
Symmetry is a phenomenon of the natural world, as well as the world of human inven- 
tion (Figure 4-1). In nature, many types of flowers and plants, snowflakes, insects, cer- 
tain fruits and vegetables, and a wide variety of microscopic plants and animals exhibit 
characteristic symmetry. Many engineering achievements have a degree of symmetry 
that contributes to their esthetic appeal. Examples include cloverleaf intersections, the 
pyramids of ancient Egypt, and the Eiffel Tower. 

Symmetry concepts can be extremely useful in chemistry. By analyzing the sym- 
metry of molecules, we can predict infrared spectra, describe the types of orbitals used 
in bonding, predict optical activity, interpret electronic spectra, and study a number of 
additional molecular properties. In this chapter, we first define symmetry very specifi- 
cally in terms of five fundamental symmetry operations. We then describe how mole- 
cules can be classified on the basis of the types of symmetry they possess. We conclude 
with examples of how symmetry can be used to predict optical activity of molecules and 
to determine the number and types of infrared-active stretching vibrations. 

In later chapters, symmetry will be a valuable tool in the construction of molecu- 
lar orbitals (Chapters 5 and 10) and in the interpretation of electronic spectra of coordi- 
nation compounds (Chapter 11) and vibrational spectra of organometallic compounds 
(Chapter 13). 

A molecular model kit is a very useful study aid for this chapter, even for those who 
can visualize three-dimensional objects easily. We strongly encourage the use of such a kit. 

4-1 All molecules can be described in terms of their symmetry, even if it is only to say they 
SYMMETRY have none. Molecules or any other objects may contain symmetry elements such as 

ELEMENTS AND mirror planes, axes of rotation, and inversion centers. The actual reflection, rotation, or 

OPERATlONS inversion is called the symmetry operation. To contain a given symmetry element, a 
molecule must have exactly the same appearance after the operation as before. In other 
words, photographs of the molecule (if such photographs were possible!) taken from 
the same location before and after the symmetry operation would be indistinguishable. 
If a symmetry operation yields a molecule that can be distinguished from the original in 
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(a) 

FIGURE 4-1 Symmetry in Nature, Art, and Architecture. 

any way, then that operation is not a symmetry operation of the molecule. The examples 
in Figures 4-2 through 4-6 illustrate the possible types of molecular symmetry 
operations and elements. 

The identity operation (E) causes no change in the molecule. It is included for 
mathematical completeness. An identity operation is characteristic of every molecule, 
even if it has no other symmetry. 

The rotation operation (C,) (also called proper rotation) is rotation through 
360°/n about a rotation axis. We use counterclockwise rotation as a positive rotation. An 
example of a molecule having a threefold (C3) axis is CHC13. The rotation axis is coinci- 
dent with the C-H bond axis, and the rotation angle is 360'13 = 120". Two Cj opera- 
tions may be performed consecutively to give a new rotation of 240". The resulting 
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H 
I 

C1-..- / C ,  Cl c3:gc1 C1 

C1 Top view 

C3 rotations of CHCI, 

Cross section of protein disk 
of tobacco mosaic virus 

C2, C, and C6 rotations 
of a snowflake design 

FIGURE 4-2 Rotations. The cross section of ilie tobacco mosaic virus is a cover diagram from 
Nature, 1976,259. O 1976, Macmillan Journals Ltd. Reproduced with permission of Aaron Klug. 

operation is designated c~~ and is also a symmetry operation of the molecule. Three suc- 
cessive C3 operations are the same as the identity operation ( c ~ ~  = E). The identity oper- 
ation is included in all molecules. Many molecules and other objects have multiple rotation 
axes. Snowflakes are a case in point, with complex shapes that are nearly always hexagonal 
and nearly planar. The line through the center of the flake perpendicular to the plane of the 
flake contains a twofold (C2)  axis, a threefold (C3)  axis, and a sixfold (C6)  axis. Rotations 
by 240" ( ~ 3 ~ )  and 300" ( ~ 6 ~ )  are also symmetry operations of the snowflake. 

Rotation Angle Symmetry Operation 

There are also two sets of three C2 axes in the plane of the snowflake, one set 
through opposite points and one through the cut-in regions between the points. One of 
each of these axes is shown in Figure 4-2. In molecules with more than one rotation axis, 
the C, axis having the largest value of n is the highest order rotation axis or principal 
axis. The highest order rotation axis for a snowflake is the C6 axis. (In assigning Carte- 
sian coordinates, the highest order C ,  axis is usually chosen as the z axis.) When neces- 
sary, the C2 axes perpendicular to the principal axis are designated with primes; a single 
prime (C2') indicates that the axis passes through several atoms of the molecule, where- 
as a double prime (C2")  indicates that it passes between the outer atoms. 

Finding rotation axes for some three-dimensional figures is more difficult, but the 
same in principle. Remember that nature is not always simple when it comes to 
symmetry-the protein disk of the tobacco mosaic virus has a 17-fold rotation axis! 

In the reflection operation (o) the molecule contains a mirror plane. If details 
such as hair style and location of internal organs are ignored, the human body has a left- 
right minor plane, as in Figure 4-3. Many molecules have mirror planes, although they 
may not be immediately obvious. The reflection operation exchanges left and right, as if 
each point had moved perpendicularly through the plane to a position cxactly as far from 
the plane as when it started. Linear objects such as a round wood pencil or molecules 
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FIGURE 4-3 Reflections. 

FIGURE 4-4 Inversion. 

such as acetylene or carbon dioxide have an infinite number of mirror planes that include 
the center line of the object. 

When the plane is perpendicular to the principal axis of rotation, it is called oh 
(horizontal). Other planes, which contain the principal axis of rotation, are labeled 
0, or Ud. 

Inversion (i) is a more complex operation. Each point moves through the center of 
the molecule to a position opposite the original position and as far from the central point as 
when it started.' An example of a molecule having a center of inversion is ethane in the 
staggered conformation, for which the inversion operation is shown in Figure 4-4. 

Many molecules that seem at first glance to have an inversion center do not; for 
example, methane and other tetrahedral molecules lack inversion symmetry. To see this, 
hold a methane model with two hydrogen atoms in the vertical plane on the right and 
two hydrogen atoms in the horizontal plane on the left, as in Figure 4-4. Inversion re- 
sults in two hydrogen atoms in the horizontal plane on the right and two hydrogen 
atoms in the vertical plane on the left. Inversion is therefore not a symmetry operation 
of methane, because the orientation of the molecule following the i operation differs 
from the original orientation. 

Squares, rectangles, parallelograms, rectangular solids, octahedra, and snowflakes 
have inversion centers; tetrahedra, triangles, and pentagons do not (Figure 4-5). 

A rotation-reflection operation (S,,) (sometimes called improper rotation) re- 
quires rotation of 36O0/n, followed by reflection through a plane perpendicular to the 
axis of rotation. In methane, for example, a line through the carbon and bisecting the 

Center of inversion 

No center of inversion 

 his operation must be distinguished from the inversion of a tetrahedral carbon in a himolecular re- 
action, which is more like that of an umbrella in a high wind. 
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(h) Without Inversion Centers. (h) 

angle between two hydrogen atoms on each side is an S4 axis. There are three such 
lines, for a total of three S4 axes. The operation requires a 90" rotation of the molecule 
followed by reflection through the plane perpendicular to the axis of rotation. Two S, 
operations in succession generate a C,+ operation. In methane, two S4 operations gen- 
erate a C2. These operations are shown in Figure 4-6, along with a table of C and S 
equivalences for methane. 

Molecules sometimes have an S,  axis that is coincident with a C, axis. For example, 
in addition to the rotation axes described previously, snowflakes have S2 (= i ) ,  Sg , and S6 
axes coincident with the C6 axis. Molecules may also have S2, axes coincident with C,; 
methane is an example, with S4 axes coincident with C2 axes, as shown in Figure 4-6. 

Note that an S2 operation is the same as inversion; an S1 operation is the same as 
a reflection plane. The i and u notations are preferred in these cases. Symmetry elements 
and operations are summarized in Table 4- 1. 

Rotation Angle Symmetry Operation 

FIGURE 4-6 Improper Rotation or 
Rotation-Reflection. 

First S4: 

& 

Second S4: 
\c2 
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Identity, E 

Rotation, C2 

C3 

None 

Rotation axis 

All atoms unshifted 

Rotation by 36O0/n p-dichlorobenzene 

Cyclopentadienyl 
group 

Benzene * 
Reflection, o Mirror plane Reflection through a mirror 

plane 

Ferrocene (staggered) I 
Fe 

I 
Inversion, i Inversion center (point) Inversion through the center 

Rotation-reflection axis 
(improper axis) 

Rotation by 36O0/n, followed by 
reflection in the plane 
perpendicular to the rotation axis 

Ethane (staggered) 

Ferrocene (staggered) 



Hi0 H20 has two planes of symmetry, one in the plane of the molecule and one 
0' perpendicular to the molecular plane, as shown in Table 4-1. It also has a 

/ \ 
H H Cz axis collinear with the intersection of the mirror planes. H20  has no in- 

version center. 

p-Dichlorobenzene This molecule has three mirror planes: the molecular plane; a plane 
perpendicular to the molecule, passing through both chlorines; and a plane 
perpendicular Lo the first two, bisecting the molecule between the chlo- 

~1 rines. It also has three C2 axes, one perpendicular to the molecular plane 
(see Table 4-1) and two within the plane: one passing through both chlo- 
rines and one perpendicular to the axis passing through the chlorines. Fi- 
nally, p-dichlorobenzene has an inversion center. 

e 

Ethane (staggered conformation) Ethane has three mirror planes, each containing the 
C -C bond axis and passing through two hydrogens on opposite ends of the 

H, / H  molecule. It has a C3 axis collinear with the carbon-carbon bond and three C2 Hy-~--. axes bisecting the angles between the mirror planes. (Use of a model is espe- 

H 'z  cially helpful for viewing the C2 axes). Ethane also has a center of inversion 
and an S6 axis collinear with the C3 axis (see Table 4-1). 

EXERCISE 4-1 
Using diagrams as necessary, show that S2 = i and SI = o. 

EXERCISE 4-2 

Find all the symmetry elements in the following molecules: 

NH3 Cyclohexane (boat conformation) Cyclohexane (chair conformation) XeF2 

4-2 Each molecule has a set of symmetry operations that describes the molecule's overall 
POINT CROUPS symmetry. This set of symmetry operations is called the point group of the molecule. 

Group theory, the mathematical treatment of the properties of groups, can be used to 
determine the molecular orbitals, vibrations, and other properties of the molecule. With 
only a few exceptions, the rules for assigning a molecule to a point group are simple and 
straightforward. We need only to follow these steps in sequence until a final 
classification of the molecule is made. A diagram of these steps is shown in Figure 4-7. 

1. Determine whether the molecule belongs to one of the cases of very low symme- 
try ( C 1 ,  C,,  C , )  or high symmetry (Td ,  O,z, Cmv, Doolz, or I,,) described in Tables 
4-2 and 4-3. 

2. For all remaining molecules, find the rotation axis with the highest n, the highest 
order C, axis for the molecule. ,-x 

I 

3. Does the molecule have any C2 axes perpendiculdr to the C,, axis? If it does, there 
will be n of such C2 axes, and the molecule is in the D set of groups. If not, it is in 
the C or S set. 

4. Does the molecule have a mirror plane (ah)  perpendicular to the C, axis? If so, it 
is classified as Cnh or Dnh. If not, continue with Step 5.  

5. Does the molecule have any mirror planes that contain the C, axis (a, or ad)?  If 
so, it is classified as C,,, or Dnd. If not, but it is in the D set, it is classified as D, . 
If the molecule is in the C or S set, continue with Step 6. 



4-2 Point Groups 83 

@ Group of low 
symmetry? 

I 
No 

@ Group of high 
symmetry? 

rotation axis 
I 

cn 

@ Perpendicular 
C2 axes? 

FIGURE 4-7 Diagram of the Point 
Group Assignment Method. 

6. Is there an S2, axis collinear with the C,, axis? If so, it is classified as S2,. If not, 
the molecule is classified as C,. 

Each step is illustrated in the following text by assigning the molecules in 
Figure 4-8 to their point groups. The low- and high-symmetry cases are treated dif- 
ferently because of their special nature. Molecules that are not in one of these low- 
or high-symmetry point groups can be assigned to a point group by following Steps 
2 through 6. 
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H H F 
I H 

/cl 
H I  ,,, ,F 

\ 
H.ic\ H F'I~'B~ ,c=c\ F-S-F 0-0 

H C1 H Rr H 
( 1  

I; F 
/ 

H 

CH4 CHFClBr H2C=CClBr HClBrC - CHClBr SF6 H202 

1,5-dibromonaphthalene 1,3,5,7-tetrafluoro- dodecahydro-closo-dodecaborate 
cyclooctatetraene (2-) ion, B, 2~1122- (each corncr has 

a BH unit) 
FIGURE 4-8 Molecules to be Assigned to Point Groups. 
"en - ethylenediamine = NH2CH2CH2NH2, represented by N-N. 

4-2-1 CROUPS OF LOW AND HIGH 
SYMMETRY 

1. Determine whether the molecule belongs to one of the special cases of low or 
high symmetry. 

First, inspection of the molecule will determine if it fits one of the low-symmetry 
cases. These groups have few or no symmetry operations and are described in Table 4-2. 

TABLE 4-2 
Groups of Low Symmetry 

Group Symmetry Examples 

c I No symmetry other than CHFClBr 
the identity operation 

3 

C.S Only one mirror plane H2C=CClBr 

/ 
CL Only an inversion center; HClBrC - CHClBr 

few molecular examples (staggered conformation) H 
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Low symmetry 

CHFClBr has no symmetry other than the identity operation and has C1 symmetry, 
H2C=CClBr has only one mirror plane and C, symmetry, and HClBrC-CHClBr in 
the conformation shown has only a center of inversion and Ci symmetry. 

High symmetry 

Molcculcs with many symmetry operations may fit one of the high-symmetry cases 
of linear, tetrahedral, octahedral, or icosahedral symmetry with the characteristics de- 
scribed in Table 4-3. Molecules with very high symmetry are of two types, linear and 
polyhedral. Linear molecules having a center of inversion have Dmh symmetry; those 
lacking an inversion center have C,,, symmetry. The highly symmetric point groups 
Td,  Oh, and Jh are described in Table 4-3. It is helpful to note the C, axes of these mol- 
ecules. Molecules with Td symmetry have only Cg and C2 axes; those with Oh sym- 
metry have C4 axes in addition to C3 and C2; and Ih molecules have C5, C3, and C2 
axes. 

. , 
: ,  TABLE 4 3 .  ' ' , ' .  . , .  . . 

. , ,," . ,  , 
' , . ' . '  . -Greups a* MigK $ynrn&r$ ' ' . . , , ,  . .  , ,  , , . , , ' , ' . ,  , .  _ _ 

Group Description Examples 

These molecules are linear, with an infinite number of 
mtations and an infinite number of reflection planes 
containing the rotation axis. They do not have a center of 
inversion. 

These molecules are linear, with an infinite number of 
rotations and an infinite number of reflection planes 
containing the rotation axis. They also have perpetidicular 
Cz axes, a perpendicular reflection plane, and an inversion center. 

Most (but not all) molecules in this point group have 
the familiar tetrahedral geometry. They have four Cg axes, three 
Cz axes, three S4 axes, and six ad planes. They have no C4 
axes. 

These molecules include those of octahedral structure, 
although some other geometrical forms, such as the cube, 
share the same set of symmetry operations. Among their 48 
symmetry operations are four C3 rotations, three C4 
rotations, and an inversion. -, /' 

Icosahedral structures are best recognized by their six C5 
axes (as well as many other symmetry operations-120 
total). 

F 
1 ,,, ,F 

F-S-F 
( I  

F 

B ~ ~ H ~ ~ ~ -  with BH 
at each vertex of an 
icosahedron 

In addition, there are four other groups, 1; Th, 0. and I, which are rarely seen in nature. These groups are 
discussed at the end of this section. 
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FIGURE 4-9 Rotation Axes. 

FIGURE 4-10 Perpendicular C2 
Axes. 

HC1 has C,, symmetry, C 0 2  has DWh symmetry, CH4 has tetrahedral (Td)  
symmetry, SF6 has octahedral (Oh)  symmetry, and B ~ ~ H ~ ~ ~ -  has icosahedral ( I h )  
symmetry 

There are now seven molecules left to be assigned to point groups out of the 
original 15. 

4-2-2 OTHER CROUPS 

2. Find the rotation axis with the highest n, the highest order C, axis for the 
molecule. This is the principal axis of the molecule. 

The rotation axes for the examples are shown in Figure 4-9. If they are all equiv- 
alent, any one can be chosen as the principal axis. 

PF5 H,CCH, 1,3,5,7-tetrafluoro- C3 perpendicular to 
cyclooctatetraene the plane of the page 

Ko(en),13+ 

C2 perpendicular to the 
plane of the molecule 

3. Does the molecule have any C2 axes perpendicular to the C, axis? 

The C2 axes are shown in Figiire, 4-10. 
ii 

PF5 H,CCH, ~ ~ o c e n ) ~ ] ~  

Yes Yes Yes 
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Yes D Groups No C or S Groups 

FlCU RE 4- 1 1 Horizontal Mirror 
Planes. 

Molecules with C2 axes perpendicular Molecules with no perpendicular C2 
to the principal axis are in one of the axes are in one of the groups desig- 
groups designated by the letter D; nated by the letters C or S. 
there are n C2 axes. 

No final assignments of point groups have been made, but the molecules have 
now been divided into two major categories, the D set and the C or S set. 

4. Does the molecule have a mirror plane (oh horizontal plane) perpendicular to 
the C,  axis? 

The horizontal mirror planes are shown in Figure 4- 11 

D Groups 

H,CCH, [ ~ o ( e n ) , l ~ +  

No No 

PF5 
Yes 

D3h 

D Groups 

C and S Groups 

N H 3  H 2 0 2  1,3,5,7-tetrafluoro- 
cyclooctatetraene 

N o No No 

1,5-dibromonaphthalene 
Yes 

C and S Groups 

These molecules are now assigned to point groups and need not be considered 
further. Both have hori~ontal~qrror  planes. 

/ 
.,' 

No D, or Dnd No C,, , or S2, 

None of these have horizontal mirror planes; they must be carried further in 
the process, 

i 5. Does the molecule have any mirror planes that contain the C,  axis? 
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FIGURE 4-1 2 Vertical or Dihedral 
Mirror Planes or S2n Axes. 

D Groups 
0, ? 

Yes 

D3d 

C and S Groups 

1,3,5,7,-tetrafluoro- 
cyclooctatetraene 

Yes 

1,3,5,7,-tetrafluoro- 
cyclooctatetraene 

Yes 

s4 

These mirror planes are shown in Figure 4- 12. 

C and S Groups 

yes C,,, 
H3CCH3 (staggered) is D3d NH3 is C3v 

These molecules have mirror planes containing the major C,  axis, but no horizon- 
tal mirror planes, and are assigned to the corresponding point groups. There will be n of 
these planes. 

H 2 0 2 ,  1,3,5,7-tetrafl~~r~cyclooctate- 
traene 

These molecules are in the simpler rotation groups D,, C,, and S2, because they 
do not have any mirror planes. D, and C,  point groups have only C ,  axes. S2, point 
groups have C, and S2, axes and may have an inversion center. 

6. Is there an S2, axis collinear with the C, axis? 

D Groups C and S Groups 

Any molecules in this category 
that have S2,L axes have already 

yes pJ 
been assigned to groups. There 1,3,5,7-tetrafluorocyclooctatetraene is S4 - - - 
are no additional groups t o  be No 
considered here. ~~ ~ H202 is C2 

g 

We have only one example in our list that falls into lhe S2, groups, as seen in 1 
Figure 4- 12. 

A branching diagram that summarizes this method of assigning point groups was :$ 
given in Figure 4-7 and more examples are given in Table 4-4. 

$ 
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TABLE 4-4 
Further f xamples of c and D ,Pdht: Croups ' - ' 

, . 

General Label Point Group and Example 

Cdv BrF5 (square pyramid) 

C,, HF, CO, HCN 

C2 NsH4, which has a 
gauche conformation 

C3 P(C6H5)3, which is like a 
three-bladed propeller 
distorted out of the 
planar shape by a 
lone pair on the P 

D5h O S ( C ~ H ~ ) ~  (eclipsed) 

H-F CEO H-CEN 

Continued 
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TABLE 4-B--cont'd 
Further Examples of C and D Pdnt Crdkps 
General Label Point Group and Example 

Dhh benzene 

acetylene (CzH2) H - C s C - H  

Ddd Ni(c~c1obutadiene)~ (staggered) 

D3 [ R ~ ( N H ~ C H ~ C H ~ N H ~ ) ~ ] ~ '  
(treating the NH2CH2CH2NH2 
group as a planar ring) 

'"J 

Determine the point groups of the following molecules and ions from Figures 3-13 and 3-16: 

XeF4 is not in the groups of low or high symmetry. 
Its highest order rotation axis is C4. 
It has four C2 axes perpendicular to the C4 axis and is therefore in the D set of groups. 
It has a horizontal plane perpendicular to the C4 axis. Therefore its point group is D4h. 

It is not in the groups of high or low symmetry. 
Its highest order (and only) rotation axis is a C2 axis passing through the lone pair. 
The ion has no other C2 axes and is therefore in the C or S set. 
It has no minor plane perpendicular to the C2. 
It has two minor planes containing the C2 axis. Therefore, the point group is Cb. 

The molecule has no symmetry (other than E). Its point group is C1 . 

I EXERCISE 4-3 

I Use the procedure described above to verify the point groups of the molecules in Table 4-4. 
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C versus D point group classifications 

All molecules having these classifications must have a C, axis. If more than one C, axis 
is found, the highest order axis (largest value of n) is used as the reference axis. In gen- 
eral, it is useful to orient this axis vertically. 

D Classifications C Classzjications 

General Case: Look for nC2 axes I C, axis No C2 axes I Cn axis 
C, axes perpendicular to 
the highest order C,, axis. 

Subcategories: 
If a horizontal plane of 

symmetry exists: Dnh G h  

If n vertical planes exist: Dnd e n "  

If no planes of symmetry 
exist: D n  e n  

Notes: 

Vertical planes contain the highest order C, axis. In the Dnd case, the planes are 
designated dihedral because they are between the C2 axes-thus, the subscript d. 

Simply having a C, axis does not guarantee that a molecule will be in a D or C 
category; don't forget that the high-symmetry Td,  Oh, and Ih point groups and 
related groups have a large number of Cn axes. 
When in doubt, you can always check the character tables (Appendix C) for a 
complete list of symmetry elements for any point group. 

Croups related to lh, Oh, and Td groups 

The high-symmetry point groups Ih, Oh, and Td are well known in chemistry and are 
represented by such classic molecules as C6(). SF6, and CH4. For each of these point 
groups, there is also a purely rotational subgroup (I, 0 ,  and T,  respectively) in which the 
only symmetry operations other than the identity operation are proper axes of rotation. 
The symmetry operations for these point groups are in Table 4-5. 

We are not yet finished with high-symmetry point groups. One more group, Th,  
remains. The Th point group is derived by adding a center of inversion to the T point 
group; adding i generates the additional symmetry operations S6, s ~ ~ ,  and o h .  

Point Group Symmetry Operations 

l h  E 1 2c5 1 2 ~ 5 ~  2 0 ~ 3  15C2 i 1 2 ~ ~ ~  150 

I E 1 2c5 1 2 ~ ~ ~  20c3 15C2 



FIGURE 4-13 W[N(CH3)2]6, 
a Molecule with Th Symmetry. 

Th symmetry is rare but is known for a few molecules. The compound shown in 
Figure 4- 13 is an example. I, 0, and T symmetry are rarely if ever encountered in chernislry. 

That's all there is to it! It takes a fair amount of practice, preferably using molec- 
ular models, to learn the point groups well, but once you know them, they can be ex- 
tremely useful. Several practical applications of point groups appear later in this 
chapter, and additional applications are included in later chapters. 

4-3 All mathematical groups (of which point groups are special types) must have certain 

PROPERTIES AND properties. These properties are listed and illustrated in Table 4-6, using the symmetry 

REPRESENTATIONS operations of NH3 in Figure 4-14 as an example. 

OF CROUPS 
4-3-1 MATRICES 

Important information about the symmetry aspects of point groups is summarized in 
character tables, described later in this chapter. To understand the construction and use 
of character tables, we first need to consider Lhe properties of matrices, which are the 
basis for the tables2 

C3 rotation about the z axis One of the mirror planes 

FIGURE 4-1 4 Symmetry Opera- 
tions for Ammonia. (Top view) NH3 
is of point group C3v, with the sym- N 

/ \ 
N N 

metry operations E, C j ,  c j2 ,  a,, H2 H3 H< H< ' H ~  
a,', a,", usually written as E, 2C3, 
and 3a, (note that c~~ = E ) .  NH3 after E NH3 after C3 NH3 after o, (.yz) 

2 ~ o r e  details on matrices and their manipulation are available in Appendix I of F. A. Cotton, 
Chemical Applications ofGroup Theory, 3rd ed., John Wiley & Sons, New York. 1990, and in linear algebra 
and finite mathematics textbooks. 
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Property of Group Examples from Point Group Cg, 

1. Each group must contain an identity operation that com- Civ molecules (and all molcculcs) contain the identity operation E. 
mutes (in other words, E A  = AE)  with all other members 
of the group and leaves them unchanged ( E A  = AE = A) .  

2. Each operation must have an inverse that, when combined 
with the operation, yields the identity operation (sometimes 
a symmetry operation may be its own inverse). Note: By 
convention, we perform combined symmetry operations 
from right to left as written. 

H c N \ H 2  a H<.\H3 

C3' C3 = E (C3 and are inverses of each other) 

a,  a ,  = E (mirror planes are shown as dashed lines; cr, is its own inverse) 

3. The product of any two group operations must also be a 
member of the group. This includes the product of any 
operation with itself. 

a,C3 has the same overall effect as a,"; therefore, we write uuC3 = a," 

It can be shown that the products of any two operations in C3, are also 
members of C3,. 

4. The associative property of combination must hold. In other C3(% 00') = (C3 %)%' 
words, A(BC)  = (AB)C .  

By matrix we mean an ordered array of numbers, such as 

To multiply matrices, it is first required that the number of vertical columns of the first 
matrix be equal to the number of horizontal rows of the second matrix. To find the prod- 
uct, sum, term by term, the products of each row of the first matrix by each column of 
the second (each term in a xow must be multiplied by its corresponding term in the ap- 
propriate column of the second matrix). Place the resulting sum in the product matrix 
with the row determined by the row of the first matrix and the column determined by 
the column of the second matrix: 

Here Cij = product matrix, with i rows and j columns 

Aik = initial matrix, with i rows and k columns 
Bkj = initial matrix, with k rows and j columns 
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I This example has 2 rows and 2 columns in each initial matrix, so it has 2 rows and 2 columns 
in the product matrix; i = j  = k = 2. 

I Here, i = 1, j = 3, and k = 3, so the product matrix has 1 row (i) and 3 columns ( j ) .  

I Here i = 3, j = 1, and k = 3, so the product matrix has 3 rows (i) and 1 column ( j ) .  

EXERCISE 4-4 

Do the following multiplications: 

4-3-2 REPRESENTATIONS OF POINT GROUPS 

Symmetry operations: Matrix 
representations 

Consider the effects of the symmetry operations of the C2, point group on the set of x, 
y, and z coordinates. [The set o fp  orbitals (p,, py,  pZ) behaves the same way, so this is 
a useful exercise.] The water molecule is an example of a molecule having C2, symme- 
try. It has a C2 axis through the oxygen and in the plane of the molecule, no perpendic- 
ular C2 axes, and no horizontal mirror plane, but it does have two vertical mirror planes, 
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G x  
/ \ /O\ /O\ /O\ 

FIGURE 4-15 Symmetry Opera- 
HI H2 H 2  HI HI '32 '32 HI 

tions uT Lhe Water Molecule. Coordinate system After C2 ATlcr o,(xz) After o,'(yz) 

as shown in Table 4- 1 and Figure 4- 15. The z axis is usually chosen as the axis of high- 
est rotational symmetry; for HzO, this is the only rotational axis. The other axes are ar- 
bitrary. We will use the xz plane as the plane of the m~lecu le .~  This set of axes is chosen 
to obey the right-hand rule (the thumb and first two fingers of the right hand, held per- 
pendicular to each other, are labeled x, y, and z, respectively). 

Each symmetry operation may be expressed as a transformation matrix as follows: 

[New coordinates] = [transformation matrix][old coordinates] 

As examples, consider how transformation matrices can be used to represent the sym- 
metry operations of the C2, point group: 

C2: Rotate a point having coordinates (x, y, z) about the Cz(z) axis. The new coordi- 
nates are given by 

X I  = newx = -x 
y1 = newy = -y 

z1 = new z = z 
( 0 - 1 0 ( transformation matrix for C2 

In matrix notation. 

transformation new coordinates 
in terms of old I 

u,(xz): Reflect a point with coordinates (x, y, z) through the xz plane. 

x' = newx = x 

yt  = new y = -y [k -% 81 transformation matrix for cr(xz~ 
z1 = new z = z 

The matrix equation is 

3 ~ o m e  sources use yz as the plane of the molecule. The assignment of B, and B2 in Section 4-3-3 is 
reversed with this choice. 
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The transformation matrices for the four symmetry operations of the group are 

I EXERCISE 4-5 

Verify the transformation matrices for the E and crVr(yz)  operations of the CzU point group. I 
This set of matrices satisfies the properties of a mathematical group. We call this a 
matrix representation of the CZv point group. This representation is a set of matrices, 
each corresponding to an operation in the group; these matrices combine in the same 
way as the operations themselves. For example, multiplying two of the matrices is 
equivalent to carrying out the two corresponding operations and results in a matrix that 
corresponds to the resulting operation (the operations are carried out right to left, so 
C2 X a, means a, followed by C2): 

The matrices of the matrix representation of the C2, group also describe the oper- 
ations of the group shown in Figure 4-15. The C2 and aul(yz) operations interchange 
HI and HZ. whereas E and uy(xz) leave them unchanged. 

Characters 

The character, defined only for a square matrix, is the trace of the matrix, or the sum of 
the numbers on the diagonal from upper left to lower right. For the C2. point group, the 
following characters are obtained from the preceding matrices: 

We can say that this set of characters also forms a representation. It is an alter- 
nate shorthand version of the matrix representation. Whether in matrix or character for- 
mat, this representation is called a reducible representation, a combination of more 
fundamental irreducible representations as described in the next section. Reducible 
representations are frequently designated with a capital gamma (I?). 

Reducible and irreducible representations 

Each transformation matrix in the C2. set above is "block diagonalized"; that is, it can 
be broken down into smaller matrices along the diagonal, with all other matrix elements 
equal to zero: 

All the nonzero elements become 1 X 1 matrices along the principal diagonal. 
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When matrices are block diagonalized in this way, the x, y, and z coordinates are 
also block diagonalized. As a result, the x, y, and z coordinates are independent of each 
other. The matrix elements in the 1,l positions (numbered as row, column) describe the 
results of the symmetry operations on the x coordinate, those in the 2,2 positions de- 
scribe the results of the operations on they coordinate, and those in the 3,3 positions de- 
scribe the results of the operations on the z coordinate. The four matrix elements for x 
form a representation of the group, those for y form a second representation, and those 
for z form a third representation, all shown in the following table: 

which add to make up the / 1 -1 - 1 1 / Y  

Irreducible representations 
of the C2, point group, 

Each row is an irreducible representation (it cannot be simplified further), and the 
characters of these three irreducible representations added together under each opera- 
tion (column) make up the characters of the reducible representation T, just as the com- 
bination of all the matrices for the x, y, and z coordinates makes up the matrices of the 
reducible representation. For example, the sum of the three characters for x, y, and z 
under the C2 operation is -1,  the character for r under this same operation. 

The set of 3 X 3 matrices obtained for H20  is called a reducible representation, 
because it is the sum of irreducible representations (the block diagonalized 1 X 1 ma- 
trices), which cannot be reduced to smaller component parts. The set of characters of 
these matrices also forms the reducible representation T, for the same reason. 

E Cz u,(xz) u ~ ' ( Y z )  

1 -1 1 - 1 

reducible representation r 
r 

4-3-3 CHARACTER TABLES 

Coordinate Used 

x 

Three of the representations for C22,, labeled A l ,  B 1 ,  and B2 below, have been deter- 
mined so far. The fourth, called A2, can be found by using the properties of a group de- 
scribed in Table 4-7. A complete set of irreducible representations for a point group is 
called the character table for that group. The character table for each point group is 
unique; character tables for the common point groups are included in Appendix C. 

The complete character table for C2, with the irreducible representations in the 
order commonly used, is 

1 I 1 1 

3 -1 1 1 

The labels used with character tables are as follows: 

z 

x, Y ,  z transformations of the x, y ,  z coordinates or combinations thereof 

Rs, R,, R, rotation about the x, y ,  and z axes 
R any symmetry operation [such as C2 or u,(xz)]  

X character of an operation 
i and j designation of different representations (such as A 1 or A?) 
h order of the group (the total number of symmetry operations in the group) 
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The labels in the left column used to designate the representations will be described 
later in this section. Other useful terms are defined in Table 4-7. 

Property Example: C2, 

1. The total number of symmetry operations in 
the group is called the order (h). To deter- 
mine the order of a group, simply total the 
number of symmetry operations as listed in 
the top row of the character table. 

2. Symmetry operations are arranged in 
classes. All operations in a class have 
identical characters for their transformation 
matrices and are grouped in the same col- 
umn in character tables. 

3. The number of irreducible representations 
equals the number of classes. This means 
that character tables have the same number 
of rows and columns (they are square). 

4. The sum of the squares of the dimensions 
(characters under E )  of each of the irre- 
ducible representations equals the order of 
the group. 

5. For any irreducible representation, the sum 
of the squares of the characters multiplied 
by the number of operations in the class (see 
Table 4-8 for an example), equals the order 
of the group. 

6. Irreducible representations are orthogonal 
to each other. The sum of the products of the 
characters (multiplied together for each 
class) for any pair of irreducible representa- 
tions is 0. 

2 xi(R)xj(R) = 0, when i f j 
R 

Taking any pair of irreducible representations, 
multiplying together the characters for each 
class and multiplying by the number of oper- 
ations in thc class (see Table 4-8 for an exam- 

/pY), and adding the products gives zero. 
, 

7. A totally symmetric representation is in- 
cluded in all groups, with characters of 1 for 
all operations. 

Order = 4 [4 symmetry operations: E, C2, 
udxz) ,  and a,'(yz)l. 

Each symmetry operation is in a separate class; 
therefore, there are 4 columns in the charac- 
ter table. 

Because there are 4 classes, there must also be 4 
irreducible representations-and there are. 

l2 + l 2  + l2 + 1' = 4 = h, the order of the 
group. 

ForA2, 1' + l2 + ( ~ 1 ) ~  + ( - I ) ~  = 4 = h. 
Each operation is its own class in this group 

B1 and B2 are orthogonal: 

(1)(1)+(-I ) ( -1)+(1)( - I )+(-1)(1)=0 

E C2 % ( ~ z )  %'(Yz) 

Each operation is its own class in this group. 

CZu has A l ,  which has all characters = 1. 

The A:! representation of the C2, group can now be explained. The character table 
has four columns; it has four classes of symmetry operations (Property 2 in Table 4-7). 
It must therefore have four irreducible representations (Property 3). The sum of the 
products of the characters of any two representations must equal zero (orthogonality, 
Property 6). Therefore, a product of Al and the unknown representation must have 1 for 
two of the characters and - 1 for the other two. The character for the identity operation 
of this new representation must be 1 [ X ( E )  = 11 in order to have the sum of the squares 
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of these characters equal 4 (required by Property 4). Because no two representations 
can be the same, A2 must then have x(E) = x(C2) = I ,  and ~ (u , , )  = x(uyz) = -1. 
This representation is also orthogonal to BI and B2, as required. 

Another example: C3,(NH3) 

Full descriptions of the matrices for the operations in this group will not be given, but 
the characters can be found by using the properties of a group. Consider the C3 rotation 
shown in Figure 4-16. Rotation of 120" results in new x' and y' as shown, which can be 
described in terms of the vector sums of x and y by using trigonometric functions: 

2Tr 2Tr 1 v 3  
= xcos- - y sin-- = --x - ----y 

3 3 2 2 

2Tr 2Tr TT 1 
y'  = .x sin- + y cos - = ----x - -y  

3 3 2 2 

The transformation matrices for the symmetry operations shown are as follows: 

In the C3v point group, X ( ~ 3 2 )  = x ( C ~ ) ,  which means that they are in the same 
class and described as 2C3 in the character table. In addition, the three reflections have 
identical characters and are in the same class, described as 3u,. 

The transformation matrices for C3 and c~~ cannot be block diagonalized into 
1 X 1 matrices because the C3 matrix has off-diagonal entries; however, the matrices 
can be block diagonalized into 2 X 2 and 1 X 1 matrices, with all other matrix ele- 
ments equal to zero: 

FIGURE 4-1 6 Effect of Rotation 
on Coordinates of a Point. 

General case: x' = x cos 0 -y sin 0 
y' = x sin 0 + y cos 0 

For C3: 0 = 27113 = 120° 
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The Cg matrix must be blocked this way because the (x, y )  combination is need- 
ed for the new x' and y'; the other matrices must follow the same pattern for consisten- 
cy across the representation. In this case, x and y are not independent of each other. 

The characters of the matrices are the sums of the numbers on the principal diag- 
onal (from upper left to lower right). The set of 2 X 2 matrices has the characters cor- 
responding to the E representation in the following character table; the set of 1 X 1 
matrices matches the A l  representation. The third irreducible representation, A*, can be 
found by using the defining properties of a mathematical group, as in the C2v example 
above. Table 4-8 gives the properties of the characters for the C3v point group. 

TABLE 4-8 
Properties of the Characters for the CSV Poht Croup 

Property C3v Example 

1. Order 6 (6 symmetry operations) 

2. Classes 3 classes: 

3. Number of irreducible representations 3 ( A I , A ~ . E )  

4. Sum of squares of dimensions equals the 1' + l 2  + 2' = 6 
order of the group 

5. Sum of squares of characters multiplied by E 2C3 3u, 
the number of operations in each class 
equals the order of the group A1: 1' + 2(1)' + 3(1)' = 6 

A2: 1' + 2(112 + 3(-1)' = 6 

E:  2' + 2(-1)' + 3(0)' = 6 

(multiply the squares by the number of 
symmetry operations in each class) 

6. Orthogonal representations The sum of the products of any two 
representations multiplied by the 
number of operations in each class 
equals 0. Example of A2 X E: 

7. Totally symmetric representation Al , with all characters = 1 

Additional features of character tables 

1. When operations such as C3 are in the same class, the listing in a character table 
is 2C3, indicating that the results are the same whether rotation is in a clockwise 
or counterclockwise direction (or, alternately, that C3 and ~3~ give the same re- 
sult). In either case, this is equivalent to two columns in the table being shown as 
one. Similar notation is used for multiple reflections. 
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2. When necessary, the C2 axes perpendicular to the principal axis (in a D group) are 
designated with primes; a single prime indicates that the axis passes through sev- 
eral atoms of the molecule, whereas a double prime indicates that it passes 
between the atoms. 

3. When the mirror plane is perpendicular to the principal axis, or horizontal, the re- 
flection is called o h .  Other planes are labeled u, or ud ;  see the character tables in 
Appendix C. 

4. The expressions listed to the right of the characters indicate the symmetry of 
mathematical functions of the coordinates x, y, and z and of rotation about the 
axes (R,, R, , RZ) .  These can be used to find the orbitals that match the represen- 
tation. For example, x with positive and negative directions matches the p, orbital 
with positive and negative lobes in the quadrants in the xy plane, and the product 
xy with alternating signs on the quadrants matches lobes of the dx,, orbital, as in 
Figure 4-17. In all cases, the totally symmetric s orbital matches the first repre- 
sentation in the group, one of the A set. The rotational functions are used to de- 
scribe the rotational motions of the molecule. Rotation and other motions of the 
water molecule are discussed in Section 4-4-2. 

p, orbitals have the same symmetry as x dV orbitals have the same symmetry as the 
FIGURE 4-1 7 Orbitals and (positive in half the quadrants, negative function xy (sign of the function in the four 
Representations. in the other half). quadrants). 

In the C3v example described previously the x and y coordinates appeared togeth- 
er in the E irreducible representation. The notation for this is to group them as 
(x, y) in this section of the table. This means that x and y together have the same 
symmetry properties as the E irreducible representation. Consequently, the p, and 
p, orbitals together have the same symmetry as the E irreducible representation in 
this point group. 

5 .  Matching the symmetry operations of a molecule with those listed in the top row 
of the character table will confrm any point group assignment. 

6. Irreducible representations are assigned labels according to the following rules, in 
which symmetric means a character of 1 and antisymmetric a character of -1 
(see the character tables in Appendix C for examples). 

a. Letters are assigned according to the dimension of the irreducible representa- 
tion (the character for the identity operation). 

Dimension Svrnrnetrv Label 

I A ~f the representaeon 1s symmetrtc to the prlnctpal rotatton operatton (x(C,) = 1) 
B if a IS antlsymmetrtc (x(C,) = -1) 

2 E 

3 T 
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4-4 
EXAMPLES A N D  

APPLICATIONS OF 
SYMMETRY 

b. Subscript 1 designates a representation symmetric to a C2 rotation perpendicu- 
lar to the principal axis, and subscript 2 designates a representation antisym- 
metric to the C2. If there are no perpendicular C2 axes, 1 designates a 
representation symmetric to a vertical plane, and 2 designates a representation 
antisymmetric to a vertical plane. 

c. Subscript g (gerade) designates symmetric to inversion, and subscript u 
(ungerade) designates antisymmetric to inversion. 

d. Single primes are symmetric to o h  and double primes are antisymmetric to o h  

when a distinction between representations is needed (C3), , CSh, D3h, DSh). 

4-4-1 CHIRALITY 

Many molecules are not superimposable on their mirror image. Such molecules, labeled 
chiral or dissymmetric, may have important chemical properties as a consequence of 
this nonsuperimposability. An example of a chiral organic molecule is CBrCIFI, and 
many examples of chiral objects can also be found on the macroscopic scale, as in 
Figure 4-1 8. 

Chiral objects are termed dissymmetric. This term does not imply that these ob- 
jects necessarily have no symmetry. For example, the propellers shown in Figure 4-18 
each have a C3 axis, yet they are nonsuperimposable (if both were spun in a clockwise 
direction, they would move an airplane in opposite directions!). In general, we can say 
that a molecule or some other object is chiral if it has no symmetry operations (other 
than Q or if it has only proper rotation axes. 

EXERCISE 4-6 

Which point groups are possible for chiral molecules? (Hint: Refer as necessary to the charac- 
ter tables in Appendix C.) 

Air blowing past the stationary propellers in Figure 4-18 will be rotated in either 
a clockwise or counterclockwise direction. By the same token, plane-polarized light 
will be rotated on passing through chiral molecules (Figure 4-19); clockwise rotation is 
designated dextrorotatory, and counterclockwise rotation levorotatory. The ability of 
chiral molecules to rotate plane-polarized light is termed optical activity and may be 
measured experimentally. 

Many coordination compounds are chiral and thus exhibit optical activity if they 
can be resolved into the two isomers. One of these is [ R U ( N H ~ C H ~ C H ~ N H ~ ) ~ ] ~ + ,  with 

F ' F  
I I I  

FIGURE 4-18 A Chiral Molecule 
and Other Chiral Objects. 
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Unpolarized Polarizing 
light I filter 

Angle of 
rotation of 

Light 
source 

axis 

Unpolarize ' 
light 

plane of 
polarization 

Light 
source 

Polarizer 
axis 

Rotated \Cly 
polarized light 

Analyzer i 
FIGURE 4-1 9 Rotation of Plane-Polarized Light. 

4 symmetry (Figure 4-20). Mirror images of this molecule look much like left- and 
right-handed three-bladed propellers. Further examples will be discussed in Chapter 9. 

4-4-2 MOLECULAR VIBRATIONS 

Symmetry can be helpful in determining the modes of vibration of molecules. Vibra- 
tional modes of water and the stretching modes of CO in carbonyl complexes are exam- 
ples that can be treated quite simply, as described in the following pages. Other 
molecules can be studied using the same methods. 

Water (C2" symmetry) 

Because the study of vibrations is the study of motion of the individual atoms in a mol- 
z 

ecule, we must first attach a set of x, y, and z coordinates to each atom. For convenience, by z we assign the z axes parallel to the C2 axis of the molecule, the x axes in the plane of the 
Y 0'4, tv \by molecule, and the y axes perpendicular to the plane (Figure 4-21). Each atom can move 

H-x H-x in all three directions, so a total of nine transformations (motion of each atom in the x, 

4-21 A Set of Axes for 
y, and z directions) must be considered. For N atoms in a molecule, there are 3N total 

the Water Molecule. motions, known as degrees of freedom. Degrees of freedom for different geometries 
are summarized in Table 4-9. Because water has three atoms, there must be nine differ- 
ent motions. 

We will use transformation matrices to determine the symmetry of all nine mo- 
tions and then assign them to translation, rotation, and vibration. Fortunately, it is only 
necessary to determine the characters of the transformation matrices, not the individual 
matrix elements. 

In this case, the initial axes make a column matrix with nine elements, and each 
transformation matrix is 9 X 9. A nonzero entry appears along the diagonal of the ma- 
trix only for an atom that does not change position. lf the atom changes position during 
the symmetry operation, a 0 is entered. If the atom remains in its original location and 
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N (linear) 3 N  

3 (HCN) 9 
N (nonlinear) 3N 

3 (Hz01 9 

the vector direction is unchanged, a 1 is entered. If the atom remains but the vector di- 
rection is reversed, a - 1 is entered. (Because all the operations change vector directions 
by 0" or 180" in the C2, point group, these are the only possibilities.) When all nine vec- 
tors arc summcd, thc charactcr of thc rcduciblc rcprcscntation r is obtaincd. Thc full 
9 X 9 matrix for C2 is shown as an example; note that only the diagonal entries are used 
in finding the character. 

The Ha and Hb entries are not on the principal diagonal because Ha and Hb ex- 
change with each other in a C2 rotation, and xr(H,) = -x(Hb), yr(H,) = -y(Hb), 
and zr(Ha) = z(Hb). Only the oxygen atom contributes to the character for this opera- 
tion, for a total of - 1. 

The other entries for r can also be found without writing out the matrices, as follows: 

--1 0 0 0 0 0 0 0 
0 - 1  o o o o o o o y  
0 0 1 0 0 0 0 0 0 z  
0 0 0 0 0 0 - 1  o o x  
0 0 0 0 0 0 0 - 1  
0 0 0 0 0 0 0 0 1 z  
0 0 0 - 1  o o o o o x  
0 0 0 0 - 1  o o o o y  

- 0  0 0 0 0 1 0  0 

E: All nine vectors are unchanged in the identity operation, so the char- 
acter is 9. 

C2 : The hydrogen atoms change position in a C2 rotation, so all their vec- 
tors have zero contribution to the character. The oxygen atom vectors 
in the x and y directions are reversed, each contributing - 1, and in the 
z direction they remain the same, contributing 1, for a total of - 1. [The 
sum of the principal diagonal =x (C2)=( - I )+ ( -1 )+ (1 )  = -1.1 

u,(xz): Reflection in the plane of the molecule changes the direction of all the 
y vectors and leaves the x and z vectors unchanged, for a total of 
3 - 3 + 3 = 3. 

crV1(yz):  Finally, reflection perpendicular to the plane o l  the molecule changes 
the position of the hydrogens so their contribution is zero; the x vector 
on the oxygen changes direction and they and z vectors are unchanged, 
for a total of 1. 

0--x 

o y  

0,-z 

Because all nine direction vectors are included in this representation, it represents 
all the motions of the molecule, three translations, three rotations, and (by difference) 
three vibrations. The characters of the reducible representation r are shown as the last 
row below the irreducible representati0ns.h the C2, character table. 
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Reducing representations to irreducible 
representations 

The next step is to separate this representation into its component irreducible represen- 
tations. This requires another property of groups. The number of times that any irre- 
ducible representation appears in a reducible representation is equal to the sum of the 
products of the characters of the reducible and irreducible representations taken one 
operation at a time, divided by the order of the group. This may be expressed in equa- 
tion form, with the sum taken over all symmetry operations of the group.4 

"umber of irreducible) = [( number ) ( character of ) ( character of )] 
representations of of operations reducible irreducible 

a given type Order in the class representation representation 

In the water example, the order of CZv is 4, with one operation in each class 
( E ,  C2,  u,", u,'). The results are then 

The reducible representation for all motions of the water molecule is therefore 
reduced to 3A1 + A:! + 3B1 + 2B2. 

Examination of the columns on the far right in the character table shows that 
translation along the x, y, and z directions is A I + B1 + B2 (translation is motion along 
the x, y, and z directions, so it transforms in the same way as the three axes) and that 
rotation in the three directions (R,, Ry , RZ)  is A2 + B1 + B2. Subtracting these from 
the total above leaves 2A1 + Bl , the three vibrational modes, as shown in Table 4-10. 
The number of vibrational modes equals 3N - 6, as described earlier. Two of the 
modes are totally symmetric ( A l )  and do not change the symmetry of the molecule, but 
one is antisymmetric to C2 rotation and to reflection perpendicular to the plane of the 
molecule ( B , ) .  These modes are illustrated as symmetric stretch, symmetric bend, and 
antisymmetric stretch in Table 4-1 1. 

4 ~ h i s  procedure should yield an integer for the number of irreducible representations of each type; 
obtaining a fraction in this step indicates a calculation error. 
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'T&L$LE c10 . ,  

Symmetry of Molecblar ~ot ions of Water ' 

Translation Rotation Vibration 
All Motions ( ~ 3  Y ,  Z )  ( R x ,  R p  4 )  (Remaining Modes) 

~ A I  A I  2'4 1 

A2 A2 
351 51 51 BI 
2 B2 B2 52 

- . .  . , .  

TABLE i-I I 
- , ,  

, - 
, , > ' ( . :  .. - 

,:>: -The Vibtytional ' ~ o & o f  Water - .  . , , , . ii: ,,- ,., 

A1 Symmetric stretch: change in dipole moment; more distance '. J% between positive hydrogens and negative oxygen 
H H  IR active 

51 Antisymmetric stretch: change in dipole moment; change in i. 
fOkH distances between positive hydrogens and negative oxygen 

H IR active 

Symmetric bend: change in dipole moment; '4 1 . . 

angle between H-0 vectors changes 
IR active 

A molecular vibration is infrared active (has an infrared absorption) only if it re- , 
sults in a change in the dipole moment of the molecule. The three vibrations of water . 

can be analyzed this way to determine their infrared behavior. In fact, the oxygen atom : 
also moves. Its motion is opposite that of the hydrogens and is very small, because its i. 
mass is so much larger than that of the hydrogen atoms. The center of mass of the mol- :: 
ecule does not move in vibrations. 

Group theory can give us the same information (and can account for the more ,: 
complicated cases as well; in fact, group theory in principle can account for all vibra- i 
tional modes of a molecule). In group theory terms, a vibrational mode is active in the 
infrared if it corresponds to an irreducible representation that has the same symmetry 
(or transforms) as the Cartesian coordinates x, y, or z, because a vibrational motion that 
shifts the center of charge of the molecule in any of the x, y, or z directions results in a 
change in dipole moment. Otherwise, the vibrational mode is not infrared active. 

Reduce the following representations to their irreducible representations in the point group 
indicated (refer to the character tables in Appendix C): 
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'I'herehre, r = 2Ag + Bg + B,. 

Therefore, r = A ,  + 3A2 + E. 

Be sure to include the number of symmetry operations in a class (column) of the character 
table. This means that the second term in the C3v calculation must be multiplied by 2 (2C3; 
there are two operations in this class), and the third term must be multiplied by 3, as shown. 

EXERCISE 4-7 

Reduce the following representations to their irreducible representations in the point 
groups indicated: 

EXERCISE 4-8 

Analysis of the x, y, and z coordinates of each atom in NH3 gives the following representation: 

a. Reduce r to its irreducible representations. 

b. Classify the irreducible representations into translational, rotational, and vibrational 
modes. 

c. Show that the total number of degrees of freedom = 3N. 

d. Which vibrational modes are infrared active? 
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FIGURE 4-22 Carbonyl Stretch- 
ing Vibrations of cis- and trans- 
Dicarbonyl Square Planar . A 

Complexes. Cis-dicarbonyl complex Trans-dicarbonyl complex 

Selected vibrational modes 

It is oftcn useful to consider a particular type of vibrational mode for a compound. For 
example, useful information often can be obtained from the C - 0 stretching bands in 
infrared spectra of metal complexes containing CO (carbonyl) ligands. The following 
example of cis- and trans-dicarbonyl square planar complexes shows the procedure. For 
these complexes,5 a simple IR spectrum can distinguish whether a sample is cis- or 
~ a n s - M L ~ ( C 0 ) ~  ; the number of C - 0 stretching bands is determined by the geome- 
try of the complex (Figure 4-22). 

C ~ S - M L ~ ( C O ) ~ ,  point group C2,. The principal axis (C2) is the z axis, with the xz 
plane assigned as the plane of the molecule. Possible C-0 stretching motions are 
sllow~i by arrows in Figure 4-23; either an incrcase or decrease in the C - 0 distance is 
possible. These vectors are used to create the reducible representation below using the 
symmetry operations of the C2, point group. A C - 0 bond will transform with a char- 
acter of 1 ifit remains unchanged by the symmetry operations, and with a character of 
0 if it is changed. These operations and their characters are shown in Figure 4-23. Both 

FIGURE 4-23 Symmetry 
Operations and Characters for 
C ~ S - M L ~ ( C O ) ~ .  

2 vectors unchanged 0 vectors unchanged 2 vectors unchanged 0 vectors unchanged 

'M represents any metal and L any ligand other than CO in these formulas. 
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stretches are unchanged in the identity operation and in the reflection through the plane 
of the molecule, so each contributes 1 to the character, for a total of 2 for each opera- 
tion. Both vectors move to new locations on rotation or reflection perpendicular to the 
plane of the molecule, so these two characters are 0. 

The reducible representation I' reduces to A + B1 : 

Al is an appropriate irreducible representation for an IR-active band, because it 
transforms as (has the symmetry of) the Cartesian coordinate z. Furthermore, the vibra- 
tional mode corresponding to B1 should be IR active, because it transforms as the Carte- 
sian coordinate x. 

In summary: 

There are two vibrational modes for C-0  stretching, one having A1 symmetry and one 
B, symmetry. Both modes are IR active, and we therefore expect to see two C - 0 stretch- 
es in the IR. This assumes that the C-0  stretches are not sufficiently similar in energy to 
overlap in the infrared spectrum. 

t r a n ~ - M L ~ ( C 0 ) ~ ,  point group DZh. The principal axis, C2, is again chosen as the z 
axis, which this time makes the plane of the molecule the xy plane. Using the symme- 
try operation of the D 2 ~  point group, we obtain a reducible representation for C-0 
stretches that reduces to Ag + B3u: 

The vibrational mode of Ag symmetry is not IR active, because it does not have 
the same symmetry as a Cartesian coordinate x, y, or z (this is the IR-inactive symmet- 
ric stretch). The mode of symmetry B3u, on the other hand, is IR active, because it has 
the same symmetry as x. 

In summary: 

There are two vibrational modes for C-0  stretching, one having the same symmetry as 
Ag,  and one the same symmetry as B3,. The AR mode is IR inactive (does not have the 
symmetry of x, y, or z ) ;  the B3, mode is IR active (has the symmetry of x). We therefore 
expect to see one C -0 stretch in the IR. 

It is therefore possible to distinguish cis- and t r ~ n s - M L ~ ( C 0 ) ~  by taking an IR 
spectrum. If one C-0 stretching band appears, the molecule is trans; if two bands 
appear, the molecule is cis. A significant distinction can be made by a very simple 
measurement. 
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I Determine the number of IR-active CO stretching modes for ~uc-Mo(CO)~(NCCH~)~,  as 
shown in the diagram. 

0 This molecule has C3, symmetry. The operations to be consid- 

+ P ered are E, C3,  and a,. E leaves the three bond vectors un- 
changed, giving a character of 3. C3 moves all three vectors, 

,c 1 ,, giving a character of 0. Each a, plane passed through one of the 
CH3CN-Mo - C - +  0 CO groups, leaving it unchanged, while interchanging the other 

( 1  two. The resulting character is 1. 

C 
cN 

H3 CH, 

The representation to be reduced, therefore, is 

This reduces to A 1 + E. A has the same symmetry as the Cartesian coordinate z and is there- 
fore IR active. E has the same symmetry as the x and y coordinates together and is also IR ac- 
tive. It represents a degenerate pair of vibrations, which appear as one absorption band. 

EXERCISE 4-9 

Determine the number of IR-active C - 0 stretching modes for Mn(C0)5Cl. 

GENERAL There are several helpful books on this subject. Good examples are E A. Cotton, 
REFERENCES Chemical Applications of Group Theory, 3rd ed., John Wiley & Sons, New York, 1990; 

S. F. A. Kettle, Symmetry and Structure (Readable Group Theory for Chemists), 2nd 
ed., John Wiley & Sons, New York, 1995; and I. Hargittai and M. Hargittai, Symmetry 
Through the Eyes of a Chemist, 2nd ed., Plenum Press, New York, 1995. The latter two 
also provide information on space groups used in solid state symmetry, and all give rel- 
atively gentle introductions to the mathematics of the subject. 

PROBLEMS 4-1 Determine the point groups for 
a. Ethane (staggered conformation) 
b. Ethane (eclipsed conformation) 
c. Chloroethane (staggered conformation) 
d. 1,2-Dichloroetliane (staggered anti conformation) 

4-2 Determine the point groups for 

H \  / H  
a. Ethylene C = C  

H/ \ H 

b. Chloroethylene 
c. The possible isomers of dichloroethylene 

4-3 Determine the point groups for 
a. Acetylene 
b. H - C c C - F  
C. H-C=C-CH3 
d. H-CSC-CH2CI 
e. H - C c C - P h  (Ph = phenyl) 



4-4 Determine the point groups for 

a. Naphthalene 

4-5 Determine the point groups for 

b. Dibenzenechromium (eclipsed conformation) 

Cr 

f. Formaldehyde, H2C0 

g. S8 (puckered ring) ,/s\s/s 
\ s A S , y  s-s 
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h. Borazine H  
\ 7 
B-N 

- L o ' / " - H  \ 

IB - N\ 

j. A tennis ball (ignoring the label, but including the pattern on the surface) 

4-6 Determine the point group for 
a. Cyclohexane (chair conformation) 
b. Tetrachloroallene C12C =C =cclz 
C. 

d. A snowflake 
e. Diborane H 

f. The possible isomers of tribromobenzene 
g. A tetrahedron inscribed in a cube (alternate comers of the cube are also corners of 

the tetrahedron). 

4-7 Determine the point group for 
a. A sheet of typing paper 
b. An Erlenmeyer flask (no label) 
c. A screw 
d. The number 96 
e. Five examples of objects from everyday life; select items from five different 

point groups. 
f. A uair of eyeglasses (assuming lenses of equal strength) 
g. A f i~e-~oin ted  star 
h. A fork (assuming no decoration) 
i. Captain Ahab, who lost a leg to Moby Dick 
j. A metal washer 

4-8 Determine the point groups of the molecules in the following end-of-chapter problems 
from Chapter 3: 
a. Problem 3-12 
b. Problem 3-16 

4-9 Determine the point groups of the molecules and ions in 
a. Figure 3-8 
b. Figure 3- 15 

4-10 Determine the point groups of the following atomic orbitals, including the signs on the 
orbital lobes: 
a- Px  b. d ,  
c. d&2 d. d,2 



Show that a cube has the same symmetry elements as an octahedron. 

For trans-l,2-dichloroethylene, of C2,? symmetry, 
a. List all the symmetry operations for this molecule. 
b. Write a set of transformation matrices that describe the effect of each symmetry op- 

eration in the Gh group on a set of coordinates x, y, z for a point. (Your answer 
should consist of four 3 X 3 transformation matrices.) 

c. Using the terms along the diagonal, obtain as many irreducible representations as 
possible from the transformation matrices. (You should be able to obtain three irre- 
ducible representations in this way, but two will be duplicates.) You may check your 
results using the C2/, character table. 

d. Using the C2h character table, verify that the irreducible representations are mutual- 
ly orthogonal. 

Ethylene is a molecule of D2h symmetry. 
List all the symmetry operations of ethylene. 
Write a transformation matrix for eachsymmetry operation that describes the effect 
of that operation on the coordinates of a point x, y,  z. 
Using the characters of your transformation matrices, obtain a reducible representation. 
Using the diagonal elements of your matrices, obtain three of the DZh irreducible 
representations. 
Show that your irreducible representations are mutually orthogonal. 

Using the D2d character table, 
a. Determine the order of the group. 
b. Verify that the E irreducible representation is orthogonal to each of the other irre- 

ducible representations. 
c. For each of the irreducible representations, verify that the sum of the squares of the 

characters equals the order of the group. 
d. Reduce the following representations to their component irreducible representations: 

Reduce the following representations to irreducible representations: 

For D4h symmetry show, using sketches, that d,,, orbitals have R2g symmetry and that 
dx2-,2 orbitals have Big symmetry. (Hint: you may find it useful to select a molecule 
that has D4h symmetry as a reference for the operations of the D4h point group.) 

Which items in Problems 5,  6, and 7 are chiral? List three items not from this chapter 
that are chiral. 

For the following molecules, determine the number of IR-active C - 0  stretching 
vibrations: 
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4-19 Using the x, y, and z coordinates for each atom in SF6, determine the reducible repre- 
sentation, reduce it, classify the irreducible representations into translational, rotation- 
al, and vibrational modes, and decide which vibrational modes are infrared active. 

4-20 Three isomers of W2C14(NHEt)2(PMe3)2 have been reported. These isomers have the 
core structures shown below. Determine the point group of each (Reference: F. A. Cot- 
ton, E. V. Dikarev, and W.-Y. Wong, Inorg. Chem., 1997,36,2670.) 

4-21 There is considerable evidence for the existence of protonated methane, C H ~ + .  Calcu- 
lations have indicated that the lowest energy form of this ion has C, symmetry. Sketch 
a reasonable structure for this structure. The structure is unusual, with a type of bond- 
ing only mentioned briefly in previous chapters. (Reference: G. A. Olah and G. Rasul, 
Acc. Chem. Res., 1997,30,245.) 

4-22 The hexauicloarsenate(V) ion, [As(N3)&, has been reported as the first structurally 
characterized binary arsenic (V) azide species. Two views of its structure are shown 
below. A view with three As-N bonds pointing up and three pointing down (alternat- 
ing) is shown in (a); a view down one of the N- As-N axes is shown in (b). What is 
its point group? (Reference: T. M. Klapiitke, H. Noth, T. Schiitt, and M. Warchhold, 
Angew Chem., Int. Ed., 2000,39,2108.) 

4-23 Derivatives of methane can be obtained by replacing one or more hydrogen atoms with 
other atoms, such as F, C1, or Br. Suppose you had a supply of methane and the neces- 
sary chemicals and equipment to make derivatives of methane containing all possible 
combinations of the elements H, F, C1, and Br. What would be the point groups of the 
molecules you could make? You should find 35 possible molecules, but they can be 
arranged into five sets for assignment of point groups. 

4-24 Determine the point groups of the following molecules: 
a. F3SCCF3, with a triple S S C  bond 


