
Perhaps the most striking aspect of many coordination compounds of transition metals 
is that they have vivid colors. The dye Prussian blue, for example, has been used as a 
pigment for more than two centuries (and is still used in blueprints); it is a complicated 
coordination compound involving iron(l1) and iron(l11') coordinated octahedrally by 
cyanide. Many precious gems exhibit colors resulting from transition metal ions incor- 
porated into their crystalline lattices. For example, emeralds are green as a consequence 
of the incorporation of small amounts of chromium(II1) into crystalline Be3A12Si601R; 
amethysts are violet as a result of the presence of small amounts of iron(II), iron(III), 
and titanium(1V) in an A1203 lattice; and rubies are red because of chromium(III), also 
in a lattice of A1203. The color of blood is caused by the red heme group, a coordina- 
tion compound of iron present in hemoglobin. Most readers are probably familiar with 
blue CuS04-5 H20,  a compound often used to demonstrate the growing of large, highly 
symmetric crystals. 

It is desirable to understand why so many coordination compounds are colored, in 
contrast to most organic compounds, which are transparent, or nearly so, in the visible 
spectrum. We will first review the concept of light absorption and how it is measured. 
The ultraviolet and visible spectra of coordination compounds of transition metals in- 
volve transitions between the d orbitals of the metals. Therefore, we will need to look 
closely at the energies of these orbitals (as discussed in Chapter 10) and at the possible 
ways in which electrons can be raised from lower to higher energy levels. The energy 
levels of d electron configurations (as opposed to the energies of individual electrons) 
are somewhat more complicated than might be expected, and we need to consider how 
electrons in atomic orbitals can interact with each other. 

For many coordination compounds, the electronic absorption spectrum provides a 
convenient method for determining the magnitude of the effect of ligands on the d 
orbitals of the metal. Although in principle we can study this effect for coordination 
compounds of any geometry, we will concentrate on the most common geometry, octa- 
hedral, and will examine how the absorption spectrum can be used to determine the 
magnitude of the octahedral ligand field parameter A, for a variety of complexes. 
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ABSORPTION OF 
LIGHT 

FIGURE 11-1 Absorption 
Spectrum of [ C U ( H ~ O ) ~ ] ~ ~  
(Reproduced with permission from 
B. N. Figgis, Introduction to Lignnd 
Fields, Wiley-Interscknce, New 
York, 1966, p. 221 .) 

Ln explaining the colors of coordination compounds, we are dealing with the phenomenon 
of complementary colors: if a compound absorbs light of one color, we see the 
complement of that color. For example, when white light (containing a broad spectrum of 
all visible wavelengths) passes through a substance that absorbs red light, the color 
observed is green. Green is the complement of red, so green predominates visually when 
red light is subtracted from white. Complementary colors can conveniently be remem- 
berid as the color pairs on opposite sides of the color wheel shown in the margin. 

An example from coordination chemistry is the deep blue color of aqueous solu- 
tiona of copper(I1) compounds, containing the ion [cLI(H~o)~]~+. The blue color is a 
consequence of the absorption of light between approximately 600 and 1000 nm (max- 
imum near 800 nm; Figure 11- I), in the yellow to infrared region of the spectrum. The 
color observed, blue, is the average complementary color of the light absorbed. 

It is not always possible to make a simple prediction of color directly from the ab- 
sorption spectrum, in large part because many coordination compounds contain two or 
more absorption bands of different energies and intensities. The net color observed is 
the color predominating after the various absorptions are removed from white light. 

For reference, the approximate wavelengths and complementary colors to the 
principal colors of the visible spectrum are given in Table 1 1 -1. 

11 -1 -1 BEER-LAMBERT ABSORPTION LAW 

If light of intensity I, at a given wavelength passes through a solution containing a 
species that absorbs light, the light emerges with intensity I, which may be measured by 
a suitable detector (Figure 11-2). 

TABLE 11-1 
Visible Light and Complementary Colors 

Wavelength Range (nm) Wave Numbers (cnz-') 

(400 >25,000 
100-450 22,000-25,000 
450490 20,000-22,000 
490-550 18,000-20,000 
550-580 17,000-18,000 
580-650 15,000-17,000 
650-700 14,000-15,000 

>700 < 14,000 

Color Complementary Color 

Ultraviolet 
Violet Yellow 
Blue Orange 
Green Red 
Yellow Violet 
Orange Blue 
Red Green 
Infrared 
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FIGURE 1 1-2 Absorption of 
Light by Solution. . 
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The Beer-Lambert law may be used to describe the absorption of light (ignoring 
scattering and reflection of light from cell surfaces) at a given wavelength by an 
absorbing species in solution: 

I0 
log - = A = d c  

I 

where A = absorbance 

E = molar absorptivity (L mol-' cm-') (also known as molar 
extinction coefficient) 

1 = path length through solution (cm) 

c  = concentration of absorbing species (mol L-') 

Absorbance is a dimensionless quantity. An absorbance of 1.0 corresponds to 90% 
absorption at a given wavelength,' an absorbance of 2.0 corresponds to 99% absorption, 
and so on. The most common units of the other quantities in the Beer-Lambert law are 
shown in parentheses above. 

Spectrophotometers commonly obtain spectra as plots of absorbance versus 
wavelength. The molar absorptivity is a characteristic of the species that is absorbing 
the light and is highly dependent on wavelength. A plot of molar absorptivity versus 
wavelength gives a spectrum characteristic of the molecule or ion in question, as in 
Figure 11 -1. As we will see, this spectrum is a consequence of transitions between 
states of different energies and can provide valuable information about those states and, 
in turn, about the structure and bonding of the molecule or ion. 

Although the quantity most commonly used to describe absorbed light is the 
wavelength, energy and frequency are also used. In addition, the wavenumber (the 
number of waves per centimeter), a quantity proportional to the energy, is frequently 
used, especially in reference to infrared light. For reference, the relations between these 
quantities are given by the equations 

where E = energy 

h = Planck's constant = 6.626 X J s 

c  = speed of light = 2.998 X 10' m s-' 

v = frequency (s-') 

A = wavelength (often reported in nm) 

1 - 
- = v = wavenumber (cm-') 
A 

 or absorbance = 1.0, log ( [ , / I )  = 1.0. Therefore, 1,/1 = 10, and 1 = 0.10 1, = 10% X I,; 10% 
of the light is transmitted, and 90% is absorbed. 
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1 1  -2 Absorption of light results in the excitation of electrons from lower to higher energy 

QUANTUM states; because such states are quantized, we observe absorption in "bands7' (as in 

NUMBERS OF Figure 11-I), with the energy of each band corresponding to the difference in energy 

MULTIELECTRON between the initial and final states. To gain insight into these states and the energy 

ATOMS transitions between them, we first need to consider how electrons in atoms can interact 
with pach other. 

Although the quantum numbers and energies of individual electrons can be de- 
scribed in fairly simple terms, interactions between electrons complicate this picture. Some 
of these interactions were discussed in Scction 2-2-3: as a result of repulsions between 
electrons (characterized by energy II,), electrons tend to occupy separate orbitals; as a re- 
sult of exchange energy (&), electrons in separate orbitals tend to have parallel spins. 

Consider again the example of the energy levels of a carbon atom. Carbon has 
the electron configuration ls22s22p2. At first glance, we might expect the p electrons 
to have the same energy. However, there are three major energy levels for the p2 elec- 
trons differing in energy by pairing and exchange energies (II, and II,) and, in addi- 
tion, the lowest major energy level is split into three slightly different energies, for a 
total of five energy levels. As an alternative to the discussion presented in 
Section 2-2-3, each energy level can be described as a combination of the ml and m, 
values of the 2p electrons. 

Independently, each of the 2p electrons could have any of six possible ml, m,y 
combinations: 

n = 2 , 1  = 1 (quantum numbers defining 2p orbitals) 

ml = +l,O,or-1 (three possible values) 
1 1 m, = t ~ o r - 3  (two possible values) 

The 2p electrons are not independent of each other, however; the orbital angular mo- 
menta (characterized by m~ values) and the spin angular momenta (characterized by m, 
values) of the 2p electrons interact in a manner called Russell-Saunders coupling or LS 
coupling2 The interactions produce atomic states called microstates that can be described 
by new quantum numbers: 

ML = Ernl Total orbital angular momentum 

Ms = Cm, Total spin angular momentum 

We need to determine how many possible combinations of ml and m, values 
there are for a p2 configurati~n.~ Once these combinations are known, we can deter- 
mine the corresponding values of M L  and Ms.  For shorthand, we will designate the 

1 m, value of each electron by a superscript +, representing m, = +2, or -, 
1 1 representing m ,  = - 3. For example, an electron having ml = + 1 and m, = + will 

be written as 1'. 

One possible set of values for the two electrons in the p2 configuration would be 

First electron: ml = + 1 and m, = + 
Notation: 1'0- 

Second electron: ml = 0 and m, = -3 

Each set of possible quantum numbers (such as 1%) is called a microstate. 

2 ~ o r  a more advanced discussion of coupling and its underlying theory, see M. Gerloch, Orbitals, 
, '  

Terms, and States, Wiley-Interscience, New York, 1986. 
%lectrons in filled orbitals can be ignored, because their net spin and angular momenta are both zero. 
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The next step is to tabulate the possible microstates. In doing this, we need to take 
two precautions: (I) to be sure that no two electrons in the same microstate have identi- 
cal quantum nun~bers (the Pauli exclusion principle applies); and (2) to count only the 
unique microstates. For example, the microstates 1'0- and 0-I+, 0'0- and 0-0' in a p2 

configuration are duplicates and only one of each pair will be listed. 
If we determine all possible microstates and tabulate them according to their ML 

and Ms values, we obtain a total of 15  microstate^.^ These microstates can be arranged 
according to their ML and Ms values and listed conveniently in a microstate table, as 
shown in Table 11-2. 

Determine the possible microstates for an s l p l  configuration and use them to prepare a 
microstate table. 

1 
The s electron can have ml = 0 and m, = & -. 

2 
1 

The p electron can have ml = + 1,0, - 1 and m, = + -. 
2 

The resulting microstate table is then 

Ms 

4 ~ h e  number of microstates = i ! / [ j ! ( i  - j)!], where i = number of nz,, m, combinations (six here, 
because rnl can have values of 1, 0, and 1 and rn, can have values of +$ and -i) and j = number of 
electrons. 



384 Chapter 11 Coordination Chemistry ill: Electronic Spectra 

L = 0 S state 

L = 1 P state 

L = 2 D state 

L = 3 F state 

In this case, 0'0- and 0-0' are different microstates, because the first electron is an s and the 
second electron is a p; both must be counted. 

I EXERCISE 11-1 

I Determine the possible microstates for a d2 configuration and use them to prepare a 
microstate table. (Your table should contain 45 microstates.) 

We have now seen how electronic quantum numbers ml and m, may be combined 
into atomic quantum numbers ML and Ms, which describe atomic microstates. ML and 
Ms,  in turn, give atomic quantum numbers L, S,  and J. These quantum numbers collec- 
tively describe the energy and symmetry of an atom or ion and determine the possible 
transitions between states of different energies. These transitions account for the colors 
observed for many coordination complexes, as will be discussed later in this chapter. 

The quantum numbers that describe states of multielectron atoms are defined 
as follows: 

L = total orbital angular momentum quantum number 

S = total spin angular momentum quantum number 

J = total angular momentum quantum number 

These total angular momentum quantum numbers are determined by vector sums 
of the individual quantum numbers; determination of their values is described in this 
section and the next. 

Quantum numbers L and S describe collections of microstates, whereas ML and 
Ms describe the microstates themselves. L and S are the largest possible values of ML 
and Ms. ML is related to L much as ml is related to I ,  and the values of Ms and m, are 
similarly related: 

Atomic States Individual Electrons 

ML = O , f l ,  1 2  , . . . ,  iL t7q = O , * l , f 2  ,..., Ztl 

Just as the quantum number ml describes the component of the quantum number 1 in the 
direction of a magnetic field for an electron, the quantum number ML describes the 
component of L in the direction of a magnetic field for an atomic state. Similarly, m, 
describes the component of an electron's spin in a reference direction, and Ms describes 
the component of S in a reference direction for an atomic state. 

The values of L correspond to atomic states described as S,  P, D, F, and higher 
states in a manner similar to the designation of atomic orbitals as s, p, d, and f .  The val- 
ues of S are used to calculate the spin multiplicity, defined as 2S + 1. For example, 
states having spin multiplicities of 1, 2, 3, and 4, are described as singlet, doublet, 
triplet, and quartet states. The spin multiplicity is designated as a left superscript. Ex- 
amples of atomic states are given in Table 11-3 and in the examples that f ~ l l o w . ~  

Atomic states characterized by S and L are often called free-ion terms (sometimes 
Russell-Saunders terms) because they describe individual atoms or ions, free of ligands. 

5~nfortunately, S is used in two ways: to designate the atomic spin quantum number and to designate 
a state having L = 0. Chemists are not always wise in choosing their symbols! 
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TABLE 11-3 
Examples of Atomic 
States (Free-ion Terms) 
and Quantum Numbers 
Term L S 

Their labels are often called term symbols.6 Term symbols are composed of a letter re- 
lating to the value of L and a left superscript for the spin multiplicity. For example, the 
term symbol 3~ corresponds to a state in which L = 2 and the spin multiplicity 
(2s + 1 ) is 3; 5~ marks a state in which L = 3 and 2s + 1 = 5. 

Free-ion terms are very important in the interpretation of the spectra of coordina- 
tion compounds. The following examples show how to determine the values of L, M L ,  
S, and Ms for a given term and how to prepare microstate tables from them. 

IS (singlet 5) An S term has L = 0 and must therefore have ML = 0. The spin multiplic- 
ity (the superscript) is 2S + 1. Because 2 s  + 1 = 1, S must equal 0 (and Ms = 0). There 
can be only one microstatc, having ML = 0 and Ms = 0 for a ' S  term. For the minimum con- 
figuration of two electrons: 

' P  (doublet P) A P term has L = 1 ; therefore, ML can have three values: + 1,0, and - 1. The 
spin multiplicity is 2 = 2S + I .  Therefore, S = i , and Ms can have two values: + and - i . 
There are six microstates in a " term (3 rows X 2 columns). For the minimum case of one 
electron: 

Ms 

The spin multiplicity is equal to the number of possible values of Ms;  therefore, the spin 
multiplicity is simply the number of columns in the microstate table. 

ML 0 

EXERCISE 11-2 

For each of the following free-ion terms, determine the values of L, M L ,  S ,  and Ms, and 
diagram the microstate table as in the preceding examples: 2 ~ ,  ' P ,  and *s. 

Each microstate is designated by x in the second form of the table. 

0 

Ofo- 

At last, we are in a position to return to the p2 microstate table and reduce it to its 

or ML 

constituent atomic states (terms). To do this, it is sufficient to designate each microstatc 
simply by x; it is important to tabulate the number of microstates, but it is not necessary 
to write out each microstate in full. 

To reduce this microstate table into its component free-ion terms, note that each 
of the terms described in the examples and Exercise 11 -2 consists of a rectangular array 
of microstates. To reduce the p2 microstate table into its terms, all that is necessary is to 
find the rectangular arrays. This process is illustrated in Table 11-4. Note that for each 

6~l though "term" and "state" are often used interchangeably, "term" is suggested as the preferred label 
for the results of Russell-Saunders coupling just described, and "state" for the results of spin-orbit coupling 
(described in the following section), including the quantum number J .  In most cases, the meaning of 
"term" and "state" can be deduced from the context. See B. N. Figgis, "Ligand Field Theory," in G. Wilkinson, 
R. D. Gillard, and J. A. McCleverty, eds. Comprehensive Coordination Chemistr).., Vol. I, Pergamon Press, 
Elmsford, NY, 1987, p. 231. 
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term, the spin multiplicity is the same as the number of columns of microstates: a sin- 
glet term (such as ID) has a single column, a doublet term has two columns, a triplet 
term (such as 3 ~ )  has three columns, and so forth. 

Therefore, the p2 electron configuration gives rise to three free-ion terms, desig- 
nated 3 ~ ,  ID, and 's. These terms have different energies; they represent three states 
with different degrees of electron-electron interactions. For our example of a p2 config- 
uration for a carbon atom, the 3 ~ ,  ID, and terms have three distinct energies, the 
three fnajor energy levels observed experimentally. 

The final step in this procedure is to determine which term has the lowest energy. 
This can be done by using two of Hund's rules: 

1 .  The ground term (term of lowest energy) has the highest spin multiplicity. In our 
example of p2, therefore, the ground term is the 3 ~ .  This term can be identified as 
having the following configuration: 

IS 1' J 

This is sometimes called Hund's rule of maximum multiplicity, introduced in 
Section 2-2-3. 

2. If two or more terms share the maximum spin multiplicity, the ground term is the one 
having the highest value of L. For example, if 4~ and 4~ terms are both found for an 
electron configuration, the 4~ has lower energy ( 4 ~  has L = 3; 4~ has L = 1). 

v 
Reduce the microstate table for the slpl configuration to its component free-ion terms, and 
identify the ground-state term. 

The microstate table (prepared in the example preceding Exercise 11-1) is the bum uf the 
microstate tables for the 3~ and ' P  terms: 

Hund's rule of maximum multiplicity requires 3~ as the ground state. 

EXERCISE 11 -3 

In Exercise 11-1, you obtained a microstate table for the d2 configuration. Reduce this to its 
component free-ion terms, and identify the ground-state term. 
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TABLE 11-4 . .  

The '~icr6stat.e-Table for p2 and' its Reduction to bee-ion'Terms 

NOTE: The ' S  and ' D  terms have higher energy than the 3 ~ ,  but cannot be identified with a single electron con- 
figuration. The relative energies of higher-energy terms like these also cannot be determined by simple rules. 

1 1-2-1 SPIN-ORBIT COUPLING 

To this point in the discussion of multielectron atoms, the spin and orbital angular 
momenta have been treated separately. In addition, the spin and orbital angular momen- 
ta couple with each other, a phenomenon known as spin-orbit coupling. In multielectron 
atoms, the S  and L  quantum numbers combine into the total angular momentum quan- 
tum number J. The quantum number J may have the following values: 

J = L + S , L + S -  l , L + S - 2  ,..., I L - S I  
The value of J  is given as a subscript. - 

Determine the possible values of J for the carbon terms. 

For the term symbols just described for carbon, the ' D  and ' S  terms each have only one J value, 
whereas the 3~ term has three slightly different energies, each described by a different J. J can 
have only the value 0 for the ' S  term (0  + 0) and only the value 2 for the ' D term (2 + 0). For 
the3~tem,~canhavethethreevalues2 ,1 ,and0( l  + 1, 1 + I - I ,  1 + 1 - 2). 

I EXERCISE 11-4 

I Determine the possible values of J for the terms obtained from a d2 configuration in 
Exercise 1 1-3. 
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Spin-orbit coupling acts to split free-ion terms into states of different energies. 
The 3~ term therefore splits into states of three different energies, and the total energy 
level diagram for the carbon atom can be shown as 

Energy (cm-I) 

' s  I So 21648.8 

LS coupling only Spin-orbit coupling 
(exaggerated scale for 3 ~ )  

These are the five energy states for the carbon atom referred to at the beginning of this 
section. The state of lowest energy (spin-orbit coupling included) can be predicted from 
Hund's third rule: 

3. For subshells (such as p2) that are less than half-filled, the state having the lowest 
J value has the lowest energy ( 3 ~ o  above); for subshells that are more than half- 
filled, the state having the highest J value has the lowest energy. Half-filled 
subshells have only one possible J value. 

Spin-orbit coupling can have significant effects on the electronic spectra of coordi- 
nations compounds, especially those involving fairly heavy metals (atomic number >40). 

11 -3 We can now make the connection between electron-electron interactions and the 

ELECTRONIC absorption spectra of coordination compounds. In Section 11-2, we considered a 

SPECTRA OF method for determining the microstates and free-ion terms for electron configurations. 

COORDlNATlON For example, a d2 configuration gives rise to five free-ion terms, ' F ,  3 ~ ,  'G, I D ,  and 

COMPOUNDS IS, with the ' F  term of lowest energy (Exercises 11-1 and 11-3). Absorption spectra of 
coordination compounds in most cases involve the d orbitals of the metal, and it is 
consequently important to know the free-ion terms for the possible d configurations. 
Determining the microstates and free-ion terms for configurations of three or more 
electrons can be a tedious process. For reference, therefore, these are listed for the 
possible d electron configurations in Table 11-5. 

In the interpretation of spectra of coordination compounds, it is often important to 
identify the lowest-energy term. A quick and fairly simple way to do this is given here, 
using as an example a d 3  configuration in octahedral symmetry. 

1. Sketch the energy levels, showing I -- 
the d electrons. 

2. Spin multiplicity of lowest-energy 
state = number of unpaired electrons + I . ~  1 Spin multiplicity = 3 + I = 4 

7 ~ h i s  is equivalent to the spin multiplicity = 2S + 1, as shown previously. 
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Con$guration Free-ion Terms 

d' 2 0  

d2  l S I D I G  3 p 3 F  

d 3  2~ 4~ 4~ 'I' '0 2~ '6 2~ 

d4 ' D  l S I D i G  3 P 3 F  3 P - D  1 3  F 3 G 3 H ' S ' D ' F ~ G ' I  

d5  2~ ' P  ' l7 'I' '0 ' F  'G ' H  ' S  ' D  ' F  'G ' 1  4~ 4~ 6~ 

d6 Same as d4 

d7 Same as d3 

d8  Same as d2  

d9 Same as d' 
dl0 I S  

NOTE: For any configuration, the free-ion terms are the sum of those listed; for example, for the d2  
configuration, the free-ion terms are ' S  + I D  + 'G + 3~ + ' F .  

3. Determine the maximum possible value 
of ML (=sum of ml values) for the 
configuration as shown. This determines 
the type of free-ion term (e.g., S,  P, D) 

4. Combine results of Steps 2 and 3 to get 
the ground term: 

maximum possible value of ml for 
three electrons as shown: 

2 + 1 + 0 = 3  
therefore, F term 

Step 3 deserves elaboration. The maximum value of ml for the first electron 
would be 2 (the highest value possible for a d electron). Because the electron spins are 
parallel, the second electron cannot also have ml = 2 (it would violate the exclusion 
principle); the highest value it can have is ml = 1. Finally, the third electron cannot 
have ml = 2 or 1, because it would then have the same quantum numbers as one of the 
first two electrons; the highest ml value this electron could have would therefore be 0. 
Consequently, the maximum value of ML = 2 + 1 + 0 = 3. 

I d 4  (low spin): 

1. -- 

t &  t t --- 
2. Spin multiplicity = 2 + 1 = 3 

3. Highest possible value of ML = 2 + 2 + 1 + 0 = 5; therefore, H term. 

Note that here ml = 2 for the first two electrons does not violate the exclusion principle, 
because the electrons have opposite spins. 

4. Therefore, the ground term is 3 ~ .  

I EXERCISE 11-5 

Determine the ground terms for high-spin and low-spin d6 configurations in OIL symmetry. I 
With this review of atomic states, we may now consider the electronic states of 

coordination compounds and how transitions between these states can give rise to the 
observed spectra. Before considering specific examples of spectra, however, we must 
also consider which types of transitions are most probable and, therefore, give rise to 
the most intense absorptions. 
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1 1-3-1 SELECTION RULES 

The relative intensities of absorption bands are governed by a series of selection rules. 
On the basis of the symmetry and spin multiplicity of ground and excited electronic 
states, two of these rules may be stated as  follow^:^, 

1. Transitions between states of the same parity (symmetry with respect to a center 
of inversion) are forbidden. For example, transitions between d orbitals are for- 
bidden (g - g transitions; d orbitals are symmetric to inversion), but between 
d andp orbitals are allowed (g - u transitions; p orbitals are antisymmetric to 
inversion). This is known as the Laporte selection rule. 

2. Transitions between states of different spin multiplicities are forbidden. For ex- 
ample, transitions between 4 ~ 2  and 4 ~ 1  states are "spin-allowed," but between 
4 ~ 2  and 2 ~ 2  are "spin-forbidden." This is called the spin selection rule. 

These rules would seem to rule out most electronic transitions for transition metal 
complexes. However, many such complexes are vividly colored, a consequence of vari- 
ous mechanisms by which these rules can be relaxed. Some of the most important of 
these mechanisms are as follows: 

1. The bonds in transition metal complexes are not rigid but undergo vibrations that 
may temporarily change the symmetry. Octahedral complexes, for example, vi- 
brate in ways in which the center of symmetry is temporarily lost; this phenome- 
non, called vibronic coupling, provides a way to relax the first selection rule. As a 
consequence, d-d transitions having molar absorptivities in the range of approxi- 
mately 10 to 50 L mol ' cm-l commonly occur (and are often responsible for the 
bright colors of many of these complexes). 

2. Tetrahedral complexes often absorb more strongly than octahedral complexes of 
the same metal in the same oxidation state. Metal-ligand sigma bonding in 
transition metal complexes of Td syrrmetry can be described as involving a 
combination of sp3 and sd3 hybridization of the metal orbitals; both types of 
hybridization are consistent with the symmetry. The mixing of p-orbital character 
(of u symmetry) with d-orbital character provides a second way of relaxing the 
first selection rule. 

3. Spin-orbit coupling in some cases provides a mechanism of relaxing the second se- 
lection rule, with the result that transitions may be observed from a ground state of 
one spin multiplicity to an excited state of different spin multiplicity. Such absorp- 
tion bands for first-row transition metal complexes are usually very weak, with 
typical molar absorptivities less than 1 L mol-' c ~ l .  For complexes of second- 
and third-row transition metals, spin-orbit coupling can be more important. 

Examples of spectra illustrating the selection rules and the ways in which they 
may be relaxed are given in the following sections of this chapter. Our first example will 
be a metal complex having a d2 configuration and octahedral geometry, [v(H~o)~]~'. 

In discussing spectra, it will be particularly useful to be able to relate the elec- 
tronic spectra of transition metal complexes to the ligand field splitting, A, for octahe- 
dral complexes. To do this it will be necessary to introduce two special types of 
diagrams, correlation diagrams and Tanabe-Sugano diagrams. h 

f 

'B. N. Figgis and M. A. Hitchman, Ligand Field Theory and its Applications, Wiley-VCH, New York, 
2000, pp. 181 183. 

9 ~ .  N. Figgis, "Ligand Field Theory", in G. Wilkinson, R. D. Gillard, and J. A. McCleverty, eds., 
Comprehensive Coordination Chemistry, Vol. 1, Pergamon Press, Elmsford, NY, 1987, pp. 243-246. 
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1 1-3-2 CORRELATION DIAGRAMS 

FIGURE 1 1-3 Co~ielation 
Diagram for d2 in Octahedral Llgand 
Reld. 

Figure 11-3 is an example of a correlation diagram for the configuration d2. These 
diagrams make use of two extremes: 

1. Free ions (no ligand field). In Exercise 11-4, the terms 3 ~ ,  3 ~ ,  'G, 'D, and ' S  
were obtained for a d 2  configuration, with the 3~ term having the lowcst cncrgy. 
These terms describe the energy levels of a "free" d 2  ion (in our example, a v3+ 
ion) in the absence of any interactions with ligands. In correlation diagrams, we 
will show these free-ion terms on the far left. 

2. Strong ligand field. There are three possible configurations for two d electrons in 
an octahedral ligand field: 

In our example, these would be the possible electron configurations of v3+ in an 
extremely strong ligand field (tzg2 would be the ground state; the others would be 
excited states). In correlation diagrams, we will show these states on the far right, 
as the "strong field limit." Here, the effect of the ligands is so strong that it com- 
pletely overrides the effects of LS coupling. 

Energy t 

Free Weak Interaction St ron~ Interaction - Strong 
Ion - Interaction 
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In actual coordination compounds, the situation is intermediate between these ex- 
tremes. At zero field, the rnl and rn, values of the individual electrons couple to form, 
for d2, the five terms 3 ~ ,  3 ~ ,  'G,  'D, and 9, representing five atomic states with differ- 
ent energies. At a very high ligand field, the tZg2, t2geg, and eg2 configurations predom- 
inate. The correlation diagram shows the full range of in-between cases in which both 
factors are important. 

Some details of the method for achieving this are beyond the scope of this text; the 
interested reader should consult the literature'' for details omitted here. The aspect of 
this problem that is important to us is that free-ion terms (shown on the far left in the cor- 
relation diagrams) have symmetry characteristics that enable them to be reduced to their 
constituent irreducible representations (in our example, these will be irreducible repre- 
sentations in the Oh point group). In an octahedral ligand field, the free-ion terms will be 
split into states corresponding to the irreduciblc rcpresentations, as shown in Table 1 1-6. 

TABLE 17-6 
Splitting of Free-ion Terms in Octahedral Symmetry 

Term Irreducible Representations 

NOTE: Although representations based on atomic orbitals may have 
either g or u symmetry, the terms given here are for d orbitals and as 
a result have only g symmetry. See F. A. Cotton, ChemicalApplica- 
tions of Group Theory, 3rd ed., Wiley-Interscience, New York, 1990, 
pp. 263-264, for a discussion of these labels. 

Similarly, irreducible representations may be obtained for the strong-field limit 
configurations (in our example, t2g2, t2geg, and eg2). The irreducible representations for 
the two limiting situations must match; each irreducible representation for the free ion 
must match, or correlate with, a representation for the strong-field limit. This is shown 
in the correlation diagram for d2  in Figure 1 1-3. 

Note especially the following characteristics of this correlation diagram: 

1. The free-ion states (terms arising from LS coupling) are shown on the far left. 
2. The extremely strong-field states are shown on the far right. 
3. Both the free-ion and strong-field states can be reduced to irreducible representa- 

tions, as shown. Each free-ion irreducible representation is matched with (corre- 
lates with) a strong-field irreducible representation having the same symmetry 
(same label). As mentioned in Section 11-3-1, transitions to excited states having 
the same spin multiplicity as the ground state are more likely than transitions to 
states of different spin multiplicity. 'Ib emphasize this, the ground state and states 
of the same spin multiplicity as the ground state are shown as heavy lines, and 
states having other spin multiplicities are shown as dashed lines. 

In the correlation diagram the states are shown in order of energy. A noncrossing 
rule is observed: lines connecting states of the same symmetry designation do not cross. 
Correlation diagrams are available for other d-electron configurations.' ' 

'OF. A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wiley-Interscience, New York, 1990, 
Chapter 9, pp. 253-303. 

"B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley-VCH, New 
York, 2000, pp. 128-1 34. 
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1 1-3-3 TANABE-SUCANO DIAGRAMS 

Tanabe-Sugano diagrams are special correlation diagrams that are particularly useful in 
the interpretation of electronic spectra of coordination compounds. l 2  In Tanabe-Sugano 
diagrams, the lowest-energy state is plotted along the horizontal axis; consequently, the 
vertical distance above this axis is a measure of the energy of the excited state above the 
ground state. For example. for the d 2  configuration, the lowest-energy state is de- 
scribed by the line in the correlation diagram (Figure 11-3) joining the 3 ~ l g  state aris- 
ing from the 3~ free-ion term with the 'T Ig  hiale arising from the strong-field term, 
tzg2. In the Tanabe-Sugano diagram (Figure 11-4), this line is made horizontal; it is 

labeled 3 ~ 1 g  ( F )  and is shown to arise from the 3~ term in the free-ion limit (left 
side of diagram).13 

The Tanabe-Sugano diagram also shows excited states. In the d 2  diagram, the 
excited states of the same spin multiplicity as the ground state are the 3 ~ 2 , ,  3 ~ 1 g  (P), 
and the 3 ~ 2 g .  The reader should verify that these are the same triplet excited states 
shown in the d 2  correlation diagram. Excited states of other spin multiplicities are 
also shown but, as we will see, they are generally not as important in the interpreta- 
tion of spectra. 

FIGURE 1 
Diagram for 
Field. 

1-4 Tanabe-Sugano 
d2 in Octahedral Ligand Increasing field strength 

"Y. Tanabe and S. Sugano, .!. Phy.~. Soc. Jopnn, 1954,9,766. 
I 3 ~ h e  F in parentheses distinguishes this 3 ~ 1 g  term from the higher energy 3 ~ , g  term arising from the 

3~ term in the free-ion limit. 
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The quantities plotted in a Tanabe-Sugano diagram are as follows: 

Horizontal axis: 
& where A, is the octahedral ligand field splitting, 

described in Chapter 10. 

- 3~ 
B = Racah parameter, a measure of the repulsion 

4 between terms of the same multiplicity. For d2, 
f 

15 B for example, the energy difference between ' F  + - 3~ 
and 3~ is 15B.I4 

E 
Vertical axis: - where E is the energy (of excited states) above 

the ground state. 

As mentioned, one of the most useful characteristics of Tanabe-Sugano diagrams 
is that the ground electronic state is alwaysplotted along the horizontal axis; this makes 
it easy to determine values of E/B above the ground state. 

[ v (H~o)~ ]~+  (8) A good example of the utility of Tanabe-Sugano diagrams in explaining 
electronic spectra is provided by the d2 complex [ v ( H ~ o ) ~ ] ~ + .  The ground state is 3qg (F); 
under ordinary conditions this is the only electronic state that is appreciably occupied. Absorption 
of light should occur primarily to excited states also having a spin multiplicity of 3. There are three 
of these, 3 ~ 2 g ,  3 ~ l g  (P), and ' A ~ ~ .  Therefore, thee allowed transitions are expected, as shown in 
Figure 11-5. Consequently, we expect three absorption bands for [ v ( H ~ o ) ~ ] ~ + ,  one corresponding 
to each allowed transition. Is this actually observed for [v(H~o)~]"? Two bands are readily 
observed at 17,800 and 25,700 cmpl, as can be seen in Figure 1 1-6.15 A third band, at approxi- 
mately 38,000 cmpl, is apparently obscured in aqueous solution by charge transfer bands 
nearby (charge transfer bands of coordination compounds will be discussed later in this chap- 
ter). In the solid state, however, a band attributed to the 3 ~ l g  - 3 ~ 2 g  transition is observed 
at 38,000 cm-'. These bands match the transitions v,, vz, and vg indicated on the Tanabe- 
Sugano diagram (Figure 1 1-5). 

Other electron configurations 

Tanabe-Sugano diagrams for d2 through d8 are shown in Figure 11-7. The cases of dl 
and d9 configurations will be discussed in Section 11-3-4. The diagrams for d4, d5 ,  d6, 
and d7 have apparent discontinuities, marked by vertical lines near the center. These are 
configurations for which low spin and high spin are both possible. For example, 
consider the configuration d4: 

High-spin (weak-field) d4 has four t -- s = 4(;)  = 2; 
unpaired electrons, of parallel spin; spin multiplicity = 2S + 1 = 2 ( 2 )  + 1 = 5 
such a configuration has a spin --- t t t  
multiplicity of 5.  

Low-spin (strong-field) d4, on the S = 2($)  = 1 ;  -- 
other hand, has only two unpaired spin multiplicity = 2 s  + 1 = 2 ( 1 )  + 1 = 3 
electrons and a spin multiplicity of 3. 1' .1 '? '? i 

S 
I 4 ~ o r  a discussion of Racah parameters, see Figgis, "Ligand Field Theory," in Comprehensive 

Coordination Chemistry, Vol. 1 ,  p. 232. 
 he third band is in the ultraviolet and is off-scale to the right in the spectrum shown; see B. N. 

Figgis, Introduction to Ligand Fields, Wiley-Interscience, New York, 1966, p. 219. 



: FIGURE 11 -5 Spin-allowed :. 'Transitions for d2 Configuration. 

!.: .. .. . . 
:<; e '  ,,. FIGURE 1 1-6 Absorption 
;<?, Spectrum of [v(H~o)~]'+. z:, :. (Reproduced with permission from . .:. 
G: B. N. Figgis, Introduction to Ligand 
.q.. : 
$  field,^, Wiley-Interscience,, 
Pi . : New York, 1966, p. 221.) .., ,., ., '" .. , , 
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In the weak-field part of the Tanabe-Sugano diagram (left of A,/B = 27), the ground 
state is 5 ~ g ,  having the expected spin multiplicity of 5. On the right (strong-field) side 
of the diagram, the ground state is 3 ~ 1 g  (correlating with the 3~ term in the free-ion 
limit), having the required spin multiplicity of 3. The vertical line is thus a dividing line 
between weak- and strong-field cases: high-spin (weak-field) complexes are to the left 
of this line and low-spin (strong-field) complexes are to the right. At the dividing line, 
the ground state changes from ' E ~  to ' T ~ ! .  The spin multiplicity changes from 5 to 3 to 
reflect the change in the number of unpaired electrons. 



FIGURE 1 1-7 Simplified Tanabe-Sugano Diagrams of d2-d8 Electron Configurations in 
Octahedral Ligand Fields. All terms have g symmetry; the subscript has been omitted for 
clarity. Axes are as defined earlier in this section. (Reproduced from K. E Purcell and 
J. C. Kotz, Inorganic Chemistry, W. B. Saunders, Philadelphia, 1977, pp. 584-585. 0 1977 by 
Saunders CollegePublishing, a division of Holt, Rinehart and Winston, Inc.; reprinted by 
permission of thepublisher.) 
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FIGURE 1 1-8 Electronic Spectra 
oEFirst-Row Transition Metal 
Complexes of Formula 
[M(H~o)~]"+. (Reproduced with 
permission from B. N. Figgis, 
Introduction to Ligand Fields, Wiley- 
Interscience, New York, 1966, 
pp. 22 1, 224.) 

Figure 11-8 shows absorption spectra of first-row transition metal complexes of 
the formula [M(H~o)~]~+ .  Because water is a rather weak-field ligand, these are all 
high-spin complexes, represented by the left side of the Tanabe-Sugano diagrams. It is 
an interesting exercise to compare the number of bands in these spectra with the number 
of bands expected from the respective Tanabe-Sugano diagrams. Note that in some cases 
absorption bands are off-scale, farther into the ultraviolet than the spectral region shown. 

In Figure 11-8, molar absorptivities (extinction coefficients) are shown on the 
vertical scale. The absorptivities for most bands are similar (1 to 20 L mol-' cm-l) 
except for the spectrum of [ M ~ ( H ~ o ) ~ ] ~ + ,  which has much weaker bands. Solutions 
of [ M ~ ( H ~ O ) ~ ] ~ +  are an extremely pale pink, much more weakly colored than solu- 
tions of the other ions shown. Why is absorption by [ M ~ ( H ~ o ) ~ ] ~ +  SO weak? To an- 
swer this question, it is useful to examine the corresponding Tanabe-Sugano 
diagram, in this case for a d 5  configuration. We expect [ M ~ ( H ~ O ) ~ ] ~ +  to be a high- 
spin complex, because H 2 0  is a rather weak-field ligand. The ground state for 
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weak-field d5 is the 6 ~ l g .  There are no excited states of the same spin multiplicity 
(6), and consequently there can be no spin-allowed absorptions. That [ M ~ ( H ~ o ) ~ ] ~ +  
is colored at all is a consequence of very weak forbidden transitions to excited 
states of spin multiplicity other than 6 (there are many such excited states, hence 
the rather complicated spectrum). 

11 -3-4 JAHN-TELLER DISTORTIONS 
AND SPECTRA 

Up to this point, we have not discussed the spectra of d '  and d9 complexes. By virtue of 
the simple d-electron configurations for these cases, we might expect each to exhibit one 
absorption band corresponding to excitation of an electron from the tzg to the eg levels: 

However, this view must be at least a modest oversimplification, because examination 
of the spectra of [ T ~ ( H ~ o ) ~ ] ~ +  (dl)  and [ cu (H~o)~ ]~+  (d9) (see Figure 11-8) shows 
these coordination compounds to exhibit two closely overlapping absorption bands 
rather than a single band. 

To account for the apparent splitting of bands in these examples, it is necessary to 
recall that, as described in Section 10-5, some configurations can causc complexes to be 
distorted. In 1937, Jahn and Teller showed that nonlinear molecules having a degener- 
ate electronic state should distort to lower the symmetry of the molecule and to reduce 
the degeneracy; this is commonly called the Jahn-Teller theorem.I6 For example, a d9  
metal in an octahedral complex has the electron configuration t2g6eg3; according to the 
Jahn-Teller theorem, such a complex should distort. If the distortion takes the form of 
an elongation along the z axis (the most common distortion observed experimentally), 
the tzg and eg orbitals are affected as shown in Figure 11-9. Distortion from Oh to D4h 
symmetry results in stabilization of the molecule: the eg orbital is split into a lower alg 
level and a higher hlg level. 

___- - -  ___- - - - -  
x2 - 

2  b l R  -- e - - - -  
x2x2-y2  6 - - - - _  - - - - _ _  _ - - '7 

J-T distortion z2 l6 

XY 

___- - - -  b2g 

FIGURE 1 1-9 Effect of Jahn- ---. t 2 g z r T :  - - - - - - - - - - - -  - e 
xz yz 

g 
Teller Distortion on d Orbitals of V X Z  Y z  
Octahedral Complex. Oh D4h 

When degenerate orbitals are asymmetrically occupied, Jahn-Teller distortions 
i 

are likely . For example, the first two configurations below should give distortions, but % the third and fourth should not: 6 
F 

1 ' 1 ' 1 '  1 '  1 '  1' 1' 1' 1' - - - - - - - - - - - - 

'('B. Bersucker, Coord. Chem. Rev., 1975,14, 357. 
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In practice, the only electron configurations for Oh symmetry that give rise to measur- 
able Jahn-Teller distortions are those that have asymmetrically occupied eg orbitals, 
such as the high-spin d4  configuration. The Jahn-Teller theorem does not predict what 
the distortion will be; by far, the most common distortion observed is elongation along 
the z axis. Although the Jahn-Teller theorem predicts that configurations having asym- 
metrically occupied tzg orbitals, such as the low-spin d5 configuration, should also be 
distorted, such distortions arc too small to be measured in most cases. 

The Jahn-Teller effect on spectra can easily be seen from the example of 
[ C U ( H ~ O ) ~ ] ~ + ,  a d9  complex. From Figure 11-9, which shows the effect on d orbitals of 
distortion from Oh to D4h geometry, we can see the additional splitting of orbitals 
accompanying the reduction of symmetry. 

Symmetry labels for configurations 

Electron conjgurations have symmetry labels that match their degeneracies, as follows: 

Examples 

T designates a triply degenerate -- 0 .  -- 
asymmetrically occupied state. . .. 0 .  . --- --- 

E designates a doubly degenerate -- . -- 0 .  . 
asymmetrically occupied state. . . .. .. .. 

--- --- 

A or B designate a nondegenerate state. -- 0 .  -- 
Each set of levels in an A or B . . .  --- --- 
state is symmetrically occupied. 

EXERCISE 1 1-6 

I Identify the following configurations as T, A, or E states in octahedral complexes: 

When a 2~ term for d9 is split by an octahedral ligand field, two configura- 
tions result: 

tzg 22- .. .. --- 0 .  0 .  . 
Lower energy Higher energy 

The lower energy configuration is doubly degenerate in the eg orbitals (occupation of 
the eg orbitals could be .. L or L -%% ) and has the designation 2 ~ g  ; the high- 
er energy configuration is triply degenerate in the t2g levels (three arrangements are 
possible in these levels: x L .. , 2 2 A, or L " 2..%) and 
has the designation 2 ~ 2 g .  Thus, the lower energy configuration is the 2 ~ g ,  and the high- 
er energy configuration is the 2 ~ 2 g ,  as in Figure 11-10. This is the opposite of the order 
of energies of the orbitals (tzg lower than eg), shown in Figure 11-9. 

Similarly, for distortion to D4h, the order of labels of the orbitals in Figure 11-9 is 
the reverse of the order of labels of the energy configurations in Figure 11-10. 



400 Chapter 11 Coordination Chemistry Ill: Electronic Spectra 

\ -A , I,? 

\'-::E -:, 
FIGURE 11-10 splitting of 
Octahedral Free-ion Terms on '- 4,. 
Jahn-Teller Distortion for d9 Free ion term Effect of Effect of 
Configuration. Oh field D4h field 

In summary, the 2~ free-ion term is split into 2 ~ g  and 2 ~ 2 g  by a field of Oh sym- 
metry, and further split on distortion to D4h symmetry. The labels of the states resulting 
from the free-ion term (Figure 11-10) are in reverse order to the labels on the orbitals; for 
example, the big atomic orbital is of highest energy, whereas the Blg state originating 
from the 2~ free-ion term is of lowest energy.l7 

For a d 9  configuration, the ground state in octahedral symmetry is a 2 ~ g  term and 
the excited state is a 2 ~ 2 g  tcrm. On distortion to D4h geometry, these terms split, as 
shown in Figure 11-10. In an octahedral d 9  complex, we would expect excitation from 
the 2 ~ g  state to the 2 ~ 2 g  state and a single absorption band. Distortion of the complex to 
D4h geometry splits the 2 ~ 2 g  level into two levels, the Eg and the BZg. Excitation can 
now occur from the ground state (now the Big state) to the Alg, the Eg, or the Bzg (the 
splitting is exaggerated in Figure 11-10). The Big - Alg transition is too low in 
energy to be observed in the visible spectrum. If the distortion is strong enough, there- 
fore, two separate absorption bands may be observed in the visible region, to the Eg or 
the BZg levels (or a broadened or narrowly split peak is found, as in [cu(H~o)~]~+).  

For a d 1  complex, a single absorption band, corresponding to cxcitation of a t2g 
electron to an eg orbital, might be expected: 

e I 
S 

e 
hv g 

& 

1' --- t2g --- t2g 
Ground Exited 

state 
( 2 ~ g )  

However, the spectrum of [T~(H~O)~]~ ' ,  an example of a d' complex, shows two 
apparently overlapping bands rather than a single band. How is this possible? 

One explanation commonly used is that the excited state can undergo Jahn-Teller 
distortion,18 as in Figure 11-10. As in the examples considered previously, asymmetric 
occupation of the eg orbitals can split these orbitals into two of slightly different energy 
(of Alg and Blg symmetry). Excitation can now occur from the t2g level to either of 
these orbitals. Therefore, as in the case of the d 9  configuration, there are now two 
excited states of slightly different energy. The consequence may be a broadcning of a 

17Figgis, "Ligand Field Theory," in Comprehensive Coordination Chemistry, Vol. 1, pp. 252-253. 
"c. J. Ballhausen, Zntroduction to Ligand Field Theoql, McGraw-Hill, New York, 1962, p. 227, and 

' 
references therein. 
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spectrum into a two-humped peak, as in [ T ~ ( H ~ o ) ~ ] ~ + ,  or in some cases into two more 
clearly defined separate peaks. l9 

One additional point needs to be made in regard to Tanabe-Sugano diagrams. 
These diagrams, as shown in Figure I 1-8, assume Oh symmetry, in excited states as well 
as ground states. The consequence is that the diagrams are useful in predicting the gen- 
eral properties of spectra; in fact, many complexes do have sharply defined bands that 
fit the Tanabe-Sugano description well (see the d2, d3, and d4 examples in Figure 11-8). 
However, distortions from pure octahedral symmetry are rather common, and the con- 
sequence can be the splitting of bands--or, in some cases of severe distortion, situations 
in which the bands are difficult to interpret. Additional examples of spectra showing the 
splitting of absorption bands can be seen in Figure 11-8. 

EXERCISE 11-7 

[ F ~ ( H ~ O ) ~ ] ~ '  has a two-humped absorption peak near 1000 nm. By using the appropriate 
Tanabe-Sugano diagram, account for the most likely origin of this absorption. Then, account 
for the splitting of the absorption band. 

11-3-5 EXAMPLES OF APPLICATIONS OF 
TANABE-SUCANO DIAGRAMS: 
DETERMINING A, FROM SPECTRA 

Absorption spectra of coordination compounds can be used to determine the magnitude 
of the ligand field splitting, which is A, for octahedral complexes. It should be made 
clear from the outset that the accuracy with which A, can be determined is to some ex- 
tent limited by the mathematical tools used to solve the problem. Absorption spectra 
often have overlapping bands; to determine the positions of the bands accurately, there- 
fore, requires an appropriate mathematical technique for reducing overlapping bands 
into their individual components. Such analysis is beyond the scope of this text. How- 
ever, we can often obtain A, values (and sometimes values of the Racah parameter, B) 
of reasonable accuracy simply by using the positions of the absorption maxima taken 
directly from the spectra. 

The ease with which A, can be determined depends on the d-electron configura- 
tion of the metal; in some cases, A, can be read easily from a spectrum, but in other 
cases a more complicated analysis is necessary. The following discussion will proceed 
from the simplest cases to the most complicated. 

dl ,  d 4  (high spin), d6 (high spin), d9 

Each of these cases, as shown in Figure 11-1 1, corresponds to a simple excitation of an 
electron from a fzg to an e ~ r b i t a l ,  with the final (excited) electron configuration hav- 
ing the same spin multiplicity as the initial configuration. In each case, there is a single 
excited state of the same spin multiplicity as the ground state. Consequently, there is a 
single spin-allowed absorption, with the energy of the absorbed light equal to A,. Ex- 
amples of such complexes include [ T ~ ( H ~ O ) ~ J ~ + ,  [ c ~ ( H ~ o ) ~ ] ~ + ,  [F~(H~O)~] '+,  and 
[ cu (H~o)~]~+;  note from Figure 11-8 that each of these complexes exhibits essentially 
a single absorption band. In some cases, splitting of bands due to Jahn-Teller distortion 
is observed, as discussed in Section 11-3-4. 

'%. A. Cotton and G. Wilkinson, Advanced Inorgarzic Chemistry, 4th ed., Wiley-Interscience, New 
York, 1980, pp. 680-681. 
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dl: d 4  (high spin): 

- - t - - t - - t t  - - 

t t  r-- --- rrr --- 

d6 (high spin): 

rr KL 
--f 

M t t  t t  t --- --- 
5 

FIGURE 11-1 1 Determining A, for d l ,  d4 (High Spin), d6 (High Spin), and d9 Configurations 

These electron configurations have a ground state F term. In an octahedral ligand field, an F 
term splits into three terms, an A2g, a TZg, and a Tlg . AS shown in Figure 11-12, the A2g is 
of lowest energy for d3  or d8 .  For these configurations, the difference in energy between the 
two lowest-energy terms, the Azg and the T2g, is equal to A,. Therefore, to find A,, we sim- 
ply find the energy of the lowest-energy transition in the absorption spectrum. Examples in- 
clude [ c ~ ( H ~ o ) ~ ] ~ '  and [ N ~ ( H ~ O ) ~ ] ~ + .  In each case, the lowest-energy band in the spectra 
of these complexes (Figure 11-8) is for the transition from the 4 ~ z g  ground state to the 4 ~ 2 g  

excited state. The energies of these bands, approximately 17,500 and 8,500 cm-l, respec- 
tively, are the corresponding values of A,. 

d2, d7  (high spin) 

As in the case of d3  and d8, the ground free-ion terms for these two configurations are 
F terms. However, the determination of A, is not as simple for d 2  and d7. To explain 
this, it is necessary to take a close look at the Tanabe-Sugano diagrams. We will com- 
pare the d3  and d2  Tanabe-Sugano diagrams; the d8  and d7 (high-spin) cases can be 
compared in a similar fashion [note the similarity of the d 3  and d8 Tanabe-Sugano dia- 
grams and of the d2 and d7 (high-spin region) diagrams]. 

In the d3 case, the ground state is a 4 ~ 2 g  state. There are three excited quartet 
states, 4 ~ 2 g ,  4 ~ 1 g  (from 4~ term), and 4 ~ 1 g  (from 4~ term). Note the two states of the 
same symmetry (4~1g) .  An important property of such states is that states of the same 
symmetry may mix. The consequence of such mixing is that, as the ligand field is in- 
creased, the states appear to repel each other; the lines in the Tanabe-Sugano diagram 
curve away from each other. This effect can easily be seen in the Tanabe-Sugano dia- 
gram for d3  (see Figure 11-7). However, this causes no difficulty in obtaining A, for a 
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d 3  complex, because the lowest-energy transition ( 4 ~ z g  - 4 ~ 2 g )  is not affected by 
such curvature. (The Tanabe-Sugano diagram shows that the energy of the 4 ~ 2 g  state 
varies linearly with the strength of the ligand field.) 

The situation in the d 2  case is not quite as simple. For d2, the free-ion 3~ term is 
also split into 3 ~ 1 g  + 3 ~ 2 g  + 3 ~ 2 g ;  these are the same states obtained from d3,  but in 
reverse order (Figure 11-12). For d 2 ,  the ground state is 3'lig. It is tempting to simply 
determine the energy of the 3 ~ l g  (F) --+ 3 ~ 2 g  band and assign this as the value of 
A,. After all, the 3 ~ 1 g  ( F )  can be identified with the configuration t Ig2 (see correlation 
diagram, Figure 11-3), and 3 ~ 2 g  with the configuration tzgeg; the difference between 
these states should give A,. However, the 3 ~ 1 g  ( F )  state can mix with the 3 ~ 1 g  state 
arising from the ' P  free-ion term, causing a slight curvature of both in the Tanabe- 
Sugano diagram. This curvature can lead to some error in using the ground state to ob- 
tain values of A,. 

Therefore, we must resort to an alternative: to determine the difference in energy 
between the tZgeg  and eg2 configurations, which should also be equal to A, (because the 
energy necessary to excite a single electron from a tzg to an eg orbital is equal to A,). This 
means that we can use the difference between 3 ~ 2 g  (for the tzgeg configuration) and 3 ~ z g  

(for eg2; see Figure 11-3) to calculate A,: 

energy of transition 3 ~ l g  --+ 3 ~ 2 g  

- energy of transition 3 ~ I R  --+ 3 ~ 2 R  

A, = energy difference between 3 ~ 2 g  and 3 ~ z g  (see Figure 1 1-13) 

The difficulty with this approach is that two lines cross in the Tanabe-Sugano di- 
agram. Therefore, the assignment of the absorption bands may be in question. From the 
diagram for d2,  we can see that although the lowest energy absorption band (to 3 ~ 2 g )  is 
easily assigned, there are two possibilities for the next band: to 3 ~ z g  for very weak field 
ligands, or to 3 ~ 1 g  ( P )  for stronger field ligands. In addition, the second and third 
absorption bands may overlap, making it difficult to determine the exact positions of 
the bands (the apparent positions of absorption maxima may be shifted if the bands 
overlap). In such cases a more complicated analysis, involving a calculation of the 
Racah parameter, B, may be necessary. This procedure is best illustrated by the follow- 
ing example. 
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r 

FIGURE 1 1 - 13 Spin-allowed 
Transitions for d2  Configuration. 

[ v ( H ~ o ) ~ ] ~ +  has absorption bands at 17,800 and 25,700 cn-'. Using the Tanabe-Sugano r 
diagram for d2, estimate values of A, and B for this complex. 

From the Tanabe-Sugano diagram there are three possible spin-allowed transitions (Figure 1 1-1 3): 

( F )  ---+ 3 ~ 2 , ( ~ )  V I  (lowest energy) 

' ~ 1 ~  ( F )  -+ ' ~ 1 g  (PI  
3 ~ i g  ( F )  -+ 3 ~ 2 g ( ~ I  "3 

v2 > (one of these must be the higher energy band) 

When working with spectra, it is often useful to determine the ratio of energies of the absorp- 
tion bands. In this example, 

25,700 cm-' 
= 1.44 

17,800 cm-' 

The ratio of energy of the higher energy transition (v2 or vs) to the lowest-energy transition 
(vl ) must therefore be approximately 1.44. From the Tanabe-Sugano diagram, we can see that 
the ratio of v3 to vl is approximately 2, regardless of the strength of the ligand field; we can 
therefore eliminate v3 as the possible transition occurring at 25,700 cm-'. This means that the :: 
25,700 cnC1 band must be v2, corresponding to 3 ~ 1 g  (F) - 3 ~ l g  (P), and 

v2 1.44 = - 
V l  

The ratio vz/vl varies as a function of the strength of the ligand field. By plotting the ratio vz/vl 
versus A,/B (Figure 11-14), we find that v2/vl = 1.44 at approximately A,/B = 3 1 .'03 

'ON. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Elmsford, NY, 
1984, p. 1161; B. N. Figgis and M. A. Hitchman, Ligand Field Theovy andfts Applications, Wiley-VCH, New : 
York, 2000, pp. 189-193. 

"~ifferent references report slightly mfferent positions for the absorption bands of [ V ( H ~ O ) ~ ] ' +  and 
hence slightly different values of B and A,. 



EIB 

AolB v1 v2 --- 
0 0 15 

10 8.74 21.5 
20 18.2 31.4 
30 27.9 40.8 
40 37.7 50.4 
50 47.6 60.2 

FIGURE 11-14 Value of vl /v2 
Ratio for d2  Configuration. 
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19: 5 = 42 (approximately); B = E 4 2 -  - 25700cm-' ' 4 2  - -610cmP1 

"1: $ = 29 (approximately); B = 29 = '73800 29 cm-l = 610 Cm-l 

A 
Because 2 = 31: 

This procedure can be followed for d 2  and d7 complexes of octahedral geometry to estimate 
values for A, (and B). 

EXERCISE 11-8 

Use the Co(I1) spectrum in Figure 11-8 and the Tanabe-Sugano diagrams of Figure 11-7 to find 
A, and B. The broad band near 20,000 cm-' can be considered to have the 4 ~ , g  - 4 ~ 2 g  

transition in the small shoulder near 16,000 cm-' and the 4 ~ 1 g  (F) ---+ 4 ~ 1 g  (P) transition at 
the peak.22 

Other configurations: d5  (high spin), 
d4  to d7  (low spin) 

As has been mentioned previously, high-spin d5 complexes have no excited states of the 
same spin multiplicity (6) as the ground state. The bands that are observed are therefore 
the consequence of spin-forbidden transitions and are typically very weak as, for exam- 
ple, in [ M ~ ( H ~ O ) ~ ] ~ + .  The interested reader is referred to the 1iteratu1-e23 for an analysis 
of such spectra. In the case of low-spin d4 to d7 octahedral complexes, the analysis can 
be difficult, since there are many excited states of the same spin multiplicity as the 
ground state (see right side of Tanabe-Sugano diagrams for d4 to d7, Figure 11-7). 
Again, the chemical literature provides examples and analyses of the spectra of such 
compounds .24 

2 2 ~ h e  4 ~ 1 ,  - 4 ~ 2 g  transition is generally weak in octahedral complcxcs of co2+, because such a 
transition corresponds to simultaneous excitation of two electrons and is less probable than the other spin- 
allowed transitions, which are for excitations of single electrons. 

2 3 ~ .  N. Figgis and M. A. Hitchman, Ligand Field Theoiy and Its Applications, Wiley-VCH, New 
York, 2000, pp. 208-209. 

24~iggis and Hitchman, Ligand Field Theory and its Applications, pp. 204-207; B. N. Figgis, in 
G. Wilkinson, R. D. Gillard, and J. A. McCleverty, eds., Comprehensive Coordination Chemistry, Vol. 1, 
Pergamon, Elmsord, NY, 1987, pp. 243-246. 
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11-3-6 TETRAHEDRAL COMPLEXES 

In general, tetrahedral complexes have more intense absorptions than octahedral com- 
plexes. This is a consequence of the first (Laporte) selection rule (Section 11-3-1): tran- 
sitions between d orbitals in a complex having a center of symmetry are forbidden. As a 
result, absorption bands for octahedral complexes are weak (small molar absorptivi- 
ties); that they absorb at all is the result of vibrational motions that act continually to 
distort molecules slightly from pure Oh symmetry. 

In tetrahedral complexes, the situation is different. The lack of a center of sym- 
metry makes transitions between d orbitals more allowed; the consequence is that tetra- 
hedral complexes often have much more intense absorption bands than octahedral 
~ o m ~ ~ e x e s . ~ ~  

As we have seen, the d orbitals for tetrahedral complexes are split in the opposite 
fashion to octahedral complexes: 

A useful comparison can be drawn between these by using what is called the hole 1 

formalism. This can best be illustrated by example. Considcr a dl configuration in an ,: 
octahedral complex. The one electron occupies an orbital in a triply degenerate set 
( t2g) .  NOW, consider a d9 configuration in a tetrahedral complex. This configuration has [ 
a "hole" in a triply degenerate set of orbitals ( t2) .  It can be shown that, in terms of sym- ;- 
metry, the dl Oh configuration is analogous to the d9 Td configuration; the "hole" in d9 I,, 

results in the same symmetry as the single electron in d l .  

'r --- 
t2fi 

Octahedral Tetrahedral 

In practical terms, this means that, for tetrahedral geometry, we can use the corre- 
lation diagram for the configuration in octahedral geometry to describe the d" 
configuration in tetrahedral geometry. Thus, for a d2 tetrahedral case, we can use the d8 
octahedral correlation diagram, for the d3 tetrahedral case we can use the d7 octahedral 
diagram, and so on. We can then identify the appropriate spin-allowed bands as in 
octahedral geometry, with allowed transitions occurring between the ground state and 
excited states of the same spin multiplicity. 

2 5 ~ ~ o  types of hybrid orbitals are possible for a central atom of Td symmetry: sd3 and sp3 (see 
Chapter 5). These types of hybrids may be viewed as mixing, to yield hybrid orbitals that contain some p 
character (note that p orbitals are not symmetric to inversion), as well as d character. The mixing in of p char- 
acter can be viewed as making transitions between these orbitals more allowed. For a more thorough discus- 
sion of this phenomenon, see E A. Cotton, Chenzical Applications of Group Theory, 3rd ed., Wiley- 
Interscience, New York, 1990, pp. 295-296. Pages 289-297 of this reference also give a more detailed 
discussion of other selection rules. 
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FIGURE 11-15 ChargeTransfer 
to Metal. 

Other geometries can also be considered according to the same principles as for 
octahedral and tetrahedral complexes. The interested reader is referred to the literature 
for a discussion of different ge~rne t r i e s .~~  

1 1-3-7 CHARGE-TRANSFER SPECTRA 

Examples of charge-transfer absorptions in solutions of halogens have been described 
in Chapter 6. In these cases, a strong interaction between a donor solvent and a halogen 
molecule, X2, leads to the formation of a complex in which an excited state (primarily 
of X2 character) can accept electrons from a HOMO (primarily of solvent character) on 
absorption of light of suitable energy: 

The absorplion band, known as a charge-transfer band, can be very intense; it is 
responsible for the vivid colors of some of the halogens in donor solvents. 

It is extremely common for coordination compounds also to exhibit strong 
charge-transfer absorptions, typically in the ultraviolet and/or visible portions of the 
spectrum. These absorptions may be much more intense than d-d transitions (which for 
octahedral complexes usually have E values of 20 L mol-' cm-' or less); molar absorp- 
tivities of 50,000 L mole-' cm-' or greater are not uncommon for these bands. Such 
absorption bands involve the transfer of electrons from molecular orbitals that are pri- 
marily ligand in character to orbitals that are primarily metal in character (or vice 
versa). For example, consider an octahedral d6 complex with cr-donor ligands. The lig- 
and electron pairs are stabilized, as shown in Figure 11-15. 

The possibility exists that electrons can be excited, not only from the tzg level to 
the eg but also from the a orbitals originating from the ligands to the eg.  The latter 
excitation results in a charge-transfer transition; it may be designated as charge trans- 
fer to metal (CTTM) or ligand to metal charge transfer (LMCT). This type of tran- 
sition results in formal reduction of the metal. A CTTM excitation involving a cobalt 
(111) complex, for example, would exhibit an excited state having cobalt(I1). 

Examples of charge-transfer absorptions are numerous. For example, the octahe- 
dral complexes 1r~i-6~- (d5) and 1rBrG3- (d6) both show charge-transfer bands. For 
1rBr6~-, two bands appear, near 600 nm and near 270 nm; the former is attributed to 
transitions to the tzg levels and the latter to the e g .  In ~ r ~ r ~ ~ - ,  the t2g levels are filled, 
and the only possible CTTM absorption is therefore to the eg.  Consequently, no low- 
energy absorptions in the 600-nm range are observed, but strong absorption is seen near 

?$ ?$ ?$I ?$ ?$ ?$ / /  -----A 

Uncoordinated metal Octahedral complex Ligand sigma orbitals 

'%ggis and Hitchman, Ligond Field Theory and Its Applications, pp. 21 1-214; Cotton, Chemical 
Applications of Group Theory, 3rd ed., pp. 295-303. 
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FIGURE 1 1-1 6 Charge Tra~tsfer %g 

to Ligand. Uncoordinated metal Octahedral complex Ligand n* orbitals 

250 nm, corresponding to charge transfer to eg. A common example of tetrahedral 
geometry is the permanganate ion, Mn04-, which is intensely purple because of a 
strong absorption involving charge transfer from orbitals derived primarily from the 
filled oxygen p orbitals to empty orbitals derived primarily from the manganese(VI1). 

Similarly, it is possible for there to be charge transfer to ligand (CTTL), also 
known as metal to ligand charge transfer (MLCT), transitions in coordination com- 
pounds having T-acceptor ligands. In these cases, empty T* orbitals on the ligands be- 
come the acceptor orbitals on absorption of light. Figure 11-16 illustrates this 
phenomenon for a d5 complex. 

CTTL results in oxidation of the metal; a CTTL excitation of an iron(1IIj complex 
would give an iron(1V) excited state. CTTL most commonly occurs with ligands having 
empty T* orbitals, such as CO, CN-, SCN-, bipyridine, and dithiocarbamate (S2CNR2-). 

In complexes such as Cr(COj6 which have both a-donor and T-acceptor orbitals, 
both types of charge transfer are possible. It is not always easy to determine the type of 
charge transfer in a given coordination compound. Many ligands give highly colored 
complexes that have a series of overlapping absorption bands in the ultraviolet part of 
the spectrum as well as the visible. In such cases, the d-d transitions may be completely 
overwhelmed and essentially impossible to observe. 

Finally, the ligand itself may have a chromophore and still another type of ab- 
sorption band, an intraligand band, may be observed. These bands may sometimes be 
identified by comparing the spectra of complexes with the spectra of free ligands. How- 
ever, coordination of a ligand to a metal may significantly alter the energies of the lig- 
and orbitals, and such comparisons may be difficult, especially if charge-transfer bands 
overlap the intraligand bands. Also, it should be noted that not all ligands exist in the 
free state; some ligands owe their existence to the ability of metal atoms to stabilize 
molecules that are otherwise highly unstable. Examples of several such ligands will be 
discussed in later chapters. 

EXERCISE 11-9 

The isoelectronic ions vod3-, c ~ o ~ ~ - ,  and MnQ- all have intense charge transfer transi- 
tions. The wavelengths of these transitions increase in this series, with Mn04- having its 
charge-transfer absorption at the longest wavelength. Suggest a reason for this trend. 

G E N E R A L  B. N. Figgis and M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley- 
REFERENCES VCH, New York, 2000, and B. N. Figgis, "Ligand Field Theory," in G. Wilkinson, R. D. 

Gillard, and J. A. McCleverty, eds., Comprehensive Coordination Chemistry, Vol. 1, 
Pergamon Press, Elmsford, NY, 1987, pp. 213-280, provide extensive background in 
the theory of electronic spectra, with numerous examples. Also useful is C. J. Ball- 
hausen, Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962. Important 
aspects of symmetry applied to this topic can be found in F. A. Cotton, Chemical Appli- 
cations of Group Theory, 3rd ed., Wiley-Interscience, New York, 1990. 
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PROBLEMS 11-1 For each of the following configurations, construct a microstate table and reduce the 
table to its constituent free-ion terms. Identify the lowest-energy term for each. 
a. p3 
b. p' d' (as in a 4p' 3d' configuration) 

For each of the lowest-energy (ground state) terms in Problem 11-1, determine the 
possible values of J. Which J value describes the state with the lowest energy? 

For each of the following free-ion terms, determine the values of L, M L ,  S, and Ms:  
a. '0 (d3) 
b. 3~ (d4) 
c. 4~ (d7) 

For each of the free-ion terms in Problem 1 1-3, determine the possible values of J ,  and 
decide which is the lowest in energy. 

The most intense absorption band in the visible spectrum of [ M ~ ( H ~ o ) ~ ] ~ +  is at 
24,900 cm-' and has a molar absorptivity of 0.038 L mol-' cm-I. What concentration 
of [ M ~ ( H ~ o ) ~ ] ~ +  would be necessary to give an absorbance of 0.10 in a cell of path 
length 1 .OO cm? 

a. Determine the wavelength and frequency of 24,900 cm-' light. 
b. Determine the energy and frequency of 366 nm light. 

Determine the ground terms for the following configurations: 
a. d8 (Oh symmetry) 
b. High-spin and low-spin d5 (Oh symmetry) 
c. d4  (Td symmetry) 
d. d9 (D4h symmetry, squarc-planar) 

The spectrum of [ N ~ ( H ~ O ) ~ ] ~ +  (Figure 11 -8) shows three principal absorption bands, 
with two of the bands showing signs of further splitting. Referring to the Tanabe- 
Sugano diagram, estimate the value of A,. Give a likely explanation for the further 
splitting of the spectrum. 

From the following spectral data, and using Tanabe-Sugano diagrams (Figure 11-7), 
calculate A, for the following: 
a. [ c ~ ( c ~ o ~ ) ~ ] ~ - ,  which has absorption bands at 23,600 and 17,400 cm-I. A third 

band occurs well into the ultraviolet. 
b. [T~(NCS)~]~- ,  which has an asymmetric, slightly split band at 18,400 cm-I. (Also, 

suggest a reason for the splitting of this band.) 
c. [ ~ i ( e n ) ~ ] ~ ' ,  which has three absorption bands: 11,200, 18,350, and 29,000 cm-'. 
d. [vF613-, which has two absorption bands at 14;800 and 23,250 cm-I, plus a third 

band in the ultraviolet. (Also, calculate B for this ion.) 
e. The complex VC13(CH3CN)3, which has absorption bands at 694 and 467 nm. 

Calculate A, and B for this complex. 

[ C O ( N H ~ ) ~ ] ~ +  has absorption bands at 9,000 and 21,100 cm-I. Calculate A, and B for 
this ion. (Hints: The 4 ~ ! g  - 4 ~ 2 g  transition in this complex is too weak to be 
observed. The graph in Flgure 11-13 may be used for d7 as well as d2  complexes.) 

Classify the following configurations as A, E, or Tin  complexes having Oi, symmetry. 
Some of these configurations represent excited states. 
a. t2g4e,2 b. t2g 6 C- t2s eg d. t2gs e. e ,  

Of the first-row transition metal complexes of formula [M(NH&]~+, w h ~ h  metals are 
predicted by the Jahn-Teller theorem to have distorted complexes? 

Mn04- is a stronger oxidizing agent than Re04-. Both ions have charge-transfer 
bands; however, the charge-transfer band for Re04- is in the ultraviolet, whereas the 
corresponding band for Mn04- is responsible for its intensely purple color. Arc the rcl- 
ative positions of the charge transfer absorptions consistent with the oxidizing abilities 
of these ions? Explain. 


