
The theories of atomic and molecular structure depend on quantum mechanics to de- 
scribe atoms and molecules in mathematical terms. Although the details of quantum 
mechanics require considerable mathematical sophistication, it is possible to under- 
stand the principles involved with only a moderate amount of mathematics. This chap- 
ter presents the fundamentals needed to explain atomic and molecular structures in 
qualitative or semiquantitative terms. 

2-1 Although the Greek philosophers Democritus (460-370 BC) and Epicurus (341-270 

HlSTORlCAL BC) presented views of nature that included atoms, many hundreds of years passed 

DEVELOPMENT OF before experimental studies could establish the quantitative relationships needed for a 

ATOMIC THEORY coherent atomic theory. In 1808, John Dalton published A New System of Chemical 
~ h i l o s o ~ h ~ , '  in which he proposed that 

. . . the ultimate particles of all homogeneous bodies are perfectly alike in weight, figure, 
etc. In other words, every particle of water is like every other particle of water, every parti- 
cle of hydrogen is like every other particle of hydrogen, etce2 

and that atoms combine in simple numerical ratios to form compounds. The terminolo- 
gy he used has since been modified, but he clearly presented the ideas of atoms and 
molecules, described many observations about heat (or caloric, as it was called), and 
made quantitative observations of the masses and volumes of substances combining to 
form new compounds. Because of confusion about elemental molecules such as Hz and 
0 2 ,  which he assumed to be monatomic H and 0 ,  he did not find the correct formula for 
water. Dalton said that 

' ~ o h n  Dalton, A New System qf Chemical Philosophy, 1808; reprinted wi 
der Joseph, Peter Owen Limited, London, 1965. 

'lbid., p. 113. 

. -.- 
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When two measures of hydrogen and one of oxygen gas are mixed, and fired by the elec- 
tric spark, the whole is converted into steam, and if the pressure be great, this steam be- 
comes water. It is most probable then that there is the same number of particles in two 
measures of hydrogen as in one of oxygen.3 

In fact, he then changed his mind about the number of molecules in equal volumes of 
different gases: 

At the time I formed the theory of mixed gases, I had a confused idea, as many have, I sup- 
pose, at this time, that the particles of elastic fluids are all of the same size; that a given vol- 
ume of oxygenous gas contains just as many particles as the same volume of hydrogenous; 
or if not, that we had no data from which the question could be solved. . . . I [later] became 
convinced. . . That every species of pure elastic fluid has its particles globular and all of a 
size; but that no two species agree in the size of their particles, the pressure and tempera- 
ture being the same. 4 

Only a few years later, Avogadro used data from Gay-Lussac to argue that equal 
volumes of gas at equal temperatures and pressures contain the same number of mole- 
cules, but uncertainties about the nature of sulfur, phosphorus, arsenic, and mercury va- 
pors delayed acceptance of this idea. Widespread confusion about atomic weights and 
molecular formulas contributed to the delay; in 1861, Kekul6 gave 19 different possible 
formulas for acetic acid!' In the 1850s, Cannizzaro revived the argument of Avogadro 
and argued that everyone should use the same set of atomic weights rather than the 
many different sets then being used. At a meeting in Karlsruhe in 1860, he distributed a 
pamphlet describing his views.6 His proposal was eventually accepted, and a consistent 
set of atomic weights and formulas gradually evolved. In 1869, ~ e n d e l e e v ~  and ~ e ~ e r '  
independently proposed periodic tables nearly like those used today, and from that time 
the development of atomic theory progressed rapidly. 

2-1-1 THE PERIODIC TABLE 

The idea of arranging the elements into a periodic table had been considered by many 
chemists, but either the data to support the idea were insufficient or the classification 
schemes were incomplete. Mendeleev and Meyer organized the elements in order of 
atomic weight and then identified families of elements with similar properties. By ar- 
ranging these families in rows or columns, and by considering similarities in chemical 
behavior as well as atomic weight, Mendeleev found vacancies in the table and was able 
to predict the properties of several elements (gallium, scandium, germanium, polonium) 
that had not yet been discovered. When his predictions proved accurate, the concept of 
a periodic table was quickly established (see Figure 1-10). The discovery of additional 
elements not known in Mendeleev's time and the synthesis of heavy elements have led 
to the more complete modern periodic table, shown inside the front cover of this text. 

In the modern periodic table, a horizontal row of elements is called a period, and 
a vertical column is a group or family. The traditional designations of groups in the 
United States differ from those used in Europe. The International Union of Pure and 
Applied Chemistry (IUPAC) has recommended that the groups be numbered I through 
18, a recommendation that has generated considerable controversy. In this text, we will 

31bid., p. 133 
4~bid., pp. 144-145. 
5 ~ . ~ .  Partington, A Short History of Chemistry, 3rd ed., Macmillan, London, 1957; reprinted, 1960, 

Harper & Row, New York, p. 255. 
6~bid., pp. 256-258. 
7 ~ .  I. Mendeleev, J. Russ. Phys. Chem. Soc., 1869, i, 60. 
8 ~ .  Meyer, Justus Liebigs Ann. Chem., 1870, Suppl, vii, 354. 
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FIGURE 2-1 Names for Parts of 
the Periodic Table. 

Groups (American tradition) 
IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA VIIIA 

Groups (European tradition) 
IA IIA IIIA IVA VA VIA VIIA VIII 1B IIB IIIB IVB VB VIB V I E  0 

Groups (IUPAC) 
1 2 3  

* 
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0 
Transition metals 

use the IUPAC group numbers, with the traditional American numbers in parentheses. 
Some sections of the periodic table have traditional names, as shown in Figure 2-1. 

* 

** 

2-1-2 DISCOVERY OF SUBATOMIC 
PARTICLES AND THE BOHR ATOM 

During the 50 years after the periodic tables of Mendeleev and Meyer were proposed, 
experimental advances came rapidly. Some of these discoveries are shown in Table 2-1. 

Parallel discoveries in atomic spectra showed that each element emits light of 
specific energies when excited by an electric discharge or heat. In 1885, Balmer showed 
that the energies of visible light emitted by the hydrogen atom are given by the equation 

58 

90 

TABLE 2-1 
Discoveries in Atomic Structlrte 

1896 A H Becquerel D~scovered radioactivity of uranium 
1897 J J Thomson Showed that electrons have a negahve charge, w ~ t h  

charge/mass = 1 76 X 1011 C/kg 
1909 R A. Milhkdn Medsured the eleclron~c charge (1 60 X lo-'' C); therefore, the mass of 

1 
the electron IS 9 11 X kg, ------ of the mass of the H atom 

1836 
191 1 E. Rutherford Established the nuclear model of the atom (very small, heavy nucleus 

surrounded by mostly empty space) 
1913 H. G. J. Moseley Determined nuclear charges by X-ray emission, establishing atomic 

numbers as more fundamental than atomic masses 

I I 
Lanthanides 

I I 
Actinides 

71 

103 
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where 

nh = integer, with nh > 2 

RH = Rydberg constant for hydrogen = 1.097 X lo7 m-' = 2.179 X 10-18J 

and the energy is related to the wavelength, frequency, and wave number of the light, as 
given by the equation 

where9 h = Planck's constant = 6.626 X J s 

v = frequency of the light, in s-I 

c = speed of light = 2.998 X 10' m s-' 

h = wavelength of the light, frequently in nm 
- 
v = wavenumber of the light, usually in cm-I 

The Balmer equation was later made more general, as spectral lines in the ultravio- 
let and infrared regions of the spectrum were discovered, by replacing 22 by nf ,  with the 
condition that nl < nh . These quantities, ni, are called quantum numbers. (These are the 
principal quantum numbers; other quantum numbers are discussed in Section 2-2-2.) 
The origin of this energy was unknown until Niels Bohr's quantum theory of the atom," 
first published in 1913 and refined over the following 10 years. This theory assumed that 
negative electrons in atoms move in stable circular orbits around the positive nucleus with 
no absorption or emission of energy. However, electrons may absorb light of certain spe- 
cific energies and be excited to orbits of higher energy; they may also emit light of specif- 
ic energies and fall to orbits of lower energy. The energy of the light emitted or absorbed 
can be found, according to the Bohr model of the hydrogen atom, from the equation 

where 

(J, = reduced mass of the electron-nucleus combination 

1 1  
- 

1 
-. - + -------- 

(J, m e  mnucleus 

me = mass of the electron 

mnucleus = mass of the nucleus 

Z = charge of the nucleus 

e = electronic charge 

h = Planck's constant 

nh = quantum number describing the higher energy state 

nl = quantum number describing the lower energy state 
4,rrro = permittivity of a vacuum 

 ore accurate values for the constants and energy conversion factors are given inside the back cover 
of thls book. 

'ON. Bohr, Philos. Mag., 1913,26, 1. 
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This equation shows that the Rydberg constant depends on the mass of the nucleus as 
well as on the fundamental constants. 

Examples of the transitions observed for the hydrogen atom and the energy levels 
responsible are shown in Figure 2-2. As the electrons drop from level nh  to nl (h for 
higher level, 1 for lower level), energy is released in the form of electromagnetic radia- 
tion. Conversely, if radiation of the correct energy is absorbed by an atom, electrons are 
raised from level nl to level n h .  The inverse-square dependence of energy on nl results 
in energy levels that are far apart in energy at small nl and become much closer in ener- 
gy at larger nl. In the upper limit, as nl approaches infinity, the energy approaches a 
limit of zero. Individual electrons can have more energy, but above this point they are 
no longer part of the atom; an infinite quantum number means that the nucleus and thc 
electron are separate entities. 

r 

EXERCISE 2-1 
Find the energy of the transition from nh = 3 to nl = 2 for the hydrogen atom in both joules 
and cm-' (a common unit in spectroscopy). This transition results in a red line in the visible 
emission spectrum of hydrogen. (Solutions to the exercises are given in Appendix A,) 

When applied to hydrogen, Bohr's theory worked well; when atoms with more 
electrons were considered, the theory failed. Complications such as elliptical rather 
than circular orbits were introduced in an attempt to fit the data to Bohr's theory.' ' The 
developing experimental science of atomic spectroscopy provided extensive data for 
testing of the Bohr theory and its modifications and forced the theorists to work hard to 
explain the spectroscopists' observations. In spite of their efforts, the Bohr theory even- 
tually proved unsatisfactory; the energy levels shown in Figure 2-2 are valid only for the 
hydrogen atom. An important characteristic of the electron, its wave nature, still needed 
to be considered. 

According to the de Broglie equation,12 proposed in the 1920s, all moving parti- 
cles have wave properties described by the equation 

where h = wavelength of the particle 

h = Planck's constant 

m = mass of the particle 

v - velocity of thc particle 

Particles massive enough to be visible have very short wavelengths, too small to 
be measured. Electrons, on the other hand, have wave properties because of their very 
small mass. 

Electrons moving in circles around the nucleus, as in Bohr's theory, can be 
thought of as forming standing waves that can be described by the de Broglie equation. 
Howcvcr, wc no longer believe that it is possible to describe the motion of an electron in 
an atom so precisely. This is a consequence of another fundamental principle of modern 
physics, Heisenberg's uncertainty prin~iple,'~ which states that there is a relationship 

"G. Herzberg, Atomic Spectra and Atomic Structure, 2nd ed., Dover Publications, New York, 1994, 
p. 18. 

"L. de Broglie, Philos. Mag. 1924,47.446; Ann. Phys., 1925,3, 22. 
13w. Heisenberg, Z. Phys., 1927, 43, 172. 
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FIGURE 2-2 
Energy Levels. 

Hydrogen Atom 
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between the inherent uncertainties in the location and momentum of an electron moving 
in the x direction: 

h 
AX Ap, r - 

4 n  

where 

Ax = uncertainty in the position of the electron 

Ap, = uncertainty in the momentum of the electron 

The energy of spectral lines can be measured with great precision (as an example, 
the Rydberg constant is known to 11 significant figures), in turn allowing precise deter- 
mination of the energy of electrons in atoms. This precision in energy also implies preci- 
sion in momentum (Ap, is small); therefore, according to Heisenberg, there is a large 
uncertainty in the location of the electron (Ax is large). These concepts mean that we 
cannot treat electrons as simple particles with their motion described precisely, but we 
must instead consider the wave properties oT electrons, characterized by a degree of un- 
certainty in their location. In other words, instead of being able to describe precise orbits 
of electrons, as in the Bohr theory, we can only describe orbitals, regions that describe 
the probable location of electrons. The probability of finding the electron at a particular 
point in space (also called the electron density) can be calculated, at least in principle. 

2-2 In 1926 and 1927, schrodinger14 and Heisenberg13 published papers on wave 

THE S C H R ~ D ~ N C E R  mechanics (descriptions of the wave properties of electrons in atoms) that used very 

EQUATION different mathematical techniques. In spite of the different approaches, it was soon 
shown that their theories were equivalent. Schrodinger's differential equations are 
more commonly used to introduce the theory, and we will follow that practice. 

The Schrodinger equation describes the wave properties of an electron in terms of 
its position, mass, total energy, and potential energy. The equation is based on the wave 
function, 9, which describes an electron wave in space; in other words, it describes an 
atomic orbital. In its simplest notation, the equation is 

where H = the Hamiltonian operator 

E = energy of the electron 

= the wave function 

The Hamiltonian operator (frequently just called the Hamiltonian) includes de- 
rivatives that operate on the wave function." When the Hamiltonian is carried out, the 
result is a constant (the energy) times 9. The operation can be performed on any wave 
function describing an atomic orbital. Different orbitals have different !I? functions and 
different values of E. This is another way of describing quantization in that each orbital, 
characterized by its own function 9, has a characteristic energy. 

1 4 ~ .  Schriidinger, Ann. Yhys. (Leipzig), 1926, 79, 361, 489, 734; 1926, 80, 437; 1926, 81, 109; 
Natuiwissenshafien, 1926,14,664; Phys. Rev., 1926.28, 1049. 

I 5 ~ n  operator is an instruction or set of instructions that states what to do with the function that fol- 
lows it. It may be a simple instruction such as "multiply the following function by 6; or it may be much more 
complicated than the Hamiltonian. The Hamiltonian operator is sometimes written H, with the A (hat) symbol 
designating an operator. 
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In the form used for calculating energy levels, the Hamiltonian operator is 

This part of the operator describes the This part of the operator describes the 
kinetic energy of the electron potential energy of the electron, the result of 

electrostatic attraction between the electron 
and the nucleus. It is commonly designated 
as V. 

where h = Planck's constant 

m = mass of the particle (electron) 

e = charge of the electron 

d x 2  + y2 + z2 = r  = distance from the nucleus 

Z = charge of the nucleus 

4neo - permittivity of a vacuum 

When this operator is applied to a wave function q ,  

-ze2 v = ---- - - -ze2 
where 

4nsor 4nEo\/x/*' + y2 + i2 

The potential energy V is a result of electrostatic attraction between the electron 
and the nucleus. Attractive forces, like those between a positive nucleus and a negative 
electron, are defined by convention to have a negative potential energy. An electron near 
the nucleus (small r )  is strongly attracted to the nucleus and has a large negative poten- 
tial energy. Electrons farther from the nucleus have potential energies that are small and 
negative. For an electron at infinite distance from the nucleus ( r  = a), the attraction 
between the nucleus and the electron is zero, and the potential energy is zero. 

Because every q matches an atomic orbital, there is no limit to the number of so- 
lutions of the Schrodinger equation for an atom. Each * describes the wave properties 
of a given electron in a particular orbital. The probability of finding an electron at a 
given point in space is proportional to q2. A number of conditions are required for a 
physically realistic solution for q: 

1. The wave function T must be sin- There cannot be two probabilities for 
gle-valued. an electron at any position in space. 

2. The wave function T and its first The probability must be defined at all 
derivatives must be continuous. positions in space and cannot change 

abruptly from one point to the next. 

3. The wave function T must ap- For large distances from the nucleus, 
proach zero as r  approaches infinity. the probability must grow smaller and 

smaller (the atom must be finite). 



FIGURE 2-3 Potential Energy 
Well for the Particle in a Box. 

4. The integral 

I T ~ ~ E ~ *  d~ = 1 

all space 

5. The integral 

I 7EA7Eg d~ = 0 

all space 
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The total probability of an electron 
being somewhere in space = 1. This 
is called normalizing the wave 
function.16 

All orbitals in an atom must be orthog- 
onal to each other. In some cases, this 
means that the orbitals must be perpen- 
dicular, as with the p,, py ,  and p, 
orbitals. 

2-2-1 THE PARTICLE I N  A BOX 

A simple example of the wave equation, the one-dimensional particle in a box, shows 
how these conditions are used. We will give an outline of the method; details are avail- 
able elsewhere.17 The "box" is shown in Figure 2-3. The potential energy V(x) inside 
the box, between x = 0 and x = a,  is defined to be zero. Outside the box, the potential 
energy is infinite. This means that the particle is completely trapped in the box and 
would require an infinite amount of energy to leave the box. However, there are no 
forces acting on it within the box. 

The wave equation for locations within the box is 

-- -r ("~p) = pP(.x), because V(x) = 0 
8~ m 

Sine and cosine functions have the properties that we associate with waves-a 
well-defined wavelength and amplitude-and we may therefore propose that the wave 
characteristics of our particle may be described by a combination of sine and cosine 
functions. A general solution to describe the possible waves in the box would then be 

7E = A sin rx + B cos sx 

I6~ecause the wave functions may have imaginary values (containing fi), TT* is used to make 
the integral real. In many cases, the wave functions themselves are real, and this integral becomes 

all space 

1 7 ~ .  M. Barrow, Physical Chemistry, 6th ed., McGraw-Hill, New York, 1996, pp. 65, 430, calls this 
the "particle on a line" problem. Many other physical chemistry texts also include solutions. 
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where A, B, r, and s are constants. Substitution into the wave equation allows solution 
for r and s (see Problem 4 at the end of the chapter): 

Because 9 must be continuous and must equal zero at x < 0 and x > a (be- 
cause the particle is confined to the box), 9 must go to zero at x = 0 and x = a. Be- 
cause cos sx = 1 for x = 0, 9 can equal zero in the general solution above only if 
B = 0. This reduces the expression for 9 to 

9 = A sin r x  

At x = a, 9 must also equal zero; therefore, sin ra = 0, which is possible only 
if ra is an integral multiple of n: 

where n = any integer f 0.'' Substituting the positive value (because both positive 
and negative values yield the same results) for r into the solution for r gives 

This expression may be solved for E: 

These are the energy levels predicted by the particle in a box model for any particle in a 
one-dimensional box of length a. The energy levels are quantized according to 
quantum numbers n = 1,2,3,  . . . 

Substituting r = n n l a  into the wave function gives 

n n x  
9 = A sin --- 

a 

and applying the normalizing requirement 9 9* d~ = 1 gives 

- 

The total solution is then 

181f n = 0, then r = 0 and T = 0 at all points. The probability of finding the electron is 
/' TT* dx = 0, and there is no electron at all. 
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Particle in a box 
n = 3  

FIGURE 2-4 Wave Functions and 
Their Squares for the Particle in a 
Box with n = 1, 2, and 3. 

Wave function Y 

-2 1 
0 .2 .4 .6 .8 1 

xla 

Particle in a box 
n = 2  

Wave function Y 
- 1 

-2 ' 
0 .2 .4 .6 .8 1 

xla 

Particle in a box 
n = l  

The resulting wave functions and their squares for the first three states (the ground state 
and first two excited states) are plotted in Figure 2-4. 

The squared wave functions are the probability densities and show the difference 
between classical and quantum mechanical behavior. Classical mechanics predicts that 
the electron has equal probability of being at any point in the box. The wave nature 
of the electron gives it the extremes of high and low probability at different locations 
in the box. 

2-2-2 QUANTUM NUMBERS AND ATOMIC 
WAVE FUNCTIONS 

The particle in a box example shows how a wave function operates in one dimension. 
Mathematically, atomic orbitals are discrete solutions of the three-dimensional 
Schrodinger equations. The same methods used for the one-dimensional box can be 
expanded to three dimensions for atoms. These orbital equations include three 
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quantum numbers, n, 1, and ml. A fourth quantum number, m,, a result of relativistic 
corrections to the Schrodinger equation, completes the description by accounting for 
the magnetic moment of the electron. The quantum numbers are summarized in Tables 
2-2, 2-3, and 2-4. 

TABLE 2-2 
Quantum Numbers and Their Properties 

Svmbol Nanze Values Role 

n Principal 1,2, 3,. . . Determines the major part of the 
energy 

I Angular momentum 0 1 2 n - 1 Describes angular dependence and 
contributes to the energy 

ml Magnetic 0 k I ,  2 l Describes orientation in space (angular 
momentum in the z direction) 

rn ,S Spin Describes orientation of the electron 
spin (magnetic moment) in space 

Orbitals with different 1 values are known by the following labels, derived from early terms for different 
families of spectroscopic lines: 

1 0 1 2 3 4 5, . . .  
Label s P d . f ti' continuing alphabetically 

TABLE 2-3 
Hydrogen Atom Wave Functions: Angular Functions 

Angular factors Real wave functions 

Related to Functions In Polar In Cartesian 
angular momentum of 6 coordinates coordinates Shape5 Label 

8 
1 - 
fi 
4 
- cos 0 

2 

fi. 
- sin 0 

2 

v5. 
- sin 0 

2 
7 I 
fi 
--- cos t) sin 0 

2 

fi 
-cos0 sin0 

2 
- I L\/ ' icos 2 1T 0 sin 0 cos + 

sin2 0 cos 2 4  
4 1T 

- - 

SOU~~CE Addpted from G M Barrow, Phy~lcfll Chernz~try, 5th ed , McGraw-Hill, New York, 1988, p 450, wlth perini\aion 

N m :  The relations (ei+ - eeim)/(2i) = sin + and (ei* + e-'+)/2 = cos + can be used to convert the exponential imaginary functions to real 
trignnomeiric functions, combining the two orbitals with n-zl = f 1 to give two orbitals with sin + and cos 4. In a similar fashion, the orbitals with 
rn, = 1 2  result in real functions with cos2 + and sin' +. These functions have then been converted to Cartesian form by using the functions 
x = r sin 0 cos +, y = r sin 0 sin 4 ,  and z = r cos 0 



2-2 The Schriidingel- Equation 27 

TABLE 2-4 
Hydrogen Atom Wave Functions: Radial Functions 

Radial Functions R ( r ) ,  with 0 = Zr/ao 

Orbital n 1 R ( r )  

The fourth quantum number explains several experimental observations. Two of 
these observations are that lines in alkali metal emission spectra are doubled, and that a 
beam of alkali metal atoms splits into two parts if it passes through a magnetic field. 
Both of these can be explained by attributing a magnetic moment to the electron; it be- 
haves like a tiny bar magnet. This is usually described as the spin of the electron be- 
cause a spinning electrically charged particle also has a magnetic moment, but it should 
not be taken as an accurate description; it is a purely quantum mechanical property. 

The quantum number n is primarily responsible for determining the overall energy of 
an atomic orbital; the other quantum numbers have smaller effects on the energy. The quan- 
tum number I determines the angular momentum of the orbital or shape of the orbital and 
has a smaller effect on the energy. The quantum number ml determines the orientation of the 
angular momentum vector in a magnetic field, or the position of the orbital in space, as 
shown in Table 2-3. The quantum number m, determines the orientation of the electron 
magnrlic moment in a magnetic field, either in the direction of the field ( + 1) or opposed to 
it ( - i). When no field is present, all mi values (all threep orbitals or all five d orbitals) have 
the same energy and both m, values have thc samc cncrgy. Togcthcr, the quantum numbers 
n, 1, and ml define an atomic orbital; the quantum number m,  describes the electron spin 
within the orbital. 

One feature that should be mentioned is the appearance of i (= fi) in the p 
and d orbital wave equations in Table 2-3. Because it is much more convenient to work 
with real functions than complex functions, we usually take advantage of another prop- 
erty of the wave equation. For differential equations of this type, any linear combination 
of solutions (sums or differences of the functions, with each multiplied by any coeffi- 
cient) to the equation is also a solution to the equation. The combinations usually cho- 
sen for the p orbitals are the sum and difference of the p orbitals having ml = + 1 and 

1 i 
- 1, normalized by multiplying by the constants - and -----, respectively: 

.\/z 
1 qZpx = ----- + XI) = - - [ R ( r ) ]  sin 0 cos + 
fi 2 'J3 IT 

- = - - [ R ( r ) ]  sin 0 sin $I 
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I . r sin 8 

FIGURE 2-5 Spherical Coordi- / 
nates and Volume Element for a 
Spherical Shell in Spherical 
Coordinates. Spherical Coordinates 

X 

Volume Element 

The same procedure used on the d orbital functions for ml = f 1 and 1 2  gives the 
functions in the column headed 0 @ ( 0 ,  +) in Table 2-3, which are the familiar d orbitals. 
The d,z orbital (ml = 0) actually uses the function 2z2 - x 2  - y2, which we shorten to z2 
for convenience. These functions are now real functions, so T = T* and TT* = T2. 

A more detailed look at the Schrodinger equation shows the mathematical origin 
of atomic orbitals. In three dimensions, T may be expressed in terms of Cartesian co- 
ordinates ( x ,  y, z )  or in terms of spherical coordinates ( r ,  0 ,  +). Spherical coordinates, 
as shown in Figure 2-5, are especially useful in that r represents the distance from the 
nucleus. The spherical coordinate 0 is the angle from the z axis, varying from 0 to n ,  
and 4 is the angle from the x axis, varying from 0 to 2 n .  It is possible to convert be- 
tween Cartesian and spherical coordinates using the following expressions: 

x = r sin 0 cos + 
y = r sin 0 sin + 
z = r cos 0 

In spherical coordinates, the three sides of the volume element are 
r d0,  r sin 0 d+, and dr. The product of the three sides is r2 sin 0 d0 d+ dr, equivalent 
to dx  dy dz. The volume of the thin shell between r and r + dr  is 4 n r 2  dr, which is the 
integral over + from 0 to n ,  and over 0 from 0 to 2 n .  This integral is useful in describ- 
ing the electron density as a function of distance from the nucleus. 

T can be factored into a radial component and two angular components. The 
radial function, R, describes electron density at different distances from the nucleus; 
the angular functions, 8 and cP, describe the shape of the orbital and its orientation in 
space. The two angular factors are sometimes combined into one factor, called Y: 

K is a function only of r; Y is a function of 0 and 4, and gives the distinctivc shapes of 
s, p, d,  and other orbitals. R, 8,  and @ are shown separately in Tables 2-3 and 2-4. 
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The angular functions 

The angular functions 8 and cD determine how the probability changes from point to 
point at a given distance from the center of the atom; in other words, they give the shape 
of the orbitals and their orientation in space. The angular functions 0 and cD are deter- 
mined by the quantum numbers 1 and ml. The shapes of s, p, and d orbitals are shown in 
Table 2-3 and Figure 2-6. 

In the center of Table 2-3 are the shapes for the 0 portion; when the cD portion is 
included, with values of + = 0 to 2 r ,  the three-dimensional shapes in the far-right col- 
umn are formed. In the diagrams of orbitals in Table 2-3, the orbital lobes are shaded 
where the wave function is negative. The probabilities are the same for locations with 
positive and negative signs lor 9, but it is useful to distinguish regions of opposite 
signs for bonding purposes, as we will see in Chapter 5. 

The radial functions 

The radial factor R ( r )  (Table 2-4) is determined by the quantum numbers n and 1, the 
principal and angular momentum quantum numbers. 

The radial probability function is 4rr2R2. This function describes the probabil- 
ity of finding the electron at a given distance from the nucleus, summed over all angles, 
with the 4 r r 2  factor the result of integrating over all angles. The radial wave functions 
and radial probability functions are plotted for the n = 1, 2, and 3 orbitals in Figure 2-7. 
Both R ( r )  and 4rr2R2 are scaled with ao, the Bohr radius, to give reasonable units on 
the axes of the graphs. The Bohr radius, a0 = 52.9 pm, is a common unit in quantum 
mechanics. It is the value of r  at the maximum 01 q2 for a hydrogen 1s orbital and is 
also the radius of a 1s orbital according to the Bohr model. 

In all the radial probability plots, the electron density, or probability of finding the 
electron, falls off rapidly as the distance from the nucleus increases. It falls off most 
quickly for the 1s orbital; by r  = 5ao, the probability is approaching zero. By contrast, 
the 3d orbital has a maximum at r  = 9ao and does not approach zero until approxi- 
mately r  = 20ao. All the orbitals, including the s orbitals, have zero probability at the 
center of the nucleus, because 4rr2R2 = 0 at r  = 0. The radial probability functions 
are a combination of 4rr2 ,  which increases rapidly with r, and R2, which may have 
maxima and minima, but generally decreases exponentially with r. The product of these 
two factors gives the characteristic probabilities seen in the plots. Because chemical re- 
actions depend on the shape and extent of orbitals at large distances from the nucleus, 
the radial probability functions help show which orbitals are most likely to be involved 
in reactions. 

Nodal surfaces 

At large distances from the nucleus, the electron density, or probability of finding the 
electron, falls off rapidly. The 2s orbital also has a nodal surface, a surface with zero 
electron density, in this case a sphere with r  = 2ao where the probability is zero. Nodes 
appear naturally as a result of the wave nature of the electron; they occur in the func- 
tions that result from solving the wave equation for 9. A node is a surface where the 
wave function is zero as it changes sign (as at r  = 2ao, in the 2s orbital); this requires 
that = 0,  and the probability of finding the electron at that point is also zero. 

If the probability of finding an electron is zero (q2 = O), 9 must also be equal 
to zero. Because 
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FIGURE 2-6 Selected Atomic Orbitals. (Adapted with perrrlissiorl from G. 0 .  Spessard and 
G. L. Miessler, Organometallic Chemistry, Prentice Hall, Upper Saddle River, NJ, 1997, p. 11, 
Fig. 2- 1 .) 

in order for 9 = 0, either R ( r )  = 0 or Y ( 0 ,  +) = 0. We can therefore determine 
nodal surfaces by determining under what conditions R = 0 or Y = 0. 

Table 2-5 summarizes the nodes for several orbitals. Note that the total number of 
nodes in any orbital is n - 1 if the conical nodes of some d and f orbitals count as 2.19 

Angular nodes result when Y = 0 and are planar or conical. Angular nodes can 
be determined in terms of 8 and +, but may bc easier to visualize if Y is expressed in 

'9~athematically, the nodal surface for the d,z orbital is one surface, but in this instance it fits the 
pattern better if thought of as two nodes. 
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Radial Wave Functions 

Radial Probability Functions 9 
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FIGURE 2-7 Radial Wave Functions and Radial Probability Functions. 
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TABLE 2-5 
Nodal Surfaces 

Spherical nodes [ R ( r )  = 01 

Exanzples (number of spherical nodes) z Y 

Is  0 2~ 0 3d 0 

2s 1 3~ 1 4d 1 

3s 2 4~ 2 5d 2 

Angular nodes [Y (8, +) = 01 x 

Examples (number of angular nodes) 

s orbitals 0 
p orbitals 1 plane for each orbital 
d orbitals 2 planes for each orbital except dz2 

1 conical aurfilcz Tor 4 2  

Cartesian (x, y, 2) coordinates (see Table 2-3). In addition, the regions where the wave 
function is positive and where it is negative can be found. This information will be use- 
ful in working with molecular orbitals in later chapters. There are 1 angular nodes in any 
orbital, with the conical surface in the d,2 and similar orbitals counted as two nodes. 

Radial nodes, or spherical nodes, result when R  = 0, and give the atom a lay- 
ered appearance, shown in Figure 2-8 for the 3s and 3p, orbitals. These nodes occur 
when the radial function changes sign; they are depicted in the radial function graphs 
by R ( r )  = 0 and in the radial probability graphs by ~ I T ~ ~ R ~  = 0. The Is, 2p,  and 3d 
orbitals (the lowest energy orbitals of each shape) have no radial nodes and the number 
of nodes increases as n  increases. The number of radial nodes for a given orbital is al- 
ways equal to n  - l - l .  

Nodal surfaces can be puzzling. For example, a p orbital has a nodal plane 
through the nucleus. How can an electron be on both sides of a node at the same time 
without ever having been at the node (at which the probability is zero)? One explanation 
is that the probability does not go quite to zero.20 

Another explanation is that such a question really has no meaning for an electron 
thought of as a wave. Recall the particle in a box example. Figure 2-4 shows nodes at 
x/a = 0.5 for n  = 2 and at x/a = 0.33 and 0.67 for n  = 3. The same diagrams could 
represent the amplitudes of the motion of vibrating strings at the fundamental frequen- 
cy ( n  = 1 )  and multiples of 2 and 3. A plucked violin string vibrates at a specific fre- 
quency, and nodes at which the amplitude of vibration is zero are a natural result. Zero 
amplitude does not mean that the string does not exist at these points, but simply that 
the magnitude of the vibration is zero. An electron wave exists at the node as well as on 
both sides of a nodal surface, just as a violin string exists at the nodes and on both sides 
of points having zero amplitude. 

Still another explanation, in a lighter vein, was suggested by R. M. Fuoss to one 
of the authors (DAT) in a class on bonding. Paraphrased from St. Thomas Aquinas, 
"Angels are not material beings. Therefore, they can be first in one place and later in 
another, without ever having been in between." If the word "electrons" replaces the 
word "angels," a semitheological interpretation of nodes could result. 

''A. Szabo, J. Chern. Educ., 1969, 46, 678, uses relativistic arguments to explain that the electron 
probablity at a nodal surface has a very small, but finite, value. 
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(a) C1:3s (c) C1:3pz 

(d) Ti3+:3dZ2 (e) Ti3+:3dx2 - y2 

FIGURE 2-8 Constant Electron Density Surfaces for Selected Atomic Orbitals. (a)-(d) The cross- 
sectional plane is any plane containing the z axis. (e) The cross section is taken through the xz or yz 
plane. (f) The cross section is taken through the xy plane. (Figures (b)-(f) reproduced with perrnis- 

5 sion from E. A. Orgyzlo and G. B. Porter, J. Chem. Educ., 1963,40,258.) 

p, The angular factor Y is given in Table 2-3 in terms of Cartesian coordinates: 

This orbital is designated p, because z appears in the Y expression. For an angular node, Y 
must equal zero, which is true only if z = 0. Therefore, z = 0 (the xy plane) is an angular 
nodal surface for the p, orbital as shown in Table 2-5 and Figure 2-8. The wave function is 
positive where z > 0 and negative where z < 0. In addition, a 2p, orbital has no spherical 
nodes, a 3p, orbital has one spherical node, and so on. 
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Here, the expression x2 - y2 appears in the equation, so the designation is d,2-y2. Because 
there are two solutions to the equation Y = O (or x2 - Y 2  = 0), x = y and x = - y ,  the 
planes defined by these equations are the angular nodal surfaces. They are planes containing 
the z axis and making 45" angles with the x and y axes (see Table 2-5). The function is positive 
where x > y and negative where x < y .  Itl addition, a 3dx2-,2 orbital has no spherical nodes, 
a 4d&2 has one spherical node, and so on. 

I EXERCISE 2-2 
Describe the angular nodal surfaces for a d,2 orbital, whose angular wave function is 

I EXERCISE 2-3 
Describe the angular nodal surfaces for a d,, orbital, whose angular wave function is 

The result of the calculations is the set of atomic orbitals familiar to all chemists. 
Figure 2-7 shows diagrams of s, p, and d orbit& and Figure 2-8 shows lines of constant 
electron density in several orbitals. The different signs on the wave functions are shown 
by dil'ferent shadings of the orbital lobes in Figure 2-7, and the outer surfaces shown en- 
close 90% of the total electron density of the orbitals. The orbitals we use are the com- 
mon ones used by chemists; others that are also solutions of the Schrodinger equation 
can be chosen for special purposes.21 

2-2-3 THE AUFBAU PRINCIPLE 

Limitations on the values of the quantum numbers lead to the familiar aufbau (German, 
Auflau, building up) principle, where the buildup of electrons in atoms results from 
continually increasing the quantum numbers. Any combination of the quantum numbers 
presented so far correctly describes electron behavior in a hydrogen atom, where there 
is only one electron. However, interactions between electrons in polyelectronic atoms 
require that the order of filling of orbitals be specified when more than one electron is 
in the same atom. In this process, we start with the lowest n, 1, and ml,  values (1, 0, and 

1 0, respectively) and either of the rn, values (we will arbitrarily use - 3 first). Three rules 
will then give us the proper order for the remaining electrons as we increase the quan- 
tum numbers in the order ml,  m,, I ,  and n. 

1. Electrons are placed in orbitals to give the lowest total energy to the atom. This 
means that the lowest values of n and I are filled first. Because the orbitals within 
each set (p, d, etc.) have the same energy, the orders for values of ml and m ,  are 
indeterminate. 

"R.  E. Powell, .I. Chem. Educ., 1968,45,45. 
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2. The Pauli exclusion principle22 requires that each electron in an atom have a 
unique set of quantum numbers. At least one quantum number must be different 
from those of every other electron. This principle does not come from the 
Schrodinger equation, but from experimental determination of electronic structures. 

3. Hund's rule of maximum multiplicity23 requires that electrons be placed in or- 
bitals so as to give the maximum total spin possible (or the maximum number of 
parallel spins). Two electrons in the same orbital have a higher energy than two 
electrons in different orbitals, caused by electrostatic repulsion (electrons in the 
same orbital repel each other more than electrons in separate orbitals). Therefore, 
this rule is a consequence of the lowest possible energy rule (Rule 1). When there 
are one to six electrons in p orbitals, the required arrangements are those given in 
Table 2-6. The multiplicity is the number of unpaired electrons plus 1, or n + I .  
This is the number of possible energy levels that depend on the orientation of the 
net magnetic moment in a magnetic field. Any other arrangement of electrons re- 
sults in fewer unpaired electrons. This is only one of Hund's rules; others are de- 
scribed in Chapter 1 1. 

TABLE 2-6 
Hund's Rule and Muttiplicity 
Number of 
Electrons Arrangement Unpaired e- Multiplicity 

"." 

1 --- t  1 2 

2 --- t ' r  2 3 

This rule is a consequence of the energy required for pairing electrons in the 
same orbital. When two electrons occupy the same part of the space around an atom, 
they repel each other because of their mutual negative charges with a Coulombic en- 
ergy of repulsion, II,, per pair of electrons. As a result, this repulsive force favors 
electrons in different orbitals (different regions of space) over electrons in the same 
orbitals. 

In addition, there is an exchange energy, II,, which arises from purely quantum 
mechanical considerations. This energy depends on the number of possible exchanges 
between two electrons with the same energy and the same spin. 

For example, the electron configuration of a carbon atom is 1 ~ ~ 2 ~ ~ 2 ~ ~ .  Three 
arrangements of the 2p electrons can be considered: 

The first arrangement involves Coulombic energy, I&., because it is the only one 
that pairs electrons in the same orbital. The energy of this arrangement is higher than 
that of the other two by II, as a result of electron-electron repulsion. 

"w. Pauli, Z. Physik, 1925,31, 765. 
2 3 ~ .  Hund, Z. Physik, 1925,33, 345. 
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In the first two cases there is only one possible way to arrange the electrons to 
give the same diagram, because there is only a single electron in each having + or - 
spin. However, in the third case there are two possible ways in which the electrons can 
be arranged: 

? l  ? 2  --- ? 2  ? l  --- (one exchange of electron) 

The exchange energy is n, per possible exchange of parallel electrons and is negative. 
The higher the number of possible exchanges, the lower the energy. Consequently, the 
third configuration is lower in energy than the second by n,. 

The results may be summarized in an energy diagram: 

These two pairing terms add to produce the total pairing energy, n: 

The Coulombic energy, IT,, is positive and is nearly constant for each pair of 
electrons. The exchange energy, n,, is negative and is also nearly constant for each pos- 
sible exchange of electrons with the same spin. When the orbitals are degenerate (have 
the same energy), both Coulombic and pairing energies favor the unpaired configura- 
tion over the paired configuration. If there is a difference in energy between the levels 
involved, this difference, in combination with the total pairing energy, determines the 
final configuration. For atoms, this usually means that one set of orbitals is filled before 
another has any electrons. However, this breaks down in some of the transition ele- 
ments, because the 4s and 3d (or the higher corresponding levels) are so close in ener- 
gy that the pairing energy is nearly the same as the difference between levels. Section 
2-2-4 explains what happens in these cases. 
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mm 
$ 1 '  ' r ) ,  Oxygen With fourp electrons, oxygen could have two unpaired electrons (- - - 

' r $  ' r $  or it could have no unpaired electrons (- - - ). Find the number of electrons that 
could be exchanged in each case and the Coulombic and exchange energies for the atom. 

--- ' ' ' has one pair, energy contribution TI,. 

'r I'.l1'- has one electron with J spin and no possibility of exchange. 

--- ' ' ' has four possible arrangements, three exchange possibilities (1-2, 

1-3,2-3), energy contribution 3 E,: 

' r l  ' r 2  ' r 3  ' r 2  ' r l  ' r 3  ' r 3  ' r 2  ' r l  ' r l  ' r 3  ' r 2  ------------ 

Overall, 3 TI, + E,. 
' r J  ' r J  --- has one exchange possibility for each spin pair and two pairs 

Overall, 2 TI, + 2 TI,. 

Because TI, is positive and TI, is negative, the energy of the first arrangement is lower than 

the second; - ' ' - ' - ' has the lower energy. 

EXERCISE 2-4 
A nitrogen atom with three p electrons could have three unpaired electrons 

'r ' r J  'r ' ' ) ,  or it could have one unpaired electron ( - ) .  Find (-- 
the number of electrons that could be exchanged in each case and the Coulombic and ex- 
change energies for the atom. Which arrangement would be lower in energy? 

Many schemes have been used to predict the order of filling of atomic orbitals. 
One, known as Klechkowsky's rule, states that the order of filling the orbitals proceeds 
from the lowest available value for the sum n + 1. When two combinations have the 
same value, the one with the smaller value of n is filled first. Combined with the other 
rules, this gives the order of filling of most of the orbitals. 

One of the simplest methods that fits most atoms uses the periodic table blocked 
out as in Figure 2-9. The electron configurations of hydrogen and helium are clearly 1s' 

Groups (IUPAC) 
1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

(US traditional) 
IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA VIIIA 

FIGURE 2-9 Atomic Orbltal 
F~lling in the Penodic Table 

s block p block d block 0 fblock 
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and 1s2. After that, the elements in the first two columns on the left (Groups 1 and 2 or 
IA and IIA) are filling s orbitals, with 1 = 0; those in the six columns on the right 
(Groups 13 to 18 or IIIA to VIIIA) are filling p orbitals, with 1 = 1; and the ten in the 
middle (the transition elements, Groups 3 to 12 or IIIB to IIB) are filling d orbitals, with 
1 = 2. The lanthanide and actinide series (numbers 58 to 71 and 90 to 103) are filling f 
orbitals, with 1 = 3. Either of these two methods is too simple, as shown in the follow- 
ing paragraphs, but they do fit most atoms and provide starting points for the others. 

2-2-4 SHIELDING 

In atoms with more than one electron, energies of specific levels are difficult to predict 
quantitatively, but one of the more common approaches is to use the idea of shielding. 
Each electron acts as a shield for electrons farther out from the nucleus, reducing the at- 
traction between the nucleus and the distant electrons. 

Although the quantum number n is most important in determining the energy, 1 
must also be included in the calculation of the energy in atoms with more than one elec- 
tron. As the atomic number increases, the electrons are drawn toward the nucleus and 
the orbital energies become more negative. Although the energies decrease with in- 
creasing Z, the changes are irregular because of shielding of outer electrons by inner 
electrons. The resulting order of orbital filling for the electrons is shown in Table 2-7. 

As a result of shielding and other more subtle interactions between the electrons, the 
simple order of orbitals (in order of energy increasing with increasing n) holds only at very 
low atomic number Z and for the innermost electrons of any atom. For the outer orbitals, 
the increasing energy difference between levels with the same n but different 1 values forces 
the overlap of energy levels with n = 3 and n = 4, and 4s fills before 3d. In a similar 
fashion, 5s fills before 4d, 6s before Sd, 4f before Sd, and 5f before 6d (Figure 2-10). 

 later^^ formulated a set of simple rules that serve as a rough guide to this effect. 
He defined the effective nuclear charge Z* as a measure of the nuclear attraction for an 
electron. Z* can be calculated from Z* = Z - S, where Zis the nuclear charge and S is 
the shielding constant. The rules for determining S for a specific electron are as follows: 

1. The electronic structure of the atom is written in groupings as follows: (1s)  
(2s, 2p)  (3s, 3p) ( 3 4  (4s, 4p)  ( 4 4  ( 4 f )  (5s, 5 ~ 1 ,  etc. 

2. Electrons in higher groups (to the right in the list above) do not shield those in . 

lower groups. 

3. For ns or np valence electrons: 

a. Electrons in the same ns, np group contribute 0.35, except the Is, where 0.30 
works better. 

b. Electrons in the n - 1 group contribute 0.85. 

c. Electrons in the n - 2 or lower groups contribute 1.00. 

4. For nd and nf valence electrons: 

a. Electrons in the same nd or nf group contribute 0.35. 

b. Electrons in groups to the left contribute 1.00. 

The shielding constant S obtained from the sum of the contributions above is sub- 
tracted from the nuclear charge Z to obtain the effective nuclear charge Z* affecting the 
selected electron. Some examples follow. 

2 4 ~ . ~ .  Slater. Phys. Rev., 1930, 36, 57. 



TABLE 2-7 
Electron Configurations of the Elements 
Element Z Configuration Element  Z 

1s' 
l s2  

[ ~ e ] 2 s '  
[He]2s2 
[He]2s22p' 
[ ~ e ] 2 s ~ 2 p ~  
[ ~ e ] 2 s ~ 2 p '  
[He]2s22p4 
[He]2s22p5 
[ ~ e ] 2 s ' 2 p ~  

[Ne]3s1 
[ ~ e ] 3 s '  
[Ne]3s23p' 
[ ~ e ] 3 s ~ 3 p ~  
[Ne]3s23p3 
[ ~ e ] 3 s ~ 3 p ~  
[Ne]3s23p5 
[Ne]3s23p6 

[Ar]4s1 
[Ar]4s2 
[Ar]4s23d' 
[Ar]4s23d2 
[ ~ r ] 4 s ~ 3 d '  

*[Ar]4si 3d5 
[Ar]4s23d5 
[Ar]4s23d6 
[Ar]4s23d7 
[Ar14s23d8 

* [ ~ r ] 4 s ' 3 d  
[Ar]4s23d10 
[Ar]4s23di04p' 
[Ar]4s23d 104pL 
[ A r ] 4 ~ ~ 3 d ' ~ 4 p ~  
[Ar14s23d I04p4 
[ A r ] 4 ~ ~ 3 d ' ~ 4 p ~  
[Ar]4s23d "4p6 

[Kr]5s1 
[Kr15s2 

[Kr]5s24d1 
[ ~ r ] 5 s ~ 4 d ~  

*[Kr]5s'4d4 
*[Kr]5s14d5 

[Kr]5s24d5 
*[~r]5s '4d '  
*[Kr]5s'4d8 
*[Kr]4d l o  

* [ ~ r ] 5 s ' 4 d ' ~  
[ ~ r ] 5 s ~ 4 d  
[ K r ] 5 ~ ~ 4 d ' ~ 5 p '  
[ K r ] 5 ~ ~ 4 d ' ~ 5 p ~  
[Kr]5s24d'?p3 
[ K r ] 5 ~ ~ 4 d ' ~ 5 p ~  
[ ~ r ] 5 s ~ 4 d ' ~ 5 p ~  
[ K r ] 5 ~ ~ 4 d ' ~ 5 p ~  

[Xe] 6s ' 
[xe]6s2  

*[xe]6s25d1 

Ce 
Pr 
Nd 
Pm 
S m  
Eu 
Gd 
T b  

DY 
Ho 
Er 
Tm 
Y b  
Lu 
Hf 
Ta 
W 
Re 
0 s  
Ir 
Pt 
Au 

Hg 
T1 
Pb 
Bi 
Po 
At 
Rn 

Fr 
Ra 
Ac 
Th  
Pa 
U 

NP 
Pu 
A m  
C m  
Bk 
C f  
Es 
Fm 
Md 
No 
Lr 

R f 
Db 

sg 
Bh  
Hs 
Mt 
Uun 
u u u  
Uub 

Configuration 

*[xe]6s24f  5d' 
[xe]6s24f" 
[xe]6s24  f 
[xe]6s24f" 
[xe]6s24f  
[xe]6s24f  

*[xe]6s24f  5d' 
[xe]6s24 f 
[xe]6s24f  l o  

[xe]6s24f  " 
[xe]6s24f  l 2  

[xe]6s24 f l3 

[xe]6s24 f l 4  

[xe]6s24f  I45d1 
[xe]6s24f  I45d2 
[xe]6s24f  I45d" 
[xe]6s24f  I45d4 
[xe]6s24f  145d5 
[xe]6s24f  I45d6 
[xe]6s24f  I45d7 

* [ x e ] 6 s 1 4 ~ I 4 5 d 9  
* [ x e ] 6 s 1 4 f  I45di0 

[xe]6s24f  I45di0 
[xe]6s24f  '45d106p1 
[xe]6s24f  '45d'06p2 
[xe]6s24f  '45d106p" 
[xe]6s24 f 145d I06p4 
[xe]6s24f  I45d I06p5 
[xe]6s24f  I45dI06p6 

* Elements with configurations that do not follow the simple order o f  orbital filling. 
NOTE: Actinide configurations are from J. J .  Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements, 2nd ed., Chapman and 
Hall, New York and London, 1986. Configurations for elements 100 to 112 are predicted, not experimental. 

39 
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FIGURE 2-10 Energy Level 
Splitting and Overlap. The differ- 
ences between the upper levels are - - - - - - - 
exaggerated for easier visualization. ' ' 1s 

Oxygen The electron configuration is ( l s 2 )  (2s' zp4)  
For the outermost electron, 

The two 1s electrons each contribute 0.85, and the five 2s and 2p electrons (the last electron is 
not counted, as we are finding Z* for it) each contribute 0.35, for a total shielding constant 
S = 3.45. The net effective nuclear charge is then Z* = 4.55. Therefore, the last electron is 
held with about 57% of the force expected for a +8 nucleus and a - 1 electron. 

Nickel The electron configuration is ( l s 2 )  (2s' 2p6) (3s' 3p6) ( 3d8 )  (4s'). 

For a 3d electron, 

The 18 electrons in the Is, 2s, 2p, 3s, and 3p levels contribute 1.00 each, the other 7 in 3d 
contribute 0.35, and the 4s contribute nothing. The total shielding constant is S = 20.45 and 
Z* = 7.55 for the last 3d electron. 
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For the 4s electron, 

z * = z - S  

= 28 - [ l o  X (1.00)]  - [16 X (0.85)]  - [ l  X (0.35)]  = 4.05 

( I s ,  2s, 2 p )  (3s ,  3p,  3 4  ( 4 s )  

The ten Is, 2s, and 2 p  electrons each contribute 1.00, the sixteen 3s, 3p,  and 3d electrons each 
contribute 0.85, and the other 4s electron contributes 0.35, for a total S = 23.95 and 
Z* = 4.05, considerably smaller tha11 the value for the 3d electron above. The 4s electron is 
held less tightly than the 3d and should therefore be the first removed in ionization. This is 
consistent with experimental observations on nickel compounds. ~ i " ,  the most common oxi- 
dation state of nickel, has an electron configuration of [ ~ r ] 3 d '  (rather than [ ~ r ] 3 d ~ 4 s * ) ,  cor- 
responding to loss of the 4s electrons from nickel atoms. All the transition metals follow this 
same pattern of losing ns electrons more readily than ( n  - 1)d electrons. 

EXERCISE 2-5 
Calculate the effective nuclear charge on a 5s, a 5p,  and a 4d electron in a tin atom. 

EXERCISE 2-6 
nuclear charge on a 7s,  a 5 f ,  and a 6d electron in a uranium atom. 

Justification for Slater's rules (aside from the fact that they work) comes from the 
electron probability curves for the orbitals. The s and p orbitals have higher probabili- 
ties near the nucleus than do d orbitals of the same n, as shown earlier in Figure 2-7. 
Therefore, the shielding of 3d electrons by (3s, 3 p )  electrons is calculated as 100% ef- 
fective (a contribution of 1.00). At the same time, shielding of 3s or 3p electrons by 
(2s, 2p) electrons is only 85% effective (a contribution of0.85), because the 3s and 3p 
orbitals have regions of significant probability close to the nucleus. Therefore, electrons 
in these orbitals are not completely shielded by (2s, 2p) electrons. 

A complication arises at Cr ( 2  = 24) and Cu ( 2  = 29) in the first transition se- 
ries and in an increasing number of atoms under them in the second and third transition 
series. This effect places an extra electron in the 3d level and removes one electron from 
the 4s level. Cr, for example, has a configuration of [ ~ r ] 4 s l 3 d ~  (rather than [ ~ r ] 4 s ~ 3 d ~ ) .  
Traditionally, this phenomenon has often been explained as a consequence of the "spe- 
cial stability of half-filled subshells." Half-filled and filled d and f subshells are, in fact, 
fairly common, as shown in Figure 2-1 1. A more accurate explanation considers both 
the effects of increasing nuclear charge on the energies of the 4s and 3d levels and the 
interactions (repulsions) between the electrons sharing the same orbital.25 This ap- 
proach requires totaling the energies of all the electrons with their interactions; results 
of the complete calculations match the experimental results. 

Another explanation that is more pictorial and considers the electron-electron in- 
teractions was proposed by ~ i c h . ~ ~  He explained the structure of these atoms by specif- 
ically considering the difference in energy between the energy of one electron in an 
orbital and two electrons in the same orbital. Although the orbital itself is usually as- 
sumed to have only one energy, the electrostatic repulsion of the two electrons in one 
orbital adds the electron pairing energy described previously as part of Hund's rule. We 
can visualize two parallel energy levels, each with electrons of only one spin, separated 
by the electron pairing energy, as shown in Figure 2-1 2. As the nuclear charge increas- 
es, the electrons are more strongly attracted and the energy levels decrease in energy, 
becoming more stable, with the d orbitals changing more rapidly than the s orbitals 
because the d orbitals are not shielded as well from the nucleus. Electrons fill the 

"L. G. Vanquickenborne, K. Pierloot, and D. Devoghel, J. Chem. Educ., 1994,71,469. 
2 6 ~ .  L. Rich, Periodic Correlations, W. A. Benjamin, Menlo Park, CA, 1965, pp. 9-1 1. 
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Half-filled d Filled d Al Si P 

Half filled f -. Filled f - 

FIGURE 2-1 1 Electron Configurations of Transition Metals, Including Lanthanides and Actinides. 
Solid lines surrounding elements designate filled ( d l 0  or f 14) or half-filled (d6  or f 7 )  subshells. 
Dashed lines surrounding elements designate irregularities in sequential orbital filling, which is also 
found within some of the solid lines. 

FIGURE 2-1 2 Schematic Encrgy 
Levels for Transition Elements. 
(a) Schematic interpretation of 
electron configurations for transition 
elements in terms of intraorbital 
repulsion and trends in subshell 
energies. (b) A similar diagram for 
ions, showing the shift in the 
crossover points on removal of an 
electron. The diagram shows that s 
electrons are removed before d 
electrons. The shift is even more 
pronounced for metal ions having 
2+ or greater charges. As a conse- 
quence, transition metal ions with 
2+ or greater charges have no s elec- 
trons, only d electrons in their outer 
levels. Similar diagrams, although 
more complex, can be drawn for the 
heavier transition elements and the 
lanthanides. (Reprinted with permis- 
sion from R. L. Rich, Periodic 
Correlutions, W. A. Benjamin, 
Menlo Park, CA, 1965, pp. 9-10.) 

S Cl Ar 

Se Br Kr 

Te I Xe 

Po At Rn 

Uuh Uuo 

Number of electrons 

Zn 



2-3 Periodic Properties of Atoms 43 

2-3 
PERIODIC 

PROPERTIES OF 
ATOMS 

lowest available orbitals in order up to their capacity, with the results shown in Fig- 
ure 2-12 and in Table 2-7, which gives electronic structures. 

The schematic diagram in Figure 2- 12(a) shows the order in which the levels fill, 
from bottom to top in energy. For example, Ti has two 4s electrons, one in each spin 
level, and two 3d electrons, both with the same spin. Fe has two 4s electrons, one in 
each spin level, five 3d electrons with spin - 4 and one 3d electron with spin + i. 

I For vanadium, the first two electrons enter the 4s, - and 4s, + 2 levels, the next 
three are all in the 3d, - level, and vanadium has the configuration 4s23d3. The 3d, - 
line crosses the 4s, + & line between V and Cr. When the six electrons of chromium are 
filled in from the lowest level, chromium has the configuration 4s13d5. A similar cross- 
ing gives copper its 4s13d10 structure. This explanation does not depend on the stability 
of half-filled shells or other additional factors; those explanations break down for zirco- 
nium (5s24d2), niobium (5 u14d4), and others in the lower periods. 

Formation of a positive ion by removal of an electron reduces the overall electron 
repulsion and lowers the energy of the d orbitals more than that of the s orbitals, as 
shown in Figure 2-1 2(b). As a result, the remaining electrons occupy the d orbitals and 
we can use the shorthand notion that the electrons with highest n (in this case, those in 
the s orbitals) are always removed first in the formation of ions from the transition ele- 
ments. This effect is even stronger for 2-t ions. Transition metal ions have no s elec- 
trons, but only d electrons in their outer levels. The shorthand version of this 
phenomenon is the statement that the 4s electrons are the first ones removed when a 
first-row transition metal forms an ion. 

4 similar, but more complex, crossing of levels appears in the lanthanide and ac- 
tinide series. The simple explanation would have them start filling f orbitals at lan- 
thanum (57) and actinium (89), but these atoms have one d electron instead. Other 
elements in these series also show deviations from the "normal" sequence. Rich has 
shown how these may also be explained by similar diagrams, and the reader should 
refer to his book for further details. 

2-3-1 IONIZATION ENERGY 

The ionization energy, also known as the ioni~ation potential, is the energy required to 
remove an electron from a gaseous atom or ion: - ~ b + l ) +  - 

(g) + e ionization energy = AU 

where n = 0 (first ionization energy), 1, 2, . . . (second, third, . . . ) 

As would be expected from the effects of shielding, the ionization energy varies 
with different nuclei and different numbers of electrons. Trends for the first ionization en- 
ergies of the early elements in the periodic table are shown in Figure 2- 13. The general 
trend across a period is an increase in ionization energy as the nuclear charge increases. A 
plot of Z"/r ,  the potential energy for attraction between an electron and the shielded nu- 
cleus, is nearly a straight line, with approximately the same slope as the shorter segments 
(boron through nitrogen, for example) shown in Figure 2- 13 (a different representation is 
shown later, in Figure 8-3). However, the experimental values show a break in the trend at 
boron and again at oxygen. Because the new electron in B is in a new p orbital that has 
most of its electron density farther away from the nucleus than the other electrons, its ion- 
ization energy is smaller than that of the 2s2 electrons of Be. At the fourth p electron, at 
oxygen, a similar drop in ionization energy occurs. Here, the new electron shares an or- 
bital with one of the previous 2p electrons, and the fourth p electron has a higher energy 
than the trend would indicate because it must be paired with another in the samep orbital. 
The pairing energy, or repulsion between two electrons in the same region of space, re- 
duces the ionization energy. Similar patterns appear in lower periods. The transition 
elements have smaller differences in ionization energies, usually with a lower value for 
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FIGURE 2-1 3 Ionization Energies 
and Electron Affinities. Ionization 
energy = AU for 
M(g) - M + k )  + e 
(Data from C.E. Moore, Ionization 
Potentials and Ionization Limits, 
National Standards Reference Data 
Series, U. S. National Bureau of 
Standards, Washington, DC, 1970, 
NSRDS-NBS 34) Electron 
affinity = AU for 
M-(g) - M(g) I e- (Data 
from H. Hotop and W. C. Lineberger. 
J. Phys. Ckem. Ref: Data, 1985, 
14,731). Numerical values are in 
Appendices B-2 and B-3. 

-500 ' 
Atomic number 

heavier atoms in the same family because of increased shielding by inner electrons and 
increased distance between the nucleus and the outer electrons. 

Much larger decreases in ionization energy occur at the start of each new pcriod, be- 
cause the change to the next major quantum number requires that the new s electron have a 
much higher energy. The maxima at the noble gases decrease with increasing Z because the 
outer electrons are farther from the nucleus in the heavier elements. Overall, the trends are 
toward higher ionization energy from left to right in the periodic table (the major change) 
and lower ionization energy from top to bottom (a minor change). The differences de- 
scribed in the previous paragraph are superimposed on these more general changes. 

2-3-2 ELECTRON AFFINITY 

Electron affinity can be defined as the energy required to remove an electron from a 
negative ion: 

A-(g) - A(g) i- e- electron affinity = AU(or EA) 

(Historically, the definition is -AU for the reverse reaction, adding an electron to the 
neutral atom. Thc dcfinition we use avoids the sign change.) Because of the similarity 
of this reaction to the ionization for an atom, electron affinity is sometimes described as 
the zeroth ionization energy. This reaction is endothermic (positive AU), except for the 
noble gases and the alkaline earth elements. The pattern of electron affinities with 
changing Z shown in Figure 2-13 is similar to that of the ionization energies, but for one 
larger Z value (one more electron for each species) and with much smaller absolute 
numbers. For either of the reactions, removal of the first electron past a noble gas con- 
figuration is easy, so the noble gases have the lowest electron affinities. The electron 
affinities are all much smaller than the corresponding ionization energies because elec- 
tron removal from a negative ion is easier than removal from a neutral atom. 

2-3-3 COVALENT AND IONIC RADII 

Thc sizes of atoms and ions are also related to the ionization energies and electron affini- 
ties. As the nuclear charge increases, the electrons are pulled in toward the center of the 
atom, and the size of any particular orbital decreases. On the other hand, as the nuclear 
charge increases, more electrons are added to the atom and their mutual repulsion keeps 
the outer orbitals large. The interaction of these two effects (increasing nuclear charge 
and increasing number of electrons) results in a gradual decrease in atomic size across 
each period. Table 2-8 gives nonpolar covalent radii, calculated for ideal molecules with 
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Source: R. T. Sanderson, Inorganic Chemist?, Reinhold, New York, 1967, p. 74; and E. C. M. Chen, J. G. Dojahn, and W. E. Wentworth, J. Phys. Chem. A, 1997,101,3088. 
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TABLE 2-9 
Crystal Radii for Selected lons 

Z Element Radius (pm) 

Alkali metal ions 3 ~ i +  90 
11 ~ a '  116 
19 K+ 152 
37 ~ b +  166 
55 Cs+ 181 

Alkaline earth ions 

Other cations 

Halide ions 

Other  anion^ 

SOURCE: R. D. Shannon, Acta Crystallogl: 1976, A32, 751. A longer list is given in Appendix B-1. All 
the values are for 6-coordinate ions. 

no polarity. There are other measures of atomic size, such as the van der Waals radius, in 
which collisions with other atoms are used to define the size. It is difficult to obtain con- 
sistent data for any such measure, because the polarity, chemical structure, and physical 
state of molecules change drastically from one compound to another. The numbers 
shown here are sufficient for a general comparison of one element with another. 

There are similar problems in determining the size of ions. Because the stable 
ions of the different elements have different charges and different numbers of electrons, 
as well as different crystal structures for their compounds, it is difficult to find a suitable 
set of numbers for comparison. Earlier data were based on Pauling's approach, in which 
the ratio of the radii of isoelectronic ions was assumed to be equal to the ratio of their 
effective nuclear charges. More recent calculations are based on a number of consider- 
ations, including electron density maps from X-ray data that show larger cations and 
smaller anions than those previously found. Those in Table 2-9 and Appendix B were 
called "crystal radii" by ~ h a n n o n ? ~  and are generally different from the older values of 
"ionic radii" by + 14 pm for cations and - 14 pm for anions, as well as being revised be- 
cause of more recent measurements. The radii in Table 2-9 and Appendix B-1 can be 
used for rough estimation of the packing of ions in crystals and other calculations, as 
long as the "fuzzy" nature of atoms and ions is kept in mind. 

Factors that influence ionic size include the coordination number of the ion, the ; 
covalent character of the bonding, distortions of regular crystal geometries, and delo- : 
calization of electrons (metallic or semiconducting character, described in Chapter 7). 
The radius of the anion is also influenced by the size and charge of the cation (the anion 
exerts a smaller influence on the radius of the cation).28 The table in Appendix B-1 
shows the effect of coordination number. 

"'R. D. Shannon, Acta Crystullogl:, 1976, A32,751 
280. Johnson, lnorg. Chem., 1973,12,780. 
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The values in Table 2-10 show that anions are generally larger lhan calions with 
similar numbers of electrons (F- and ~ a '  differ only in nuclear charge, but the radius of 
fluoride is 37% larger). The radius decreases as nuclear charge increases for ions with 
the same electronic structure, such as 02-, F-, ~ a + ,  and M~",  with a much larger 
change with nuclear charge for the cations. Within a family, the ionic radius increases as 
Z increases because of the larger number of electrons in the ions and, for the same ele- 
ment, the radius decreases with increasing charge on the cation. Examples of these 
trends are shown in Tables 2- 10, 2- 1 1, and 2- 12. 

TABLE 2-1 1- 
Crystal Radius and Total Number of ~lettrohs , ' 

' 

Ion Protons Electrons Radius (pm) 

0 2- 8 10 126 
s2- 16 18 170 
se2- 34 36 184 
~ e ~ -  52 54 207 

TABLE 2-1 2 
Crystal Radiusand l&c Charge, , ' - ,  ' ' ' - ' 

Ion Protons Electrons Radius (pm) 

GENERAL Additional information on the history of atomic theory can be found in J. R. Partington, 
REFERENCES A Short History of Chemistry, 3rd ed., Macmillan, London, 1957, reprinted by Harper 

& Row, New York, 1960, and in the Journal of Chemical Education. A more thorough 
treatment of the electronic structure of atoms is in M. Gerloch, Orbitals, Terms, and 
States, John Wiley & Sons, New York, 1986. 

PROBLEMS 2-1 Determine the de Broglie wavelength of 
a. An electron moving at one-tenth the speed of light. 
b. A 400 g Frisbee moving at 10 km/h. 

2-2 Using the equation E = RH (i, - - - ::), determine the energies and wavelengths of 

the four visible emission bands in the atomic spectrum of hydrogen arising from 
n,, = 4,5, and 6. (The red line in this spectrum was calculated in Exercise 2-1.) 
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2-3 The transition from the n = 7 to the n = 2 level of the hydrogen atom is accompanied 
by the emission of light slightly beyond the range of human perception, in the ultravio- 
let region of the spectrum. Determine the energy and wavelength of this light. 

2-4 The details of several steps in the particle in a box model in this chapter have been 
omitted. Work out the details of the following steps: 
a. Show that if 'P = A sin rx + B cos sx (A, B, r, and s are constants) is a solution to 

the wave equation for the one-dimensional box, then 

b. Show that if ?V' = A sin rx, the boundary conditions (?V' = 0 when x = 0 and 
n7T 

x = a )  require that r = i --, where n = any integer other than zero. 
a 

n7T 
c. Show that if r = f -, the energy levels of the particle are given by 

a 

d. Show that substituting the above value of r into T = A sin rx and applying the nor- 
malizing requirement gives A = m. 

2-5 For the 3p, and 4d,, hydrogen-like atomic orbitals, sketch the following: 
a. The radial function R. 
b. The radial probability function a o r 2 ~ ' .  
c. Contour maps of electron density. 

2-6 Repeat the exercise in Problem 5 for the 4s and 5dxLy2 orbitals. 

2-7 Repeat the exercise in Problem 5 for the 5s and 4dz2 orbitals. 

2-8 The 4fZ(,Ly2) orbital has the angular function Y = (constant)z(x2 - y2). 
a. How many spherical nodes does this orbital have? 
b. How many angular nodes does it have? 
c. Describe the angular nodal surfaces. 
d. Sketch the shape of the orbital. 

2-9 Repeat the exercise in Problem 8 for the 5 fxyz orbital, which has Y = (constant)xyz. 

2-10 a. Find the possible values for the I and rnl yuarltum numbers for a 5d elcctron, a 4f 
electron, and a 7g electron. 

b. Find the possible values for all four quantum numbers for a 3d electron. 

2-11 Give explanations of the following phenomena: 
a. The electron configuration of Cr is [ ~ r ] 4 s ' 3 d ~  rather than [ ~ r ] 4 s ~ 3 d ~ .  
b. The electron configuration of Ti is [ ~ r ] 4 s * 3 d ~ ,  but that of cr2+ is l ~ r l 3 d ~ .  

2-12 Give electron configurations for the following: 
a. V b. Br c. R U ~ +  d. H~~~ e. Sb 

2-13 Which 2+ ion has five 3d electrons? Which one has two 3d electrons? 

2-14 Determine the Coulombic and exchange energies for the following configurations and 
determine which configuration is favored (of lower energy): 

'T 'T a. - - 'T & and - - 
T t t  t.1 t b. - a n d - - -  

2-15 Using Slater's rules, determine Z* for 
a. A 3p electron in P, S, C1, and Ar. Is the calculated value of Z* consistent with the 

relative sizes of these atoms? 
b. A 2p  electron in 0*-, F-, ~ a ' ,  and ~ g " .  Is the calculated value of Z* consistent 

with the relative sizes of these ions? 
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c. A 4s and a 3d electron of Cu. Which type of electron is more likely to be lost when 
copper forms a positive ion? 

d. A 4 f electron in Ce, Pr, and Nd. There is a decrease in size, commonly known as the 
lanthanide contraction, with increasing atomic number in the lanthanides. Are 
your values of Z* consistent with this trend? 

Select the better choice in each of the following, and explain your selection briefly. 
a. Higher ionization energy: Ca or Cia 
b. Higher ionization energy: Mg or Ca 
c. Higher electron affinity: Si or P 
d. More likely configuration for ~ n ~ + : [ A r ] 4 ~ ~ 3 d ~  or [ ~ r ] 3 d '  

Ionization energies should depend on the effective nuclear charge that holds the elec- 
trons in the atom. Calculate Z* (Slater's rules) for N, P, and As. Do their ionization en- 
ergies seem to match these effective nuclear charges? If not, what other factors 
influence the ionization energies? 

The ionization energies for C1-, C1, and e l f  are 349, 1251, and 2300 kJ/mol, respec- 
tively. Explain this trend. 

Why are the ionization energies of the alkali metals in the order Li > Na > K > Rb? 

The second ionization of carbon (c' - c2+ + e-) and the first ionization of boron 
(B - B+ + e+) both fit the reaction 1 ~ ~ 2 ~ ~ 2 ~ '  = ls22s2 + e-. Compare the two 
ionization energies (24.383 eV and 8.298 eV, respectively) and the effective nuclear 
charges, Z*. Is this an adequate explanation of the difference in ionization energies? If 
not, suggest other factors. 

In each of the following pairs, pick the element with the higher ionization energy and 
explain your choice. 
a. Fe,Ru b .P ,S  c .K ,Br  d . C , N  e .Cd, In  

On the basis of electron configurations, explain why 
a. Sulfur has a lower electron affinity than chlorine. 
b. Iodine has a lower electron affinity than bromine. 
c. Boron has a lower ionization energy than beryllium. 
d. Sulfur has a lower ionization energy than phosphorus 
e. Chlorine has a lower ionization energy than fluorine. 

a. The graph of ionization energy versus atomic number for the elements Na through 
Ar (Figure 2-13) shows maxima at Mg and P and minima at A1 and S. Explain these 
maxima and minima. 

b. The graph of electron affinity vs. atomic number for the elements Na through Ar 
(Figure 2-13) also shows maxima and minima, but shifted one element in comparison 
with the ionization energy graph. Why are the maxima and minima shifted in this way? 

The second ionization energy of He is almost exactly four times the ionization energy 
of H, and the third ionization energy of Li is almost exactly nine times the ionization 
energy of H: 

IE (MJ mol-') 

Explain this trend on the basis of the Bohr equation for energy levels of single- 
electron systems. 

2-25 The size of the transition metal atoms decreases slightly from left to right in the period- 
ic table. What factors must be considered in explaining this decrease? In particular, why 
does the size decrease at all, and why is the decrease so gradual? 
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2-26 Predict the largest and smallest in each series: 

2-27 Prepare a diagram such as the one in Figure 2-12(a) for the fifth period in the periodic 
table, elements Zr through Pd. The configurations in Table 2-7 can be used to determine 
the crossover points of the lines. Can a diagram be drawn that is completely consistent 
with the configurations in the table? 

2-28 There are a number of websites that display atomic orbitals. Use a search engine to find 
a. A complete set of the f orbitals. 
b. A complete set of the g orbitals. 
Include the URL for the site wjth each of these, along with sketches or printouts of the 
orbitals. [One website that allows display of any orbital, complete with rotation and 
scaling, is h~~p://www.orbital.com/.] 


