, S
(d) S, S
6.15 6 Stereocenters; 64 stereoisomers
$6.16 S, S$
6.17 Meso: (a) and (c)
6.18 Meso: (a) and (c)
6.19 The product is the pure S ester.
6.20 (a) Constitutional isomers (b) Diastereomers
7.1
(a) 2-Bromobutane
(b) 3-Chloro-2-methylpentane
(c) 1-Chloro-3-methylbutane
(d) 1,3-Dichloro-3-methylbutane
(e) 1-Bromo-4-chlorobutane
(f) 4-Bromo-1-chloropentane
7.2 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{Cl})_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{Br})\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$
(d) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$
7.3 1-Chloro-3-methylpentane, 2-chloro-3-methylpentane, 3-chloro-3methylpentane, 3-(chloromethyl)pentane. The first two are chiral.
7.4 (a) 2-Methylpropan-2-ol +HCl
(b) 4-Methylpentan-2-ol $+\mathrm{PBr}_{3}$
(c) 5-Methylhexan-1-ol $+\mathrm{PBr}_{3}$
(d) 2,4-Dimethylhexan-2-ol +HCl
7.5 (a) 4-Bromo-2-methylhexane
(b) 1-Chloro-3,3-dimethylcyclopentane
7.6 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{I}) \mathrm{CH}_{3}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{SH}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CN}$
7.7 (a) 1-Bromobutane +NaOH (b) 1-Bromo-3-methylbutane $+\mathrm{NaN}_{3}$
7.8 (a) Rate is tripled. (b) Rate is quadrupled.
7.9 (R) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
7.10

7.11 (a) Reaction with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ is faster.
(b) Reaction with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$ is faster.
$7.12 \mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{~F}$
7.13 (a) Rate is unchanged.
(b) Rate is doubled.
7.14 Racemic 3-bromo-3-methyloctane
7.15 The S substrate gives a racemic mixture of alcohols.
7.16 (a) 2-Methylpent-2-ene (b) 2,3,5-Trimethylhex-2-ene
(c)

7.17 (a) 1-Bromo-3,6-dimethylheptane
(b) 1,2-Dimethyl-4-bromocyclopentane
7.18 The rate is tripled.
7.19
(a) $\mathrm{S}_{\mathrm{N}} 2 \quad$ (b) E 2
(c) $\mathrm{S}_{\mathrm{N}} 1$
(d) E 1 cB
8.1 (a) 5-Methylhexane-2,4-diol
(c) 4,4-Dimethylcyclohexanol
(b) 2-Methyl-4-phenylbutan-2-ol
(e) 4-Bromo-3-methylphenol
(d) trans-2-Bromocyclopentanol
(f) 3-Methoxycyclopentene
8.2 Secondary: (a), (c), (d); tertiary: (b)

8.3

(a)

(b)

(c)

(e)

(f)

8.4 (a) Diisopropyl ether
(b) Cyclopentyl propyl ether
(c) p-Bromoanisole or 4-bromo-1-methoxybenzene
(d) Ethyl isobutyl ether
8.5 (a) NaBH_{4}
(b) LiAlH_{4}
8.6 (a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{R}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
(c) Cyclohexanone
8.7 (a) 1-Methylcyclopentanol
(b) 1,1-Diphenylethanol
(c) 3-Methylhexan-3-ol
8.8 (a) Acetone $+\mathrm{CH}_{3} \mathrm{MgBr}$
(b) Cyclohexanone $+\mathrm{CH}_{3} \mathrm{MgBr}$
(c) Pentan-3-one $+\mathrm{CH}_{3} \mathrm{MgBr}$, or butan-2-one $+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
8.9 (a) 2,3-Dimethylpent-2-ene (b) 2-Methylpent-2-ene
8.10 (a) 2,3-Dimethylcyclohexanol
(b) Heptan-4-ol
8.11 (a) 1-Phenylethanol
(b) 2-Methylpropan-1-ol
(c) Cyclopentanol
8.12 (a) Cyclohexanone
(b) Hexanoic acid
(c) Hexan-2-one
8.13 (a) Cyclohexanone
(b) Hexanal
(c) Hexan-2-one
8.14 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}+\mathrm{CH}_{3} \mathrm{Br}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{CH}_{3} \mathrm{Br}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{-}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$
8.15 (a) Bromoethane $>$ chloroethane >2-bromopropane >2-chloro-2-methylpropane
$8.16 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$;
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Cl}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

8.17 (a)

8.18 The product is a racemic mixture of R, R and S, S butane-1,2-diols.
8.19 (a) Butane-2-thiol
(b) 2,2,6-Trimethylheptane-4-thiol
(c) Cyclopent-2-ene-1-thiol
(d) Ethyl isopropyl sulfide
(e) $o-\mathrm{Di}($ methylthio)benzene
(f) 3-(Ethylthio)cyclohexanone
8.20 (a) $1 . \mathrm{PBr}_{3} ; 2 . \mathrm{Na}^{+}{ }^{-} \mathrm{SH}$
(b) 1. $\mathrm{LiAlH}_{4} ; 2 . \mathrm{PBr}_{3} ; 3 . \mathrm{Na}^{+}{ }^{-} \mathrm{SH}$
9.1 (a) Pentan-2-one
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCHO}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(d) Cyclopentanone
9.2 (a) 2-Methylpentan-3-one
(b) 3-Phenylpropanal
(c) Octane-2,6-dione
(d) trans-2-Methylcyclohexanecarbaldehyde
(e) Pentanedial
(f) cis-2,5-Dimethylcyclohexanone
9.3 (a)

(d)

(b)

(e)

(c)

(f)

9.4 (a) Periodinane
(b) $1 . \mathrm{LiAlH}_{4}$; 2. periodinane
(c) 1. $\mathrm{KMnO}_{4} ; 2 . \mathrm{LiAlH}_{4} ; 3$. periodinane
9.5 (a) Periodinane (b) $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HgSO}_{4} \quad$ (c) $\mathrm{KMnO}_{4}, \mathrm{H}_{3} \mathrm{O}^{+}$
9.6 (a) $1 . \mathrm{H}_{3} \mathrm{O}^{+} ; 2$. periodinane (b) $1 . \mathrm{CH}_{3} \mathrm{COCl}, \mathrm{AlCl}_{3} ; 2 . \mathrm{NaBH}_{4}$
9.7 (a) Pentanoic acid
(b) 2,2-Dimethylhexanoic acid
(c) No reaction
$9.8\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN}$
$9.9\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{OCH}_{3}$
9.10 (a) $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgBr}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHMgBr}+\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CHO}$ or $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NaBH}_{4}$
(b) $\mathrm{PhCH}_{2} \mathrm{CHO}+\mathrm{NaBH}_{4}$ or $\mathrm{PhCH}_{2} \mathrm{CO}_{2} \mathrm{R}+\mathrm{LiAlH}_{4}$ or $\mathrm{PhCH}_{2} \mathrm{MgBr}+$ $\mathrm{CH}_{2} \mathrm{O}$
(c) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{MgBr}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{MgBr}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CO}_{2} \mathrm{R}$ or $\mathrm{CH}_{3} \mathrm{MgBr}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{COCH}_{3}$
9.11 $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{COCH}_{3}+\mathrm{CH}_{3} \mathrm{MgBr}$ or $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgBr}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$
9.12 Labeled water adds reversibly to the carbonyl group.
9.13 The mechanism of acetal formation is shown in Figure 9.3.
9.14

9.15 1. $\mathrm{CH}_{3} \mathrm{OH}$, acid catalyst; 2. $\mathrm{CH}_{3} \mathrm{MgBr}$; 3. $\mathrm{H}_{3} \mathrm{O}^{+}$
9.16 (a)

(b)

(c)

$9.17\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{NH}_{2}$
9.18 6-Methylcyclohex-2-enone $+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$

Chapter $10 \quad 10.1$ (a) 3-Methylbutanoic acid
(b) 4-Bromopentanoic acid
(c) 2-Ethylpentanoic acid
(d) cis-Hex-4-enoic acid
(e) cis-Cyclopentane-1,3-dicarboxylic acid
10.2 (a)

(b)

(c)

(d)

10.3 (a) 4-Methylpentanoyl chloride
(b) Cyclohexylacetamide
(c) Isopropyl 2-methylpropanoate
(d) Benzoic anhydride
(e) Isopropyl cyclopentanecarboxylate
(f) Cyclopentyl 2-methylpropanoate
(g) N-Methylpent-4-enamide
(h) 2-Methylbutanenitrile
10.4 (a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

10.5 (a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2}{ }^{-} \mathrm{K}^{+}$
10.6 (a) Methanol $<$ phenol $<$ p-nitrophenol $<$ acetic acid $<$ sulfuric acid
(b) Ethanol $<$ benzoic acid $<p$-cyanobenzoic acid
10.7 Lactic acid is stronger because of the electron-withdrawing effect of the -OH group.
10.8 1. $\mathrm{NaCN} ; 2 . \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$. Iodobenzene cannot be converted to benzoic acid by this method.

10.9

(a) $\mathrm{CH}_{3} \mathrm{COCl}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{COCH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$
10.10 (a) $\mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{Na}^{+}$
(b) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \mathrm{Na}^{+}$
(d) $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$
10.11
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}_{3}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}-\mathrm{Na}^{+}$
10.12 (a) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}$
(c) $\mathrm{PhCO}_{2} \mathrm{H}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$
10.13 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}$
10.14

10.15
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{NH}_{3}$
(b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{NH}_{2}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
(d) $\mathrm{PhCOCl}+\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$
10.17

10.18 (a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(b) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CO}_{2} \mathrm{H}$
10.19 Reaction of an acid with an alkoxide ion gives the unreactive carboxylate ion.
10.20 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$
10.21 (a) $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{R}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$
(b) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{R}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CHMgBr}$
10.22
(a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaOH}$
(b) $1 . \mathrm{H}_{2} \mathrm{O}, \mathrm{NaOH} ; 2 . \mathrm{LiAlH}_{4}$
(c) LiAlH_{4}

10.24 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$
(b) p-Nitrobenzonitrile $+\mathrm{CH}_{3} \mathrm{MgBr}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$
10.25 1. NaCN ; 2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$, then $\mathrm{H}_{3} \mathrm{O}^{+}$

A-38 APPENDIX C | Answers to Selected In-Chapter Problems

Chapter 11
11.1
(a)

(b)

(c)

(d)

(e)

11.2 (a) 4
(b) 3
(c) 3
(d) 4
(e) 3
11.3

and

11.4 (a)

(b)

11.5 1. $\mathrm{Br}_{2} ; 2$. Pyridine, heat
11.6 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCH}_{3}$
(c) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N}$
(e)

11.7
(a)

(b)

(c)
 and

11.8

11.9 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
11.10 (a) $1 . \mathrm{Na}^{+}-\mathrm{OEt}$; 2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}$; 3. $\mathrm{H}_{3} \mathrm{O}^{+}$
(b) 1. $\mathrm{Na}^{+}{ }^{-}$OEt; 2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$; 3. $\mathrm{Na}^{+}{ }^{-} \mathrm{OEt}$; 4. $\mathrm{CH}_{3} \mathrm{Br}$; 5. $\mathrm{H}_{3} \mathrm{O}^{+}$ 11.11 1. $\mathrm{Na}^{+}{ }^{-}$OEt; 2. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br} ; 3 . \mathrm{Na}^{+}{ }^{-} \mathrm{OEt}$; 4. $\mathrm{CH}_{3} \mathrm{Br} ; 5 . \mathrm{H}_{3} \mathrm{O}^{+}$ 11.12 Only (a) can undergo an aldol reaction.

(b)

(c)

11.14 (a)

(b)

(c)

11.15
 and

11.16 Only (c) undergoes a Claisen reaction.
11.17 (a)

(b)

(c)

Chapter 12

12.1 (a) Primary (b) Secondary (c) Tertiary
12.2 (a)

(b)

(c)

12.3 (a) Isopropylamine
(c) N-Methylpyrrole
(e) Diisopropylamine
12.4
(a) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$
(b)

(b) Diethylamine
(d) N-Methyl- N-ethylcyclohexylamine
(f) Butane-1,3-diamine

(c) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{+} \mathrm{Br}^{-}$
(d)

(e)

12.5 N -Methylcyclopentylammonium bromide
12.6 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
(b) NaOH
(c) $\mathrm{CH}_{3} \mathrm{NHCH}_{3}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
12.7 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(c) PhCONH_{2}

12.8 (a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CN}$

(b) PhCN
12.9 (a) $3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{NH}_{3}$ (b) $4 \mathrm{CH}_{3} \mathrm{Br}+\mathrm{NH}_{3}$
12.10 H

or

12.11 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}+\mathrm{CH}_{3} \mathrm{CHO}$
(b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{CHO}$
(c) $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2}+\mathrm{CH}_{2} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{NH}_{2}+$ cyclopentanone
$12.12\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+o$-methylbenzaldehyde
12.13 (a) $1 . \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{AlCl}_{3} ; 2 . \mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O} ; 3 . \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} ; 4 . \mathrm{H}_{2}$, Pt catalyst
(b) $1 . \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} ; 2 . \mathrm{H}_{2} / \mathrm{Pt}$ catalyst; $3.3 \mathrm{Br}_{2}$
12.14 (a) N-Methyl-2-bromopyrrole
(c) N-Methyl-2-acetylpyrrole
12.15

12.16

12.17 The pyridine-like doubly bonded nitrogen is more basic.
12.18 The side-chain nitrogen is more basic than the ring nitrogen.

Chapter $13 \quad 13.1 \mathrm{I}_{2}$
 13.2 Butanoic acid

13.3 IR: $\epsilon=2.0 \times 10^{-19} \mathrm{~J} ; \mathrm{X}$ ray: $\epsilon=6.6 \times 10^{-17} \mathrm{~J}$
$13.4 \lambda=9.0 \times 10^{-6} \mathrm{~m}$ is higher in energy.
13.5 (a) $0.16 \mathrm{~m} \quad$ (b) $7.5 \times 10^{-4} \mathrm{~kJ} / \mathrm{mol}$; much less energy than light
13.6 (a) Ketone or aldehyde
(b) Nitro
(c) Nitrile or alkyne
(d) Carboxylic acid
(e) Alcohol and ester
13.7 (a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ has an -OH absorption.
(b) Hex-1-ene has a double-bond absorption.
(c) Propanoic acid has a very broad -OH absorption.
13.8 Nitrile: 2210-2260 cm^{-1}; ketone: $1690 \mathrm{~cm}^{-1}$; double bond: $1640 \mathrm{~cm}^{-1}$
$13.93 \times 10^{-5} \mathrm{M}$
13.10 (a), (c), (d), and (f) have UV absorptions.
13.11 Hexa-1,3,5-triene absorbs at a longer wavelength.
13.12 The energy used by NMR spectroscopy is less than that used by IR spectroscopy
13.13 (a) ${ }^{1} \mathrm{H}, 1 ;{ }^{13} \mathrm{C}, 1$
(b) ${ }^{1} \mathrm{H}, 1 ;{ }^{13} \mathrm{C}, 1$
(c) ${ }^{1} \mathrm{H}, 2 ;{ }^{13} \mathrm{C}, 2$
(d) ${ }^{1} \mathrm{H}, 1 ;{ }^{13} \mathrm{C}, 1$
(e) ${ }^{1} \mathrm{H}, 1 ;{ }^{13} \mathrm{C}, 1$
(f) ${ }^{1} \mathrm{H}, 1,{ }^{13} \mathrm{C}, 1$
(g) ${ }^{1} \mathrm{H}, 2 ;{ }^{13} \mathrm{C}, 2$
(h) ${ }^{1} \mathrm{H}, 2 ;{ }^{13} \mathrm{C}, 2$
(i) ${ }^{1} \mathrm{H}, 1 ;{ }^{13} \mathrm{C}, 2$
13.14 The vinylic $\mathrm{C}-\mathrm{H}$ protons are nonequivalent.
$13.15{ }^{1} \mathrm{H}, 5 ;{ }^{13} \mathrm{C}, 7$
13.16 (a) 210 Hz
(b) 2.1δ
(c) 460 Hz
13.17 (a) 7.27δ
(b) 3.05δ
(c) 3.47δ
(d) 5.30δ
13.18 (a) 0.88δ
(b) 2.17δ
(c) 7.17δ
(d) 2.22δ
13.19 Two peaks; 3:2 ratio
13.20 (a) $-\mathrm{CHBr}_{2}$, quartet; $-\mathrm{CH}_{3}$, doublet
(b) $\mathrm{CH}_{3} \mathrm{O}-$, singlet; $-\mathrm{OCH}_{2}$-, triplet; $-\mathrm{CH}_{2} \mathrm{Br}$, triplet
(c) $\mathrm{ClCH}_{2}-$, triplet; $-\mathrm{CH}_{2}{ }^{-}$, quintet
(d) $\mathrm{CH}_{3}-$, triplet; $-\mathrm{CH}_{2}-$, quartet; $-\mathrm{CH}-$, septet; $\left(\mathrm{CH}_{3}\right)_{2}$, doublet
(e) $\mathrm{CH}_{3}-$, triplet; $-\mathrm{CH}_{2}-$, quartet; $-\mathrm{CH}-$, septet; $\left(\mathrm{CH}_{3}\right)_{2}$, doublet
(f) $=\mathrm{CH}$, triplet; $-\mathrm{CH}_{2}{ }^{-}$, doublet; aromatic $\mathrm{C}-\mathrm{H}$, two multiplets
13.21 (a) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$
(c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}$
13.22

13.23 (a) 1
(b) 5
(c) 4
(d) 7
(e) 5
(f) 7
13.24 (a) Hept-1-ene
(b) 2-Methylpentane
(c) 1-Chloro-2-methylpropane

Chapter 14

14.

(a) Aldotetrose
(b) Ketopentose
(c) Ketohexose
(d) Aldopentose
14.2

14.3

R
S
14.4 (a) S
(b) R
(c) S
14.5

R
14.6 (a) L
(b) D
(c) D
14.7 (a)

D
(b)

(c)

14.8 (a)

(b)

(c)

14.9 There are 16 D and 16 L aldoheptoses.
14.10

and

14.11

14.12

$14.13 \mathrm{HOCH}_{2}$

14.14

α-D-Fructopyranose

β-D-Fructofuranose

α-D-Fructofuranose
14.15 Equal stability

(b)

14.17

14.18 D-Galactitol is a meso compound.
14.19 An alditol has a $-\mathrm{CH}_{2} \mathrm{OH}$ group at both ends; either could have been a -CHO group in the parent sugar.
14.20 D-Allaric acid is a meso compound; D-glucaric acid is not.
14.21 D-Allose and D-galactose yield meso aldaric acids; the other six D-aldohexoses yield optically active aldaric acids.
14.22 (a)

(b)

Chapter 15

15.1 Aromatic: Phe, Tyr, Trp, His; sulfur-containing: Cys, Met; alcohols: Ser, Trp; hydrocarbon side chains: Ala, Ile, Leu, Val.
15.2 The sulfur atom in the $-\mathrm{CH}_{2} \mathrm{SH}$ group of cysteine makes the side chain higher ranked than the $-\mathrm{CO}_{2} \mathrm{H}$ group.
15.3

(a)

(b)

(c)

15.5 (a) Toward (+): Glu > Val; toward (-): none
(b) Toward (+): Phe; toward (-): Gly
(c) Toward (+): Phe > Ser; toward (-): none
15.6 Net positive at $\mathrm{pH}=5.3$; net negative at $\mathrm{pH}=7.3$
15.7

15.8 Val-Tyr-Gly (VYG), Tyr-Gly-Val (YGV), Gly-Val-Tyr (GVY), Val-Gly-Tyr (VGY), Tyr-Val-Gly (YVG), Gly-Tyr-Val (GYV)
15.9

15.10

15.12 Trypsin: Asp-Arg + Val-Tyr-Ile-His-Pro-Phe

Chymotrypsin: Asp-Arg-Val-Tyr + Ile-His-Pro-Phe

15.13 Arg-Pro-Leu-Gly-Ile-Val

15.14 Methionine
15.15 (1) Protect the amino group of leucine.
(2) Protect the carboxylic acid group of alanine.
(3) Couple the protected amino acids with DCC.
(4) Remove the leucine protecting group.
(5) Remove the alanine protecting group.
15.16 This is a typical nucleophilic acyl substitution reaction, with the amine of the amino acid as the nucleophile and tert-butyl carbonate as the leaving group. The tert-butyl carbonate then loses CO_{2} and gives tert-butoxide, which is protonated.
15.17 (a) Lyase
(b) Hydrolase
(c) Oxidoreductase
16.1 $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CO}_{2} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{30} \mathrm{CH}_{3}$
16.2 Glyceryl monooleate distearate is higher melting.
16.3 The fat molecule with stearic acid esterified to the central - OH group of glycerol has no chiral centers and is optically inactive.
$16.4\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{2}\right]_{2} \mathrm{Mg}^{2+}$
16.5 Glyceryl dioleate monopalmitate \rightarrow glycerol +2 sodium oleate + sodium palmitate
16.6 Two ketones, double bond
16.7 Both have an aromatic ring.
16.10 (3') CCGATTAGGCA (5') or (5') ACGGATTAGCC (3^{\prime})
16.11

16.12 (3^{\prime}) CUAAUGGCAU (5^{\prime}) or (5^{\prime}) UACGGUAAUC (3^{\prime})
16.13 (3') AAGCGTCTCA (5') or (5') ACTCTGCGAA (3')
16.14 (a) GCU, GCC, GCA, GCG
(b) UUU, UUC
(c) UUA, UUG, CUU, CUC, CUA, CUG
(d) UAU, UAC
16.15 Leu-Met-Ala-Trp-Pro-Stop
16.16 (3') GAA-UAC-CGA-ACC-GGG-AUU (5^{\prime})
16.17 (3') GAA-TAC-CGA-ACC-GGG-ATT (5')
17.1 $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}+\mathrm{ATP} \rightarrow \mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OPO}_{3}{ }^{2-}+\mathrm{ADP}$
17.3 (a) 8 acetyl CoA; 7 passages
(b) 10 acetyl CoA; 9 passages
17.4 Steps 7 and 10
17.5 Step 1: nucleophilic acyl substitution at phosphorus;
step 2: isomerization by keto-enol tautomerization;
step 3: like step 1;
step 4: retro aldol condensation;
step 5: like step 2;
step 6: oxidation;
step 7: like step 2;
step 8: isomerization;
step 9: E1cB reaction;
step 10: substitution at phosphorus, followed by tautomerization
17.6 Citrate and isocitrate
17.7

$17.8\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{COCO}_{2}{ }^{-}$
17.9 Asparagine

Boldfaced references refer to pages where terms are defined.

α, see Alpha

Absorption spectrum, 437
Acesulfame-K, structure of, 495
sweetness of, 494
Acetal(s), 306
from aldehydes, 306-308
from ketones, 306-308
hydrolysis of, 306
mechanism of formation of, 306-307
protecting groups and, 308
Acetaldehyde, electrostatic potential map of, 296
Acetamide, electrostatic potential map of, 30,336, 410
Acetaminophen, molecular model of, 30 synthesis of, 345
Acetate ion, electrostatic potential map of, 21, 133, 333 resonance in, 133
Acetic acid, dimer of, 330
electrostatic potential map of, 21, 22
industrial synthesis of, 330
$\mathrm{p} K_{\mathrm{a}}$ of, 20, 332
Acetic acid dimer, electrostatic potential map of, 330
Acetic anhydride, electrostatic potential map of, 336 reaction with alcohols, 345
reaction with amines, 345
reaction with monosaccharides, 482
reaction with phenols, 345
Acetoacetic ester synthesis, 399
Acetone, annual production of, 295
electrostatic potential map of, 22, 23, 43, 93
$\mathrm{p} K_{\mathrm{a}}$ of, 22, 379
uses of, 295
Acetophenone, structure of, 157
Acetyl azide, electrostatic potential map of, 364
Acetyl chloride, electrostatic potential map of, 336
Acetyl CoA, biosynthesis of, 355
N -acetylglucosamine from, 355
citric acid cycle and, 584-586
from fat catabolism, 578-579
from pyruvate, 584
function of, 355, 392
structure of, 573
Acetyl group, 297
N-Acetyl-D-galactosamine, structure of, 488
N-Acetyl-D-glucosamine, biosynthesis of, 355 function of, 355
structure of, 488
N -Acetyl-D-neuraminic acid, biosynthesis of, 501 structure of, 488
Acetylene, bond angles in, 14
bond lengths in, 14
bond strengths in, 14
$\mathrm{p} K_{\mathrm{a}}$ of, 21, 139
$s p$ hybrid orbitals in, 14
structure of, 14
Acetylide anion, 139
alkylation of, 138-139
Achiral, 193
Acid, 19-23
Brønsted-Lowry, 19-21
conjugate base of, 19
Lewis, 24-25
organic, 22-23
strengths of, 20
Acid anhydride(s), 326
amides from, 345
electrostatic potential map of, 336
esters from, 345
from acid chlorides, 344
naming, 327-328
reaction with alcohols, 345
reaction with amines, 345
reactions of, 345
synthesis of, 344
Acid chloride(s), $\mathbf{3 2 6}$
acid anhydrides from, 344
amides from, 343
carboxylic acids from, 343
electrostatic potential map of, 336
esters from, 343
from carboxylic acids, 339
hydrolysis of, 343
naming, 327
$\mathrm{p} K_{\mathrm{a}}$ of, 380
reaction with alcohols, 343
reaction with amines, 343, 416-417
reaction with aromatic compounds, 165-166
reaction with carboxylate ions, 344
reaction with $\mathrm{H}_{2} \mathrm{O}, 343$
reactions of, 342-343
Acid halide, 326
naming, 327
see also Acid chloride
Acidity, alcohols and, 261
Brønsted-Lowry definition of, 19-21
carbonyl compounds, 379-381
carboxylic acids and, 331-333
Lewis definition of, 24
phenols and, 261
Acidity constant (K_{a}), 19 table of, 20
Acid-base reaction, conventions for drawing, 25 predicting, 20-21
Acifluorfen, structure of, 255
Acrilan, structure of, 129
Acrylic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 332
structure of, 327
Activating group, electrophilic aromatic substitution reactions and, 166-169
Activation energy $\left(E_{\text {act }}\right), 99$
Acyl group, 166, 297
naming, 327
Acyl phosphate, 326
reactivity of, 354
Acylation, alcohols and, 343, 345
amines and, 343, 345, 416-417
aromatic compounds and, 165-166
Addition reaction, 89
1,2-Addition, 131, 311
1,4-Addition, 131, 311
mechanism of, 131
Adenine, electrostatic potential map of, 552 structure of, 549
Adenosine, structure of, 550
Adenosine diphosphate (ADP), structure of, 573
Adenosine triphosphate (ATP), function of, 573-574 structure of, 573
S-Adenosylmethionine, biological function of, 243
Adipic acid, structure of, 327
ADP, see Adenosine diphosphate, 573
Adrenaline, biosynthesis of, 243
molecular model of, 215
Adrenocortical steroid, 547
-al, name ending for aldehydes, 296
Alanine, biosynthesis of, 414
configuration of, 199
electrostatic potential map of, 504
from pyruvic acid, 310
molecular model of, 503
Alcohol(s), 256
acidity of, 261
aldehydes from, 271
alkenes from, 268-269
alkyl halides from, 224-225
boiling points of, 260
carboxylic acids from, 271
common names of, 258
dehydration of, 268-269
electrostatic potential map of, 42
ethers from, 273
from aldehydes, 263-264, 266, 302-303
from alkenes, 117-119
from carboxylic acids, 264, 341
from esters, 264, 267, 347-348
from ethers, 276
from ketones, 263-264, 267, 302-303
hydrogen bonds in, 260
IR spectroscopy and, 439
ketones from, 272
naming, 257-258
NMR spectroscopy and, 450
oxidation of, 271-272
polarity of, 42
reaction with acid anhydrides, 345
reaction with acid chlorides, 343
reaction with aldehydes, 306-308
reaction with carboxylic acids, 339-340
reaction with $\mathrm{CrO}_{3}, 271$
reaction with $\mathrm{H}_{2} \mathrm{SO}_{4}, 268-269$
reaction with $\mathrm{HF}, 225$
reaction with HX, 224-225
reaction with ketones, 306-308
reaction with $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, 271-272$
reaction with $\mathrm{PBr}_{3}, 225$
reaction with periodinane, 271
reaction with $\mathrm{SOCl}_{2}, 225$
reaction with sodium, 261
$\mathrm{S}_{\mathrm{N}} 1$ reactions of, 234
synthesis of, 262-267
Aldaric acid, 487
Aldehyde(s), 294
acetals from, 306-308
alcohols from, 263-264, 266, 302-303
aldol reaction of, 386
amines from, 413-414
bromination of, 377-378
carbonyl condensation reaction of, 386
carboxylic acids from, 298-300
common names of, 297
from alcohols, 271
hemiacetals from, 306-307
hydration of, 305
imines from, 310
IR spectroscopy and, 439
mechanism of hydration of, 305
naming, 296-297
NMR spectroscopy and, 450
nucleophilic addition reactions of, 300-302
oxidation of, 298-300
$\mathrm{p} K_{\mathrm{a}}$ of, 380
protecting group for, 308
reaction with alcohols, 306-308
reaction with amines, 310
reaction with Grignard reagents, 266, 303
reaction with $\mathrm{H}_{2} \mathrm{O}, 305$
reaction with $\mathrm{NaBH}_{4}, 263-264$
reduction of, 263-264, 302-303
reductive amination of, 413-414
synthesis of, 298
Alditol, 485
Aldohexoses, naming, 476
see also Aldose
structures of, 477

Aldol reaction, 386
biological example of, 391-392
dehydration in, 387-388
enones from, 387-388
equilibrium in, 386
mechanism of, 385
Aldonic acid, 486
Aldopentose, structures of, 477
Aldose(s), 471
aldaric acids from, 487
alditols from, 485
aldonic acids from, 486
anomers of, 480-481
configurations of, 476-477
Fischer projections of, 477
oxidation of, 486-487 reaction with $\mathrm{NaBH}_{4}, 485$ see also Monosaccharide uronic acids from, 487
Aldosterone, structure of, 548
Aldotetrose, structures of, 477
Alicyclic, 58
Aliphatic, 45
Alitame, structure of, 495
sweetness of, 494
Alkaloid(s), 421
examples of, 421
number of, 421
Alkane(s), 44
branched-chain, 46
combustion of, 54
condensed structures of, 46
conformations of, 55
from alkenes, 122-123
from alkynes, 137
general formula of, 45
isomers of, 45-46
naming, 46-47, 49-51
NMR spectroscopy and, 450
normal, 46
properties of, 53-54
reaction with $\mathrm{Cl}_{2}, 54$
representations of, 46
skeletal structures of, 56-57
straight-chain, 46
Alkene(s), 78
acidity of, 139
alcohols from, 117-119
alkanes from, 122-123
alkyl halides from, 113-114
biological halogenation of, 268-269
bond rotation in, 83
bond strength of, 83
bromonium ions from, 121
carboxylic acids from, 125-126
cis-trans isomers of, 83-85
cleavage of, 125-126
common names of, 81
diols from, 125
double bond in, 83
E isomer of, 86
electrophilic addition reaction of, 96-97
electrostatic potential map of, 42
epoxides from, 124-125
from alcohols, 268-269
from alkyl halides, 237-239
from alkynes, 137
halogenation of, 120-121
hydration of, 117-119
hydrogenation of, 122-123
hydrohalogenation of, 113-114
hydroxylation of, 125
IR spectroscopy and, 439
ketones from, 125-126
mechanism of hydration of, 117-118
naming, 79-81
NMR spectroscopy and, 450
nucleophilicity of, 95-97
occurrence of, 78
oxidation of, 124-126
polymerization of, 128-129
radical addition to, 128
reaction with $\mathrm{Br}_{2}, 120-121$
reaction with $\mathrm{Cl}_{2} 120$
reaction with $\mathrm{H}_{2}, 122-123$
reaction with $\mathrm{H}_{2} \mathrm{O}, 117-119$
reaction with $\mathrm{HX}, 113-114$
reaction with $\mathrm{KMnO}_{4}, 125-126$
reaction with peroxyacids, 124-125
reaction with radicals, 128
reduction of, 122-123
structure of, 83
Z isomer of, 86
Alkenyl group, $\mathbf{8 1}$
Alkoxide ion(s), 260
naming, 261
reaction with alkyl halides, 273
Williamson ether synthesis and, 273
Alkoxy group, 259
Alkyl azide(s), amines from, 412
from alkyl halides, 412
reduction of, 412
Alkyl group(s), 46
directing effect of, 167
names of, 46-48
Alkyl halide(s), 223
alkenes from, 237-239
alkyl azides from, 412
amines from, 412
carboxylic acids from, 383-384
electrostatic potential map of, 42
ethers from, 273
from alcohols, 224-225
from alkenes, 113-114
Grignard reagents from 226
IR spectroscopy and, 439
naming, 223-224
polarity of, 42
reaction with alkoxide ions, 273
reaction with aromatic compounds, 165
reaction with hydrosulfide ion, 279
reaction with $\mathrm{Mg}, 226$
reaction with phenoxide ions, 274
$\mathrm{S}_{\mathrm{N}} 2$ reactions and, 233
sulfides from, 279
synthesis of, 224-225
thiols from, 279
Alkylamine, 405
basicity of, 409
Alkylation, acetylide anions, 139
aromatic compounds, 165
enolate ions, 382-384
Alkylthio group, 279
Alkyne(s), 78
acidity of, 139
alkanes from, 137
alkenes from, 137
alkylation of, 138-139
1,2 dihalides from, 138
electrostatic potential map of, 42
general formula of, 136
halogenation of, 138
hydration of, 138-139
hydrogenation of, 137
hydrohalogenation of, 137-138
IR spectroscopy and, 439
ketones from, 138-139
naming, 81, 136-137
reaction with $\mathrm{Br}_{2}, 138$
reaction with $\mathrm{Cl}_{2}, 138$
reaction with $\mathrm{H}_{2}, 137$
reaction with $\mathrm{H}_{2} \mathrm{O}, 138-139$
reaction with HX, 137-138
reduction of, 137
synthesis of, 139
vinylic halides from, 137-138
Alkynyl group, 81
Allene(s), 220

Allose, structure of, 477
Allylic, 131
Allylic carbocation, $\mathbf{1 3 1}$
electrostatic potential map of, 133
resonance in, 132
stability of, 131-132
α anomer, 480
α, β-unsaturated carbonyl compound, $\mathbf{3 1 1}$
conjugate addition to, 311-312
from aldol reactions, 387-388
α helix (protein), 522
dimensions of, 522
hydrogen bonding in, 522
α position (carbonyl compounds), 372
α-amino acid, 505
see Amino acid
α-bromo aldehyde, synthesis of, 377-378
α-bromo ketone, synthesis of, 377-378
α-ketoglutarate, amino acid catabolism and, 588-590 transamination and, 588-590
Altrose, structure of, 477
Aluminum chloride, Friedel-Crafts reactions and, 165
Amantadine, structure of, 77
Amide(s), 326
amines from, 350
basicity of, 409-410
carboxylic acids from, 350
DCC in synthesis of, 341
electrostatic potential map of, 336
from acid anhydrides, 345
from acid chlorides, 343
from carboxylic acids, 340-341
hydrolysis of, 350
IR spectroscopy and, 439
naming, 328
occurrence of, 331
$\mathrm{p} K_{\mathrm{a}}$ of, 380
reaction with $\mathrm{LiAlH}_{4}, 350$
reactions of, 350
reduction of, 350
resonance in, 409-410
Amide bond, planarity of, 513
proteins and, 513
Amine(s), 404
acylation of, 416-417
alkylation of, 412
basicity of, 408-410
electrostatic potential map of, 43
from aldehydes, 413-414
from alkyl azides, 412
from alkyl halides, 412
from amides, 350
from ketones, 413-414
from nitriles, 353
hybridization of, 407
hydrogen bonding in, 408
imines from, 310
IR spectroscopy and, 439
naming, 405-406
occurrence of, 404
odor of, 408
$\mathrm{p} K_{\mathrm{b}}$'s of, 409
polarity of, 43
properties of, 407-408
purification of, 410
reaction with acid anhydrides, 345
reaction with acid chlorides, 343, 416-417
reaction with aldehydes, 310
reaction with carboxylic acids, 340
reaction with ketones, 310
synthesis of, 411-416
Amino acid(s), 503
abbreviations of, 506-507
acidic, 508
acidity of, 504-505
amphiprotic behavior of, 504
basic, 508
basicity of, 504-505
C-terminal, 512

Amino acid(s) (continued) catabolism of, 588-590
electrophoresis of, 510-511
electrostatic potential map of, 504
essential, 508
Fischer projection of, 508
isoelectric points of, 506-507
N-terminal, 512
neutral, 508
nonprotein, 505
phenylthiohydantoins from, 516
$\mathrm{p} K_{\mathrm{a}}$'s of, 506-507
protecting groups for, 518-519
reaction with ninhydrin, 514
stereochemistry of, 508
structures of, 506-507
table of, 506-507
transamination of, 588-590
zwitterion form of, 23, 504
Amino acid analyzer, 515
Amino group(s), 405
directing effect of, 167
Amino sugar, 488
p-Aminobenzoic acid, molecular model of, 58
Ammonia, alkylation of, 412
electrostatic potential map of, 93
$\mathrm{p} K_{\mathrm{b}}$ of, 409
Amobarbital, synthesis of, 393
Amphetamine, structure of, 106
synthesis of, 413
Amphiprotic, 504
Amplitude (wave), 435
Amylopectin, structure of, 492
Amylose, structure of, 491
Amytal, synthesis of, 393
Anabolic steroid, 548
Anabolism, 572
Androgen, 546-547
function of, 547
Androstenedione, structure of, 547
Androsterone, structure of, 547
-ane, alkane name ending, 46
Angle strain, 62
Aniline, from nitrobenzene, 415-416
$\mathrm{p} K_{\mathrm{b}}$ of, 409
resonance in, 409
structure of, 157
synthesis of, 415-416
Animal fat, 539
see Fat
Anomer, 480
mutarotation of, 480-481
Anomeric center, 480
Anti stereochemistry, 121
Anticodon, 558
Antigenic determinants, blood groups and, 493
Antisense strand (DNA), 556
Arabinose, occurrence of, 476 structure of, 477
Arachidic acid, structure of, 540
Arachidonic acid, structure of, 540
Arecoline, molecular model of, 44
Arene, electrostatic potential map of, 42
see Aromatic compound
Aromatic compound(s), 155
acylation of, 165-166
alkylation of, 165
bromination of, 160-161
chlorination of, 162
common names for, 157
electrophilic aromatic substitution and, 159-164
Friedel-Crafts reaction of, 165-166
hydrogenation of, 172
iodination of, 162-163
IR spectroscopy and, 439
naming, 157-158
nitration of, 163
NMR spectroscopy and, 450
oxidation of, 171
reaction with acid chlorides, 165-166
reaction with alkyl halides, 165
reaction with $\mathrm{Br}_{2}, 160-161$
reaction with $\mathrm{Cl}_{2}, 162$
reaction with $\mathrm{H}_{2}, 172$
reaction with $\mathrm{HNO}_{3}, 163$
reaction with $\mathrm{KMnO}_{4}, 171$
reaction with $\mathrm{SO}_{3}, 164$
reactivity of, 166-167
reduction of, 172
sulfonation of, 164
Aromaticity, criteria for, 173
Aroyl group, 297
Arrow, electron flow and, 25
fishhook, 128
polar covalent bonds and, 17
radical reactions and, 128
reaction mechanisms and, 91-92
resonance, 132
Arsenic trioxide, leukemia and, 27
toxicity of, 27
Aryl group, 158
Aryl halide, $\mathrm{S}_{\mathrm{N}} 2$ reactions and, 233
Arylamine, 163, 405
basicity of, 409
from nitrobenzenes, 415-416
Ascorbic acid, chirality of, 498
common cold and, 313
synthesis of, 313-314
-ase, enzyme name ending, 525
Aspartame, molecular model of, 30
structure of, 495
sweetness of, 494
Asphalt, 53
Aspirin, history of, 177
molecular model of, 15
synthesis of, 345
toxicity of, 27,177
-ate, name ending for esters, 328
Atom, atomic number of, 3 covalent bond formation and, 7-8
diameter of, 2-3
ground-state electron configuration of, 4-5
mass number of, 3
nucleus of, 3
orbitals in, 3-4
quantum mechanical model of, 3-5
structure of, 2-4
wave equation and, 3-4
Atomic mass, 3
Atomic number (Z), $\mathbf{3}$
Atomic weight, 3
Atorvastatin, structure and function of, 155, 592
ATP, see Adenosine triphosphate, 573
Atrazine, agricultural use of, 26-27
mechanism of, 537
Atropine, sources of, 421 structure of, 421
Axial position (cyclohexane), 64 how to draw, 65
β, see Beta
Backbone (protein), 512
Barbiturate(s), history of, 392
structures of, 393
synthesis of, 393
uses of, 392
Base, 19-23
Brønsted-Lowry, 19-21
conjugate acid of, 19
Lewis, 24-25
organic, 23
Base peak, 434
Basicity, amines and, 408-410
histidine, 418
imidazole, 418
pyridine, 419
pyrrole, 418
thiazole, 418
Basicity constant (K_{b}), 408
Beeswax, constituents of, 539
Benedict's test, reducing sugars and, 486
Benzaldehyde, electrostatic potential map of, 168
nitration of, 170
structure of, 157
Benzene, bond angles in, 156
bond lengths in, 156
bromination of, 160-161
electrophilic aromatic substitution and, 159-164
electrostatic potential map of, 134, 156
π orbitals in, 156
reaction with $\mathrm{Br}_{2}, 160-161$
resonance and, 134, 156
see also Aromatic compound
structure of, 156
toxicity of, 155
UV spectroscopy and, 444
-benzene, aromatic name ending, 157
Benzoic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 332
structure of, 157
Benzoquinone, electrostatic potential map of, 274
Benzoyl group, 297
Benzo[a]pyrene, cancer and, 172-173
Benzyl group, 158
Benzylic position, 171
Benzylpenicillin, structure of, 359
β anomer, 481
β-blocker, function of, 407
β-carotene, structure of, 78
β-diketone, enolate ion of, 380
$\mathrm{p} K_{\mathrm{a}}$ of, 380
β-keto ester, $\mathrm{p} K_{\mathrm{a}}$ of, 380
synthesis of, 388-390
β lactam, 359
β-lactam antibiotics, 358-360
discovery of, 358-359
mechanism of, 360
transpeptidase and, 360
β-oxidation pathway, 576-579
fat catabolism and, 575-579
mechanisms in, 576-579
steps of, 576-579
β-pleated sheet, 522-523
hydrogen bonding in, 522-523
Betulinic acid, structure of, 502
Bimolecular, 231
Biodegradable polymer, 357-358
Biological polymer, 127
Biological reaction, alcohol dehydration, 268-269
aldol reaction, 391-392
alkene halogenation, 121-122
alkene hydration, 119
carbonyl condensation, 391-392
conjugate nucleophilic addition, 312
conventions for writing, 575
E1cB reaction, 243
electrophilic aromatic substitution, 162-163
elimination, 243
free energy and, 573-574
imine formation, 310
methylation, 243
nucleophilic substitution, 243
reductive amination, 414
retro-aldol, 391
$\mathrm{S}_{\mathrm{N}} 2$ reaction, 243
Biot, Jean Baptiste, 195
Biotin, structure and function of, 526
Bisphenol A, epoxy resins from, 281-282
Blood groups, antigenic determinants in, 493
Blubber, composition of, 540
Boc, amino acid protecting group, 518-519
Bond, double, 12-14
single, 12
triple, 12-14
Bond angle, 11

Bond length, 9
Bond strength, 9
Boron trifluoride, electrostatic potential map of, 95
Branched-chain alkane, 46
Bromine, reaction with alkenes, 120-121
reaction with aromatic compounds, $160-161$
p-Bromoacetophenone, ${ }^{13} \mathrm{C}$ NMR spectrum of, 457
Bromoethane, ${ }^{1} \mathrm{H}$ NMR spectrum of, 452
Bromonium ion, 121
from alkenes, 121
Bromophenol, naturally occurring, 244
2-Bromopropane, ${ }^{1}$ H NMR spectrum of, 454
Brønsted-Lowry acid, 19-21
Brønsted-Lowry base, 19-21
cis-But-2-ene, molecular model of, 84
trans-But-2-ene, molecular model of, 84
But-3-en-2-one, conjugate nucleophilic addition to, 312 electrostatic potential map of, 312
UV spectroscopy and, 444
Buta-1,3-diene, electrostatic potential map of, 130 UV spectrum of, 442
Butane, isomers of, 45 structure of, 45
Butanoic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 22
Butter, composition of, 540
tert-Butyl alcohol, $\mathrm{p} K_{\mathrm{a}}$ of, 261
tert-Butyloxycarbonyl (Boc), amino protecting group, 518-519
Butyl group, 47
Butyric acid, 327

C-terminal amino acid, 512
Caffeine, structure of, 35, 426
Cahn-Ingold-Prelog sequence rules, 86-88 alkene isomers and, 86-88 chirality centers and, 197-199
Camphor, specific rotation of, 196
Cancer, polycyclic aromatic compounds and, 172-173
Caprolactam, nylon from, 356
Captopril, structure of, 291
-carbaldehyde, name ending for aldehydes, 296
Carbanion(s), 227
Grignard reagents as, 227
E1cB reaction and, 241
Carbaryl, synthesis of, 371
Carbocation(s), 96
allylic, 131
E1 reactions and, 240
Friedel-Crafts reaction and, 165
Markovnikov's rule and, 116-117
molecular model of, 116
$\mathrm{S}_{\mathrm{N}} 1$ reactions and, 234-235
stability of, 116
structure of, 116
Carbohydrate(s), 469 catabolism of, 579-584
classification of, 470-471
complex, 470
occurrence of, 469
photosynthesis of, 470
see also Aldose, Monosaccharide simple, 470
Carbon, electron configuration of, 4 organic chemistry and, 2 primary, 48
quaternary, 48
secondary, 48
tertiary, 48
tetrahedral geometry of, 5-6
tetravalent nature of, 5-6
carbonitrile, name ending for nitriles, 329
Carbonyl α-substitution reaction, 372-373 enols in, 376-377 mechanism of, 376-377
Carbonyl compound(s), acidity of, 374 acidity of, 379-381
α-position of, 372-373
IR spectroscopy and, 439
kinds of, 43, 295
$\mathrm{p} K_{\mathrm{a}}$ of, 380
polarity of, 43
reaction with LDA, 379-380
Carbonyl condensation reaction, 373
biological examples of, 391-392
mechanism of, 385
Carbonyl group, 43, 294
directing effect of, 167
electrostatic potential map of, 296
polarity of, 296
structure of, 296
-carboxamide, name ending for amides, 328
Carboxin, synthesis of, 403
Carboxyl group, 326
Carboxylate ion, $\mathbf{3 3 2}$
resonance in, 333
-carboxylic acid, name ending for carboxylic acids, 326
Carboxylic acid(s), 326
acid chlorides from, 339
acidity of, 331-333
alcohols from, 264, 341
amides from, 340-341
common names for, 327
derivatives of, 336-337
dimers of, 330
esters from, 339-340
Fischer esterification reaction of, 339-340
from alcohols, 271
from aldehydes, 298-300
from alkenes, 125-126
from amides, 350
from esters, 347
from malonic ester synthesis, 383-384
from nitriles, 334-335, 353
hydrogen bonding in, 330
inductive effects in, 332
IR spectroscopy and, 439
naming, 326-327
NMR spectroscopy and, 450
occurrence of, 330
$\mathrm{p} K_{\mathrm{a}}$'s of, 332
properties of, 330
reaction with alcohols, 339-340
reaction with amines, 340
reaction with $\mathrm{LiAlH}_{4}, 264,341$
reaction with $\mathrm{NaOH}, 332$
reaction with $\mathrm{SOCl}_{2}, 339$
reactions of, 339-341
reduction of, 264,34
synthesis of, 334
Carboxylic acid derivative, biological, 354-355
kinds of, 325-326
reactivity of, 336-337
Cardiolipin, structure of, 567
Carvone, chirality of, 192
Catabolism, 572
amino acids, 588-590
carbohydrates, 579-584
fats, 575-579
glucose, 579-584
proteins, 588-590
stages of, 572-573
triacylglycerols, 575-579
Catalyst, 101
energy diagrams and, 101
function of, 101
Celebrex, structure of, 178
Celecoxib, structure of, 178 synthesis of, 431
Cell membrane, lipid bilayer in, 545-546
Cellobiose, $1 \rightarrow 4$ link in, 489
molecular model of, 489
mutarotation of, 489
structure of, 489
Cellulose, acetal groups in, 309
structure of, 491
uses of, 491

Cephalosporin, structure of, 359-360
Chain, Ernst, 359
Chain-growth polymer, 356
Chair conformation (cyclohexane), 63-64
axial positions in, 64-65
drawing, 63
equatorial positions in, 64-65
glucose, 64
ring-flip of, 65-66
steric strain in, 66
Chemical bond, nature of, 6-10
Chemical shift, 449
${ }^{13} \mathrm{C}$ table of, 457
${ }^{1} \mathrm{H}$ table of, 450
Chirality, 191
biological properties and, 210-213
enantiomers and, 190-191
optical activity and, 195-196
plane of symmetry and, 192 tetrahedral carbon and, 190-191
Chirality center, 191
configuration of, 197-199
sequence rules for, 197-199
test for presence of, 192
Chlorine, reaction with alkanes, 54 reaction with alkenes, 120
reaction with aromatic compounds, 162
Chlorobenzene, electrostatic potential map of, 168
Chloroethane, electrostatic potential map of, 95
Chloroform, toxicity of, 27
Chloromethane, electrostatic potential map of, 18, 92 natural sources of, 222
m-Chloroperoxybenzoic acid, reaction with alkenes, 124-125
Cholesterol, HMG-CoA reductase and, 591-592
specific rotation of, 196
statin drugs and, 591-592
Choline, structure of, 545
Chromium trioxide, reaction with alcohols, 271
Chymotrypsin, protein cleavage with, 516
Cis-trans isomers, 61
alkene stability and, 85
alkenes and, 83-85
cycloalkanes and, 60-61
diastereomers and, 208-209
Citrate, biosynthesis of, 528-529
Citrate synthase, function of, 528-529
mechanism of, 528-529
structure of, 528-529
Citric acid, biosynthesis of, 392 molecular model of, 29
Citric acid cycle, 584-587 mechanisms of, 586-587
results of, 587
steps of, 585
Claisen condensation reaction, 388-390 mechanism of, 389-390
Claritin, structure of, 162
Clomiphene, structure of, 110
Cocaine, specific rotation of, 196 structure of, 404
Coconut oil, composition of, 540
Coding strand (DNA), 556
Codon, 557
table of, 557
Coenzyme, 525
Coenzyme A, acetyl CoA from, 355
Coenzyme Q, structure of, 275
Cofactor, $\mathbf{5 2 5}$
table of, 526-527
Complex carbohydrate, 470
Concanavalin A, ribbon model of, 523
tertiary structure of, 523
Condensed structure, 46
Configuration, 197
Conformation, 54
alkanes, 55
eclipsed, 55

Conformation (continued)
ethane, 54-55
staggered, 55
Conformer, 54
Coniine, molecular model of, 29
Conjugate acid, 19
Conjugate base, 19
Conjugate nucleophilic addition reaction, 311-312
biological examples of, 312
mechanism of, 311-312
Conjugated diene, 130
1,4 -addition reactions of, 130-131
π orbitals in, 130
UV spectroscopy of, 443
Conjugation, 130
UV spectroscopy and, 443
Consensus sequence (DNA), 556
Constitutional isomers, 46
kinds of, 208-209
Corn oil, composition of, 540
Couper, Archibald, 5
Coupled reactions, ATP and, 573-574
Coupling (NMR), 452
Coupling constant (J), 454
Covalent bond, 7
orbital overlap and, 9
polar, 16-17
valence bond theory of, 9
COX-2 inhibitors, 177-178
Crestor, function of, 592
Crick, Francis, 552
Curved arrow, electron flow and, 25
polar reactions and, 91-92
Cyanocycline A, structure of, 352
Cyanohydrin, 319
Cyclamate, toxicity of, 27
Cycloalkane(s), 58
cis-trans isomerism in, 60-61
general formula of, 58
naming, 58-59
representations of, 58
Cycloalkene, naming, 80-81
Cyclobutane, angle strain in, 62
molecular model of, 62
Cyclohexa-1,3-diene, UV spectroscopy and, 444
Cyclohexane, 1,3-diaxial interactions in, 66 angle strain in, 63
axial positions in, 64-65
bond angles in, 63
chair conformation of, 63-64
conformational mobility of, 65-66
drawing chair conformation of, 63
equatorial positions in, 64-65
molecular model of, 63
ring-flip of, 65-66
steric strain in, 66
Cyclohexanol, IR spectrum of, 440
Cyclohexanone, enol of, 374 IR spectrum of, 440
Cyclopentane, molecular model of, 62
Cyclopropane, angle strain in, 62 bond angles in, 62
molecular model of, 60, 62 structure of, 60, 62
Cysteine, disulfides from, 513-514
Cytidine, structure of, 550
Cytosine, electrostatic potential map of, 552 structure of, 549

D Sugar, 475
configuration of, 475
Fischer projection of, 475
Dacron, structure of, 357
DCC, see Dicyclohexylcarbodiimide
DDT, toxicity of, 27
Deactivating group, electrophilic aromatic substitution reactions and, 166-169

Decane, molecular model of, 55
structure of, 47
Decarboxylation, $\mathbf{3 8 3}$
malonic ester synthesis and, 383
DEET, structure of, 369
Dehydration (alcohol), 268
aldol reaction and, 387-388
biological example of, 268-269
mechanism of, 268-269
Zaitsev's rule and, 268
Delta scale (NMR), 449
Dendrimer, synthesis of, 370
Deoxy sugar, 488
2'-Deoxyadenosine, structure of, 550
2'-Deoxycytidine, structure of, 550
2'-Deoxyguanosine, structure of, 550
Deoxyribonucleic acid (DNA), 548
abbreviations for naming, 551
amine bases in, 549
amplification of, 562-563
antisense strand of, 556
base pairing in, 552-553
cleavage of, 560
coding strand of, 556
consensus sequence in, 556
dimensions of, 552
double helix in, 552-553
electrophoresis of, 561
3' end of, 551
5 ' end of, 551
exons in, 556
hydrogen bonding in, 552-553
introns in, 556
major groove in, 552
minor groove in, 552
phosphodiester bonds in, 551
polymerase chain reaction and, 562-563
promotor sequence in, 556
replication of, 554-555
Sanger method for sequencing, 560-561
sense strand of, 556
sequencing of, 560-562
size of, 550
structure of, 551
template strand of, 556
Watson-Crick model of, 552-553
Deoxyribonucleotide(s), structures of, 550
Detergent, structure of, 544
Dextrorotatory, 195
Dianabol, structure of, 548
Diastereomers, 202
cis-trans isomers and, 208-209
properties of, 205
1,3-Diaxial interaction (cyclohexane), 66
Dicyclohexylcarbodiimide (DCC), amide synthesis with, 341
peptide synthesis with, 518
Dideoxyribonucleotide, DNA sequencing and, 560-561
Dieckmann cyclization reaction, 400
Diene, conjugated, 130
1,3-Diester, $\mathrm{p} K_{\mathrm{a}}$ of, 380
Diethyl ether, molecular model of, 257
Diethyl malonate, see Malonic ester
Diethylamine, $\mathrm{p} K_{\mathrm{b}}$ of, 409
Diethylstilbestrol, structure of, 569
Digestion, 573
Digitoxin, structure of, 484
Dihydrogen phosphate ion, $\mathrm{p} K_{\mathrm{a}}$ of, 20
1,3-Diketone, $\mathrm{p} K_{\mathrm{a}}$ of, 380
Dimethyl ether, bond angles in, 259
Dimethylamine, electrostatic potential map of, 408
cis-1,2-Dimethylcyclopropane, molecular model of, 60
trans-1,2-Dimethylcyclopropane, molecular model of, 60
Dimethyltryptamine, structure of, 420
Diol(s), 125
from alkenes, 125
from epoxides, 125

Disaccharide, 470, 489
$1 \rightarrow 4$ links in, 489
Distillation, 53
Disubstituted alkene, $\mathbf{8 3}$
Disulfide(s), 279
electrostatic potential map of, 43
polarity of, 43
reduction of, 280
Disulfide bond, proteins and, 513-514
Diterpene, 102
DNA, see Deoxyribonucleic acid
DNA fingerprinting, 563-564 accuracy of, 564
genetic diseases and, 564
Thomas Jefferson and, 564
Dodecane, structure of, 47
Dopa, synthesis of, 220
Dopamine, norepinephrine from, 172
Double bond, strength of, 83
Double helix (DNA), 552 dimensions of, 552
Doublet (NMR), 452
Downfield (NMR), 448
Drugs, approval process for, 68-69 chirality and, 210-213
clinical trials of, 68-69
sources of, 68
E isomer, alkene, 86
E1 reaction, 240-241
alcohol dehydration and, 268-269
carbocations in, 240
mechanism of, 240
E1cB reaction, 241 aldol dehydration and, 387 mechanism of, 241
E2 reaction, 238-239
mechanism of, 239
transition state in, 239
Zaitsev's rule and, 238-239
Ecdysone, structure of, 324
Eclipsed conformation, $\mathbf{5 5}$
Edman degradation, 515-516
Elaidic acid, structure of, 541
Electromagnetic radiation, 435 energy of, 436-437 photons of, 436 Planck equation and, 436 properties of, 435-436 quanta of, 436
Electromagnetic spectrum, 435
IR region of, 438
table of, 435
UV region of, 442
Electron, energy levels of, 4 ground-state configuration of, 4-5 orbital filling and, 4-5 spin of, 4
Electron-dot structure, 7
Electron-transport chain, 573
Electronegativity, 16
Grignard reagents and, 227
inductive effects and, 17 polar covalent bonds and, 16-17 polar reactions and, 92-93 table of, 16
Electrophile, 93 examples of, 93
Electrophilic addition reaction, 95-97 carbocation intermediate in, 99 energy diagram for, 98-99 Markovnikov's rule and, 113-114 mechanism of, 96-97
Electrophilic aromatic substitution reaction, 159-164 activating groups in, 166-169
biological example of, 162-163
deactivating groups in, 166-169
kinds of, 160
mechanism of, 161
meta directing groups in, 166-167
orientation effects in, 166-167
ortho/para directing groups in, 166-167
phenols and, 274
reaction energy diagram for, 162
substituent effects on, 166-170
Electrophoresis, 510-511
Electrostatic potential map, 17
acetaldehyde, 296
acetamide, $30,336,410$
acetate ion, 21, 133, 333
acetic acid, 21, 22
acetic acid dimer, 330
acetic anhydride, 336
acetone, 22, 23, 43, 93
acetyl azide, 364
acetyl chloride, 336
acid anhydride, 336
acid chloride, 336
adenine, 552
alanine, 504
alcohol, 42
alkene, 42
alkyl halide, 42
alkyne, 42
allylic carbocation, 133
amide, 336
amine, 43
amino acid, 504
ammonia, 93
arene, 42
benzaldehyde, 168
benzene, 134, 156
benzoquinone, 274
boron trifluoride, 95
but-3-en-2-one, 312
buta-1,3-diene, 130
carbonyl group, 296
chlorobenzene, 168
chloroethane, 95
chloromethane, 18, 92
cytosine, 552
dimethylamine, 408
disulfide, 43
enol tautomer, 374, 376
enolate ion, 379,382
ester, 336
ether, 42
ethoxide ion, 333
ethylene, 39, 95
formaldehyde, 105
Grignard reagent, 227
guanine, 552
histidine, 508
hydrogen bonding, 260
hydrogen chloride, 19
hydronium ion, 19, 93
imidazole, 26, 420
keto tautomer, 374
menthene, 39
methanethiol, 105
methanol, 17, 22
methoxide ion, 262
methyl acetate, 336
methyl thioacetate, 336
methylamine, 23, 30, 410
methyllithium, 17, 92
methylmagnesium iodide, 227
penta-1,4-diene, 130
phenol, 168
phenoxide ion, 262
phosphate, 42
pyridine, 419
pyrrole, 418
$\mathrm{S}_{\mathrm{N}} 2$ reaction, 231
sulfide, 43
thioester, 336
thiol, 43
thymine, 552
trimethylamine, 408
tryptamine, 425
water, 19, 21
zwitterion, 504
Elimination reaction, 90
biological examples of, 243
E1 mechanism for, 240
E1cB mechanism for, 241
E2 mechanism for, 239
summary of, 241-242
Zaitsev's rule and, 237-238
Embden-Meyerhoff pathway, 579
Enantiomers, 190
discovery of, 197
properties of, 205
R, S configuration of, 197-199
specific rotations of, 197
Enantioselective synthesis, 213
-ene, alkene name ending, 79
Energy diagram, 98-99
catalyst effect on, 101
reaction coordinate in, 98-99
Enol(s), 138
carbonyl α-substitution reactions and, 376-377
mechanism of formation of, 374-375
nucleophilicity of, 376
polarity of, 376
reaction with electrophiles, 376-377
Enol tautomer, electrostatic potential map of, 374, 376
Enolate ion(s), 312, 374
alkylation of, 382-384
electrostatic potential map of, 379,382
reactivity of, 382
resonance in, 379
Enone(s), 387
from aldol reaction, 387-388
Entgegen, $(E), \mathbf{8 6}$
Enzyme(s), 524
catalysis by, 101
classification of, 525
cofactors in, 525-527
number of in humans, 503, 521
rate enhancements of, 524
specificity of, 524
Ephedrine, sources of, 421
structure of, 421
Epichlorohydrin, epoxy resins from, 281-282
Epinephrine, biosynthesis of, 243
Epoxide(s), 124
cleavage of, 277-278
1,2-diols from, 125, 277
from alkenes, 124-125
mechanism of ring-opening, 125, 277-278
ring opening of, 125
Epoxy resin, structure of, 281-282 uses of, 281
Equatorial position (cyclohexane), 64 drawing, 65
Erythronolide B, structure of, 216
Erythrose, structure of, 477
Essential amino acids, 508
Essential carbohydrates, 487-488
Essential fatty acids, 541
Essential oil, 102
Ester(s), 326
alcohols from, 264, 267, 347-348
carboxylic acids from, 347
Claisen condensation reaction of, 388-390
electrostatic potential map of, 336
from acid anhydrides, 345
from acid chlorides, 343
from carboxylic acids, 339-340
from monosaccharides, 482
hydrolysis of, 347
IR spectroscopy and, 439
mechanism of Grignard reaction of, 348
mechanism of hydrolysis of, 347
naming, 328
occurrence of, 330-331
odors of, 330
$\mathrm{p} K_{\mathrm{a}}$ of, 380
properties of, 330-331
reaction with Grignard reagents, 267, 348
reaction with $\mathrm{LiAlH}_{4}, 264,347-348$
reactions of, 347-348
reduction of, 264, 347-348
saponification of, 347
Estradiol, structure of, 547
Estrogen, 547
function of, 547
Estrone, structure of, 155, 547
Ethane, bond angles in, 11
bond lengths in, 11
bond strengths in, 11
conformations of, 54-55
eclipsed conformation of, 55
Newman projections of, 55
$\mathrm{p} K_{\mathrm{a}}$ of, 379
rotation barrier in, 55
sawhorse representations of, 55
$s p^{3}$ hybrid orbitals in, 11-12
staggered conformation of, 55
structure of, 11-12
Ethanoic acid, see Acetic acid
Ethanol, from ethylene, 117
industrial synthesis of, 117
IR spectrum of, 437
molecular model of, 25
$\mathrm{p} K_{\mathrm{a}}$ of, 20, 261
toxicity of, 27
Ethene, see Ethylene
Ether(s), 256
alcohols from, 276
cleavage of, 276
electrostatic potential map of, 42
from alcohols, 273
from monosaccharides, 482
from phenols, 274
mechanism of cleavage reaction, 276
naming, 258-259
NMR spectroscopy and, 450
polarity of, 42
reaction with HX, 276
Williamson synthesis of, 273
Ethoxide ion, electrostatic potential map of, 333
Ethyl group, 47
Ethylamine, $\mathrm{p} K_{\mathrm{b}}$ of, 409
Ethylene, bond angles in, 13-14
bond lengths in, 13-14
bond strengths in, 13-14
double bond in, 13-14
electrostatic potential map of, 39,95
ethanol from, 117
$\mathrm{p} K_{\mathrm{a}}$ of, 139
polymerization of, 128-129
reaction with $\mathrm{HCl}, 95-97$
$s p^{2}$ hybrid orbitals in, 12-13
structure of, 12-13
Ethylene glycol, synthesis of, 125 uses of, 125
Ethyne, see Acetylene
Ethynylestradiol, structure of, 548
Exon (DNA), 556
E, Z alkene naming system, 86-88
FAD, see Flavin adenine dinucleotide, 577
Fat (animal), 539
β-oxidation pathway for catabolism of, 575-579
catabolism of, 575-579
energy content of, 539

Fat (animal) (continued)
fatty acid composition of, 540
melting point of, 541
saponification of, 543
soap from, 543
structure of, 539
Fatty acid(s), 539
catabolism of, 575-579
double bond geometry in, 540
essential, 541
melting points of, 540
number of, 540
structures of, 540
table of, 540
FDA, see Food and Drug Administration
Fenoprofen, synthesis of, 335
Fibrous protein, 521
Fingerprint region, IR spectroscopy and, 440-441
Fischer, Emil, 472
Fischer esterification reaction, 339-340
mechanism of, 339-340
Fischer projection, 472
aldoses, 477
amino acids, 508
D sugars, 475
L sugars, 475
Fishhook arrow, radical reactions and, 128
Flavin adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$, structure of, 526 function of, 577
Fleming, Alexander, 359
Florey, Howard, 359
Fluorenylmethyloxycarbonyl (Fmoc), amino protecting group, 518-519
Fluoxetine, chirality of, 210
molecular model of, 210
synthesis of, 254
Flupentixol, synthesis of, 254
Fluridone, structure of, 255
Fmoc, amino acid protecting group, 518-519
Food and Drug Administration, drug approval and, 68-69
Formaldehyde, annual production of, 295
electrostatic potential map of, 105
reaction with Grignard reagent, 266
uses of, 295
Formic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 22, 332
structure of, 327
Formyl group, 297
Fractional distillation, petroleum refining and, 53
Free energy (G), biological reactions and, 573-574
Frequency (ν), 435
Friedel-Crafts acylation reaction, 165-166
Friedel-Crafts alkylation reaction, 165
limitations of, 165
mechanism of, 165
Fructose, cleavage of, 582
from glucose, 391
furanose form of, 479
pyranose form of, 479
structure of, 479
sweetness of, 494
L-Fucose, structure of, 488
Fumaric acid, structure of, 327
Fuming sulfuric acid, reaction with aromatic compounds, 164
Functional group(s), 39
carbonyl groups in, 43
electronegative atoms in, 42
IR spectroscopy and, 439
multiple bonds in, 42
name endings of, 40-41
table of, 40-41
Functional RNAs, 555
Furanose form, 478
Fused-ring heterocycle, 420
Galactose, occurrence of, 476 structure of, 477
γ-Aminobutyric acid, structure of, 505

Gancyclovir, structure and uses of, 570
Gasoline, manufacture of, 53
Geminal diol, 305
Gene, 555
Genome, size of in humans, 555
Globular protein, $\mathbf{5 2 1}$
Glucaric acid, structure of, 487
Glucitol, structure of, 485
Glucocorticoid, 547
function of, 547
Glucopyranose, molecular model of, 480
Glucose, α anomer of, 480-481
anomers of, 480-481
β anomer of, 481
catabolism of, 579-584
chair conformation of, 64
Fischer projection of, 473
fructose from, 581-582
glycolysis of, 579-584
molecular model of, 64,480
mutarotation of, 480-481
pentaacetate of, 482
pentamethyl ether of, 482
pyranose form of, 479
reaction with acetic anhydride, 482
specific rotation of, 481
structure of, 477
sweetness of, 494
Glutaric acid, structure of, 327
Glutathione, function of, 280
oxidation of, 280
configuration of, 199
Fischer projection of, 472
$(R)-(+)$-Glyceraldehyde, configuration of, 474-475
Glycerophospholipid, 544
structure of, 544-545
Glycoconjugate, 484
Glycogen, structure and function of, 492
Glycol, 125
Glycolic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 332
Glycolipid, 484
Glycolysis, 579-584
mechanism of, 580-584
results of, 584
steps of, 580-581
Glycoprotein, 484
biosynthesis of, 485
Glycoside, 483
from carbohydrates, 483-484
mutarotation of, 483
Green chemistry, 422-423
ibuprofen synthesis and, 423
principles of, 422
Grignard, Victor, 226
Grignard reaction, aldehydes, 266
esters, 267
formaldehyde, 266
ketones, 266
Grignard reagent, 226
electrostatic potential map of, 227
from alkyl halides, 226
limitations on formation of, 304
polarity of, 227
reaction with acids, 227
reaction with aldehydes, 303
reaction with esters, 348
reaction with ketones, 303
reaction with nitriles, 353
Ground-state electron configuration, 4
Guanine, electrostatic potential map of, 552 structure of, 549
Guanosine, structure of, 550
Gulose, structure of, 477
Guncotton, structure of, 491
Halogenation (alkene), 120-121
mechanism of, 121
stereochemistry of, 121

Halomon, biosynthesis of, 121-122 molecular model of, 244
Haloperoxidase, 121
Hamster, sex attractant for, 291
Handedness, tetrahedral carbon and, 190-191
Heme, structure of, 417
Hemiacetal(s), 306
from aldehydes, 306-307
from ketones, 306-307
mechanism of formation of, 306-307
monosaccharides and, 478-479
Heptane, structure of, 47
Herbicides, agricultural use of, 26-27 atrazine and, 26-27
Hertz (Hz), 435
Heterocycle(s), 173, 417 fused-ring, 420
Heterocyclic amine, 406
Heterogeneous reaction, 122
Heterolytic process, 91
Hevea brasiliensis, rubber from, 141
Hexa-1,3,5-triene, UV spectroscopy and, 444
Hexane, mass spectrum of, 434 structure of, 47
Histamine, structure of, 428
Histidine, basicity of, 418 electrostatic potential map of, 508 structure of, 26
HMG-CoA reductase, molecular model of, 530 statin drugs and, 591-592 X-ray crystal structure of, 592
Homocysteine, structure of, 505
Homolytic process, 91
Honey, monosaccharides in, 490
Human fat, composition of, 540
Human genome, number of genes in, 562 size of, 555
Humulene, structure of, 102
$s p$ Hybrid orbital, 12-14 shape of, 13
$s p^{2}$ Hybrid orbital, 12-13 geometry of, 12-13 shape of, 12-13
$s p^{3}$ Hybrid orbital, 10-12 geometry of, 10 shape of, 10
Hybridization, Linus Pauling and, 10 valence bond theory and, 10-14
Hydrate, aldehyde oxidation and, 300
Hydration, aldehydes, 305 alkenes, 117-119
alkynes, 138-139 biological example of, 268-269
ketones, 305
Markovnikov's rule and, 118
Hydrocarbon, 45
Hydrochloric acid, $\mathrm{p} K_{\mathrm{a}}$ of, 20
Hydrocortisone, function of, 294 structure of, 294, 548
Hydrocyanic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 20
Hydrogen, bond length in, 9 bond strength of, 9 electron configuration of, 4 phenols and, 260 reaction with alkenes, 122-123 reaction with alkynes, 137 reaction with aromatic compounds, 172
Hydrogen bond, alcohols and, 260 α helix and, 522
amines and, 408
β-pleated sheet and, 522-523
carboxylic acids and, 330
DNA and, 552-553 electrostatic potential map of, 260
Hydrogen chloride, electrostatic potential map of, 19 reaction with ethylene, 95-97
Hydrogenation, alkenes, 122-123 alkynes, 137
aromatic compounds, 172
catalyst for, 122-123
mechanism of, 122-123
stereochemistry of, 122-123
trans fatty acids from, 123-124
vegetable oil, 123-124, 541-542
Hydrolase, 525
Hydronium ion, electrostatic potential map of, 19, 93
Hydrophilic, 543
Hydrophilic interaction, tertiary structure and, 523-524
Hydrophobic, 543
Hydrophobic interaction, tertiary structure and, 523-524
Hydroquinone, 275
from quinones, 275
oxidation of, 275
Hydroxyl group, directing effect of, 167
Hydroxylation (alkene), 125
Ibuprofen, chirality of, 213
function of, 178
green synthesis of, 423
molecular model of, 213
Icosane, structure of, 47
Idose, structure of, 477
Imidazole, aromaticity of, 173,418
basicity of, 418
electrostatic potential map of, 26, 420
numbering of, 406
structure of, 418
Imine(s), $\mathbf{3 1 0}$
biological example of, 310
from aldehydes, 310
from ketones, 310
IND (Investigational New Drug), 68
Indole, numbering of, 406
Inductive effect, 17
electronegativity and, 17
electrophilic aromatic substitution and, 168-169
polar covalent bonds and, 17
Infrared radiation, frequency of, 435
wavelengths of, 435
Infrared spectroscopy, 438-441
explanation of, 438-439
fingerprint region in, 440-441
functional groups and, 439
molecular motions and, 438-439
regions in, 440-441
wavelengths of, 438
Infrared spectrum, cyclohexanol, 440
cyclohexanone, 440
ethanol, 437
interpretation of, 439-441
Insulin, structure of, 514
Integration (NMR), 451
Intermediate (reaction), 99
Intron (DNA), 556
Inversion of configuration, $\mathrm{S}_{\mathrm{N}} 2$ reactions and, 231
Invert sugar, 490
Investigational New Drug (IND), 68
Iodoform reaction, 369
Ion-exchange chromatography, amino acid analysis and, 514-515
Ionic bond, 7
IR, see Infrared
Isobutane, structure of, 45
Isobutyl group, 47
Isoelectric point (pI), 509-510
calculation of, 511
table of, 506-507
Isoleucine, molecular model of, 204
Isomerase, 525
Isomers, 46
alkanes and, 45-46
cis-trans, 60-61
constitutional, 46
kinds of, 208-209
review of, 208-209
Isoprene, rubber from, 141

Isoprene rule, terpenoid biosynthesis and, 102-103
Isopropyl group, 47
Isoquinoline, structure of, 420
Isotope, 3
IUPAC system of nomenclature, 49
J, coupling constant, 454
Jefferson, Thomas, 564
K_{a}, acidity constant, 19
table of, 20
K_{b}, basicity constant, 408
Kekulé, August, 5
Kekulé structure, 7
3-Keto ester, $\mathrm{p} K_{\mathrm{a}}$ of, 380
Keto tautomer, electrostatic potential map of, 374
α-Ketoglutarate, amino acid catabolism and, 588-590
transamination and, 588-590
Ketone(s), 294
acetals from, 306-308
alcohols from, 263-264, 266, 302-303
aldol reaction of, 386
amines from, 413-414
bromination of, 377-378
carbonyl condensation reaction of, 386
common names of, 297
from alcohols, 272
from alkenes, 125-126
from alkynes, 138-139
from nitriles, 353
hemiacetals from, 306-307
hydration of, 305
mines from, 310
IR spectroscopy and, 439
mechanism of hydration of, 305
mechanism of reduction of, 303
naming, 297
nucleophilic addition reactions of, 300-302
$\mathrm{p} K_{\mathrm{a}}$ of, 380
protecting group for, 308
reaction with alcohols, 306-308
reaction with amines, 310
reaction with Grignard reagents, 266, 303
reaction with $\mathrm{H}_{2} \mathrm{O}, 305$
reaction with $\mathrm{NaBH}_{4}, 263-264$
reduction of, 263-264, 302-303
reductive amination of, 413-414
synthesis of, 298-299
Ketone bodies, 596
Ketose, 471
Keto-enol tautomerism, 373-375
acid catalysis of, 374-375
base catalysis of, 374-375
Krebs, Hans, 584
Krebs cycle, 584
L-Amino acid, 508
L-Sugar, 475
configuration of, 475
Fischer projection of, 475
Labetalol, synthesis of, 407
Lactam, 359
Lactic acid, chirality of, 191
configuration of, 199
plane of symmetry in, 193
resolution of, 207
Lactofen, structure of, 255
Lactose, sweetness of, 494
Lamivudine, structure of, 468
Lanosterol, structure of, 103
Lard, composition of, 540
Latex, rubber from, 142
Lauric acid, structure of, 540
LD_{50} value, 27
table of, 27
LDA, see Lithium diisopropylamide
Le Bel, Joseph, 5

Leaving group (nucleophilic substitution reaction), 228
$\mathrm{S}_{\mathrm{N}} 1$ reactions and, 237
$\mathrm{S}_{\mathrm{N}} 2$ reactions and, 233
Lemons, odor of, 210
Leucine, biosynthesis of, 596 metabolism of, 401
Leuprolide, structure and function of, 536
Levorotatory, 195
Lewis, G. N., 7
Lewis acid, 24-25
Lewis base, 24-26
Lewis structure, 7
Lidocaine, molecular model of, 70 synthesis of, 371
Ligase, 525
Limonene, chirality of, 210 molecular model of, 210
Lindlar catalyst, 137
Line-bond structure, 7
$1 \rightarrow 4$ Link, 489
Linoleic acid, structure of, 540
Linolenic acid, molecular model of, 541 structure of, 540
Lipid, 538 classification of, 538-539
Lipid bilayer, 545-546
dimensions of, 545
function of, 546
phospholipids in, 545-546
Lipitor, structure of, 77, 155 function of, 592
Lipoic acid, structure and function of, 526
Lithium aluminum hydride, reaction with amides, 350 reaction with carboxylic acids, 264, 341 reaction with esters, 264, 347-348 reaction with nitriles, 353
Lithium diisopropylamide (LDA), reaction with ketones, 379-380
Locant, 49 position of in IUPAC names, 80
Lone-pair electrons, 7
Loratidine, structure of, 162
Lotaustralin, structure of, 352
Lovastatin, function of, 592
Lucite, structure of, 129
Lyase, 525
Lycopene, structure of, 111
Lysergic acid diethylamide, structure of, 426
Lysozyme, isoelectric point of, 510
Lyxose, structure of, 477

Magnesium, reaction with alkyl halides, 226
Magnetic resonance imaging, 458-459 knee injury and, 459 uses of, 458-459
Maleic acid, structure of, 327
Malonic acid, structure of, 327
Malonic ester, 383 alkylation of, 383-384 decarboxylation of, 383 enolate ion of, 383 $\mathrm{p} K_{\mathrm{a}}$ of, 383
Malonic ester synthesis, 383-384
Maltose, $1 \rightarrow 4$ link in, 489 molecular model of, 489 mutarotation of, 489 structure of, 489
Mannose, occurrence of, 476 structure of, 477
Margarine, structure of, 541
Markovnikov, Vladimir, 113
Markovnikov's rule, 114 alkene hydration and, 118 carbocations and, 116-117 electrophilic addition reactions and, 114
Mass number (A), 3

Mass spectrometry, 434-435
base peak in, 434
fragmentation in, 434
mass-to-charge ratio in, 434
molecular ion in, 434
parent peak in, 434
resolution of, 434
Mass spectrum, hexane, 434
Mass-to-charge ratio, mass spectrometry and, 434
Maxam-Gilbert DNA sequencing, 560
Mechanism, 91
acetal formation, 306-307
acid chloride hydrolysis, 343
1,4-addition, 131
alcohol dehydration, 268-269, 305
aldehyde oxidation, 300
aldehyde reduction, 303
aldol reaction, 385
alkene halogenation, 120-121
alkene hydration, 117-118
alkene hydrogenation, 122-123
alkene polymerization, 128-129
carbonyl α substitution, 376-377
carbonyl condensation, 385
citrate synthase, 528-529
Claisen condensation, 389-390
conjugate nucleophilic addition, 311-312
E1 reaction, 240
E1cB reaction, 241
E2 reaction, 239
electrophilic addition, 96-97
electrophilic aromatic substitution, 161
enol formation, 374-375
epoxide ring-opening, 125, 277-278
ester hydrolysis, 347
ether cleavage, 276
ethylene polymerization, 128-129
Fischer esterification, 339-340
Friedel-Crafts alkylation, 165
Grignard reaction with aldehydes, 303
Grignard reaction with esters, 348
Grignard reaction with ketones, 303
hemiacetal formation, 306-307
ketone hydration, 305
ketone reduction, 303
nucleophilic acyl substitution reactions, 335
nucleophilic addition, 300-301
radical addition, 128
reductive amination, 414
$\mathrm{S}_{\mathrm{N}} 1$ reaction, 234-235
$\mathrm{S}_{\mathrm{N}} 2$ reaction, 230
Menthene, electrostatic potential map of, 39
Menthol, molecular model of, 63
structure of, 63
Mercapto group, 279
Merrifield peptide synthesis, 520-521
Meso compound 204-205 test for, 204-205
Messenger RNA, 555
protein synthesis and, 557-559
translation and, 557-559
Mestranol, structure of, 153
meta-, naming prefix, 158
Meta directing group, 167
electrophilic aromatic substitution reactions and, 170
Metabolism, 572
overview of, 572-573
Methandrostenolone, structure of, 548
Methane, bond angles in, 11
bond lengths in, 11
bond strengths in, 11
combustion of, 54
reaction with $\mathrm{Cl}_{2}, 54$
$s p^{3}$ hybrid orbitals in, 11
structure of, 11
Methanethiol, electrostatic potential map of, 105
Methanoic acid, see Formic acid

Methanol, bond angles in, 259
electrostatic potential map of, 17, 22
$\mathrm{p} K_{\mathrm{a}}$ of, 21, 261
Methionine, biosynthesis of, 322
molecular model of, 201
Methotrexate, mechanism of action of, 597
Methoxide ion, electrostatic potential map of, 262
Methyl 2,2-dimethylpropanoate, ${ }^{1} \mathrm{H}$ NMR spectrum of, 451
Methyl acetate,
${ }^{13} \mathrm{C}$ NMR spectrum of, 447
electrostatic potential map of, 336
${ }^{1} \mathrm{H}$ NMR spectrum of, 447
Methyl group, 47
Methyl thioacetate, electrostatic potential map of, 336
Methylamine, electrostatic potential map of, 23, 30, 410 $\mathrm{p} K_{\mathrm{b}}$ of, 409
Methylation, biological example of, 243
1-Methylcyclohexanol, ${ }^{1} \mathrm{H}$ NMR spectrum of, 456
Methyllithium, electrostatic potential map of, 17, 92
Methylmagnesium iodide, electrostatic potential map of, 227
p-Methylphenol, $\mathrm{p} K_{\mathrm{a}}$ of, 261
Metolachlor, mechanism of action of, 221
structure of, 77
synthesis of, 188, 323
Metoprolol, synthesis of, 278
Mevacor, function of, 592
Micelle, 543
Mineralocorticoid, 547 function of, 547
Molar absorptivity, UV spectroscopy and, 443
Molecular ion $\left(M^{+}\right), 434$
Molecular model, acetaminophen, 30
adrenaline, 215
alanine, 503
p-aminobenzoic acid, 58
arecoline, 44
aspartame, 30
aspirin, 15
cis-but-2-ene, 84
trans-but-2-ene, 84
carbocation, 116
cellobiose, 489
citric acid, 29
coniine, 29
cyclobutane, 62
cyclohexane, 63
cyclopentane, 62
cyclopropane, 60, 62
decane, 55
diethyl ether, 257
cis-1,2-dimethylcyclopropane, 60
trans-1,2-dimethylcyclopropane, 60
ethanol, 257
fluoxetine, 210
glucopyranose, 480
glucose, 64,480
halomon, 244
HMG-CoA reductase, 530
ibuprofen, 213
isoleucine, 204
lidocaine, 70
limonene, 210
linolenic acid, 541
maltose, 489
menthol, 63
methionine, 201
phenol, 257
phenylalanine, 70
pseudoephedrine, 215
serine, 215
stearic acid, 541
sucrose, 490
tetrahydrofuran, 277
trimethylamine, 407

Molecule, 7
electron-dot structures of, 7
Kekulé structures of, 7
line-bond structures of, 7
valence bond theory of, 9
Monomer, 127
Monosaccharide(s), 470
alditols from, 485
anomers of, 480-481
configurations of, 477
essential, 487-488
esters from, 482
ethers from, 482
Fischer projections of, 472-473
furanose forms of, 478-479
glycosides from, 483
hemiacetal formation and, 478-479
oxidation of, 486-487
pyranose forms of, 478-479
reaction with acetic anhydride, 482
reaction with alcohols, 483
reduction of, 485
Monosodium glutamate, specific rotation of, 196
Monoterpene, 102
Monounsaturated fatty acid, 540
Morphine, specific rotation of, 196
MRI, see Magnetic resonance imaging, 458-459
Multiplet (NMR), 452
Muscalure, structure of, 152
Mutarotation, 481
Mylar, structure of, 357
Myoglobin, α helix in, 522
ribbon model of, 522
tertiary structure of, 522
Myrcene, structure of, 102
Myristic acid, catabolism of, 578-579
structure of, 540
$n+1$ rule, 453
N-terminal amino acid, 512
Naming, acid anhydrides, 327-328
acid chlorides, 327
acid halides, 327
acyl groups, 327
alcohols, 257-258
aldehydes, 296-297
alkanes, 50-51
alkenes, 79-81
alkoxide ions, 261
alkyl groups, 46-48
alkyl halides, 223-224
alkynes, 81, 136-137
alphabetization in, 51
amides, 328
amines, 405-406 aromatic compounds, 157-158
carboxylic acids, 326-327
cycloalkanes, 58-59
cycloalkenes, $80-81$
esters, 328
ethers, 258-259
ketones, 297
nitriles, 328-329
phenols, 258
sulfides, 279
thiols, 279
Nandrolone, structure of, 203
Naproxen, structure of, 36
Natural gas, constituents of, 53
Natural product, 68
Nembutal, synthesis of, 393
New Molecular Entity (NME), 68
Newman projection, 55
Nicotinamide adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$, structure of, 526
function of, 575
Nicotine, structure of, 31, 404

Ninhydrin, amino acid analyzer and, 514-515 reaction with amino acids, 514
Nitric acid, $\mathrm{p} K_{\mathrm{a}}$ of, 20 reaction with aromatic compounds, 163
Nitrile(s), 326
amines from, 353
carboxylic acids from, 334-335, 353
hydrolysis of, 334-335, 353
IR spectroscopy and, 439
ketones from, 353
naming, 328-329
naturally occurring, 351-352
$\mathrm{p} K_{\mathrm{a}}$ of, 380
polarity of, 353
reaction with Grignard reagents, 353
reaction with $\mathrm{LiAlH}_{4}, 353$
reactions of, 352-353
reduction of, 353
synthesis of, 352
Nitrile group, directing effect of, 167
Nitro group, directing effect of, 167
Nitrobenzene, arylamines from, 415-416 reduction of, 415-416
p-Nitrophenol, $\mathrm{p} K_{\mathrm{a}}$ of, 261
NME (New Molecular Entity), 68
NMR, see Nuclear magnetic resonance
Nomenclature, IUPAC, 49
see also Naming
Nonane, structure of, 47
Nonbonding electrons, 7
Nonoxynol 9, synthesis of, 293
Nootkatone, chirality of, 192
Norepinephrine, biosynthesis of, 172 methylation of, 243
Norethindrone, structure of, 548
Norflurazon, structure of, 255
Normal (n) alkane, 46
NSAIDs, 177-178
Nuclear magnetic resonance (NMR) spectroscopy, 445-457
chemical shift and, 448-449
${ }^{13} \mathrm{C}$ chemical shifts in, 457
${ }^{1} \mathrm{H}$ chemical shifts in, 450
chemically equivalent nuclei in, 447
coupling constants and, 454
delta scale in, 449
integration of peaks in, 451-452
magnetic field strength in, 445-446
$n+1$ rule in, 453
nuclear spin and, 445-446
number of absorptions in, 447
rf energy and, 445-446
shielding and, 446 spin-spin splitting in, 452-454
theory of, 445-446 uses of, 455-456
${ }^{13} \mathrm{C}$ Nuclear magnetic resonance spectrum, methyl acetate, 447
p-bromoacetophenone, 457
${ }^{1}$ H Nuclear magnetic resonance spectrum, 1methylcyclohexanol, 456
bromoethane, 452
2-bromopropane, 454
methyl acetate, 447 methyl 2,2-dimethylpropanoate, 451
Nucleic acid(s), 548-551 see Deoxyribonucleic acid, Ribonucleic acid
Nucleophile(s), 92-93 examples of, 93 nucleophilic addition reactions and, 302
Nucleophilic acyl substitution reaction, 335-337 kinds of, 337
mechanism of, 335
Nucleophilic addition reaction, 300-302 acid catalysis of, 300-301
base catalysis of, 300-301
mechanism of, 300-301

Nucleophilic substitution reaction, 228-237
biological examples of, 243
discovery of, 227-228
examples of, 229
summary of, 241-242
Nucleoside, 549
Nucleotide, 549
Nucleus, diameter of, 2-3 spin of, 445
Nylon, 356
synthesis of, 357
uses of, 357
Nylon 66, structure of, 357
Octane, structure of, 47
Octet rule, 7
-oic acid, name ending for carboxylic acids, 326
Oil (vegetable), 539
fatty acid composition of, 540
hydrogenation of, 541-542
melting point of, 541
structure of, 539
-ol, name ending for alcohols, 257
Olefin, 78
Oleic acid, structure of, 540
Olive oil, composition of, 540
-one, name ending for ketones, 297
Optical activity, 195
chirality and, 195-196
Optical isomers, 197
Oranges, odor of, 210
Orbital, 3
filling rules for, 4
hybridization of, 10-14
overlap of, 9
shapes of, 3-4
Organic chemicals, number of, 38
Organic chemistry, 1 history of, 1-2
Organic reactions, kinds of, 89-90
Organic synthesis, strategy for, 174-176
Organohalide(s), 222
naturally occurring, 244
see also Alkyl halide
uses of, 222
Organometallic compound, 226
Orlon, structure of, 129
Ortho, para directing group, 167
electrophilic aromatic substitution reactions and, 169
ortho-, naming prefix, 158
-ose, name ending for carbohydrates, 471
-oside, name ending for glycosides, 483
Oxalic acid, structure of, 327
Oxaloacetate, citrate from, 528-529
citric acid cycle and, 586
Oxidation, 124
alcohols, 271-272
aldehydes, 298-300
aldoses, 486-487
aromatic compounds, 171
hydroquinones, 275
monosaccharides, 486-487
phenols, 274
thiols, 280
Oxidoreductase, 525
Oxirane, 124
oxo-, name prefix for carbonyl compounds, 298
Oxyfluorfen, structure of, 255
Palladium, hydrogenation catalyst, 122
Palmitic acid, structure of, 540
Palmitoleic acid, structure of, 540
Papain, enzyme function of, 524
para-, naming prefix, 158
Paraffin, 54
Paraquat, synthesis of, 432

Parathion, structure of, 371
Parent peak, 434
Pasteur, Louis, 197
Pauling, Linus, 10
PCR, see Polymerase chain reaction, 562
Peanut oil, composition of, 540
Penicillin, discovery of, 358-359
Penicillin G, structure of, 359
Penicillin V, chirality of, 213 specific rotation of, 196
Penta-1,4-diene, electrostatic potential map of, 130
Pentane, isomers of, 46 structure of, 46
Pentane-2,4-dione, enol of, 374
Pentobarbital, structure of, 402 synthesis of, 393
Pepsin, isoelectric point of, 510
Peptide(s), 504
amide bonds in, 513
DCC in synthesis of, 518
see also Protein
solid-phase synthesis of, 520-521
synthesis of, 517-521
Periodinane, reaction with alcohols, 271
Peroxyacid, 124
reaction with alkenes, 124-125
Petroleum, components of, 53 fractional distillation of, 53
refining of, 53
source of, 53
pH , physiological 508
Pharmaceuticals, approval process for, 68-69 clinical trials of, 68-69 sources of, 68 see also Drugs
Phenol(s), 256 acidity of, 261
boiling points of, 260 electrophilic aromatic substitution of, 274 electrostatic potential map of, 168
ethers from, 274
hydrogen bonds in, 260
molecular model of, 257
naming, 258
nitration of, 169
oxidation of, 274
$\mathrm{p} K_{\mathrm{a}}$ of, 261, 332
quinones from, 274
reaction with $\mathrm{NaOH}, 262$
structure of, 157
Phenoxide ion, 260
electrostatic potential map of, 262
reaction with alkyl halides, 274
resonance in, 262
Phenyl group, 157
Phenyl isothiocyanate, Edman degradation and, 516
Phenylalanine, molecular model of, 70
Phenylthiohydantoin (PTH), Edman degradation and, 516
Phosphatidic acid, structure of, 545
Phosphatidylcholine, structure of, 545
Phosphatidylethanolamine, structure of, 545
Phosphatidylserine, structure of, 545
Phosphodiester bonds, DNA and, 551
Phospholipid, 544 lipid bilayer and, 545-546
Phosphopantetheine, acetyl CoA and, 355
Phosphoric acid, $\mathrm{p} K_{\mathrm{a}}$ of, 20
Phosphorus, electron configuration of, 4
Photon, 435
Photosynthesis, 470
Phthalates, toxicity of, 331 uses of, 331
Physiological pH, 508
Pi bond, 13
acetylene and, 14
ethylene and, 13-14
α-Pinene, structure of, 78
$\mathrm{p} K_{\mathrm{a}}, 19$
$\mathrm{p} K_{\mathrm{b}}, 408$
Planck equation, electromagnetic radiation and, 436
Plane of symmetry, chirality and, 192
meso compounds and, 204
Plane-polarized light, 195
Plasmalogen, structure of, 567
Platinum dioxide, hydrogenation catalyst, 122
Plexiglas, structure of, 129
PLP, see Pyridoxal phosphate, 588
Polar covalent bond, 16-17
electronegativity and, 16-17
inductive effects and, 17
representations of, 17
Polar reaction, 91-93
characteristics of, 92-93
curved arrows in, 91-92
electronegativity and, 92-93
electrophiles in, 93
example of, 95-97
nucleophiles in, 93
Polarimeter, operation of, 195
Poly(glycolic acid), uses of, 358
Poly(lactic acid), structure of, 358
Poly(methyl methacrylate), uses of, 129
Poly(vinyl acetate), uses of, 129
Poly(vinyl chloride), uses of, 129
Polyacrylonitrile, uses of, 129
Polycyclic aromatic compound, 172
Polyester(s), $\mathbf{3 5 7}$
synthesis of, 357 uses of, 357
Polyethylene, mechanism of formation, 128-129 synthesis of, 128-129
Polyhydroxybutyrate, structure of, 358
Polymer(s), 127
biodegradable, 357-358
chain-growth, 356
polyamides, 356-357
polyesters, 357
step-growth, 356
table of, 129
Polymerase chain reaction, 562-563
steps in, 562-563
Polypropylene, uses of, 129
Polysaccharide, 470, 490
biological functions of, 493-494
Polystyrene, uses of, 129
Polytetrafluoroethylene, uses of, 129
Polyunsaturated fatty acid, 541
Potassium permanganate, reaction with alkenes, 125-126
Pralidoxime iodide, synthesis of, 323
Pravachol, function of, 592 structure of, 77
Pravastatin, function of, 592
Priestley, Joseph, 141
Primary alcohol(s), 257
from aldehydes, 263-264
from carboxylic acids, 264
from esters, 264
from Grignard reaction, 266
oxidation of, 271
Primary amine, 405
Primary carbocation, 116
Primary carbon, 48
Primary structure (protein), 521
Procaine, structure of, 33
Progesterone, structure of, 547
Proline, biosynthesis of, 430
Promotor sequence (DNA), 556
Propane, structure of, 45
Propanil, synthesis of, 432
Propanoic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 332
Propyl group, 47
Prostaglandin $\mathrm{F}_{2 \alpha}$, structure of, 61
Protecting group, 308
aldehyde, 308
amino acid, 518-519

Boc, 518-519
Fmoc, 518-519
ketone, 308
protein synthesis and, 518-519
Protein, 504
amide bonds in, 513
amino acid analysis of, 514-515
backbone in, 512
biosynthesis of, 557-559
C-terminal amino acid in, 512
catabolism of, 588-590
chymotrypsin cleavage of, 516
classification of, 521
cleavage of, 516
convention for writing, 512
covalent bonding in, 513-514
disulfide bonds in, 513-514
Edman degradation of, 515-516
electrophoresis of, 510-511
fibrous, 521
globular, 521
hydrolysis of, 516
N-terminal amino acid in, 512
number of in humans, 562
posttranslational modification of, 562
primary structure of, 521
quaternary structure of, 521
reaction with phenyl isothiocyanate, 516
secondary structure of, 521-524
see also Peptide
sequencing of, 515-516
structure determination of, 514-516
tertiary structure of, 521
trypsin cleavage of, 516
Protein Data Bank, 530
Prozac, see Fluoxetine, 210
Pseudoephedrine, molecular model of, 215
Purine, structure of, 549
Pyranose form, 478
anomers of, 480-481
Pyridine, aromaticity of, 173, 419
basicity of, 419
electrostatic potential map of, 419
numbering of, 406
$\mathrm{p} K_{\mathrm{b}}$ of, 409,419
structure of, 419
Pyridoxal, structure of, 419
Pyridoxal phosphate, function of, 310
structure of, 294, 417, 588
transamination and, 588-589
Pyridoxine, structure of, 419
Pyrimidine, aromaticity of, 173
numbering of, 406
structure of, 549
Pyrrole, aromaticity of, 173, 418
basicity of, 418
electrostatic potential map of, 418
numbering of, 406
structure of, 418
Pyrrolysine, structure of, 505
Pyruvate, alanine from, 310
from glycolysis, 583-584
Qiana, structure of, 358
Quantum mechanical model of atom, 3-5
Quartet (NMR), 452
Quaternary ammonium salt, 405 synthesis of, 412
Quaternary carbon, 48
Quaternary structure (protein), 521
Quinine, structure of, 420
Quinoline, structure of, 420
Quinone, 274
from phenols, 274
hydroquinones from, 275
reaction with $\mathrm{NaBH}_{4}, 275$
reaction with $\mathrm{SnCl}_{2}, 275$
reduction of, 275
R Configuration, 198
rules for specifying, 198
R group, 48
Racemate, 206
Racemic mixture, 206
resolution of, 206-207
Radical, 91
reaction with alkenes, 128
Radical reaction, 91
fishhook arrows in, 91
Radiofrequency (rf) energy, NMR spectroscopy and, 445-446
Rayon, structure of, 491
Reaction, kinds of, 89-90
Reaction coordinate, 98
Reaction energy diagram, see Energy diagram, 98-99
Reaction intermediate, 99
Reaction mechanism, 91
Reaction rate, $\mathrm{S}_{\mathrm{N}} 1$ reactions and, 234-235 $\mathrm{S}_{\mathrm{N}} 2$ reactions and, 231
Rearrangement reaction, 90
Reducing sugar, 486 tests for, 486
Reduction, 122 aldehydes, 263-264
aldoses, 485
alkenes, 122-123
amides, 350
aromatic compounds, 172
carboxylic acids, 264, 341
disulfides, 280
esters, 264, 347-348
ketones, 263-264 nitriles, 353 nitrobenzenes, 415-416 quinones, 275
Reductive amination, 413-414 aldehydes, 413-414 biological example of, 414
ketones, 413-414
mechanism of, 414
Regiospecific, 113
Relenza, structure of, 501
Replication (DNA), 554-555 magnitude of, 555 semiconservative, 554
Replication fork (DNA), 554
Reserpine, sources of, 421 structure of, 421
Residue (protein), 511
Resolution (enantiomers), 206-207
Resonance, 132
acetate ion and, 133
allylic carbocations and, 132
amides and, 409-410
aniline and, 409
benzene and, 134, 156
carboxylates and, 333
enolate ions and, 379
phenoxide ion and, 262
rules for drawing, 134-135
stability and, 132
Resonance form, 132
Resonance hybrid, 132
Restriction endonuclease, 560
DNA sequencing and, 560-561
Retin A, structure of, 110
Retro-aldol reaction, biological example of, 391
Retrosynthesis, 176
Reye's syndrome, aspirin and, 177
Ribavirin, structure of, 187
Ribonucleic acid (RNA), 548
amine bases in, 549
codons on, 557-559
formation of, 555-556
kinds of, 555
size of, 550
translation of, 557-559

Ribonucleotides, structures of, 550
Ribose, structure of, 477
Ribosomal RNA, 555
Ring-flip (cyclohexane), 65
RNA, see Ribonucleic acid
Rofecoxib, structure of, 178
Rosuvastatin, function of, 592
Rubber, crystallinity of, 142
history of, 141
sources of, 141
structure of, 141
vulcanization of, 142
S Configuration, 198 rules for specifying, 198
Saccharin, structure of, 495 sweetness of, 494
Salt bridge (protein), 523 tertiary structure and, 523-524
Sanger dideoxy method, 560-561
Saponification, 347, 543
Saturated, 45
Sawhorse representation, 55
Schiff base, 588 see Imine
Scurvy, vitamin C and, 313
sec-Butyl group, 47
Secobarbital, synthesis of, 393
Seconal, synthesis of, 393
Secondary alcohol, 257 from Grignard reactions, 266 from ketones, 263-264 oxidation of, 272
Secondary amine, 405
Secondary carbocation, 116
Secondary carbon, 48
Secondary structure (protein), 521-524 α helix and, 522
β-pleated sheet and, 522-523
Selenocysteine, structure of, 505
Semiconservative replication, 554
Sense strand (DNA), 556
Sequence rules (Cahn-Ingold-Prelog), 86-88
alkene isomers and, 86-88
chirality centers and, 197-199
Serine, molecular model of, 215
Sesquiterpene, 102
Sex hormone, 546-547
Shell (electron), 4
Shielding (NMR), 446
Short tandem repeat loci, DNA fingerprinting and, 563-564
Sialic acids, structure of, 488
Side chain (amino acid), $\mathbf{5 0 5}$
Sigma bond, 13
Sildenafil, structure of, 417
Simple sugar, 470 see also Aldose, Monosaccharide
Simvastatin, function of, 592
Single bond, rotation of, 54
Skeletal structure, 56
cycloalkanes and, 58
rules for drawing, 56-57
Skunk, thiols in, 279
Small RNAs, 555
$\mathrm{S}_{\mathrm{N}} 1$ reaction, 234-237
carbocations in, 234-235
characteristics of, 234-237
leaving groups in, 237 mechanism of, 234-235 rates of, 234-235 stereochemistry of, 235-236
$\mathrm{S}_{\mathrm{N}} 2$ reaction, 230-233 amines and, 412 characteristics of, 231-233 electrostatic potential map of, 231 enolate alkylation and, 382-384 inversion of configuration in, 231
leaving groups in, 233
mechanism of, 230
rates of, 231
stereochemistry of, 231
steric effects in, 232-233
transition state in, 230
Soap, composition of, 543
history of, 542
manufacture of, 543
mechanism of action of, 543
micelles from, 543
structure of, 543
Sodium, reaction with alcohols, 261
Sodium borohydride, reaction with aldehydes, 263-264
reaction with carbohydrates, 485
reaction with ketones, 263-264
Solid-phase peptide synthesis, 520-521
Sorbitol, structure of, 485
Specific rotation $\left([\alpha]_{\mathrm{D}}\right), 196$ table of, 196
Speed of light, 436
Spermaceti, structure of, 567
Sphingomyelin, 544
occurrence of, 545
structure of, 545
Sphingosine, structure of, 545
Spin-spin splitting, 452-454
cause of, 452-453
$n+1$ rule and, 453
rules for, 454
Staggered conformation, 55
Starch, acetal groups in, 309
function of, 492
structure of, 491
Statin drugs, 591-592
Stearic acid, molecular model of, 541 structure of, 540
Step-growth polymer, 356 table of, 356
Stereocenter, 191
Stereochemistry, 61
alkene hydrogenation and, 122-123
alkene hydrohalogenation and, 121
alkene hydroxylation and, 125
anti, 121
diastereomers and, 201-202
enantiomers and, 190-191
R, S configuration and, 197-199
$\mathrm{S}_{\mathrm{N}} 1$ reactions and, 235-236
$\mathrm{S}_{\mathrm{N}} 2$ reaction and, 231
syn, 123
Stereoisomers, 60-61
biological properties and, 210-213
cycloalkanes and, 60-61
diastereomers and, 201-202
enantiomers and, 197-199
kinds of, 208-209
number of, 201
properties of, 205
Steric effect, $\mathrm{S}_{\mathrm{N}} 2$ reaction and, 232-233
Steric strain, 66
cis-trans alkene isomers and, 85
cyclohexane diaxial interactions and, 66
Steroid, 546
adrenocortical, 547-548
anabolic, 548
androgens, 546-547
classification of, 546
estrogens, 547
structure of, 546
synthetic, 548
Straight-chain alkane, 46
Strychnine, toxicity of, 27
Styrene, structure of, 157
Substitution reaction, 90
Substrate (nucleophilic substitution reaction), 228
Succinic acid, structure of, 327

Sucralose, structure of, 495
sweetness of, 494
Sucrose, molecular model of, 490
mutarotation of, 490
sources of, 490
specific rotation of, 196
structure of, 490
sweetness of, 494
Sugar, 469
D-Sugar, 475
L-Sugar, 475
see also Aldose, Carbohydrate, Monosaccharide sweetness of, 494
Sulfa drugs, structure of, 164
Sulfanilamide, structure of, 164
Sulfide(s), 256
electrostatic potential map of, 43
from alkyl halides, 279
from thiols, 279
naming, 279
polarity of, 43
Sulfonium ion, 243
Sutures, biodegradable, 357-358
Syn stereochemistry, 123
Synthesis, strategy for, 174-176
Talose, structure of, 477
Tamoxifen, structure of, 110 synthesis of, 322
Taq polymerase, 562
Tartaric acid, stereoisomers of, 204-205
Tautomerism, 373
Tautomers, 374
Tazobactam, structure of, 402
Teflon, structure of, 129
Template strand (DNA), 556
Terpene, 102
biosynthesis of, 102-103
examples of, 102-103
Terpenoid, 102
number of, 102
tert-Butyl group, 47
Tertiary alcohol, $\mathbf{2 5 7}$
from Grignard reactions, 267
Tertiary amine, 405
Tertiary carbocation, 116
Tertiary carbon, 48
Tertiary structure (protein), 521
hydrophilic interactions and, 523-524
hydrophobic interactions and, 523-524
interactions in, 523-524
salt bridges and, 523-524
Testosterone, structure of, 547
Tetrahedral angle, 11
Tetrahedral geometry, carbon and, 5-6 representations of, 5-6
$s p^{3}$ hybrid orbitals and, 10-12
stereochemistry and, 190-191
Tetrahydrofolate, structure and function of, 526, 597
Tetrahydrofuran, molecular model of, 277
Tetramethylsilane, NMR calibration peak and, 448-449
Tetrasubstituted alkene, 86
THF, see Tetrahydrofuran
Thiamin, structure and function of, 418, 526
Thiazole, aromaticity of, 418
basicity of, 418
structure of, 418
Thioacetal, 321
Thioester(s), 326
electrostatic potential map of, 336
$\mathrm{p} K_{\mathrm{a}}$ of, 380
reactivity of, 354
Thiol(s), 256
electrostatic potential map of, 43
from alkyl halides, 279
naming, 279
odor of, 279
oxidation of, 280

Thiol(s) (continued) polarity of, 43 sulfides from, 279
Thiolate ion, 279
reaction with alkyl halides, 279
sulfides from, 279
Thionyl chloride, reaction with carboxylic acids, 339
Thiophenol, 256
Threonine, stereochemistry of, 201-202
stereoisomers of, 201-202
Threose, structure of, 477
Thymidine, structure of, 550
Thymine, electrostatic potential map of, 552 structure of, 549
Thyroxine, biosynthesis of, 163 structure of, 505
TMS, NMR calibration peak and, 448-449
Tollens' test, reducing sugars and, 486
Toluene, structure of, 157
Toxicity, chemicals and, 26-27
Trans fatty acid, blood cholesterol and, 541-542
hydrogenation and, 123-124
occurrence of, 541-542
structure of, 541-542
Transamination, 588-590
Transcription (DNA), 556
Transfer RNA, 555
anticodons on, 558-559
shape of, 558
translation and, 558-559
Transferase, 525
Transition state, 99
Translation (RNA), 558-559
Transpeptidase, β-lactam antibiotics and, 360
Triacontane, structure of, 47
Triacylglycerol, 539
hydrolysis of, 539-540
see also Fat, Oil
Triazine herbicides, toxicity of, 26-27
Tricarboxylic acid cycle, 584
2,4,5-Trichlorophenoxyacetic acid, synthesis of, 293
Tridecane, structure of, 47
Triethylamine, $\mathrm{p} K_{\mathrm{b}}$ of, 409
Trifluoroacetic acid, $\mathrm{p} K_{\mathrm{a}}$ of, 332

Triglyceride, 539
Trimethylamine, bond angles in, 407 electrostatic potential map of, 408 molecular model of, 407
Triplet (NMR), 452
Trisubstituted alkene, 86
Triterpene, 103
Trypsin, protein cleavage with, 516
Tryptamine, electrostatic potential map of, 425
Tyrosine, biosynthesis of, 270 metabolism of, 596

Ubiquinones, function of, 275 structure of, 275
Ultraviolet radiation, frequency of, 442 wavelengths of, 442
Ultraviolet (UV) spectroscopy, 442-444 conjugation and, 443
interpretation of, 443-444
molar absorptivity and, 443 wavelengths of, 442
Ultraviolet spectrum, buta-1,3-diene, 442 table of, 444
Undecane, structure of, 47
Unimolecular, 234
Unsaturated, 79
Upfield (NMR), 448
Uracil, structure of, 549
Uridine, structure of, 550
Uronic acid, 487
UV, see Ultraviolet
Valence bond theory, 9-10
Valence shell, 6
Valgancyclovir, structure and uses of, 570
van't Hoff, Jacobus, 6
Vegetable oil, 539
hydrogenation of, 123-124
see also Oil
Vent polymerase, 562
Viagra, structure of, 417
Vinyl monomer, 129
Vinylic, 137

Vinylic halide, from alkynes, 137-138
$\mathrm{S}_{\mathrm{N}} 2$ reactions and, 233
Vioxx, structure of, 178
Vitamin, 525
functions of, 525
Vitamin B_{1}, structure of, 418
Vitamin B_{6}, structure of, 419, 588
Vitamin C, see Ascorbic acid
Vulcanization, rubber and, 142
Walden, Paul, 227
Water, electrostatic potential map of, 19, 21

$$
\mathrm{p} K_{\mathrm{a}} \text { of, } 20
$$

Watson, James, 552
Watson-Crick DNA model, 552-553
Wave equation, $\mathbf{3}$
Wave function, 3
Wavelength (λ), 435
Wavenumber, 438
Wax, 539
Williamson ether synthesis, 273
X-ray crystallography, 530
Xylene, structure of, 157
Xylose, occurrence of, 476 structure of, 477
$-y l$, alkyl group name ending, 46
-yne, alkyne name ending, 81
Z isomer, alkene, 86
Zaitsev, Alexander, 237
Zaitsev's rule, 237-238
alcohol dehydrations and, 268 elimination reactions and, 237-238
Zanamivir, structure of, 501
Zocor, function of, 592 structure of, 77
Zusammen, (Z), 86
Zwitterion, 23, 504
electrostatic potential map of, 504

Periodic Table of the Elements

