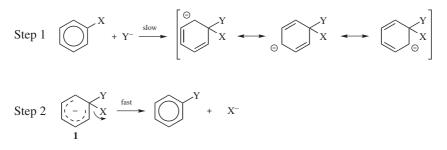
Aromatic Substitution, Nucleophilic and Organometallic

On p. 481, it was pointed out that nucleophilic substitutions proceed so slowly at an aromatic carbon that the reactions of Chapter 10 are not feasible for aromatic substrates. There are, however, exceptions to this statement, and it is these exceptions that form the subject of this chapter.¹ Reactions that *are* successful at an aromatic substrate are largely of four kinds: (1) reactions activated by electron-withdrawing groups ortho and para to the leaving group; (2) reactions catalyzed by very strong bases and proceeding through aryne intermediates; (3) reactions initiated by electron donors; and (4) reactions in which the nitrogen of a diazonium salt is replaced by a nucleophile. It is noted that solvent effects can be important.² Also, not all the reactions discussed in this chapter fit into these categories, and certain transition-metal catalyzed coupling reaction are included because they involve replacement of a leaving group on an aromatic ring.

MECHANISMS

There are four principal mechanisms for aromatic nucleophilic substitution.³ Each of the four is similar to one of the aliphatic nucleophilic substitution mechanisms discussed in Chapter 10.

¹For a review of aromatic nucleophilic substitution, see Zoltewicz, J.A. *Top. Curr. Chem.* **1975**, 59, 33. ²Acevedo, O.; Jorgensen, W.L. *Org. Lett.* **2004**, *6*, 2881.


³For a monograph on aromatic nucleophilic substitution mechanisms, see Miller, J. Aromatic Nucleophilic Substitution, Elsevier, NY, **1968**. For reviews, see Bernasconi, C.F. Chimia **1980**, 34, 1; Acc. Chem. Res. **1978**, 11, 147; Bunnett, J.F. J. Chem. Educ. **1974**, 51, 312; Ross, S.D., in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 13; Elsevier, NY, **1972**, pp. 407–431; Buck, P. Angew. Chem, Int. Ed. **1969**, 8, 120; Buncel, E.; Norris, A.R.; Russell, K.E. Q. Rev. Chem. Soc. **1968**, 22, 123; Bunnett, J.F. Tetrahedron **1993**, 49, 4477; Zoltewicz, J.A. Top. Curr. Chem. **1975**, 59, 33.

March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March

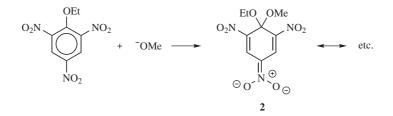
Copyright © 2007 John Wiley & Sons, Inc.

The S_NAr Mechanism⁴

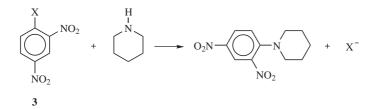
By far the most important mechanism for nucleophilic aromatic substitution consists of two steps, attack of the nucleophilic species at the ipso carbon of the aromatic ring (the carbon bearing the leaving group in this case), followed by elimination of the leaving group and regeneration of the aromatic ring.

The first step is usually, but not always, rate determining. It can be seen that this mechanism greatly resembles the tetrahedral mechanism discussed in Chapter 16 and, in another way, the arenium ion mechanism of electrophilic aromatic substitution discussed in Chapter 11. In all three cases, the attacking species forms a bond with the substrate, giving an intermediate, such as **1**, and then the leaving group departs. We refer to this mechanism as the S_NAr mechanism.⁵ The IUPAC designation is $A_N + D_N$ (the same as for the tetrahedral mechanism; compare the designation $A_E + D_E$ for the arenium ion mechanism). This mechanism is generally found where activating groups are present on the ring (see p. 864).

There is a great deal of evidence for the mechanism; we shall discuss only some of it.³ Probably the most convincing evidence was the isolation, as long ago as 1902, of the intermediate **2** in the reaction between 2,4,6-trinitrophenetole and methoxide ion.⁶ Intermediates of this type are stable salts, called *Meisenheimer* or *Meisenheimer–Jackson salts*,⁷ and many more have been isolated.⁸ The structures


⁸For a monograph on Meisenheimer salts and on this mechanism, see Buncel, E.; Crampton, M.R.; Strauss, M.J.; Terrier, F. *Electron Deficient Aromatic- and Heteroaromatic-Base Interactions*, Elsevier, NY, **1984**. For reviews of structural and other studies, see Illuminati, G.; Stegel, F. *Adv. Heterocycl. Chem.* **1983**, *34*, 305; Artamkina, G. A.; Egorov, M.P.; Beletskaya, I.P. *Chem. Rev.* **1982**, *82*, 427; Terrier, F. *Chem. Rev.* **1982**, *82*, 77; Strauss, M.J. *Chem. Rev.* **1970**, 70, 667; *Acc. Chem. Res.* **1974**, *7*, 181; Hall, T.N.; Poranski, Jr., C.F., in Feuer, H. *The Chemistry of the Nitro and Nitroso Groups*, pt. 2; Wiley, NY, **1970**, pp. 329–384; Crampton, M.R. *Adv. Phys. Org. Chem.* **1969**, *7*, 211; Foster R.; Fyfe, C.A. *Rev. Pure Appl. Chem.* **1966**, *16*, 61.

⁴High pressure S_NAr reactions are known. see Barrett, I.C.; Kerr, M.A. *Tetrahedron Lett.* **1999**, *40*, 2439. ⁵The mechanism has also been called by other names, including the S_N2Ar, the addition–elimination, and the intermediate complex mechanism. See Wu, Z.; Glaser, R. *J. Am. Chem. Soc.* **2004**, *126*, 10632. See also, Terrier, F.; Mokhtari, M.; Goumont, T.; Hallé, J.-C.; Buncel, E. Org. Biomol. Chem. **2003**, *1*, 1757. ⁶Meisenheimer, J. *Liebigs Ann. Chem.* **1902**, *323*, 205. Similar salts were isolated even earlier by Jackson, C.L.; see Jackson, C.L.; Gazzolo, F.H. Am. Chem. J. **1900**, *23*, 376; Jackson, C.L.; Earle, R.B. Am. Chem. *J.*, **1903**, *29*, 89.


⁷Nucleophilic aromatic substitution for heteroatom nucleophiles through electrochemical oxidation of intermediate σ -complexes (Meisenheimer complexes) in simple nitroaromatic compounds has been reported, see Gallardo, I.; Guirado, G.; Marquet, J. *J. Org. Chem.* **2002**, *67*, 2548.

CHAPTER 13

of several of these intermediates

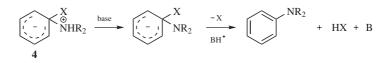
have been proved by NMR⁹ and by X-ray crystallography.¹⁰ Further evidence comes from studies of the effect of the leaving group on the reaction. If the mechanism were similar to either the S_N1 or S_N2 mechanisms described in Chapter 10, the Ar–X bond would be broken in the rate-determining step. In the S_NAr mechanism, this bond is not broken until after the rate-determining step (i.e. if step 1 is rate determining). There is some evidence that electron transfer may be operative during this process.¹¹ We would predict from this that if the S_NAr mechanism is operating, a change in leaving group should not have much effect on the reaction rate. In the reaction of dinitro compound **3** with piperidine,

when X was Cl, Br, I, SOPh, SO₂Ph, or *p*-nitrophenoxy, the rates differed only by a factor of ~ 5 .¹² This behavior would not be expected in a reaction in which the Ar–X bond is broken in the rate-determining step. We do not expect the rates to be *identical*, because the nature of X affects the rate at which Y attacks. An increase in the electronegativity of X causes a decrease in the electron density at the site of attack, resulting in a faster attack by a nucleophile. Thus, in the reaction just mentioned, when X = F, the relative rate was 3300 (compared with I = 1). The very fact that fluoro is the best leaving group among the halogens in most aromatic nucleophilic substitutions is good evidence that the mechanism is different from the S_N1

⁹First done by Crampton, M.R.; Gold, V. J. Chem. Soc. B **1966**, 893. A good review of spectral studies is found, in Buncel, E.; Crampton, M.R.; Strauss, M.J.; Terrier, F. *Electron Deficient Aromatic- and Heteroaromatic-Base Interactions*, Elsevier, NY, **1984**, pp. 15–133.

¹²Bunnett, J.F.; Garbisch Jr., E.W.; Pruitt, K.M. J. Am. Chem. Soc. **1957**, 79, 385. See Gandler, J.R.; Setiarahardjo, I.U.; Tufon, C.; Chen, C. J. Org. Chem. **1992**, 57, 4169 for a more recent example.

¹⁰Destro, R.; Gramaccioli, C.M.; Simonetta, M. Acta Crystallogr. **1968**, 24, 1369; Ueda, H.; Sakabe, M.; Tanaka, J.; Furusaki, A. Bull. Chem. Soc. Jpn. **1968**, 41, 2866; Messmer, G.G.; Palenik, G.J. Chem. Commun. **1969**, 470.


¹¹Grossi, L. Tetrahedron Lett. 1992, 33, 5645.

and the $S_N 2$ mechanisms, where fluoro is by far the poorest leaving group of the halogens. This is an example of the element effect (p. 475).

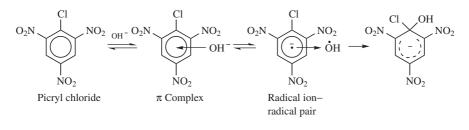
The pattern of base catalysis of reactions with amine nucleophiles provides additional evidence. These reactions are catalyzed by bases only when a relatively poor leaving group (e.g., OR) is present (not Cl or Br) and only when relatively bulky amines are nucleophiles.¹³ Bases could not catalyze step 1, but if amines are nucleophiles, bases can catalyze step 2. Base catalysis is found precisely in those cases where the amine moiety cleaves easily but X does not, so that k_{-1} is large and step 2 is rate determining. This is evidence for the S_NAr mechanism because it implies two steps. Furthermore, in cases where bases *are* catalysts, they catalyze only at

$$R_2NH + \bigcup_{k_1} X \xrightarrow{k_1} NHR_2 \xrightarrow{k_2} NR_2 + HX$$

low base concentrations: a plot of the rate against the base concentration shows that small increments of base rapidly increase the rate until a certain concentration of base is reached, after which further base addition no longer greatly affects the rate. This behavior, based on a partitioning effect (see p. 660), is also evidence for the S_NAr mechanism. At low base concentration, each increment of base, by increasing the rate of step 2, increases the fraction of intermediate that goes to product rather than reverting to reactants. At high base concentration the process is virtually complete: there is very little reversion to reactants and the rate becomes dependent on step 1. Just how bases catalyze step 2 has been investigated. For protic solvents two proposals have been presented. One is that step 2 consists of two steps: rate-determining deprotonation of **4** followed by rapid loss of X,

and that bases catalyze the reaction by increasing the rate of the deprotonation step.¹⁴ According to the other proposal, loss of X assisted by BH⁺ is rate determining.¹⁵ Two mechanisms, both based on kinetic evidence, have been proposed for aprotic solvents, such as benzene. In both proposals the ordinary S_NAr mechanism

¹³Kirby, A.J.; Jencks, W.P. J. Am. Chem. Soc. **1965**, 87, 3217; Bunnett, J.F.; Bernasconi, C.F. J. Org. Chem. **1970**, 35, 70; Bernasconi, C.F.; Schmid, P. J. Org. Chem. **1967**, 32, 2953; Bernasconi, C.F.; Zollinger, H. Helv. Chim. Acta **1966**, 49, 103; **1967**, 50, 1; Pietra, F.; Vitali, D. J. Chem. Soc. B **1968**, 1200; Chiacchiera, S.M.; Singh, J.O.; Anunziata, J.D.; Silber, J.J. J. Chem. Soc. Perkin Trans. 2 **1987**, 987.


¹⁴Bernasconi, C.F.; de Rossi, R.H.; Schmid, P. J. Am. Chem. Soc. 1977, 99, 4090, and references cited therein.

¹⁵Bunnett, J.F.; Sekiguchi, S.; Smith, L.A. J. Am. Chem. Soc. 1981, 103, 4865, and references cited therein.

CHAPTER 13

operates, but in one the attacking species involves two molecules of the amine (the *dimer mechanism*),¹⁶ while in the other there is a cyclic transition state.¹⁷ Further evidence for the S_NAr mechanism has been obtained from ¹⁸O/¹⁶O and ¹⁵N/¹⁴N isotope effects.¹⁸

Step 1 of the S_NAr mechanism has been studied for the reaction between picryl chloride (as well as other substrates) and ⁻OH ions (**13-1**), and spectral evidence has been reported¹⁹ for two intermediates, one a π complex (p. 662), and the other a radical ion–radical pair:

As with the tetrahedral mechanism at an acyl carbon, nucleophilic catalysis (p. 1259) has been demonstrated with an aryl substrate, in certain cases.²⁰ There is also evidence of an interaction of anions with the π -cloud of aromatic compounds.²¹

The S_N1 Mechanism

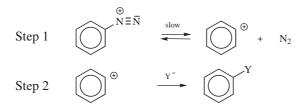
For aryl halides and sulfonates, even active ones, a unimolecular S_N1 mechanism (IUPAC: $D_N + A_N$) is very rare; it has only been observed for aryl triflates in which both ortho positions contain bulky groups (*tert*-butyl or SiR₃).²² It is in reactions with diazonium salts²³ that this mechanism is important:²⁴

¹⁶For a review of this mechanism, see Nudelman, N.S. J. Phys. Org. Chem. **1989**, 2, 1. See also Nudelman, N.S.; Montserrat, J.M. J. Chem. Soc. Perkin Trans. 2 **1990**, 1073.

 ¹⁷Banjoko, O.; Bayeroju, I.A. J. Chem. Soc. Perkin Trans. 2 1988, 1853; Jain, A.K.; Gupta, V.K.; Kumar, A. J. Chem. Soc. Perkin Trans. 2 1990, 11.

¹⁸Hart, C.R.; Bourns, A.N. *Tetrahedron Lett.* **1966**, 2995; Ayrey, G.; Wylie, W.A. *J. Chem. Soc. B* **1970**, 738.

¹⁹Bacaloglu, R.; Blaskó, A.; Bunton, C.A.; Dorwin, E.; Ortega, F.; Zucco, C. *J. Am. Chem. Soc.* **1991**, *113*, 238, and references cited therein. For earlier reports, based on kinetic data, of complexes with amine nucleophiles, see Forlani, L. *J. Chem. Res.* (*S*) **1984**, 260; Hayami, J.; Otani, S.; Yamaguchi, F.; Nishikawa, Y. *Chem. Lett.* **1987**, 739; Crampton, M.R.; Davis, A.B.; Greenhalgh, C.; Stevens, J.A. *J. Chem. Soc. Perkin Trans.* **2 1989**, 675.


²⁰See Muscio, Jr., O.J.; Rutherford, D.R. J. Org. Chem. 1987, 52, 5194.

²¹Quiñonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà. P.M. Angew. Chem. Int. Ed. 2002, 41, 3389, and references cited therein.

²²Himeshima, Y.; Kobayashi, H.; Sonoda, T. J. Am. Chem. Soc. 1985, 107, 5286.

²³See Glaser, R.; Horan, C.J.; Nelson, E.D.; Hall, M.K. *J. Org. Chem.* **1992**, *57*, 215 for the influence of neighboring group interactions on the electronic structure of diazonium ions.

 $^{^{24}\}mathrm{Aryl}$ iodonium salts $\mathrm{Ar_2I^+}$ also undergo substitutions by this mechanism (and by a free-radical mechanism).

Among the evidence for the $S_N 1$ mechanism²⁵ with aryl cations as intermediates,^{26,27} is the following:²⁸

- **1.** The reaction rate is first order in diazonium salt and independent of the concentration of Y.
- **2.** When high concentrations of halide salts are added, the product is an aryl halide but the rate is independent of the concentration of the added salts.
- **3.** The effects of ring substituents on the rate are consistent with a unimolecular rate-determining cleavage.²⁹
- **4.** When reactions were run with substrate deuterated in the ortho position, isotope effects of ~ 1.22 were obtained.³⁰ It is difficult to account for such high secondary isotope effects in any other way except that an incipient phenyl cation is stabilized by hyperconjugation,³¹ which is reduced when hydrogen is replaced by deuterium.

5. That the first step is reversible cleavage³² was demonstrated by the observation that when $Ar^{15} \stackrel{H}{N} \equiv N$ was the reaction species, recorvered starting

²⁵For additional evidence, see Lorand, J.P. Tetrahedron Lett. 1989, 30, 7337.

²⁶For a review of aryl cations, see Ambroz, H.B.; Kemp, T.J. Chem. Soc. Rev. 1979, 8, 353.

²⁷For a monograph, see Stang, P.J.; Rappoport, Z.; Hanack, M.; Subramanian, L.R. Vinyl Cations, Academic Press, NY, 1979. For reviews of aryl and/or vinyl cations, see Hanack, M. Pure Appl. Chem. 1984, 56, 1819, Angew. Chem. Int. Ed. 1978, 17, 333; Acc. Chem. Res. 1976, 9, 364; Rappoport, Z. Reactiv. Intermed. (Plenum) 1983, 3, 427; Ambroz, H.B.; Kemp, T.J. Chem. Soc. Rev. 1979, 8, 353; Modena, G.; Tonellato, U. Adv. Phys. Org. Chem. 1971, 9, 185; Stang, P.J. Prog. Org. Chem. 1973, 10, 205. See also, Charton, M. Mol. Struct. Energ. 1987, 4, 271. For a computational study, see Glaser, R.; Horan, C.J.; Lewis, M.; Zollinger, H. J. Org. Chem. 1999, 64, 902.

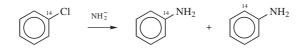
²⁸For a review, see Zollinger, H. Angew. Chem, Int. Ed. 1978, 17, 141. For discussions, see Swain, C.G.; Sheats, J.E.; Harbison, K.G. J. Am. Chem. Soc. 1975, 97, 783, 796; Burri, P.; Wahl, Jr., G.H.; Zollinger, H. Helv. Chim. Acta 1974, 57, 2099; Richey Jr., H.G.; Richey, J.M., in Olah, G.A.; Schleyer, P.v.R. Carbonium Ions, Vol. 2, Wiley, NY, 1970, pp. 922–931; Zollinger, H. Azo and Diazo Chemistry, Wiley, NY, 1961, pp. 138–142; Miller, J. Aromatic Nucleophilic Substitution, Elsevier, NY, 1968, pp. 29–40.
²⁹Lewis, E.S.; Miller, E.B. J. Am. Chem. Soc. 1953, 75, 429.

³⁰Swain, C.G.; Sheats, J.E.; Gorenstein, D.G.; Harbison, K.G. J. Am. Chem. Soc. 1975, 97, 791.

³¹See Apeloig, Y.; Arad, D. J. Am. Chem. Soc. 1985, 107, 5285.

³²For discussions, see Williams, D.L.H.; Buncel, E. *Isot. Org. Chem.* Vol. 5, Elsevier, Amsterdem, The Netherlands, *1980*, 147, 212; Zollinger, H. *Pure Appl. Chem. 1983*, 55, 401.

material contained not only $Ar^{15} \stackrel{H}{N} \equiv N$, but also $Ar \stackrel{H}{N} \equiv \stackrel{15}{N}$.^{33,34} This could arise only If the nitrogen breaks away from the ring and then returns. Additional evidence was obtained by treating Ph $\ddot{N} \equiv \ddot{N}$ with unlabeled N₂ at various pressures. At 300 atm, the recovered product had lost $\sim 3\%$ of the labeled nitrogen, indicating that PhN_2^+ was exchanging with atmospheric N_2 .³⁴ There is kinetic and other evidence³⁵ that step 1 is more complicated and


involves two steps, both reversible:

$$\operatorname{ArN}_2^+ \longrightarrow [\operatorname{Ar}^+ \operatorname{N}_2] \longrightarrow \operatorname{Ar}^+ + \operatorname{N}_2$$

5

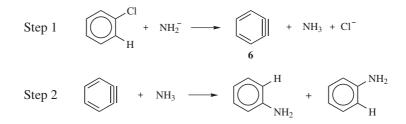
Intermediate 5, which is probably some kind of a tight ion-molecule pair, has been trapped with carbon monoxide.³⁶

The Benzyne Mechanism³⁷

Some aromatic nucleophilic substitutions are clearly different in character from those that occur by the S_NAr mechanism (or the S_N1 mechanism). These substitutions occur on aryl halides that have no activating groups; bases are required that are stronger than those normally used; and most interesting of all, the incoming group does not always take the position vacated by the leaving group. That the latter statement is true was elegantly demonstrated by the reaction of 1-14C-chlorobenzene with potassium amide:

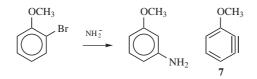
The product consisted of almost equal amounts of aniline labeled in the 1 position and in the 2 position.³⁸

³⁴Bergstrom, R.G.; Landell, R.G.M.; Wahl Jr., G.H.; Zollinger, H. J. Am. Chem. Soc. 1976, 98, 3301. ³⁵Szele, I.; Zollinger, H. Helv. Chim. Acta 1981, 64, 2728.


³³Lewis, E.S.; Kotcher, P.G. Tetrahedron 1969, 25, 4873; Lewis, E.S.; Holliday, R.E. J. Am. Chem. Soc. 1969, 91, 426; Tröndlin, F.; Medina, R.; Rüchardt, C. Chem. Ber. 1979, 112, 1835.

³⁶Ravenscroft, M.D.; Skrabal, P.; Weiss, B.; Zollinger, H. Helv. Chim. Acta 1988, 71, 515.

³⁷For a monograph, see Hoffmann, R.W. Dehydrobenzene and Cycloalkynes, Academic Press, NY, 1967. For reviews, see Gilchrist, T.L., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C pt. 1, Wiley, NY, 1983, pp. 383–419; Bryce, M.R.; Vernon, J.M. Adv. Heterocycl. Chem. 1981, 28, 183; Levin R.H. React. Intermed. (Wiley) 1985, 3, 1; 1981, 2, 1; 1978, 1, 1; Nefedov, O.M.; D'yachenko, A.I.; Prokof'ev, A.K. Russ. Chem. Rev. 1977, 46, 941; Fields, E.K., in McManus, S.P. Organic Reactive Intermediates, Academic Press, NY, 1973, pp. 449-508; Heaney, H. Fortschr. Chem. Forsch. 1970, 16, 35; Essays Chem. 1970, 1, 95; Hoffmann, R.W., in Viehe, H.G. Acetylenes, Marcel Dekker, NY, 1969, pp. 1063-1148; Fields, E.K.; Meyerson, S. Adv. Phys. Org. Chem. 1968, 6, 1; Witting, G. Angew. Chem. Int. Ed. 1965, 4, 731.


³⁸Roberts, J.D.; Semenow, D.A.; Simmons, H.E.; Carlsmith, L.A. J. Am. Chem. Soc. 1965, 78, 601.

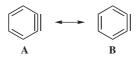
A mechanism that can explain all these facts involves elimination followed by addition. In step 1, a suitable base removes the ortho hydrogen, with subsequent (or concomitant) loss of the chlorine (leaving group) to

generate symmetrical intermediate 6^{39} is called benzyne (see below).⁴⁰ In step 2, benzyne is attacked by the NH₃ at either of two positions, which explains why about half of the aniline produced from the radioactive chlorobenzene was labeled at the 2 position. The fact that the 1 and 2 positions were not labeled equally is the result of a small isotope effect. Other evidence for this mechanism is the following:

- 1. If the aryl halide contains two ortho substituents, the reaction should not be able to occur. This is indeed the case.³⁶
- 2. It had been known many years earlier that aromatic nucleophilic substitution occasionally results in substitution at a different position. This is called *cine* substitution⁴¹ and can be illustrated by the conversion of *o*-bromoanisole to *m*-aminoanisole.⁴² In this particular case, only the meta isomer is

formed. The reason a 1:1 mixture is not formed is that the intermediate **7** is not symmetrical and the methoxy group directs the incoming group meta, but not ortho (see p. 867). However, not all cine substitutions proceed by this kind of mechanism (see **13-30**).

3. The fact that the order of halide reactivity is Br > I > Cl > F (when the reaction is performed with KNH₂ in liquid NH₃) shows that the S_NAr mechanism is not operating here.³⁸


³⁹For a discussion of the structure of *m*- and *p*-benzynes, see Hess, Jr., B.A. *Eur. J. Org. Chem.* 2001, 2185.
 ⁴⁰For other methods to generate benzyne, see Kitamura, T.; Meng, Z.; Fujiwara, Y. *Tetrahedron Lett.* 2000, 41, 6611, and references cited therein; Kawabata, H.; Nishino, T.; Nishiyama, Y.; Sonoda, N. *Tetrahedron Lett.* 2002, 43, 4911, and references cited therein.

⁴¹For a review, see Suwiń ski, J.; wierczek, K. Tetrahedron 2001, 57, 1639.

⁴²This example is from Gilman, H.; Avakian, S. J. Am. Chem. Soc. **1945**, 67, 349. For a table of many such examples, see Bunnett, J.F.; Zahler, R.E. Chem. Rev. **1951**, 49, 273, p. 385.

In the conversion of the substrate to 7, either proton removal or subsequent loss of halide ion can be rate determining. In fact, the unusual leaving-group order just mentioned (Br > I > Cl) stems from a change in the rate-determining step. When the leaving group is Br or I, proton removal is rate-determining and the rate order for this step is F > Cl > Br > I. When Cl or F is the leaving group, cleavage of the C–X bond is rate determining and the order for this step is I > Br > Cl > F. Confirmation of the latter order was found in a direct competitive study. *meta*-Dihalobenzenes in which the two halogens are different were treated with $^-NH_2$.⁴³ In such compounds, the most acidic hydrogen is the one between the two halogens; when it leaves, the remaining anion can lose either halogen. Therefore, a study of which halogen is preferentially lost provides a direct measure of leaving-group ability. The order was found to be I > Br > Cl.^{43,44}

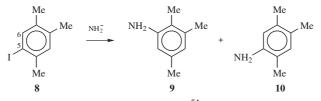
Species, such as **6** and **7**, are called *benzynes* (sometimes *dehydrobenzenes*), or more generally, *arynes*,⁴⁵ and the mechanism is known as the *benzyne mechanism*. Benzynes are very reactive. Neither benzyne nor any other aryne has yet been isolated under ordinary conditions,⁴⁶ but benzyne has been isolated in an argon matrix at 8 K,⁴⁷ where its IR spectrum could be observed. In addition, benzynes can be trapped; for example, they undergo the Diels–Alder reaction (see **15-60**). Note that the extra pair of electrons does not affect the

aromaticity. However, evaluation by a series of aromaticity indicators, including magnetic susceptibility anisotropies and exaltations, nucleus-independent chemical shifts (NICS), and aromatic stabilization energies, and valence-bond Pauling resonance energies point to the *o*-benzyne > *m*-benzyne > *p*-benzyne aromaticity order.⁴⁸ The relative order with respect to benzene depends on the aromaticity criterion.⁴⁸ The aromatic sextet from the aromatic precursor functions as a closed ring, and the two additional electrons are merely located in a π orbital that covers only two carbons. Benzynes do not have a formal triple bond, since two canonical forms (**A** and **B**) contribute to the hybrid. The IR spectrum, mentioned above, indicates that **A** contributes more than **B**. Not only benzene rings, but other aromatic

⁴³Bunnett, J.F.; Kearley, Jr., F.J. J. Org. Chem. 1971, 36, 184.

⁴⁴For a discussion of the diminished reactivity of ortho-substituted bromides, see Kalendra, D.M.; Sickles, B.R. *J. Org. Chem.* **2003**, *68*, 1594.

⁴⁵For the use of arynes in organic synthesis see Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.


⁴⁶For the measurement of aryne lifetimes in solution, see Gaviña, F.; Luis, S.V.; Costero, A.M.; Gil, P. *Tetrahedron* **1986**, *42*, 155.

⁴⁷Chapman, O.L.; Mattes, K.; McIntosh, C.L.; Pacansky, J.; Calder, G.V.; Orr, G. J. Am. Chem. Soc. 1973, 95, 6134. For the ir spectrum of pyridyne trapped in a matrix, see Nam, H.; Leroi, G.E. J. Am. Chem. Soc. 1988, 110, 4096. For spectra of transient arynes, see Berry, R.S.; Spokes, G.N.; Stiles, M. J. Am. Chem. Soc. 1962, 84, 3570; Brown, R.D.; Godfrey, P.D.; Rodler, M. J. Am. Chem. Soc. 1986, 108, 1296.
⁴⁸DeProft, F.; Schleyer, P.v.R.; van Lenthe, J.H.; Stahl, F.; Geerlings, P. Chem. Eur. J. 2002, 8, 3402.

rings⁴⁹ and even nonaromatic rings (p. 475) can react through this kind of intermediate. Of course, the non-aromatic rings do have a formal triple bond. When a benzyne unit is fused to a small ring, strain induced regioselectivity observed in its reactions.⁵⁰

The S_{RN}1 Mechanism

When 5-iodo-1,2,4-trimethylbenzene 7 was treated with KNH_2 in NH_3 , 8 and 10 were formed in the ratio 0.63:1. From what we have already seen, the presence of an unactivated substrate, a strong base, and the occurrence of cine substitution along with normal substitution would be strong indications of a benzyne mechanism. Yet if that were so, the 6-iodo isomer of 8 should have given 9 and 10 in the same ratio (because the same aryne intermediate would be formed in both cases), but in this case the ratio of 9–10 was 5.9:1 (the chloro and bromo analogs did give the same ratio, 1.46:1, showing that the benzyne mechanism may be taking place there).

To explain the iodo result, it has been proposed⁵¹ that besides the benzyne mechanism, this free-radical mechanism is also operating here:

$$ArI \xrightarrow{\text{electron}} ArI^{\bullet} \xrightarrow{} ArI^{\bullet} \xrightarrow{} Ar^{\bullet} + I^{-}$$

$$Ar^{\bullet} + NH_{2}^{-} \xrightarrow{} ArNH_{2}^{\bullet-} + ArI \xrightarrow{} ArNH_{2} + ArI^{\bullet-}$$
followed by terminations steps

This is called the $S_{RN}1$ mechanism,⁵² and many other examples are known (see 13-3, 13-4, 13-6, 13-14). The IUPAC designation is $T + D_N + A_N$.⁵³ Note that the

⁴⁹For reviews of *hetarynes* (benzyne intermediates in heterocyclic rings), see van der Plas, H.C.; Roeterdink, F., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C*, pt. 1, Wiley, NY, **1983**, pp. 421–511; Reinecke, M.G. *React. Intermed. (Plenum)* **1982**, 2, 367; *Tetrahedron* **1982**, 38, 427; den Hertog, H.J.; van der Plas, H.C., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, **1969**, pp. 1149–1197, *Adv. Heterocycl. Chem.* **1971**, 40, 121; Kauffmann, T.; Wirthwein, R. *Angew. Chem, Int. Ed.* **1971**, 10, 20; Kauffmann, T. *Angew. Chem, Int. Ed.* **1965**, 4, 543; Hoffmann, R.W. *Dehydrobenzene and Cycloalkynes*, Academic Press, NY, **1967**, pp. 275–309.

⁵⁰Hamura, T.; Ibusuki, Y.; Sato, K.; Matsumoto, T.; Osamura, Y.; Suzuki, K. Org. Lett. 2003, 5, 3551.
 ⁵¹Kim, J.K.; Bunnett, J.F. J. Am. Chem. Soc. 1970, 92, 7463, 7464.

⁵²For a monograph, see Rossi, R.A.; de Rossi, R.H. Aromatic Substitution by the S_{RN}1 Mechanism, American Chemical Society, Washington, 1983. For reviews, see Savéant, J. Adv. Phys. Org. Chem. **1990**, 26, 1; Russell, G.A. Adv. Phys. Org. Chem. **1987**, 23, 271; Norris, R.K. in Patai, S. Rappoport, Z. The Chemistry of Functional Groups, Supplement D, pt. 1, Wiley, NY, **1983**, pp. 681–701; Chanon, M.; Tobe, M.L. Angew. Chem, Int. Ed. **1982**, 21, 1; Rossi, R.A. Acc. Chem. Res. **1982**, 15, 164; Beletskaya, I.P.; Drozd, V.N. Russ. Chem. Rev. **1979**, 48, 431; Bunnett, J.F. Acc. Chem. Res. **1978**, 11, 413; Wolfe, J.F.; Carver, D.R. Org. Prep. Proced. Int. **1978**, 10, 225. For a review of this mechanism with aliphatic substrates, see Rossi, R.A.; Pierini, A.B.; Palacios, S.M. Adv. Free Radical Chem. (Greenwich, Conn.) **1990**, 1, 193. For 'thermal' S_{RN}1 reactions, see Costentin, C.; Hapiot, P.; Médebielle, M.; Savéant, J.-M. J. Am. Chem. Soc. **1999**, 121, 4451.

⁵³The symbol T is used for electron transfer.

last step of the mechanism produces $ArI^{\bullet-}$ radical ions, so the process is a chain mechanism (see p. 936).⁵⁴ An electron donor is required to initiate the reaction. In the case above it was solvated electrons from KNH_2 in NH_3 . Evidence was that the addition of potassium metal (a good producer of solvated electrons in ammonia) completely suppressed the cine substitution. Further evidence for the $S_{RN}1$ mechanism was that addition of radical scavengers (which would suppress a free-radical mechanism) led to **9:10** ratios much closer to 1.46:1. Numerous other observations of $S_{RN}1$ mechanisms that were stimulated by solvated electrons and inhibited by radical scavengers have also been recorded.⁵⁵ Further evidence for the $S_{RN}1$ mechanism in the case above was that some 1,2,4-trimethylbenzene was found among the products. This could easily be formed by abstraction by Ar^{\bullet} of H from the solvent NH₃. Besides initiation by solvated electrons,⁵⁶ $S_{RN}1$ reactions have been initiated photochemically,⁵⁷ electrochemically,⁵⁸ and even thermally.⁵⁹

The $S_{RN}1$ reactions have a fairly wide scope. The efficiency of the reaction has been traced to the energy level of the radical anion of the substitution product.⁶⁰ There is no requirement for activating groups or strong bases, but in DMSO haloarenes are less reactive as the stability of the anion increases.⁶¹ The reaction has also been done in liquid ammonia, promoted by ultrasound (p. 349),⁶² and ferrous ion has been used as a catalyst.⁶³ Alkyl, alkoxy, aryl, and COO⁻ groups do not interfere, although Me₂N, O⁻, and NO₂ groups do interfere. Cine substitution is not found.

Other Mechanisms

There is no clear-cut proof that a one-step $S_N 2$ mechanism, so important at a saturated carbon, ever actually occurs with an aromatic substrate. The hypothetical aromatic $S_N 2$ process is sometimes called the *one-stage* mechanism to distinguish it from the *two-stage* $S_N Ar$ mechanism. A "clean" example of a $S_{RN} 2$ reaction has been reported, the conversion of **11** to **12** in methanol.⁶⁴ Both the $S_{RN} 1$ and S_{RN}^2 reactions have been reviewed.⁶⁵

⁵⁴For a discussion, see Amatore, C.; Pinson, J.; Savéant, J.; Thiébault, A. *J. Am. Chem. Soc.* **1981**, 103, 6930.

⁵⁵Bunnett, J.F. Acc. Chem. Res. 1978, 11, 413.

⁵⁶Savéant, J.-M. Tetrahedron 1994, 50, 10117.

⁵⁷For reviews of photochemical aromatic nucleophilic substitutions, see Cornelisse, J.; de Gunst, G.P.; Havinga, E. *Adv. Phys. Org. Chem.* **1975**, *11*, 225; Cornelisse, J. *Pure Appl. Chem.* **1975**, *41*, 433; Pietra, F. *Q. Rev. Chem. Soc.* **1969**, *23*, 504, p. 519.

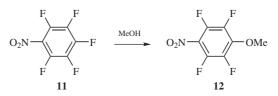
⁵⁸For a review, see Savéant, J. Acc. Chem. Res. **1980**, 13, 323. See also, Alam, N.; Amatore, C.; Combellas, C.; Thiébault, A.; Verpeaux, J.N. J. Org. Chem. **1990**, 55, 6347.

⁵⁹Swartz, J.E.; Bunnett, J.F. J. Org. Chem. 1979, 44, 340, and references cited therein.

⁶⁰Galli, C.; Gentili, P.; Guarnieri, A. Gazz. Chim. Ital., 1995, 125, 409.

⁶¹Borosky, G.L.; Pierini, A.B.; Rossi, R.A. J. Org. Chem. 1992, 57, 247.

⁶²Manzo, P.G.; Palacios, S.M.; Alonso, R.A. Tetrahedron Lett. 1994, 35, 677.


⁶³Galli, C.; Gentili, P.; J. Chem. Soc. Perkin Trans. 2 1993, 1135.

⁶⁴Marquet, J.; Jiang, Z.; Gallardo, I.; Batlle, A.; Cayón, E. *Tetrahedron Lett.* **1993**, *34*, 2801. Also see, Keegstra, M.A. *Tetrahedron* **1992**, *48*, 2681.

⁶⁵Rossi, R.A.; Palacios, S.M. Tetrahedron 1993, 49, 4485.

864 AROMATIC SUBSTITUTION, NUCLEOPHILIC AND ORGANOMETALLIC

Some of the reactions in this chapter operate by still other mechanisms, among them an addition–elimination mechanism (see **13-17**). A new mechanism has been reported in aromatic chemistry, a reductively activated 'polar' nucleophilic aromatic substitution.⁶⁶ The reaction of phenoxide with *p*-dinitrobenzene in DMF shows radical features that cannot be attributed to a radical anion, and it is not $S_{RN}2$. The new designation was proposed to account for these results.

REACTIVITY

The Effect of Substrate Structure

In the discussion of electrophilic aromatic substitution (Chapter 11) equal attention was paid to the effect of substrate structure on reactivity (activation or deactivation) and on orientation. The question of orientation was important because in a typical substitution there are four or five hydrogens that could serve as leaving groups. This type of question is much less important for aromatic nucleophilic substitution, since in most cases there is only one potential leaving group in a molecule. Therefore attention is largely focused on the reactivity of one molecule compared with another and not on the comparison of the reactivity of different positions within the same molecule.

 S_NAr Mechanism. These substitutions are accelerated by electron-withdrawing groups, especially in positions ortho and para to the leaving group⁶⁷ and hindered by electron-attracting groups. This is, of course, opposite to the effects of these groups on electrophilic substitutions, and the reasons are similar to those discussed in Chapter 11 (p. 660). Table 13.1 contains a list of groups arranged approximately in order of activating or deactivating ability.⁶⁸ Nitrogen atoms are also strongly activating (especially to the α and γ positions) and are even more so when quaternized.⁶⁹ Both 2- and 4-chloropyridine, for example, are often used as substrates. Heteroaromatic amine *N*-oxides are readily attacked by nucleophiles in the 2 and 4 positions, but the oxygen is generally lost in these reactions.⁷⁰

⁶⁶Marquet, J.; Casado, F.; Cervera, M.; Espín, M.; Gallardo, I.; Mir, M.; Niat, M. *Pure Appl. Chem.* **1995**, 67, 703.

⁶⁷The effect of meta substituents has been studied much less, but it has been reported that here too, electron-withdrawing groups increase the rate: See Nurgatin, V.V.; Sharnin, G.P.; Ginzburg, B.M. *J. Org. Chem, USSR* **1983**, *19*, 343.

⁶⁸For additional tables of this kind, see Miller, J. *Aromatic Nucleophilic Substitution*, Elsevier, NY, *1968*, pp. 61–136.

⁶⁹Miller, J.; Parker, A.J. Aust. J. Chem. **1958**, 11, 302.

⁷⁰Berliner, E.; Monack, L.C. J. Am. Chem. Soc. 1952, 74, 1574.

V V V V V V V V	OMe	at $0^{\circ}C^{71}(a)^{a}$	
\bigcup_{Br}^{Z} $H-N$	\sim z \sim NO ₂	$ at 25^{\circ} \mathrm{C}^{72} (a)^{a} $	
		Relative Rate	of Reaction
Comments ^b	Group Z	(a) $H = 1^{69}$	(b) $NH_2 = 1^{70}$
Activates halide exchange at room temperature Activates reaction with strong nucleophiles at room temperature Activate reactions with strong nucleophiles at 80–100°C	N_2^+ N_2° N_R° NO NO_2 NO_2° NO_2°	(heterocyclic) 5.22×10^{6} 6.73×10^{5} (heterocyclic)	Very fast
With nitro also present, activate reactions with strong nucleophiles at room temperature With nitro also present, activate reactions with strong nucleophiles at 40–60°C	$\begin{array}{c} SO_2Me\\ NMe_3^+\\ CF_3\\ CN\\ CHO\\ COR\\ COOH\\ SO_3^-\\ Br\\ Cl\\ I\\ COO^-\\ H\\ F\\ CMe_3\\ Me \end{array}$	3.81×10^4 2.02×10^4	$\begin{array}{c} 6.31 \times 10^{4} \\ 4.50 \times 10^{4} \\ 4.36 \times 10^{4} \\ 2.02 \times 10^{4} \\ 8.06 \times 10^{3} \\ 2.10 \times 10^{3} \\ 1.37 \times 10^{3} \\ 1.17 \times 10^{3} \\ (continued) \end{array}$

TABLE 13.1. Groups Listed in Approximate Descending Order of Activating Ability in the $S_{\rm N} Ar$ Mechanism 68

⁷¹For reviews of reactivity of nitrogen-containing heterocycles, see Illuminati, G. Adv. Heterocycl. Chem. **1964**, *3*, 285; Shepherd, R.G.; Fedrick, J.L. Adv. Heterocycl. Chem. **1965**, *4*, 145.

⁷²For reviews, see Albini, A.; Pietra, S. *Heterocyclic N-Oxides*; CRC Press: Boca Raton, FL, **1991**, pp. 142–180; Katritzky, A.R.; Lagowski, J.M. *Chemistry of the Heterocyclic N-Oxides*, Academic Press, NY, **1971**, pp. 258–319, 550–553.

\sim NaON	$Me \longrightarrow \bigcup_{OMe}^{Z} NO_2$	at $0^{\circ}C^{71}$ (a)	
Br NO ₂ + H-N	\rightarrow z - \sim NO ₂	at $25^{\circ}C^{72}$ (<i>a</i>)	
		Relative Rate of Reaction	
Comments ^b	Group Z	(a) $H = 1^{69}$	(b) $NH_2 = 1^{70}$
	OMe		145
	NMe ₂		9.77
	OH		4.70
	NH ₂		1

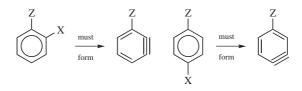
^{*a*}For reaction (*a*) the rates are relative to **H**; for (*b*) they are relative to NH_2 .

^bThe comments on the left column are from Ref. 73.

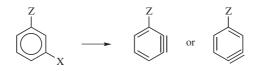
The most highly activating group, N_2^+ , is seldom deliberately used to activate a reaction, but it sometimes happens that in the diazotization of a compound, such as *p*-nitroaniline or *p*-chloroaniline, the group para to the diazonium group is replaced by OH from the solvent or by X from $ArN_2^+ X^-$, to the surprise and chagrin of the investigator, who was trying only to replace the diazonium group and to leave the para group untouched. By far, the most common activating group is the nitro group and the most common substrates are 2,4-dinitrophenyl halides and 2,4,6-trinitrophenyl halides (also called picryl halides).⁷⁴ Polyfluorobenzenes⁷⁵ (e.g., C₆F₆), also undergo aromatic nucleophilic substitution quite well.⁷⁶ Benzene rings that lack activating substituents are generally not useful substrates for the S_NAr mechanism, because the two extra electrons in **1** are in an antibonding orbital (p. 34). Activating groups, by withdrawing electron density, are able to stabilize the intermediates and the

⁷³Bunnett, J.F.; Zahler, R.E. Chem. Rev. 1951, 49, 273, p. 308.

⁷⁴For a review of the activating effect of nitro groups, see de Boer, T.J.; Dirkx, I.P., in Feuer, H. *The Chemistry of the Nitro and Nitroso Groups*, pt. 1, Wiley, NY, **1970**, pp. 487–612.


⁷⁵Fluorine significantly activates ortho and meta positions, and slightly deactivates (see Table 13.1) para positions: Chambers, R.D.; Seabury, N.J.; Williams, D.L.H.; Hughes, N. *J. Chem. Soc. Perkin Trans. 1 1988*, 255.

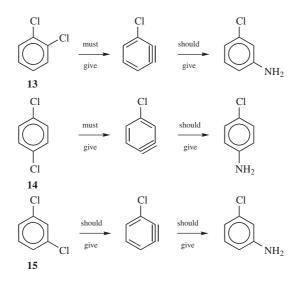
⁷⁶For reviews, see Yakobson, G.G.; Vlasov, V.M. Synthesis **1976**, 652; Kobrina, L.S. Fluorine Chem. Rev. **1974**, 7, 1.


transition states leading to them. Reactions taking place by the S_NAr mechanism are also accelerated when the aromatic ring is coordinated with a transition metal.⁷⁷

Just as electrophilic aromatic substitutions were found more or less to follow the Hammett relationship (with σ^+ instead of σ ; see p. 402), so do nucleophilic substitutions, with σ^- instead of σ for electron-withdrawing groups.⁷⁸

Benzyne Mechanism. Two factors affect the position of the incoming group, the first being the direction in which the aryne forms.⁷⁹ When there are groups ortho or para to the leaving group, there is no choice:

but when a meta group is present, the aryne can form in two different ways:


In such cases, the more acidic hydrogen is removed. Since acidity is related to the field effect of Z, it can be stated that an electron-attracting Z favors removal of the ortho hydrogen while an electron-donating Z favors removal of the para hydrogen. The second factor is that the aryne, once formed, can be attacked at two positions. The favored position for nucleophilic attack is the one that leads to the more stable carbanion intermediate, and this in turn also depends on the field effect of Z. For -I groups, the more stable carbanion is the one in which the negative charge is closer to the substituent. These principles are illustrated by the reaction of the three dichlorobenzenes (13-15) with alkali-metal

⁷⁷For a review, see Balas, L.; Jhurry, D.; Latxague, L.; Grelier, S.; Morel, Y.; Hamdani, M.; Ardoin, N.; Astruc, D. *Bull. Soc. Chim. Fr.* **1990**, 401. For a discussion of iron assisted nucleophilic aromatic substitution on the solid phase, see Ruhland, T.; Bang, K.S.; Andersen, K. *J. Org. Chem.* **2002**, *67*, 5257.

⁷⁸For a discussion of linear free-energy relationships in this reaction, see Bartoli, G.; Todesco, P.E. *Acc. Chem. Res.* **1977**, *10*, 125. For a list of σ^- values, see Table 9.4 on p. 404.

⁷⁹This analysis is from Roberts, J.D.; Vaughan, C.W.; Carlsmith, L.A.; Semenow, D.A. *J. Am. Chem. Soc. 1956*, 78, 611. For a discussion, see Hoffmann, R.W. *Dehydrobenzene and Cycloalkynes*, Academic Press, NY, *1973*, pp. 134–150.

amides to give the predicted products shown.

In each case, the predicted product was the one chiefly formed.⁸⁰ The observation that *m*-aminoanisole is obtained, mentioned on p. 860, is also in accord with these predictions.

The Effect of the Leaving Group⁸¹

The common leaving groups in aliphatic nucleophilic substitution (halide, sulfate, sulfonate, NR_3^+ , etc.) are also common leaving groups in aromatic nucleophilic substitutions, but the groups NO₂, OR, OAr, SO₂R,⁸² and SR, which are not generally lost in aliphatic systems, *are* leaving groups when attached to aromatic rings. Surprisingly, NO₂ is a particularly good leaving group.⁸³ An approximate order of leaving-group ability is⁸⁴ F > NO₂ > OTs > SOPh > Cl, Br, I > N₃ > NR₃⁺ > OAr, OR, SR, NH₂. However, this depends greatly on the nature of the nucleophile, as illustrated by the fact that C₆Cl₅OCH₃ treated with NH₂⁻ gives mostly C₆Cl₅NH₂; that is, one methoxy group is replaced in preference to five chlorines.⁸⁵

⁸⁰Wotiz, J.H.; Huba, F. J. Org. Chem. **1959**, 24, 595. Eighteen other reactions also gave products predicted by these principles. See also, Caubere, P.; Lalloz, L. Bull. Soc. Chim. Fr. **1974**, 1983, 1989, 1996; Biehl, E.R.; Razzuk, A.; Jovanovic, M.V.; Khanapure, S.P. J. Org. Chem. **1986**, 51, 5157.

⁸¹For a review, see Miller, J. Aromatic Nucleophilic Substitution, Elsevier, NY, 1968, pp. 137–179.

⁸²See, for example, Furukawa, N.; Ogawa, S.; Kawai, T.; Oae, S. J. Chem. Soc. Perkin Trans. 1 1984, 1839.

 ⁸³For a review, see Beck, J.R. *Tetrahedron* 1978, 34, 2057. See also, Effenberger, F.; Koch, M.; Streicher, W. *Chem. Ber.* 1991, 24, 163.

⁸⁴Loudon, J.D.; Shulman, N. J. Chem. Soc. 1941, 772; Suhr, H. Chem. Ber. 1963, 97, 3268.

⁸⁵Kobrina, L.S.; Yakobson, G.G. J. Gen. Chem. USSR 1963, 33, 3238.

the halogens, fluoro is generally a much better leaving group than the other halogens, which have reactivities fairly close together. The order is usually Cl > Br > I, but not always.⁸⁶ The leaving-group order is quite different from that for the $S_N 1$ or $S_N 2$ mechanisms. The most likely explanation is that the first step of the $S_N Ar$ mechanism is usually rate determining, and this step is promoted by groups with strong -I effects. This would explain why fluoro and nitro are such good leaving groups when this mechanism is operating. Fluoro is the poorest leaving group of the halogens when the second step of the $S_N Ar$ mechanism is rate determining or when the benzyne mechanism is operating. The four halogens, as well as SPh, NMe_3^+ , and $OPO(OEt)_2$, have been shown to be leaving groups in the $S_{RN} 1$ mechanism.⁵⁵ The only important leaving group in the $S_N 1$ mechanism is N_2^+ .

The Effect of the Attacking Nucleophile⁸⁷

It is not possible to construct an invariant nucleophilicity order because different substrates and different conditions lead to different orders of nucleophilicity, but an overall approximate order is $^{-}NH_2 > Ph_3C^- > PhNH^-$ (aryne mechanism) $> ArS^- > RO^{\neq} > R_2NH > ArO^- > ^{-}OH > ArNH_2 > NH_3 > I^- > Br^- > Cl^- > H_2O > ROH.⁸⁸ As with aliphatic nucleophilic substitution, nucleophilicity is generally dependent on base strength and nucleophilicity increases as the attacking atom moves down a column of the periodic table, but there are some surprising exceptions, for example, <math>^{-}OH$, a stronger base than ArO⁻, is a poorer nucleophile.⁸⁹ In a series of similar nucleophiles, such as substituted anilines, nucleophilicity *is* correlated with base strength. Oddly, the cyanide ion is not a nucleophile for aromatic systems, except for sulfonic acid salts and in the von Richter (**13-30**) and Rosenmund-von Braun (**13-8**) reactions, which are special cases.

REACTIONS

In the first part of this section, reactions are classified according to attacking species, with all leaving groups considered together, except for hydrogen and N_2^+ , which are treated subsequently. Finally, a few rearrangement reactions are discussed.

⁸⁶Reinheimer, J.D.; Taylor, R.C.; Rohrbaugh, P.E. J. Am. Chem. Soc. **1961**, 83, 835; Ross, S.D. J. Am. Chem. Soc. **1959**, 81, 2113; Bunnett, J.F.; Garbisch Jr., E.W.; Pruitt, K.M. J. Am. Chem. Soc. **1957**, 79, 385; Parker, R.E.; Read, T.O. J. Chem. Soc. **1962**, 9, 3149; Litvinenko, L.M.; Shpan'ko, L.V.; Korostylev, A.P. Doklad. Chem. **1982**, 266, 309.

⁸⁷For a review, see Miller, J. Aromatic Nucleophilic Substitution, Elsevier, NY, 1968, pp. 180–233.

⁸⁸This list is compiled from data, in Bunnett, J.F.; Zahler, R.E. *Chem. Rev.* **1951**, 49, 273, p. 340; Bunnett, J.F. *Q. Rev. Chem. Soc.* **1958**, 12, 1, p. 13; Sauer, J.; Huisgen, R. *Angew. Chem.* **1960**, 72, 294, p. 311; Bunnett, J.F. *Annu. Rev. Phys. Chem.* **1963**, 14, 271.

⁸⁹For studies of nucleophilicity in the S_{RN} 1 mechanism, see Amatore, C.; Combellas, C.; Robveille, S.; Savéant, J.; Thiébault, A. J. Am. Chem. Soc. **1986**, 108, 4754, and references cited therein.

ALL LEAVING GROUPS EXCEPT HYDROGEN AND N₂⁺

A. Oxygen Nucleophiles

13-1 Hydroxylation of Aromatic Compounds

Hydroxy-de-halogenation

ArBr + OH[−] → ArOH

Aryl halides are converted to phenols if activating groups are present or if exceedingly strenuous conditions are employed.⁹⁰ When the reaction is carried out at high temperatures, cine substitution is observed, indicating a benzyne mechanism.⁹¹ The reaction has been done using NaOH on Montmorillonite K10 and AgNO₃ with microwave irradiation.⁹²

A slightly related reaction involves the amino group of naphthylamines can be replaced by a hydroxyl group by treatment with aqueous bisulfite.⁹³ The scope is greatly limited; the amino group (which may be NH_2 or NHR) must be on a naphthalene ring, with very few exceptions. The reaction is reversible (see **13-6**), and both the forward and reverse reactions are called the *Bucherer reaction*.

ArMgX $\xrightarrow{B(OMe)_3}$ ArB(OMe)₂ $\xrightarrow{H^+}$ ArOH _{H₂O₂}

An indirect method for conversion of an aryl halide to a phenol involves initial conversion to an organometallic, followed by oxidation to the phenol. For the conversion of aryl Grignard reagents to phenols, a good procedure is the use of trimethyl borate followed by oxidation with H_2O_2 in acetic acid⁹⁴ (see **12-31**). Phenols have been obtained from unactivated aryl halides by treatment with borane and a metal such as lithium, followed by oxidation with alkaline H_2O_2 .⁹⁵ Arylboronic acids, ArB(OH)₂, are oxidized by aqueous hydrogen peroxide to give the corresponding phenol.⁹⁶ The reaction of an aromatic compound with a borane in the

⁹⁰For a review of ⁻OH and ⁻OR as nucleophiles in aromatic substitution, see Fyfe, C.A., in Patai, S. *The Chemistry of the Hydroxyl Group*, pt. 1, Wiley, NY, **1971**, pp. 83–124.

⁹¹The benzyne mechanism for this reaction is also supported by ¹⁴C labeling experiments: Bottini, A.T.; Roberts, J.D. J. Am. Chem. Soc. **1957**, 79, 1458; Dalman, G.W.; Neumann, F.W. J. Am. Chem. Soc. **1968**, 90, 1601.

⁹²Hashemi, M.M.; Akhbari, M. Synth. Commun. 2004, 34, 2783.

⁹³For reviews, see Seeboth, H. Angew. Chem, Int. Ed. **1967**, 6, 307; Gilbert, E.E. Sulfonation and Related Reactions; Wiley, NY, **1965**, pp. 166–169.

 ⁹⁴Hawthorne, M.F. J. Org. Chem. 1957, 22, 1001. For other procedures, see Lewis, N.J.; Gabhe, S.Y. Aust. J. Chem. 1978, 31, 2091; Hoffmann, R.W.; Ditrich, K. Synthesis 1983, 107.

⁹⁵Pickles, G.M.; Thorpe, F.G. J. Organomet. Chem. 1974, 76, C23.

⁹⁶Simon, J.; Salzbrunn, S.; Prakash, G.K.S.; Petasis, N.A.; Olah, G.A. J. Org. Chem. 2001, 66, 633.

presence of an iridium catalyst, followed by oxidation with aqueous Oxone[®] gave the corresponding phenol.⁹⁷ Aryllithium reagents have been converted to phenols by treatment with oxygen.⁹⁸In a related indirect method, arylthallium bis(trifluoroacetates) (prepared by **12-23**) can be converted to phenols by treatment with lead tetraacetate followed by triphenylphosphine and then dilute NaOH.⁹⁹ Diarylthallium trifluoroacetates undergo the same reaction.¹⁰⁰

OS I, 455; II, 451; V, 632. Also see, OS V, 918.

13-2 Alkali Fusion of Sulfonate Salts

Oxido-de-sulfonato-substitution

$$\operatorname{ArSO}_{3}^{-}$$
 $\xrightarrow{\operatorname{NaOH fusion}}$ ArO^{-}

Aryl sulfonic acids can be converted, through their salts, to phenols, by alkali fusion. In spite of the extreme conditions, the reaction gives fairly good yields, except when the substrate contains other groups that are attacked by alkali at the fusion temperatures. Milder conditions can be used when the substrate contains activating groups, but the presence of deactivating groups hinders the reaction. The mechanism is obscure, but a benzyne intermediate has been ruled out by the finding that cine substitution does not occur.¹⁰¹

OS I, 175; III, 288.

13-3 Replacement by OR or OAr

Alkoxy-de-halogenation

ArBr + OR[−] → ArOR

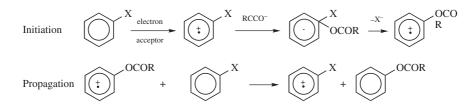
This reaction is similar to **13-1** and, like that one, generally requires activated substrates.^{90,102} With unactivated substrates, side reactions predominate, though aryl methyl ethers have been prepared from unactivated chlorides by treatment with MeO⁻ in HMPA.¹⁰³ This reaction gives better yields than **13-1** and is

⁹⁷Maleczka Jr., R.E.; Shi, F.; Holmes, D.; Smith III, M.R. J. Am. Chem. Soc. 2003, 125, 7792.

 ⁹⁸Parker, K.A.; Koziski, K.A. J. Org. Chem. 1987, 52, 674. For other reagents, see Taddei, M.; Ricci, A. Synthesis 1986, 633; Einhorn, J.; Luche, J.; Demerseman, P. J. Chem. Soc. Chem. Commun. 1988, 1350.
 ⁹⁹Taylor, E.C.; Altland, H.W.; Danforth, R.H.; McGillivray, G.; McKillop, A. J. Am. Chem. Soc. 1970, 92,

^{3520.}

¹⁰⁰Taylor, E.C.; Altland, H.W.; McKillop, A. J. Org. Chem. 1975, 40, 2351.


¹⁰¹Buzbee, L.R. J. Org. Chem. **1966**, 31, 3289; Oae, S.; Furukawa, N.; Kise, M.; Kawanishi, M. Bull. Chem. Soc. Jpn. **1966**, 39, 1212.

¹⁰²See Gujadhur, R.; Venkataraman, D. Synth. Commun. 2001, 31, 2865.

¹⁰³Shaw, J.E.; Kunerth, D.C.; Swanson, S.B. J. Org. Chem. **1976**, 41, 732; Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.; Montanucci, M. Tetrahedron **1983**, 39, 193.

used more often. A good solvent is liquid ammonia. Aryl chlorides react with phenol and KOH with microwave irradiation to give the diaryl ether.¹⁰⁴ Potassium phenoxide reacts with iodobenzene in an ionic solvent at 100°C with CuCl.¹⁰⁵ The NaOMe reacted with *o*- and *p*-fluoronitrobenzenes ~10⁹ times faster in NH₃ at -70°C than in MeOH.¹⁰⁶ Phase-transfer catalysis has also been used.¹⁰⁷ Phenols reacted with aryl fluorides with K₂CO₃/DMSO¹⁰⁸ or aryl chlorides with KOH,¹⁰⁹ with microwave irradiation, to give the diaryl ether. Aryl carbonates react with aryl oxides.¹¹⁰ Phenolic compounds react with aryl fluorides in the presence of LiOH in DMF to give the diaryl ether.¹¹¹ Aryl iodides react with phenols in the presence of K₂CO₃, CuI and Raney nickel alloy.¹¹²

In addition to halides, leaving groups can be other OR, and so on, even OH.¹¹³ Acid salts, RCOO⁻, are sometimes used as nucleophiles. Good yields of aryl benzoates can be obtained by the treatment of aryl halides with cuprous benzoate in diglyme or xylene at 140–160°C.¹¹⁴ Unactivated substrates have been converted to carboxylic esters in low-to-moderate yields under oxidizing conditions.¹¹⁵ The following chain mechanism, called the S_{ON}2 mechanism,¹¹⁶ has been suggested:¹¹⁵

For aroxide nucleophiles, the reaction is promoted by copper salts,¹¹⁷ and when these are used, activating groups need not be present. Indeed, unactivated aryl

¹⁰⁶Kizner, T.A.; Shteingarts, V.D. J. Org. Chem, USSR 1984, 20, 991.

¹⁰⁷Artamanova, N.N.; Seregina, V.F.; Shner, V.F.; Salov, B.V.; Kokhlova, V.M.; Zhdamarova, V.N. J. Org. Chem, USSR 1989, 25, 554.

¹⁰⁸Li, F.; Wang, Q.; Ding, Z.; Tao, F. Org. Lett. 2003, 5, 2169.

¹⁰⁹Chaouchi, M.; Loupy, A.; Marque, S.; Petit, A. Eur. J. Org. Chem. 2002, 1278.

¹¹⁰Castro, E.A.; Pavez, P.; Santos, J.G. J. Org. Chem. 2001, 66, 3129.

¹¹¹Ankala, S.V.; Fenteany, G. Synlett 2003, 825.

¹¹²Xu, L.-W.; Xia, C.-G.; Li, J.-W.; Hu, X.-X. Synlett 2003, 2071.

¹¹³Oae, S.; Kiritani, R. Bull. Chem. Soc. Jpn. 1964, 37, 770; 1966, 39, 611.

¹¹⁴Cohen, T.; Wood, J.; Dietz Jr., A.G. Tetrahedron Lett. 1974, 3555.

¹¹⁵Jönsson, L.; Wistrand, L. J. Org. Chem. 1984, 49, 3340.

¹¹⁶First proposed by Alder, R.W. J. Chem. Soc. Chem. Commun. 1980, 1184.

¹¹⁷For a review of copper-assisted aromatic nucleophilic substitution, see Lindley, J. Tetrahedron 1984,

40, 1433. For other examples, see Marcoux, J.-F.; Doye, S.; Buchwald, S.L. J. Am. Chem. Soc. **1997**, 119, 10539; Ma, D.; Cai, Q. Org. Lett. **2003**, 5, 3799.

¹⁰⁴Rebeiro, G.L.; Khadilkar, B.M. Synth. Commun. 2003, 33, 1405.

¹⁰⁵In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Chauhan, S.M.S.; Jain, N.; Kumar, A.; Srinivas, K.A. Synth. Commun. 2003, 33, 3607.

halides, such as 4-iodoanisole, were coupled to allylic alcohols using a CuI catalyst in the presence of 2% 1,10-phenanthroline and cesium carbonate.¹¹⁸ This method of preparation of diaryl ethers is called the *Ullmann ether synthesis*¹¹⁹ and should not be confused with the Ullmann biaryl synthesis (**13-11**). The reactivity order is typical of nucleophilic substitutions, despite the presence of the copper salts.¹²⁰ Because aryloxycopper(I) reagents ArOCu react with aryl halides to give ethers, it has been suggested that they are intermediates in the Ullmann ether synthesis.¹²¹ Indeed, high yields of ethers can be obtained by reaction of ROCu or ArOCu with aryl halides to give aryl ethers in the presence of a palladium catalyst.¹²³ A palladium catalyzed, intramolecular displacement of an aryl halide with a pendant alkoxide unit leads to dihydrobenzofurans.¹²⁴ Nickel catalysts have also been used.¹²⁵ The reaction has been done by heating aryl iodides and phenols in an ionic liquid.¹²⁶

Unactivated substrates also react with phenoxide ion with electrochemical catalysis in liquid NH_3 – Me_2SO , to give diaryl ethers, presumably by the $S_{RN}1$ mechanism.¹²⁷ Diaryl ethers can be prepared from activated aryl halides by treatment with a triaryl phosphate, $(ArO)_3PO$.¹²⁸

OS I, 219; II, 445; III, 293, 566; V, 926; VI, 150; X, 418.

B. Sulfur Nucleophiles

13-4 Replacement by SH or SR

Mercapto-de-halogenation	$ArBr + SH^{-}$		ArSH
Alkylthio-de-halogenation	$ArBr + SR^{-}$	>	ArSR

¹¹⁸Wolter, M.; Nordmann, G.; Job, G.E.; Buchwald, S.L. Org. Lett. 2002, 4, 973.

¹¹⁹For reviews of the Ullmann ether synthesis see Moroz, A.A.; Shvartsberg, M.S. Russ. Chem. Rev. 1974,

43, 679; Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428.

¹²⁰Weingarten, H. J. Org. Chem. 1964, 29, 977, 3624.

¹²¹Kawaki, T.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1972, 45, 1499.

¹²³Parrish, C.A.; Buchwald, S.L. J. Org. Chem. 2001, 66, 2498; Torraca, K.E.; Huang, X.; Parrish, C.A.;

Buchwald, S.L. J. Am. Chem. Soc. 2001, 123, 10770.

¹²⁴Kuwabe, S.-i.; Torraca, K.E.; Buchwald, S.L. J. Am. Chem. Soc. 2001, 123, 12202.

¹²⁵Mann, G.; Hartwig, J.F. J. Org. Chem. 1997, 62, 5413.

¹²⁶In bmiI, 1-butyl-3-methylimidazolium iodide: Luo, Y.; Wu, J.X.; Ren, R.X. Synlett 2003, 1734.

¹²⁷Alam, N.; Amatore, C.; Combellas, C.; Pinson, J.; Savéant, J.; Thiébault, A.; Verpeaux, J. J. Org. Chem. **1988**, *53*, 1496.

¹²⁸Ohta, A.; Iwasaki, Y.; Akita, Y. Synthesis **1982**, 828. For other procedures, see Bates, R.B.; Janda, K.D. J. Org. Chem. **1982**, 47, 4374; Sammes, P.G.; Thetford, D.; Voyle, M. J. Chem. Soc. Perkin Trans. 1 **1988**, 3229.

¹²²Whitesides, G.M.; Sadowski, J.S.; Lilburn, J. J. Am. Chem. Soc. 1974, 96, 2829.

874 AROMATIC SUBSTITUTION, NUCLEOPHILIC AND ORGANOMETALLIC

Aryl thiols and thioethers can be prepared by reactions that are similar to 13-1 and 13-3.¹²⁹ Activated aryl halides generally give good results, but side reactions are occasionally important. Some reagents give the thiol directly. 4-bromonitrobenzene reacts with Na₃SPO₃, in refluxing methanol, to give 4-nitrothiophenol.¹³⁰ Diaryl sulfides can be prepared by the use of ⁻SAr.¹³¹ Even unactivated aryl halides react with ⁻SAr if polar aprotic solvents, for example, DMF,¹³² DMSO¹³³ 1-methyl-2-pyrrolidinone,¹³⁴ or HMPA,¹³⁵ are used, though the mechanisms are still mostly or entirely nucleophilic substitution. 2-Iodothiophene reacts directly with thiophenol to give 2-phenylthiothiophene.¹³⁶ Unactivated aryl halides also give good yields of sulfides on treatment with ArS⁻ or RS⁻ (generated in situ from the corresponding thiol) in the presence of a palladium catalyst.¹³⁷ Copper catalysts have also been used.¹³⁸ Thiophenols were coupled to indoles in the presence of a vanadium catalyst.¹³⁹ Aryl iodides react with dialkyl disulfides and a nickel catalyst to give aryl alkyl sulfides.¹⁴⁰ Diaryl sulfides can also be prepared (in high yields) by treatment of unactivated aryl iodides with ArS⁻ in liquid ammonia under irradiation.¹⁴¹ The mechanism in this case is probably S_{RN} 1. The reaction (with unactivated halides) has also been carried out electrolytically, with a nickel complex catalyst.¹⁴²

Arylboronic acids, $(ArB(OH)_2$, react with thiols and copper(II) acetate to give the corresponding alkyl aryl sulfide.¹⁴³ Arylboronic acids also react with *N*methylthiosuccinimide, with a copper catalyst, to give the aryl methyl sulfide.¹⁴⁴ In the presence of a palladium catalyst, thiophenols react with diaryliodonium salts, Ar_2I^{+-} BF₄, to give the unsymmetrical diaryl sulfide.¹⁴⁵

¹³³Bradshaw, J.S.; South, J.A.; Hales, R.H. J. Org. Chem. **1972**, 37, 2381.

¹³⁷Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587.

¹⁴⁰Tankguchi, N. J. Org. Chem. 204, 69, 6904.

¹⁴³Herradua, P.S.; Pendola, K.A.; Guy, R.K. Org. Lett. 2000, 2, 2019.

¹²⁹For a review of sulfur nucleophiles in aromatic substitution, see Peach, M.E., in Patai, S. *The Chemistry* of the Thiol Group, pt. 2, Wiley, NY, **1974**, pp. 735–744.

¹³⁰Bieniarz, C.; Cornwell, M.J. Tetrahedron Lett. 1993, 34, 939.

¹³¹For generation of ArS⁻ with a phosphazine base and the copper-catalyzed displacement of Ar'I, see Palomo, C.; Oiarbide, M.; López, R.; Gómez-Bengoa, E. *Tetrahedron Lett.* **2000**, *41*, 1283.

¹³²Campbell, J.R. J. Org. Chem. 1964, 29, 1830; Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.; Montanucci, M. Synthesis 1983, 751. For the extension of this to selenides, see Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Montanucci, M. J. Org. Chem. 1983, 48, 4289.

¹³⁴Caruso, A.J.; Colley, A.M.; Bryant, G.L. J. Org. Chem. **1991**, 56, 862; Shaw, J.E. J. Org. Chem. **1991**, 56, 3728.

¹³⁵Cogolli, P.; Maiolo, F.; Testaferri, L.; Tingoli, M.; Tiecco, M. J. Org. Chem. 1979, 44, 2642. See also Testaferri, L.; Tingoli, M.; Tiecco, M. Tetrahedron Lett. 1980, 21, 3099; Suzuki, H.; Abe, H.; Osuka, A. Chem. Lett. 1980, 1363.

¹³⁶Lee, S.B.; Hong, J.-I. Tetrahedron Lett. 1995, 36, 8439.

¹³⁸Kwong, F.Y.; Buchwald, S.L. Org. Lett. **2002**, *4*, 3517; Wu, Y.-J.; He, H. Synlett **2003**, 1789; Deng, W.; Zou, Y.; Wang, Y.-F.;Liu, L.; Guo, Q.-X. Synlett **2004**, 1254.

¹³⁹Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69, 7688.

¹⁴¹Bunnett, J.F.; Creary, X. J. Org. Chem. 1974, 39, 3173, 3611.

¹⁴²Meyer, G.; Troupel, M. J. Organomet. Chem. 1988, 354, 249.

¹⁴⁴Savarin, C.; Srogl, J.; Liebeskind, L.S. Org. Lett. 2002, 4, 4309.

¹⁴⁵Wang, L.; Chen, Z.-C. Synth. Commun. 2001, 31, 1227.

Other sulfur nucleophiles also react with activated aryl halides:

$$2 \operatorname{ArX} + \operatorname{S}_2^{2^-} \longrightarrow \operatorname{Ar} - \operatorname{S} - \operatorname{S} - \operatorname{Ar} \qquad \operatorname{ArX} + \operatorname{SCN}^- \longrightarrow \operatorname{ArSCN}$$

 $\operatorname{ArX} + \operatorname{SO}_3^{2^-} \longrightarrow \operatorname{Ar} - \operatorname{SO}_3^- \qquad \operatorname{ArX} + \operatorname{RSO}_2^- \longrightarrow \operatorname{Ar} - \operatorname{SO}_2 - \operatorname{R}$

Aryl sulfones have been prepared from sulfinic acid salts, aryl iodides and CuI.¹⁴⁶ Formation of thiocyanates from unactivated aryl halides has been accomplished with charcoal supported copper(I) thiocyanate.¹⁴⁷ The copper catalyzed reaction of NaO₂SMe and aryl iodides give the aryl methyl sulfone.¹⁴⁸ A similar synthesis of diaryl sulfones has been reported using a palladium catalyst.¹⁴⁹

An indirect method for the synthesis of aryl alkyl sulfides involves treatment of an aryl halide with butyllithium and then elemental sulfur. The resulting thiophenoxide anion reacts with an alkyl halide to give the targeted sulfide.¹⁵⁰

Aryl selenides (ArSeAr and ArSeAr') can be prepared by similar methodology. Symmetrical diaryl selenides were prepared by the reaction of iodobenzene with diphenyl diselenide (PhSeSePh), in the presence of Mg and a copper catalyst.¹⁵¹ Aryl halides react with tin selenides (ArSeSnR₃), with a copper catalyst, to give the diaryl selenide.¹⁵²

OS I, 220; III, 86, 239, 667; V, 107, 474; VI, 558, 824. Also see, OS V, 977.

C. Nitrogen Nucleophiles

13-5 Replacement by NH₂, NHR, or NR₂

Amino-de-halogenation

Amido-de-halogenation

$$R_3N$$
 + Ar — X \longrightarrow R_2N — Ar

Activated aryl halides react quite well with ammonia and with primary and secondary amines to give the corresponding arylamines. Primary and secondary amines usually give better results than ammonia, with piperidine especially reactive. Picryl chloride (2,4,6-trinitrochlorobenzene) is often used to form amine derivatives. 2,4-Dinitrofluorobenzene is used to tag the amino end of a peptide or protein chain. Other leaving groups in this reaction may be NO₂,¹⁵³ N₃, OSO₂R, OR, SR, N=NAr (where Ar contains electron-withdrawing groups)¹⁵⁴ and even NR₂.¹⁵⁵

¹⁴⁶Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239.

¹⁴⁷Clark, J.H.; Jones, C.W.; Duke, C.V.A.; Miller, J.M. J. Chem. Soc. Chem. Commun. **1989**, 81. See also, Yadav, J.S.; Reddy, B.V.S.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. **2004**, 45, 2951.

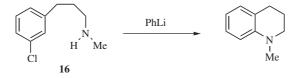
¹⁴⁸Baskin, J.M.; Wang, Z. Org. Lett. 2002, 4, 4423.

¹⁴⁹Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L.M. Org. Lett. 2002, 4, 4719; Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L.M.; Bernini, R. J. Org. Chem. 2004, 69, 5608.

¹⁵⁰Ham, J.; Yang, I.; Kang, H. J. Org. Chem. 2004, 69, 3236.

¹⁵¹Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915; Taniguchi, N.; Onami, T. Synlett 2003, 829.

¹⁵²Beletskaya, I.P.; Sigeev, A.S.; Peregudov, A.S.; Petrovlskii, P.V. Tetrahedron Lett. 2003, 44, 7039.


¹⁵³For a reaction with an aryllithium reagent, see Yang, T.; Cho, B.P. *Tetrahedron Lett.* 2003, 44, 7549.

¹⁵⁴Kazankov, M.V.; Ginodman, L.G. J. Org. Chem, USSR 1975, 11, 451.

¹⁵⁵Sekiguchi, S.; Horie, T.; Suzuki, T. J. Chem. Soc. Chem. Commun. 1988, 698.

Aryl triflates were shown to react directly with secondary amines in *N*-methylpyrrolidine solvent using microwave irradiation.¹⁵⁶ Activated halides can be converted to diethylamino compounds $ArX \rightarrow ArNMe_2$ by treatment with HMPA.¹⁵⁷ Aniline derivatives react with activated aromatic rings, in the presence of tetrabutylammonium fluoride and under photolysis conditions, to give a *N*,*N*-diarylamine.¹⁵⁸ Arylation of amines with aryl halides has also been done in ionic liquids.¹⁵⁹

Unactivated aryl halides can be converted to amines by the use of NaNH₂, NaNHR, or NaNR₂.¹⁶⁰ Lithium dialkylamides also react with aryl halides to give the *N*-arylamine.¹⁶¹ With these reagents, the benzyne mechanism generally operates, so cine substitution is often found. The reaction of an amine, an aryl halide, and potassium *tert*-butoxide generates the *N*-aryl amine.¹⁶² *N*-Arylation was accomplished with butyllithium and a secondary amine using Ni/C-diphenylphosphinoferrocene (dppf).¹⁶³ Ring closure has been effected by this type of reaction,¹⁶⁴ as in the conversion of **16** to the tetrahydroquinoline.

Larger rings can be prepared using this approach: 8 and even 12 membered. Triarylamines have been prepared in a similar manner from ArI and Ar₂' NLi, even with unactivated ArI.¹⁶⁵ In the *Goldberg reaction*, an aryl bromide reacts with an acetanilide in the presence of K₂CO₃ and CuI to give an *N*-acetyldiarylamine, which can be hydrolyzed to a diarylamine: ArBr + Ar'NHAc \rightarrow ArAr'NAc.¹⁶⁶ Aryl fluorides react in the presence of KF-alumina and 18-crown-6 in DMSO.¹⁶⁷ Lithium amides have been shown to react directly with aryl halides.¹⁶⁸ Aryl fluorides react

¹⁵⁶Xu, G.; Wang, Y.-G. Org. Lett. 2004, 6, 985.

¹⁵⁸Hertas, I.; Gallardo, I.; Marquet, J. Tetrahedron Lett. 2000, 41, 279.

¹⁵⁹In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: See Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Narsaiah, A.V. *Tetrahedron Lett.* **2003**, *44*, 2217.

¹⁶⁰For a review, see Heaney, H. Chem Rev. 1962, 62, 81, see p. 83.

¹⁶¹Tripathy, S.; Le Blanc, R.; Durst, T. Org. Lett. 1999, 1, 1973.

¹⁶²Beller, M.; Breindl, C.; Riermeier, T.H.; Tillack, A. J. Org. Chem. 2001, 66, 1403; Shi, L.; Wang, M.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.-Q. Org. Lett. 2003, 5, 3515.

¹⁶³Tasler, S.; Lipshutz, B.H. J. Org. Chem. 2003, 68, 1190.

¹⁶⁴Huisgen, R.; König, H.; Lepley, A.R. *Chem. Ber.* **1960**, *93*, 1496; Bunnett, J.F.; Hrutfiord, B.F. J. Am. Chem. Soc. **1961**, *83*, 1691. For a review of ring closures by the benzyne mechanism, see Hoffmann, R.W. Dehydrobenzene and Cycloalkynes, Academic Press, NY, **1973**, pp. 150–164.

¹⁶⁵Neunhoeffer, O.; Heitmann, P. Chem. Ber. 1961, 94, 2511.

¹⁶⁸Kanth, J.V.B.; Periasamy, M. J. Org. Chem. 1993, 58, 3156.

¹⁵⁷See, for example, Gupton, J.T.; Idoux, J.P.; Baker, G.; Colon, C.; Crews, A.D.; Jurss, C.D.; Rampi, R.C. *J. Org. Chem.* **1983**, 48, 2933.

¹⁶⁶See Freeman, H.S.; Butler, J.R.; Freedman, L.D. J. Org. Chem. **1978**, 43, 4975; Renger, B. Synthesis **1985**, 856.

¹⁶⁷Smith III, W.J.; Sawyer, J.S. Tetrahedron Lett. 1996, 37, 299.

with amines in the presence of potassium carbonate/DMSO and ultrasound,¹⁶⁹ and aryl chlorides react on basic alumina with microwave irradiation.¹⁷⁰ 2-Chloronitrobenzene also reacts with aniline derivatives directly with microwave irradiation.¹⁷¹ 2-Fluoropyridine reacts with R_2NBH_3Li to give the 2-aminoalkylpyridine.¹⁷²

The reaction of amines with unactivated aryl halides requires a catalyst in most cases to initiate the reaction. There are several approaches that result in *N*-aryl amines, but recent work with aryl halides, amines, and palladium catalysts has proven quite useful.¹⁷³ Aryl halides react with amines (including aniline derivatives) in the presence of palladium catalysts to give the *N*-aryl amine.¹⁷⁴ Palladium catalysts have been used with aniline and or triflates¹⁷⁵ to give the secondary amine. Palladium catalysts have been used in conjunction with aryl halides and aliphatic amines–amide bases.¹⁷⁶ A considerable amount of work¹⁷⁷ has been done to vary the nature of the ligand and the palladium catalyst, as well as the base.¹⁷⁸ Aryl halides also react with aliphatic amines,¹⁷⁹ including cyclopropylamines,¹⁸⁰ and an intramolecular version of this reaction generates bicyclic amines (hydroindole derivatives).¹⁸¹ Primary aliphatic amines can be converted to tertiary *N*,*N*-diarylalk-ylamines in a two-step procedure using palladium catalysts.¹⁸² Aryl halides are

¹⁶⁹Magdolen, P.; Mečiarová, M.; Toma, Š. *Tetrahedron* 2001, 57, 4781.

¹⁷⁰Kidwai, M.; Sapra, P.; Dave, B. Synth. Commun. 2000, 30, 4479.

¹⁷¹Xu, Z.-B.; Lu, Y.; Guo, Z.-R. *Synlett* **2003**, 564. See Li, W.; Yun, L.; Wang, H. *Synth. Commun.* **2002**, 32, 2657.

¹⁷²Thomas, S.; Roberts, S.; Pasumansky, L.; Gamsey, S.; Singaram, B. Org. Lett. 2003, 5, 3867.

¹⁷³For a discussion of the mechanism of the palladium-catalyzed amination of aryl chlorides, see Alcazar-Roman, L.M.; Hartwig, J.F. J. Am. Chem. Soc. **2001**, *123*, 12905.

¹⁷⁴Driver, M.S.; Hartwig, J.F. J. Am. Chem. Soc. 1996, 118, 7217; Reddy, N.P.; Tanaka, M. Tetrahedron Lett. 1997, 38, 4807; Wolfe, J.P.; Buchwald, S.L. J. Org. Chem. 1997, 62, 6066; Marcoux, J.-F.; Wagaw, S.; Buchwald, S.L. J. Org. Chem. 1997, 62, 1568; Maes, B.U.W.; Loones, K.T.J.; Lemière, G.L.F.; Dommisse, R.A. Synlett 2003, 1822; Wan, Y.; Alterman, M.; Hallberg, A. Synthesis 2002, 1597.

¹⁷⁵Louie, J.; Driver, M.S.; Hamann, B.C.; Hartwig, J.F. J. Org. Chem. **1997**, 62, 1268; Wolfe, J.P.; Buchwald, S.L. J. Org. Chem. **1997**, 62, 1264.

¹⁷⁶Harris, M.C.; Huang, X.; Buchwald, S.L. Org. Lett. 2003, 4, 2885.

¹⁷⁷Bei, X.; Guram, A.S.; Turner, H.W.; Weinberg, W.H. *Tetrahedron Lett.* 1999, 40, 1237; Guari, Y.; van Es, D.S.; Reek, J.N.H.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. *Tetrahedron Lett.* 1999, 40, 3789; Urgaonkar, S.; Xu, J.-H.; Verkade, J.G. J. Org. Chem. 2003, 68, 8416; Viciu, M.S.; Kissling, R.M.; Stevens, E.D.; Nolan, S.P. Org. Lett. 2002, 4, 2229; Gajare, A.S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. J. Org. Chem. 2004, 69, 6504; Huang, X.; Anderson, K.W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S.L. J. Am. Chem. Soc. 2004, 125, 6653; Singer, R.A.; Tom, N.J.; Frost, H.N.; Simon, W.M. *Tetrahedron Lett.* 2004, 45, 4715; Smith, C.J.; Early, T.R.; Holmes, A.B.; Shute, R.E. Chem. Commun. 2004, 1976.

¹⁷⁸For a study of the mechanism of the palladium catalyzed amination of aryl halides, see Singh, U.K.; Strieter, E.R.; Blackmond, D.G.; Buchwald, S.L. *J. Am. Chem. Soc.* **2002**, *124*, 14104. For a study of rate enhancement by the added base, see Meyers, C.; Maes, B.U.W.; Loones, K.T.J.; Bal, G.; Lemière, G.L.F.; Dommisse, R.A. *J. Org. Chem.* **2004**, *69*, 6010.

¹⁷⁹Ali, M.H.; Buchwald, S.L. J. Org. Chem. 2001, 66, 2560; Cheng, J.; Trudell, M.L. Org. Lett. 2001, 3,
 1371; Kuwano, R.; Utsunomiya, M.; Hartwig, J.F. J. Org. Chem. 2002, 67, 6479; Urgaonkar, S.;
 Nagarajan, M.; Verkade, J.G. J. Org. Chem. 2003, 68, 452; Prashad, M.; Mak, X.Y.;Lium Y.; Repi, O. J.
 Org. Chem. 2003, 68, 1163.

¹⁸⁰Cui, W.; Loeppky, R.N. Tetrahedron 2001, 57, 2953.

¹⁸¹Johnston, J.N.; Plotkin, M.A.; Viswanathan, R.; Prabhakaran, E.N. Org. Lett. 2001, 3, 1009.

¹⁸²Harris, M.C.; Geis, O.; Buchwald, S.L. J. Org. Chem. 1999, 64, 6019.

converted to N,N-diaryl tertiary amines by reaction with N-alkylaniline derivatives and a palladium catalyst.¹⁸³ Beginning with a primary aromatic amine and two different aryl halides (ArBr and Ar'Cl), a triarylamine with three different aryl groups can be prepared using a palladium catalyst.¹⁸⁴ Polymer-bound phosphine ligands have been used in conjunction with a palladium catalyst,¹⁸⁵ and polymer-bound amines have been N-arylated with a palladium catalyst followed by treatment with trifluoroacetic acid to release the aniline derivative.¹⁸⁶ Palladium-catalyzed aminoalkylation of aryl halides has been reported using microwave irradiation.¹⁸⁷ Arvl halides (Ar–X) have also been converted to the aniline derivative (Ar–NH₂) by reaction of the halide with an imine and a palladium catalyst, followed by hydrolysis.¹⁸⁸ Similarly, aniline derivatives have been prepared by the reaction of aryl chlorides with silvlamines (Ph₃SiNH₂) using lithium hexamethyldisilazide and a palladium catalyst.¹⁸⁹ Amines react with Ph₂I⁺BF₄⁻, in the presence of palladium catalysts, ¹⁹⁰ or a CuI catalyst¹⁹¹ to give the N-phenyl amine. These reactions have been done in ionic liquids using a palladium catalyst.¹⁹² Arylation of the amine unit of primary enamino ketones was accomplished using a palladium catalyst.¹⁹³ Mono-arylation of a 1,2-diamine is possible.¹⁹⁴ Aminoalkylation of heteroaromatic rings is possible, as in the reaction of 3-bromothiophene with a primary amine and a palladium catalyst.¹⁹⁵ 2-Halopyridines react to give the 2-aminoalkyl pyridine.¹⁹⁶ Carbazole derivatives were prepared from 2-iodoaniline and 2-trimethylsilylphenol *O*-triflates, using cesium fluoride and then a palladium catalyst.¹⁹⁷

Nickel catalysts have been used in the reaction of aryl halides with N-alkyl aniline derivatives.¹⁹⁸ Nickel catalyst also allow the conversion of aryl halides to N-arylamines via reaction with aliphatic amines.¹⁹⁹ An intramolecular reaction of a

- ¹⁸⁴Harris, M.C.; Buchwald, S.L. J. Org. Chem. 2000, 65, 5327.
- ¹⁸⁵Parrish, C.A.; Buchwald, S.L. J. Org. Chem. 2001, 66, 3820.
- ¹⁸⁶Weigand, K.; Pelka, S. Org. Lett. 2002, 4, 4689.

¹⁸⁷Wang, T.; Magnin, D.R.; Hamann, L.G. Org. Lett. 2003, 5, 897; Jensen, T.A.; Liang, X.; Tanner, D.; Skjaerbaek, N. J. Org. Chem. 2004, 69, 4936.; Maes, B.U.W.; Loones, K.T.J.; Hostyn, S.; Diels, G.; Rombouts, G. Tetrahedron 2004, 60, 11559.

¹⁸⁸Wolfe, J.P.; Åhman, J.; Sadighi, J.P.; Singer, R.A.; Buchwald, S.L. *Tetrahedron Lett.* **1997**, *38*, 6367. For a variation, see Erdik, E.; Daşkapan, T. *Tetrahedron Lett.* **2002**, *43*, 6237.

- ¹⁸⁹Huang, X.; Buchwald, S.L. Org. Lett. 2001, 3, 3417.
- ¹⁹⁰Kang, S.-K.; Lee, H.-W.; Choi, W.-K.; Hong, R.-K.; Kim, J.-S. Synth. Commun. 1996, 26, 4219.
- ¹⁹¹Kang, S.-K.; Lee, S.-H.; Lee, D. Synlett 2000, 1022.
- ¹⁹²In diarylimidazolium salts: Grasa, G.A.; Viciu, M.S.; Huang, J.; Nolan, S.P. J. Org. Chem. 2001, 66, 7729.
- ¹⁹³Edmondson, S.D.; Mastracchio, A.; Parmee, E.R. Org. Lett. 2000, 2, 1109 and references cited therein.
 ¹⁹⁴Frost, C.G.; Mendonça, P. Tetahedron Asymmetry 1999, 10, 1831.
- ¹⁹⁵Ogawa, K.; Radke, K.R.; Rothstein, S.D.; Rasmussen, S.C. J. Org. Chem. 2001, 66, 9067.
- ¹⁹⁶Junckers, T.H.M.; Maes, B.U.W.; Lemière, G.L.F.; Dommisse, R. Tetrahedron 2001, 57, 7027; Basu,
- B.; Jha, S.; Mridha, N.K.; Bhuiyan, Md.M.H. Tetrahedron Lett. 2002, 43, 7967.
- ¹⁹⁷Liu, Z.; Larock, R.C. Org. Lett. 2004, 6, 3739.
- ¹⁹⁸Wolfe, J.P.; Buchwald, S.L. J. Am. Chem. Soc. **1997**, 119, 6054; Lipshutz, B.H.; Ueda, H. Angew. Chem. Int. Ed. **2000**, 39, 4492.; Brenner, E.; Schneider, R.; Fort, Y. Tetrahedron **2002**, 58, 6913.
- ¹⁹⁹Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 247.

¹⁸³Wolfe, J.P.; Buchwald, S.L. *J. Org. Chem.* **2000**, *65*, 1144; Wolfe, J.P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. *J. Org. Chem.* **2000**, *65*, 1158.

pendant aminoalkyl unit with an aryl chloride moiety, catalyzed by nickel(0) gave a dihydroindole.²⁰⁰ Copper catalysts allow the reaction of diarylamines and aryl halides to give the corresponding triarylamine,²⁰¹ or with aliphatic amines to give the N-arylamine.²⁰² Aniline reacts with aryl iodides an a copper catalyst and potassium *tert*-butoxide to give triphenylamine.²⁰³ A polymer-bound copper catalyst was used in conjunction with aliphatic amines and arylboronic acids.²⁰⁴ Amino alcohols react with any iodides and a copper catalyst to give the N-arylamino alcohol.²⁰⁵ Treatment of alkylamines with arylboronic acids ArB(OH)₂ and Cu(OAc)₂ gave the N-aryl amine in 63% yield.²⁰⁶ Similar reaction with arylamines, such as aniline, gave the diarylamine.²⁰⁷ Arylboronic acids convert aziridines to *N*-arylaziridines,²⁰⁸ and amino esters to N-arylated amino esters,²⁰⁹ both reactions using a copper catalyst. An arylbismuth reagent reacts with aliphatic amines, in the presence of copper(II) acetate, to give an N-arylamine.²¹⁰ N-Arylation of pyrroles was accomplished by the reaction of an arylboronic acid and a copper catalyst.²¹¹ N-Arylindoles²¹² and N-arylimidazoles²¹³ were prepared from aryl halide using a copper catalyst. Diarylzinc reagents react with N-(OBz) amine derivatives, with a copper catalyst, to give the N-aryl amine.²¹⁴

In a related reaction, trifluoroarylboronates react with copper(II) acetate and then an aliphatic amine to give the N-phenylamine.²¹⁵

The metal catalyzed reaction with ammonia or amines likely proceeds by the S_NAr mechanism.²¹⁶ This reaction, with phase-transfer catalysis, has been used to synthesize triarylamines.²¹⁷ Copper ion catalysts (especially cuprous oxide or iodide) also permit the Gabriel synthesis (**10-41**) to be applied to aromatic substrates. Aryl bromides or iodides are refluxed with potassium phthalimide and

- ²⁰¹Gujadhur, R.K.; Bates, C.G.; Venkataraman, D. Org. Lett. 2001, 3, 4315.; Klapars, A.; Antilla, J.C.; Huang, X.; Buchwald, S.L. J. Am. Chem. Soc. 2001, 123, 7727.
- ²⁰²Kwong, F.Y.; Buchwald, S.L. Org. Lett. 2003, 5, 793; Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453; Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987; Lu, Z.; Twieg, R.J.; Huang, S.D. Tetrahedron Lett. 2003, 44, 6289.
- ²⁰³Kelkar, A.A.; Patil, N.M.; Chaudhari, R.V. Tetrahedron Lett. 2002, 43, 7143.
- ²⁰⁴Chiang, G.C.H.; Olsson, T. Org.Lett. 2004, 6, 3079.
- ²⁰⁵Job, G.E.; Buchwald, S.L. Org. Lett. 2002, 4, 3703.
- ²⁰⁶Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan, M.; Xie, R.-G. Synlett 2004, 1095.
- ²⁰⁷Antilla, J.C.; Buchwald, S.L. Org. Lett. 2001, 3, 2077.
- ²⁰⁸Sasaki, M.; Dalili, S.; Yudin, A.K. J. Org. Chem. 2003, 68, 2045.
- ²⁰⁹Lam, P.Y.S.; Bonne, D.; Vincent, G.; Clark, C.G.; Combs, A.P. *Tetrahedron Lett.* 2003, 44, 1691.
- ²¹⁰Fedorov, A.Yu.; Finet, J.-P. J. Chem. Soc. Perkin Trans. 1 2000, 3775.
- ²¹¹Yu, S.; Saenz, J.; Srirangam, J.K. J. Org. Chem. 2002, 67, 1699.
- ²¹²Antilla, J.C.; Klapars, A.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 11684.
- ²¹³Wu, Y.-J.; He, H.; L'Hereux, A. Tetrahedron Lett. 2003, 44, 4217.
- ²¹⁴Berman, A.M.; Johnson, J.S. J. Am. Chem. Soc. 2004, 126, 5680.
- ²¹⁵Quach, T.D.; Batey, R.A. Org. Lett. 2003, 5, 4397.
- ²¹⁶For discussions of the mechanism, see Bethell, D.; Jenkins, I.L.; Quan, P.M. J. Chem. Soc. Perkin Trans. 1 1985, 1789; Tuong, T.D.; Hida, M. J. Chem. Soc. Perkin Trans. 2 1974, 676; Kondratov, S.A.; Shein, S.M. J. Org. Chem, USSR 1979, 15, 2160; Paine, A.J. J. Am. Chem. Soc. 1987, 109, 1496.
- ²¹⁷Gauthier, S.; Fréchet, J.M.J. Synthesis 1987, 383.

²⁰⁰Omar-Amrani, R.; Thomas, A.; Brenner, E.; Schneider, R.; Fort, Y. Org. Lett. 2003, 5, 2311.

 Cu_2O or CuI in dimethylacetamide to give *N*-aryl phthalimides, which can be hydrolyzed to primary aryl amines.²¹⁸

In certain cases, the $S_{RN}1$ mechanism has been found (p. 550). When the substrate is a heterocyclic aromatic nitrogen compound, still a different mechanism [the $S_N(ANRORC)$ mechanism], involving opening and reclosing of the aromatic ring, has been shown to take place.²¹⁹

There are a number of indirect approaches for the preparation of aryl amines. Activated aromatic compounds can be directly converted to the *N*-aryl amine with hydroxylamine in the presence of strong bases.²²⁰ Conditions are mild and yields are high. Aryl halides can be converted to the corresponding Grignard reagent (**12-38**). Subsequent reaction of arylmagnesium halides with allyl azide (CH₂=CHCH₂N₃) followed by hydrolysis leads to the corresponding aniline derivative.²²¹ Aryl halides can be converted to the aryllithium exchange or hydrogen–lithium exchange (**12-38**, **12-39**). Molecular nitrogen (N₂) reacts with aryllithium compounds in the presence of compounds of such transition metals as titanium (e.g., TiCl₄), chromium, molybdenum, or vanadium to give (after hydrolysis) primary aromatic amines (ArLi + N₂ + transition metal salts \rightarrow ArNH₂, after hydrolysis).²²² Primary aromatic amines ArNH₂ were converted to diaryl amines ArNHPh by treatment with Ph₃Bi(OAc)₂²²³ and a copper powder catalyst.²²⁴ Aryl Grignard reagents react with nitroaryl compounds to give, after reduction with FeCl₃/NaBH₄, a diaryl amine.²²⁵

$$\begin{array}{c} O \\ H \\ R^{1} \\ C \\ NHR \end{array} \xrightarrow[catalyst]{Ar-X} \\ C \\ C \\ C \\ R^{1} \\ C \\ N \\ Ar \end{array} (R = H, alkyl, aryl)$$

The use of transition-metal catalysts allows aryl halides to react with the nitrogen of amides or carbamates, as well as amines, to give the corresponding *N*-aryl amide or *N*-aryl carbamate. Amides react with aryl halides in the presence of a palladium catalyst²²⁶ or a copper catalyst.²²⁷ *N*-Aryl lactams are prepared by the reaction of a lactam with an aryl halide in the presence of a palladium catalyst.²²⁸

²²²Vol'pin, M.E. Pure Appl. Chem. 1972, 30, 607.

²²⁴Dodonov, V.A.; Gushchin, A.V.; Brilkina, T.G. Zh. Obshch. Khim., 1985, 55, 466 [Chem. Abstr., 103,

²¹⁸Bacon, R.G.R.; Karim, A. J. Chem. Soc. Perkin Trans. 1 1973, 272, 278; Sato, M.; Ebine, S.; Akabori, S. Synthesis 1981, 472. See also Yamamoto, T.; Kurata, Y. Can. J. Chem. 1983, 61, 86.

²¹⁹For reviews, see van der Plas, H.C. Tetrahedron 1985, 41, 237; Acc. Chem. Res. 1978, 11, 462.

²²⁰See Chupakhin, O.N.; Postovskii, I.Ya. Russ. Chem. Rev. 1976, 45, 454, p. 456.

²²¹Kabalka, G.W.; Li, G. Tetrahedron Lett. 1997, 38, 5777.

²²³For a review of arylations with bismuth reagents, see Finet, J. Chem. Rev. 1989, 89, 1487.

²²²¹⁸z]; Barton, D.H.R.; Yadav-Bhatnagar, N.; Finet, J.; Khamsi, J. *Tetrahedron Lett.* **1987**, 28, 3111. ²²⁵Sapountzis, I.; Knochel, P. J. Am.Chem. Soc. **2002**, 124, 9390.

²²⁶Yin, J.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 6043. For an intramolecular reaction, see Yang, B.H.; Buchwald, S.L. Org. Lett. 1999, 1, 35.

²²⁷Hosseinzadeh, R.; Tajbakhsh, M.; Mohadjerani, M.; Mehdinejad, H. Synlett 2004, 1517.

²²⁸Browning, R.G.; Badaringarayana, V.; Mahmud, H.; Lovely, C.J. *Tetrahedron* 2004, 60, 359; Deng, W.; Wang, Y.-F.; Zou, Y.; Liu, L.; Guo, Q.-X. *Tetrahedron Lett.* 2004, 45, 2311; Shakespeare, W.C. *Tetrahedron Lett.* 1999, 40, 2035. For the synthesis of N-(2-thiophene)-2-pyrrolidinone by coupling 2iodothiophene and 2-pyrrolidinone, see Klapars, A.; Huang, X.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 7421. See also, Ferraccioli, R.; Carenzi, D.; Rombolà, O.; Catellani, M. Org. Lett. 2004, 6, 4759.

β-Lactams also react.²²⁹ The reaction of 2-oxazolidinones with aryl halides in the presence of a palladium catalyst gave the *N*-aryl-2-oxazolidinone.²³⁰ Amides react with PhSi(OMe)₃/Cu(OAc)₂/Bu₄NF to give the *N*-aryl amide.²³¹ *N*-Boc hydrazine derivatives (BocNHNH₂) gave the *N*-phenyl derivative BocN(Ph)NH₂ when reacted with iodobenzene and a catalytic amount of CuI and 10% of 1,10-phenan-throline.²³² 3-Bromothiophene was converted to the 3-amido derivative with an amide and CuI-dimethylethylenediamine,²³³ and *N*-(2-thiophene)-2-pyrrolidinone was similarly prepared from 2-iodothiophene, the lactam and a copper catalyst.²³⁴ *N*-Arylation of urea is also possible using a copper catalyst gave the corresponding enamide (C=C-NHC=O).²³⁶

The transition-metal catalyzed couplings of primary or secondary phosphines with aryl halides or sulfonate esters to give arylphosphines is known.²³⁷ Palladium catalyzed conversion of aryl halides to aryl phosphines using (trimethylsilyl)diphenylphosphine is known, and tolerates many functional groups (not those that are easily reducible, such as aldehydes because zinc metal²³⁸ is often used as a coreagent), but it is mainly limited to aryl iodides.²³⁹ Diphenylphosphine reacts with aryl iodides and a copper catalyst to give the triarylphosphine.²⁴⁰ Aryl iodides also react with secondary phosphine and 5% Pd/C to give the *P*-arylphosphine.²⁴¹ Tertiary phosphines can also be used via aryl–aryl exchange, as in the reaction of an aryl triflate and triphenylphosphine and a palladium catalyst, for example, gave the arylphosphine (ArPPh₂).²⁴²

Arylsulfonic acid chlorides (ArSO₂Cl) have been shown to react with arylboronic acids, Ar'B(OH)₂, in the presence of a palladium catalyst, to give the corresponding biaryl (Ar–Ar').²⁴³

²³³Padwa, A.; Crawford, K.R.; Rashatasakhon, P.; Rose, M. J. Org. Chem. 2003, 68, 2609.

C.W.; Chan, K.S. Tetrahedron Lett. 2002, 43, 3537.

²²⁹For a variation of this reaction, see Klapars, A.; Parris, S.; Anderson, K.W.; Buchwald, S.L. J. Am. Chem. Soc. **2004**, 126, 3529.

²³⁰Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Zappia, G. Org. Lett. 2001, 3, 2539.

²³¹Lam, P.Y.S.; Deudon, S.; Hauptman, E.; Clark, C.G. Tetrahedron Lett. 2001, 42, 2427.

²³²Wolter, M.; Klapars, A.; Buchwald, S.L. Org. Lett. 2001, 3, 3803.

²³⁴Kang, S.-K.; Kim, D.-H.; Park, J.-N. Synlett 2002, 427.

²³⁵Nandakumar, M.V. Tetrahedron Lett. 2004, 45, 1989.

²³⁶Wallace, D.J.; Klauber, D.J.; Chen, C.-y.; Volante, R.P. Org. Lett. 2003, 5, 4749.

²³⁷Cai, D.; Payack, J.F.; Bender, D.R.; Hughes, D.L.; Verhoeven, T.R.; Reider, P.J. J. Org. Chem. 1994, 59,

^{7180;} Herd, O.; Heßler, A.; Machnitzki, P.; Tepper, M.; Stelzer, O. Catalysis Today 1998, 42, 413; Gelpke,

A.E.S.; Kooijman, H.; Spek, A.L.; Hiemstra, H. Chem. Eur. J. 1999, 5, 2472; Ding, K.; Wang, Y.; Yun, H.;

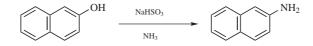
Liu, J.; Wu, Y.; Terada, M.; Okubo, Y.; Mikami, K. Chem. Eur. J. 1999, 5, 1734; Vyskocil, S.; Smrcina,

M.; Hanus, V.; Polasek, M.; Kocovsky, P. J. Org. Chem. **1998**, 63, 7738; Martorell, G.; Garcias, X.; Janura, M.; Saá, J.M. J. Org. Chem. **1998**, 63, 3463; Bringmann, G.; Wuzik, A.; Vedder, C.; Pfeiffer, M.; Stalke,

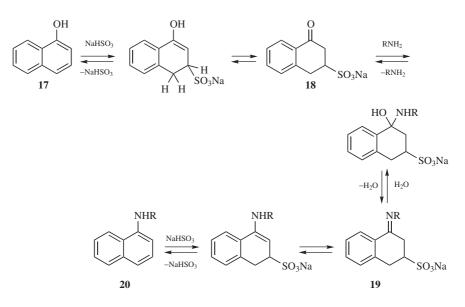
D. Chem. Commun. 1998, 1211; Lipshutz, B.H.; Buzard, D.H.; Yun, C.S. Tetrahedron Lett. 1999, 40, 201.

²³⁸Ager, D.J.; Laneman, S. Chem. Commun. 1997, 2359.

²³⁹Tunney, B.H.; Stille, J.K. J. Org. Chem. 1987, 52, 748.


²⁴⁰Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4590.

²⁴¹Stadler, A.; Kappe, C.O. Org. Lett. 2002, 4, 3541.


²⁴³Dubbaka, S.R.; Vogel, P. Org. Lett. 2004, 6, 95.

OS I, 544; II, 15, 221, 228; III, 53, 307, 573; IV, 336, 364; V, 816, 1067; VII, 15. OS III, 664. OS X, 423.

Replacement of a Hydroxy Group by an Amino Group 13-6 Amino-de-hydroxylation

The reaction of naphthols with ammonia and sodium bisulfite⁸¹ is called the Bucherer reaction. Primary amines can be used instead of ammonia, in which case N-substituted naphthylamines are obtained. In addition, primary naphthylamines can be converted to secondary (ArNH₂ + RNH₂ + NaSO₃ \rightarrow ArNHR), by a transamination reaction. The mechanism of the Bucherer reaction amounts to a kind of overall addition-elimination, via 18 and 19.244

The first step in either direction consists of addition of NaHSO₃ to one of the double bonds of the ring, which gives an enol from 17 (or enamine from 20) that tautomerizes to the keto form 18 (or imine form, 19). The conversion of 18 to 19 (or vice versa) is an example of 16-13 (or 16-2). Evidence for this mechanism was the isolation of 18^{245} and the demonstration that for β -naphthol treated with ammonia and HSO_3^- , the rate of the reaction depends only on the substrate and on

²⁴⁴Rieche, A.; Seeboth, H. Liebigs Ann. Chem. 1960, 638, 66.

²⁴⁵Rieche, A.; Seeboth, H. Liebigs Ann. Chem. 1960, 638, 43, 57.

 HSO_3^- , indicating that ammonia is not involved in the rate-determining step.²⁴⁶ If the starting compound is a β -naphthol, the intermediate is a 2-keto-4-sulfonic acid compound, so the sulfur of the bisulfite in either case attacks meta to the OH or NH_2 .²⁴⁷

Hydroxy groups on benzene rings can be replaced by NH₂ groups if they are first converted to aryl diethyl phosphates. Treatment of these with KNH₂ and potassium metal in liquid ammonia gives the corresponding primary aromatic amines.²⁴⁸ The mechanism of the second step is $S_{RN}1$.²⁴⁹

OS III, 78.

D. Halogen Nucleophiles

13-7 The Introduction of Halogens

Halo-de-halogenation, and so on.

$$Ar - X + X'^{-} \rightleftharpoons Ar - X' + X^{-}$$

It is possible to replace a halogen on a ring by another halogen²⁵⁰ if the ring is activated. In such cases there is an equilibrium, but it is usually possible to shift this in the desired direction by the use of an excess of added halide ion.²⁵¹ A phenolic hydroxy group can be replaced by chloro with PCl₅ or POCl₃, but only if activated. Unactivated phenols give phosphates when treated with POCl₃: $3 \text{ ArOH} + \text{POCl}_3 \rightarrow (\text{ArO})_3\text{PO}$. Phenols, even unactivated ones, can be converted to aryl bromides by treatment with Ph₃PBr₂²⁵² (see **10-47**) and to aryl chlorides by treatment with PhPCl₄.²⁵³

Halide exchange is particularly useful for putting fluorine into a ring, since there are fewer alternate ways of doing this than for the other halogens. Activated aryl chlorides give fluorides when treated with KF in DMF, DMSO, or dimethyl sulfone.²⁵⁴ Reaction of aryl halides with Bu₄PF/HF is also effective for exchanging a halogen with fluorine.²⁵⁵ Halide exchange can also be accomplished with copper halides. Since the leaving-group order in this case is $I > Br > Cl \gg F$ (which means that iodides cannot normally be made by this method), the S_NAr mechanism is

²⁴⁶Kozlov, V.V.; Veselovskaia, I.K. J. Gen. Chem. USSR 1958, 28, 3359.

²⁴⁷Rieche, A.; Seeboth, H. Liebigs Ann. Chem. 1960, 638, 76.

²⁴⁸Rossi, R.A.; Bunnett, J.F. J. Org. Chem. 1972, 37, 3570.

²⁴⁹For another method of converting phenols to amines, see Scherrer, R.A.; Beatty, H.R. J. Org. Chem. **1972**, *37*, 1681.

²⁵⁰For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 671–672.

²⁵¹Sauer, J.; Huisgen, R. Angew. Chem. 1960, 72, 294, p. 297.

²⁵²Wiley, G.A.; Hershkowitz, R.L.; Rein, B.M.; Chung, B.C. J. Am. Chem. Soc. 1964, 86, 964; Wiley,
 G.A.; Rein, B.M.; Hershkowitz, R.L. Tetrahedron Lett. 1964, 2509; Schaefer, J.P.; Higgins, J. J. Org. Chem. 1967, 32, 1607.

²⁵³Bay, E.; Bak, D.A.; Timony, P.E.; Leone-Bay, A. J. Org. Chem. 1990, 55, 3415.

²⁵⁴Kimura, Y.; Suzuki, H. *Tetrahedron Lett.* **1989**, *30*, 1271. For the use of phase-transfer catalysis in this reaction, see Yoshida, Y.; Kimura, Y. *Chem. Lett.* **1988**, 1355. For a review of the preparation of aryl fluorides by halogen exchange, see Dolby-Glover, L. *Chem. Ind. (London)* **1986**, 518.

²⁵⁵Uchibori, Y.; Umeno, M.; Seto, H.; Qian, Z.; Yoshioka, H. Synlett 1992, 345.

probably not operating.²⁵⁶ However, aryl iodides have been prepared from bromides, by the use of Cu supported on charcoal or Al_2O_3 ,²⁵⁷ with an excess of NaI and a copper catalyst,²⁵⁸ and by treatment with excess KI and a nickel catalyst.²⁵⁹ Interestingly, aryl chlorides have been prepared from aryl iodides using 2 equivalents of NiCl₂ in DMF, with microwave irradiation.²⁶⁰

An indirect halogen exchange treated aryl bromides with *n*-butyllithium and the 5-(iodomethyl)- γ -butyrolactone, giving the aryl iodide and the lithium salt of 4-pentenoic acid.²⁶¹ Aryl iodides²⁶² and fluorides can be prepared from arylthallium bis(trifluoroacetates) (see **12-23**), indirectly achieving the conversions ArH \rightarrow ArI and ArH \rightarrow ArF. The bis(trifluoroacetates) react with KI to give ArI in high yields.²⁶³ Aryllead triacetates ArPb(OAc)₃ can be converted to aryl fluorides by treatment with BF₃-etherate.²⁶⁴ Treatment of PhB(OH)₂ with *N*-iodosuccinimide gives iodobenzene.²⁶⁵ Arylboronic acids (**12-28**) can be converted to the corresponding aryl bromides by reaction with 1,3-dibromo-5,5-dimethylhydantoin and 5 mol % NaOMe.²⁶⁶ Other aryl halides can be prepared using 1,3-dihalo-5,5-dimethylhydantoins.

OS III, 194, 272, 475; V, 142, 478; VIII, 57; 81, 98.

The reduction of phenols and phenolic esters and ethers is discussed in Chapter 19 (see **19-38** and **19-35**). The reaction $ArX \rightarrow ArH$ is treated in Chapter 11 (reaction **11-39**), although, depending on reagent and conditions, it can be nucleophilic or free-radical substitution, as well as electrophilic.

E. Carbon Nucleophiles²⁶⁷

Some formations of new aryl-carbon bonds formed from aryl substrates have been considered in Chapter 10 (see 10-57, 10-68, 10-76, 10-77).

²⁵⁷Clark, J.H.; Jones, C.W. J. Chem. Soc. Chem. Commun. 1987, 1409.

²⁵⁸Klapars, A.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 14844.

²⁶⁵Thiebes, C.; Prakash, G.K.S.; Petasis N.A.; Olah, G.A. Synlett 1998, 141.

²⁵⁶Bacon, R.G.R.; Hill, H.A.O. J. Chem. Soc. **1964**, 1097, 1108. See also Nefedov, V.A.; Tarygina, L.K.; Kryuchkova, L.V.; Ryabokobylko, Yu.S. J. Org. Chem, USSR **1981**, 17, 487; Suzuki, H.; Kondo, A.; Ogawa, T. Chem. Lett. **1985**, 411; Liedholm, B.; Nilsson, M. Acta Chem. Scand. Ser. B **1988**, 42, 289; Clark, J.H.; Jones, C.W.; Duke, C.V.A.; Miller, J.M. J. Chem. Res. (S) **1989**, 238.

²⁵⁹Yang, S.H.; Li, C.S.; Cheng, C.H. J. Org. Chem. 1987, 52, 691.

²⁶⁰Arvela, R.K.; Leadbeater, N.E. Synlett 2003, 1145.

²⁶¹Harrowven, D.C.; Nunn, M.I.T.; Fenwick, D.R. Tetrahedron Lett. 2001, 42, 7501.

²⁶²For reviews of the synthesis of aryl iodides, see Merkushev, E.B. *Synthesis* **1988**, 923; *Russ. Chem. Rev.* **1984**, 53, 343.

²⁶³Taylor, E.C.; Kienzle, F.; McKillop, A. Org. Synth. VI, 826; Taylor, E.C.; Katz, A.H.; Alvarado, S.I.; McKillop, A. J. Organomet. Chem. 1985, 285, C9. For reviews, see Usyatinskii, A.Ya.; Bregadze, V.I. Russ. Chem. Rev. 1988, 57, 1054; Uemura, S., in Hartley, F. R.; Patai, S. The Chemistry of the Metal-Carbon Bond, Vol. 4, Wiley, NY, pp. 473–538. See also, Ishikawa, N.; Sekiya, A. Bull. Chem. Soc. Jpn. 1974, 47, 1680; Taylor, E.C.; Altland, H.W.; McKillop, A. J. Org. Chem. 1975, 40, 2351.

²⁶⁴De Meio, G.V.; Pinhey, J.T. J. Chem. Soc. Chem. Commun. 1990, 1065.

²⁶⁶Szumigala, Jr., R.H.; Devine, P.N.; Gauthier Jr., D.R.; Volante, R.P. J. Org. Chem. 2004, 69, 566.

²⁶⁷For a review of many of these reactions, see Artamkina, G.A.; Kovalenko, S.V.; Beletskaya, I.P.; Reutov, O.A. *Russ. Chem. Rev.* **1990**, *59*, 750.

13-8 Cyanation of Aromatic Rings

Cyano-de-halogenation Cyano-de-metalation

Ar-X Ar-CN

The reaction between aryl halides and cuprous cyanide is called the *Rosenmund*von Braun reaction.²⁶⁸ Reactivity is in the order I > Br > Cl > F, indicating that the S_NAr mechanism does not apply.²⁶⁹ Other cyanides (e.g., KCN and NaCN) do not react with aryl halides, even activated ones. This reaction has been done in ionic liquids using CuCN.²⁷⁰ The reaction has also been done in water using CuCN, a phase transfer catalyst, and microwave irradiation.²⁷¹

Aryl halides reaction with metal cyanides, often with another transition metal catalyst, to give aryl nitriles (aryl cyanides). Aryl halides react with Zn(CN)₂ and a palladium catalyst, for example, to give the aryl nitrile.²⁷² Similarly, aryl iodides react with CuCN and a palladium catalyst to give the aryl nitrile.²⁷³ Potassium cyanide (KCN) reacts in a similar manner with a palladium catalyst.²⁷⁴ Sodium cyanide has been used with a copper catalyst and 20% KI.²⁷⁵ The reaction of aryl iodides and sodium cyanoborohydride/catechol, with a palladium catalyst, generates the aryl nitrile.²⁷⁶ Aryl bromides react with Ni(CN)₂ with microwave irradiation to give ArCN.²⁷⁷ In general, alkali cyanides do convert aryl halides to nitriles²⁷⁸ in dipolar aprotic solvents in the presence of Pd(II) salts²⁷⁹ or copper²⁸⁰ or nickel²⁸¹

²⁶⁹For discussions of the mechanism, see Couture, C.; Paine, A.J. *Can. J. Chem.* **1985**, 63, 111; Connor, J.A.; Leeming, S.W.; Price, R. *J. Chem. Soc. Perkin Trans.* **1 1990**, 1127.

²⁷⁰In bmiI, 1-*n*-butyl-3-methylimidazolium iodide: Wu, J.X.; Beck, B.; Ren, R.X. *Tetrahedron Lett.* **2002**, 43, 387.

²⁷¹Arvela, R.K.; Leadbeater, N.W.; Torenius, H.M.; Tye, H. Org. Biomol. Chem. 2003, 1, 1119.

²⁷²Jin, F.; Confalone, P.N. Tetrahedron Lett. 2000, 41, 3271; Zhang, A.; Neumeyer, J.L. Org. Lett. 2003, 5,

201; Marcantonio, K.M.; Frey, L.F.; Liu, Y.; Chen, Y.; Strine, J.; Phenix, B.; Wallace, D.J.; Chen, C.-y. Org. Lett. 2004, 6, 3723; Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S.P. Synlett

2003, 2237. See Erker, T.; Nemec, S. Synthesis 2004, 23.

²⁷³Sakamoto, T.; Ohsawa, K. J. Chem. Soc. Perkin Trans. 1 1999, 2323.

²⁶⁸For a review of cyano-de-halogenation, see Ellis, G.P.; Romney-Alexander, T.M. Chem. Rev. 1987, 87, 779.

²⁷⁴Sundermeier, M.; Zapf, A.; Beller, M.; Sans, J. *Tetrahedron Lett.* **2001**, *42*, 6707; Yang, C.; Williams, J.M. Org. Lett. **2004**, *6*, 2837 (this reaction used a catalytic amount of tributyltin chloride as well).

²⁷⁵Zanon, J.; Klapers, A.; Buchwald, S.L. J. Am. Chem. Soc. 2003, 125, 2890.

²⁷⁶Jiang, B.; Kan, Y.; Zhang, A. Tetrahedron 2001, 57, 1581.

²⁷⁷Arvela, R.K.; Leadbeater, N.E. J. Org. Chem. 2003, 68, 9122.

²⁷⁸For a list of reagents that convert aryl halides to cyanides, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1705–1709.

 ²⁷⁹Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. *Bull. Chem. Soc. Jpn.*, **1975**, 48, 3298; **1976**, 49, 3177. See also Sekiya, A.; Ishikawa, N. *Chem. Lett.* **1975**, 277; Takagi, K.; Sasaki, K.; Sakakibara, Y. *Bull. Chem. Soc. Jpn.* **1991**, 64, 1118.

²⁸⁰Connor, J.A.; Gibson, D.; Price, R. J. Chem. Soc. Perkin Trans. 1 1987, 619.

²⁸¹Cassar, L.; Foà, M.; Montanari, F.; Marinelli, G.P. J. Organomet. Chem. 1979, 173, 335; Sakakibara, Y.; Okuda, F.; Shimobayashi, A.; Kirino, K.; Sakai, M.; Uchino, N.; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985.

complexes. A nickel complex also catalyzes the reaction between aryl triflates and KCN to give aryl nitriles.²⁸²

Arylthallium bis(trifluoroacetates) (see **12-23**) can be converted to aryl nitriles by treatment with copper(I) cyanide in acetonitrile.²⁸³ Another procedure uses excess aqueous KCN followed by photolysis of the resulting complex ion $ArTl(CN)_3^-$ in the presence of excess KCN.²⁸⁴ Alternatively, arylthallium acetates react with Cu(CN)₂ or CuCN to give aryl nitriles.²⁸⁵ Yields from this procedure are variable, ranging from almost nothing to 90 or 100%. Aromatic ethers $ArOR^{286}$ have been photochemically converted to ArCN.

An indirect method involves the reaction of an aromatic ring with *tert*-butyllithium, particularly when there is a directing group (see **13-17**), followed by reaction with PhOCN (phenyl cyanate) to give the aryl nitrile.²⁸⁷ another indirect method involve the palladium catalyzed reaction of aryl bromides with the cyanohydrin of acetone [Me₂C(OH)CN] to give ArCN.²⁸⁸

OS III, 212, 631.

13-9 Coupling of Aryl and Alkyl Organometallic Compounds with Aryl Halides, Ethers, and Carboxylic Esters

Aryl-de-halogenation, and so on

Ar–X	+	Ar'–M	 Ar–Ai
Ar–X	+	R–M	 ► Ar-R

A number of methods involving transition metals have been used to prepare unsymmetrical biaryls (see also, **13-11**). The uncatalyzed coupling of aryl halides and metalated aryls (particularly aryllithium reagents) is also known, including cyclization of organolithium reagents to aromatic rings.²⁸⁹ Noncatalyzed coupling reactions of aryllithium reagents and haloarenes can proceed via the well-known aryne route but in some cases, a novel addition–elimination pathway is possible when substituents facilitate a chelation-driven nucleophilic substitution pathway.²⁹⁰ Such noncatalyzed coupling reactions often proceed with high regioselectivity and high yield.²⁹⁰ Several noncatalyzed alternative routes are available. 2-Bromopyridine reacts with pyrrolidine, at 130°C with microwave irradiation, to give 2-(2-pyrrolidino)pyridine.²⁹¹ Aryl iodides undergo homo-coupling to give the biaryl by

²⁸²Chambers, M.R.I.; Widdowson, D.A. J. Chem. Soc. Perkin Trans. 1 1989, 1365; Takagi, K.; Sakakibara, Y. Chem. Lett. 1989, 1957.

²⁸³Taylor, E.C.; Katz, A.H.; McKillop, A. Tetrahedron Lett. 1984, 25, 5473.

²⁸⁴Taylor, E.C.; Altland, H.W.; McKillop, A. J. Org. Chem. 1975, 40, 2351.

²⁸⁵Uemura, S.; Ikeda, Y.; Ichikawa, K. Tetrahedron 1972, 28, 3025.

²⁸⁶Letsinger. R.L.; Colb, A.L. J. Am. Chem. Soc. 1972, 94, 3665.

²⁸⁷Sato, N. Tetrahedron Lett. 2002, 43, 6403.

²⁸⁸Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem. Int. Ed. 2003, 42, 1661.

²⁸⁹For a review of cyclization of organolithium reagents, see Clayden, J.; Kenworthy, M.N. *Synthesis* **2004**, 1721.

²⁹⁰See Becht, J.-M.; Gissot, A.; Wagner, A.; Mioskowski, C. Chem. Eur. J. 2003, 9, 3209.

²⁹¹Narayan, S.; Seelhammer, T.; Gawley, R.E. Tetrahedron Lett. 2004, 45, 757.

heating with triethylamine in an ionic liquid.²⁹² Arylsiloxanes react with aryl halides, for example, to give the biaryl derivative.²⁹³ The reaction of NaBPh₄ (sodium tetraphenylborate) and a silyl dichloride (Ph₂SiCl₂) gives biphenyl.²⁹⁴

There are many catalytic methods. A homo-coupling type reaction was reported in which PhSnBu₃ was treated with 10% CuCl₂, 0.5 equivalents of iodine and heated in DMF to give biphenyl.²⁹⁵ Arylsulfonyl chlorides also react with ArSnBu₃ with palladium and copper catalysts to give the biaryl.²⁹⁶ Aryl halides undergo homo-coupling to give the biaryl with a palladium catalyst²⁹⁷ or a nickel catalyst.²⁹⁸ In general, aryl tin compounds couple with aryl halides.²⁹⁹ An aryltin– aryl halide coupling has been done in ionic liquids.³⁰⁰ Aryl iodides have been coupled to form symmetric biphenyls using Pd(OAc)₂³⁰¹ and self-coupling occurs with aryl triflates under electrolysis conditions with a palladium catalyst.³⁰² A "double-coupling" reaction involving 2-trimethysilylphenol *O*-triflate, allyltributyltin and allyl chloride, with CsF and a palladium catalyst, gave 1,2-diallylbenzene.³⁰³ Another homo-coupling reaction of pyridyl bromides was reported using NiBr₂ under electrolytic conditions.³⁰⁴ Thiophene derivatives,³⁰⁵ pyrrole,³⁰⁶ azoles,³⁰⁷ quinoline,³⁰⁸ and indolizine³⁰⁹ have been coupled to aryl halides using a palladium catalyst.

Grignard reagents couple with aryl halides without a palladium catalyst, by the benzyne mechanism,³¹⁰ but an iron catalyzed coupling reaction was reported,³¹¹ as

²⁹⁴Sakurai, H.; Morimoto, C.; Hirao, T. *Chem. Lett.* **2001**, 1084. See also, Powell, D.A.; Fu, G.C. *J. Am. Chem. Soc.* **2004**, *126*, 7788.

²⁹⁵Kang, S.-K.; Baik, T.-G.; Jiao, X.H.; Lee, Y.-T. Tetrahedron Lett. 1999, 40, 2383.

²⁹⁶Dubbaka, S.R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292.

²⁹⁷Silveira, P.B.; Lando, V.R.; Dupont, J.; Monteiro, A.L. *Tetrahedron Lett.* 2002, 43, 2327; Kuroboshi,
 M.; Waki, Y.; Tanaka, H. *Synlett* 2002, 637. See also, Venkatraman, S.; Li, C.-J. Org. Lett. 1999, 1, 1133.
 ²⁹⁸Leadbeater, N.E.; Resouly, S.M. *Tetrahedron Lett.* 1999, 40, 4243.

²⁹⁹Wang, J.; Scott, A.I. *Tetrahedron Lett.* 1996, 37, 3247; Saá, J.M.; Martorell, G.; García-Raso, A. J. Org. Chem. 1992, 57, 678; Littke, A.F.; Schwarz, L.; Fu, G.C. J. Am. Chem. Soc. 2002, 124, 6343; Kim, Y.M.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.

³⁰⁰Grasa, G.A.; Nolan, S.P. Org. Lett. 2001, 3, 119.

³⁰¹Penalva, V.; Hassan, J.; Lavenot, L.; Gozzi, C.; Lemaire, M. Tetrahedron Lett. 1998, 39, 2559.

³⁰²Jutand, A.; Négri, S.; Mosleh, A. J. Chem. Soc, Chem. Commun. 1992, 1729.

³⁰³Yoshikawa, E.; Radhakrishnan, K.V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 729.

³⁰⁴de Franç a, K.W.R.; Navarro, M.; Léonel, É; Durandetti, M.; Nédélec, J.-Y. J. Org. Chem. 2002, 67, 1838.

³⁰⁵Glover, B.; Harvey, K.A.; Liu, B.; Sharp, M.J.; Tymoschenko, M.F. Org. Lett. 2003, 5, 301.

³⁰⁷Sezen, B.; Sames, D. Org. Lett. 2003, 5, 3607.

³⁰⁸Quintin, J.; Franck, X.; Hocquemiller, R.; Figadère, B. Tetrahedron Lett. 2002, 43, 3547.

- ³⁰⁹Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159.
- ³¹⁰Du, C.F.; Hart, H.; Ng, K.D. J. Org. Chem. 1986, 51, 3162.
- ³¹¹Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856.

²⁹²In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Park, S.B.; Alper, H. *Tetrahedron Lett.* **2004**, *45*, 5515.

²⁹³Mori, A.; Suguro, M. *Synlett* 2001, 845; Murata, M.; Shimazaki, R.; Watanabe, S.; Masuda, Y. *Synthesis* 2001, 2231.

³⁰⁶With ZnCl₂ as an additive, see Rieth, R.D.; Mankand, N.P.; Calimano, E.; Sadighi, J.P. *Org. Lett.* **2004**, *6*, 3981.

well as a nickel-³¹² and a cobalt-catalyzed reaction.³¹³ The coupling reaction of an excess of a Grignard reagent (RMgX) with methoxy aromatic compounds, when the aromatic ring contains multiple alkoxy groups, proceeds with replacement of the OMe group by R.³¹⁴ Aryl Grignard reagents coupled with phenyl allyl sulfone, in the presence of an iron catalyst, to give ArCH₂CH=CH₂.³¹⁵ In a similar manner, aryl sulfone coupled with aryl Grignard reagents in the presence of a nickel catalyst.³¹⁶ Arylmagnesium compounds couple to give the symmetrical biaryl in the presence of TiCl₄.³¹⁷ Arylmagnesium halides couple with aryl tosylates in the presence of a palladium catalyst to give unsymmetrical biaryls,³¹⁸ and to halopyridines to give the arylated pyridine.³¹⁹ Aryl Grignard reagents can be coupled to aryliodonium salts, with ZnCl₂ and a palladium catalyst, to give the biaryl.³²⁰ Specialized aryl bismuth compounds have been used with a palladium catalyst to convert aryl chlorides to biaryls,³²¹ and specialized alkyl indium complexes have been used with a palladium catalyst to give arenes.³²² α -Lithio lactams.³²³

The homo-coupling of arylzinc iodides with a palladium catalyst has been reported.³²⁴ Vinyl halides, in the presence of an arylmagnesium halides, ZnCl₂ and a palladium catalyst, give the styrene compound.³²⁵ Aryl triflates (halides) couple with ArZn(halide) reagents in the presence of a nickel catalyst.³²⁶ Aryl triflates were coupled to triphenylbismuth using a palladium catalyst.³²⁷ Homo-coupling of triphenylbismuth is known,³²⁸ as well as the coupling of arylbismuth reagents to aryliodonium salts³²⁹ and to aryltin compounds³³⁰ with palladium chloride. Similar coupling was accomplished with aryltellurium compounds.³³¹ Aryl iodides undergo

- ³¹⁵Gai, Y.; Julia, M.; Verpeaux, J.-N. Bull. Soc. Chim. Fr. 1996, 133, 805.
- ³¹⁶Clayden, J.; Cooney, J.J.A.; Julia, M. J. Chem. Soc. Perkin Trans. 1 1995, 7.
- ³¹⁷Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601.
- ³¹⁸Roy, A.H.; Hartwig, J.F. J. Am. Chem. Soc. 2003, 125, 8704.
- ³¹⁹Bonnet, V.; Mongin, F.; Trècourt, F.; Quèguiner, G.; Knochel, P. Tetrahedron Lett. 2001, 42, 5717.
- ³²⁰Wang, L.; Chen, Z.-C. Synth. Commun. 2000, 30, 3607.
- ³²¹Yamazaki, O.; Tanaka, T.; Shimada, S.; Suzuki, Y.; Tanaka, M. Synlett 2004, 1921.

³²²Shenglof, M.; Gelman, D.; Heymer, B.; Schumann, H.; Molander, G.A.; Blum, J. *Synthesis* **2003**, 302. ³²³Cossy, J.; de Filippis, A.; Pardo, D.G. *Synlett* **2003**, 2171.

³²⁴With NCS, Hossain, K.M.; Kameyama, T.; Shibata, T.; Takagi, K. Bull. Chem. Soc. Jpn. 2001, 74, 2415. See also, Venkatraman, S.; Li, C.-J. Tetrahedron Lett. 2000, 41, 4831; Albanese, D.; Landini, D.; Penso, M.; Petricci, S. Synlett 1999, 199.

³²⁵Peyrat, J.-F.; Thomas, E.; L'Hermite, N.; Alami, M.; Brion, J.-D. *Tetrahedron Lett.* **2003**, 44, 6703. ³²⁶Quesnelle, C.A.; Familoni, O.B.; Snieckus, V. *Synlett* **1994**, 349. For the use of NiCl₂/CrCl₂/Mn, see Chen, C. *Synlett* **2000**, 1491. For a reaction done with microwave irradiation, see Walla, P.; Kappe, C.O. *Chem. Commun.* **2004**, 564.

- ³³⁰Kang, S.-K.; Ryu, H.-C.; Lee, S.-W. Synth. Commun. 2001, 31, 1027.
- ³³¹Kang, S.-K.; Lee, S.-W.; Kim, M.-S.; Kwon, H.S. Synth. Commun. 2001, 31, 1721.

³¹²Dankwardt, J.W. Angew. Chem. Int. Ed. 2004, 43, 2428; Mongin, F.; Mojovic, L.; Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem. 2002, 67, 8991.

³¹³Korn, T.J.; Cahiez, G.; Knochel, P. Synlett 2003, 1892.

³¹⁴Kojima, T.; Ohishi, T.; Yamamoto, I.; Matsuoka, T.; Kotsuki, H. Tetrahedron Lett. 2001, 42, 1709.

 ³²⁷Rao, M.L.N.; Yamazaki, O.; Shimada, S.; Tanaka, T.; Suzuki, Y.; Tanaka, M. Org. Lett. 2001, 3, 4103.
 ³²⁸Ohe, T.; Tanaka, T.; Kuroda, M.; Cho, C.S.; Ohe, K.; Uemura, S. Bull. Chem. Soc. Jpn. 1999, 72, 1851.
 ³²⁹Kang, S.-K.; Ryu, H.-C.; Kim, J.-W. Synth. Commun. 2001, 31, 1021.

a homo-coupling in the presence of hydroquinone and a palladium catalyst.³³² Arylgermanium compounds are coupled with aryl iodides using tetrabutylammonium fluoride and a palladium catalyst.³³³ Both alkylmanganese compounds (RMnCl)³³⁴ and Ph₃In³³⁵ react with aryl halides or aryl triflates to give the arene, as do arylbismuth regents with aryl triflates.³³⁶ Aryl halides couple to vinyl acetates, with a cobalt catalyst, to give the styrene derivative.³³⁷ Aryl halides react with cyclopentadiene and Cp₂ZrCl₂ and a palladium catalyst to give pentaphenylcyclopentadiene.³³⁸ Aryl halides also react with phenols to form biaryls using a rhodium catalyst.³³⁹ Diaryliodonium salts react with PhPb(OAc)₃ and a palladium catalyst to give the biaryl.³⁴⁰ Arylsilanes can be coupled to aryl iodides using a palladium catalyst.³⁴¹ Aryl halides reacts with acrolein diethyl acetal under electrolysis conditions and a nickel catalyst to give the allyl arene (Ar–CH₂CH=CHOEt).³⁴²

Unsymmetrical binaphthyls were synthesized by photochemically stimulated reaction of naphthyl iodides with naphthoxide ions in an $S_{RN}1$ reaction.³⁴³ Methyl chloroacetate coupled with aryl iodides under electrolysis conditions, using a nickel catalyst.³⁴⁴ Unsymmetrical biaryls were prepared from two aryl iodides using a CuI catalyst and microwave irradiation.³⁴⁵

Alkylboronic acids are coupled to aryl halides using a palladium catalyst,³⁴⁶ analogous to the Suzuki reaction in **13-12**. Conversely, arylboronic acids can be coupled to aliphatic halides.³⁴⁷ Arylboronic acids can be coupled to allylic alcohols as well.³⁴⁸ Arylboronic acids (**12-28**) were shown to react directly with benzene in the presence of $Mn(OAc)_3$.³⁴⁹ Arylboronic acids also couple with alkyl halides in

- ³³³Nakamura, T.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2002, 4, 3165.
- ³³⁴Cahiez, G.; Luart, D.; Lecomte, F. Org. Lett. 2004, 6, 4395.
- ³³⁵Pérez, I.; Sestelo, J.P.; Sarandeses, L.A. Org. Lett. 1999, 1, 1267; J. Am. Chem. Soc. 2001, 123, 4155.
- ³³⁶Rao, M.L.N.; Shimada, S.; Tanaka, M. Org. Lett. 1999, 1, 1271.
- ³³⁷Gomes, P.; Gosmini, C.; Périchon, J. *Tetrahedron* 2003, 59, 2999.

³³⁸Dyker, G.; Heiermann, J.; Miura, M.; Inoh, J.-I.; Pivsa-Ast, S.; Satoh, T.; Nomura, M. *Chem. Eur. J.* **2000**, *6*, 3426.

- ³³⁹Bedford, R.B.; Limmert, M.E. J. Org. Chem. 2003, 68, 8669.
- ³⁴⁰Kang, S.-K.; Choi, S.-C.; Baik, T.-G. Synth. Commun. 1999, 29, 2493.
- ³⁴¹Denmark, S.E.; Wu, Z. Org. Lett. 1999, 1, 1495; Lee, H.M.; Nolan, S.P. Org. Lett. 2000, 2, 2053.
- ³⁴²Condon, S.; Dupré, D.; Nédélec, J.Y. Org. Lett. 2003, 5, 4701.

³⁴³Beugelmans, R.; Bois-Choussy, M.; Tang, Q. *Tetrahedron Lett.* **1988**, 29, 1705. For other preparations of biaryls via S_{RN}1 processes, see Alam, N.; Amatore, C.; Combellas, C.; Thiébault, A.; Verpeaux, J.N. *Tetrahedron Lett.* **1987**, 28, 6171; Pierini, A.B.; Baumgartner, M.T.; Rossi, R.A. *Tetrahedron Lett.* **1988**, 29, 3429.

- ³⁴⁴Durandetti, M.; Nédélec, J.-Y.; Périchon, J. J. Org. Chem. 1996, 61, 1748.
- ³⁴⁵He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3445.

³³²Hennings, D.D.; Iwama, T.; Rawal, V.H. Org. Lett. 1999, 1, 1205.

³⁴⁶Zou, G.; Reddy, Y.K.; Falck, J.R. *Tetrahedron Lett.* 2001, 42, 7217; Molander, G.A.; Yun, C.-S. *Tetrahedron* 2002, 58, 1465.

³⁴⁷Duan, Y.-Z.; Deng, M.-Z. *Tetrahedron Lett.* 2003, 44, 3423; Bandgar, B.P.; Bettigeri, s.V.; Phopase, J. *Tetrahedron Lett.* 2004, 45, 6959.

³⁴⁸Tsukamoto, H.; Sato, M.; Kondo, Y. *Chem. Commun.* **2004**, 1200; Kayaki, Y.; Koda, T.; Ikariya, T. *Eur. J. Org. Chem.* **2004**, 4989.

³⁴⁹Demir, A.S.; Reis, Ö; Emrullahoglu, M. J. Org. Chem. 2003, 68, 578.

the presence of palladium(II) acetate³⁵⁰ or a nickel catalyst.³⁵¹ Vinylboronic acids coupled to aryl halides to give the vinyl coupling product.³⁵² Vinylboronic acids have been coupled to aryldiazonium salts (**13-25**) without added base, using a palladium catalyst with an imidazolium ligand.³⁵³

Alkyltrifluoroborates (RBF₃K, see **12-28**) react with aryl triflates³⁵⁴ or aryl halides,³⁵⁵ or aryliodonium salts³⁵⁶ with a palladium catalyst, to give the arene. The reaction is compatible with sensitive functionality, such as an epoxide unit.

It is possible to couple metalated alkyl compounds to aryl compounds. The lithium enolate anion of an ester was coupled to an aryl halide, for example, using a palladium catalyst.³⁵⁷

Chiral vinyl sulfoxides have been coupled to aryl iodides to give a chiral allylic aryl compounds (C=C-CH₂-Ar), in a three-step procedure with good enantio-selectivity.³⁵⁸

The reaction of a cyclic zirconium–diene complex and an aryl diiodide, with CuCl, leads to highly substituted naphthalene derivatives.³⁵⁹

OS VI, 916; VIII, 430, 586; X, 9, 448.

13-10 Arylation and Alkylation of Alkenes

Alkylation or Alkyl-de-hydrogenation, and so on

 $R_2C=CH_2 + Ar-X$ $\xrightarrow{Pd(0)}$ $R_2C=CH$ —Ar

Arylation of alkenes can also be achieved³⁶⁰ by treatment with an "arylpalladium" reagent, typical generated *in situ* from an aryl halide or other suitably functionalized aromatic compound and a palladium(0) catalyst.³⁶¹ Other methods

³⁵⁵Molander, G.A.; Ribagorda, M. J. Am. Chem. Soc. 2003, 125, 11148.

³⁵⁰Kirchhoff, J.H.; Netherton, M.R. Hills, I.D.; Fu, G.C. J. Am. Chem. Soc. 2002, 124, 13662.

³⁵¹Zhou, J.; Fu, G.C. J. Am. Chem. Soc. 2004, 126, 1340.

³⁵²Collet, S.; Danion-Bougot, R.; Danion, D. Synth. Commun. 2001, 31, 249.

³⁵³Andrus, M.B.; Song, C. Org. Lett. 2001, 3, 3761; Andrus, M.B.; Song, C.; Zhang, J. Org. Lett. 2002, 4, 2079.

³⁵⁴Molander, G.A.; Yun, C.-S.; Ribagorda, M.; Biolatto, B. J. Org. Chem. 2003, 68, 5534.

³⁵⁶Xia, M.; Chen, Z.-C. Synth. Commun. 1999, 29, 2457.

³⁵⁷Moradi, W.A.; Buchwald, S.L. J. Am. Chem. Soc. 2001, 123, 7996.

³⁵⁸de la Rosa, J.C.; Díaz, N.; Carretero, J.C. Tetrahedron Lett. 2000, 41, 4107.

³⁵⁹Zhou, X.; Li, Z.; Wang, H.; Kitamura, M.; Kanno, K.-i.; Nakajima, K.; Takahashi, T. J. Org. Chem. **2004**, 69, 4559.

³⁶⁰For reviews of this and related reactions, see Heck, R.F. *Palladium Reagents in Organic Syntheses*, Academic Press, NY, **1985**, pp. 179–321; Ryabov, A.D. *Synthesis* **1985**, 233; Heck, R.F. Org. React. **1982**, 27, 345; Moritani, I.; Fujiwara, Y. *Synthesis* **1973**, 524. See Cabri, W.; Candiani, I. Acc. Chem. Res. **1995**, 28, 2.

³⁶¹For reviews, see Heck, R.F. Acc. Chem. Res. **1979**, *12*, 146; Pure Appl. Chem. **1978**, *50*, 691; Kozhevnikov, I.V. Russ. Chem. Rev. **1983**, *52*, 138. See also Bender, D.D.; Stakem, F.G.; Heck, R.F. J. Org. Chem. **1982**, *47*, 1278; Spencer, A. J. Organomet. Chem. **1983**, *258*, 101. See also, Bozell, J.J.; Vogt, C.E. J. Am. Chem. Soc. **1988**, *110*, 2655; Andersson, C.; Karabelas, K.; Hallberg, A.; Andersson, C. J. Org. Chem. **1985**, *50*, 3891; Merlic, C.A.; Semmelhack, M.F. J. Organomet. Chem. **1990**, *391*, C23; Larock, R.C.; Johnson, P.L. J. Chem. Soc. Chem. Commun. **1989**, 1368.

are available for this arylation reaction.³⁶² Treatment of an arylmercury compound (either Ar₂Hg or ArHgX) with LiPdCl₃ (ArHgX \rightarrow "ArPdX") can generate the appropriate intermediate,³⁶³ and in some cases other noble metal salts have been used. The palladium catalyzed aryl–alkene coupling reaction is known as *the Heck reaction*. The reaction works best with aryl iodides, although conditions have been developed for aryl bromides and aryl chlorides.³⁶⁴ Aryldiazonium salts (**13-25**), rather than aryl halides, have also been used in the Heck reaction.³⁶⁵ When 2,3,4,5,6-pentafluorobromobezene was used as a substrate, coupling occurred via the bromine, giving the pentafluorophenyl alkene.³⁶⁶ Aryl halides bearing ortho-substituents also under the coupling reaction.³⁶⁷ Heteroaryl halides can be used in the couple reaction.³⁶⁸ Note that acetanilide derivatives reacted with conjugated esters to give the Heck product in acetic acid using a palladium catalyst.³⁶⁹ Other activated aromatic compounds couple in a similar manner using palladium catalysts³⁷⁰ unactivated aromatic compounds using special reaction conditions.³⁷¹

Unlike **13-26**, the Heck reaction is not limited to activated substrates. The substrate can be a simple alkene, or it can contain a variety of functional groups, such as ester, ether,^{372,373} carboxyl, phenolic, or cyano groups.³⁷⁴ Coupling with vinyl ethers has been reported, $C=C-OR \rightarrow C=C(Ar)OR$.³⁷⁵ The Heck reaction can be done with heterocyclic compounds,³⁷⁶ and the C–C unit of compounds, such as indene, react with aryl iodides and palladium catalyst without the need for

³⁶⁶Albéniz, A.C.; Espinet, P.; Martín-Ruiz, B.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 11504.

- ³⁷²For a review pertaining to enol ethers, see Daves, Jr., G.D. Adv. Met.- Org. Chem. 1991, 2, 59.
- ³⁷³Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582.

³⁷⁵Andappan, M.M.S.; Nilsson, P.; von Schenck, H.; Larhed, M. J. Org. Chem. 2004, 69, 5212.

 ³⁶²For other methods, see Tsuji, J.; Nagashima, H. *Tetrahedron* 1984, 40, 2699; Kikukawa, K.; Naritomi, M.; He, G.; Wada, F.; Matsuda, T. J. Org. Chem. 1985, 50, 299; Chen, Q.; Yang, Z. *Tetrahedron Lett.* 1986, 27, 1171; Kasahara, A.; Izumi, T.; Miyamoto, K.; Sakai, T. Chem. Ind. (London) 1989, 192; Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. *Tetrahedron Lett.* 1989, 30, 975.

³⁶³Heck, R.F. J. Am. Chem. Soc. **1968**, 90, 5518, 5526, 5535. For a review, see Larock, R.C. Organomercury Compounds in Organic Synthesis, Springer, NY, **1985**, pp. 273–292.

³⁶⁴For reviews, see Whitcombe, N.J.; Hii, K.K.; Gibson, S.E. *Tetrahedron* **2001**, *57*, 7449; Littke, A.F.; Fu, G.C. *Angew. Chem. Int. Ed.* **2002**, *41*, 4176.

³⁶⁵Sengupta, S.; Bhattacharyya, S. *Tetrahedron Lett.* 2001, 42, 2035; Masllorens, J.; Moreno-Mañas, M.; Pla-Quintana, A.; Roglans, A. Org. Lett. 2003, 5, 1559; Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 221.

³⁶⁷Littke, A.F.; Fu, G.C. J. Am. Chem. Soc. 2001, 123, 6989; Feuerstein, M.; Doucet, H.; Santelli, M. Synlett 2001, 1980.

³⁶⁸See Park, S.B.; Alper, H. Org. Lett. **2003**, *5*, 3209. See also, Zeni, G.; Larock, R.C. Chem. Rev. **2004**, *104*, 2285.

³⁶⁹Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. **2002**, 124, 1586.

³⁷⁰Myers, A.G.; Tanaka, D.; Mannion, M.R. J. Am. Chem. Soc. 2002, 124, 11250.

³⁷¹Yokota, T.; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Am. Chem. Soc. 2003, 125, 1476.

³⁷⁴For a review of cases where the alkene contains an heteroatom, see Daves, Jr., G.D.; Hallberg, A. *Chem. Rev.* **1989**, 89, 1433.

³⁷⁶Pyridines: Draper, T.L.; Bailey, T.R. Synlett 1995, 157.

preparing the halide.³⁷⁷ The Heck reaction has also been performed intramolecularly.³⁷⁸ Asymmetric Heck reactions are known³⁷⁹ and the effects of high pressure have been studied.³⁸⁰

Ethylene is the most reactive alkene. Increasing substitution lowers the reactivity. Substitution therefore takes place at the less highly substituted side of the double bond.³⁸¹ The aryl halide or aryl triflate can be coupled to dienes,³⁸² allenes,³⁸³ allylic silanes,³⁸⁴ allylic amines,³⁸⁵ vinyl phosphonate esters,³⁸⁶ and with terminal alkynes.³⁸⁷ Alkylation can also be accomplished, but only if the alkyl group lacks a β -hydrogen, for example, the reaction is successful for the introduction of methyl, benzyl, and neopentyl groups.³⁸⁸ However, vinylic groups, even those possessing β hydrogens, have been successfully introduced (to give 1,3-dienes) by the reaction of the alkene with a vinylic halide in the presence of a trialkylamine and a palladium(0) catalyst.³⁸⁹ Aryl iodides can be coupled to 1-methyl-1-vinyl- and 1methyl-1-(prop-2-enyl)silacyclobutane with desilyation, using a palladium catalyst and Bu₄NF, to give the corresponding styrene derivative.³⁹⁰ Indene reacts with iodobenzene with a palladium catalyst to give the phenylindene (80:20 C3/C2).³⁹¹

Control of regiochemistry is a serious problem in the addition to unsymmetrical alkenes. Some regioselectivity can be obtained by the use of alkenes attached to an

³⁷⁷Nifant'ev, I.E.; Sitnikov, A.A.; Andriukhova, N.V.; Laishevtsev, I.P.; Luzikov, Y.N. *Tetrahedron Lett.* **2002**, *43*, 3213.

³⁷⁸See, for example, Negishi, E.; Zhang, Y.; O'Connor, B. *Tetrahedron Lett.* **1988**, 29, 2915; Larock, R.C.; Song, H.; Baker, B.E.; Gong, W.H. *Tetrahedron Lett.* **1988**, 29, 2919; Dounay, A.B.; Hatanaka, K.; Kodanko, J.J.; Oestreich, M.; Overman, L.E.; Pfeifer, L.A.; Weiss, M.M. *J. Am. Chem. Soc.* **2003**, 125, 6261. For a review of the asymmetric intramolecular Heck reaction, see Dounay, A.B.; Overman, L.E. *Chem. Rev.* **2003**, 103, 2945. Also see Lee, S.W.; Fuchs, P.L. *Tetrahedron Lett.* **1993**, 34, 5209; Echavarren, A.M.; Gómez-Lor, B.; González, J.J.; de Frutos, Ó. *Synlett* **2003**, 585.

³⁷⁹Shibasaki, M.; Boden, D.J.; Kojima, A. *Tetrahedron* **1997**, *53*, 737.

³⁸⁰Sugihara, T.; Yakebayashi, M.; Kaneko, C. *Tetrahedron Lett.* **1995**, *36*, 5547; Buback, M.; Perković, T.; Redlich, S.; de Meijere, A. *Eur. J. Org. Chem.* **2003**, 2375.

³⁸¹Heck, R.F. J. Am. Chem. Soc. 1969, 91, 6707; 1971, 93, 6896.

³⁸²Jeffery, T. Tetrahedron Lett. 1992, 33, 1989.

³⁸³Chang, H.-M.; Cheng, C.-H. J. Org. Chem. 2000, 65, 1767.

³⁸⁴Jeffery, T. Tetrahedron Lett. 2000, 41, 8445.

³⁸⁵Olofsson, K.; Larhed, M.; Hallberg, A. J. Org. Chem. 2000, 65, 7235; Wu, J.; Marcoux, J.-F. Davies, I.W.; Reider, P.J. Tetrahedron Lett. 2001, 42, 159.

³⁸⁶Kabalka, G.W.; Guchhait, S.K.; Naravane, A. Tetrahedron Lett. 2004, 45, 4685.

³⁸⁷Cassar, L. J. Organomet. Chem. **1975**, 93, 253; Dieck, H.A.; Heck, R.F. J. Organomet. Chem. **1975**, 93, 259; Kundu, N.G.; Pal, M.; Mahanty, J.S.; Dasgupta, S.K. J. Chem. Soc. Chem. Commun. **1992**, 41. See also, Heck, R.F. Palladium Reagents in Organic Syntheses, Academic Press, NY, **1985**, pp. 299–306.

³⁸⁸Heck, R.F. J. Organomet. Chem. 1972, 37, 389; Heck, R.F.; Nolley Jr., J.P. J. Org. Chem. 1972, 3720.

³⁸⁹Kim, J.I.; Patel, B.A.; Heck, R.F. J. Org. Chem. **1981**, 46, 1067; Heck, R.F. Pure Appl. Chem. **1981**, 53,

2323. See also Luong-Thi, N.; Riviere, H. Tetrahedron Lett. 1979, 4657; Jeffery, T. J. Chem. Soc. Chem. Commun. 1991, 324: Scott, W.J.; Peña, M.R.; Swärd, K.; Stoessel, S.J.; Stille, J.K. J. Org. Chem. 1985, 50,

2302; Larock, R.C.; Gong, W.H. J. Org. Chem. **1989**, 54, 2047. For a new palladium catalyst on intercalated clay, see Varma, R.S.; Naicker, K.P.; Liesen, P.J. *Tetrahedron Lett.* **1999**, 40, 2075. ³⁹⁰Denmark, S.E.; Wang, Z. *Synthesis* **2000**, 999.

³⁹¹Nifant'ev, I.E.; Sitnikov, A.A.; Andriukhova, N.V.; Laishevtsev, I.P.; Luzikov, Y.N. *Tetrahedron Lett.* **2002**, *43*, 3213.

auxiliary coordinating group,³⁹² the use of special ligands and acrylate or styrene as substrates.³⁹³ Steric effects are thought to control regioselectivity,³⁹⁴ but electronic influences have also been proposed.³⁹⁵ It has been shown that the presence of steric effects generally improve 1,2-selectivity, and that electronic effects can be used to favor 1,2- or 2,1-selectivity.³⁹⁶

Phosphine free catalysts³⁹⁷ and halogen-free reactions³⁹⁸ are known for the Heck reaction. Improvements on the palladium catalyst system are constantly being reported,³⁹⁹ including polymer-supported catalysts.⁴⁰⁰ The influence of the ligand has been examined.⁴⁰¹ Efforts have been made to produce a homogeneous catalyst for the Heck reaction.⁴⁰² The Heck reaction can be done in aq. media,⁴⁰³ in perfluorinated solvents,⁴⁰⁴ in polyethylene glycol,⁴⁰⁵ in neat tricaprylmethylammonium

³⁹⁵Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2.

³⁹⁶von Schenck, H.; Akermark, B.; Svensson, M. J. Am. Chem. Soc. 2003, 125, 3503.

³⁹⁷Reetz, M.T.; Westermann, E.; Lohmer, R.; Lohmer, G. *Tetrahedron Lett.* **1998**, *39*, 8449; Gruber, A.S.; Pozebon, D.; Monteiro, A.L.; Dupont, J. *Tetrahedron Lett.* **2001**, *42*, 7345.

³⁹⁸Hirabayashi, K.; Nishihara, Y.; Mori, A.; Hiyama, T. Tetrahedron Lett. 1998, 39, 7893.

³⁹⁹Miyazaki, F.; Yamaguchi, K.; Shibasaki, M. *Tetrahedron Lett.* 1999 40, 7379; Calò, V.; Nacci, A.; Lopez, L.; Mannarini, N. *Tetrahedron Lett.* 2000, 41, 8973; Iyer, S.; Ramesh, C. *Tetrahedron Lett.* 2000, 41, 8981; Rosner, T.; Le Bars, J.; Pfaltz, A.; Blackmond, D.G. J. Am. Chem. Soc. 2001, 123, 1848; Iyer, S.; Jayanthi, A. *Tetrahedron Lett.* 2001, 42, 7877; Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031; Feuerstein, M.; Doucet, H.; Santelli, M. *Tetrahedron Lett.* 2002, 43, 2191. For a recyclable catalyst, see Bergbreiter, D.E.; Osburn, P.L.; Liu, Y.-S. J. Am. Chem. Soc. 1999, 121, 9531. For the use of palladium nanoparticles, see Calò, V.; Nacci, A.; Monopoli, A.; Laera, S.; Cioffi, N. J. Org. Chem. 2003, 68, 2929. For a heterogeneous catalyst, see Srivastava, R.; Venkatathri, N.; Srinivas, D.; Ratnasamy, P. *Tetrahedron Lett.* 2003, 44, 3649.

⁴⁰⁰Leese, M.P.; Williams, J.M.J. Synlett **1999**, 1645; Lin, C.-A.; Luo, F.-T. *Tetrahedron Lett.* **2003**, 44, 7565. For a zeolite-supported palladium catalyst, see Djakovitch, L.; Koehler, K. J. Am. Chem. Soc. **2001**, 123, 5990.

⁴⁰¹For a review, see Qadir, M.; Möchel, T.; Hii, K.K. *Tetrahedron* 2000, 56, 7975. Feuerstein, M.; Doucet, H.; Santelli, M. J. Org. Chem. 2001, 66, 5923; Yang, C.; Lee, H.M.; Nolan, S.P. Org. Lett. 2001, 3, 1511; Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 1221; Yang, D.; Chen, Y.-C.; Zhu, N.-Y. Org. Lett. 2004, 6, 1577; Eberhard, M.R. Org. Lett. 2004, 6, 2125; Berthiol, F.; Doucet, H.; Santelli, M. *Tetrahedron Lett.* 2003, 44, 1221; Liu, J.; Zhao, Y.; Zhou, Y.; Li, L.; Zhang, T.Y.; Zhang, H. Org. Biomol. Chem. 2003, 1, 3227. A reaction was reported using palladium acetate in dimethylacetamide and no added ligand, see Yao, Q.; Kinney, E.P.; Yang, Z. J. Org. Chem. 2003, 68, 7528. For a phosphine-free reaction see Consorti, C.S.; Zanini, M.L.; Leal, S.; Ebeling, G.; Dupont, J. Org. Lett. 2003, 5, 983.

⁴⁰²Nair, D.; Scarpello, J.T.; White, L.S.; dos Santos, L.M.F.; Vankelecom, I.F.J.; Livingston, A.G. *Tetrahedron Lett.* **2001**, 42, 8219.

⁴⁰³Jeffery, T. Tetrahedron Lett. **1994**, 35, 3051; Gron, L.U.; Tinsley, A.S. Tetrahedron Lett. **1999**, 40, 227.

⁴⁰⁴Moineau, J.; Pozzi, G.; Quici, S.; Sinou, D. Tetrahedron Lett. 1999 40, 7683.

⁴⁰⁵Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S.S.; Reddy, N.R. Org. Lett. 2002, 4, 4399.

³⁹²Nilsson, P.; Larhed, M.; Hallberg, A. J. Am. Chem. Soc. 2001, 123, 8217 and earlier references.

 ³⁹³Ludwig, M.; Strömberg, S.; Svensson, M.; Åkermark, B. Organometallics 1999, 18, 970; Brown, J.M.;
 Hii, K.K. Angew. Chem. Int. Ed. 1996, 35, 657.

³⁹⁴Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G., *Principles and Applications of Organotransition Metal Chemistry*, 2nd ed., University Science Books, Mill Valley, CA, **1987**; Cornils, B., Herrmann, A.W., Eds., *Applied Homogeneous Catalysis with Organometallic Compounds*, Wiley, NY, **1996**; Vol. 2; Heck, R.F. Acc. Chem. Res. **1979**, *12*, 146.

chloride,⁴⁰⁶ and in supercritical CO₂ (see p. 414).⁴⁰⁷ A noncatalytic reaction was reported using supercritical water.⁴⁰⁸ The reaction has been done on solid support,⁴⁰⁹ including Montmorillonite clay,⁴¹⁰ glass beads,⁴¹¹ on a reverse-phase silica support,⁴¹² and using microwave irradiation.⁴¹³ A microwave irradiated Heck coupling was done in water using a palladium catalyst.⁴¹⁴ The Heck reaction has also been in ionic liquids,⁴¹⁵ and it is known that the nature of the halide is important in such reactions.⁴¹⁶

The evidence is in accord with an addition–elimination mechanism (addition of ArPdX followed by elimination of HPdX) in most cases.⁴¹⁷ In the conventionally accepted reaction mechanism,⁴¹⁸ a four-coordinate aryl–Pd(II) intermediate is formed by oxidative addition of the aryl halide to a Pd(0) complex prior to olefin addition. This suggests that cleavage of the dimeric precursor complex, reduction of Pd²⁺, and ligand dissociation combine to give a viable catalytic species.⁴¹⁹ If these processes occur on a time scale comparable to that of the catalytic reaction, non-steady-state catalysis could occur while the active catalyst is forming, and an

⁴⁰⁹Franzén, R. Can. J. Chem. 2000, 78, 957.

⁴¹⁰Ramchandani, R.K.; Uphade, B.S.; Vinod, M.P.; Wakharkar, R.D.; Choudhary, V.R.; Sudalai, A. *Chem. Commun.* **1997**, 2071.

⁴¹²Anson, M.S.; Mirza, A.R.; Tonks, L.; Williams, J.M.J. Tetrahedron Lett. 1999 40, 7147.

⁴¹³Li, J.; Mau, A.W.-H.; Struass, C.R. *Chem. Commun.* **1997**, 1275; Díaz-Ortiz, Á.; Prieto, P.; Vázquez, E. *Synlett* **1997**, 269; Xie, X.; Lu, J.; Chen, B.; Han, J.; She, X.; Pan, X. *Tetrahedron Lett.* **2004**, 45, 809. For microwave assisted, enantioselective Heck reactions, see Nilsson, P.; Gold, H.; Larhed, M.; Hallberg, A. *Synthesis* **2002**, 1611.

⁴¹⁴Wang, J.-X.; Liu, Z.; Hu, Y.; Wei, B.; Bai, L. Synth. Commun. 2002, 32, 1607.

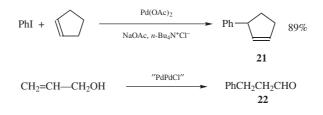
⁴¹⁵In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Carmichael, A.J.; Earle, M.J.; Holbrey, J.D.; McCormac, P.B.; Seddon, K.R. Org. Lett. 1999, 1, 997; Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349. In bmim PF₆ with microwave irradiation, see Vallin, K.S.A.; Emilsson, P.; Larhed, M.; Hallberg, A. J. Org. Chem. 2002, 67, 6243. In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Handy, S.T.; Zhang, X. Org. Lett. 2001, 3, 233. In bbim Br, 1,3-di-n-butylimidazolium bromide, Deshmukh, R.R.; Rajagopal, R.; Srinivasan, K.V. Chem. Commun. 2001, 1544. In a tetrabutylammonium bromide melt, Calò, V.; Nacci, A.; Monopoli, A.; Lopez, L.; di Cosmo, A. Tetrahedron 2001, 57, 6071. See Hagiwara, H.; Sugawara, Y.; Isobe, K.; Hoshi, T.; Suzuki, T. Org. Lett. 2004, 6, 2325; Okubo, K.; Shirai, M.; Yokoyama, C. Tetrahedron Lett. 2002, 43, 7115.

⁴¹⁶Handy, S.T.; Okello, M. Tetrahedron Lett. 2003, 44, 8395.

⁴⁰⁶Perosa, A.; Tundo, P.; Selva, M.; Zinovyev, S.; Testa, A. Org. Biomol. Chem. 2004, 2, 2249.

⁴⁰⁷Shezad, N.; Oakes, R.S.; Clifford, A.A.; Rayner, C.M. *Tetrahedron Lett.* **1999** 40, 2221; Bhanage, B.M.; Ikushima, Y.; Shirai, M.; Arai, M. *Tetrahedron Lett.* **1999** 40, 6427; Cacchi, S.; Fabrizi, G.; Gasparrini, F.; Villani, C. *Synlett* **1999**, 345; Early, T.R.; Gordon, R.S.; Carroll, M.A.; Holmes, A.B.; Shute, R.E.; McConvey, I.F. *Chem. Commun.* **2001**, 1966. For a discussion of selectivity in scCO₂, see Kayaki, Y.; Noguchi, Y.; Ikariya, T. *Chem. Commun.* **2000**, 2245.

⁴⁰⁸Zhang, R.; Sato, O.; Zhao, F.; Sato, M.; Ikushima, Y. Chem. Eur. J. 2004, 10, 1501.


⁴¹¹Tonks, L.; Anson, M.S.; Hellgardt, K.; Mirza, A.R.; Thompson, D.F.; Williams, J.M.J. *Tetrahedron Lett.* **1997**, *38*, 4319.

⁴¹⁷Heck, R.F. J. Am. Chem. Soc. **1969**, 91, 6707; Shue, R.S. J. Am. Chem. Soc. **1971**, 93, 7116; Heck, R.F.; Nolley Jr., J.P. J. Org. Chem. **1972**, 3720.

⁴¹⁸Heck, R. F. *Comprehensive Organic Synthesis*, Vol. 4, Trost, B.M., Fleming, I., Eds., Pergamon, Oxford, NY, *1991*, p 833; de Meijere, A.; Meyer, F.E. *Angew. Chem. Int. Ed. 1994*, *33*, 2379; Cabri, W.; Candiani, I. *Acc. Chem. Res. 1995*, *28*, 2; Crisp, G.T. *Chem. Soc. Rev. 1998*, *27*, 427.

⁴¹⁹Rosner, T.; Pfaltz, A.; Blackmond, D. G. J. Am. Chem. Soc. 2001, 123, 4621.

analysis of reaction kinetics under dry conditions was reported.⁴¹⁹ In this study, the mechanism requires a first-order dependence on olefin concentration, and anomalous kinetics may be observed when the rate-limiting step is not directly on the catalytic cycle.⁴¹⁹

The reactions are stereospecific, yielding products expected from syn addition followed by syn elimination.⁴²⁰ Because the product is formed by an elimination step, with suitable substrates double bond migration can occur, resulting in allylic rearrangement (as in the reaction of cyclopentene and iodobenzene to give **21**).⁴²¹ Primary and secondary allylic alcohols (and even non-allylic unsaturated alcohols⁴²²) give aldehydes, such as **22** or ketones that are products of double-bond migration.⁴²³ Similarly, dihydrofurans react with aryl triflates and a palladium catalyst that includes a chiral ligand, to give the 5-phenyl-3,4-dihydrofuran with good enantioselectivity.⁴²⁴ A similar reaction was reported for an *N*-carbamoyl dihydropyrrole.⁴²⁵ It has been reported that double bond isomerization can be suppressed in intramolecular Heck reactions done in supercritical CO₂ (see p. 414).⁴²⁶ The mechanistic implications of asymmetric Heck reactions has been examined.⁴²⁷

There are a number of variations of this reaction, including the use of transition metal catalyst other than palladium. A silane-tethered, intramolecular Heck reaction has been reported.⁴²⁸ Arylphosphonic acids, $ArP(=O)(OH)_2$, couple to aryl alkenes in the presence of a palladium catalyst.⁴²⁹ Aryl halides couple with vinyl

⁴²⁸Mayasundari, A.; Young, D.G.J. Tetrahedron Lett. 2001, 42, 203.

⁴²⁰Heck, R.F. J. Am. Chem. Soc. **1969**, 91, 6707; Moritani, I.; Danno, S.; Fujiwara, Y.; Teranishi, S. Bull. Chem. Soc. Jpn. **1971**, 44, 578. See Masllorens, J.; Moreno-Mañas, M.; Pla-Quintana, A.; Plexats, R.; Roglans, A. Synthesis **2002**, 1903.

⁴²¹Larock, R.C.; Baker, B.E. *Tetrahedron Lett.* **1988**, 29, 905. Also see, Larock, R.C.; Gong, W.H.; Baker, B.E. *Tetrahedron Lett.* **1989**, *30*, 2603.

⁴²² Larock, R.C.; Leung, W.; Stolz-Dunn, S. Tetrahedron Lett. 1989, 30, 6629.

⁴²³See, for example, Melpolder, J.P.; Heck, R.F. J. Org. Chem. **1976**, 41, 265; Chalk, A.J.; Magennis, S.A. J. Org. Chem. **1976**, 41, 273, 1206.

 ⁴²⁴Tietze, L.F.; Thede, K.; Sannicolò, F. *Chem. Commun.* 1999, 1811; Hashimoto, Y.; Horie, Y.; Hayashi,
 M.; Saigo, K. *Tetahedron Asymmetry* 2000, 11, 2205; Gilbertson, S.R.; Xie, D.; Fu, Z. J. Org. Chem. 2001,
 66, 7240; Gilbertson, S.R.; Fu, Z. Org. Lett. 2001, 3, 161; Hennessy, A.J.; Connolly, D.J.; Malone, Y.M.;
 Buiry, P.J. Tetrahedron Lett. 2000, 41, 7757.

⁴²⁵ Servino, E.A.; Correia, C.R.D. Org. Lett. 2000, 2, 3039.

⁴²⁶Shezad, N.; Clifford, A.A.; Rayner, C.M. Tetrahedron Lett. 2001, 42, 323.

⁴²⁷Hii, K.K.; Claridge, T.D.W.; Brown, J.M.; Smith, A.; Deeth, R.J. Helv. Chim. Acta 2001, 84, 3043.

⁴²⁹ Inoue, A.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 1484.

tin reagents to form styrene derivatives in the presence of a nickel catalyst.⁴³⁰ Aryl chlorides were coupled to conjugated esters using a RuCl₃·3 H₂O, in an atmosphere of O₂ and CO.⁴³¹ Alkenyl organometallic compounds have been coupled to aryl halides, including allenyltin compounds (C=C=C-SnR₃).⁴³² Divinylindium chloride, (CH₂=CH)₂InCl, reacted with an aryl iodide in aq. THF with a palladium catalyst to give the styrene derivative.⁴³³ Trialkenylindium reagents reacted similarly with aryl halides and a palladium catalyst.⁴³⁴ Arylzinc chlorides (ArZncl) were coupled to vinyl chlorides using a palladium catalyst,⁴³⁵ and vinyl zinc compounds were coupled to aryl iodides.⁴³⁶ Aryliodonium salts can be coupled to conjugated alkenes in a Heck-like manner using a palladium catalyst.⁴³⁷ In the presence of trimethylsilylmagnesium chloride, primary alkyl halides coupled to aryl alkenes to give the substituted alkene (R'-CH=CHAr), using a cobalt catalyst.⁴³⁸

Arylboronic acids (**12-28**) have been coupled to conjugated alkenes to give the aryl–alkene coupling product using a palladium catalyst,⁴³⁹ a ruthenium catalyst with copper(II) acetate,⁴⁴⁰ or a rhodium catalyst.⁴⁴¹ Arylboronic acids have also been coupled to vinyl halides⁴⁴² or vinyl tosylates⁴⁴³ using a palladium catalyst. Note that the reaction of an arylboronic acid and 1,2-dibromoethane, with KOH and a palladium catalyst leads to the styrene derivative.⁴⁴⁴ vinylboronic acids have been coupled to aryl halides using a palladium catalyst.⁴⁴⁵ Styrene derivatives have been prepared by the reaction of aryl halides and 2,4,6-trivinylcyclotriboroxane, with a palladium catalyst.⁴⁴⁶ Conjugated esters can be coupled to benzene using a palladium acetate/benzoquinone catalyst, *tert*-butyl hydroperoxide in acetic acid–acetic anhydride, at 90°C in a sealed tube.⁴⁴⁷ Vinyl silanes were converted to styrene derivatives upon treatment with Bu₄NF, and aryl iodide and a palladium

- ⁴³¹Weissman, H.; Song, X.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 337.
- ⁴³²Huang, C.-W.; Shanmugasundarm, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron 2003, 59, 3635.
- ⁴³³Takami, K.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1997.
- ⁴³⁴Lehmann, U.; Awasthi, S.; Minehan, T. Org. Lett. 2003, 5, 2405.
- 435 Dai, C.; Fu, G.C. J. Am. Chem. Soc. 2001, 123, 2719.
- ⁴³⁶Jalil, A.A.; Kurono, N.; Tokuda, M. Synlett 2001, 1944.
- ⁴³⁷Xia, M.; Chen, Z.C. Synth. Commun. 2000, 30, 1281.

- 443Wu, J.; Zhu, Q.; Wang, L.; Fathi, R.; Yang, Z. J. Org. Chem. 2003, 68, 670.
- 444Lando, V.R.; Monteiro, A.L. Org. Lett. 2003, 5, 2891.
- ⁴⁴⁵Peyroux, E.; Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2004, 1075.
- 446Kerins, F.; O'Shea, D. F. J. Org. Chem. 2002, 67, 4968.
- 447 Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097.

⁴³⁰Shirakawa, E.; Yamasaki, K.; Hiyama, T. Synthesis **1998**, 1544; Chen, C.; Wilcoxen, K.; Zhu, Y.-F.; Kim, K.-i.; McCarthy, J.R. J. Org. Chem. **1999**, 64, 3476.

⁴³⁸Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 6514.

⁴³⁹Du, X.; Suguro, M.; Hirabayashi, K.; Mori, A.; Nishikata, T.; Hagiwara, N.; Kawata, K.; Okeda, T.; Wang, H.-F.; Fugami, K.; Kosugi, M. Org. Lett. **2001**, *3*, 3313; Jung, Y.C.; Mishra, R.K.; Yoon, C.H.; Jung, K.W. Org. Lett. **2003**, *5*, 2231.

⁴⁴⁰Farrington, E.J.; Brown, J.M.; Barnard, C.F.J.; Rowsell, E. Angew. Chem. Int. Ed. 2002, 41, 169.

⁴⁴¹ Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martín-Matute, B. J. Am. Chem. Soc. 2001, 123, 5358.

⁴⁴²Bauer, A.; Miller, M.W.; Vice, S.F.; McCombie, S.W. *Synlett* **2001**, 254; Poondra, R.R.; Fischer, P.M.; Turner, N.J. *J. Org. Chem.* **2004**, *69*, 6920.

catalyst.⁴⁴⁸ Arylsilanes were coupled to alkenes to give the styrene derivative using palladium acetate and an oxygen atmosphere,⁴⁴⁹ for Bu_4NF and an iridium catalyst.⁴⁵⁰

In a related reaction, vinyltrifluoroborates $C=C-BF_3^+ X^-$ (12-28), are coupled to aryl halides with a palladium catalyst to give the styrene derivative.⁴⁵¹

In an unusual variation, an aryl compound bearing a tertiary alcohol substituent (ArCMe₂OH) reacted with aryl halides and a palladium catalyst to give the biaryl.⁴⁵² Benzoyl chloride was coupled to styrene to form PhCH=CHPh using a rhodium catalyst.⁴⁵³ Benzoic acid was coupled to styrene to give the same type of product using a palladium catalyst and a diacyl peroxide.⁴⁵⁴

OS VI, 815; VII, 361; 81, 42, 54, 63, 263

13-11 Homo-Coupling of Aryl Halides: The Ullmann Reaction

De-halogen-coupling

2 ArI
$$\xrightarrow{Cu}$$
 Ar—Ar

The coupling of aryl halides with copper is called the *Ullmann reaction*.⁴⁵⁵ The reaction is clearly related to **13-9**, but involves aryl copper intermediates. The reaction is of broad scope and has been used to prepare many symmetrical and unsymmetrical biaryls.⁴⁵⁶ When a mixture of two different aryl halides is used, there are three possible products, but often only one is obtained. For example, picryl chloride and iodobenzene gave only 2,4,6-trinitrobiphenyl.⁴⁵⁷ The best leaving group is iodo, and the reaction is most often done on aryl iodides, but bromides, chlorides, and even thiocyanates have been used.

The effects of other groups on the ring are unusual. The nitro group is strongly activating, but only in the ortho (not meta or para) position.⁴⁵⁸ Both R and OR groups activate in all positions. Not only do OH, NH₂, NHR, and NHCOR inhibit

⁴⁵⁴Gooßen, L.J.; Paetzold, J.; Winkel, L. Synlett 2002, 1721.

 ⁴⁴⁸Denmark, S.E.; Yans, S.-M. Org. Lett. 2001, 3, 1749; Itami, K.; Nokami, T.; Yoshida, J.-I. J. Am. Chem.
 Soc. 2001, 123, 5600; Hanamoto, T.; Kobayashi, T.; Kondo, M. Synlett 2001, 281; Hanamoto, T.;
 Kobayashi, T. J. Org. Chem. 2003, 68, 6354. See also Taguchi, H.; Ghoroku, K.; Tadaki, M.; Tsubouchi,
 A.; Takeda, T. J. Org. Chem. 2002, 67, 8450.

⁴⁴⁹ Parrish, J.P.; Jung, Y.C.; Shin, S.I.; Jung, K.W. J. Org. Chem. 2002, 67, 7127; Hirabayashi, K.; Ando,

J.-i.; Kawashima, J.; Nishihara, Y.; Mori, A.; Hiyama, T. *Bull. Chem. Soc. Jpn.* **2000**, *73*, 1409. ⁴⁵⁰Koike, T.; Du, X.; Sanada, T.; Danda, Y.; Mori, A. *Angew. Chem. Int. Ed.* **2003**, *42*, 89.

⁴⁵¹Molander, G. A.; Bernardi, C.R. J. Org. Chem. 2002, 67, 8424.

⁴⁵²Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407.

⁴⁵³Sugihara, T.; Satoh, T.; Miura, M.; Nomura, M. Angew. Chem. Int. Ed. 2003, 42, 4672.

⁴⁵⁵For reviews, see Fanta, P.E. Synthesis **1974**, 9; Goshaev, M.; Otroshchenko, O.S.; Sadykov, A.S. Russ. Chem. Rev. **1972**, *41*, 1046.

⁴⁵⁶For reviews of methods of aryl-aryl bond formation, see Bringmann, G.; Walter, R.; Weirich, R. *Angew. Chem, Int. Ed.* **1990**, *29*, 977; Sainsbury, M. *Tetrahedron* **1980**, *36*, 3327. Also see, Meyers, A.I.; Price, A. *J. Org. Chem.* **1998**, *63*, 412.

⁴⁵⁷Rule, H.G.; Smith, F.R. J. Chem. Soc. 1937, 1096.

⁴⁵⁸Forrest, J. J. Chem. Soc. 1960, 592.

the reaction, as would be expected for aromatic nucleophilic substitution, but so do COOH (but not COOR), SO_2NH_2 , and similar groups for which the reaction fails completely. These groups inhibit the coupling reaction by causing side reactions.

The mechanism is not known with certainty. It seems likely that it is basically a two-step process, similar to that of the Wurtz reaction (**10-56**), which can be represented schematically by

Step 1ArI+ CuArCuStep 2ArCu+ ArI \rightarrow Ar—Ar

Organocopper compounds have been trapped by coordination with organic bases.⁴⁵⁹ In addition, aryl copper compounds (ArCu) have been independently prepared and shown to give biaryls (Ar–Ar') when treated with aryl iodides Ar'I.⁴⁶⁰ A similar reaction has been used for ring closure:⁴⁶¹

An important alternative to the Ullmann method is the use of certain nickel complexes.⁴⁶² This method has also been used intramolecularly.⁴⁶³ Aryl halides ArX can also be converted to Ar–Ar⁴⁶⁴ by treatment with activated Ni metal,⁴⁶⁵ with Zn and nickel complexes,⁴⁶⁶ with aqueous alkaline sodium formate, Pd–C, and a phase-transfer catalyst,⁴⁶⁷ and in an electrochemical process catalyzed by a nickel complex.⁴⁶⁸

An asymmetric Ullmann reaction has also been reported.⁴⁶⁹ OS III, 339; V, 1120.

⁴⁶⁰For examples, see Nilsson, M. *Tetrahedron Lett.* **1966**, 675; Cairncross, A.; Sheppard, W.A. J. Am. Chem. Soc. **1968**, 90, 2186; Ullenius, C. Acta Chem. Scand. **1972**, 26, 3383; Mack, A.G.; Suschitzky, H.; Wakefield, B.J. J. Chem. Soc. Perkin Trans. 1 **1980**, 1682.

⁴⁶¹Salfeld, J.C.; Baume, E. *Tetrahedron Lett.* **1966**, 3365; Lothrop, W.C. J. Am. Chem. Soc. **1941**, 63, 1187.

⁴⁶²See, for example Semmelhack, M.F.; Helquist, P.M.; Jones, L.D. J. Am. Chem. Soc. 1971, 93, 5908;
 Clark, F.R.S.; Norman, R.O.C.; Thomas, C.B. J. Chem. Soc. Perkin Trans. 1 1975, 121; Tsou, T.T.; Kochi,
 J.K. J. Am. Chem. Soc. 1979, 101, 7547; Colon, I.; Kelsey, D.R. J. Org. Chem. 1986, 51, 2627; Lourak, M.;
 Vanderesse, R.; Fort, Y.; Caubere, P. J. Org. Chem. 1989, 54, 4840, 4844; Iyoda, M.; Otsuka, H.; Sato, K.;
 Nisato, N.; Oda, M. Bull. Chem. Soc. Jpn. 1990, 63, 80. For a review of the mechanism, see Amatore, C.;
 Jutand, A. Acta Chem. Scand. 1990, 44, 755.

⁴⁶³See, for example, Karimipour, M.; Semones, A.M.; Asleson, G.L.; Heldrich, F.J. *Synlett*, **1990**, 525. ⁴⁶⁴For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 82–84.

⁴⁶⁵Inaba, S.; Matsumoto, H.; Rieke, R.D. *Tetrahedron Lett.* **1982**, *23*, 4215; Matsumoto, H.; Inaba, S.; Rieke, R.D. J. Org. Chem. **1983**, *48*, 840; Chao, C.S.; Cheng, C.H.; Chang, C.T. J. Org. Chem. **1983**, *48*, 4904.

⁴⁶⁶Takagi, K.; Hayama, N.; Sasaki, K. Bull. Chem. Soc. Jpn. 1984, 57, 1887.

⁴⁶⁷Bamfield, P.; Quan, P.M. Synthesis 1978, 537.

⁴⁶⁸Meyer, G.; Rollin, Y.; Perichon, J. J. Organomet. Chem. 1987, 333, 263.

⁴⁶⁹Nelson, T.D.; Meyers, A.I. J. Org. Chem. **1994**, 59, 2655; Nelson, T.D.; Meyers, A.I. Tetrahedron Lett. **1994**, 35, 3259.

⁴⁵⁹Lewin, A.H.; Cohen, T. Tetrahedron Lett. 1965, 4531.

CHAPTER 13

The palladium-catalyzed coupling of aryl halides and other aryl substrates with aromatic rings containing a suitable leaving group is now well established. Other nucleophiles can be coupled to aryl halides.⁴⁷⁰ The reaction has become so significant in organic chemistry that the transformations have been categorized as named reactions, and are discussed in Sections 13-14 and 13-15.

13-12 Coupling of Aryl Compounds With Arylboronic acid Derivatives

Aryl-de-halogenation, and so on Aryl-de-boronylation, and so on

Ar—Br + $Ar'B(OH)_2$ \longrightarrow Ar—Ar'

Aryl triflates react with arylboronic acids, ArB(OH)₂ (**12-28**),⁴⁷¹ or with organoboranes,⁴⁷² in the presence of a palladium catalyst,⁴⁷³ to give the arene in what is called *Suzuki coupling* (or *Suzuki–Miyaura coupling*).⁴⁷⁴ Aryl halides are commonly used, and aryl sulfonates have been used.⁴⁷⁵ Even hindered boronic acids give good yields of the coupled product.⁴⁷⁶ Homo-coupling of arylboronic acids has been reported.⁴⁷⁷ Coupling of the alkynes to form a diyne (see **14-16**) can be a problem is some cases, although the aryl–alkyne coupling usually predominates.⁴⁷⁸ Some aromatic compounds are so reactive that a catalyst may not be required. Using tetrabutylammonium bromide, phenylboronic acid was coupled to 2-bromofuran without a catalyst.⁴⁷⁹

472Fürstner, A.; Seidel, G. Synlett, 1998, 161.

⁴⁷⁶Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 207.

⁴⁷⁹Bussolari, J.C.; Rehborn, D.C. Org. Lett. 1999, 1, 965.

⁴⁷⁰For a review, see Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B. *Tetrahedron* 2002, 58, 2041.

 ⁴⁷¹Miyaura, N.; Yanagi, T.; Suzuki, A. *Synth. Commun.* 1981, 11, 513; Cheng, W.; Snieckus, V. *Tetrahedron Lett.* 1987, 28, 5097; Badone, D.; Baroni, M.; Cardomone, R.; Ielmini, A.; Guzzi, U. J. Org. Chem. 1997, 62, 7170. For a review of the synthesis and applications of heterocyclic boronic acids, see Torrell, E.; Brookes, P. Synthesis 2003, 469.

⁴⁷³For new palladium catalysts, see Wolfe, J.P.; Singer, R.A.; Yang, B.H.; Buchwald, S.L. J. Am. Chem. Soc. **1999**, *121*, 9550; Bedford, R.B.; Cazin, C.S.J. Chem. Commun. **2001**, 1540. For a review, see Bellina, F.; Carpita, A.; Rossi, R. Synthesis **2004**, 2419.

⁴⁷⁴Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, 95, 2457. For a review of the Suzuki couping in synthesis see Kotha, S.; Lahiri, K.; Kashinath, D. *Tetrahedron* **2002**, *58*, 9633.

⁴⁷⁵Zim, D.; Lando, V.R.; Dupont, J.; Monteiro, A.L. Org. Lett. **2001**, *3*, 3049; Zhang, W.; Chen, C.H.-T.; Lu, Y.; Nagashima, T. Org. Lett. **2004**, *6*, 1473.

⁴⁷⁷Lei, A.; Zhang, X. *Tetrahedron Lett.* **2002**, *43*, 2525; Parrish, J.P.; Jung, Y.C.; Floyd, R.J.; Jung, K.W. *Tetrahedron Lett.* **2002**, *43*, 7899.

⁴⁷⁸See, for example, Chow, H.-F.; Wan, C.-W.; Low, K.-H.; Yeung, Y.-Y. J. Org. Chem. 2001, 66, 1910.

900 AROMATIC SUBSTITUTION, NUCLEOPHILIC AND ORGANOMETALLIC

Different conditions (including additives and solvent) for the reaction have been reported,⁴⁸⁰ often focusing on the palladium catalyst itself,⁴⁸¹ or the ligand.⁴⁸² Catalysts have been developed for deactivated aryl chlorides,⁴⁸³ and nickel catalysts have been used.⁴⁸⁴ Modifications to the basic procedure include tethering the aryl triflate⁴⁸⁵ or the boronic acid⁴⁸⁶ to a polymer, allowing a polymer-supported Suzuki reaction. Polymer-bound palladium complexes have also been used.^{487,488} The reaction has been done neat on alumina,⁴⁸⁹ and on alumina with microwave irradiation.⁴⁹⁰ Suzuki coupling has also been done in ionic liquids,⁴⁹¹ in supercritical

⁴⁸⁰Littke, A.F.; Dai, C.; Fu, G.C. J. Am. Chem. Soc. 2000, 122, 4020; Grasa, G.A.; Hillier, A.C.; Nolan, S.P. Org. Lett. 2001, 3, 1077; Le Blond, C.R.; Andrews, A.T.; Sun, Y.; Sowa, Jr., J.R. Org. Lett. 2001, 3, 1555; Savarin, C.; Liebeskind, L.S. Org. Lett. 2001, 3, 2149; Liu, S.-Y.; Choi, M.J.; Fu, G.C. Chem. Commun. 2001, 2408; Li, G.-Y. J. Org. Chem. 2002, 67, 3643; Fairlamb, I.J.S.; Kapdi, A.R.; Lee, A.F. Org. Lett. 2004, 6, 4435; Oh, C.H.; Lim, Y.M.; You, C.H. Tetrahedron Lett. 2002, 43, 4645; Tao, B.; Boykin, D.W. Tetrahedron Lett. 2002, 43, 4955; Arentsen, K.; Caddick, S.; Cloke, G.N.; Herring, A.P.; Hitchcock, P.B. Tetrahedron Lett. 2004, 45, 3511; Artok, L.; Bulat, H. Tetrahedron Lett. 2004, 45, 3881; Arcadi, A.; Cerichelli, G.; Chiarini, M.; Correa, M.; Zorzan, D. Eur. J. Org. Chem. 2003, 4080.

⁴⁸¹Pd/C has been reported as a reusable catalyst, see Sakurai, H.; Tsukuda, T.; Hirao, T. J. Org. Chem. 2002, 67, 2721. For other recoverable or recyclable catalysts, see Nobre, S.M.; Wolke, S.I.; da Rosa, R.G.; Monteiro, A.L. Tetrahedron Lett. 2004, 45, 6527; Blanco, B.; Mehdi, A.; Moreno-Mañas, M.; Pleixats, R.; Reyé, C. Tetrahedron Lett. 2004, 45, 8789. A palladium catalyst was developed on nanoparticles, see Kogan V.; Aizenshtat, Z.; Popovitz-Biro, R.; Neumann, R. Org. Lett. 2002, 4, 3529. For a colloid-metal catalyst, see Thathagar, M.B.; Beckers, J.; Rothenberg, G. J. Am. Chem Soc. 2002, 124, 11858. Palladium (II)-sepiolite has been used, see Shimizu, K.-i.; Kan-no, T.; Kodama, T.; Hagiwara, H.; Kitayama, Y. Tetrahedron Lett. 2002, 43, 5653. See Zhao, Y.; Zhou, Y.; Ma, D.; Liu, J.; Li, L.; Zhang, T.Y.; Zhang, H. Org. Biomol. Chem. 2003, 1, 1643.

⁴⁸²Kataoka, N.; Shelby, Q.; Stambuli, J.P.; Hartwig, J.F. J. Org. Chem. 2002, 67, 5553. Ligand-free catalyst systems have been developed, see Klingensmith, L.M.; Leadbeater, N.E. Tetrahedron Lett. 2003, 44, 765; Deng, Y.; Gong, L.; Mi, A.; Li, H.; Jiang, Y. Synthesis 2003, 337. For a phosphine-free reaction, see Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. Synlett 2003, 882.

⁴⁸³Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem. Int. Ed. 2000, 39, 4153.

⁴⁸⁴Zim, D.; Monteiro, A.L. *Tetrahedron Lett.* **2002**, *43*, 4009; Percec, V.; Golding, G.M.; Smidrkal, J.; Weichold, O. J. Org. Chem. **2004**, 69, 3447.

⁴⁸⁵Blettner, C.G.; König, W.A.; Stenzel, W.; Schotten, T. J. Org. Chem. 1999, 64, 3885. For other reactions on solid support, see Franzén, R. Can. J. Chem. 2000, 78, 957.

⁴⁸⁶Hebel, A.; Haag, R. J. Org. Chem. 2002, 67, 9452.

⁴⁸⁷Inada, K.; Miyaura, N. *Tetrahedron* 2000, 56, 8661, 8657; Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997; Okamoto, K.; Akiyama, R.; Kobayashi, S. Org. Lett. 2004, 6, 1987; Lin, C.-A.; Luo, F.-T. *Tetrahedron Lett.* 2003, 44, 7565; Shieh, W.-C.; Shekhar, R.; Blacklock, T.; Tedesco, A. Synth. Commun. 2002, 32, 1059.

⁴⁸⁸Wang, Y; Sauer, D.R. Org. Lett. 2004, 6, 2793.

⁴⁸⁹Kabalka, G.W.; Pagni, R.M.; Hair, C.M. *Org. Lett.* **1999**, *1*, 1423. The reaction has also been done on KF-alumina with microwave irradiation, see Basu, B.; Das, P.; Bhuiyan, Md.M.H.; Jha, S. *Tetrahedron Lett.* **2003**, *44*, 3817.

⁴⁹⁰Villemin, D.; Caillot, F. Tetrahdron Lett. 2001, 42, 639.

⁴⁹¹In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate, with a nickel catalyst: Howarth, J.; James, P.; Dai, J. *Tetrahedron Lett.* **2000**, *41*, 10319. In bbim BF₄, 1,3-di-*n*-butylimidazolium tetrafluoroborate, with ultrasound: Rajagopal, R.; Jarikote, D.V.; Srinivasan, K.V. *Chem. Commun.* **2002**, 616. In dodecyltrihexylphosphonium chloride: McNulty, J.; Capretta, Wilson, J.; Dyck, J.; Adjabeny, G.; Robertson, A. *Chem. Commun.* **2002**, 1986.

 CO_2^{492} (see p. 414), and in water with microwave irradiation⁴⁹³ or in water with a palladium catalyst, air, and tetrabutylammonium fluoride.⁴⁹⁴ A solvent free (neat) Suzuki reactions have been reported.⁴⁹⁵ A variety of functional groups are compatible with Suzuki coupling, including Ar₂P=O,⁴⁹⁶ CHO,⁴⁹⁷ C=O of a ketone,⁴⁹⁸ CO₂R,⁴⁹⁹ cyclopropyl,⁵⁰⁰ NO₂,⁵⁰¹ CN,⁴⁸⁸ and halogen substituents.⁵⁰²

There are many structural variations of the reaction that give it enormous synthetic potential. Halogenated heteroaromatic compounds react. 2-Halopyridines react with arylboronic acids and a palladium catalyst to give 2-arylpyridines.⁵⁰³ Other heterocycles have been similarly arylated.⁵⁰⁴ 4-Pyridylboronic acids have been used.⁵⁰⁵ The reaction of phenylboronic acid and a diallyl amide which contained a vinyl bromide, led to ring closure as well as incorporation of the phenyl group, give an *N*-tosylpyrrolidine with an exocyclic methylene unit.⁵⁰⁶ Vinyl halides react with arylboronic acids to give alkenyl derivatives (vinyl arenes, C=C-Ar).⁵⁰⁷ Alkylation can accompany arylation if alkyl halides are added, as in the conversion of iodobenzene to 2,6-dibutylbiphenyl.⁵⁰⁸

⁴⁹³Leadbeater, N.E.; Marco, M. J. Org. Chem. 2003, 68, 888; Leadbeater, N.E.; Marco, M. J. Org. Chem.
 2003, 68, 5660; Leadbeater, N.E.; Marco, M. Org. Lett. 2002, 4, 2973.

⁴⁹⁴Punna, S.; Díaz, D.D.; Finn, M.G. Synlett 2004, 2351.

⁴⁹⁵Nielsen, S.F.; Peters, D.; Axelsson, O. Synth. Commun. 2000, 30, 3501; Kabalka, G.W.; Wang, L.; Pagni, R.M.; Hair, C.M.; Namboodiri, V. Synthesis 2003, 217.

⁴⁹⁶Baillie, C.; Chen, W.; Xiao, J. Tetrahedron Lett. 2001, 42, 9085.

⁴⁹⁷Hesse, S.; Kirsch, G. *Synthesis* **2001**, 755; Phan, N.T.S.; Brown, D.H.; Styring, P. *Tetrahedron Lett.* **2004**, 45, 7915.

⁴⁹⁸Bedford, R.B.; Welch, S.L. *Chem. Commun.* **2001**, 129; Baille, C.; Zhang, L.; Xiao, J. J. Org. Chem. **2004**, 69, 7779.

⁴⁹⁹Mutule, I.; Suna, E. Tetrahedron Lett. 2004, 45, 3909.

⁵⁰⁰Ma, H.-r.; Wang, X.-L.; Deng, M.-z. Synth. Commun. 1999, 29, 2477.

⁵⁰¹Tao, B.; Boykin, D.W. J. Org. Chem. 2004, 69, 4330; Li, J.-H.; Liu, W.-J. Org. Lett. 2004, 6, 2809; Widdowson, D.A.; Wilhelm, R. Chem. Commun. 2003, 578.

⁵⁰²Colacot, T.J.; Shea, H.A. *Org. Lett.* **2004**, *6*, 3731; DeVasher, R.B.; Moore, L.R.; Shaughnessy, K.H. J. Org. Chem. **2004**, *69*, 7919.

⁵⁰³Lohse, O.; Thevenin, P.; Waldvogel, E. *Synlett* **1999**, 45; Gong, Y.; Pauls, H.W. *Synlett* **2000**, 829; Navaro, O.; Kaur, H.; Mahjoor, P.; Nolan, S.P. J. Org. Chem. **2004**, 69, 3173. For a variation using hexamethyl ditin as an additive, see Zhang, N.; Thomas, L.; Wu, B. J. Org. Chem. **2001**, 66, 1500.

⁵⁰⁴Indole derivatives: at C2, Lane, B.S.; Sames, D. Org. Lett. 2004, 6, 2897; Denmark, S.E.; Baird, J.D. Org. Lett. 2004, 6, 3649. at C3, Liu, Y.; Gribble, G.W. Tetrahedron Lett. 2000, 41, 8717. At C6, Allegretti, M.; Arcadi, A.; Marinelli, F.; Nicolini, L. Synlett 2001, 609. See also, Prieto, M.; Zurita, E.; Rosa, E.; Muñoz, L.; Lloyd-Williams, P.; Giralt, E. J. Org. Chem. 2004, 69, 6812. Pyrimidines: Cooke, G.; de Cremiers, V.A.; Rotello, V.M.; Tarbit, B.; Vanderstraeten, P.E. Tetrahedron 2001, 57, 2787. Furan was coupled to pyridine: Gauthier, Jr., D.R.; Szumigala Jr., R.H.; Dormer, P.G.; Armstrong III, J.D.; Volante, R.P.; Reider, P.J. Org. Lett. 2002, 4, 375. Pyrimidines and Pyridines: Liebeskind, L.S.; Srogl, J. Org. Lett. 2002, 4, 979; Quinolines: Wolf, C.; Lerebours, R. J. Org. Chem. 2003, 68, 7551.

⁵⁰⁵Morris, G.A.; Nguyen, S.T. Tetrahedron Lett. 2000, 42, 2093.

⁵⁰⁶Lee, C.-W.; Oh, K.S.; Kim, K.S.; Ahn, K.H. Org. Lett. 2000, 2, 1213.

⁵⁰⁷Shen, W. Synlett **2000**, 737.

⁴⁹²Early, T.R.; Gordon, R.S.; Carroll, M.A.; Holmes, A.B.; Shute, R.E.; McConvey, I.F. *Chem. Commun.* 2001, 1966.

⁵⁰⁸Catellani, M.; Motti, E.; Minari, M. *Chem. Commun.* **2000** 157. For a different approach using aryl halides having a phosphonate ester group, see Yin, J.; Buchwald, S.L. *J. Am. Chem. Soc.* **2000**, *122*, 12051.

Since many biaryls are chiral due to atropisomerism (see p. 147), the use of a chiral catalyst, and/or a chiral ligand can lead to enantioselectivity in the Suzuki coupling.⁵⁰⁹

Arylsulfonates can be coupled to aryl triflates using a palladium catalyst,⁵¹⁰ and arylboronic acids couple with aryl sulfonate esters.⁵¹¹ Aryl boronic acids are coupled with aryl ammonium salts to give the biaryl, with a nickel catalyst.⁵¹² Allylic acetates have been coupled to arylboronic acids using nickel bis(acetylacetonate) and diisobutylaluminum hydride.⁵¹³ Aryl halides couple with ArB(IR'₂) species with a palladium catalyst.⁵¹⁴ Arylboronic acids couple with the phenyl group of Ph₂TeCl₂ with a palladium catalyst.⁵¹⁵ 3-Iodopyridine reacted with NaBPh and palladium acetate, with microwave irradiation, to give 3-phenylpyridine.⁵¹⁶ Tributyltinaryl compounds were coupled to aryl proup of Ar₂I⁺BF₄⁻ with a nickel catalyst.⁵¹⁷ Organoboranes are coupled to aryl halides with a palladium catalyst.⁵¹⁸ Aryl silanes can be coupled to aryl iodides using Ag₂O and a palladium catalyst.⁵¹⁹ and arylsiloxanes ArSi(OR)₃, are coupled to aryl halides with Bu₄NF and a palladium catalyst.⁵²⁰

Arylborates (12-28), ArB(OR)₂, can be used in place of the boronic acid. The coupling reaction of aryl iodide 23 with boronate 24, for example, gave the biaryl.⁵²¹ Aryl and heteroarylboroxines (25) can be coupled to aryl halides using a palladium catalyst.⁵²²

 MeO_2C 23 24 OMe $I.2 Tl_2CO_3, PhH$ $G\% Pd(PPh_3)_4$ MeO_2C MeO_2C MeO_2C

For a mechanistic viewpoint, 523 the Suzuki coupling proceeds via oxidative addition of areneboronic acids to give a Pd(0) species, followed by 1,2 arene migration to an electron-deficient palladium atom, eventually leading to very fast reductive

⁵¹⁰Riggleman, S.; DeShong, P. J. Org. Chem. 2003, 68, 8106.

⁵¹¹Using a nickel catalyst, Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 126, 3058.

⁵¹²Blakey, S.B.; MacMillan, D.W.C. J. Am. Chem. Soc. 2003, 125, 6046.

⁵¹³Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc. Perkin Trans. 1 2000, 15.

⁵¹⁴Bumagin, N.A.; Tsarev, D.A. *Tetrahedron Lett.* **1998**, 39, 8155; Shen, W. *Tetrahedron Lett.* **1997**, 38, 5575.

⁵¹⁵Kang, S.-K.; Hong, Y.-T.; Kim, D.-H.; Lee, S.-H. J. Chem. Res. (S) 2001, 283.

⁵¹⁶Villemin, D.; Gómez-Escalonilla, M.J.; Saint-Clair, J.-F. Tetrahedron Lett. 2001, 42, 635.

⁵¹⁷Kang, S.-K.; Ryu, H.-C.; Lee, S.-W. J. Chem. Soc. Perkin Trans. 1 1999, 2661.

⁵¹⁸Iglesias, B.; Alvarez, R.; de Lera, A.R. *Tetrahedron* 2001, 57, 3125.

⁵¹⁹Hirabayashi, K.; Kawashima, J.; Nishihara, Y.; Mori, A.; Hiyama, T. Org. Lett. 1999, 1, 299.

⁵²⁰Mowery, M.E.; DeShong, P. Org. Lett. 1999, 1, 2137.

⁵²¹Chaumeil, H.; Signorella, S.; Le Drian, C. *Tetrahedron* **2000**, *56*, 9655.

522Cioffi, C.L.; Spencer, W.T.; Richards, J.J.; Herr, R.J. J. Org. Chem. 2004, 69, 2210.

⁵²³For a review, see Esponet, P.; Echavarren, A.M. Angew. Chem. Int. Ed. 2004, 43, 4704.

⁵⁰⁹Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. *Org. Lett.* **2003**, *5*, 2997; Navarro, O.; Kelly III, R.A.; Nolan, S.P. J. Am. Chem. Soc. **2003**, *125*, 16194.

elimination to afford biaryls.⁵²⁴ Several intermediates of the oxidative coupling process have been identified by electrospray ionization mass spectrometry.⁵²⁵

A Suzuki-type coupling reaction has been reported involving acyl halides. When arylboronic acids were reacted with benzoyl chloride and PdCl₂, the product was the diaryl ketone.⁵²⁶ This coupling reaction was also accomplished using a palladium(0) catalyst.⁵²⁷ Cyclopropylboronic acids couple with benzoyl chloride, in the presence of Ag₂O and a palladium catalyst, to give the cyclopropyl ketone.⁵²⁸ A nickel catalyst has been used,⁵²⁹ and Ph₃P/Ni/C—BuLi has also been used.⁵³⁰ Arylboronic acids have also been coupled to anhydrides,⁵³¹ and the methoxy group of anisole derivatives has been replaced with phenyl using phenylboronic acid and a ruthenium catalyst.⁵³²

In a related reaction, aryltrifluoroborates PhBF $_3^+$ X⁻ (**12-28**), are coupled to aryl halides with a palladium catalyst to give the biaryl.⁵³³

OS 75, 53, 61

The coupling reactions of alkylboronic acids are covered in 13-17. OS X, 102, 467; 81, 89.

13-13 Aryl–Alkyne Coupling Reactions

Alkynyl-de-halogenation, and so on

 $ArI + RC \equiv CCu \longrightarrow ArC \equiv CR$

When aryl halides react with copper acetylides to give 1-aryl alkynes, the reaction is known as *Stephens–Castro coupling*.⁵³⁴ Both aliphatic and aromatic

⁵²⁴Moreno-Mañas, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346.

⁵²⁵Aramendia, M.A.; Lafont, F.; Moreno-Mañas, M.; Pleixats, R.; Roglans, A. J. Org. Chem. **1999**, 64, 3592.

⁵²⁶Bumagin, N.A.; Korolev, D.N. Tetrahedron Lett. 1999, 40, 3057.

⁵²⁷Haddach, M.; McCarthy, J.R. Tetrahedron Lett. 1999, 40, 3109.

⁵²⁹Leadbeater, N.E.; Resouly, S.M. Tetrahedron 1999, 55, 11889.

⁵³⁰Lipshutz, B.H.; Sclafani, J.A.; Blomgren, P.A. Tetrahedron 2000, 56, 2139.

⁵³¹Gooßen, L.J.; Ghosh, K. Angew. Chem. Int. Ed. 2001, 40, 3458.

⁵³²Kakiuchi, F.; Usai, M.; Ueno, S.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706.

⁵³³Batey, R.A.; Quach, T.D. Tetrahedron Lett. 2001, 42, 9099; Barder, T.E.; Buchwald, S.L. Org. Lett.

2004, 6, 2649; Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302. See Ito, T.; Iwai, T.; Mizuno, T.; Ishino, Y. Synlett 2003, 1435.

⁵³⁴Castro, C.E.; Stephens, R.D. J. Org. Chem. **1963**, 28, 2163; Stephens, R.D.; Castro, C.E. J. Org. Chem. **1963**, 28, 3313; Sladkov, A.M.; Ukhin, L.Yu.; Korshak, V.V. Bull. Acad. Sci. USSR., Div. Chem. Sci. **1963**, 2043. For a review, see Sladkov, A.M.; Gol'ding, I.R. Russ. Chem. Rev. **1979**, 48, 868. For an improved procedure, see Bumagin, N.A.; Kalinovskii, I.O.; Ponomarov, A.B.; Beletskaya, I.P. Doklad. Chem. **1982**, 265, 262.

⁵²⁸Chen, H.; Deng, M.-Z. Org. Lett. 2000, 2, 1649.

substituents can be attached to the alkyne unit, and a variety of aryl iodides has been used. Benzonitrile was shown to react with alkynyl zinc bromides, with a nickel catalyst and after electrolysis to give the diarylalkyne, where the cyano unit was replaced with an alkyne unit.⁵³⁵

$$Ar-X + RC \equiv CH \xrightarrow{Pd(0)} Ar-C \equiv CR$$

A palladium–catalyzed variation is also known in which an aryl halide reacts with a terminal alkyne to give 1-aryl alkynes is called the *Sonogashira coupling*.⁵³⁶ Terminal aryl alkynes react with aryl iodides and palladium(0)⁵³⁷ to give the corresponding diaryl alkyne.⁵³⁸ As with all of the metal-catalyzed reactions in this chapter, work has been done to vary reaction conditions, including the catalyst,⁵³⁹ the ligand, the solvent,⁵⁴⁰ and additives.⁵⁴¹ copper-free palladium/DABCO catalysts have been used.⁵⁴² Aryl iodides are more reactive than aryl fluorides.⁵⁴³ Alkynes can be coupled to heteroaromatic compounds via the heteroaryl halide.⁵⁴⁴ The coupling reaction has been done neat, with microwave irradiation on KF-alumina,⁵⁴⁵ and in aqueous polyethylene glycol.⁵⁴⁶ The aryl–alkyne coupling has also been done in solution with microwave irradiation.⁵⁴⁷ Sonogashira coupling

⁵⁴⁰The reaction has been done in aqueous media, see Bhattacharya, S.; Sengupta, S. *Tetrahedron Lett.* **2004**, *45*, 8733.

⁵³⁵Penney, J.M.; Miller, J.A. Tetrahedron Lett. 2004, 45, 4989.

⁵³⁶Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467; Sonogashira, K., in Trost, B.M.; Fleming, I.*Comprehensive Organic Synthesis*, Pergamon Press, NY, **1991**, Vol. 3, Chapter 2.4; Rossi, R.; Carpita, A.; Bellina, F. *Org. Prep. Proceed. Int.* **1995**, *27*, 127; Sonogashira, K., in Diederich, F.; Stang, P.J. Metal–Catalyzed Cross–Coupling Reactions, Wiley–VCH, NY, **1998**, Chapter 5.

⁵³⁷Pd/C has also been used as a catalyst, see Novák, Z.; Szabó, A.; Répási, J.; Kotschy, A. J. Org. Chem. 2003, 68, 3327.

⁵³⁸Böhm, V.P.W.; Herrmann, W.A. *Eur. J. Org. Chem.* **2000**, 3679. For an example with a CuI catalyst, see Nakamura, K.; Okubo, H.; Yamaguchi, M. *Synlett* **1999**, 549; Mori, A.; Shimada, T.; Kondo, T.; Sekiguchi, A. *Synlett* **2001**, 649.

⁵³⁹Köllhofer, A.; Pullmann, T.; Plenio, H. Angew. Chem. Int. Ed. 2003, 42, 1056; Feuerstein, M.; Berthiol, F.; Doucet, H.; Santelli, M. Org. Biomol. Chem. 2003, 1, 2235. For a reaction with a nickel catalyst, see Wang, L.; Li, P.; Zhang, Y. Chem. Commun. 2004, 514; Hundertmark, T.; Littke, A.F.; Buchwald, S.L.; Fu, G.C. Org. Lett. 2000, 2, 1729.

 ⁵⁴¹See Soheili, A.; Albaneze-Walker, J.; Murry, J.A.; Dormer, P.G.; Hughes, D.L. Org. Lett. 2003, 5, 4191;
 Sakai, N.; Annaka, K.; Konakahara, T. Org. Lett. 2004, 6, 1527; Leadbeater, N.E.; Tominack, B.J. Tetrahedron Lett. 2003, 44, 8653; Djakovitch, L.; Rollet, P. Tetrahedron Lett. 2004, 45, 1367; Hierso, J.-C.; Fihri, A.; Amardeil, R.; Meunier, P.; Doucet, H.; Santelli, M.; Ivanov, V. V. Org. Lett. 2004, 6, 3473.
 ⁵⁴²See Li, J.-H.; Zhang, X.-D.; Xie, Y.-X. Synthesis 2005, 804.

⁵⁴³See, for example, Mio, M.J.; Kopel, L.C.; Braun, J.B.; Gadzikwa, T.L.; Hull, K..; Brisbois, R.G.; Markworth, C.J.; Grieco, P.A. Org. Lett. 2002, 4, 3199.

⁵⁴⁴Elangovan, A.; Wang, Y.-H.; Ho, T.-I. Org. Lett. 2003, 5, 1841; García, D.; Cuadro, A.M.; Alvarez-Builla, J.; Vaquero, J.J. Org. Lett. 2004, 6, 4175; Wolf, C.; Lerebours, R. Org. Biomol. Chem. 2004, 2, 2161.

⁵⁴⁵Kabalka, G.W.; Wang, L.; Namboodiri, V.; Pagni, R.M. Tetrahedron Lett. 2000, 41, 5151.

⁵⁴⁶Leadbeater, N.E.; Marco, M.; Tominack, B.J. Org. Lett. 2003, 5, 3919.

⁵⁴⁷Erdélyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165; Appukkuttan, P.; Dehaen, W.; van der Eyken, E. *Eur. J. Org. Chem.* 2003, 4713.

was reported on microbeads,⁵⁴⁸ with nanoparticulate nickel powder,⁵⁴⁹ and the aryl iodide was tethered to a polymer for a solid-state reaction that included the use of microwave irradiation, and cleavage from the polymer using trifluoroacetic acid.⁵⁵⁰ Polymer supported catalysts are known.⁵⁵¹ Conversion of 1-lithioalkynes to the corresponding alkynyl zinc reagent allows coupling with aryl iodides when a palladium catalyst is used.⁵⁵² Coupling with alkynyl tin compounds is also known.⁵⁵³ The 1-lithioalkyne was directly coupled to aryl bromides in the presence of B(OiPr)₃ and a palladium catalyst,⁵⁵⁴ where an alkynylboronic acid was generated *in situ*.

A variation was reported with environmental importance, where the triphenylphosphine by-product was scavenged by addition of Merrifield resin.⁵⁵⁵ A copper-free Sonogashira coupling has been reported, in triethylamine⁵⁵⁶ and in an ionic liquid.⁵⁵⁷ A copper and amine-free reaction was reported in normal solvents, such as THF.⁵⁵⁸ An interesting example of the versatility of the coupling reaction is the coupling of propargyl bromide and an aryl iodide, in the presence of an amine, giving the aryl aminomethylalkyne.⁵⁵⁹ The coupling of 4-chloroacetophenone with 1-phenylethyne shows that the carbonyl group is compatible with this reaction.⁵⁶⁰

Diaryliodonium salts react with terminal alkynes to give the phenyl alkyne.⁵⁶¹ A variation couples the phenyl group of $Ph_2I^+OTf^-$ with an en-yne using a palladium catalyst.⁵⁶² Aryl sulfonate esters can be coupled to terminal alkynes using a palladium catalyst in polymethylhydrosiloxane.⁵⁶³ Aryl halides are coupled to alkynyl-trifluoroborates (R–C≡C–BF₃K, **12-28**) using a palladium catalyst.⁵⁶⁴ The boron trifluoride induced palladium-catalyzed cross-coupling reaction of 1-aryltriazenes with areneboronic acids has been reported.⁵⁶⁵

A variation of this aryl-alkyne coupling reaction reacted methylthioalkynes $(R-C\equiv C-SMe)$ with arylboronic acids and a palladium catalyst to give the aryl alkyne $(R-C\equiv C-Ar)$.⁵⁶⁶ 1-Trialkylsilylalkynes $(R_3Si-C\equiv C-R')$ were coupled

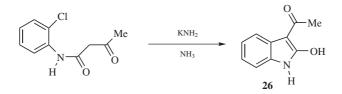
- ⁵⁴⁹Wang, M.; Li, P.; Wang, L. Synth. Commun. 2004, 34, 2803.
- ⁵⁵⁰Erdélyi, M.; Gogoll, A. J. Org. Chem. 2003, 68, 6431.
- ⁵⁵¹Lin, C.-A.; Luo, F.-T. Tetrahedron Lett. 2003, 44, 7565.
- ⁵⁵²Anastasia, L.; Negishi, E. Org. Lett. 2001, 3, 3111.
- ⁵⁵³See Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2004, 6, 2821.
- ⁵⁵⁴Castanet, A.-S.; Colobert, F.; Schlama, T. Org. Lett. 2000, 2, 3559.
- ⁵⁵⁵Lipshutz, B.H.; Blomgren, P.A. Org. Lett. 2001, 3, 1869.
- ⁵⁵⁶Méry, D.; Heuzé, K.; Astruc, D. Chem. Commun. 2003, 1934.

⁵⁵⁷In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Fukuyama, T.; Shinmen, M.; Nishitani, S.; Sato, M.; Ryu, I. Org. Lett. 2002, 4, 1691; Park, S.B.; Alper, H. Chem. Commun. 2004, 1306.

⁵⁵⁸Cheng, J.; Sun, Y.; Wang, F.; Guo, M.; Xu, J.-H.; Pan, Y.; Zhang, Z. J. Org. Chem. **2004**, 69, 5428; Urgaonkar, S.; Verkade, J.G. J. Org. Chem. **2004**, 69, 5752.

- ⁵⁵⁹Olivi, N.; Spruyt, P.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. Tetrahedron Lett. 2004, 45, 2607.
- ⁵⁶⁰Feuerstein, M.; Doucet, H.; Santelli, M. Tetrahedron Lett. 2004, 45, 8443.
- ⁵⁶¹Kang, S.-K.; Yoon, S.-K.; Kim, Y.-M. Org. Lett. 2001, 3, 2697.
- ⁵⁶²Radhakrishnan, U.; Stang, P.J. Org. Lett. 2001, 3, 859.
- ⁵⁶³Gallagher, W.P.; Maleczka, Jr., R.E. J. Org. Chem. 2003, 68, 6775.
- ⁵⁶⁴Molander, G.A.; Katona, B.W.; Machrouhi, F. J. Org. Chem. 2002, 67, 8416.
- ⁵⁶⁵Saeki, T.; Son, E.-C.; Tamao, K. Org.Lett. 2004, 6, 617.
- ⁵⁶⁶Savarin, C.; Srogl, J.; Liebeskind, L.S. Org. Lett. 2001, 3, 91.

⁵⁴⁸Liao, Y.; Fathi, R.; Reitman, M.; Zhang, Y.; Yang, Z. *Tetrahedron Lett.* **2001**, 42, 1815; Gonthier, E.; Breinbauer, R. *Synlett* **2003**, 1049.


to aryl iodides using a palladium catalyst.⁵⁶⁷ A triphenylstibine, $Ph_3Sb(OAc)_2$, was used to transfer a phenyl group to the alkyne carbon of $PhC \equiv CSiMe_3$, using palladium and CuI catalysts.⁵⁶⁸ Aryl iodides were also coupled to lithium alkynyl borate complexes, Li[R-C \equiv C-B(OR')₃, to give the aryl alkyne.⁵⁶⁹ Note that diphenylethyne was prepared from bromobenzene and 2-chloro-1-bromoethane using KOH, 18-crown-6 and a palladium catalyst.⁵⁷⁰

13-14 Arylation at a Carbon Containing an Active Hydrogen

Bis(ethoxycarbonyl)methyl-de-halogenation, and so on

Ar-Br +
$$Z \stackrel{\Theta}{\frown} Z'$$
 \longrightarrow $Z \stackrel{Ar}{\longleftarrow} Z'$

The arylation of compounds of the form ZCH_2Z' is analogous to **10-67**, where Z is as defined as an electron withdrawing group (ester, cyano, sulfonyl, etc.). Activated aryl halides generally give good results.⁵⁷¹ Even unactivated aryl halides can be employed if the reaction is carried out in the presence of a strong base, such as NaNH₂⁵⁷² or LDA. Compounds of the form ZCH_2Z' , even simple ketones⁵⁷³ and carboxylic esters have been arylated in this manner. The reaction with unactivated halides proceeds by the benzyne mechanism and represents a method for extending the malonic ester (and similar) syntheses to aromatic compounds. The base performs two functions: it removes a proton from ZCH_2Z' and catalyzes the benzyne mechanism. The reaction has been used for ring closure, as in the formation of **26**.⁵⁷⁴

⁵⁶⁷Chang, S.; Yang, S.H.; Lee, P.H. *Tetahedron Lett.* 2001, 42, 4833; Kabalka, G.W.; Wang, L.; Pagni, R.M. *Tetrahedron* 2001, 57, 8017; Denmark, S.E.; Tymonko, S.A. J. Org. Chem. 2003, 68, 9151.

⁵⁶⁸Kang, S.-K.; Ryu, H.-C.; Hong, Y-T. J. Chem. Soc. Perkin Trans. 1 2001, 736.

⁵⁷⁰Abele, E.; Abele, R.; Arsenyan, P.; Lukevics, E. Tetrahedron Lett. 2003, 44, 3911.

⁵⁷²Leake, W.W.; Levine, R. J. Am. Chem. Soc. 1959, 81, 1169, 1627.

⁵⁷³For example, see Caubere, P.; Guillaumet, G. Bull. Soc. Chim. Fr. 1972, 4643, 4649.

⁵⁷⁴Bunnett, J.F.; Kato, T.; Flynn, R.; Skorcz, J.A. J. Org. Chem. **1963**, 28, 1. For reviews, see Biehl, E.R.; Khanapure, S.P. Acc. Chem. Res. **1989**, 22, 275; Hoffmann, R.W. Dehydrobenzene and Cycloalkynes, Academic Press, NY, **1967**, pp. 150–164. See also, Kessar, S.V. Acc. Chem. Res. **1978**, 11, 283.

⁵⁶⁹Oh, C.H.; Jung, S.H. Tetrahedron Lett. 2000, 41, 8513.

⁵⁷¹There is evidence for both the S_NAr mechanism (see Leffek, K.T.; Matinopoulos-Scordou, A.E. *Can. J. Chem.* **1977**, 55, 2656, 2664) and the $S_{RN}1$ mechanism (see Zhang, X.; Yang, D.; Liu, Y.; Chen, W.; Cheng, J. *Res. Chem. Intermed.* **1989**, 11, 281).

The coupling of active methylene compounds and unactivated aryl halides can also be done with copper halide catalysts⁹³ (the *Hurtley reaction*).⁵⁷⁵ A palladium catalyst can be used for the coupling of malonate esters with unactivated aryl halides.⁵⁷⁶ Bis(sulfones), CH₂(SO₂Ar)₂, react with aryl halides in the presence of a palladium catalyst.⁵⁷⁷ Similar coupling was accomplished with CH₂(CN)₂ and a nickel catalyst.⁵⁷⁸ Malonic and β -keto esters can be arylated at the α -carbon in high yields by treatment with aryllead tricarboxylates [ArPb(OAc)₃],⁵⁷⁹ and with triphenylbismuth carbonate (Ph₃BiCO₃)⁵⁸⁰ and other bismuth reagents.⁵⁸¹ In a related process, manganese(III) acetate was used to convert a mixture of ArH and ZCH₂Z' to ArCHZZ'.⁵⁸²

The reaction of the enolate anions ketones and aldehydes, generated *in situ* by addition of a suitable base, with aryl halides can be accomplished by treatment with a palladium catalyst.⁵⁸³ Formation of an enolate anion of a conjugated ketone (cyclohexenone) via reaction with LDA (see p. 389), in the presence of Ph₃BiCl₂, leads to the α -phenyl conjugated ketone (6-phenylcyclohex-2-enone).⁵⁸⁴ An ester reacted with TiCl₄ and *N*,*N*-dimethylanline to give the para-substitution product. (Me₂N—Ar—CHRCO₂Et).⁵⁸⁵ The enolate anion of lactams will react with aryl halides in the presence of a palladium catalyst go via the 3-aryl lactam.⁵⁸⁶ When the enolate anion of a ketone is generated in the presence of a palladium catalyst and a chiral phosphine ligand, the α -aryl ketone is formed with good enantioselectivity.⁵⁸⁷

Compounds of the form CH_3Z can be arylated by treatment with an aryl halide in liquid ammonia containing Na or K, as in the formation of **27** and **28**.⁵⁸⁸

⁵⁷⁶Aramendía, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. *Tetrahedron Lett.* **2002**, *43*, 2847.

⁵⁷⁷Kashin, A.N.; Mitin, A.V.; Beletskaya, I.P.; Wife, R. Tetrahedron Lett. 2002, 43, 2539.

⁵⁷⁸Cristau, H.J.; Vogel, R.; Taillefer, M.; Gadras, A. Tetrahedron Lett. 2000, 41, 8457.

⁵⁷⁹Elliott, G.I.; Konopelski, J.P.; Olmstead, M.M. Org. Lett. 1999, 1, 1867, and Refs. 3–7 therein.

⁵⁸⁰For a review of the aryllead and arylbismuth, and related reactions, see Elliott, G.I.; Konopelski, J.P.

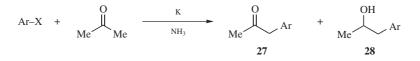
⁵⁸¹Barton, D.H.R.; Blazejewski, J.; Charpiot, B.; Finet, J.; Motherwell, W.B.; Papoula, M.T.B.; Stanforth, S.P. *J. Chem. Soc. Perkin Trans. 1* **1985**, 2667; O'Donnell, M.J.; Bennett, W.D.; Jacobsen, W.N.; Ma, Y. *Tetrahedron Lett.* **1989**, *30*, 3913.

⁵⁸²Citterio, A.; Santi, R.; Fiorani, T.; Strologo, S. J. Org. Chem. **1989**, *54*, 2703; Citterio, A.; Fancelli, D.; Finzi, C.; Pesce, L.; Santi, R. J. Org. Chem. **1989**, *54*, 2713.

⁵⁸⁴Arnauld, T.; Barton, D.H.R.; Normat, J.-F.; Doris, E. J. Org. Chem. **1999**, 64, 6915.

⁵⁸⁵Periasamy, M.; KishoreBabu N.; Jayakumar, K.N. *Tetrahedron Lett.* 2003, 44, 8939.

⁵⁸⁶Cossy, J.; de Filippis, A.; Pardo, D.G. Org. Lett. 2003, 5, 3037.


 ⁵⁷⁵See Bruggink, A.; McKillop, A. *Tetrahedron* 1975, *31*, 2607; McKillop, A.; Rao, D.P. *Synthesis* 1977,
 759; Osuka, A.; Kobayashi, T.; Suzuki, H. *Synthesis* 1983, 67; Hennessy, E.J.; Buchwald, S.L. *Org. Lett.*,
 2002, 4, 269.

Tetrahedron 2001, 57, 5683; Abramovitch, R.A.; Barton, D.H.R.; Finet, J. Tetrahedron 1988, 44, 3039.

^{2000, 122, 1360.} For a review, see Culkin, D.A.; Hartwig, J.F. Acc. Chem. Res. 2003, 36, 234.

⁵⁸⁷Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S.L. J. Am. Chem. Soc. 2002, 124, 1261.

⁵⁸⁸Rossi, R.A.; Bunnett, J.F. J. Org. Chem. 1973, 38, 3020; Bunnett, J.F.; Gloor, B.F. J. Org. Chem. 1973, 38, 4156; 1974, 39, 382.

When the solution is irradiated with near-UV light, but Na or K is omitted, the same products are obtained (though in different proportions).⁵⁸⁹ In either case, other leaving groups can be used instead of halogens (e.g., NR_3^+ , SAr) and the mechanism is the S_{RN}1 mechanism. Iron(II) salts have also been used to initiate this reaction.⁵⁹⁰ The reaction can also take place without an added initiator. The reaction of 2-fluoroanisole and KHMDS, and 4 equivalents of 2-cyanopropane, leads to substitution of the fluorine atom by CMe₂CN.⁵⁹¹ A similar reaction as reported using a palladium catalyst.⁵⁹² Nitroethane was converted to 2-phenylnitroethane using bromobenzene and a palladium catalyst.⁵⁹³

Enolate ions of ketones react with PhI in the dark.⁵⁹⁴ In this case, it has been suggested⁵⁹⁵ that initiation takes place by formation of a radical, such as **29**.

This is an SET mechanism (see p. 444). The photostimulated reaction has also been used for ring closure.⁵⁹⁶ In certain instances of the intermolecular reaction there is evidence that the leaving group exerts an influence on the product ratios, even when it has already departed at the time that product selection takes place.⁵⁹⁷

OS V, 12, 263; VI, 36, 873, 928; VII, 229.

13-15 Conversion of Aryl Substrates to Carboxylic Acids, Their Derivatives, Aldehydes, and Ketones⁵⁹⁸

⁵⁸⁹Hay, J.V.; Hudlicky, T.; Wolfe, J.F. J. Am. Chem. Soc. **1975**, 97, 374; Bunnett, J.F.; Sundberg, J.E. J. Org. Chem. **1976**, 41, 1702; Rajan, S.; Muralimohan, K. Tetrahedron Lett. **1978**, 483; Rossi, R.A.; de Rossi, R.H.; Pierini, A.B. J. Org. Chem. **1979**, 44, 2662; Rossi, R.A.; Alonso, R.A. J. Org. Chem. **1980**,

- 45, 1239; Beugelmans, R. Bull. Soc. Chim. Belg. 1984, 93, 547.
- ⁵⁹⁰Galli, C.; Bunnett, J.F. J. Org. Chem. 1984, 49, 3041.
- ⁵⁹¹Caron, S.; Vasquez, E.; Wojcik, J.M. J. Am. Chem. Soc. 2000, 122, 712.
- ⁵⁹²You, J.; Verkade, J.G. Angew. Chem. Int. Ed. 2003, 42, 5051.
- ⁵⁹³Vogl, E.M.; Buchwald, S.L. J. Org. Chem. 2002, 67, 106.
- ⁵⁹⁴Scamehorn, R.G.; Hardacre, J.M.; Lukanich, J.M.; Sharpe, L.R. J. Org. Chem. 1984, 49, 4881.

⁵⁹⁵Aoki, S.; Fujimura, T.; Nakamura, E.; Kuwjima, I. J. Am. Chem. Soc. 1988, 110, 3296.

⁵⁹⁶See Semmelhack, M.F.; Bargar, T. J. Am. Chem. Soc. **1980**, 102, 7765; Bard, R.R.; Bunnett, J.F. J. Org. Chem. **1980**, 45, 1546.

⁵⁹⁷Bard, R.R.; Bunnett, J.F.; Creary, X.; Tremelling, M.J. J. Am. Chem. Soc. **1980**, 102, 2852; Tremelling, M.J.; Bunnett, J.F. J. Am. Chem. Soc. **1980**, 102, 7375.

⁵⁹⁸For a review, see Weil, T.A.; Cassar, L.; Foà, M., in Wender, I.; Pino, P. Organic Synthesis Via Metal Carbonyls, Vol. 2, Wiley, NY, **1977**, pp. 517–543.

Alkoxycarbonyl-de-halogenation, and so on

$$ArX + CO + ROH \xrightarrow{base} ArCOOR$$

Carbonylation of aryl bromides and iodides with carbon monoxide, an alcohol, a base, and a palladium catalyst, give carboxylic esters. Even very sterically hindered alkoxides can be used to produce the corresponding ester.⁵⁹⁹ The use of H₂O, RNH₂, or an alkali metal or calcium carboxylate⁶⁰⁰ instead of ROH, gives the carboxylic acid,⁶⁰¹ amide,⁶⁰² or mixed anhydride, respectively.⁶⁰³ Heating an aryl iodide, CO in ethanol and DBU, with a palladium catalyst, gave the ethyl ester of the aryl carboxylic acid.⁶⁰⁴ A similar result was obtained when an aryl iodide was heated in ethanol with triethylamine, CO and Pd/C.⁶⁰⁵ Ester formation via carbonylation was done is supercritical CO₂ (see p. 414).⁶⁰⁶ With certain palladium catalysts, aryl chlorides⁶⁰⁷ and aryl triflates⁶⁰⁸ can also be substrates. Aryl carboxylic acids were also prepared from aryl iodides by heating in DMF with lithium formate, LiCl, acetic anhydride and a palladium catalyst.⁶⁰⁹ A silica-supported palladium reagent has been used to convert iodobenzene to butyl benzoate, in the presence of CO and butanol.⁶¹⁰ 2-Chloropyridine was converted the butyl pyridine 2-carboxylate with this procedure.⁶¹¹ Halogenated biaryls can be converted to the tricyclic ketone, 9-fluorenone, by an intramolecular carbonylation reaction with CO and a palladium catalyst.⁶¹² A surrogate reagent used instead of CO is dicobalt octacarbonyl CO₂(CO)₈.⁶¹³ Aryl chlorides have been converted to carboxylic acids by an electrochemical synthesis,⁶¹⁴ and aryl iodides to aldehydes by treatment with

⁵⁹⁹Kubota, Y.; Hanaoka, T.-a.; Takeuchi, K.; Sugi, Y. J. Chem. Soc. Chem. Commun. 1994, 1553; Antebi,
 S.; Arya, P.; Manzer, L.E.; Alper, H. J. Org. Chem. 2002, 67, 6623. For an interesting variation that generated a lactone ring, see Cho, C.S.; Baek, D.Y.; Shim, S.C. J. Heterocyclic Chem. 1999, 36, 289.
 ⁶⁰⁰Pri-Bar, I.; Alper, H. J. Org. Chem. 1989, 54, 36.

⁶⁰¹For example, see Bumagin, N.A.; Nikitin, K.V.; Beletskaya, I.P. Doklad. Chem. 1990, 312, 149.

⁶⁰²Lin, Y.-S.; Alper, H. Angew. Chem. Int. Ed. 2001, 40, 779; Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Org. Chem. 2002, 67, 6232. For another reagent that also gives amides, see Bumagin, N.A.; Gulevich, Yu.V.; Beletskaya, I.P. J. Organomet. Chem. 1985, 285, 415.

⁶⁰³For a review, see Heck, R.F. Palladium Reagents in Organic Synthesis, Academic Press, NY, 1985, pp. 348–358.

⁶⁰⁴Ramesh, C.; Kubota, Y.; Miwa, M.; Sugi, Y. Synthesis 2002, 2171.

⁶⁰⁵Ramesh, C.; Nakamura, R.; Kubota, Y.; Miwa, M.; Sugi, Y. Synthesis 2003, 501.

⁶⁰⁶Albaneze-Walker, J.; Bazaral, C.; Leavey, T.; Dormer, P.G.; Murry, J.A. Org. Lett. 2004, 6, 2097.

⁶⁰⁷Ben-David, Y.; Portnoy, M.; Milstein, D. J. Am. Chem. Soc. 1989, 111, 8742.

⁶⁰⁸Cacchi, S.; Ciattini, P.G.; Morera, E.; Ortar, G. *Tetrahedron Lett.* **1986**, 27, 3931; Kubota, Y.; Nakada, S.; Sugi, Y. *Synlett*, **1998**, 183; Garrido, F.; Raeppel, S.; Mann, A.; Lautens, M. *Tetrahedron Lett.* **2001**, 42, 265.

⁶⁰⁹Cacchi, S.; Babrizi, G.; Goggiamani, A. Org. Lett. 2003, 5, 4269.

⁶¹⁰Cai, M.-Z.; Song, C.-S.; Huang, X. J. Chem. Soc. Perkin Trans. 1, 1997, 2273.

⁶¹¹Beller, M.; Mägerlein, W.; Indolese, A.F.; Fischer, C. Synthesis 2001, 1098.

⁶¹²Campo, M.A.; Larock, R.C. Org. Lett. 2000, 2, 3675.

⁶¹³Brunet, J.; Sidot, C.; Caubere, P. J. Org. Chem. 1983, 48, 1166. See also, Foà, M.; Francalanci, F.; Bencini, E.; Gardano, A. J. Organomet. Chem. 1985, 285, 293; Kudo, K.; Shibata, T.; Kashimura, T.; Mori, S.; Sugita, N. Chem. Lett. 1987, 577.

⁶¹⁴Heintz, M.; Sock, O.; Saboureau, C.; Périchon, J. Tetrahedron 1988, 44, 1631.

CO, Bu₃SnH, and NCCMe₂N=NCMe₂CN (AIBN).⁶¹⁵ Aryl ketones can be prepared from aryltrimethylsilanes ArSiMe₃ and acyl chlorides in the presence of AlCl₃.⁶¹⁶ Aryllithium and Grignard reagents react with iron pentacarbonyl to give aldehydes ArCHO.⁶¹⁷ The reaction of CO with aryllithium may occur by electron transfer.⁶¹⁸

Aryl iodides are converted to unsymmetrical diaryl ketones on treatment with arylmercury halides and nickel carbonyl: ArI + Ar'HgX + Ni(CO)₄ \rightarrow ArCOAr'.⁶¹⁹ Aryl iodides are carbonylated to give the aryl alkyl ketone with CO and R₃In.⁶²⁰ Arylthallium bis(trifluoroacetates), ArTl(O₂CCF₃)₂ (see **12-23**), can be carbonylated with CO, an alcohol, and a PdCl₂ catalyst to give esters.⁶²¹ Organomercury compounds undergo a similar reaction.⁶²² The aryllead reagent PhPb(OAc)₃, was converted to benzophenone using NaOMe, CO and a palladium catalyst.⁶²³ Aryl iodides containing an ortho substituent with a β -cyano group that served as the source of a carbonyl group, was converted to a bicyclic ketone with a palladium catalyst at 130°C in aqueous DMF.⁶²⁴

Diaryl ketones can also be prepared by coupling aryl iodides with phenylboronic acid (**12-28**), in the presence of CO and a palladium catalyst.⁶²⁵ This reaction has been extended to heteroaromatic systems, with the preparation of phenyl 4-pyridyl ketone from phenylboronic acid and 4-iodopyridine.⁶²⁶ 2-Bromopyridine as coupled with phenylboronic acid, CO and a palladium catalyst to give phenyl 2-pyridyl ketone.⁶²⁷ An interesting reaction treated a titanocycle (**30**) with CO to give the cyclobutanone.⁶²⁸ Carbonylation of an alkyne and an aryl halide, with CO

⁶¹⁹Rhee, I.; Ryang, M.; Watanabe, T.; Omura, H.; Murai, S.; Sonoda, N. Synthesis 1977, 776; Ryu, I.; Ryang, M.; Rhee, I.; Omura, H.; Murai, S.; Sonoda, N. Synth. Commun. 1984, 14, 1175 and cited references. For other acylation reactions, see Tanaka, M. Synthesis 1981, 47; Bull. Chem. Soc. Jpn. 1981, 54, 637; Bumagin, N.A.; Ponomarov, A.B.; Beletskaya, I.P. Tetrahedron Lett. 1985, 26, 4819; Koga, T.; Makinouchi, S.; Okukado, N. Chem. Lett. 1988, 1141; Echavarren, A.M.; Stille, J.K. J. Am. Chem. Soc. 1988, 110, 1557; Hatanaka, Y.; Hiyama, T. Chem. Lett. 1989, 2049.

⁶²⁰Lee, P.H.; Lee, S.W.; Lee, K. *Org. Lett.* **2003**, *5*, 1103. With a palladium catalyst, see Pena, M.A.; Sestelo, J.P.; Sarandeses, L.A. *Synthesis* **2003**, 780. For a reaction that used R_4 InLi, see Lee, S.W.; Kee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, S.; Lee, P.H. *J. Org. Chem.* **2004**, *69*, 4852.

623Kang, S.-K.; Ryu, H.-C.; Choi, S.-C. Synth. Commun. 2001, 31, 1035.

⁶¹⁵Ryu, I.; Kusano, K.; Masumi, N.; Yamazaki, H.; Ogawa, A.; Sonoda, N. *Tetrahedron Lett.* **1990**, *31*, 6887.

⁶¹⁶Dey, K.; Eaborn, C.; Walton, D.R.M. Organomet. Chem. Synth. 1971, 1, 151.

 ⁶¹⁷Ryang, M.; Rhee, I.; Tsutsumi, S. *Bull. Chem. Soc. Jpn.* **1964**, *37*, 341; Giam, C.; Ueno, K. J. Am. Chem. Soc. **1977**, *99*, 3166; Yamashita, M.; Miyoshi, K.; Nakazono, Y.; Suemitsu, R. Bull. Chem. Soc. Jpn. **1982**, *55*, 1663. For another method, see Gupton, J.T.; Polk, D.E. Synth. Commun. **1981**, *11*, 571.
 ⁶¹⁸Nudelman, N.S.; Doctorovich, F. Tetrahedron **1994**, *50*, 4651.

⁶²¹ Larock, R.C.; Fellows, C.A. J. Am. Chem. Soc. 1982, 104, 1900.

⁶²²Baird Jr., W.C.; Hartgerink, R.L.; Surridge, J.H. J. Org. Chem. 1985, 50, 4601.

⁶²⁴ Pletnev, A.A.; Larock, R.C. J. Org. Chem. 2002, 67, 9428.

⁶²⁵ Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1993, 34, 7595.

⁶²⁶Couve-Bonnaire, S.; Caprentier, J.-F.; Mortreux, A.; Castanet, Y. Tetrahedron Lett. 2001, 42, 3689.

⁶²⁷Maerten, E.; Hassouna, F.; Couve-Bonnaire, S.; Mortreux, A.; Carpentiere, J.-F.; Castanet, Y. *Synlett* **2003**, 1874.

⁶²⁸ Carter, C.A.G.; Greidanus, G.; Chen, J.-X.; Stryker, J.M. J. Am. Chem. Soc. 2001, 123, 8872.

CHAPTER 13

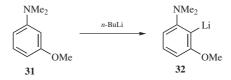
and palladium and copper catalysts, gave the alkynyl ketone $RC \equiv C(C=O)Ar$.⁶²⁹

Note that seleno esters (ArCOSeAr) were prepared from aryl iodides, CO, PhSeSnBu₃, and a palladium catalyst.⁶³⁰

13-16 Arylation of Silanes

Silyl and Silyloxy-de-halogenation, and so on

Ar-X + $Ar'SiR_2$ \longrightarrow $Ar-SiR_3$


In the presence of transition-metal catalysts, such as palladium, trialkoxysilanes $[HSi(OR)_3]$ react with aryl halides to give the corresponding arylsilane.⁶³¹ This transformation is an alternative to the Suzuki coupling (**13-10**).⁶³² A similar reaction was reported using a rhodium catalyst.⁶³³ Arylsilanes can be coupled to aryl iodides in aqueous media.⁶³⁴ Arylsilanes react with alkyl halides to give the corresponding arene, in the presence of a palladium catalyst.⁶³⁵ Suzuki-type coupling using Me₃SiSiMe₃ leads to aryl silanes.⁶³⁶

An alternative approach reacts aryllithium reagents with siloxanes [Si(OR)₄], to give the aryl derivative $ArSi(OR)_3$.⁶³⁷

HYDROGEN AS LEAVING GROUP⁶³⁸

13-17 Alkylation and Arylation

Alkylation or Alkyl-de-hydrogenation, and so on

629 Ahmed, M.S.M.; Mori, A. Org. Lett. 2003, 5, 3057.

⁶³⁰Nishiyama, Y.; Tokunaga, K.; Kawamatsu, H.; Sonoda, N. Tetrahedron Lett. 2002, 43, 1507.

631 Manoso, A.S.; DeShong, P. J. Org. Chem. 2001, 66, 7449.

⁶³²DeShong, P.; Handy, C.J.; Mowery, M.W. Pure Appl. Chem. 2000, 72, 1655; Seganish, W.M.; DeShong, P. Org. Lett. 2004, 6, 4379.

633 Murata, M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 2002, 4, 1843.

634 Denmark, S.E.; Ober, M.H. Org. Lett. 2003, 5, 1357.

⁶³⁵Mowery, M.E.; DeShong, P. J. Org. Chem. 1999, 64, 3266; Lee, J.-y.; Fu, G.C. J. Am. Chem. Soc. 2003, 125, 5616.

⁶³⁶Gooßen, L.J.; Ferwanah, A.-R.S. Synlett 2000, 1801.

⁶³⁷Manoso, A.S.; Ahn, C.; Soheili, A.; Handy, C.J.; Correia, R.; Seganish, W.M.; DeShong, P. J. Org. Chem. 2004, 69, 8305.

⁶³⁸For reviews, see Chupakhin, O.N.; Postovskii, I.Ya. *Russ. Chem. Rev.* **1976**, 45, 454. For a review of reactivity and mechanism in these cases, see Chupakhin, O.N.; Charushin, V.N.; van der Plas, H.C. *Tetrahedron* **1988**, 44, 1.

The alkylation of aromatic rings was introduced, in part, in section 10-57. The reaction of an aromatic ring with an organolithium reagent can give H-Li exchange to form an aryllithium. This reaction tends to be slow in the absence of diamine additives or if there are activating substituents on the aryl halide.⁶³⁹ When heteroatom substituents are present as in **31**, however, the reaction is facile and the lithium goes into the 2 position (as in **32**).⁶⁴⁰ This regioselectivity can be quite valuable synthetically, and is now known as *directed ortho metalation*⁶⁴¹ (see **10-57**). Lithiation reactions do not necessarily rely on a complex-induced proximity effect.⁶⁴² With TMEDA/n-butyllithium-mediate arene lithiation reactions, the viability of directive effects (complex-induced proximate effects) has been questioned,⁶⁴³ although it is not clear if this extends to other systems (particularly when there is a strong coordinating group, such as carbamate).⁶⁴⁴ The 2 position is much more acidic than the 3 position (see Table 8.1), but a negative charge at C-3 is in a more favorable position to be stabilized by the Li⁺. Formation of the ortho arylmagnesium compound has been accomplished with bases of the form $(R_2N)_2Mg$.⁶⁴⁵ Note that H-Li exchange can be faster than Cl-Li exchange. Treatment of 2-chloro-5phenylpyridine with tert-butyllithium leads to lithiation on the phenyl ring rather than Li-Cl exchange, and subsequent treatment with dimethyl sulfate gave 2-chloro-5-(2-methylphenyl)pyridine.⁶⁴⁶ Heteroaromatic rings do react, however. The reaction of 2-chloropyridine with 3 equivalents of butyllithium-Me₂NCH₂CH₂OLi and then iodomethane gave 2-chloro-6-methylpyridine.⁶⁴⁷ The reaction of N-triisopropylsilyl indole with tert-butyllithium and then iodomethane gave the 3-methyl derivative.⁶⁴⁸ Furfural (furan 2-carboxaldehyde) reacts with aryl iodides in the presence of a palladium catalyst to give the 5-arylfuran 2-carboxaldehyde.⁶⁴⁹

Benzene, naphthalene, and phenanthrene have been alkylated with alkyllithium reagents, though the usual reaction with these reagents is **12-22**,⁶⁵⁰ and Grignard reagents have been used to alkylate naphthalene.⁶⁵¹ The addition–elimination

⁶⁴¹For a reviews of directed ortho metallation, see Snieckus, V. Chem. Rev. 1990, 90, 879; Gschwend,

645 Eaton, P.E.; Lee, C.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016.

⁶⁴⁷Choppin, S. Gros, P.; Fort, Y. Org. Lett. 2000, 2, 803.

⁶³⁹See, for example, Becht, J.-M.; Gissot, A.; Wagner, A.; Misokowski, C. *Tetrahedron Lett.* 2004, 45, 9331.

⁶⁴⁰Slocum, D.W.; Jennings, C.A. J. Org. Chem. **1976**, 41, 3653. However, the regioselectivity can depend on reaction conditions: See Meyers, A.I.; Avila, W.B. Tetrahedron Lett. **1980**, 3335.

H.W.; Rodriguez, H.R. Org. React. 1979, 26, 1. See Green, L.; Chauder, B.; Snieckus, V. J. Heterocylic

Chem. 1999, 36, 1453. Also see Green, L.; Chauder, B.; Snieckus, V. J. Heterocyclic Chem. 1999, 36, 1453. See Slocum, D.W.; Dietzel, P. Tetrahedron Lett. 1999, 40, 1823.

⁶⁴²Chadwick, S.T.; Rennels, R.A.; Rutherford, J.L.; Collum, D.B. J. Am. Chem. Soc. 2000, 122, 8640; Collum, D.B. Acc. Chem. Res. 1992, 25, 448.

⁶⁴³Chadwick, S.T.; Rennels, R.A.; Rutherford, J.L.; Collum, D.B. J. Am. Chem. Soc. 2000, 122, 8640.

⁶⁴⁴ Hay, D. R.; Song, Z.; Smith, S.G.; Beak, P. J. Am. Chem. Soc. 1988, 110, 8145.

⁶⁴⁶Fort, Y. Rodriguez, A.L. J. Org. Chem. 2003, 68, 4918.

⁶⁴⁸Matsuzono, M.; Fukuda, T.; Iwao, M. Tetrahedron Lett. 2001, 42, 7621.


⁶⁴⁹McClure, M.S.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M.H.; Roschangar, F. Org. Lett. 2001, 3, 1677.

⁶⁵⁰ Eppley, R.L.; Dixon, J.A. J. Am. Chem. Soc. 1968, 90, 1606.

⁶⁵¹Bryce-Smith, D.; Wakefield, B.J. Tetrahedron Lett. 1964, 3295.

CHAPTER 13

mechanism apparently applies in these cases too. A protected form of benzaldehyde (protected as the benzyl imine) has been similarly alkylated at the *ortho*-position with butyllithium.⁶⁵²

The alkylation of heterocyclic nitrogen compounds⁶⁵³ with alkyllithium reagents is called *Ziegler alkylation*. Aryllithium reagents give arylation. The reaction occurs by an addition–elimination mechanism and the adduct can be isolated.⁶⁵⁴ Upon heating of the adduct, elimination of LiH occurs and an alkylated product is obtained. With respect to the 2-carbon the first step is the same as that of the S_NAr mechanism. The difference is that the unshared pair of electrons on the nitrogen combines with the lithium, so the extra pair of ring electrons has a place to go: it becomes the new unshared pair on the nitrogen. Heteroaromatic compounds can be alkylated. Pyrrole, for example, reacts with an allylic halide and zinc to give primarily the 3-substituted pyrrole.⁶⁵⁵

Mercuration of aromatic compounds⁶⁵⁶ can be accomplished with mercuric salts, most often $Hg(OAc)_2^{657}$ to give ArHgOAc. This is ordinary electrophilic aromatic substitution and takes place by the arenium ion mechanism (p. 657).⁶⁵⁸ Aromatic compounds can also be converted to arylthallium bis(trifluoroacetates) ArTl(OOCCF₃)₂ by treatment with thallium(III) trifluoroacetate⁶⁵⁹ in trifluoroacetic acid.⁶⁶⁰ These arylthallium compounds can be converted to phenols, aryl iodides or fluorides (**12-31**), aryl cyanides (**12-34**), aryl nitro compounds,⁶⁶¹ or aryl esters

⁶⁵⁴See, for example, Armstrong, D.R.; Mulvey, R.E.; Barr, D.; Snaith, R.; Reed, D. J. Organomet. Chem. **1988**, 350, 191.

655 Yadav, J.S.; Reddy, B.V.S.; Reddy, P.M.; Srinivas, Ch. Tetrahedron Lett. 2002, 43, 5185.

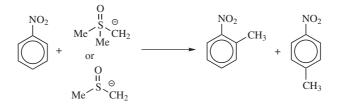
⁶⁵⁶For reviews, see Larock, R.C. Organomercury Compounds in Organic Synthesis, Springer, NY, **1985**, pp. 60–97; Wardell, J.L., in Zuckerman, J.J. Inorganic Reactions and Methods, Vol. 11, VCH, NY, **1988**, pp. 308–318.

⁶⁵⁷For a review of mercuric acetate, see Butler, R.N., in Pizey, J.S. *Synthetic Reagents*, Vol. 4, Wiley, NY, *1981*, pp. 1–145.

⁶⁵⁸For a review, see Taylor, R., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, vol. 13, Elsevier, NY, *1972*, pp. 186–194. An alternative mechanism, involving radial cations, has been reported: Courtneidge, J.L.; Davies, A.G.; McGuchan, D.C.; Yazdi, S.N. *J. Organomet. Chem. 1988*, *341*, 63.

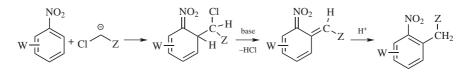
⁶⁵⁹For a review of this reagent, see Uemura, S., in Pizey, J.S. *Synthetic Reagents*, Vol. 5, Wiley, NY, *1983*, pp. 165–241.

⁶⁶⁰Taylor, E.C.; Kienzle, F.; McKillop, A. Org. Synth. VI, 826; Taylor, E.C.; Katz, A.H.; Alvarado, S.I.; McKillop, A. J. Organomet. Chem. 1985, 285, C9. For reviews, see Usyatinskii, A.Ya.; Bregadze, V.I. Russ. Chem. Rev. 1988, 57, 1054; Uemura, S., in Hartley, F.R.; Patai, S. The Chemistry of the Metal-Carbon Bond, Vol. 4, Wiley, NY, pp. 473–538.


⁶⁶¹Uemura, S.; Toshimitsu, A.; Okano, M. Bull. Chem. Soc. Jpn. 1976, 49, 2582.

⁶⁵²Flippin, L.A.; Carter, D.S.; Dubree, N.J.P. Tetrahedron Lett. 1993, 34, 3255.

⁶⁵³For a review of substitution by carbon groups on a nitrogen heterocycle, see Vorbrüggen, H.; Maas, M. *Heterocycles*, **1988**, 27, 2659. For a related review, see Comins, D.L.; O'Connor, S. *Adv. Heterocycl. Chem.* **1988**, 44, 199.


(12-33). The mechanism of thallation appears to be complex, with electrophilic and electron-transfer mechanisms both taking place.⁶⁶² Transient metalated aryl complexes can be formed that react with another aromatic compound. Aryl iodides reacted with benzene to form a biaryl in the presence of an iridium catalyst.⁶⁶³ Aniline derivatives reacted with TiCl₄ to give the para-homo coupling product (R₂N–Ar–Ar–NR₂).⁶⁶⁴

Aromatic nitro compounds can be methylated with dimethyloxosulfonium methylid⁶⁶⁵ or the methylsulfinyl carbanion (obtained by treatment of DMSO with a strong base):⁶⁶⁶

The latter reagent also methylates certain heterocyclic compounds (e.g., quinoline) and certain fused aromatic compounds (e.g., anthracene, phenanthrene).^{666,667} The reactions with the sulfur carbanions are especially useful, since none of these substrates can be methylated by the Friedel–Crafts procedure (**11-10**). It has been reported⁶⁶⁸ that aromatic nitro compounds can also be alkylated, not only with methyl but with other alkyl and substituted alkyl groups as well, in ortho and para positions, by treatment with an alkyllithium compound (or, with lower yields, a Grignard reagent), followed by an oxidizing agent, such as Br₂ or DDQ (p. 1710).

A different kind of alkylation of nitro compounds uses carbanion nucleophiles that have a chlorine at the carbanionic carbon. The following process takes place:⁶⁶⁹

662 Lau, W.; Kochi, J.K. J. Am. Chem. Soc. 1984, 106, 7100; 1986, 108, 6720.

⁶⁶³Fujita, K.-i.; Nonogawa, M.; Yamaguchi, R. Chem. Commun. 2004, 1926.

⁶⁶⁴Periasamy, M.; Jayakumar, K.N.; Bharathi, P. J. Org. Chem. 2000, 65, 3548.

666 Russell, G.A.; Weiner, S.A. J. Org. Chem. 1966, 31, 248.

⁶⁶⁷Argabright, P.A.; Hofmann, J.E.; Schriesheim, A. J. Org. Chem. 1965, 30, 3233; Trost, B.M. Tetrahedron Lett. 1966, 5761; Yamamoto, Y.; Nisimura, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1971, 44, 541.

668 Kienzle, F. Helv. Chim. Acta 1978, 61, 449.

⁶⁶⁹In some cases, the intermediate bearing the CHCl(Z) unit has been isolated: Stahly, G.P.; Stahly, B.C.; Maloney, J.R. *J. Org. Chem.* **1988**, *53*, 690.

⁶⁶⁵ Traynelis, V.J.; McSweeney, J.V. J. Org. Chem. 1966, 31, 243.

This type of process is called *vicarious nucleophilic substitution of hydrogen*.⁶⁷⁰ The Z group is electron -withdrawing (e.g., SO₂R, SO₂OR, SO₂NR₂, COOR, or CN); it stabilizes the negative charge. The carbanion attacks the activated ring ortho or para to the nitro group.⁶⁷¹ Hydride ion H⁻ is not normally a leaving group, but in this case the presence of the adjacent Cl allows the hydrogen to be replaced. Hence, Cl is a "vicarious" leaving group. Other leaving groups have been used (e.g., OMe, SPh), but Cl is generally the best. Many groups W in ortho, meta, or para positions do not interfere. The reaction is also successful for di- and trinitro compounds, for nitronaphthalenes,⁶⁷² and for many nitro heterocycles. Z—^{Θ}CR–Cl may also be used.⁶⁷³ When Br₃C⁻ or Cl₃C⁻ is the nucleophile the product is ArCHX₂, which can easily be hydrolyzed to ArCHO.⁶⁷⁴ This is therefore an indirect way of formylating an aromatic ring containing one or more NO₂ groups, which cannot be done by any of the formylations mentioned in Chapter 11 (**11-1-11-18**).

Replacement of an amino group is possible. When aniline derivatives were treated with allyl bromide and *tert*-butyl nitrite (*t*-BuONO), the aryl–allyl coupling product was formed (Ar–NH₂ \rightarrow Ar–CH₂CH=CH₂).⁶⁷⁵

For the introduction of CH_2SR groups into phenols, see **11-23**. See also **14-19**. OS II, 517.

13-18 Amination of Nitrogen Heterocycles

Amination or Amino-de-hydrogenation

$$($$
 + NH₂⁻ $($ + NH₂⁻ $($ + H₂ $($ +

Pyridine and other heterocyclic nitrogen compounds can be aminated with alkali-metal amides in a process called the *Chichibabin reaction*.⁶⁷⁶ The attack is always in the 2 position unless both such positions are filled, in which case the 4 position is attacked. Substituted alkali-metal amides (e.g., RNH⁻ and R₂N⁻) have also been used. The mechanism is probably similar to that of **13-17** The existence of intermediate ions, such as **33**

⁶⁷²Mąkosza, M.; Danikiewicz, W.; Wojciechowski, K. Liebigs Ann. Chem. 1987, 711.

 ⁶⁷⁰Goliński, J.; Makosza, M. *Tetrahedron Lett.* 1978, 3495. For reviews, see Makosza, M. *Synthesis* 1991, 103; *Russ. Chem. Rev.* 1989, 58, 747; Makosza, M.; Winiarski, J. *Acc. Chem. Res.* 1987, 20, 282.

⁶⁷¹For a discussion of the mechanism, of vicarious nucleophilic aromatic substitution, see Mąkosza, M.; Lemek, T.; Kwast, A.; Terrier, F. J. Org. Chem. **2002**, 67, 394.

⁶⁷³See Mudryk, B.; Makosza, M. Tetrahedron 1988, 44, 209.

⁶⁷⁴Makosza, M.; Owczarczyk, Z. J. Org. Chem. 1989, 54, 5094. See also, Makosza, M.; Winiarski, J. Chem. Lett. 1984, 1623.

⁶⁷⁵Ek, F.; Axelsson, O.; Wistrand, L.-G.; Frejd, T. J. Org. Chem. 2002, 67, 6376.

⁶⁷⁶For reviews, see Vorbrüggen, H. Adv. Heterocycl. Chem. **1990**, 49, 117; McGill, C.K.; Rappa, A. Adv. Heterocycl. Chem. **1988**, 44, 1; Pozharskii, A.F.; Simonov, A.M.; Doron'kin, V.N. Russ. Chem. Rev. **1978**, 47, 1042.

(from quinoline) has been demonstrated by NMR spectra.⁶⁷⁷ A pyridyne type of intermediate was ruled out by several observations including the facts that 3-ethylpyridine gave 2-amino-3-ethylpyridine⁶⁷⁸ and that certain heterocycles that cannot form an aryne could nevertheless be successfully aminated. Nitro compounds do not give this reaction,⁶⁷⁹ but they have been aminated (ArH \rightarrow ArNH₂ or ArNHR) via the vicarious substitution principle (see **13-17**), using 4-amino- or 4-alkylamino-1,2,4-triazoles as nucleophiles.⁶⁸⁰ The vicarious leaving group in this case is the triazole ring. Note, however, that 3-nitropyridine was converted to 6-amino-3-nitropyridine by reaction with KOH, hydroxylamine and ZnCl₂.⁶⁸¹

Analogous reactions have been carried out with hydrazide ions, R_2NNH^{-} .⁶⁸² A mixture of NO₂ and O₃, with excess NaHSO₃, converted pyridine to 3-aminopyridine.⁶⁸³ For other methods of aminating aromatic rings, see **11-6**.

There are no Organic Syntheses references, but see OS V, 977, for a related reaction.

NITROGEN AS LEAVING GROUP

The diazonium group can be replaced by a number of groups.⁶⁸⁴ Some of these are nucleophilic substitutions, with S_N1 mechanisms (p. 432), but others are free-radical reactions and are treated in Chapter 14. The solvent in all these reactions is usually water. With other solvents it has been shown that the S_N1 mechanism is favored by solvents of low nucleophilicity, while those of high nucleophilicity favor free-radical mechanisms.⁶⁸⁵ The N_2^+ group⁶⁸⁶ can be replaced by Cl⁻, Br⁻, and CN⁻, by a nucleophilic mechanism (see OS IV, 182), but the Sandmeyer reaction is much more useful (14-20). Transition metal catalyzed reactions are known involving aryl-diazonium salts, and diazonium variants of the Heck reaction (13-10) and Suzuki coupling (13-12) were discussed previously. As mentioned on p. 866 it must be

⁶⁷⁷Zoltewicz, J.A.; Helmick, L.S.; Oestreich, T.M.; King, R.W.; Kandetzki, P.E. J. Org. Chem. **1973**, 38, 1947; Woźniak, M.; Baránski, A.; Nowak, K.; van der Plas, H.C. J. Org. Chem. **1987**, 52, 5643.

⁶⁷⁸Ban, Y.; Wakamatsu, T. Chem. Ind. (London) 1964, 710.

⁶⁷⁹See, for example, Levitt, L.S.; Levitt, B.W. Chem. Ind. (London) 1975, 520.

⁶⁸⁰ Katritzky, A.R.; Laurenzo, K.S. J. Org. Chem. 1986, 51, 5039; 1988, 53, 3978.

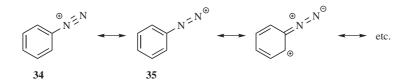
⁶⁸¹Bakke, J.M.; Svensen, H.; Trevisan, R. J. Chem. Soc. Perkin Trans. 1 2001, 376.

⁶⁸²Kauffmann, T.; Hansen, J.; Kosel, C.; Schoeneck, W. Liebigs Ann. Chem. 1962, 656, 103.

⁶⁸³Suzuki, H.; Iwaya, M.; Mori, T. Tetrahedron Lett. 1997, 38, 5647.

⁶⁸⁴For a review of such reactions, see Wulfman, D.S., in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, pt. 1, Wiley, NY, **1978**, pp. 286–297.

⁶⁸⁵Szele, I.; Zollinger, H. Helv. Chim. Acta 1978, 61, 1721.


⁶⁸⁶For a discussion of the global and local electrophilicity patterns of diazonium ions, see Pérez, P. J. Org. Chem. **2003**, 68, 5886.

kept in mind that the N_2^+ group can activate the removal of another group on the ring. In a few cases, nitrogen groups, such as nitro or ammonium can be replaced.

13-19 Diazotization

$$Ar - NH_2 + HONO \longrightarrow Ar - \overset{\odot}{N} \equiv N$$

When primary aromatic amines are treated with nitrous acid, diazonium salts are formed.⁶⁸⁷ The reaction also occurs with aliphatic primary amines, but aliphatic diazonium ions are extremely unstable, even in solution (see p. 500). Aromatic diazonium ions are more stable, because of the resonance interaction between the nitrogens and the ring:

Incidentally, **34** contributes more to the hybrid than **35**, as shown by bond-distance measurements.⁶⁸⁸ In benzenediazonium chloride, the C–N distance is ~1.42 Å, and the N–N distance ~1.08 Å,⁶⁸⁹ which values fit more closely to a single and a triple bond than to two double bonds (see Table 1.5). Even aromatic diazonium salts are stable only at low temperatures, usually only $< 5^{\circ}$ C, although more stable ones, such as the diazonium salt obtained from sulfanilic acid, are stable up to 10 or 15°C. Diazonium salts are usually prepared in aqueous solution and used without isolation,⁶⁹⁰ although it is possible to prepare solid diazonium salts if desired (see **13-23**). The stability of aryl diazonium salts can be increased by crown ether complexion.⁶⁹¹

For aromatic amines, the reaction is very general. Halogen, nitro, alkyl, aldehyde, sulfonic acid, and so on, groups do not interfere. Since aliphatic amines do not react with

⁶⁸⁷For reviews, see, in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, Wiley, NY, **1978**, the articles by Hegarty, A.F. pt. 2, pp. 511–591, and Schank, K. pt. 2, pp. 645–657; Godovikova, T.I.; Rakitin, O.A.; Khmel'nitskii, L.I. *Russ. Chem. Rev.* **1983**, *52*, 440; Challis, B.C.; Butler, A.R., in Patai, S. *The Chemistry of the Amino Group*; Wiley, NY, **1968**, pp. 305–320. For a review with respect to heterocyclic amines, see Butler, A.R. *Chem. Rev.* **1975**, *75*, 241.

⁶⁸⁸For a review of diazonium salt structures, see Sorriso, S., in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, pt. 1, Wiley, NY, **1978**, pp. 95–105.

⁶⁸⁹Rømming, C. Acta Chem. Scand. 1959, 13, 1260; 1963, 17, 1444; Sorriso, S., in Patai, S. The Chemistry of Diazonium and Diazo Groups, pt. 1, Wiley, NY, 1978, p. 98; Ball, R.G.; Elofson, R.M. Can. J. Chem. 1985, 63, 332.

⁶⁹⁰For a review of reactions of diazonium salts, see Wulfman, D.S., in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, pt. 1, Wiley, NY, **1978**, pp. 247–339.

⁶⁹¹Korzeniowski, S.H.; Leopold, A.; Beadle, J.R.; Ahern, M.F.; Sheppard, W.A.; Khanna, R.K.; Gokel, G.W. *J. Org. Chem.* **1981**, *46*, 2153, and references cited therein. For reviews, see Bartsch, R.A., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C* pt. 1, Wiley, NY, **1983**, pp. 889–915; Bartsch, R.A. *Prog. Macrocyclic Chem.* **1981**, *2*, 1.

nitrous acid below a pH \sim 3, it is even possible, by working at a pH \sim 1, to diazotize an aromatic amine without disturbing an aliphatic amino group in the same molecule.⁶⁹²

EtOOC— CH_2 — NH_2 + HONO \longrightarrow EtOOC—CH=N=N

If an aliphatic amino group is a to a COOR, CN, CHO, COR, and so on, and has an a hydrogen, treatment with nitrous acid gives not a diazonium salt, but a *diazo compound*.⁶⁹³ Such diazo compounds can also be prepared, often more conveniently, by treatment of the substrate with isoamyl nitrite and a small amount of acid.⁶⁹⁴ Certain heterocyclic amines also give diazo compounds rather than diazonium salts.⁶⁹⁵

Despite the fact that diazotization takes place in acid solution, the actual species attacked is not the salt of the amine, but the small amount of free amine present.⁶⁹⁶ It is because aliphatic amines are stronger bases than aromatic ones that at pH values < 3 there is not enough free amine present for the former to be diazotized, while the latter still undergo the reaction. In dilute acid the actual attacking species is N₂O₃, which acts as a carrier of NO⁺. Evidence is that the reaction is second order in nitrous acid and, at sufficiently low acidities, the amine does not appear in the rate expression.⁶⁹⁷ Under these conditions the mechanism is

Step 1 2 HONO
$$\xrightarrow{\text{slow}}$$
 N₂O₃ + H₂O

Step 2
$$\operatorname{Ar}\overline{\operatorname{NH}}_2 + \operatorname{N}_2\operatorname{O}_3 \xrightarrow{H \otimes } \operatorname{Ar}\overline{-\operatorname{N}}_{H}\overline{\operatorname{N}} = \operatorname{O} + \operatorname{NO}_{\overline{2}}$$

Step 3 Ar - N - N = O $\xrightarrow{-H^+}$ Ar - N - N = OH H H

Step 4 Ar - N - N = O $\xrightarrow{\text{tautom.}}$ Ar - N = N - O - H

33

Step 5 $Ar - N = N - O - H \xrightarrow{H^+} Ar - N \equiv N + H_2O$

692Kornblum, N.; Iffland, D.C. J. Am. Chem. Soc. 1949, 71, 2137.

⁶⁹³For a monograph on diazo compounds, see Regitz, M.; Maas, G. *Diazo Compounds*, Academic Press, NY, **1986**. For reviews, see, in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, pt. 1, Wiley, NY, **1978**, the articles by Regitz, M. pt. 2, pp. 659–708, 751–820, and Wulfman, D.S.; Linstrumelle, G.; Cooper, C.F. pt. 2, pp. 821–976.

⁶⁹⁴Takamura, N.; Mizoguchi, T.; Koga, K.; Yamada, S. *Tetrahedron* 1975, 31, 227.

⁶⁹⁵Butler, R.N., in Patai, S. The Chemistry of the Amino Group, Wiley, NY, 1968, p. 305.

⁶⁹⁶Challis, B.C.; Ridd, J.H. *J. Chem. Soc.* **1962**, 5197, 5208; Challis, B.C.; Larkworthy, L.F.; Ridd, J.H. *J. Chem. Soc.* **1962**, 5203.

⁶⁹⁷Hughes, E.D.; Ingold, C.K.; Ridd, J.H. J. Chem. Soc. **1958**, 58, 65, 77, 88; Hughes, E.D.; Ridd, J.H. J. Chem. Soc. **1958**, 70, 82.

There exists other evidence for this mechanism.⁶⁹⁸ Other attacking species can be NOCl, $H_2NO_2^+$, and at high acidities even NO⁺. Nucleophiles (e.g., Cl⁻, SCN⁻, thiourea) catalyze the reaction by converting the HONO to a better electrophile (e.g., $HNO_2 + Cl^- + H^+ \rightarrow NOCl + H_2O$).⁶⁹⁹

N-Aryl ureas are converted to the aryldiazonium nitrate upon treatment with NaNO₂ and H_2SO_4 in dioxane⁷⁰⁰ or with DMF–NO₂ in DMF.⁷⁰¹

There are many preparations of diazonium salts listed in *Organic Syntheses*, but they are always prepared for use in other reactions. We do not list them here, but under reactions in which they are used. The preparation of aliphatic diazo compounds can be found in OS **III**, 392; **IV**, 424. See also, OS **VI**, 840.

13-20 Hydroxylation of Aryldiazonium Salts

Hydroxy-de-diazoniation

 $ArN_2^{\dagger} + H_2O \longrightarrow ArOH$

This reaction is formally analogous to 13-1, but with a N_2^+ leaving group rather than a halide. Water is usually present whenever diazonium salts are made, but at these temperatures $(0-5^{\circ}C)$ the reaction proceeds very slowly. When it is *desired* to have OH replace the diazonium group, the excess nitrous acid is destroyed and the solution is usually boiled. Some diazonium salts require even more vigorous treatment, for example, boiling with aqueous sulfuric acid or with trifluoroacetic acid containing potassium trifluoroacetate.⁷⁰² The reaction can be performed on solutions of any diazonium salts, but hydrogen sulfates are preferred to chlorides or nitrates, since in these cases there is competition from the nucleophiles Cl^- or NO_3^- . A better method, which is faster, avoids side reactions, takes place at room temperature, and gives higher yields consists of adding Cu₂O to a dilute solution of the diazonium salt dissolved in a solution containing a large excess of Cu(NO₃)₂.⁷⁰³ Aryl radicals are intermediates when this method is used. It has been shown that aryl radicals are at least partly involved when ordinary hydroxy-de-diazoniation is carried out in weakly alkaline aqueous solution.⁷⁰⁴ Decomposition of arenediazonium tetrafluoroborates in F₃CSO₂OH gives aryl triflates directly, in high yields.⁷⁰⁵

OS I, 404; III, 130, 453, 564; V, 1130.

- ⁷⁰⁰Zhang, Z.; Zhang, Q.; Zhang, S.; Liu,, X.; Zhao, G. Synth. Commun. 2001, 31, 329.
- ⁷⁰¹Zhang, O.Z.; Zhang, S.; Zhang, J. Synth. Commun. 2001, 31, 1243.
- ⁷⁰²Horning, D.E.; Ross, D.A.; Muchowski, J.M. Can. J. Chem. 1973, 51, 2347.

⁶⁹⁸For discussions, see Williams, D.L.H. Nitrosation, Cambridge University Press, Cambridge, 1988, pp. 95–109; Ridd, J.H. Q. Rev. Chem. Soc. 1961, 15, 418, p. 422.

⁶⁹⁹Williams, D.L.H. Nitrosation; Cambridge University Press, Cambridge, 1988, pp. 84–93.

⁷⁰³Cohen, T.; Dietz, Jr., A.G.; Miser, J.R. J. Org. Chem. **1977**, 42, 2053.

⁷⁰⁴Dreher, E.; Niederer, P.; Rieker, A.; Schwarz, W.; Zollinger, H. Helv. Chim. Acta 1981, 64, 488.

⁷⁰⁵Yoneda, N.; Fukuhara, T.; Mizokami, T.; Suzuki, A. Chem. Lett. 1991, 459.

13-21 Replacement by Sulfur-Containing Groups

Mercapto-de-diazoniation, and so on

These reactions are convenient methods for incorporating a sulfur-containing group onto an aromatic ring. With Ar'S⁻, diazosulfides Ar–N=N–S–Ar' are intermediates,⁷⁰⁶which can in some cases be isolated.⁷⁰⁷ Thiophenols can be made as shown above, but more often the diazonium ion is treated with EtO–CSS⁻ or S₂²⁻, which give the expected products, and these are easily convertible to thiophenols. Aryldiazonium salts are prepared by the reaction of an aniline derivative with an alkyl nitrite (RONO), and when formed in the presence of dimethyl disulfide (MeS–SMe), the product is the thioether, Ar–S–Me.⁷⁰⁸ Aryl triflates have been converted to the aryl thiol using NaST(P5) and a palladium catalyst, followed by treatment with tetrabutylammonium fluoride⁷⁰⁹ (see also, **14-22**).

OS II, 580; III, 809 (but see OS V, 1050). Also see, OS II, 238.

13-22 Replacement by Iodine

Iodo-de-diazoniation

 $ArN_2^+ + I^- \longrightarrow ArI$

One of the best methods for the introduction of iodine into aromatic rings (see **13-7**) is the reaction of diazonium salts with iodide ions. Analogous reactions with chloride, bromide, and fluoride ions give poorer results, and **14-20** and **13-23** are preferred for the preparation of aryl chlorides, bromides, and fluorides. However, when other diazonium reactions are carried out in the presence of these ions, halides are usually side products. Aniline has also been converted to fluorobenzene by treatment with *t*-BuONO and SiF₄ followed by heating.⁷¹⁰ A related reaction between PhN=N-NC₄H₈ and iodine gave iodobenzene.⁷¹¹

The actual attacking species is probably not only I^- if it is I^- at all. The iodide ion is oxidized (by the diazonium ion, nitrous acid, or some other oxidizing agent)

⁷⁰⁶Abeywickrema, A.N.; Beckwith, A.L.J. J. Am. Chem. Soc. 1986, 108, 8227, and references cited therein.

⁷⁰⁷See, for example, Price, C.C.; Tsunawaki, S. J. Org. Chem. 1963, 28, 1867.

⁷⁰⁸Allaire, F.S.; Lyga, J.W. Synth. Commun. 2001, 31, 1857.

⁷⁰⁹Arnould, J.C.; Didelot, M.; Cadilhac, C.; Pasquet, M.J. Tetrahedron Lett. 1996, 37, 4523.

⁷¹⁰Tamura, M.; Shibakami, M.; Sekiya, A. Eur. J. Org. Chem. 1998, 725.

⁷¹¹Wu, Z.; Moore, J.S. Tetrahedron Lett. 1994, 35, 5539.

to iodine, which in a solution containing iodide ions is converted to I_3^- ; this is the actual attacking species, at least partly. This was shown by isolation of $ArN_2^+ I_3^-$ salts, which, on standing, gave ArI.⁷¹² From this, it can be inferred that the reason the other halide ions give poor results is not that they are poor nucleophiles but that they are poor reducing agents (compared with iodide). There is also evidence for a free-radical mechanism.⁷¹³

The hydroxyl group of a phenol can be replaced with iodine. The reaction of phenol with a boronic ester and a palladium catalyst, followed by reaction with NaI and chloramine-T converts phenol to iodobenzene.⁷¹⁴

OS II, 351, 355, 604; V, 1120.

13-23 The Schiemann Reaction

Fluoro-de-diazoniation (overall transformation)

 $ArN_2^+ BF_4^- \longrightarrow ArF + N_2 BF_3$

Heating of diazonium fluoroborates (the *Schiemann* or *Balz–Schiemann reaction*) is by far the best way of introducing fluorine into an aromatic ring.⁷¹⁵ In the most common procedure, the fluoroborate salts are prepared by diazotizing as usual with nitrous acid and HCl and then adding a cold aqueous solution of NaBF₄, HBF₄, or NH₄BF₄. A precipitate forms, which is dried, and the salt is heated in the dry state. These salts are unusually stable for diazonium salts, and the reaction is usually successful. In general, any aromatic amine that can be diazotized will form a BF₄⁻ salt, usually with high yields. The diazonium fluoroborates can be formed directly from primary aromatic amines with *tert*-butyl nitrite and BF₃–etherate.⁷¹⁶ The reaction has also been carried out on ArN₂⁺ PF₆⁻, ArN₂⁺ SbF₆⁻, and ArN₂⁺ AsF₆⁻ salts, in many cases with better yields.⁷¹⁷ Aryl chlorides and bromides are more commonly prepared by the Sandmeyer reaction (**14-20**). In an alternative procedure, aryl fluorides have been prepared by treatment of aryltriazenes Ar–N=N–NR₂ with 70% HF in pyridine.⁷¹⁸

The mechanism is of the S_N1 type. That aryl cations are intermediates was shown by the following experiments:⁷¹⁹ Aryl diazonium chlorides are known to

⁷¹²Carey, J.G.; Millar, I.T. Chem. Ind. (London) 1960, 97.

 ⁷¹³Singh, P.R.; Kumar, R. Aust. J. Chem. 1972, 25, 2133; Kumar, R.; Singh, P.R. Tetrahedron Lett. 1972, 613; Meyer, G.; Rössler, K.; Stöcklin, G. J. Am. Chem. Soc. 1979, 101, 3121; Packer, J.E.; Taylor, R.E.R.

Aust. J. Chem. 1985, 38, 991; Abeywickrema, A.N.; Beckwith, A.L.J. J. Org. Chem. 1987, 52, 2568.

⁷¹⁴Thompson, A.L.S.; Kabalka, G.W.; Akula, M.R.; Huffman, J.W. Synthesis 2005, 547.

⁷¹⁵For a review, see Suschitzky, H. Adv. Fluorine Chem. **1965**, 4, 1.

⁷¹⁶Doyle, M.P.; Bryker, W.J. J. Org. Chem. **1979**, 44, 1572.

 ⁷¹⁷Rutherford, K.G.; Redmond, W.; Rigamonti, J. J. Org. Chem. 1961, 26, 5149; Sellers, C.; Suschitzky,
 H. J. Chem. Soc. C 1968, 2317.

⁷¹⁸Rosenfeld, M.N.; Widdowson, D.A. J. Chem. Soc. Chem. Commun. **1979**, 914. For another alternative procedure, see Yoneda, N.; Fukuhara, T.; Kikuchi, T.; Suzuki, A. Synth. Commun. **1989**, 19, 865.

⁷¹⁹See also, Swain, C.G.; Sheats, J.E.; Harbison, K.G. J. Am. Chem. Soc. **1975**, 97, 783, 796; Becker, H.G.O.; Israel, G. J. Prakt. Chem. **1979**, 321, 579.

arylate other aromatic rings by a free-radical mechanism (see **13-27**). In radical arylation it does not matter whether the other ring contains electron-withdrawing or electron-donating groups; in either case a mixture of isomers is obtained, since the attack is not by a charged species. If an aryl radical were an intermediate in the Schiemann reaction and the reaction were run in the presence of other rings, it should not matter what kinds of groups were on these other rings: Mixtures of biaryls should be obtained in all cases. But if an aryl cation is an intermediate in the Schiemann reaction, compounds containing meta-directing groups, that is, meta directing for *electrophilic* substitutions, should be meta-arylated and those containing ortho–para-directing groups should be ortho– and para arylated, since an aryl cation should behave in this respect like any electrophile (see Chapter 11). Experiments have shown⁷²⁰ that such orientation is observed, demonstrating that the Schiemann reaction has a positively charged intermediate. The attacking species, in at least some instances, is not F⁻ but BF₄^{-.721}

OS II, 188, 295, 299; V, 133.

13-24 Conversion of Amines to Azo Compounds

N-Arylimino-de-dihydro-bisubstitution

 $ArNH_2 + Ar'NO \longrightarrow Ar - N = N - Ar'$

Aromatic nitroso compounds combine with primary arylamines in glacial acetic acid to give symmetrical or unsymmetrical azo compounds (the *Mills reaction*).⁷²² A wide variety of substituents may be present in both aryl groups. Unsymmetrical azo compounds have also been prepared by the reaction between aromatic nitro compounds ArNO₂ and *N*-acyl aromatic amines Ar'NHAc.⁷²³ The use of phase-transfer catalysis increased the yields.

13-25 Methylation, Vinylation, and Arylation of Diazonium Salts

Methyl-de-diazoniation, and so on

 $ArN_2^+ + Me_4Sn \xrightarrow{Pd(OAc)_2} ArMe$

A methyl group can be introduced into an aromatic ring by treatment of diazonium salts with tetramethyltin and a palladium acetate catalyst.⁷²⁴ The reaction has been performed with Me, Cl, Br, and NO₂ groups on the ring. A vinylic group can

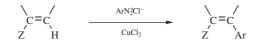
⁷²⁰Makarova, L.G.; Matveeva, M.K. *Bull. Acad. Sci. USSR Div. Chem. Sci.* **1958**, 548; Makarova, L.G.; Matveeva, M.K.; Gribchenko, E.A. *Bull. Acad. Sci. USSR Div. Chem. Sci.* **1958**, 1399.

⁷²¹Swain, C.G.; Rogers, R.J. J. Am. Chem. Soc. 1975, 97, 799.

⁷²²For a review, see Boyer, J.H., in Feuer, H. *The Chemistry of the Nitro and Nitroso Groups*, pt. 1, Wiley, NY, **1969**, pp. 278–283.

⁷²³Ayyangar, N.R.; Naik, S.N.; Srinivasan, K.V. Tetrahedron Lett. 1989, 30, 7253.

⁷²⁴Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1983, 48, 1333.


be introduced with CH_2 =CHSnBu₃. When an aryl amine is treated with *tert*-butyl hyponitrite (*t*-BuONO) and allyl bromide, the nitrogen is displaced to the give allyl–aryl compound.⁷²⁵

Aryl diazonium salts can be used coupled with alkenes in a Heck-like reaction (**12-15**).⁷²⁶ Other reactive aryl species also couple with aryldiazonium salts in the presence of a palladium catalyst.⁷²⁷ A Suzuki type coupling (**13-9**) has also been reported using arylboronic acids, aryldiazonium salts and a palladium catalyst.⁷²⁸

Aryltrifluoroborates (**12-28**) react with aryldiazonium salts in the presence of a palladium catalyst to give the corresponding biaryl.⁷²⁹ Arylborate esters also reacat using a palladium catlsyt, and the aryl dizaonium unit reacts faster than an aryl halide.⁷³⁰

13-26 Arylation of Activated Alkenes by Diazonium Salts: Meerwein Arylation

Arylation or Aryl-de-hydrogenation

Alkenes activated by an electron-withdrawing group (Z may be C=C, halogen, C=O, Ar, CN, etc.) can be arylated by treatment with a diazonium salt and a cupric chloride⁷³¹ catalyst. This is called the *Meerwein*

$$\begin{array}{c} I & I \\ Z - C - C - C - A_{I} \\ I & I \\ CI & H \end{array}$$

*arylation reaction.*⁷³² Addition of ArCl to the double bond (to give) is a side reaction (**15-46**). In an improved procedure, an arylamine is treated with an alkyl nitrite (generating ArN_2^+ *in situ*) and a copper(II) halide in the presence of the alkene.⁷³³

The mechanism is probably of the free-radical type, with AR $^{\bullet}$ (36) forming as in 14-20, and then halogen transfer to give 37 or elimination to give 38.⁷³⁴

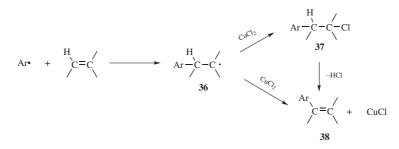
⁷²⁵Ek, F.; Wistrand, L.-G.; Frejd, T. J. Org. Chem. 2003, 68, 1911.

⁷²⁶Sengupta, S.; Bhattacharya, S. J. Chem. Soc. Perkin Trans. 1 1993, 1943.

⁷²⁷Darses, S.; Genêt, J.-P.; Brayer, J.-L.; Demoute, J.-P. *Tetrahedron Lett.* **1997**, *38*, 4393.

⁷²⁸Darses, S.; Jeffery, T.; Genêt, J.-P.; Brayer, J.-L.; Demoute, J.-P. Tetrahedron Lett. 1996, 37, 3857.

⁷²⁹Darses, S.; Michaud, G.; Genêt, J.-P. Eur. J. Org. Chem. 1999, 1875.


⁷³⁰Willis, D.M.; Strongin, R.M. Tetahedron Lett. 2000, 41, 6271.

⁷³¹FeCl₂ is also effective: Ganushchak, N.I.; Obushak, N.D.; Luka, G.Ya. J. Org. Chem. USSR 1981, 17, 765.

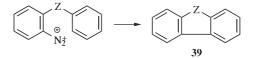
⁷³²For reviews, see Dombrovskii, A.V. Russ. Chem. Rev., **1984**, 53, 943; Rondestvedt, Jr., C.S. Org. React., **1976**, 24, 225.

⁷³³Doyle, M.P.; Siegfried, B.; Elliott, R.C.; Dellaria Jr., J.F. J. Org. Chem. 1977, 42, 2431.

 ⁷³⁴Dickerman, S.C.; Vermont, G.B. J. Am. Chem. Soc. 1962, 84, 4150; Morrison, R.T.; Cazes, J.; Samkoff, N.; Howe, C.A. J. Am. Chem. Soc. 1962, 84, 4152.

The radical **36** can react with cupric chloride by two pathways, one of which leads to addition and the other to substitution. Even when the addition pathway is taken, however, the substitution product may still be formed by subsequent elimination of HCl. Note that radical reactions are presented in Chapter 14, but the coupling of an alkene with an aromatic compound containing a leaving group prompted its placement here. Note also the similarity to the Heck reaction in **13-10**.

A variation of this reaction uses a palladium–copper catalyst on Montmorillonite clay. When aniline reacted with methyl acrylate in acetic acid and the Pd–Cu–Montmorillonite K10, PhCH=CHCO₂Me was obtained.⁷³⁵


OS IV, 15.

13-27 Arylation of Aromatic Compounds by Diazonium Salts

Arylation or Aryl-de-hydrogenation

ArH + Ar'N₂⁺ X⁻ \longrightarrow Ar—Ar'

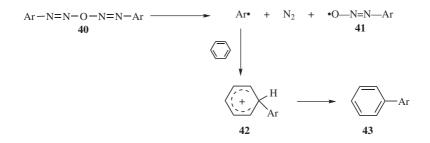
When the normally acidic solution of a diazonium salt is made alkaline, the aryl portion of the diazonium salt can couple with another aromatic ring. Known as the *Gomberg* or *Gomberg–Bachmann reaction*,⁷³⁶ it has been performed on several types of aromatic rings and on quinones. Yields are not high (usually <40%) because of the many side reactions undergone by diazonium salts, though higher yields have been obtained under phase-transfer conditions.⁷³⁷ The conditions of the Meerwein reaction (**13-26**), treatment of the solution with a copper-ion catalyst, have also been used, as has the addition of sodium nitrite in Me₂SO (to benzene diazonium fluoroborate in DMSO).⁷³⁸

⁷³⁵Waterlot, C.; Couturier, D.; Rigo, B. Tetrahedron Lett. 2000 41, 317.

⁷³⁶For reviews, see Bolton, R.; Williams, G.H. *Chem. Soc. Rev.*, **1986**, *15*, 261; Hey, D.H. *Adv. Free-Radical Chem.* **1966**, 2, 47. For a review applied to heterocyclic substrates, see Vernin, G.; Dou, H.J.; Metzger, J. *Bull. Soc. Chim. Fr.* **1972**, 1173.

⁷³⁷Beadle, J.R.; Korzeniowski, S.H.; Rosenberg, D.E.; Garcia-Slanga, B.J.; Gokel, G.W. J. Org. Chem. **1984**, 49, 1594.

⁷³⁸Kamigata, N.; Kurihara, T.; Minato, H.; Kobayashi, M. Bull. Chem. Soc. Jpn. 1971, 44, 3152.


When the Gomberg–Bachmann reaction is performed intramolecularly as in the formation of **39**, either by the alkaline solution or by the copper-ion procedure, it is called the *Pschorr ring closure*⁷³⁹ and yields are usually somewhat higher. Still higher yields have been obtained by carrying out the Pschorr reaction electrochemically.⁷⁴⁰ The Pschorr reaction has been carried out for Z = CH=CH, CH_2CH_2 , NH, C=O, CH₂, and quite a few others. A rapid and convenient way to carry out the Pschorr synthesis is to diazotize the amine substrate with isopropyl nitrite in the presence of sodium iodide, in which case the ring-closed product is formed in one step.⁷⁴¹

Other compounds with nitrogen–nitrogen bonds have been used instead of diazonium salts. Among these are *N*-nitroso amides [ArN(NO)COR], triazenes,⁷⁴² and azo compounds. Still another method involves treatment of an aromatic primary amine directly with an alkyl nitrite in an aromatic substrate as solvent.⁷⁴³

In each case, the mechanism involves generation of an aryl radical from a covalent azo compound. In acid solution, diazonium salts are ionic and their reactions are polar. When they cleave, the product is an aryl cation (see p. 856). However, in neutral or basic solution, diazonium ions are converted to covalent compounds, and these cleave to give free radicals (Ar• and Z•). Note that radical reactions are presented in Chapter 14, but the coupling of an aromatic ring with an aromatic compound containing a leaving group prompted its placement here. Note the similarity to the Suzuki reaction in 13-12.

$$Ar = N = N = Z$$
 $Ar \bullet + N \equiv N + Z \bullet$

Under Gomberg–Bachmann conditions, the species that cleaves is the anhydride, $40.^{744}$

⁷³⁹For a review, see Abramovitch, R.A. Adv. Free-Radical Chem. 1966, 2, 87.

⁷⁴⁰Elofson, R.M.; Gadallah, F.F. J. Org. Chem. 1971, 36, 1769.

 ⁷⁴¹Chauncy, B.; Gellert, E. Aust. J. Chem. 1969, 22, 993. See also, Duclos, Jr., R.I.; Tung, J.S.; Rappoport, H. J. Org. Chem. 1984, 49, 5243.

⁷⁴²See, for example, Patrick, T.B.; Willaredt, R.P.; DeGonia, D.J. J. Org. Chem. **1985**, 50, 2232; Butler, R.N.; O'Shea, P.D.; Shelly, D.P. J. Chem. Soc. Perkin Trans. 1, **1987**, 1039.

⁷⁴³Cadogan, J.I.G. J. Chem. Soc. **1962**, 4257; Fillipi, G.; Vernin, G.; Dou, H.J.; Metzger, J.; Perkins, M.J. Bull. Soc. Chim. Fr. **1974**, 1075.

⁷⁴⁴Rüchardt, C.; Merz, E. *Tetrahedron Lett.* **1964**, 2431; Eliel, E.L.; Saha, J.G.; Meyerson, S. J. Org. Chem. **1965**, 30, 2451.

The aryl radical thus formed attacks the substrate to give the intermediate **42** (see p. 940), from which the radical **41** abstracts hydrogen to give the product, **43**. *N*-Nitroso amides probably rearrange to *N*-acyloxy compounds (**44**), which cleave to give aryl radicals.⁷⁴⁵ There is evidence that the reaction with alkyl nitrites also involves attack by aryl radicals.⁷⁴⁶

$$2 \xrightarrow{N \xrightarrow{0}}_{Ar} \xrightarrow{N \xrightarrow{0}}_{C} R \longrightarrow 2 \xrightarrow{0}_{C-R} \xrightarrow{0}_{C-R} \xrightarrow{Ar + Ar - N = N - O}_{Ar - N = N - O} \xrightarrow{0}_{Ar - N = N - O}_{44} + \xrightarrow{0}_{N_2} \xrightarrow{0}_{R} \xrightarrow{0}_{C - R}_{R}$$

The Pschorr reaction can take place by two different mechanisms, depending on conditions: (1) attack by an aryl radical (as in the Gomberg–Bachmann reaction) or (2) attack by an aryl cation (similar to the S_N1 mechanism discussed on p. 857).⁷⁴⁷ Under certain conditions the ordinary Gomberg–Bachmann reaction can also involve attack by aryl cations.⁷⁴⁸

OS I, 113; IV, 718.

13-28 Aryl Dimerization With Diazonium Salts

De-diazonio-coupling; Arylazo-de-diazonio-substitution

$$2 \operatorname{Ar} N_2^+ \xrightarrow{Cu^+} \operatorname{Ar} - \operatorname{Ar} + 2 \operatorname{N}_2 \text{ or } \operatorname{Ar} - \operatorname{N} - \operatorname{Ar} + \operatorname{N}_2$$

When diazonium salts are treated with cuprous ion (or with copper and acid, in which case it is called the *Gatterman method*), two products are possible. If the ring contains electron-withdrawing groups, the main product is the biaryl, but the presence of electron-donating groups leads mainly to the azo compound. This reaction is different from **13-27** (and from **19-14**) in that *both* aryl groups in the product originate from ArN_2^+ , that is, hydrogen is not a leaving group in this reaction. The mechanism probably involves free radicals.⁷⁴⁹

OS I, 222; IV, 872. Also see, OS IV, 273.

⁷⁴⁵Cadogan, J.I.G.; Murray, C.D.; Sharp, J.T. J. Chem. Soc. Perkin Trans. 2, 1976, 583, and references cited therein.

⁷⁴⁶Gragerov, I.P.; Levit, A.F. J. Org. Chem. USSR 1968, 4, 7.

⁷⁴⁷For an alternative to the second mechanism, see Gadallah, F.F.; Cantu, A.A.; Elofson, R.M. J. Org. Chem. **1973**, *38*, 2386.

⁷⁴⁸For examples; see Kobori, N.; Kobayashi, M.; Minato, H. Bull. Chem. Soc. Jpn. **1970**, 43, 223; Cooper, R.M.; Perkins, M.J. Tetrahedron Lett. **1969**, 2477; Burri, P.; Zollinger, H. Helv. Chim. Acta **1973**, 56, 2204; Eustathopoulos, H.; Rinaudo, J.; Bonnier, J.M. Bull. Soc. Chim. Fr. **1974**, 2911. For a discussion, see Zollinger, H. Acc. Chem. Res. **1973**, 6, 335, 338.

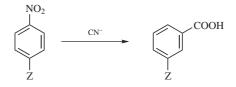
⁷⁴⁹See Cohen, T.; Lewarchik, R.J.; Tarino, J.Z. J. Am. Chem. Soc. 1974, 96, 7753.

13-29 Replacement of Nitro

Alkyl-de-nitration, Hydroxy and alkoxy-de-nitration, Halo-de-nitration

Ar-NO₂ → Ar-R

In some cases, the nitrogen group of an aromatic nitro compound can be replaced with an alkyl group. The reaction of 1,4-dinitrobenzene with potassium *tert*-butoxide in the presence of BEt₃, for example, gave 4-ethylnitrobenzene.⁷⁵⁰


Other nucleophiles can replace a nitrogen-containing group. The reaction of hydroxide with Ar–Y, where Y = nitro,⁷⁵¹ azide, NR_3^+ , and so on gives the corresponding phenol. This latter reaction works with alkoxide nucleophiles to give the corresponding aryl ether. The nitro can be replaced with chloro by use of NH_4Cl , PCl_5 , $SOCl_2$, HCl, Cl_2 , or CCl_4 . Some of these reagents operate only at high temperatures and the mechanism is not always nucleophilic substitution. Activated aromatic nitro compounds can be converted to fluorides with fluoride ion.⁷⁵²

The reaction of vinyl nitro compounds (C=C-NO₂) and aryl iodide to give the styrene compound (C=C-Ar) was reported using BEt₃ and exposure to air.⁷⁵³

REARRANGEMENTS

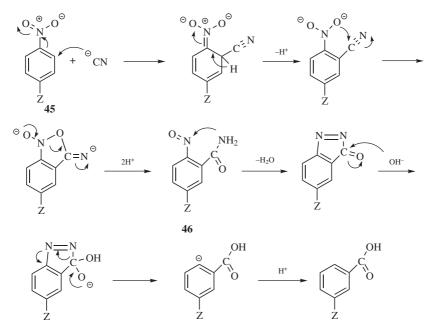
13-30 The von Richter Rearrangement

Hydro-de-nitro-cine-substitution

When aromatic nitro compounds are treated with cyanide ion, the nitro group is displaced and a carboxyl group enters with cine substitution (p. 860), always ortho to the displaced group, never meta or para. The scope of this reaction, called the *von Richter rearrangement*, is variable.⁷⁵⁴ As with other nucleophilic aromatic substitutions, the reaction gives best results when electron-withdrawing groups are in ortho and para positions, but yields are low, usually <20% and never >50%.

⁷⁵⁰Palani, N.; Jayaprakash, K.; Hoz, S. J. Org. Chem. 2003, 68, 4388.

⁷⁵¹For a convenient way of achieving this conversion, see Knudsen, R.D.; Snyder, H.R. J. Org. Chem. **1974**, *39*, 3343.


⁷⁵²Attiná, M.; Cacace, F.; Wolf, A.P. J. Chem. Soc. Chem. Commun. **1983**, 108; Clark, J.H.; Smith, D.K. Tetrahedron Lett. **1985**, 26, 2233; Suzuki, H.; Yazawa, N.; Yoshida, Y.; Furusawa,O.; Kimura, O. Bull. Chem. Soc. Jpn. **1990**, 63, 2010; Effenberger, F.; Streicher, W. Chem. Ber. **1991**, 124, 157.

⁷⁵³Liu, J.-T.; Jang, Y.-J.; Shih, Y.-K.; Hu, S.-R.; Chu, C.-M.; Yao, C.-F. J. Org. Chem. 2001, 66, 6021.

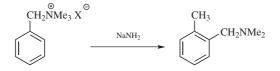
⁷⁵⁴For a review, see Shine, H.J. Aromatic Rearrangements, Elsevier, NY, 1967, pp. 326–335.

928 AROMATIC SUBSTITUTION, NUCLEOPHILIC AND ORGANOMETALLIC

At one time it was believed that a nitrile, ArCN, was an intermediate, since cyanide is the reagent and nitriles are hydrolyzable to carboxylic acids under the reaction conditions (**16-4**). However, a remarkable series of results proved this belief to be in error. Bunnett and Rauhut demonstrated⁷⁵⁵ that α -naphthyl cyanide is *not* hydrolyzable to α -naphthoic acid under conditions at which β -nitronaphthalene undergoes the von Richter rearrangement to give α -naphthoic acid. This proved that the nitrile cannot be an intermediate. It was subsequently demonstrated that N₂ is a major product of the reaction.⁷⁵⁶ It had previously been assumed that all the nitrogen in the reaction was converted to ammonia, which would be compatible with a nitrile intermediate, since ammonia is a hydrolysis product of nitriles. At the same time it was shown that NO₂⁻ is not a major product. The discovery of nitrogen indicated that a nitrogen–nitrogen bond must be formed during the course of the reaction. A mechanism in accord with all the facts was proposed by Rosenblum:⁷⁵⁶

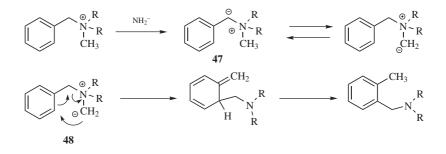
Note that **46** is a stable compound; hence it should be possible to prepare it independently and to subject it to the conditions of the von Richter rearrangement. This was done and the correct products are obtained.⁷⁵⁷ Further evidence is that when **45** (Z = Cl or Br) was treated with cyanide in H₂¹⁸O, half the oxygen in the product was labeled, showing that one of the oxygens of the carboxyl group came from the nitro group and one from the solvent, as required by this mechanism.⁷⁵⁸

⁷⁵⁵Bunnett, J.F.; Rauhut, M.M. J. Org. Chem. 1956, 21, 934, 944.


⁷⁵⁶Rosenblum, M. J. Am. Chem. Soc. 1960, 82, 3796.

⁷⁵⁷Ibne-Rasa, K.M.; Koubek, E. J. Org. Chem. 1963, 28, 3240.

⁷⁵⁸Samuel, D. J. Chem. Soc. **1960**, 1318. For other evidence, see Cullen, E.; L'Ecuyer, P. Can. J. Chem. **1961**, 39, 144, 155, 382; Ullman, E.F.; Bartkus, E.A. Chem. Ind. (London) **1962**, 93.


CHAPTER 13

13-31 The Sommelet–Hauser Rearrangement

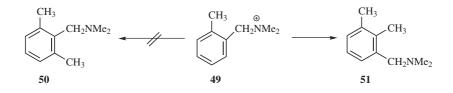
Benzylic quaternary ammonium salts, when treated with alkali-metal amides, undergo a rearrangement called the *Sommelet–Hauser rearrangement*.⁷⁵⁹ Since the product is a benzylic tertiary amine, it can be further alkylated and the product again subjected to the rearrangement. This process can be continued around the ring until an ortho position is blocked.⁷⁶⁰

The rearrangement occurs with high yields and can be performed with various groups present in the ring.⁷⁶¹ The reaction is most often carried out with three methyl groups on the nitrogen, but other groups can also be used, though if a β -hydrogen is present, Hofmann elimination (**17-7**) often competes. The *Stevens rearrangement* (**18-21**) is also a competing process.⁷⁶² When both rearrangements are possible, the Stevens is favored at high temperatures and the Sommelet–Hauser at low temperatures.⁷⁶³ The mechanism is

The benzylic hydrogen is most acidic and is the one that first loses a proton to give the ylid **47**. However, **48**, which is present in smaller amount, is the species

⁷⁵⁹For reviews, see Pine, S.H. Org. React., **1970**, 18, 403; Lepley, A.R.; Giumanini, A.G. Mech. Mol. Migr. **1971**, 3, 297; Wittig, G. Bull. Soc. Chim. Fr. **1971**, 1921; Stevens, T.S.; Watts, W.E. Selected Molecular Rearrangements, Van Nostrand-Reinhold, Princeton, **1973**, pp. 81–88; Shine, H.J.Aromatic Rearrangements, Elsevier, NY, **1967**, pp. 316–326. Also see, Klunder, J.M. J. Heterocyclic Chem. **1995**, 32, 1687.

⁷⁶⁰Beard, W.Q.; Hauser, C.R. J. Org. Chem. 1960, 25, 334.


⁷⁶¹Jones, G.C.; Beard, W.Q.; Hauser, C.R. J. Org. Chem. 1963, 28, 199.

⁷⁶²For a method that uses nonbasic conditions, and gives high yields of the Sommelet–Hauser product, with little or no Stevens rearrangement, see Nakano, M.; Sato, Y. *J. Org. Chem.* **1987**, *52*, 1844; Shirai, N.; Sato, Y. *J. Org. Chem.* **1988**, *53*, 194.

⁷⁶³Wittig, G.; Streib, H. Liebigs Ann. Chem. 1953, 584, 1.

930 AROMATIC SUBSTITUTION, NUCLEOPHILIC AND ORGANOMETALLIC

that undergoes the rearrangement, shifting the equilibrium in its favor. This mechanism is an example of a [2,3] signatropic rearrangement (see **18-35**). Another mechanism that might be proposed is one in which a methyl group actually breaks away (in some form) from the nitrogen and then attaches itself to the ring. That this is not so was shown by a product study.⁷⁶⁴ If the second mechanism were true, **49** should give **50**, but the first mechanism predicts the formation of **51**, which is what was actually obtained.⁷⁶⁵

The mechanism as we have pictured it can lead only to an ortho product. However, a small amount of para product has been obtained in some cases.⁷⁶⁶ A mechanism⁷⁶⁷ in which there is a dissociation of the ArC–N bond (similar to the ion-pair mechanism of the Stevens rearrangement, p. 1622) has been invoked to explain the para products that are observed.

Sulfur ylids containing a benzylic group (analogous to 48) undergo an analogous rearrangement.⁷⁶⁸

OS IV, 585.

13-32 Rearrangement of Aryl Hydroxylamines

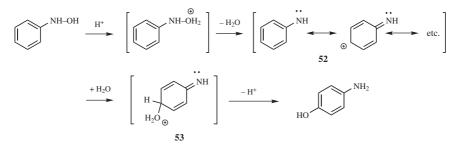
1/C-Hydro-5/N-hydroxy-interchange

Aryl hydroxylamines treated with acids rearrange to aminophenols.⁷⁶⁹ Although this reaction (known as the *Bamberger rearrangement*) is similar in appearance to

⁷⁶⁶Pine, S.H. Tetrahedron Lett. 1967, 3393; Pine, S.H. Org. React. 1970, 18, 403, p. 418.

⁷⁶⁴For other evidence for the mechanism given, see Hauser, C.R.; Van Eenam, D.N. J. Am. Chem. Soc. **1957**, 79, 5512; Jones, F.N.; Hauser, C.R. J. Org. Chem. **1961**, 26, 2979; Puterbaugh, W.H.; Hauser, C.R. J. Am. Chem. Soc. **1964**, 86, 1105; Pine, S.H.; Sanchez, B.L. Tetrahedron Lett. **1969**, 1319; Shirai, N.; Watanabe, Y.; Sato, Y. J. Org. Chem. **1990**, 55, 2767.

⁷⁶⁵Kantor, S.W.; Hauser, C.R. J. Am. Chem. Soc. 1951, 73, 4122.

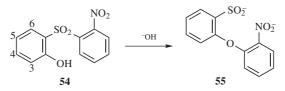

⁷⁶⁷Bumgardner, C.L. J. Am. Chem. Soc. 1963, 85, 73.

⁷⁶⁸See Block, E. Reactions of Organosulfur Compounds, Academic Press, NY, 1978, pp. 118–124.

⁷⁶⁹For a review, see Shine, H.J. Aromatic Rearrangements, Elsevier, NY, 1967, pp. 182–190.

CHAPTER 13

11-28–11-32, the attack on the ring is not electrophilic but nucleophilic. The rearrangement is intermolecular, with the following mechanism:

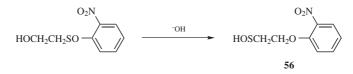

Among the evidence⁷⁷⁰ for this mechanism are the facts that other products are obtained when the reaction is run in the presence of competing nucleophiles, for example, *p*-ethoxyaniline when ethanol is present, and that when the para position is blocked, compounds similar to **53** are isolated. In the case of 2,6-dimethylphenylhydroxylamine, the intermediate nitrenium ion **52** was trapped, and its lifetime in solution was measured.⁷⁷¹ The reaction of **52** with water was found to be diffusion controlled.²⁸⁸

OS IV, 148.

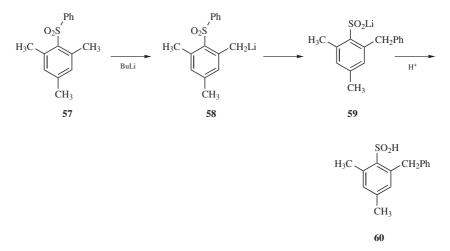
13-33 The Smiles Rearrangement

The *Smiles rearrangement* actually comprises a group of rearrangements that follow the pattern given above.⁷⁷² A specific example is the reaction of **54** with hydroxide to give **55**.

Smiles rearrangements are simply intramolecular nucleophilic substitutions. In the example given, SO_2Ar is the leaving group and ArO^- the nucleophile, and the nitro group serves to activate its ortho position. Halogens also serve as activating


 ⁷⁷⁰For additional evidence, see Sone, T.; Hamamoto, K.; Seiji, Y.; Shinkai, S.; Manabe, O. J. Chem. Soc. Perkin Trans. 2 1981, 1596; Kohnstam, G.; Petch, W.A.; Williams, D.L.H. J. Chem. Soc. Perkin Trans. 2 1984, 423; Sternson, L.A.; Chandrasakar, R. J. Org. Chem. 1984, 49, 4295, and references cited therein.
 ⁷⁷¹Fishbein, J.C.; McClelland, R.A. J. Am. Chem. Soc. 1987, 109, 2824.

⁷⁷²For reviews, see Truce, W.E.; Kreider, E.M.; Brand, W.W. Org. React., **1971**, 18, 99; Shine, H.J. Aromatic Rearrangements, Elsevier, NY, **1967**, pp. 307–316; Stevens, T.S.; Watts, W.E. Selected Molecular Rearrangements, Van Nostrand-Reinhold, Princeton, NJ, **1973**, pp. 120–126.


groups.⁷⁷³ The ring at which the substitution takes place is nearly always activated, usually by ortho or para nitro groups. Here X is usually S, SO, SO₂,⁷⁷⁴ O, or COO, and Y is usually the conjugate base of OH, NH₂, NHR, or SH. The reaction has even been carried out with $Y = CH_2^-$ (phenyllithium was the base here).⁷⁷⁵

The reaction rate is greatly enhanced by substitution in the 6 position of the attacking ring, for steric reasons. For example, a methyl, chloro, or bromo group in the 6 position of **54** caused the rate to be $\sim 10^5$ times faster than when the same groups were in the 4 position,⁷⁷⁶ though electrical effects should be similar at these positions. The enhanced rate comes about because the most favorable conformation the molecule can adopt to suit the bulk of the 6-substituent is also the conformation required for the rearrangement. Thus, less entropy of activation is required.

Although the Smiles rearrangement is usually carried out on compounds containing two rings, this need not be the case, as in the formation of **56**.⁷⁷⁷

In this case, the sulfenic acid (56) is unstable⁷⁷⁸ and the actual products isolated were the corresponding sulfinic acid (RSO₂H) and disulfide (R_2S_2).

⁷⁷³Bonvicino, G.E.; Yogodzinski, L.H.; Hardy Jr., R.A. J. Org. Chem. **1962**, 27, 4272; Nodiff, E.H.; Hausman, M. J. Org. Chem. **1964**, 29, 2453; Grundon, M.F.; Matier, W.L. J. Chem. Soc., B, **1966**, 266; Schmidt, D.M.; Bonvicino, G.E. J. Org. Chem. **1984**, 49, 1664.

⁷⁷⁴For a review for the case of $X = SO_2$, see Cerfontain, H. *Mechanistic Aspects in Aromatic Sulfonation and Desulfonation*; Wiley, NY, **1968**, pp. 262–274.

⁷⁷⁵Truce, W.E.; Robbins, C.R.; Kreider, E.M. J. Am. Chem. Soc. **1966**, 88, 4027; Drozd, V.N.; Nikonova, L.A. J. Org. Chem, USSR **1969**, 5, 313.

⁷⁷⁶Bunnett, J.F.; Okamoto, T. J. Am. Chem. Soc. 1956, 78, 5363.

⁷⁷⁷Kent, B.A.; Smiles, S. J. Chem. Soc. 1934, 422.

⁷⁷⁸For a stable sulfenic acid, see Nakamura, N. J. Am. Chem. Soc. 1983, 105, 7172.

In the Smiles rearrangement, the nucleophile Y is most often the conjugate base of SH, SO₂NHR, SO₂NH₂, NH₂, NHR, OH, OR. There are few examples where Y is a carbanion, and the most common example is probably the *Truce–Smiles rearrangement*, where L—YH is an *o*-tolyl group.⁷⁷⁹ The prototypical Truce–Smiles rearrangement requires use of a strong base to form the benzylic carbanion that undergoes the rearrangement. When sulfone **57** was treated with butyllithium, for example, deprotonation led to the benzylic lithium compound **58**. Truce–Smiles rearrangement led to **59**, and hydrolysis gave the sulfinic acid, **60**.⁷⁷⁹ Truce–Smiles rearrangements with stabilized benzylic carbanions are known,⁷⁸⁰ and rearrangements of carbanions in general fall under this category.⁷⁸¹ Relatively few examples have been reported, however.⁷⁸² Truce–Smiles rearrangements of sulfones that proceed through a six-membered transition state have been reported.⁷⁸³ In another example, displacement of an activated aryl fluoride with *o*-hydroxyacetophenone gave a product that was *C*-arylated adjacent to the ketone.⁷⁸⁴

⁷⁸¹Fukazawa, Y.; Kato, N.; Itô, S. *Tetrahedron Lett.* **1982**, 23, 437.

⁷⁷⁹Truce, W.E.; Ray Jr., W.J.; Norman, O.L.; Eickemeyer, D.B. J. Am. Chem. Soc. 1958, 80, 3625.

⁷⁸⁰Erickson, W.R.; McKennon, M.J. Tetrahedron Lett. 2000, 41, 4541.

⁷⁸²Hirota, T.; Tomita, K.; Sasaki, K.; Okuda, K.; Yoshida, M.; Kashino, S. *Heterocycles* **2001**, *55*, 741;

Bayne, D.W.; Nicol, A.J.; Tennant, G.J. Chem. Soc. Chem. Commun. 1975, 782; Hoffman, R.V.; Jankowski, B.C.; Carr, C.S.; Duesler, E.N. J. Org. Chem. 1986, 51, 130.

⁷⁸³Truce, W.E.; Hampton, D.C. J. Org. Chem. 1963, 28, 2276.

⁷⁸⁴Mitchell, L.H.; Barvian, N.C. Tetrahedron Lett. 2004, 45, 5669.

Substitution Reactions: Free Radicals

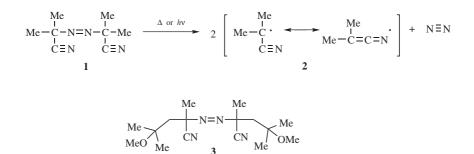
MECHANISMS

Free-Radical Mechanisms in General¹

A free-radical process consists of at least two steps. The first step involves the *formation* of free radicals, usually by homolytic cleavage of bond, that is, a cleavage in which each fragment retains one electron:

A−B → A• + B•

This is called an *initiation* step. It may happen spontaneously or may be induced by heat² or light (see the discussion on p. 279), depending on the type of bond.³ Peroxides, including hydrogen peroxide, dialkyl, diacyl, and alkyl acyl peroxides, and peroxyacids are the most common source of free radicals induced spontaneously or by heat, but other organic compounds with low-energy bonds, such as azo compounds, are also used. Molecules that are cleaved by light are most often chlorine, bromine, and various ketones (see Chapter 7). Radicals can also be formed


¹For books on free-radical mechanisms, see Nonhebel, D.C.; Tedder, J.M.; Walton, J.C. *Radicals*, Cambridge University Press, Cambridge, **1979**; Nonhebel, D.C.; Walton, J.C. *Free-Radical Chemistry*, Cambridge University Press, London, **1974**; Huyser, E.S. *Free-Radical Chain Reactions*, Wiley, NY, **1970**; Pryor, W.A. *Free Radicals*, McGraw-Hill, NY, **1966**; For reviews, see Huyser, E.S., in McManus, S.P. *Organic Reactive Intermediates*, Academic Press, NY, **1973**, pp. 1–59. For monographs on the use of free-radical reactions in synthesis see Giese, B. *Radicals in Organic Synthesis, Formation of Carbon-Carbon Bonds*, Pergamon, Elmsford, NY, **1986**; Davies, D.I.; Parrott, M.J. *Free Radicals in Organic Synthesis*, Springer, NY, **1978**. For reviews, see Curran, D.P. *Synthesis* **1988**, 417, 489; Ramaiah, M. *Tetrahedron* **1987**, 43, 3541.

²For a study of the thermolysis of free-radical initiators, see Engel, P.S.; Pan, L.; Ying, Y.; Alemany, L.B. *J. Am. Chem. Soc.* **2001**, *123*, 3706.

³See Fokin, A.A.; Schreiner, P.R. Chem. Rev. 2002, 102, 1551.

in another way, by a one-electron transfer (loss or gain), for example, $A^+ + e^- \rightarrow A^{\bullet}$. One-electron transfers usually involve inorganic ions or electrochemical processes.

Dialkyl peroxides (ROOR) or alkyl hydroperoxides (ROOH) decompose to hydroxy radicals (HO•) or alkoxy radicals (RO•) when heated.⁴ Cumene hydroperoxide (PhCMe₂OOH), bi-*tert*-butylperoxide (Me₃COOCMe₃),⁵ and benzoyl peroxide [(PhCO)O₂] undergo homolytic cleavage at temperatures compatible with many organic reactions, allowing some control of the reaction, and they are reasonably soluble in organic solvents. In general, when a peroxide decomposes, the oxygen radical remains in a "cage" for $\sim 10^{-11}$ s before diffusing away. The radical can recombine (dimerize), or react with other molecules. Azo compounds, characterized by a -N=N- bond, are free-radical precursors that liberate nitrogen gas $(N \equiv N)$ upon decomposition. azobis(isobutyronitrile) (AIBN, 1) is a well-known example, which decomposes to give nitrogen and the cyano stabilized radical, 2.6 Homolytic dissociation of symmetrical diazo compounds may be stepwise.⁷ A derivative has been developed that decomposes to initiate radical reactions at room temperature, 2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile), **3**.⁸ Water soluble azo compounds are known, and can be used as radical initiators.⁹ Other sources of useful radicals are available. Alkyl hypochlorites (R–O–Cl) generate chlorine radicals (Cl•) and alkoxy radicals (RO•) when heated.¹⁰ Heating N-alkoxydithiocarbamates is another useful source of alkoxy radicals, RO.¹¹

⁴For a table of approximate decomposition temperatures for several common peroxides, see Lazár, M.; Rychlý, J.; Klimo, V.; Pelikán, P.; Valko, L. *Free Radicals in Chemistry and Biology*, CRC Press, Washington, DC, *1989*, p. 12.

⁵Lazár, M.; Rychlý, J.; Klimo, V.; Pelikán, P.; Valko, L. Free Radicals in Chemistry and Biology, CRC Press, Washington, DC, **1989**, p. 13.

⁶Yoshino, K.; Ohkatsu, J.; Tsuruta, T. *Polym. J.* **1977**, *9*, 275; von J. Hinz, A.; Oberlinner, A.; Rüchardt, C. *Tetrahedron Lett.* **1973**, 1975.

⁷Dannenberg, J.J.; Rocklin, D. *J. Org. Chem.* **1982**, 47, 4529. See also, Newman, Jr, R.C.; Lockyer Jr, G.D. *J. Am. Chem Soc.* **1983**, 105, 3982.

⁸Kita, Y.; Sano, A.; Yamaguchi, T.; Oka, M.; Gotanda, K.; Matsugi, M. *Tetrahedron Lett.* 1997, 38, 3549.
 ⁹Yorimitsu, H.; Wakabayashi, K.; Shinokubo, H; Oshima, K. *Tetrahedron Lett.* 1999, 40, 519.

¹⁰Davies, D.I.; Parrott, M.J. *Free Radicals in Organic Synthesis*, Springer–Verlag, Berlin, **1978**, p. 9; Chattaway, F.D.; Baekeberg, O.G. J. Chem. Soc. **1923**, 123, 2999.

¹¹Kim, S.; Lim, C.J.; Song, S.-E.; Kang, H.-Y. Synlett 2001, 688.

Note that aldehydes can also be a source of acyl radicals (•C=O) via reaction with transition metal salts such as Mn(III) acetate or Fe(II) compounds.¹² Another useful variation employs imidoyl radicals as synthons for unstable aryl radicals.¹³

The second step involves the *destruction* of free radicals. This usually happens by a process opposite to the first, namely, a combination of two like or unlike radicals to form a new bond:¹⁴

A• + B• → A-B

This type of step is called *termination*, and it ends the reaction as far as these particular radicals are concerned.¹⁵ However, it is not often that termination follows *directly* upon initiation. The reason is that most radicals are very reactive and will react with the first available species with which they come in contact. In the usual situation, in which the concentration of radicals is low, this is much more likely to be a molecule than another radical. When a radical (which has an odd number of electrons) reacts with a molecule (which has an even number), the total number of electrons in the products must be odd. The product in a particular step of this kind may be one particle, as in the addition of a radical to a π -bond, which in this case is

another free radical, 4; or abstraction of an atom such as hydrogen to give two particles, R-H and the new radical R'.

R• + R'H → RH + R'•

In this latter case, one particle must be a neutral molecule and one a free radical. In both of these examples, a *new radical is generated*. This type of step is called *propagation*, since the newly formed radical can now react with another molecule and produce another radical, and so on, until two radicals do meet each other and terminate the sequence. The process just described is called a *chain reaction*,¹⁶ and there may be hundreds or thousands of propagation steps between an initiation and a termination. Two other types of propagation reactions do not involve a

¹²Davies, D.I.; Parrott, M.J. Free Radicals in Organic Synthesis Springer–Verlag, Berlin, 1978, p. 69; Sosnovsky, G. Free Radical Reactions in Preparative Organic Chemistry, MacMillan, New York, 1964; Vinogradov, M.G.; Nikishin, G.I. Usp. Khim, 1971, 40, 1960; Nikishin, G.I.; Vinogradov, M.G.; Il'ina, G.P. Synthesis 1972, 376; Nikishin, G.I.; Vinogradov, M.G.; Verenchikov, S.P.; Kostyukov, I.N.; Kereselidze, R.V. J. Org. Chem, USSR 1972, 8, 539 (Engl, p. 544).

¹³Fujiwara, S.-i.; Matsuya, T.; Maeda, H.; Shin-ike, T.; Kambe, N.; Sonoda, N. J. Org. Chem. 2001, 66, 2183.

¹⁴For a review of the stereochemistry of this type of combination reaction, see Porter, N.A.; Krebs, P.J. *Top. Stereochem.* **1988**, *18*, 97.

¹⁵Another type of termination is disproportionation (see p. 280).

¹⁶For a discussion of radical chain reactions from a synthetic point of view, see Walling, C. *Tetrahedron* **1985**, *41*, 3887.

molecule at all. These are (1) cleavage of a radical into, necessarily, a radical and a molecule and (2) rearrangement of one radical to another (see Chapter 18). When radicals are highly reactive, for example, alkyl radicals, chains are long, since reactions occur with many molecules; but with radicals of low reactivity, for example, aryl radicals, the radical may be unable to react with anything until it meets another radical, so that chains are short, or the reaction may be a nonchain process. In any particular chain process, there is usually a wide variety of propagation and termination steps. Because of this, these reactions lead to many products and are often difficult to treat kinetically.¹⁷

$$R-CH_2 \bullet + n-Bu_3Sn-H \longrightarrow R-CH_2-H + n-Bu_3Sn \bullet$$
$$n-Bu_3Sn \bullet + n-Bu_3Sn \bullet \longrightarrow n-Bu_3Sn-Snn-Bu_3$$

A useful variation of propagation and termination combines the two processes. When a carbon radical (\mathbf{R} •) is generated in the presence of tributyltin hydride (*n*-Bu₃SnH), a hydrogen atom is transferred to the radical to give \mathbf{R} -H and a new radical, *n*-Bu₃Sn•. The tin radical reacts with a second tin radical to give *n*-Bu₃ Sn-Sn-*n*-Bu₃. The net result is that the carbon radical is reduced to give the desired product and the tin dimer can be removed from the reaction. Tin hydride transfers a hydrogen atom in a chain propagation sequence that produces a new radical, but terminates the carbon radical sequence. Dimerization of the tin radical then terminates that radical process. Silanes, such as triethylsilane (Et₃SiH), has also been used as an effective radical reducing agent.¹⁸ The rate constants for the reaction of both tributytin hydride and (Me₃Si)₃Si-H with acyl radical has been measured and the silane quenches the radical faster than the tin hydride.¹⁹ bis(Tri-*n*-butylstannyl)benzopinacolate has also been used as a thermal source of *n*-Bu₃Sn•, used to mediate radical reactions.²⁰

The following are some general characteristics of free-radical reactions:²¹

- 1. Reactions are fairly similar whether they are occurring in the vapor or liquid phase, though solvation of free radicals in solution does cause some differences.²²
- **2.** They are largely unaffected by the presence of acids or bases or by changes in the polarity of solvents, except that nonpolar solvents may suppress competing ionic reactions.

¹⁷For a discussion of the kinetic aspects of radical chain reactions, see Huyser, E.S. *Free-Radical Chain Reactions*, Wiley, NY, **1970**, pp. 39–65.

¹⁸Chatgilialoglu, C.; Ferreri, C.; Lucarini, M. J. Org. Chem. 1993, 58, 249.

¹⁹Chatgilialoglu, C.; Lucarini, M. Tetrahedron Lett. 1995, 36, 1299.

²⁰Hart, D.J.; Krishnamurthy, R.; Pook, L.M.; Seely, F.L. Tetrahedron Lett. 1993, 34, 7819.

²¹See Beckwith, A.L.J. *Chem. Soc. Rev.* **1993**, 22, 143 for a discussion of selectivity in radical reactions.

²²For a discussion, see Mayo, F.R. J. Am. Chem. Soc. 1967, 89, 2654.

- **3.** They are initiated or accelerated by typical free-radical sources, such as the peroxides, referred to, or by light. In the latter case, the concept of quantum yield applies (p. 349). Quantum yields can be quite high, for example, 1000, if each quantum generates a long chain, or low, in the case of nonchain processes.
- **4.** Their rates are decreased or the reactions are suppressed entirely by substances that scavenge free radicals, for example, nitric oxide, molecular oxygen, or benzoquinone. These substances are called *inhibitors*.²³

This chapter discusses free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. Fragmentation reactions are covered, in part, in Chapter 17. In addition, many of the oxidation–reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses.

Free-Radical Substitution Mechanisms²⁴

In a free-radical substitution reaction

$$R-X \longrightarrow R-Y$$

there must first be a cleavage of the substrate RX so that R• radicals are produced. This can happen by a spontaneous cleavage

$$\begin{array}{ccc} R{-}X & \longrightarrow & R{\bullet} + X{\bullet} \end{array}$$

or it can be caused by light or heat, or, more often, there is no actual cleavage, but R• is produced by an *abstraction* of another atom, X but the radical W•.

$$R-X+W\bullet \longrightarrow R\bullet+W-X$$

The radical W• is produced by adding a compound, such as a peroxide, that spontaneously forms free radicals. Such a compound is called an *initiator* (see above). Once R• is formed, it can go to product in two ways, by another atom abstraction, such as the reaction with A–B to form R–A and a new radical B•.

$$R \bullet + A - B \longrightarrow R - A + B \bullet$$

Another reaction is coupling with another radical to form the neutral product R-Y.

 $R{\bullet} + Y{\bullet} \quad \longrightarrow \quad R{-}Y$

²³For a review of the action of inhibitors, see Denisov, E.T.; Khudyakov, I.V. Chem. Rev. 1987, 87, 1313.

²⁴For a review, see Poutsma, M.L., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, pp. 113–158.

In a reaction with a moderately long chain, much more of the product will be produced by abstraction (4) than by coupling (5). Cleavage steps like (2) have been called S_H1 (H for homolytic), and abstraction steps like (3) and (4) have been called S_H2 ; reactions can be classified as S_H1 or SH_2 on the basis of whether RX is converted to R by (2) or (3).²⁵ Most chain substitution mechanisms follow the pattern (3), (4), (3), (4)••• Chains are long and reactions go well where both (3) and (4) are energetically favored (no worse that slightly endothermic (see pp. 944, 959). The IUPAC designation of a chain reaction that follows the pattern (3),(4)••• is $A_rD_R + A_RD_r$ (R stands for radical).

With certain radicals the transition state in an abstraction reaction has some polar character. For example, consider the abstraction of hydrogen from the methyl group of toluene by a bromine atom. Since bromine is more electronegative than carbon, it is reasonable to assume that in the transition state there is a separation of charge, with a partial negative charge on the halogen and a partial positive charge on the carbon:

 $\delta + \delta - PhCH_2$

Evidence for the polar character of the transition state is that electron-withdrawing groups in the para position of toluene (which would destabilize a positive charge) decrease the rate of hydrogen abstraction by bromine while electrondonating groups increase it.²⁶ However, substituents have a smaller effect here ($\rho \sim -1.4$) than they do in reactions where a completely ionic intermediate is involved, for example, the S_NI mechanism (see p. 487). Other evidence for polar transition states in radical abstraction reactions is mentioned on p. 948. For abstraction by radicals such as methyl or phenyl, polar effects are very small or completely absent. For example, rates of hydrogen abstraction from ringsubstituted toluenes by the methyl radical were relatively unaffected by the presence of electron-donating or electron-withdrawing substituents.²⁷ Those radicals (e.g., Br•) that have a tendency to abstract electron-rich hydrogen atoms are called *electrophilic radicals*.

When the reaction step $R-X \rightarrow R\bullet$ takes place at a chiral carbon, racemization is almost always observed because free radicals do not retain configuration. Exceptions to this rule are found at cyclopropyl substrates, where both inversion²⁸ and retention²⁹ of configuration have been reported, and in the reactions mentioned on p. 942. Enantioselective radical processes have been reviewed.³⁰

²⁵Eliel, E.L., in Newman, M.S. Steric Effects in Organic Chemistry, Wiley, NY, 1956, pp. 142–143.

²⁶For example, see Pearson, R.; Martin, J.C. J. Am. Chem. Soc. **1963**, 85, 354, 3142; Kim, S.S.; Choi, S.Y.; Kang, C.H. J. Am. Chem. Soc. **1985**, 107, 4234.

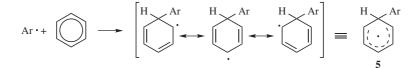
²⁷For example, see Kalatzis, E.; Williams, G.H. J. Chem. Soc. B 1966, 1112; Pryor, W.A.; Tonellato, U.; Fuller, D.L.; Jumonville, S. J. Org. Chem. 1969, 34, 2018.

²⁸Altman, L.J.; Nelson, B.W. J. Am. Chem. Soc. 1969, 91, 5163.

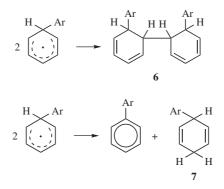
²⁹Jacobus, J.; Pensak, D. Chem. Commun. 1969, 400.

³⁰Sibi, M.P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263.

Mechanisms at an Aromatic Substrate³¹

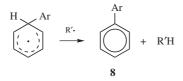

When R in reaction (1) is aromatic, the simple abstraction mechanism just discussed may be operating, especially in gas-phase reactions. However, mechanisms of this type cannot account for all reactions of aromatic substrates. In processes, such as the following (see **13-27**, **14-17**, and **14-18**):

Ar• + ArH → Ar—Ar

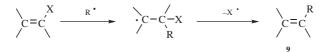

which occur in solution, the coupling of two rings cannot be explained on the basis of a simple abstraction

 $Ar \bullet + ArH \longrightarrow Ar - Ar + H \bullet$

since, as discussed on p. 944, abstraction of an entire group, such as phenyl, by a free radical is very unlikely. The products can be explained by a mechanism similar to that of electrophilic and nucleophilic aromatic substitution. In the first step, the radical attacks the ring in much the same way as would an electrophile or a nucleophile:



The intermediate radical 5 is relatively stable because of the resonance. The reaction can terminate in three ways: by simple coupling to give 6, by disproportionation to give 7,



³¹For reviews, see Kobrina, L.S. *Russ. Chem. Rev.* **1977**, *46*, 348; Perkins, M.J., in Kochi, J.K. *Free Radicals*, Vol. 2, Wiley, NY, **1973**, pp. 231–271; Bolton, R.; Williams, G.H. *Adv. Free-Radical Chem.* **1975**, *5*, 1; Nonhebel, D.C.; Walton, J.C. *Free-Radical Chemistry*, Cambridge University Press, London, **1974**, pp. 417–469; Minisci, F.; Porta, O. *Adv. Heterocycl. Chem.* **1974**, *16*, 123; Bass, K.C.; Nababsing, P. *Adv. Free-Radical Chem.* **1972**, *4*, 1; Hey, D.H. *Bull. Soc. Chim. Fr.* **1968**, 1591.

or, if a species (R' \cdot) is present that abstracts hydrogen, by abstraction to give 8.³²

Coupling product **6** is a partially hydrogenated quaterphenyl. Of course, the coupling need not be ortho–ortho, and other isomers can also be formed. Among the evidence for steps (9) and (10) was isolation of compounds of types **6** and **7**,³³ though normally under the reaction conditions dihydrobiphenyls like **7** are oxidized to the corresponding biphenyls. Other evidence for this mechanism is the detection of the intermediate **5** by CIDNP³⁴ and the absence of isotope effects, which would be expected if the rate-determining step were (7), which involves cleavage of the Ar–H bond. In the mechanism just given, the rate-determining step (8) does not involve loss of hydrogen. The reaction between aromatic rings and the HO• radical takes place by the same mechanism. Intramolecular hydrogen-transfer reactions of aryl radicals are known.³⁵ A similar mechanism has been shown for substitution at some vinylic³⁶ and acetylenic substrates, giving the substituted alkene **9**.³⁷ The kinetics of radical heterolysis reactions that form alkene radical cations has been studied.³⁸

This is reminiscent of the nucleophilic tetrahedral mechanism at a vinylic carbon (p. 477).

There are a number of transition-metal mediated coupling reaction of aromatic substrates that probably proceed by radical coupling. It is also likely that many of these reactions do not proceed by free radicals, but rather by metal-mediated radicals or by ligand transfer on the metal. Reactions in these categories were presented

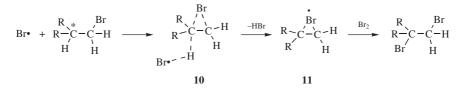
³⁴Fahrenholtz, S.R.; Trozzolo, A.M. J. Am. Chem. Soc. 1972, 94, 282.

³²Compound **5** can also be oxidized to the arene ArPh by atmospheric O_2 . For a discussion of the mechanism of this oxidation, see Narita, N.; Tezuka, T. J. Am. Chem. Soc. **1982**, 104, 7316.

³³De Tar, D.F.; Long, R.A.J. J. Am. Chem. Soc. **1958**, 80, 4742. See also, DeTar, D.F.; Long, R.A.J.; Rendleman, J.; Bradley, J.; Duncan, P. J. Am. Chem. Soc. **1967**, 89, 4051; DeTar, D.F. J. Am. Chem. Soc. **1967**, 89, 4058. See also, Jandu, K.S.; Nicolopoulou, M.; Perkins, M.J. J. Chem. Res. (S) **1985**, 88.

³⁵Curran, D.P.; Fairweather, N. J. Org. Chem. 2003, 68, 2972.

³⁶The reaction of vinyl chloride with Cl⁻ favors the σ -route (nucleophilic attack at the σ -bond) over the π -route (nucleophilic attack at the π -bond), but vinyl chloride is not an experimentally viable substrate and cannot be considered as representative for the vinyl S_N2 reaction. The π -route is anticipated in substituted vinylic halide reactions, where electron-withdrawing groups are attached to the vinylic carbon. See Bach, R. D.; Baboul, A. G.; Schlegel, H. B. *J. Am. Chem. Soc*, **2001**, *123*, 5787.


³⁷Russell, G.A.; Ngoviwatchai, P. Tetrahedron Lett. 1986, 27, 3479, and references cited therein.

³⁸Horner, J.H.; Bagnol, L.; Newcomb, M. J. Am. Chem. Soc. 2004, 126, 14979.

in Chapter 13 for convenient correlation with other displacement reactions of aryl halides, aryl diazonium salts, and so on.

Neighboring-Group Assistance in Free-Radical Reactions

In a few cases, it has been shown that cleavage steps (2) and abstraction steps (3) have been accelerated by the presence of neighboring groups. Photolytic halogenation (14-1) is a process that normally leads to mixtures of many products. However, bromination of carbon chains containing a bromine atom occurs with high regioselectivity. Bromination of alkyl bromides gave 84-94% substitution at the carbon adjacent to the bromine already in the molecule.³⁹ This result is especially surprising because, as we will see (p. 947), positions close to a polar group, such as bromine, should actually be *deactivated* by the electron-withdrawing field effect of the bromine. The unusual regioselectivity is explained by a mechanism in which abstraction (3) is assisted by a neighboring bromine atom, as in 10.⁴⁰

In the normal mechanism, Br• abstracts a hydrogen from RH, leaving R•. When a bromine is present in the proper position, it assists this process, giving a cyclic intermediate (a *bridged free radical*, 11).⁴¹ In the final step (very similar to $R•+Br_2 \rightarrow RBr+Br•$), the ring is broken. If this mechanism is correct, the configuration at the substituted carbon (marked *) should be retained. This has been shown to be the case: optically active 1-bromo-2-methylbutane gave 1,2-dibromo-2-methylbutane with retention of configuration.⁴⁰ Furthermore, when this reaction was carried out in the presence of DBr, the "recovered" 1-bromo-2-methylbutane was found to be deuterated in the 2 position, and its configuration was retained.⁴² This is just what would be predicted if some of the 11 present abstracted D from DBr. There is evidence that Cl can form bridged radicals,⁴³

⁴³Everly, C.R.; Schweinsberg, F.; Traynham, J.G. J. Am. Chem. Soc. **1978**, 100, 1200; Wells, P.R.; Franke, F.P. Tetrahedron Lett. **1979**, 4681.

³⁹Thaler, W.A. J. Am. Chem. Soc. **1963**, 85, 2607. See also, Traynham, J.G.; Hines, W.G. J. Am. Chem. Soc. **1968**, 90, 5208; Ucciani, E.; Pierri, F.; Naudet, M. Bull. Soc. Chim. Fr. **1970**, 791; Hargis, J.H. J. Org. Chem. **1973**, 38, 346.

⁴⁰Skell, P.S.; Tuleen, D.L.; Readio, P.D. *J. Am. Chem. Soc.* **1963**, 85, 2849. For other stereochemical evidence, see Huyser, E.S.; Feng, R.H.C. *J. Org. Chem.* **1971**, *36*, 731. For another explanation, see Lloyd, R.V.; Wood, D.E. *J. Am. Chem. Soc.* **1975**, *97*, 5986. Also see Cope, A.C.; Fenton, S.W. *J. Am. Chem. Soc.* **1951**, *73*, 1668.

⁴¹For a monograph, see Kaplan, L. *Bridged Free Radicals*, Marcel Dekker, NY, **1972**. For reviews, see Skell, P.S.; Traynham, J.G. *Acc. Chem. Res.* **1984**, *17*, 160; Skell, P.S.; Shea, K.J. in Kochi, J.K. *Free Radicals*, Vol. 2, Wiley, NY, **1973**, pp. 809–852.

⁴²Shea, K.J.; Skell, P.S. J. Am. Chem. Soc. 1973, 95, 283.

though ESR spectra show that the bridging is not necessarily symmetrical.⁴⁴ Still more evidence for bridging by Br has been found in isotope effect and other studies.⁴⁵ However, evidence from CIDNP shows that the methylene protons of the β -bromoethyl radical are not equivalent, at least while the radical is present in the radical pair [PhCOO••CH₂CH₂Br] within a solvent cage.⁴⁶ This evidence indicates that under these conditions BrCH₂CH₂• is not a symmetrically bridged radical, but it could be unsymmetrically bridged. A bridged intermediate has also been invoked, when a bromo group is in the proper position, in the Hunsdiecker reaction⁴⁷ (**14-30**), and in abstraction of iodine atoms by the phenyl radical.⁴⁸ Participation by other neighboring groups (e.g. SR, SiR₃, SnR₃) has also been reported.⁴⁹

REACTIVITY

Reactivity for Aliphatic Substrates⁵⁰

In a chain reaction, the step that determines what the product will be is most often an abstraction step. What is abstracted by a free radical is almost never a tetra-⁵¹ or tervalent atom⁵² (except in strained systems, see p. 1027)⁵³ and seldom a divalent one.⁵⁴ Nearly always it is univalent, and so, for organic compounds, it is hydrogen or halogen. For example, a reaction between a chlorine atom and ethane gives an

⁴⁶Hargis, J.H.; Shevlin, P.B. J. Chem. Soc., Chem. Commun. 1973, 179.

⁴⁷Applequist, D.E.; Werner, N.D. J. Org. Chem. 1963, 28, 48.

⁴⁸Danen, W.C.; Winter, R.L. J. Am. Chem. Soc. 1971, 93, 716.

⁵⁰For a review of the factors involved in reactivity and regioselectivity in free-radical substitutions and additions, see Tedder, J.M. *Angew. Chem. Int. Ed.* **1982**, *21*, 401.

⁵²See, for example, Back, R.A. Can. J. Chem. 1983, 61, 916.

⁴⁴Bowles, A.J.; Hudson, A.; Jackson, R.A. *Chem. Phys. Lett.* **1970**, *5*, 552; Cooper, J.; Hudson, A.; Jackson, R.A. *Tetrahedron Lett.* **1973**, 831; Chen, K.S.; Elson, I.H.; Kochi, J.K. *J. Am. Chem. Soc.* **1973**, 95, 5341.

⁴⁵Skell, P.S.; Pavlis, R.R.; Lewis, D.C.; Shea, K.J. J. Am. Chem. Soc. **1973**, 95, 6735; Juneja, P.S.; Hodnett, E.M. J. Am. Chem. Soc. **1967**, 89, 5685; Lewis, E.S.; Kozuka, S. J. Am. Chem. Soc. **1973**, 95, 282; Cain, E.N.; Solly, R.K. J. Chem. Soc., Chem. Commun. **1974**, 148; Chenier, J.H.B.; Tremblay, J.P.; Howard, J.A. J. Am. Chem. Soc. **1975**, 97, 1618; Howard, J.A.; Chenier, J.H.B.; Holden, D.A. Can. J. Chem. **1977**, 55, 1463. See, however, Tanner, D.D.; Blackburn, E.V.; Kosugi, Y.; Ruo, T.C.S. J. Am. Chem. Soc. **1977**, 99, 2714.

⁴⁹Tuleen, D.L.; Bentrude, W.G.; Martin, J.C. *J. Am. Chem. Soc.* **1963**, 85, 1938; Fisher, T.H.; Martin, J.C. *J. Am. Chem. Soc.* **1966**, 88, 3382; Jackson, R.A.; Ingold, K.U.; Griller, D.; Nazran, A.S. *J. Am. Chem. Soc.* **1985**, 107, 208. For a review of neighboring-group participation in cleavage reactions, especially those involving SiR₃ as a neighboring group, see Reetz, M.T. *Angew. Chem. Int. Ed.* **1979**, *18*, 173.

⁵¹Abstraction of a tetravalent carbon has been seen in the gas phase in abstraction by F• of R from RCI: Firouzbakht, M.L.; Ferrieri, R.A.; Wolf, A.P.; Rack, E.P. *J. Am. Chem. Soc.* **1987**, *109*, 2213.

⁵³For an example of an abstraction occurring to a small extent at an unstrained carbon atom, see Jackson, R.A.; Townson, M. J. Chem. Soc. Perkin Trans. 2 **1980**, 1452. See also, Johnson, M.D. Acc. Chem. Res. **1983**, 16, 343.

⁵⁴For a monograph on abstractions of divalent and higher valent atoms, see Ingold, K.U.; Roberts, B.P. *Free-Radical Substitution Reactions*, Wiley, NY, **1971**.

ethyl radical, not a hydrogen atom:

H-Cl + CH₃CH₂ ·
$$\Delta H = -3 \text{ kcal mol}^{-1}$$
, -13 kJ mol^{-1}
CH₃CH₃ + Cl ·
CH₃CH₂-Cl + H· $\Delta H = +18 \text{ kcal mol}^{-1}$, $+76 \text{ kJ mol}^{-1}$

The principal reason for this is steric. A univalent atom is much more exposed to attack by the incoming radical than an atom with a higher valence. Another reason is that in many cases abstraction of a univalent atom is energetically more favored. For example, in the reaction given above, a C_2H_5 —H bond is broken (D = 100 kcal mol⁻¹, 419 kJ mol⁻¹, from Table 5.3) whichever pathway is taken, but in the former case an H—Cl bond is formed (D = 103 kcal mol⁻¹, 432 kJ mol⁻¹) while in the latter case it is a C_2H_5 —Cl bond (D = 82 kcal mol⁻¹, 343 kJ mol⁻¹). Thus the first reaction is favored because it is exothermic by 3 kcal mol⁻¹ (100–103) [13 kJ mol⁻¹ (419–432)], while the latter is endothermic by 18 kcal mol⁻¹ (100–82) [76 kJ mol⁻¹ (419–343)].⁵⁵ However, the steric reason is clearly more important, because even in cases where ΔH is not very different for the two possibilities, the univalent atom is chosen.⁵⁶ Ab initio studies have probed the transition structures for radical hydrogen abstractions.⁵⁷

Most studies of aliphatic reactivity have been made with hydrogen as the leaving atom and chlorine atoms as the abstracting species.⁵⁸ In these reactions, every hydrogen in the substrate is potentially replaceable and mixtures are usually obtained. However, the abstracting radical is not totally unselective, and some positions on a molecule lose hydrogen more easily than others. *Ab initio* studies have studied the factors controlling hydrogen abstraction by radicals.⁵⁹ For hydrogen abstraction by the *tert*-butoxy radical (*t*-Bu–O•) the factors that influence rate in their order of importance are structure of the radical > substituent effects.⁶⁰ > solvent effects.⁶¹ We discuss the position of attack under several headings:⁶²

⁵⁵The parameter ΔH for a free-radical abstraction reaction can be regarded simply as the difference in *D* values for the bond being broken and the one formed.

⁵⁶Giese, B.; Hartung, J. Chem. Ber. 1992, 125, 1777.

⁵⁷Eksterowicz, J.E.; Houk, K.N. *Tetrahedron Lett.* **1993**, *34*, 427; Damm, W.; Dickhaut, J.; Wetterich, F.; Giese, B. *Tetrahedron Lett.* **1993**, *34*, 431.

⁵⁸For a review that lists many rate constants for abstraction of hydrogen at various positions of many molecules, see Hendry, D.G.; Mill, T.; Piszkiewicz, L.; Howard, J.A.; Eigenmann, H.K. *J. Phys. Chem. Ref. Data* **1974**, *3*, 937; Roberts, B.P.; Steel, A.J. *Tetrahedron Lett.* **1993**, *34*, 5167. See Tanko, J.M.; Blackert, J.F. *J. Chem. Soc. Perkin Trans.* 2 **1996**, 1775 for the absolute rate constants for abstraction of chlorine by alkyl radicals.

⁵⁹Zavitsas, A.A. J. Chem. Soc. Perkin Trans. 2 **1998**, 499; Roberts, B.P. J. Chem. Soc. Perkin Trans. 2 **1996**, 2719.

⁶⁰See Wen, Z.; Li, Z.; Shang, Z.; Cheng, J.-P. J. Org. Chem. 2001, 66, 1466.

⁶¹Kim, S.S.; Kim, S.Y.; Ryou, S.S.; Lee, C.S.; Yoo, K.H. J. Org. Chem. 1993, 58, 192.

⁶²For reviews, see Tedder, J.M. Tetrahedron 1982, 38, 313; Kerr, J.A., in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 18, Elsevier, NY, 1976, pp. 39–109; Russell, G.A., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, pp. 275–331; Rüchardt, C. Angew. Chem. Int. Ed. 1970, 9, 830; Poutsma, M.L. Methods Free-Radical Chem. 1969, 1, 79; Davidson, R.S. Q. Rev. Chem. Soc. 1967, 21, 249; Pryor, W.A.; Fuller, D.L.; Stanley, J.P. J. Am. Chem. Soc. 1972, 94, 1632.

Temperature, °C	Primary	Secondary	Tertiary
100	1	4.3	7.0
600	1	2.1	2.6

TABLE 14.1. Relative Susceptibility to Attack by Clof Primary, Secondary, and Tertiary Positions at 100 and 600°C in the Gas Phase⁶³

1. Alkanes. The tertiary hydrogens of an alkane are the ones preferentially abstracted by almost any radical, with secondary hydrogens being next preferred. This is in the same order as D values for these types of C-H bonds (Table 5.3). The extent of the preference depends on the selectivity of the abstracting radical and on the temperature. Table 14.1 shows⁶³ that at high temperatures selectivity decreases, as might be expected.⁶⁴ An example of the effect of radical selectivity may be noted in a comparison of fluorine atoms with bromine atoms. For the former, the ratio of primary to tertiary abstraction (of hydrogen) is 1:1.4, while for the less reactive bromine atom this ratio is 1:1600. With certain large radicals there is a steric factor that may change the selectivity pattern. For example, in the photochemical chlorination of isopentane in H₂SO₄ with N-chloro-di-tert-butylamine and N-chloro-tertbutyl-tert-pentylamine, the primary hydrogens are abstracted 1.7 times faster than the tertiary hydrogen.⁶⁵ In this case, the attacking radicals (the radical ions $R_2NH^{\bullet+}$, see p. 958) are bulky enough for steric hindrance to become a major factor.

Cyclopropylcarbinyl radicals (12) are alkyl radicals, but they undergo rapid ring opening to give butenyl radicals.⁶⁶ The rate constant for this process has been measured by picosecond radical kinetic techniques to be in the range of $10^7 M^{-1} s^{-1}$ for the parent⁶⁷ to $10^{10} M^{-1} s^{-1}$ for substituted derivatives.⁶⁸ Cyclobutylcarbinyl radicals undergo the cyclobutylcarbinyl to

⁶⁶Nonhebel, D.C. Chem. Soc. Rev. 1993, 22, 347.

⁶⁷Engel, P.S.; He, S.-L.; Banks, J.T.; Ingold, K.U.; Lusztyk, J. J. Org. Chem. 1997, 62, 1210.

⁶³Hass, H.B.; McBee, E.T.; Weber, P. Ind. Eng. Chem. 1936, 28, 333.

⁶⁴For a similar result with phenyl radicals, see Kopinke, F.; Zimmermann, G.; Anders, K. J. Org. Chem. **1989**, *54*, 3571.

⁶⁵Deno, N.C.; Fishbein, R.; Wyckoff, J.C. J. Am. Chem. Soc. **1971**, 93, 2065. Similar steric effects, though not a reversal of primary-tertiary reactivity, were found by Dneprovskii, A.N.; Mil'tsov, S.A. J. Org. Chem. USSR **1988**, 24, 1836.

⁶⁸Choi, S.-Y.; Newcomb, M. *Tetrahedron* **1995**, *51*, 657; Choi, S.-Y.; Toy, P.H.; Newcomb, M. J. Org. Chem. **1998**, *63*, 8609. See Martinez, F.N.; Schlegel, H.B.; Newcomb, M. J. Org. Chem. **1996**, *61*, 8547; **1998**, *63*, 3618 for *ab initio* studies to determine rate constants.

4-pentenyl radical process,⁶⁹ but examples are generally limited to the parent system and phenyl-substituted derivatives.⁷⁰ Cyclization of the 4-pentenyl radical is usually limited to systems where a stabilized radical can be formed.⁷¹ The effect of substituents has been studied.⁷² This process has been observed in bicyclo[4.1.0]heptan-4-ones.⁷³

The rate of the ring-opening reaction of **5**,⁷⁴ and other substrates have been determined using an indirect method for the calibration⁷⁵ of fast radical reactions, applicable for radicals with lifetimes as short as 1 ps.⁷⁶ This 'radical clock'⁷⁷ method is based on the use of Barton's use of pyridine-2-thione-*N*-oxycarbonyl esters as radical precursors and radical trapping by the highly reactive thiophenol and benzeneselenol.⁷⁸ A number of radical clock substrates are known.⁷⁹ Other radical clock processes include: racemization of radicals with chiral conformations,⁸⁰ one-carbon ring expansion in cyclopentanones,⁸¹ norcarane and spiro[2,5]octane,⁸² α - and β -thujone radical rearrangements,⁸³ and cyclopropylcarbinyl radicals or alkoxycarbonyl radicals containing stabilizing substituents.⁸⁴

⁷¹Clark, A.J.; Peacock, J.L. *Tetrahedron Lett.* **1998**, *39*, 1265; Cerreti, A.; D'Annibale, A.; Trogolo, C.; Umani, F. *Tetrahedron Lett.* **2000**, *41*, 3261; Ishibashi, H.; Higuchi, M.; Ohba, M.; Ikeda, M. *Tetrahedron Lett.* **1998**, *39*, 75; Ishibashi, H.; Nakamura, N.; Sato, S.; Takeuchi, M.; Ikeda, M. *Tetrahedron Lett.* **1991**, *32*, 1725; Ogura, K.; Sumitani, N.; Kayano, A.; Iguchi, H.; Fujita, M. *Chem. Lett.* **1992**, 1487.

⁷²Baker, J.M.; Dolbier Jr, W.R. J. Org. Chem. **2001**, 66, 2662. ⁷³Kirschberg, T.; Mattay, J. *Tetrahedron Lett.* **1994**, 35, 7217.

⁷⁴Mathew, L.; Warkentin, J. J. Am. Chem. Soc. **1986**, 108, 7981; For an article clocking tertiary cyclopropylcarbinyl radical rearrangements, see Engel, P.S.; He, S.-L.; Banks, J.T.; Ingold, K.U.; Lusztyk, J. J. Org. Chem. **1997**, 62, 1212, 5656.

⁷⁵See Hollis, R.; Hughes, L.; Bowry, V.W.; Ingold, K.U. J. Org. Chem. 1992, 57, 4284.

⁷⁶Newcomb, M.; Toy, P.H. Acc. Chem. Res. **2000**, 33, 449. See Horn, A.H.C.; Clark, T. J. Am. Chem. Soc. **2003**, 125, 2809.

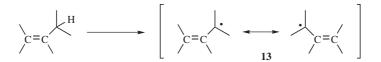
⁷⁷For a review, see Griller, D.; Ingold, K.U. Acc. Chem. Res. 1980, 13, 317.

⁷⁸Newcomb, M.; Park, S.-U. J. Am. Chem. Soc. **1986**, 108, 4132; Newcomb, M.; Glenn, A.G. J. Am. Chem. Soc. **1989**, 111, 275; Newcomb, M.; Johnson, C.C.; Manek, M.B.; Varick, T.R. J. Am. Chem. Soc. **1992**, 114, 10915; Newcomb, M.; Varick, T.R.; Ha, C.; Manek, M.B.; Yue, X. J. Am. Chem. Soc. **1992**, 114, 8158.

⁷⁹See Kumar, D.; de Visser, S.P.; Sharma, P.K.; Cohen, S.; Shaik, S. J. Am. Chem. Soc. 2004, 126, 1907.
 ⁸⁰Buckmelter, A.J.; Kim, A.I.; Rychnovsky, S.D. J. Am. Chem. Soc. 2000, 122, 9386; Rychnovsky, S.D.; Hata, T.; Kim, A.I.; Buckmelter, A.J. Org. Lett. 2001, 3, 807.

⁸¹Chatgilialoglu, C.; Timokhin, V. I.; Ballestri, M. J. Org. Chem. 1998, 63, 1327.

⁸²For an application and leading references, see Auclair, K.; Hu, Z.; Little, D. M.; Ortiz de Montellano, P. R.; Groves, J. T. J. Am. Chem. Soc. 2002, 124, 6020.


⁸³He, X.; Ortiz de Montellano, P. R. J. Org. Chem. 2004, 69, 5684.

⁸⁴Beckwith, A.L.J.; Bowry, V.W. J. Am. Chem. Soc. **1994**, 116, 2710. See Cooksy, A.L.; King, H.F.; Richardson, W.H. J. Org. Chem. **2003**, 68, 9441.

⁶⁹For a triplet radical in electron transfer cycloreversion of a cyclobutane, see Miranda, M.A.; Izquierdo, M.A.; Galindo, F. *J. Org. Chem.* **2002**, *67*, 4138.

 ⁷⁰Beckwith, A.L.J.; Moad, G. J. Chem. Soc, Perkin Trans. 2 1980, 1083; Ingold, K.U.; Maillard, B.;
 Walton, J.C. J. Chem. Soc, Perkin Trans. 2 1981, 970; Walton, J.C. J. Chem. Soc, Perkin Trans. 2 1989, 173; Choi, S.-Y.; Horner, J.H.; Newcomb, M. J. Org. Chem. 2000, 65, 4447; Newcomb, M.; Horner, J.H.;
 Emanuel, C.J. J. Am. Chem. Soc. 1997, 119, 7147.

2. Alkenes. When the substrate molecule contains a double bond, treatment with chlorine or bromine usually leads to addition rather than substitution. However, for other radicals (and even for chlorine or bromine atoms when they do abstract a hydrogen) the position of attack is perfectly clear. Vinylic hydrogens are practically never abstracted, and allylic hydrogens are greatly preferred to other positions of the molecule. Allylic hydrogen abstraction from a cyclic alkenes is usually faster than abstraction from an acyclic alkene.⁸⁵ This is generally attributed⁸⁶ to resonance stabilization of the allylic radical, **13**. As might be expected, allylic rearrangements (see p. 469) are common in these cases.⁸⁷

3. *Alkyl Side Chains of Aromatic Rings.* The preferential position of attack on a side chain is usually the one to the ring. Both for active radicals, such as chlorine and phenyl, and for more selective ones, such as bromine, such attack is faster than that at a primary carbon, but for the active radicals benzylic attack is slower than for tertiary positions, while for the selective ones it is faster. Two or three aryl groups on a carbon activate its hydrogens even more, as would be expected from the resonance involved. These statements can be illustrated by the following abstraction ratios:⁸⁸

	Ме-Н	MeCH ₂ -H	Me ₂ CH-H	Me ₃ C–H	PhCH ₂ -H	Ph ₂ CH-H	Ph ₃ C-H
Br	0.0007	1	220	19,400	64,000	$1.1 imes 10^{6}$	$\begin{array}{c} 6.4\times10^6\\ 9.5\end{array}$
Cl	0.004	1	4.3	6.0	1.3	2.6	

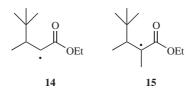
However, many anomalous results have been reported for these substrates. The benzylic position is not always the most favored. One thing certain is that *aromatic* hydrogens are seldom abstracted if there are aliphatic ones to compete (note from Table 5.3, that *D* for Ph–H is higher than that for any alkyl H bond). Several σ • scales (similar to the σ , σ^+ , and σ^- scales discussed in Chapter 9) have been developed for benzylic radicals.⁸⁹

⁸⁷For reviews, see Wilt, J.W., in Kochi, J.K. Free Radicals, Vol. 1, Wiley, NY, 1973, pp. 458–466.

⁸⁵Rothenberg, G.; Sasson, Y. Tetrahedron 1998, 54, 5417.

⁸⁶See however Kwart, H.; Brechbiel, M.; Miles, W.; Kwart, L.D. J. Org. Chem. 1982, 47, 4524.

⁸⁸Russell, G.A., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, p. 289.


⁸⁹See, for example, Dinçtürk, S.; Jackson, R.A. J. Chem. Soc. Perkin Trans. 2 1981, 1127; Dust, J.M.; Arnold, D.R. J. Am. Chem. Soc. 1983, 105, 1221, 6531; Creary, X.; Mehrsheikh-Mohammadi, M.E.; McDonald, S. J. Org. Chem. 1987, 52, 3254; 1989, 54, 2904; Fisher, T.H.; Dershem, S.M.; Prewitt, M.L. J. Org. Chem. 1990, 55, 1040.

948 SUBSTITUTION REACTIONS: FREE RADICALS

4. Compounds Containing Electron-Withdrawing Substituents. In halogenations, electron-withdrawing groups greatly deactivate adjacent positions. Compounds of the type Z-CH₂-CH₃ are attacked predominantly or exclusively at the β position when Z is COOH, COCl, COOR, SO₂Cl, or CX₃. Such compounds as acetic acid and acetyl chloride are not attacked at all. This is in sharp contrast to electrophilic halogenations (12-4–12-6), where *only* the α position is substituted. This deactivation of a positions is also at variance with the expected stability of the resulting radicals, since they would be expected to be stabilized by resonance similar to that for allylic and benzylic radicals. This behavior is a result of the polar transition states discussed on p. 939. Halogen atoms are electrophilic radicals and look for positions of high electron density. Hydrogens on carbon atoms next to electron-withdrawing groups have low electron densities (because of the field effect of Z) and are therefore shunned. Radicals that are not electrophilic do not display this behavior. For example, the methyl radical is essentially nonpolar and does not avoid positions next to electron-withdrawing groups; relative rates of abstraction at the α and β carbons of propionic acid are:⁹⁰

	CH ₃ –CH	CH ₃ -CH ₂ -COOH				
Me• Cl•	1	7.8 0.02				

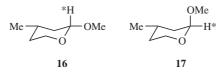
It is possible to generate radicals adjacent to electron-withdrawing groups. Radical **14** can be generated and it undergoes coupling reactions with little selectivity. When **15** is generated, however, it rapidly disproportionates rather than couples, giving the corresponding alkene and alkane.⁹¹ Such radicals have also been shown to have a conformational preference for orientation of the orbital containing the single electron. In such cases, hydrogen abstraction proceeds with good stereoselectivity.⁹²

Some radicals, for example, *tert*-butyl,⁹³ benzyl,⁹⁴ and cyclopropyl,⁹⁵ are *nucleophilic* (they tend to abstract electron-poor hydrogen atoms). The

⁹⁰Russell, G.A., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, p. 311.

⁹¹Porter, N.A.; Rosenstein, I.J. Tetrahedron Lett. 1993, 34, 7865.

⁹²Giese, B.; Damm, W.; Wetterich, F.; Zeitz, H.-G. Tetrahedron Lett. 1992, 33, 1863.


⁹³Pryor, W.A.; Tang, F.Y.; Tang, R.H.; Church, D.F. J. Am. Chem. Soc. 1982, 104, 2885; Dütsch, H.R.; Fischer, H. Int. J. Chem. Kinet. 1982, 14, 195.

⁹⁴Clerici, A.; Minisci, F.; Porta, O. Tetrahedron 1973, 29, 2775.

⁹⁵Stefani, A.; Chuang, L.; Todd, H.E. J. Am. Chem. Soc. 1970, 92, 4168.

phenyl radical appears to have a very small degree of nucleophilic character.⁹⁶ For longer chains, the field effect continues, and the β position is also deactivated to attack by halogen, though much less so than the α position. We have already mentioned (p. 939) that abstraction of an α hydrogen atom from ring-substituted toluenes can be correlated by the Hammett equation.

5. Stereoelectronic Effects. On p. 1258, we will see an example of a stereoelectronic effect. It has been shown that such effects are important where a hydrogen is abstracted from a carbon adjacent to a C–O or C–N bond. In such cases, hydrogen is abstracted from C–H bonds that have a relatively small dihedral angle ($\sim 30^{\circ}$) with the unshared orbitals of the O or N much more easily than from those with a large angle ($\sim 90^{\circ}$). For example, the starred hydrogen of **16** was abstracted ~ 8 times faster than the starred hydrogen of **17**.⁹⁷

The presence of an OR or SiR₃ substituent β - to the carbon bearing the radical accelerates the rate of halogen abstraction.⁹⁸

Abstraction of a halogen has been studied much less,⁹⁹ but the order of reactivity is $RI > RBr > RCl \gg RF$.

There are now many cases where free-radical reactions are promoted by transition metals. $^{100}\,$

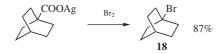
Reactivity at a Bridgehead¹⁰¹

Many free-radical reactions have been observed at bridgehead carbons, as in formation of bromide 18 (see 14-30),¹⁰² demonstrating that the free radical need not be planar. However, treatment of norbornane with sulfuryl chloride and benzoyl

⁹⁶Suehiro, T.; Suzuki, A.; Tsuchida, Y.; Yamazaki, J. Bull. Chem. Soc. Jpn. 1977, 50, 3324.

⁹⁷Hayday, K.; McKelvey, R.D. J. Org. Chem. **1976**, 41, 2222. For additional examples, see Malatesta, V.; Ingold, K.U. J. Am. Chem. Soc. **1981**, 103, 609; Beckwith, A.L.J.; Easton, C.J. J. Am. Chem. Soc. **1981**, 103, 615; Beckwith, A.L.J.; Westwood, S.W. Aust. J. Chem. **1983**, 36, 2123; Griller, D.; Howard, J.A.; Marriott, P.R.; Scaiano, J.C. J. Am. Chem. Soc. **1981**, 103, 619. For a stereoselective abstraction step, see Dneprovskii, A.S.; Pertsikov, B.Z.; Temnikova, T.I. J. Org. Chem. USSR **1982**, 18, 1951. See also, Bunce, N.J.; Cheung, H.K.Y.; Langshaw, J. J. Org. Chem. **1986**, 51, 5421.

⁹⁸Roberts, B.P.; Steel, A.J. J. Chem. Soc. Perkin Trans. 2 1994, 2411.


⁹⁹For a review, see Danen, W.C. Methods Free-Radical Chem. 1974, 5, 1.

¹⁰⁰Iqbal, J.; Bhatia, B.; Nayyar, N.K. *Chem. Rev.* **1994**, *94*, 519. See Hasegawa, E.; Curran, D.P. *Tetrahedron Lett.* **1993**, *34*, 1717 for the rate of reaction for a primary akyl radical in the presence of SmI₂.

¹⁰¹For reviews, see Bingham, R.C.; Schleyer, P.v.R. *Fortschr. Chem. Forsch.* **1971**, *18*, 1, see pp. 79–81; Fort, Jr, R.C.; Schleyer, P.v.R. *Adv. Alicyclic Chem.* **1966**, *1*, 283, see p. 337.

¹⁰²Grob, C.A.; Ohta, M.; Renk, E.; Weiss, A. Helv. Chim. Acta 1958, 41, 1191.

peroxide gave mostly 2-chloronorbornane, though the bridgehead position is tertiary.¹⁰³ So, while bridgehead free-radical substitution is possible, it is not preferred, presumably because of the strain involved.¹⁰⁴

Reactivity in Aromatic Substrates

Free-radical substitution at an aromatic carbon seldom takes place by a mechanism in which a hydrogen is abstracted to give an aryl radical. Reactivity considerations here are similar to those in Chapters 11 and 13; that is, we need to know which position on the ring will be attacked to give the intermediate, **19**.

The obvious way to obtain this information is to carry out reactions with various Z groups and to analyze the products for percent ortho, meta, and para isomers, as has so often been done for electrophilic substitution. However, this procedure is much less accurate in the case of free-radical substitutions because of the many side reactions. It may be, for example, that in a given case the ortho position is more reactive than the para, but the intermediate from the para attack may go on to product while that from ortho attack gives a side reaction. In such a case, analysis of the three products does not give a true picture of which position is most susceptible to attack. The following generalizations can nevertheless be drawn, though there has been much controversy over just how meaningful such conclusions are¹⁰⁵

- **1.** All substituents increase reactivity at ortho and para positions over that of benzene. There is no great difference between electron-donating and electron-withdrawing groups.
- **2.** Reactivity at meta positions is usually similar to that of benzene, perhaps slightly higher or lower. This fact, coupled with the preceding one, means that all substituents are activating and ortho-para directing; none are deactivating or (chiefly) meta directing.

¹⁰³Roberts, J.D.; Urbanek, L.; Armstrong, R. J. Am. Chem. Soc. **1949**, 71, 3049. See also, Kooyman, E.C.;
 Vegter, G.C. Tetrahedron **1958**, 4, 382; Walling, C.; Mayahi, M.F. J. Am. Chem. Soc. **1959**, 81, 1485.
 ¹⁰⁴See, for example, Koch, V.R.; Gleicher, G.J. J. Am. Chem. Soc. **1971**, 93, 1657.

¹⁰⁵De Tar, D.F. J. Am. Chem. Soc. **1961**, 83, 1014 (book review); Dickerman, S.C.; Vermont, G.B. J. Am. Chem. Soc. **1962**, 84, 4150; Morrison, R.T.; Cazes, J.; Samkoff, N.; Howe, C.A. J. Am. Chem. Soc. **1962**, 84, 4152; Ohta, H.; Tokumaru, K. Bull. Chem. Soc. Jpn. **1971**, 44, 3218; Vidal, S.; Court, J.; Bonnier, J. J. Chem. Soc. Perkin Trans. 2 **1973**, 2071; Tezuka, T.; Ichikawa, K.; Marusawa, H.; Narita, N. Chem. Lett. **1983**, 1013.

	F			
Ζ	0	т	р	
Н	1	1	1	
NO_2	5.50	0.86	4.90	
CH ₃	4.70	1.24	3.55	
CMe ₃	0.70	1.64	1.81	
Cl	3.90	1.65	2.12	
Br	3.05	1.70	1.92	
MeO	5.6	1.23	2.31	

TABLE 14.2. Partial Rate Factors for Attack of Substituted Benzenes by Phenyl Radicals Generated from $Bz_2O_2^{-108}$

- **3.** Reactivity at ortho positions is usually somewhat greater than at para positions, except where a large group decreases ortho reactivity for steric reasons.
- 4. In direct competition, electron-withdrawing groups exert a somewhat greater influence than electron-donating groups. Arylation of para-disubstituted compounds XC_6H_4Y showed that substitution ortho to the group X became increasingly preferred as the electron-withdrawing character of X increases (with Y held constant).¹⁰⁶ The increase could be correlated with the Hammett σ_p values for X.
- **5.** Substituents have a much smaller effect than in electrophilic or nucleophilic substitution; hence the partial rate factors (see p. 677) are not great.¹⁰⁷ Partial rate factors for a few groups are given in Table 14.2.¹⁰⁸
- **6.** Although hydrogen is the leaving group in most free-radical aromatic substitutions, ipso attack (p. 671) and ipso substitution (e.g., with Br, NO₂, or CH₃CO as the leaving group) have been found in certain cases.¹⁰⁹

Reactivity in the Attacking Radical¹¹⁰

We have already seen that some radicals are much more selective than others (p. 944). The bromine atom is so selective that when only primary hydrogens are available, as in neopentane or *tert*-butylbenzene, the reaction is slow or nonexistent; and isobutane can be selectively brominated to give *tert*-butyl bromide in high yields.

¹⁰⁶Davies, D.I.; Hey, D.H.; Summers, B. J. Chem. Soc. C 1970, 2653.

¹⁰⁷For a quantitative treatment, see Charton, M.; Charton, B. Bull. Soc. Chim. Fr. 1988, 199.

¹⁰⁸Davies, D.I.; Hey, D.H.; Summers, B. J. Chem. Soc. C 1971, 2681.

¹⁰⁹For reviews, see Traynham, J.G. J. Chem. Educ. **1983**, 60, 937; Chem. Rev. **1979**, 79, 323; Tiecco, M. Acc. Chem. Res. **1980**, 13, 51; Pure Appl. Chem. **1981**, 53, 239.

¹¹⁰For reviews with respect to CH₃• and CF₃•, see Trotman-Dickenson, A.F. Adv. Free-Radical Chem. **1965**, 1, 1; Spirin, Yu.L. Russ. Chem. Rev. **1969**, 38, 529; Gray, P.; Herod, A.A.; Jones, A. Chem. Rev. **1971**, 71, 247.

	E	Ξ		E	
Radical	kcal mol $^{-1}$ e	kJ mol ^{-1} e	Radical	kcal mol $^{-1}$	$kJ mol^{-1}$
F•	0.3	1.3	H•	9.0	38
Cl•	1.0	4.2	Me•	11.8	49.4
MeO•	7.1	30	Br∙	13.2	55.2
CF ₃ ∙	7.5	31			

TABLE 14.3. Some Common Free Radicals in Decreasing Order of Activity^a

^aThe *E* values represent activation energies for the reaction

 $\mathbf{X} \bullet + \mathbf{C}_2 \mathbf{H}_6 \longrightarrow \mathbf{X} - \mathbf{H} + \mathbf{C}_2 \mathbf{H}_5 \bullet$ (Ref. 112)

i-Pr• is less active than Me• and *t*-Bu• still less so.¹¹³

However, toluene reacts with bromine atoms instantly. Bromination of other alkylbenzenes, for example, ethylbenzene and cumene, takes place exclusively at the a position,¹¹¹ emphasizing the selectivity of Br•. The dissociation energy *D* of the C–H bond is more important for radicals of low reactivity than for highly reactive radicals, since bond breaking in the transition state is greater. Thus, bromine shows a greater tendency than chlorine to attack α to an electron-withdrawing group because the energy of the C–H bond there is lower than in other places in the molecule.

Some radicals, for example, triphenylmethyl, are so unreactive that they abstract hydrogens very poorly if at all. Table 14.3 lists some common free radicals in approximate order of reactivity.¹¹²

It has been mentioned that some free radicals (e.g., chloro) are electrophilic and some (e.g., *tert*-butyl) are nucleophilic. It must be borne in mind that these tendencies are relatively slight compared with the electrophilicity of a positive ion or the nucleophilicity of a negative ion. The predominant character of a free radical is neutral, whether it has slight electrophilic or nucleophilic tendencies.

The Effect of Solvent on Reactivity¹¹⁴

As noted earlier, the solvent usually has little effect on free-radical substitutions in contrast to ionic ones: indeed, reactions in solution are often quite similar in character to those in the gas phase, where there is no solvent at all. However, in certain cases the solvent *can* make an appreciable difference. Chlorination of 2,3-dimethylbutane in aliphatic solvents gave about 60% (CH₃)₂CHCH(CH₃)CH₂Cl

¹¹¹Huyser, E.S. Free-Radical Chain Reactions, Wiley, NY, 1970, p. 97.

¹¹²Trotman-Dickenson, A.F. Adv. Free-Radical Chem. 1965, 1, 1.

¹¹³Kharasch, M.S.; Hambling, J.K.; Rudy, T.P. J. Org. Chem. 1959, 24, 303.

¹¹⁴For reviews, see Reichardt, C. Solvent Effects in Organic Chemistry; Verlag Chemie: Deerfield Beach,

FL, 1979, pp. 110–123; Martin, J.C., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, pp. 493–524; Huyser, E.S. Adv. Free-Radical Chem. 1965, 1, 77.

and 40% (CH₃)₂CHCCl(CH₃)₂, while in aromatic solvents the ratio became ${\sim}10{:}90.^{115}$ This result is attributed to complex formation between the aromatic solvent and the

chlorine atom that makes the chlorine more selective.¹¹⁶ This type of effect is not found in cases where the differences in ability to abstract the atom are caused by field effects of electron-withdrawing groups (p. 948). In such cases, aromatic solvents make little difference.¹¹⁷ The complex **20** has been detected¹¹⁸ as a very short-lived species by observation of its visible spectrum in the pulse radiolysis of a solution of benzene in CCl₄.¹¹⁹ Differences caused by solvents have also been reported in reactions of other radicals.¹²⁰ Some of the anomalous results obtained in the chlorination of aromatic side chains (p. 947) can also be explained by this type of complexing, in this case not with the solvent but with the reacting species.¹²¹ Much smaller, though real, differences in selectivity have been found when the solvent in the chlorination of 2,3-dimethylbutane is changed from an alkane to CCl₄.¹²² However, these differences are not caused by formation of a complex between Cl• and the solvent. There are cases,

¹¹⁶See also, Soumillion, J.P.; Bruylants, A. Bull. Soc. Chim. Belg. **1969**, 78, 425; Potter, A.; Tedder, J.M. J. Chem. Soc. Perkin Trans. 2 **1982**, 1689; Aver'yanov, V.A.; Ruban, S.G.; Shvets, V.F. J. Org. Chem. USSR **1987**, 23, 782; Aver'yanov, V.A.; Ruban, S.G. J. Org. Chem. USSR **1987**, 23, 1119; Raner, K.D.; Lusztyk, J.; Ingold, K.U. J. Am. Chem. Soc. **1989**, 111, 3652; Ingold, K.U.; Lusztyk, J.; Raner, K.D. Acc. Chem. Res. **1990**, 23, 219.

¹¹⁵Russell, G.A. J. Am. Chem. Soc. 1958, 80, 4987, 4997, 5002; J. Org. Chem. 1959, 24, 300.

¹¹⁷Russell, G.A. *Tetrahedron* **1960**, *8*, 101; Nagai, T.; Horikawa, Y.; Ryang, H.S.; Tokura, N. Bull. Chem. Soc. Jpn. **1971**, 44, 2771.

¹¹⁸It has been contended that another species, a chlorocyclohexadienyl radical (the structure of which is the same as **5**, except that Cl replaces Ar), can also be attacking when the solvent is benzene: Skell, P.S.; Baxter III, H.N.; Taylor, C.K. *J. Am. Chem. Soc.* **1983**, *105*, 120; Skell, P.S.; Baxter III, H.N.; Tanko, J.M.; Chebolu, V. *J. Am. Chem. Soc.* **1986**, *108*, 6300. For arguments against this proposal, see Bunce, N.J.; Ingold, K.U.; Landers, J.P.; Lusztyk, J.; Scaiano, J.C. *J. Am. Chem. Soc.* **1985**, *107*, 5464; Walling, C. *J. Org. Chem.* **1988**, *53*, 305; Aver'yanov, V.A.; Shvets, V.F.; Semenov, A.O. *J. Org. Chem. USSR* **1990**, *26*, 1261.

¹¹⁹Bühler, R.E. Helv. Chim. Acta 1968, 51, 1558. For other spectral observations, see Raner, K.D.; Lusztyk, J.; Ingold, K.U. J. Phys. Chem. 1989, 93, 564.

 ¹²⁰Walling, C.; Azar, J.C. J. Org. Chem. 1968, 33, 3885; Ito, O.; Matsuda, M. J. Am. Chem. Soc. 1982, 104, 568; Minisci, F.; Vismara, E.; Fontana, F.; Morini, G.; Serravalle, M.; Giordano, C. J. Org. Chem. 1987, 52, 730.

¹²¹Russell, G.A.; Ito, O.; Hendry, D.G. J. Am. Chem. Soc. **1963**, 85, 2976; Corbiau, J.L.; Bruylants, A. Bull. Soc. Chim. Belg. **1970**, 79, 203, 211; Newkirk, D.D.; Gleicher, G.J. J. Am. Chem. Soc. **1974**, 96, 3543.

¹²²See Raner, K.D.; Lusztyk, J.; Ingold, K.U. J. Org. Chem. 1988, 53, 5220.

however, where the rate of reaction for trapping a radical depends on the polarity of the solvent, particularly in water.¹²³

REACTIONS

The reactions in this chapter are classified according to leaving group. The most common leaving groups are hydrogen and nitrogen (from the diazonium ion); these are considered first.

HYDROGEN AS LEAVING GROUP

A. Substitution by Halogen

14-1 Halogenation at an Alkyl Carbon¹²⁴

Halogenation or Halo-de-hydrogenation

R-H + Cl_2 \xrightarrow{hv} R-Cl

Alkanes can be chlorinated or brominated by treatment with chlorine or bromine in the presence of visible or UV light.¹²⁵ These reactions require a radical chain initiator, light, or higher temperatures.¹²⁶ The reaction can also be applied to alkyl chains containing many functional groups. The chlorination reaction is usually not useful for preparative purposes precisely because it is so general: Not only does substitution take place at virtually every alkyl carbon in the molecule, but diand polychloro substitution almost invariably occur even if there is a large molar ratio of substrate to halogen.

When functional groups are present, the principles are those outlined on p. 945; favored positions are those α to aromatic rings, while positions α to electron-withdrawing groups are least likely to be substituted. Tertiary carbons are most likely to be attacked and primary least. Positions α to an OR group are very readily attacked. Nevertheless, mixtures are nearly always obtained. This can be contrasted to the regioselectivity of electrophilic halogenation (**12-4–12-6**), which always takes place α to a carbonyl group (except when the reaction is catalyzed by AgSbF₆; see following). Of course, if a *mixture* of chlorides is wanted, the reaction is usually

¹²⁶Hill, C.L. Activation and Functionalization of Alkanes, Wiley, NY, 1989.

¹²³Tronche, C.; Martinez, F.N.; Horner, J.H.; Newcomb, M.; Senn, M.; Giese, B. *Tetrahedron Lett.* **1996**, *37*, 5845.

¹²⁴For lists of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed, Wiley-VCH, NY, **1999**, pp. 611–617.

¹²⁵For reviews, see Poutsma, M.L., in Kochi, J.K. *Free Radicals*, Vol. 2, Wiley, NY, **1973**, pp. 159–229; Huyser, E.S., in Patai, S. *The Chemistry of the Carbon-Halogen Bond*, pt. 1, Wiley, NY, **1973**, pp. 549–607; Poutsma, M.L. *Methods Free-Radical Chem.* **1969**, *1*, 79 (chlorination); Thaler, W.A. *Methods Free-Radical Chem.* **1969**, *2*, 121 (bromination).

quite satisfactory. For obtaining pure compounds, the chlorination reaction is essentially limited to substrates with only one type of replaceable hydrogen (e.g., ethane, cyclohexane, neopentane). The most common are methylbenzenes and other substrates with methyl groups on aromatic rings, since few cases are known where halogen atoms substitute at an aromatic position.¹²⁷ Of course, ring substitution *does* take place in the presence of a positive-ion-forming catalyst (**11-10**). In addition to mixtures of various alkyl halides, traces of other products are obtained. These include H₂, alkenes, higher alkanes, lower alkanes, and halogen derivatives of these compounds. Solvent plays an important role in this process.¹²⁸

The bromine atom is much more selective than the chlorine atom. As indicated on p. 952, it is often possible to brominate tertiary and benzylic positions selectively. High regioselectivity can also be obtained where the neighboring-group mechanism (p. 942) can operate.

As already mentioned, halogenation can be performed with chlorine or bromine. Fluorine has also been used,¹²⁹ but seldom, because it is too reactive and hard to control.¹³⁰ It often breaks carbon chains down into smaller units, a side reaction that sometimes becomes troublesome in chlorinations too. Fluorination¹³¹ has been achieved by the use of chlorine trifluoride ClF₃ at -75° C.¹³² For example, cyclohexane gave 41% fluorocyclohexane and methylcyclohexane gave 47% 1-fluoro-1-methylcyclohexane. Fluoroxytrifluoromethane CF₃OF fluorinates tertiary positions of certain molecules in good yields with high regioselectivity.¹³³ For example, adamantane gave 75% 1-fluoroadamantane. Fluorine at -70° C, diluted with N₂,¹³⁴ and bromine trifluoride at 25–35°C¹³⁵ are also highly regioselective for

¹²⁸Dneprovskii, A.S.; Kuznetsov, D.V.; Eliseenkov, E.V.; Fletcher, B.; Tanko, J.M. J. Org. Chem. **1998**, 63, 8860.

¹²⁹Rozen, S. Acc. Chem. Res. **1988**, 21, 307; Purrington, S.T.; Kagen, B.S.; Patrick, T.B. Chem. Rev. **1986**, 86, 997, pp. 1003–1005; Gerstenberger, M.R.C.; Haas, A. Angew. Chem. Int. Ed. **1981**, 20, 647; Hudlicky, M. The Chemistry of Organic Fluorine Compounds, 2nd ed., Ellis Horwood, Chichester, **1976**; pp. 67–91. For descriptions of the apparatus necessary for handling F₂, see Vypel, H. Chimia, **1985**, 39, 305.

¹³⁰However, there are several methods by which all the C–H bonds in a molecule can be converted to C–F bonds. For reviews, see Rozhkov, I.N., in Baizer, M.M.; Lund, H. Organic Electrochemistry, Marcel Dekker, NY, **1983**, pp. 805–825; Lagow, R.J.; Margrave, J.L. Prog. Inorg. Chem. **1979**, 26, 161. See also, Adcock, J.L.; Horita, K.; Renk, E. J. Am. Chem. Soc. **1981**, 103, 6937; Adcock, J.L.; Evans, W.D. J. Org. Chem. **1984**, 49, 2719; Huang, H.; Lagow, R.J. Bull. Soc. Chim. Fr. **1986**, 993.

¹³¹For a monograph on fluorinating agents, see German, L.; Zemskov, S. New Fluorinating Agents in Organic Synthesis, Springer, NY, **1989**.

¹³²Brower, K.R. J. Org. Chem. 1987, 52, 798.

¹³³Alker, D.; Barton, D.H.R.; Hesse, R.H.; Lister-James, J.; Markwell, R.E.; Pechet, M.M.; Rozen, S.; Takeshita, T.; Toh, H.T. *Nouv. J. Chem.* **1980**, *4*, 239.

¹³⁴Rozen, S.; Ben-Shushan, G. J. Org. Chem. 1986, 51, 3522; Rozen, S.; Gal, C. J. Org. Chem. 1987, 52,
 4928; 1988, 53, 2803; Alker, D.; Barton, D.H.R.; Hesse, R.H.; Lister-James, J.; Markwell, R.E.; Pechet,
 M.M.; Rozen, S.; Takeshita, T.; Toh, H.T. Nouv. J. Chem. 1980, 4, 239.

¹³⁵Boguslavskaya, L.S.; Kartashov, A.V.; Chuvatkin, N.N. J. Org. Chem. USSR 1989, 25, 1835.

¹²⁷Dermer, O.C.; Edmison, M.T. *Chem. Rev.* **1957**, *57*, 77, pp. 110–112. An example of free-radical ring halogenation can be found in Engelsma, J.W.; Kooyman, E.C. *Revl. Trav. Chim. Pays-Bas*, **1961**, *80*, 526, 537. For a review of aromatic halogenation in the gas phase, see Kooyman, E.C. *Adv. Free-Radical Chem.* **1965**, *1*, 137.

tertiary positions. These reactions probably have electrophilic, 136 not free-radical mechanisms. In fact, the success of the F₂ reactions depends on the suppression of free radical pathways, by dilution with an inert gas, by working at low temperatures, and/or by the use of radical scavengers.

Iodine can be used if the activating light has a wavelength of 184.9 nm,¹³⁷ but iodinations using I₂ alone are seldom attempted, largely because the HI formed reduces the alkyl iodide. The direct free-radical halogenation of aliphatic hydrocarbons with iodine is significantly endothermic relative to the other halogens, and the requisite chain reaction does not occur.¹³⁸ On the other hand, when iodine, CCl₄•2 AlI₃ react with an alkane in dibromomethane at -20° C, good yields of the iodoalkane are obtained.¹³⁹ The reaction of an alkane with *tert*-butylhypoiodite (*t*-BuOI) at 40°C gave the iodoalkane in good yield.¹⁴⁰ The reaction of alkanes with iodine and PhI(OAc)₂ generates the iodoalkane.¹⁴¹ A radical protocol was developed using Cl₄ with base. Cyclohexane could be iodinated, for example, with Cl₄ in the presence of powdered NaOH.¹⁴² The reaction led to the use of iodoform on solid NaOH as the iodination reagent of choice. α -Iodo ethers and α -iodolactones have been prepared from the parent ether or lactone via treatment with Et₄N•4 HF under electrolytic conditions.¹⁴³

Many other halogenation agents have been employed, the most common of which is sulfuryl chloride SO_2Cl_2 .¹⁴⁴ A mixture of Br₂ and HgO is a more active brominating agent than bromine alone.¹⁴⁵ The actual brominating agent in this case is believed to be bromine monoxide Br₂O. Among other agents used have been *N*-bromosuccinimide (NBS, see **14-3**), CCl₄,¹⁴⁶ BrCCl₃,¹⁴⁷ PCl₅,¹⁴⁸ and *N*-haloamines and sulfuric acid.¹⁴⁹ In all these cases, a chain-initiating catalyst is required, usually peroxides or UV light.

¹³⁶See, for example, Rozen, S.; Gal, C. J. Org. Chem. 1987, 52, 2769.

¹³⁷Gover, T.A.; Willard, J.E. J. Am. Chem. Soc. 1960, 82, 3816.

¹³⁸Liguori, L.; Bjørsvik, H.-R.; Bravo, A.; Fontana, R.; Minisci, F. *Chem. Commun.* 1997, 1501; Tanner, D.D.; Gidley, G.C. J. Am. Chem. Soc. 1968, 90, 808; Tanner, D.D.; Rowe, J.R.; Potter, A. J. Org. Chem. 1986, 51, 457.

¹³⁹Akhrem, I.; Orlinkov, A.; Vitt, S.; Chistyakov, A. Tetrahedron Lett. 2002, 43, 1333.

¹⁴⁰Montoro, R.; Wirth, T. Org. Lett. 2003, 5, 4729.

¹⁴¹Barluenga, J.; González-Bobes, F.; González, J.M. Angew. Chem. Int. Ed. 2002, 41, 2556.

¹⁴²Schreiner, P.R.; Lauenstein, O.; Butova, E.D.; Fokin, A.A. Angew. Chem. Int. Ed. 1999, 38, 2786.

¹⁴³Hasegawa, M.; Ishii, H.; Fuchigami, T. Tetrahedron Lett. 2002, 43, 1503.

¹⁴⁴For a review of this reagent, see Tabushi, I.; Kitaguchi, H., in Pizey, J.S. *Synthetic Reagents*, Vol. 4, Wiley, NY, **1981**, pp. 336–396.

¹⁴⁵Bunce, N.J. Can. J. Chem. 1972, 50, 3109.

¹⁴⁶For a discussion of the mechanism with this reagent, see Hawari, J.A.; Davis, S.; Engel, P.S.; Gilbert, B.C.; Griller, D. J. Am. Chem. Soc. **1985**, 107, 4721.

¹⁴⁷Huyser, E.S. J. Am. Chem. Soc. **1960**, 82, 391; Baldwin, S.W.; O'Neill, T.H. Synth. Commun. **1976**, 6, 109.

¹⁴⁸Wyman, D.P.; Wang, J.Y.C.; Freeman, W.R. J. Org. Chem. 1963, 28, 3173.

¹⁴⁹For reviews, see Minisci, F. Synthesis **1973**, 1; Deno, N.C. Methods Free-Radical Chem. **1972**, 3, 135; Sosnovsky, G.; Rawlinson, D.J. Adv. Free-Radical Chem. **1972**, 4, 203.

A base-induced bromination has been reported. 2-Methyl butane reacts with 50% aq. NaOH and CBr₄, in a phase-transfer catalyst, to give a modest yields of 2-bromo-2-methylbutane.¹⁵⁰

When chlorination is carried out with *N*-haloamines and sulfuric acid (catalyzed by either uv light or metal ions), selectivity is much greater than with other reagents.¹⁴⁹ In particular, alkyl chains are chlorinated with high regioselectivity at the position next to the end of the chain (the ω - 1 position).¹⁵¹ Some typical selectivity values are¹⁵²

Furthermore, di- and polychlorination are much less prevalent. Dicarboxylic acids are predominantly chlorinated in the middle of the chain,¹⁵⁶ and adamantane and bicyclo[2.2.2]octane at the bridgeheads¹⁵⁷ by this procedure. The reasons for the high ω - 1 specificity are not clearly understood.¹⁵⁸ Alkyl bromides can be regioselectively chlorinated one carbon away from the bromine (to give *vic*-bromochlorides) by treatment with PCl₅.¹⁵⁹ Alkyl chlorides can be converted to *vic*-dichlorides by treatment with MoCl₅.¹⁶⁰ Enhanced selectivity at a terminal position of *n*-alkanes has been achieved by absorbing the substrate onto a pentasil zeolite.¹⁶¹ In another regioselective chlorination, alkanesulfonamides

¹⁵⁰Schreiner, P.R.; Lauentstein, O.; Kolomitsyn, I.V.; Nadi, S.; Kokin, A.A. Angew. Chem. Int. Ed. 1998, 37, 1895.

¹⁵¹The ω - 1 regioselectivity diminishes when the chains are >10 carbons; see Deno, N.C.; Jedziniak, E.J. *Tetrahedron Lett.* **1976**, 1259; Konen, D.A.; Maxwell, R.J.; Silbert, L.S. *J. Org. Chem.* **1979**, 44, 3594.

¹⁵²The ω - 1 selectivity values shown here may actually be lower than the true values because of selective solvolysis of the ω - 1 chlorides in concentrated H₂SO₄: see Deno, N.C.; Pohl, D.G. J. Org. Chem. **1975**, 40, 380.

¹⁵³Bernardi, R.; Galli, R.; Minisci, F. *J. Chem. Soc. B* **1968**, 324. See also, Deno, N.C.; Gladfelter, E.J.; Pohl, D.G. *J. Org. Chem.* **1979**, 44, 3728; Fuller, S.E.; Lindsay Smith, J.R.; Norman, R.O.C.; Higgins, R. *J. Chem. Soc. Perkin Trans.* 2 **1981**, 545.

¹⁵⁴Deno, N.C.; Billups, W.E.; Fishbein, R.; Pierson, C.; Whalen, R.; Wyckoff, J.C. J. Am. Chem. Soc. **1971**, 93, 438.

¹⁵⁵Minisci, F.; Gardini, G.P.; Bertini, F. Can. J. Chem. 1970, 48, 544.

¹⁵⁶Kämper, F.; Schäfer, H.J.; Luftmann, H. Angew. Chem. Int. Ed. 1976, 15, 306.

¹⁵⁷Smith, C.V.; Billups, W.E. J. Am. Chem. Soc. 1974, 96, 4307.

¹⁵⁸It has been reported that the selectivity in one case is in accord with a pure electrostatic (field effect) explanation: Dneprovskii, A.S.; Mil'tsov, S.A.; Arbuzov, P.V. *J. Org. Chem. USSR* **1988**, *24*, 1826. See also, Tanner, D.D.; Arhart, R.; Meintzer, C.P. *Tetrahedron* **1985**, *41*, 4261; Deno, N.C.; Pohl, D.G. *J. Org. Chem.* **1975**, *40*, 380.

¹⁵⁹Luche, J.L.; Bertin, J.; Kagan, H.B. *Tetrahedron Lett.* 1974, 759.

¹⁶⁰San Filippo Jr, J.; Sowinski, A.F.; Romano, L.J. J. Org. Chem. 1975, 40, 3463.

¹⁶¹Turro, N.J.; Fehlner, J.R.; Hessler, D.P.; Welsh, K.M.; Ruderman, W.; Firnberg, D.; Braun, A.M. *J. Org. Chem.* **1988**, *53*, 3731.

RCH₂-CH₂CH₂SO₂NHR' are converted primarily to RCHClCH₂CH₂SO₂NHR' by sodium peroxydisulfate Na₂S₂O₈ and CuCl₂.¹⁶² For regioselective chlorination at certain positions of the steroid nucleus, see **19-2**.

In almost all cases, the mechanism involves a free-radical chain:

Initiation $X_2 \xrightarrow{hv} 2 X \cdot$ $RH + X \cdot \longrightarrow R \cdot + XH$ Propagation $R \cdot + X_2 \longrightarrow RX + X \cdot$ Termination $R \cdot + X \cdot \longrightarrow RX$

When the reagent is halogen, initiation occurs as shown above.¹⁶³ When it is another reagent, a similar cleavage occurs (catalyzed by light or, more commonly, peroxides), followed by propagation steps that do not necessarily involve abstraction by halogen. For example, the propagation steps for chlorination by *tert*-butyl hypochlorite (*t*-BuOCl) have been formulated as¹⁶⁴

 $RH + t-BuO \bullet \qquad \longrightarrow \qquad R \bullet + t-BuOH$ $R \bullet + t-BuOCl \qquad \longrightarrow \qquad RCl + t-BuO \bullet$

and the abstracting radicals in the case of *N*-haloamines are the aminium radical cations R_2NH^{+} (p. 693), with the following mechanism (in the case of initiation by Fe²⁺):¹⁴⁹

Initiation $R_2NCl \xrightarrow{H^*} R_2NHCl \xrightarrow{Fe^{2*}} R_2NH \cdot^+ + \stackrel{\textcircled{\oplus}}{FeCl}$ $R_2NH \cdot^+ + RH \xrightarrow{} R_2NH_2 + R \cdot$ Propagation $R \cdot + R_2NHCl \xrightarrow{} RCl + R_2NH \cdot^+$

This mechanism is similar to that of the Hofmann-Löffler reaction (18-40).

The two propagation steps shown above for X_2 are those that lead directly to the principal products (RX and HX), but many other propagation steps are possible and many occur. Similarly, the only termination step shown is the one that leads to RX, but any two radicals may combine (•H, •CH₃, •Cl, •CH₂CH₃ in all combinations).

¹⁶²Nikishin, G.I.; Troyansky, E.I.; Lazareva, M.I. Tetrahedron Lett. 1985, 26, 3743.

¹⁶³There is evidence (unusually high amounts of multiply chlorinated products) that under certain conditions in the reaction of RH with Cl_2 , the products of the second propagation step (RX + X•) are enclosed within a solvent cage. See Skell, P.S.; Baxter III, H.N. *J. Am. Chem. Soc.* **1985**, *107*, 2823; Raner, K.D.; Lusztyk, J.; Ingold, K.U. *J. Am. Chem. Soc.* **1988**, *110*, 3519; Tanko, J.M.; Anderson III, F.E. *J. Am. Chem. Soc.* **1988**, *110*, 3525.

¹⁶⁴Carlsson, D.J.; Ingold, K.U. J. Am. Chem. Soc. **1967**, 89, 4885, 4891; Walling, C.; McGuiness, J.A. J. Am. Chem. Soc. **1969**, 91, 2053. See also, Zhulin, V.M.; Rubinshtein, B.I. Bull. Acad. Sci. USSR Div. Chem. Sci, **1977**, 26, 2082.

Thus, products like H_2 , higher alkanes, and higher alkyl halides can be accounted for. When methane is the substrate, the rate-determining step is

$$CH_4 + Cl \cdot \longrightarrow \cdot CH_3 + HCl$$

since an isotope effect of 12.1 was observed at 0° C.¹⁶⁵ For chlorinations, chains are very long, typically 10^4 – 10^6 propagations before a termination step takes place.

The order of reactivity of the halogens can be explained by energy considerations. For the substrate methane, ΔH values for the two principal propagation steps are

		kcal mol $^{-1}$				kJ	mol^{-1}		
Reaction	F_2	Cl_2	Br ₂	I_2		F_2	Cl_2	Br ₂	I_2
$\label{eq:charged} \begin{array}{c} CH_4 + X \bullet \rightarrow CH_3 \bullet + HX \\ CH_4 + X_2 \rightarrow CH_3 X + X \bullet \end{array}$									

In each case, *D* for CH₃—H is 105 kcal mol⁻¹ (438 kJ mol⁻¹), while *D* values for the other bonds involved are given in Table 14.4.¹⁶⁶ Fluorine is so reactive¹⁶⁷ that neither uv light nor any other initiation is needed (total $\Delta H = -101$ kcal mol⁻¹; -425 kJ mol⁻¹);¹⁶⁸ while Br₂ and I₂ essentially do not react with methane. The second step is exothermic in all four cases, but it cannot take place before the first, and it is this step that is very unfavorable for Br₂ and I₂. It is apparent that the most important single factor causing the order of halogen reactivity to be F₂ > Cl₂ > Br₂ > I₂ is the decreasing strength of the HX bond in the order HF > HCl > HBr > HI. The increased reactivity of secondary and tertiary positions is in accord with the decrease in *D* values for R—H in the order primary > secondary > tertiary (Table 5.3). (Note that for chlorination step 1 is exothermic for practically all substrates other than CH₄, since most other aliphatic C—H bonds are weaker than those in CH₄.)

Bromination and chlorination of alkanes and cycloalkanes can also take place by an electrophilic mechanism if the reaction is catalyzed by AgSbF₆.¹⁶⁹ Direct

¹⁶⁵Wiberg, K.B.; Motell, E.L. Tetrahedron 1963, 19, 2009.

¹⁶⁶Kerr, J.A., in Weast, R.C. *Handbook of Chemistry and Physics*, 69th ed., CRC Press, Boca Raton, FL, **1988**, pp. F174–F189.

¹⁶⁷It has been reported that the reaction of F atoms with CH_4 at 25 K takes place with practically zero activation energy: Johnson, G.L.; Andrews, L. J. Am. Chem. Soc. **1980**, 102, 5736.

¹⁶⁸For F₂, the following initiation step is possible: $F_2 + RH \rightarrow R\bullet + F\bullet + HF$ [first demonstrated by Miller, Jr, W.T.; Koch, Jr, S.D.; McLafferty, F.W. J. Am. Chem. Soc. **1956**, 78, 4992]. ΔH for this reaction is equal to the small positive value of 5 kcal mol⁻¹ (21 kJ mol⁻¹). The possibility of this reaction (which does not require an initiator) explains why fluorination can take place without UV light [which would otherwise be needed to furnish the 38 kcal mol⁻¹ (159 kJ mol⁻¹) necessary to break the F–F bond]. Once the reaction has been initiated, the large amount of energy given off by the propagation steps is ample to cleave additional F₂ molecules. Indeed, it is the magnitude of this energy that is responsible for the cleavage of carbon chains by F₂.

¹⁶⁹Olah, G.A.; Renner, R.; Schilling, P.; Mo, Y.K. J. Am. Chem. Soc. 1973, 95, 7686. See also, Olah, G.A.;
 Wu, A.; Farooq, O. J. Org. Chem. 1989, 54, 1463.

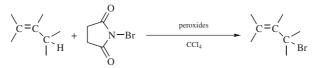
	L)
Bond	kcal mol $^{-1}$	$kJ mol^{-1}$
H–F	136	570
H–Cl	103	432
H–Br	88	366
H–I	71	298
F–F	38	159
Cl-Cl	59	243
Br–Br	46	193
I—I	36	151
CH ₃ -F	108	452
CH ₃ -Cl	85	356
CH ₃ –Br	70	293
CH ₃ –I	57	238

TABLE 14.4. Some D Values¹⁶⁶

chlorination at a vinylic position by an electrophilic mechanism has been achieved with benzeneseleninyl chloride PhSe(O)Cl and AlCl₃ or AlBr₃.¹⁷⁰ However, while some substituted alkenes give high yields of chloro substitution products, others (e.g., styrene) undergo addition of Cl₂ to the double bond (**15-39**).¹³¹ Electrophilic fluorination has already been mentioned (p. 956).

OS II, 89, 133, 443, 549; III, 737, 788; IV, 807, 921, 984; V, 145, 221, 328, 504, 635, 825; VI, 271, 404, 715; VII, 491; VIII, 161.

14-2 Halogenation at Silicon


Halogenation or Halo-de-hydrogenation

R₃Si–H – R₃Si–X

Just as free-radical halogenation occurs at the carbon of an alkane, via hydrogen abstraction to form the radical, a similar reaction occurs at silicon. When triisopropylsilane (*i*Pr₃Si–H) reacts with *tert*-butyl hypochlorite at -10° C, the product is triisopropylchlorosilane (*i*Pr₃Si–Cl).¹⁷¹

14-3 Allylic and Benzylic Halogenation

Halogenation or Halo-de-hydrogenation

¹⁷⁰Kamigata, N.; Satoh, T.; Yoshida, M. Bull. Chem. Soc. Jpn. 1988, 44, 449.

¹⁷¹Chawla, R.; Larson, G.L. Synth. Commun. 1999, 29, 3499.

This reaction is a special case of **14-1**, but is important enough to be treated separately.¹⁷² Alkenes can be halogenated in the allylic position and also a benzylic position by a number of reagents, of which NBS¹⁷³ is by far the most common. When this reagent is used, the reaction is known as *Wohl–Ziegler bromination*. A nonpolar solvent is used, most often CCl₄, but the reaction has been done in an ionic liquid.¹⁷⁴ A variation in the reaction used NBS with 5% Yb(OTf)₃ and 5% ClSiMe₃.¹⁷⁵ Other *N*-bromo amides have also been used. Allylic chlorination has been carried out, with *N*-chlorosuccinimide, *tert*-butyl hypochlorite,¹⁷⁶ or with NaClO/CeCl₃•7 H₂O.¹⁷⁷ With any reagent an initiator is needed; this is usually AIBN (1), a peroxide, such as di-*tert*-butyl peroxide or benzoyl peroxide or, less often, uv light.

The reaction is usually quite specific at an allylic or benzylic position and good yields are obtained. However, when the allylic radical intermediate is unsymmetrical, allylic rearrangements can take place, so that mixtures of both possible products are obtained, **21** and **22**.

When a double bond has two different allylic positions (e.g., $CH_3CH=CHCH_2CH_3$), a secondary position is substituted more readily than a primary. The relative reactivity of tertiary hydrogen is not clear, though many substitutions at allylic tertiary positions have been performed.¹⁷⁸ It is possible to brominate both sides of the double bond.¹⁷⁹ Because of the electron-withdrawing nature of bromine, the second bromine substitutes on the other side of the double bond rather than α to the first bromine. Molecules with a benzylic hydrogen, such as toluene, react rapidly to give α -bromomethyl benzene (e.g., PhCH₃ \rightarrow PhCH₂Br).

N-Bromosuccinimide is also a highly regioselective brominating agent at other positions, including positions α to a carbonyl group, to a C=C triple bond, and to an aromatic ring (benzylic position). When both a double and a triple bond are in the same molecule, the preferred position is α to the triple bond.¹⁸⁰

Dauben and McCoy demonstrated that the mechanism of allylic bromination is of the free-radical type,¹⁸¹ showing that the reaction is very sensitive to free-radical

¹⁷²For a review, see Nechvatal, A. Adv. Free-Radical Chem. 1972, 4, 175.

¹⁷³For a review of this reagent, see Pizey, J.S. Synthetic Reagents, Vol. 2, Wiley, NY, 1974, pp. 1–63.

¹⁷⁴In bmim PF₆, 1-butyl-3-methylimidazolium hexafluoorophosphate: Togo, H.; Hirai, T. *Synlett* **2003**, 702.

¹⁷⁵Yamanaka, M.; Arisawa, M.; Nishida, A.; Nakagawa, M. Tetahedron Lett. 2002, 43, 2403.

¹⁷⁶Walling, C.; Thaler, W.A. J. Am. Chem. Soc. 1961, 83, 3877.

¹⁷⁷Moreno-Dorado, F.J.; Guerra, F.M.; Manzano, F.L.; Aladro, F.J.; Jorge, Z.S.; Massanet, G.M. *Tetrahedron Lett.* **2003**, 44, 6691.

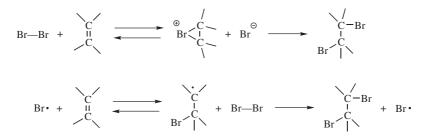
¹⁷⁸Dauben, Jr, H.J.; McCoy, L.L. J. Org. Chem. 1959, 24, 1577.

¹⁷⁹Ucciani, E.; Naudet, M. Bull. Soc. Chim. Fr. 1962, 871.

¹⁸⁰Peiffer, G. Bull. Soc. Chim. Fr. 1963, 537.

¹⁸¹Dauben, Jr, H.J.; McCoy, L.L. J. Am. Chem. Soc. 1959, 81, 4863.

initiators and inhibitors and indeed does not proceed at all unless at least a trace of initiator is present. Subsequent work indicated that the species that actually abstracts hydrogen from the substrate is the bromine atom. The reaction is initiated by small amounts of Br•. Once it is formed, the main propagation steps are


Step 1 $Br^{\bullet} + RH$ \longrightarrow $R^{\bullet} + HBr$ Step 2 $R^{\bullet} + Br_2$ \longrightarrow $RBr + Br^{\bullet}$

The source of the Br_2 is a fast ionic reaction between NBS and the HBr liberated in step 1:

The function of the NBS is therefore to provide a source of Br_2 in a low, steadystate concentration and to use up the HBr liberated in step 1.¹⁸² The main evidence for this mechanism is that NBS and Br_2 show similar selectivity¹⁸³ and that the various *N*-bromo amides also show similar selectivity,¹⁸⁴ which is consistent with the hypothesis that the same species is abstracting in each case.¹⁸⁵

It may be asked why, if Br_2 is the reacting species, it does not add to the double bond, either by an ionic or by a free-radical mechanism (see **15-39**). Apparently the concentration is too low. In bromination of a double bond, only one atom of an attacking bromine molecule becomes attached to the substrate, whether the addition is electrophilic or free radical:

¹⁸²This mechanism was originally suggested by Adam, J.; Gosselain, P.A.; Goldfinger, P. Nature (London), **1953**, 171, 704; Bull. Soc. Chim. Belg. **1956**, 65, 533.

¹⁸³Walling, C.; Rieger, A.L.; Tanner, D.D. J. Am. Chem. Soc. 1963, 85, 3129; Russell, G.A.; Desmond,
 K.M. J. Am. Chem. Soc. 1963, 85, 3139; Russell, G.A.; DeBoer, C.D.; Desmond, K.M. J. Am. Chem. Soc. 1963, 85, 365; Pearson, R.; Martin, J.C. J. Am. Chem. Soc. 1963, 85, 3142; Skell, P.S.; Tuleen, D.L.;
 Readio, P.D. J. Am. Chem. Soc. 1963, 85, 2850.

¹⁸⁴Walling, C.; Rieger, A.L. J. Am. Chem. Soc. **1963**, 85, 3134; Pearson, R.; Martin, J.C. J. Am. Chem. Soc. **1963**, 85, 3142; Incremona, J.H.; Martin, J.C. J. Am. Chem. Soc. **1970**, 92, 627.

¹⁸⁵For other evidence, see Day, J.C.; Lindstrom, M.J.; Skell, P.S. J. Am. Chem. Soc. 1974, 96, 5616.

The other bromine atom comes from another bromine-containing molecule or ion. This is clearly not a problem in reactions with benzylic species since the benzene ring is not prone to such addition reactions. If the concentration is sufficiently low, there is a low probability that the proper species will be in the vicinity once the intermediate forms. The intermediate in either case reverts to the initial species and the allylic substitution competes successfully. If this is true, it should be possible to brominate an alkene in the allylic position without competition from addition, even in the absence of NBS or a similar compound, if a very low concentration of bromine is used and if the HBr is removed as it is formed so that it is not available to complete the addition step. This has indeed been demonstrated.¹⁸⁶

When NBS is used to brominate non-alkenyl substrates, such as alkanes, another mechanism, involving abstraction of the hydrogen of the substrate by the succinimidyl radical¹⁸⁷ **23** can operate.¹⁸⁸ This mechanism is facilitated by solvents (e.g., CH₂Cl₂, CHCl₃, or MeCN) in which NBS is more soluble, and by the presence of small amounts of an alkene that lacks an allylic hydrogen (e.g., ethene). The alkene serves to scavenge any Br• that forms from the reagent. Among the evidence for the mechanism involving **23** are abstraction selectivities similar to those of Cl• atoms and the isolation of β-bromopropionyl isocyanate (BrCH₂CH₂CONCO) which is formed by ring opening of **23**.

Allylic chlorination has also been carried out¹⁸⁹ with *N*-chlorosuccinimide (NCS) and either arylselenyl chlorides (ArSeCl), aryl diselenides (ArSeSeAr), or TsNSO as catalysts. Use of the selenium catalysts produces almost entirely the allylically rearranged chlorides in high yields. With TsNSO the products are the unrearranged chlorides in lower yields. Dichlorine monoxide Cl₂O, with no catalyst, also gives allylically rearranged chlorides in high yields.¹⁹⁰ A free-radical mechanism is unlikely in these reactions.

Allyl silanes react with transition metals bearing chlorine ligands to give allyl chlorides, where a chlorine replaces a Me_3Si unit.¹⁹¹

OS IV, 108; V, 825; VI, 462; IX, 191.

C.P.; Walling, C.; Sopchik, A. J. Am. Chem. Soc. 1985, 107, 6576; Lüning, U.; Seshadri, S.; Skell, P.S. J.

Org. Chem. **1986**, *51*, 2071; Zhang, Y.; Dong, M.; Jiang, X.; Chow, Y.L. *Can. J. Chem.* **1990**, *68*, 1668. ¹⁸⁹Hori, T.; Sharpless, K.B. *J. Org. Chem.* **1979**, *44*, 4204.

¹⁹¹Fujii, T.; Hirao, Y.; Ohshiro, Y. Tetrahedron Lett. 1993, 34, 5601.

¹⁸⁶McGrath, B.P.; Tedder, J.M. Proc. Chem. Soc. 1961, 80.

¹⁸⁷For a review of this radical, see Chow, Y.L.; Naguib, Y.M.A. Rev. Chem. Intermed. 1984, 5, 325.

¹⁸⁸Skell, P.S.; Day, J.C. Acc. Chem. Res. 1978, 11, 381; Tanner, D.D.; Reed, D.W.; Tan, S.L.; Meintzer,

¹⁹⁰Torii, S.; Tanaka, H.; Tada, N.; Nagao, S.; Sasaoka, M. Chem. Lett. 1984, 877.

14-4 Halogenation of Aldehydes

Halogenation or Halo-de-hydrogenation

RCHO + Cl_2 \longrightarrow RCOCl

The α -halogenation reaction of carbonyl compounds was mentioned in Section **14-2**. A different halogenation reaction is possible in which aldehydes can be directly converted to acyl chlorides by treatment with chlorine, but the reaction operates only when the aldehyde does not contain an α hydrogen and even then it is not very useful. When there is an α hydrogen, α halogenation (**14-2**, **12-4**) occurs instead. Other sources of chlorine have also been used, among them $SO_2Cl_2^{192}$ and *t*-BOCl.¹⁹³ The mechanisms are probably of the free-radical type. *N*-Bromosuccinimide, with AIBN (p. 935) as a catalyst, has been used to convert aldehydes to acyl bromides.¹⁹⁴

OS I, 155.

B. Substitution by Oxygen

14-5 Hydroxylation at an Aromatic Carbon¹⁹⁵

Hydroxylation or Hydroxy-de-hydrogenation

ArH + H_2O_2 + $FeSO_4$ \longrightarrow ArOH

A mixture of hydrogen peroxide and ferrous sulfate,¹⁹⁶ called *Fenton's* reagent,¹⁹⁷ can be used to hydroxylate aromatic rings, though yields are usually not high.¹⁹⁸ Biaryls are usually side products.¹⁹⁹ Among other reagents used have been H_2O_2 and titanous ion; O_2 and $Cu(I)^{200}$ or Fe(III),²⁰¹ a mixture of ferrous

¹⁹²Arai, M. Bull. Chem. Soc. Jpn. 1964, 37, 1280; 1965, 38, 252.

¹⁹³Walling, C.; Mintz, M.J. J. Am. Chem. Soc. 1967, 89, 1515.

¹⁹⁴Markó, I.E.; Mekhalfia, A. *Tetrahedron Lett.* **1990**, *31*, 7237. For a related procedure, see Cheung, Y. *Tetrahedron Lett.* **1979**, 3809.

¹⁹⁵For reviews, see Vysotskaya, N.A. Russ. Chem. Rev. 1973, 42, 851; Sangster, D.F., in Patai, S. The Chemistry of the Hydroxyl Group, pt. 1, Wiley, NY, 1971, pp. 133–191; Metelitsa, D.I. Russ. Chem. Rev. 1971, 40, 563; Enisov, E.T.; Metelitsa, D.I. Russ. Chem. Rev. 1968, 37, 656; Loudon, J.D. Prog. Org. Chem. 1961, 5, 47.

¹⁹⁶For a review of reactions of H₂O₂ and metal ions with all kinds of organic compounds, including aromatic rings, see Sosnovsky, G.; Rawlinson, D.J., in Swern, D. *Organic Peroxides*, Vol. 2, Wiley, NY, **1970**, pp. 269–336. See also, Sheldon, R.A.; Kochi, J.K. *Metal-Catalyzed Oxidations of Organic Compounds*, Academic Press, NY, **1981**.

¹⁹⁷For a discussion of Fenton's reagent, see Walling, C. Acc. Chem. Res. 1975, 8, 125.

¹⁹⁸Yields can be improved with phase transfer catalysis: Karakhanov, E.A.; Narin, S.Yu.; Filippova, T.Yu.; Dedov, A.G. *Doklad. Chem.* **1987**, 292, 81.

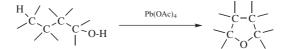
¹⁹⁹See the discussion of the aromatic free-radical substitution mechanism on pp. \$\$\$-\$\$\$.

²⁰⁰See Karlin, K.D.; Hayes, J.C.; Gultneh, Y.; Cruse, R.W.; McKown, J.W.; Hutchinson, J.P.; Zubieta, J. J.
 Am. Chem. Soc. 1984, 106, 2121; Cruse, R.W.; Kaderli, S.; Meyer, C.J.; Zuberbühler, A.D.; Karlin, K.D. J.
 Am. Chem. Soc. 1988, 110, 5020; Ito, S.; Kunai, A.; Okada, H.; Sasaki, K. J. Org. Chem. 1988, 53, 296.
 ²⁰¹Funabiki, T.; Tsujimoto, M.; Ozawa, S.; Yoshida, S. Chem. Lett. 1989, 1267.

ion, oxygen, ascorbic acid, and ethylenetetraaminetetraacetic acid (*Udenfriend's reagent*);²⁰² O₂ and KOH in liquid NH₃;²⁰³ and peroxyacids such as peroxynitrous and trifluoroperoxyacetic acids.

Much work has been done on the mechanism of the reaction with Fenton's reagent, and it is known that free aryl radicals (formed by a process, e.g., $HO \cdot + ArH \rightarrow AR \cdot + H_2O$) are not intermediates. The mechanism is essentially that outlined on p. \$\$\$, with HO • as the attacking species,²⁰⁴ formed by

 Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + HO^{\bullet}


The rate-determining step is formation of HO• and not its reaction with the aromatic substrate.

An alternative oxidation of arene to phenol was reported using Cu(NO₃)•3 H₂O, 30% hydrogen peroxide and a phosphate buffer.²⁰⁵

See also, 11-26.

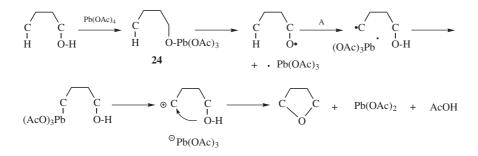
14-6 Formation of Cyclic Ethers

(5) OC-cyclo-Alkoxy-de-hydro-substitution

Alcohols with a hydrogen in the δ position can be cyclized with lead tetraacetate.²⁰⁶ The reaction is usually carried out at ~80°C (most often in refluxing benzene), but can also be done at room temperature if the reaction mixture is irradiated with uv light. Tetrahydrofurans are formed in high yields. Little or no four- and sixmembered cyclic ethers (oxetanes and tetrahydropyrans, respectively) are obtained even when γ and ε hydrogens are present. The reaction has also been carried out with a mixture of halogen (Br₂ or I₂) and a salt or oxide of silver or mercury (especially HgO or AgOAc),²⁰⁷ with iodosobenzene diacetate and I₂,²⁰⁸ and with ceric

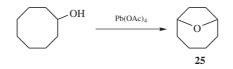
 ²⁰²Udenfriend, S.; Clark, C.T.; Axelrod, J.; Brodie, B.B. *J. Biol. Chem.* 1954, 208, 731; Brodie, B.B.;
 Shore, P.A.; Udenfriend, S. *J. Biol. Chem.* 1954, 208, 741. See also, Tamagaki, S.; Suzuki, K.; Tagaki, W. *Bull. Chem. Soc. Jpn.* 1989, 62, 148, 153, 159.

²⁰³Malykhin, E.V.; Kolesnichenko, G.A.; Shteingarts, V.D. J. Org. Chem. USSR 1986, 22, 720.


 ²⁰⁴Jefcoate, C.R.E.; Lindsay Smith, J.R.; Norman, R.O.C. J. Chem. Soc. B 1969, 1013; Brook, M.A.; Castle, L.; Lindsay Smith, J.R.; Higgins, R.; Morris, K.P. J. Chem. Soc. Perkin Trans. 2 1982, 687; Lai, C.; Piette, L.H. Tetrahedron Lett. 1979, 775; Kunai, A.; Hata, S.; Ito, S.; Sasaki, K. J. Am. Chem. Soc. 1986, 108, 6012.
 ²⁰⁵Nasreen, A.; Adapa, S.R. Org. Prep. Proceed. Int. 2000, 32, 373.

²⁰⁶For reviews, see Mihailović, M.Lj.; Partch, R. *Sel. Org. Transform.* **1972**, *2*, 97; Milhailović, M.Lj.; Čeković, Z. *Synthesis* **1970**, 209. For a review of the chemistry of lead tetraacetate, see Butler, R.N., in Pizey, J.S. *Synthetic Reagents*, Vol. 3, Wiley, NY, **1977**, pp. 277–419.

²⁰⁷Akhtar, M.; Barton, D.H.R. J. Am. Chem. Soc. **1964**, 86, 1528; Sneen, R.A.; Matheny, N.P. J. Am. Chem. Soc. **1964**, 86, 3905, 5503; Roscher, N.M.; Shaffer, D.K. Tetrahedron **1984**, 40, 2643. For a review, see Kalvoda, J.; Heusler, K. Synthesis **1971**, 501. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed, Wiley-VCH, NY, **1999**, pp. 889–890.


²⁰⁸Concepción, J.I.; Francisco, C.G.; Hernández, R.; Salazar, J.A.; Suárez, E. *Tetrahedron Lett.* **1984**, 25, 1953; Furuta, K.; Nagata, T.; Yamamoto, H. *Tetrahedron Lett.* **1988**, 29, 2215.

ammonium nitrate (CAN). 209 The following mechanism is likely for the lead tetra-acetate reaction: 210

though **24** has never been isolated. The step marked **A** is a 1,5 internal hydrogen abstraction. Such abstractions are well known (see **18-40**) and are greatly favored over 1,4 or 1,6 abstractions (the small amounts of tetrahydropyran formed result from 1,6 abstractions).²¹¹

Reactions that sometimes compete are oxidation to the aldehyde or acid (19-3 and 19-22) and fragmentation of the substrate. When the OH group is on a ring of at least seven members, a transannular product can be formed, as in the cyclization reaction of 1-octanol to 25.²¹²

 β -Hydroxy ethers can give cyclic acetals, such as 26.²¹³

There are no references in *Organic Syntheses*, but see OS V, 692; VI, 958, for related reactions.

 ²⁰⁹See, for example, Trahanovsky, W.S.; Young, M.G.; Nave, P.M. *Tetrahedron Lett.* **1969**, 2501; Doyle, M.P.; Zuidema, L.J.; Bade, T.R. *J. Org. Chem.* **1975**, *40*, 1454.

²¹⁰Mihailović, M.Lj.; Čeković, Z.; Maksimović, Z.; Jeremić, D.; Lorenc, Lj.; Mamuzi, R.I. *Tetrahedron* 1965, 21, 2799.

²¹¹Mihailović, M.Lj.; Čeković, Z.; Jeremić, D. Tetrahedron 1965, 21, 2813.

²¹²Cope, A.C.; Gordon, M.; Moon, S.; Park, C.H. J. Am. Chem. Soc. **1965**, 87, 3119; Moriarty, R.M.; Walsh, H.G. *Tetrahedron Lett.* **1965**, 465; Mihailović, M.Lj.; Čeković, Z.; Andrejević, V.; Matić, R.; Jeremić, D. *Tetrahedron* **1968**, 24, 4947.

²¹³Furuta, K.; Nagata, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 2215.

CHAPTER 14

14-7 Formation of Hydroperoxides

Hydroperoxy-de-hydrogenation

 $RH + O_2 \longrightarrow R-O-O-H$

The slow atmospheric oxidation (slow meaning without combustion) of C-H to C-O-O-H is called *autoxidation*.²¹⁴ The reaction occurs when compounds are allowed to stand in air and is catalyzed by light, so unwanted autoxidations can be greatly slowed by keeping the compounds in dark places. Most autoxidations proceed by free-radical chain processes that involve peroxyl radicals.²¹⁵ To suppress autoxidation, an antioxidant can be added that will prevent or retard the reaction with atmospheric oxygen.²¹⁶ Although some lactone compounds are sold as antioxidants, many radicals derived from lactones show poor or no reactivity toward oxygen.²¹⁶ The hydroperoxides produced often react further to give alcohols, ketones, and more complicated products, so the reaction is not often used for preparative purposes, although in some cases hydroperoxides have been prepared in good yield.²¹⁷ It is because of autoxidation that foods, rubber, paint, lubricating oils, and so on deteriorate on exposure to the atmosphere over periods of time. On the other hand, a useful application of autoxidation is the atmospheric drying of paints and varnishes. As with other free-radical reactions of C-H bonds, some bonds are attacked more readily than others,²¹⁸ and these are the ones we have seen before (pp. 943–949), though the selectivity is very low at high temperatures and in the gas phase. The reaction can be carried out successfully at tertiary (to a lesser extent, secondary), benzylic,²¹⁹ and allylic (though allylic rearrangements are common) R.²²⁰ 2-Phenylpropane reacted with oxygen to give PhMe₂C-OOH, for example. Another susceptible position is aldehydic C-H,

²¹⁵Ingold, K.U. Acc. Chem. Res. 1969, 2, 1.

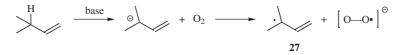
²¹⁴The term autoxidation actually applies to any slow oxidation with atmospheric oxygen. See Goosen, A.; Morgan, D.H. J. Chem. Soc. Perkin Trans. 2 **1994**, 557. For reviews, see Sheldon, R.A.; Kochi, J.K. Adv. Catal., **1976**, 25, 272; Howard, W.G., in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, **1973**, pp. 3–62; Lloyd, W.G. Methods Free-Radical Chem. **1973**, 4, 1; Betts, J. Q. Rev. Chem. Soc. **1971**, 25, 265; Huyser, E.S. Free-Radical Chain Reactions, Wiley, NY, **1970**, pp. 306–312; Chinn, L.J. Selection of Oxidants in Synthesis Marcel Dekker, NY, **1971**, pp. 29–39; Ingold, K.U. Acc. Chem. Res. **1969**, 2, 1; Mayo, F.R. Acc. Chem. Res. **1968**, 1, 193. For monographs on these and similar reactions, see Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 16, Elsevier, NY, **1980**; Sheldon, R.A.; Kochi, J.K. Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, NY, **1981**.

²¹⁶Bejan, E.V.; Font-Sanchis, E.; Scaiano, J.C. Org. Lett, **2001**, *3*, 4059; Scaiano, J.C.; Martin, A.; Yap, G.P.A.; Ingold, K.U. Org. Lett. **2000**, *2*, 899.

²¹⁷For a review of the synthesis of alkyl peroxides and hydroperoxides, see Sheldon, R.A., in Patai, S. *The Chemistry of Peroxides*, Wiley, NY, **1983**, pp. 161–200.

²¹⁸For a discussion, see Korcek, S.; Chenier, J.H.B.; Howard, J.A.; Ingold, K.U. *Can. J. Chem.* **1972**, *50*, 2285, and other papers in this series.

²¹⁹For a method that gives good yields at benzylic positions, see Santamaria, J.; Jroundi, R.; Rigaudy, J. *Tetrahedron Lett.* **1989**, *30*, 4677.


²²⁰For a review of autoxidation at allylic and benzylic positions, see Voronenkov, V.V.; Vinogradov, A.N.; Belyaev, V.A. *Russ. Chem. Rev.* **1970**, *39*, 944.

but the peroxyacids so produced are not easily isolated²²¹ since they are converted to the corresponding carboxylic acids (**19-23**). The α positions of ethers are also easily attacked by oxygen [RO–C–H \rightarrow RO–C–OOH], but the resulting hydroperoxides are seldom isolated. However, this reaction constitutes a hazard in the storage of ethers since solutions of these hydroper-oxides and their rearrangement products in ethers are potential spontaneous explosives.²²²

Oxygen itself (a diradical) is not reactive enough to be the species that actually abstracts the hydrogen. But if a trace of free radical (say $R' \cdot$) is produced by some initiating process, *it* reacts with oxygen²²³ to give $R' - O - O \cdot$; since this type of radical *does* abstract hydrogen, the chain is

$$R'OO \cdot + RH \longrightarrow R \cdot + R'OOH$$

 $R \cdot + O_2 \longrightarrow R - O - O \cdot$
etc.

In at least some cases (in alkaline media)²²⁴ the radical R• can be produced by formation of a carbanion and its oxidation (by O_2) to a radical, such as allylic radical **27**.²²⁵

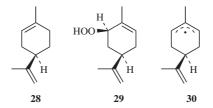
Autoxidations in alkaline media can also proceed by a different mechanism: $R-H + base \rightarrow R^- + O_2 \rightarrow ROO^{-226}$.

When alkenes are treated with oxygen that has been photosensitized (p. 341), they are substituted by OOH in the allylic position in a synthetically useful reaction.²²⁷ Although superficially similar to autoxidation, this reaction is clearly different because 100% allylic rearrangement always takes place. The reagent here is not

²²¹Swern D. Organic Peroxides, Vol. 1, Wiley, NY, 1970, p. 313.

²²²For methods of detection and removal of peroxides from ether solvents, see Gordon, A.J.; Ford, R.A. *The Chemist's Companion*, Wiley, NY, **1972**, p. 437; Burfield, D.R. *J. Org. Chem.* **1982**, 47, 3821.

²²³See, for example, Schwetlick, K. J. Chem. Soc. Perkin Trans. 2 1988, 2007.


²²⁴For a review of base-catalyzed autoxidations in general, see Sosnovsky, G.; Zaret, E.H., in Swern, D. *Organic Peroxides*, Vol. 1, Wiley, NY, **1970**, pp. 517–560.

²²⁶Gersmann, H.R.; Bickel, A.F. J. Chem. Soc. B 1971, 2230.

²²⁷For reviews, see Frimer, A.A.; Stephenson, L.M. in Frimer, A.A. Singlet O₂, Vol. 2, CRC Press, Boca Raton, FL, **1985**, pp. 67–91; Wasserman, H.H.; Ives, J.L. Tetrahedron **1981**, 37, 1825; Gollnick, K.; Kuhn, H.J., in Wasserman, H.H.; Murray, R.W. Singlet Oxygen, Academic Press, NY, **1979**, pp. 287–427; Denny, R.W.; Nickon, A. Org. React. **1973**, 20, 133; Adams, W.R., in Augustine, R.L. Oxidation, Vol. 2, Marcel Dekker, NY, **1969**, pp. 65–112.

²²⁵Barton, D.H.R.; Jones, D.W. J. Chem. Soc. **1965**, 3563; Russell, G.A.; Bemis, A.G. J. Am. Chem. Soc. **1966**, 88, 5491.

the ground-state oxygen (a triplet), but an excited singlet state²²⁸ (in which all electrons are paired), and the function of the photosensitization is to promote the oxygen to this singlet state. Singlet oxygen can also be produced by nonphotochemical means,²²⁹ for example, by the reaction between H₂O₂ and NaOCl²³⁰ or sodium molybdate,²³¹ or between ozone and triphenyl phosphite.²³² Calcium peroxide diperoxohydrate (CaO₂, 2 H₂O₂) has been reported as a storable compound used for the chemical generation of singlet oxygen.²³³ The oxygen generated by either photochemical or nonphotochemical methods reacts with alkenes in the same way;²³⁴ this is evidence that singlet oxygen is the reacting species in the photochemical reaction and not some hypothetical complex between triplet oxygen and the photosensitizer, as had previously been suggested. The fact that 100% allylic rearrangement always takes place is incompatible with a free-radical mechanism, and

further evidence that free radicals are not involved comes from the treatment of optically active limonene (28) with singlet oxygen. Among other products is the optically active hydroperoxide 29, though if 30 were an intermediate, it could not give an optically active product since it possesses a plane of symmetry.²³⁵ In contrast, autoxidation of 28 gave optically inactive 29 (a mixture of four diastereomers in which the two pairs of enantiomers are present as racemic mixtures). As this example shows, singlet oxygen reacts faster with more-highly substituted than with less-highly substituted alkenes. The order of alkene reactivity is

²²⁸For books on singlet oxygen, see Frimer, A.A. Singlet O₂, 4 vols., CRC Press, Boca Raton, FL, 1985;
Wasserman, H.H.; Murray, R.W. Singlet Oxygen, Academic Press, NY, 1979. For reviews, see Frimer,
A.A., in Patai, S. The Chemistry of Peroxides, Wiley, NY, 1983, pp. 201–234; Gorman, A.A.; Rodgers,
M.A.J. Chem. Soc. Rev. 1981, 10, 205; Shinkarenko, N.V.; Aleskovskii, V.B. Russ. Chem. Rev. 1981, 50,
220; Shlyapintokh, V.Ya.; Ivanov, V.B. Russ. Chem. Rev. 1976, 45, 99; Ohloff, G. Pure Appl. Chem. 1975,
43, 481; Kearns, D.R. Chem. Rev. 1971, 71, 395; Wayne, R.P. Adv. Photochem. 1969, 7, 311.

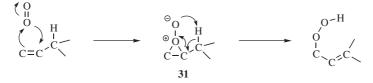
²²⁹For reviews, see Turro, N.J.; Ramamurthy, V., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, *1980*, pp. 1–23; Murray, R.W., in Wasserman, H.H.; Murray, R.W. *Singlet Oxygen*, Academic Press, NY, *1979*, pp. 59–114. For a general monograph, see Adam, W.; Cilento, G. *Chemical and Biological Generation of Excited States*; Academic Press, NY, *1982*.

²³⁰Foote, C.S.; Wexler, S. J. Am. Chem. Soc. 1964, 86, 3879.

²³¹Aubry, J.M.; Cazin, B.; Duprat, F. J. Org. Chem. 1989, 54, 726.

²³²Murray, R.W.; Kaplan, M.L. J. Am. Chem. Soc. **1969**, 91, 5358; Bartlett, P.D.; Mendenhall, G.D.; Durham, D.L. J. Org. Chem. **1980**, 45, 4269.

²³⁵Schenck, G.O.; Gollnick, K.; Buchwald, G.; Schroeter, S.; Ohloff, G. Liebigs Ann. Chem. 1964, 674,
 93; Schenck, G.O.; Neumüller, O.; Ohloff, G.; Schroeter, S. Liebigs Ann. Chem. 1965, 687, 26.


²³³Pierlot, C.; Nardello, V.; Schrive, J.; Mabille, C.; Barbillat, J.; Sombret, B.; Aubry, J.-M. *J. Org. Chem*, **2002**, *67*, 2418.

²³⁴Foote, C.S.; Wexler, S.; Ando, W.; Higgins, R. J. Am. Chem. Soc. **1968**, 90, 975. See also, McKeown, E.; Waters, W.A. J. Chem. Soc. B **1966**, 1040.

tetrasubstituted > trisubstituted > disubstituted. Electron-withdrawing substituents deactivate the alkene.²³⁶ In simple trisubstituted alkenes, there is a general preference for the hydrogen to be removed from the more highly congested side of the double bond.²³⁷ With *cis*-alkenes of the form RCH=CHR', the hydrogen is removed from the larger R group.²³⁸ Many functional groups in an allylic position cause the hydrogen to be removed from that side rather than the other (geminal selectivity).²³⁹ Also, in alkyl-substituted alkenes, the hydrogen that is preferentially removed is the one geminal to the larger substituent on the double bond.²⁴⁰

Several mechanisms have been proposed for the reaction with singlet oxygen.²⁴¹ One of these is a pericyclic mechanism, similar to that of the ene synthesis (**15-23**) and to the first step of the reaction between alkenes and SeO₂ (**19-14**). However, there is strong evidence against this mechanism,²⁴² and a more likely mechanism involves addition of singlet oxygen to the double bond to give a perepoxide (**31**),²⁴³ followed by internal proton transfer.²⁴⁴

Still other proposed mechanisms involve diradicals or dipolar intermediates.²⁴⁵ OS IV, 895.

²³⁶For example, see Foote, C.S.; Denny, R.W. J. Am. Chem. Soc. 1971, 93, 5162.

²³⁷Orfanopoulos, M.; Bellamine, M.; Grdina, M.J.; Stephenson, L.M. J. Am. Chem. Soc. **1979**, 101, 275; Rautenstrauch, V.; Thommen, W.; Schulte-Elte, K.H. Helv. Chim. Acta **1986**, 69, 1638 and references cited therein. ²³⁸Orfanopoulos, M.; Stratakis, M.; Elemes, Y. *Tetrahedron Lett.* **1989**, 30, 4875.

²³⁹Clennan, E.L.; Chen, X.; Koola, J.J. J. Am. Chem. Soc. **1990**, 112, 5193, and references cited therein.
 ²⁴⁰Orfanopoulos, M.; Stratakis, M.; Elemes, Y. J. Am. Chem. Soc. **1990**, 112, 6417.

²⁴¹For reviews of the mechanism, see Frimer, A.A.; Stephenson, L.M., in Frimer, A.A. Singlet O₂, Vol. 2, CRC Press, Boca Raton, FL, **1985**, pp. 80–87; Stephenson, L.M.; Grdina, M.J.; Orfanopoulos, M. Acc. Chem. Res. **1980**, 13, 419; Gollnick, K.; Kuhn, H.J. Wasserman, H.H.; Murray, R.W. Singlet Oxygen, Academic Press, NY, **1979**, pp. 288–341; Frimer, A.A. Chem. Rev. **1979**, 79, 359; Foote, C.S. Acc. Chem. Res. **1968**, 1, 104; Pure Appl. Chem. **1971**, 27, 635; Gollnick, K. Adv. Photochem. **1968**, 6, 1; Kearns, D.R. Chem. Rev. **1971**, 71, 395.

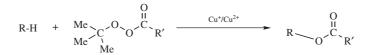
²⁴²Asveld, E.W.H.; Kellogg, R.M. J. Org. Chem. 1982, 47, 1250.

²⁴³For a review of perepoxides as intermediates in organic reactions, see Mitchell, J.C. *Chem. Soc. Rev.* **1985**, *14*, 399, p. 401.

²⁴⁴For evidence in favor of this mechanism, at least with some kinds of substrates, see Jefford, C.W.;
Rimbault, C.G. J. Am. Chem. Soc. 1978, 100, 6437; Okada, K.; Mukai, T. J. Am. Chem. Soc. 1979, 100, 6509; Paquette, L.A.; Hertel, L.W.; Gleiter, R.; Böhm, M. J. Am. Chem. Soc. 1978, 100, 6510; Wilson, S.L.; Schuster, G.B. J. Org. Chem. 1986, 51, 2056; Davies, A.G.; Schiesser, C.H. Tetrahedron Lett. 1989, 30, 7099; Orfanopoulos, M.; Smonou, I.; Foote, C.S. J. Am. Chem. Soc. 1990, 112, 3607.

²⁴⁵See, for example, Jefford, C.W. Helv. Chim. Acta 1981, 64, 2534.

14-8 Formation of Peroxides


CHAPTER 14

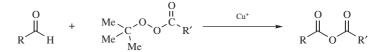
Alkyldioxy-de-hydrogenation

Peroxy groups (ROO) can be introduced into susceptible organic molecules by treatment with a hydroperoxide in the presence of cuprous chloride or other catalysts, for example, cobalt and manganese salts.²⁴⁶ Very high yields can be obtained. The type of hydrogen replaced is similar to that with NBS (14-3), that is, mainly benzylic, allylic, and tertiary. The mechanism is therefore of the free-radical type, involving ROO• formed from ROOH and the metal ion. The reaction can be used to demethylate tertiary amines of the form R_2NCH_3 , since the product R_2NHCH_2OOR' can easily be hydrolyzed by acid (10-6) to give R_2NH .²⁴⁷

14-9 Acyloxylation

Acyloxylation or Acyloxy-de-hydrogenation

Susceptible positions of organic compounds can be directly acyloxylated²⁴⁸ by *tert*-butyl peroxyesters, the most frequently used being acetic and benzoic (R' = Me or Ph).²⁴⁹ The reaction requires a catalyst (cuprous ion is the actual catalyst, but a trace is all that is necessary, and such traces are usually present in cupric compounds, so that these are often used) and without it is not selective. Susceptible positions are similar to those in **14-6**: benzylic, allylic, and the a position of ethers and sulfides. Terminal alkenes are substituted almost entirely in the 3 position, that is, with only a small amount of allylic rearrangement, but internal alkenes generally give mixtures containing a large amount of allylic-shift product. If the reaction with alkenes is carried out in an excess of


²⁴⁶For a review, see Sosnovsky, G.; Rawlinson, D.J., in Swern, D. Organic Peroxides, Vol. 2, Wiley, NY, **1970**, pp. 153–268. See also, Murahashi, S.; Naota, T.; Kuwabara, T.; Saito, T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. **1990**, 112, 7820; Sheldon, R.A., in Patai, S. The Chemistry of Peroxides, Wiley, NY, **1983**, p. 161.

²⁴⁷See Murahashi, S.; Naota, T.; Yonemura, K. J. Am. Chem. Soc. 1988, 110, 8256.

²⁴⁸For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed, Wiley-VCH, NY, *1999*, pp. 1625–1630 *ff*, 1661–1663.

²⁴⁹For reviews, see Rawlinson, D.J.; Sosnovsky, G. Synthesis 1972, 1; Sosnovsky, G.; Rawlinson, D.J., in Swern, D. Organic Peroxides, Vol. 1, Wiley, NY, 1970, pp. 585–608; Doumaux, Jr, A.R. in Augustine, R.L. Oxidation, Vol. 2, Marcel Dekker, NY, 1971, pp. 141–185.

another acid R"COOH, the ester produced is of *that* acid ROCOR". Aldehydes give anhydrides:

Acyloxylation has also been achieved with metallic acetates, such as lead tetraacetate,²⁵⁰ mercuric acetate,²⁵¹ and palladium(II) acetate.²⁵² In the case of the lead and mercuric acetates, not only does the reaction take place at allylic and benzylic positions and at those α to an OR or SR group, but also at positions α to the carbonyl groups of aldehydes, ketones, or esters and at those a to two carbonyl groups (ZCH_2Z'). It is likely that in the latter cases it is the enol forms that react. Ketones can be α -acyloxylated indirectly by treatment of various enol derivatives with metallic acetates, for example, silyl enol ethers with silver carboxylates-iodine,²⁵³ enol thioethers with lead tetraacetate,²⁵⁴ and enamines²⁵⁵ with lead tetraacetate²⁵⁶ or thallium triacetate.²⁵⁷ α,β -Unsaturated ketones can be acyloxylated in good yields in the α' position with manganese triacetate.²⁵⁸ Palladium acetate converts alkenes to vinylic and/or allylic acetates.²⁵⁹ Lead tetraacetate even acyloxylates alkanes, in a slow reaction (10 days to 2 weeks), with tertiary and secondary positions greatly favored over primary ones.²⁶⁰ Yields are as high as 50%. Acyloxylation of certain alkanes has also been reported with palladium(II) acetate.²⁶¹

²⁵¹For reviews, see Larock, R.C. Organomercury Compounds in Organic Synthesis, Springer, NY, 1985, pp. 190–208; Rawlinson, D.J.; Sosnovsky, G. Synthesis 1973, 567.
 ²⁵²Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem. 1990, 55, 975; Byström, S.E.;

²⁵³Rubottom, G.M.; Mott, R.C.; Juve Jr, H.D. J. Org. Chem. 1981, 46, 2717.

²⁵⁴Trost, B.M.; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4413.

²⁵⁶See Butler, R.N. Chem. Ind. (London) 1976, 499.

²⁵⁷Kuehne, M.E.; Giacobbe, T.J. J. Org. Chem. 1968, 33, 3359.

²⁵⁸Demir, A.S.; Sayrac, T.; Watt, D.S. Synthesis **1990**, 1119.

²⁵⁰For a review of lead tetraacetate, see Butler, R.N., in Pizey, J.S. *Synthetic Reagents*, Vol. 3, Wiley, NY, p. 277.

²⁵²Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem. **1990**, 55, 975; Byström, S.E.; Larsson, E.M.; Åkermark, B. J. Org. Chem. **1990**, 55, 5674.

²⁵⁵For a review, see Cook, A.G., in Cook, A.G. *Enamines*, 2nd ed., Marcel Dekker, NY, *1988*, pp. 251–258.

²⁵⁹For reviews, see Rylander, P.N. Organic Synthesis with Noble Metal Catalysts, Academic Press, NY, 1973, pp. 80–87; Jira, R.; Freiesleben, W. Organomet. React. 1972, 3, 1, pp. 44–84; Heck, R.F. Fortschr. Chem. Forsch. 1971, 16, 221, pp. 231–237; Tsuji, J. Adv. Org. Chem. 1969, 6, 109, pp. 132–143.

²⁶⁰Bestre, R.D.; Cole, E.R.; Crank, G. *Tetrahedron Lett.* **1983**, 24, 3891; Mosher, M.W.; Cox, J.L. *Tetrahedron Lett.* **1985**, 26, 3753.

²⁶¹This was done in trifluoroacetic acid, and the products were trifluoroacetates: Sen, A.; Gretz, E.; Oliver, T.F.; Jiang, Z. *New J. Chem.* **1989**, *13*, 755.

Studies of the mechanism of the cuprous-catalyzed reaction show that the most common mechanism is the following:²⁶²

Step 1 $\underset{R'}{\overset{O}{\longrightarrow}} \overset{O}{\longrightarrow} t\text{-Bu}$ + Cu⁺ $\underset{R'}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} Cu^{+}(II)$ + $t\text{-BuO}^{\bullet}$ Step 2 R-H + $t\text{-BuO}^{\bullet}$ $\underset{R^{\bullet}}{\longrightarrow}$ R $^{\bullet}$ + $t\text{-BuO}^{\bullet}$ Step 3 R $^{\bullet}$ + $\underset{R'}{\overset{O}{\longrightarrow}} \overset{O}{\longrightarrow} Cu^{+}(II)$ $\underset{R'}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} R$ + Cu^{+} 32

This mechanism, involving a free radical R•, is compatible with the allylic rearrangements found.²⁶³ The finding that *tert*-butyl peroxyesters labeled with ¹⁸O in the carbonyl oxygen gave ester with 50% of the label in each oxygen²⁶⁴ is in accord with a combination of R• with the intermediate **32**, in which the copper is ionically bound, so that the oxygens are essentially equivalent. Other evidence is that *tert*butoxy radicals have been trapped with dienes.²⁶⁵ Much less is known about the mechanisms of the reactions with metal acetates.²⁶⁶

Free-radical acyloxylation of aromatic substrates²⁶⁷ has been accomplished with a number of reagents including copper(II) acetate,²⁶⁸ benzoyl peroxide-iodine,²⁶⁹ silver(II) complexes,²⁷⁰ and cobalt(III) trifluoroacetate.²⁷¹

OS III, 3; V, 70, 151; VIII, 137.

C. Substitution by Sulfur

14-10 Chlorosulfonation or Chlorosulfo-de-hydrogenation

$$RH + SO_2 + Cl_2 \xrightarrow{hv} RSO_2Cl$$

²⁶⁷For a review, see Haines, A.H. *Methods for the Oxidation of Organic Compounds*, Academic Press, NY, 1985, pp. 177–180, 351–355.

²⁶²Kharasch, M.S.; Sosnovsky, G.; Yang, N.C. J. Am. Chem. Soc. **1959**, 81, 5819; Kochi, J.K.; Mains, H.E. J. Org. Chem. **1965**, 30, 1862. See also, Beckwith, A.L.J.; Zavitsas, A.A. J. Am. Chem. Soc. **1986**, 108, 8230.

²⁶³Goering, H.L.; Mayer, U. J. Am. Chem. Soc. 1964, 86, 3753; Denney, D.B.; Appelbaum, A.; Denney, D.Z. J. Am. Chem. Soc. 1962, 84, 4969.

²⁶⁴Denney, D.B.; Denney, D.Z.; Feig, G. Tetrahedron Lett. 1959, no. 15, p. 19.

²⁶⁵Kochi, J.K. J. Am. Chem. Soc. 1962, 84, 2785, 3271; Story, P.R. Tetrahedron Lett. 1962, 401.

²⁶⁶See, for example, Jones, S.R.; Mellor, J.H. J. Chem. Soc. Perkin Trans. 2 1977, 511.

²⁶⁸Takizawa, Y.; Tateishi, A.; Sugiyama, J.; Yoshida, H.; Yoshihara, N. J. Chem. Soc., Chem. Commun. 1991, 104. See also Kaeding, W.W.; Kerlinger, H.O.; Collins, G.R. J. Org. Chem. 1965, 30, 3754.

²⁶⁹For example, see Kovacic, P.; Reid, C.G.; Brittain, T.J. J. Org. Chem. 1970, 35, 2152.

²⁷⁰Nyberg, K.; Wistrand, L.G. J. Org. Chem. 1978, 43, 2613.

²⁷¹Kochi, J.K.; Tank, R.T.; Bernath, T. J. Am. Chem. Soc. **1973**, 95, 7114; DiCosimo, R.; Szabo, H. J. Org. Chem. **1986**, 51, 1365.

The chlorosulfonation of organic molecules with chlorine and sulfur dioxide is called the *Reed reaction*.²⁷² In scope and range of products obtained, the reaction is similar to **14-1**. The mechanism is also similar, except that there are two additional main propagation steps:

$$\begin{array}{rcl} R \bullet + SO_2 & \longrightarrow & R - SO_2 \bullet \\ R - SO_2 \bullet + Cl_2 & \longrightarrow & R - SO_2 Cl + Cl \bullet \end{array}$$

Chlorosulfenation²⁷³ can be accomplished by treatment with SCl₂ and UV light: RH + SCl₂ \xrightarrow{hv} RSCl.

D. Substitution by Nitrogen

14-11 The Direct Conversion of Aldehydes to Amides

Amination or Amino-de-hydrogenation

$$\label{eq:archo} ArCHO \quad \xrightarrow[NBS-AIBN]{NH_3} \quad ArCONH_2$$

Aliphatic and aromatic aldehydes have been converted to the corresponding amides with ammonia or a primary or secondary amine, NBS, and a catalytic amount of AIBN (p. 935).²⁷⁴ In a reaction of more limited scope, amides are obtained from aromatic and α , β -unsaturated aldehydes by treatment with dry ammonia gas and nickel peroxide.²⁷⁵ Best yields (80–90%) are obtained at -25 to -20° C. In the nickel peroxide reaction the corresponding alcohols (ArCH₂OH) have also been used as substrates.

The reaction has also been performed with MnO₂ and NaCN along with ammonia or an amine at 0°C in isopropyl alcohol.²⁷⁶ Aldehydes were also shown to react with hydroxylamine hydrochloride at 140°C in the presence of aluminum oxide and methanesulfonic acid.²⁷⁷ Treatment of a aldehyde with iodine in aqueous ammonia, followed by oxidation with aqueous hydrogen peroxide generates a primary amide.²⁷⁸ Secondary amines react with aldehydes to the an amide in using a palladium catalyst²⁷⁹ or a rhodium catalyst.²⁸⁰ For an indirect way of converting aldehydes to amides, see **12-32**. Thioamides RCSNR'₂ have been prepared in good yield

²⁷²For a review, see Gilbert, E.E. Sulfonation and Related Reactions, Wiley, NY, 1965, pp. 126–131.

²⁷³Müller, E.; Schmidt, E.W. *Chem. Ber.* **1963**, *96*, 3050; **1964**, *97*, 2614. For a review of the formation and reactions of sulfenyl halides, see Kühle, E. Synthesis **1970**, 561; **1971**, 563, 617.

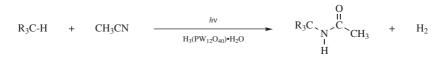
²⁷⁴Markó, I.E.; Mekhalfia, A. Tetrahedron Lett. 1990, 31, 7237.

²⁷⁵Nakagawa, K.; Onoue, H.; Minami, K. Chem. Commun. 1966, 17.

²⁷⁶Gilman, N.W. Chem. Commun. 1971, 733.

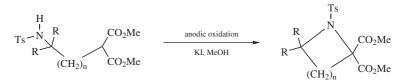
²⁷⁷Sharghi, H.; Sarvari, M.H. J. Chem. Res. (S) 2001, 446.

²⁷⁸Shie, J.-J.; Fang, J.-M. J. Org. Chem. 2003, 68, 1158.


²⁷⁹Tamaru, Y.; Yamada, Y.; Yoshida, Z. Synthesis 1983, 474.

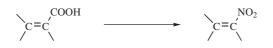
²⁸⁰Tillack, A.; Rudloff, I.; Beller, M. Eur. J. Org. Chem. 2001, 523.

from thioaldehydes (produced *in situ* from phosphoranes and sulfur) and secondary amines.²⁸¹


14-12 Amidation and Amination at an Alkyl Carbon

Acylamino-de-hydrogenation

When alkanes bearing a tertiary hydrogen are exposed to UV light in acetonitrile containing a heteropolytungstic acid, they are amidated.²⁸² The oxygen in the product comes from the tungstic acid. When the substrate bears two adjacent tertiary hydrogens, alkenes are formed (by loss of two hydrogens), rather than amides (**19-2**). Amidyl radicals can be generated by other means.²⁸³


An electrochemical method for amination has been reported by Shono and coworkers.²⁸⁴ Derivatives of malonic esters containing an *N*-tosyl group were cyclized in high yields by anodic oxidation:

Three-, four-, and five-membered rings were synthesized by this procedure.

14-13 Substitution by Nitro

Nitro-de-carboxylation

In a reaction termed a "nitro-Hunsdiecker" (see **14-30**), vinyl carboxylic acids (conjugated acids) are treated with nitric acid and a catalytic amount of AIBN (p. 935). The product is the vinyl nitro compound, generated via decarboxylation of a radical intermediate.²⁸⁵

²⁸¹Okuma, K.; Komiya, Y.; Ohta, H. Chem. Lett. 1988, 1145.

²⁸²Renneke, R.F.; Hill, C.L. J. Am. Chem. Soc. 1986, 108, 3528.

²⁸³Moutrille, C.; Zard, S.Z. Chem. Commun. 2004, 1848.

²⁸⁴Shono, T.; Matsumura, Y.; Katoh, S.; Ohshita, J. Chem. Lett. 1988, 1065.

²⁸⁵Das, J.P.; Sinha, P.; Roy, S. Org. Lett. 2002, 4, 3055.

E. Substitution by Carbon

In these reactions, a new carbon–carbon bond is formed and they may be given the collective title *coupling reactions*. In each case, an alkyl or aryl radical is generated and then combines with another radical (a termination process) or attacks an aromatic ring or alkene to give the coupling product.²⁸⁶

14-14 Simple Coupling at a Susceptible Position

De-hydrogen-coupling

2 RH → R—R

Alkane and alkyl substrates RH are treated with peroxides, which decompose to give a radical that abstracts a hydrogen from RH to give R•, which dimerizes. Dialkyl and diacyl peroxides have been used, as well as Fenton's reagent (p. 964). This reaction is far from general, though in certain cases respectable yields have been obtained. Among susceptible positions are those at a tertiary carbon,²⁸⁷ as well as those α to a phenyl group (especially if there is also an α -alkyl or α -chloro group),²⁸⁸ an ether group,²⁸⁹ a carbonyl group,²⁹⁰ a cyano group,²⁹¹ a dialkylamino group,²⁹² or a carboxylic ester group, either the acid or alcohol side.²⁹³ Cross-coupling is possible in some cases. When toluene was heated with allyl bromide, in the presence of di-*tert*-butyl peroxide, 4-phenyl-1-butene was formed quantitatively.²⁹⁴

Conjugated amide were coupled via the γ -carbon to give good yields of the dimeric diamide, with an excess of samarium (II) iodide, and with modest enantios-electivity using a chiral additive.²⁹⁵

2 RH \xrightarrow{hv} R—R + H₂

²⁸⁶For a monograph on the formation of C–C bonds by radical reactions, see Giese, B. *Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds*, Pergamon, Elsmsford, NY, **1986**. For a review of arylation at carbon, see Abramovitch, R.A.; Barton, D.H.R.; Finet, J. *Tetrahedron* **1988**, *44*, 3039. For a review of aryl–aryl coupling, see Sainsbury, M. *Tetrahedron* **1980**, *36*, 3327.

²⁸⁷Meshcheryakov, A.P.; Érzyutova, E.I. Bull. Acad. Sci. USSR Div. Chem. Sci, 1966, 94.

²⁸⁸McBay, H.C.; Tucker, O.; Groves, P.T. J. Org. Chem. 1959, 24, 536; Johnston, K.M.; Williams, G.H. J. Chem. Soc. 1960, 1168.

²⁸⁹Pfordte, K.; Leuschner, G. Liebigs Ann. Chem. 1961, 643, 1.

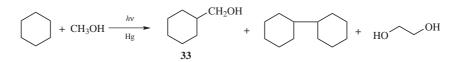
²⁹⁰Kharasch, M.S.; McBay, H.C.; Urry, W.H. J. Am. Chem. Soc. 1948, 70, 1269; Leffingwell, J.C. Chem.

Commun. 1970, 357; Hawkins, E.G.E.; Large, R. J. Chem. Soc. Perkin Trans. 1 1974, 280.

²⁹¹Kharasch, M.S.; Sosnovsky, G. Tetrahedron 1958, 3, 97.

²⁹²Schwetlick, K.; Jentzsch, J.; Karl, R.; Wolter, D. J. Prakt. Chem. 1964, [4] 25, 95.

²⁹³Boguslavskaya, L.S.; Razuvaev, G.A. J. Gen. Chem. USSR 1963, 33, 1967.

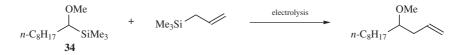

²⁹⁴Tanko, J.M.; Sadeghipour, M. Angew. Chem. Int. Ed. 1999, 38, 159.

²⁹⁵Kikukawa, T.; Hanamoto, T.; Inanaga, J. Tetrahedron Lett. 1999, 40, 7497.

CHAPTER 14

Alkanes can be dimerized by vapor-phase mercury photosensitization²⁹⁶ in a synthetically useful process. Best results are obtained for coupling at tertiary positions, but compounds lacking tertiary hydrogens (e.g., cyclohexane) also give good yields. Dimerization of *n*-alkanes gives secondary-secondary coupling in a nearly statistical distribution, with primary positions essentially unaffected. Alcohols and ethers dimerize at the position α to the oxygen [e.g., 2 EtOH \rightarrow MeCH(OH)CH(OH)Me].

When a mixture of compounds is treated, cross-dimerization (to give 33) and homodimerization take place statistically.


Even with the limitation on yield implied by the statistical process, crossdimerization is still useful when one of the reactants is an alkane, because the products are easy to separate, and because of the few other ways to functionalize an alkane. The cross-coupling of an alkane with trioxane is especially valuable, because hydrolysis of the product (**10-6**) gives an aldehyde, thus achieving the conversion RH \rightarrow RCHO. The mechanism probably involves abstraction of H by the excited Hg atom, and coupling of the resulting radicals.

The reaction has been extended to ketones, carboxylic acids and esters (all of which couple a to the C=O group), and amides (which couple α to the nitrogen) by running it in the presence of H₂.²⁹⁷ Under these conditions it is likely that the excited Hg abstracts H• from H₂, and that the remaining H• abstracts H from the substrate. Radicals have also been generated at benzylic positions and shown to couple with epoxides, forming an alcohol.²⁹⁸

OS IV, 367; V, 1026; VII, 482.

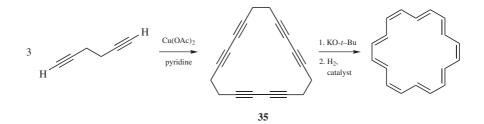
14-15 Coupling at a Susceptible Position Via Silanes

De-silyl-coupling

Under electrochemical conditions it is possible to couple two silanes. The reaction of 34 and allyltrimethylsilane, for example, gave the corresponding homoallylic ether.²⁹⁹

 ²⁹⁶Brown, S.H.; Crabtree, R.H. J. Am. Chem. Soc. **1989**, 111, 2935, 2946; J. Chem. Educ. **1988**, 65, 290.
 ²⁹⁷Boojamra, C.G.; Crabtree, R.H.; Ferguson, R.R.; Muedas, C.A. Tetrahedron Lett. **1989**, 30, 5583.

²⁹⁸Rawal, V.H.; Krishnamurthy, V.; Fabre, A. Tetrahedron Lett. 1993, 34, 2899.


²⁹⁹Suga, S.; Suzuki, S.; Yamamoto, A.; Yoshida, J.-i. J. Am. Chem. Soc. 2000, 122, 10244.

14-16 Coupling of Alkynes³⁰⁰

De-hydrogen-coupling

$$2 R-C \equiv C-H \xrightarrow{CuX_2} R-C \equiv C-C \equiv C-R$$

Terminal alkynes can be coupled by heating with stoichiometric amounts of cupric salts in pyridine or a similar base. This reaction, which produces symmetrical diynes in high yields, is called the *Eglinton reaction*.³⁰¹ The large-ring annulenes of Sondheimer et al. (see p. 71) were prepared by rearrangement and hydrogenation of cyclic polyynes,³⁰² prepared by the Eglinton reaction with terminal diynes to give **35**, a cyclic trimer of 1,5-hexadiyne.³⁰³ The corresponding tetramers (C₂₄), pentamers (C₃₀), and hexamers (C₃₆) were also formed. The Eglinton reaction is of wide scope. Many functional groups can be present on the alkyne. The oxidation is usually quite specific for triple-bond hydrogen.

Another common procedure is the use of catalytic amounts of cuprous salts in the presence of ammonia or ammonium chloride (this method is called the *Glaser reaction*). Atmospheric oxygen or some other oxidizing agent, such as permanganate or hydrogen peroxide is required in the latter procedure. This method is not satisfactory for cyclic coupling. Hydrogen peroxide, potassium permanganate, potassium ferricyanide, iodine or Cu(II) can be used instead of oxygen as oxidants.³⁰⁴ Isolation of copper acetylide during the reaction can be avoided by doing the reaction in pyridine or cyclohexylamine, in the presence of catalytic amount of

 ³⁰⁰For a review, see Siemsen, P.; Livingston, R.C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632.
 ³⁰¹For reviews, see Simándi, L.I., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C pt. 1, Wiley, NY, 1983, pp. 529–534; Nigh, W.G., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. B, Academic Press, NY, 1973, pp. 11–31; Cadiot, P.; Chodkiewicz, W., in Viehe, H.G. Acetylenes; Marcel Dekker, NY; 1969, pp. 597–647.

³⁰²For a review of cyclic alkynes, see Nakagawa, M., in Patai, S. *The Chemistry of the Carbon-Carbon Triple Bond*, pt. 2, Wiley, NY, **1978**, pp. 635–712.

 ³⁰³Sondheimer, F.; Wolovsky, R. J. Am. Chem. Soc. **1962**, 84, 260; Sondheimer, F.; Wolovsky, R.; Amiel,
 Y. J. Am. Chem. Soc. **1962**, 84, 274.

³⁰⁴Gunter, H.V. *Chemistry of Acetylenes*, Marcel Dekker, NY, *1969*, pp. 597–647 and references cited therein.

CuCl₃.³⁰⁵ If the Glaser reaction is done with a N,N,N',N'-tetramethylethylenediamine–CuCl complex, the reaction proceeds in good yield in virtually any organic solvent.³⁰⁶ When molecular oxygen is the oxidant, this modification of Glaser condensation is known as the *Hay reaction*. A variation couples terminal alkynes using CuCl₂ in supercritical CO₂ (see p. 414),³⁰⁷ and in ionic liquids.³⁰⁸ Coupling was also achieved using CuCl₂ on KF–Al₂O₃ with microwave irradiation.³⁰⁹ Homocoupling of alkynyl amines R₂N–C≡CH to give the diyne R₂N–C≡C–C≡C-NR₂ was reported in aerated acetone with 10% CuI and 20% TMEDA.³¹⁰

Unsymmetrical diynes can be prepared by Cadiot-Chodkiewicz coupling:³¹¹

$$R-C\equiv C-H$$
 + $R'-C\equiv C-Br$ $\xrightarrow{Cu^*}$ $R-C\equiv C-C\equiv C-R'$ + HBr

This may be regarded as a variation of **10-74**, but it must have a different mechanism since acetylenic halides give the reaction but ordinary alkyl halides do not, which is hardly compatible with a nucleophilic mechanism. However, the mechanism is not fully understood. One version of this reaction binds the alkynyl bromide unit to a polymer, and the di-yne is released from the polymer after the solid state transformation.³¹² Alkynes have also been coupled using CuI and a palladium catalyst.³¹³ Propargyl halides also give the reaction,³¹⁴ as do 1-bromo propargylic alcohols (Br–C≡C–CH₂OH).³¹⁵ A variation of the Cadiot–Chod-kiewicz method consists of treating a haloalkyne (R'C≡CX) with a copper acetylide (RC≡CCu).³¹⁶ The Cadiot–Chodkiewicz procedure can be adapted to the preparation of diynes in which R' = H by the use of BrC≡CSiEt₃ and subsequent cleavage of the SiEt₃ group.³¹⁷ This protecting group can also be used in the Eglinton or Glaser methods.³¹⁸

The mechanism of the Eglinton and Glaser reactions probably begins with loss of a proton

 $R-C\equiv C-H$ \xrightarrow{base} $R-C\equiv C^{-}$

³⁰⁵Stansbury, H A.; Proops, W.R. J. Org. Chem. 1962, 27, 320.

³⁰⁶Hay, A.S. J. Org. Chem. 1960, 25, 1275; Hay, A S. J. Org. Chem. 1962, 27, 3320.

³⁰⁷Li, J.; Jiang, H. Chem. Commun. 1999, 2369.

³⁰⁸In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Yadav, J.S.; Reddy, B.V.S.; Reddy, K.B.; Gayathri, K.U.; Prasad, A.R. *Tetrahedron Lett.* **2003**, *44*, 6493.

³⁰⁹Kabalka, G.W.; Wang, L.; Pagni, R.M. *Synlett* **2001**, 108.

³¹⁰Rodríguez, D.; Castedo, L.; Saá, C. *Synlett* **2004**, 377.

³¹¹Chodkiewicz, W. Ann. Chim. (Paris) **1957**, [13] 2, 819.

³¹²Montierth, J.M.; DeMario, D.R.; Kurth, M.J.; Schore, N.E. Tetrahedron 1998, 54, 11741.

³¹³Liu, Q.; Burton, D.J. Tetrahedron Lett. 1997, 38, 4371.

³¹⁴Sevin, A.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. 1974, 913.

³¹⁵Marino, J.P.; Nguyen, H.N. J. Org. Chem. 2002, 67, 6841.

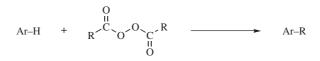
³¹⁶Curtis, R.F.; Taylor, J.A. J. Chem. Soc. C 1971, 186.

³¹⁷Eastmond, R.; Walton, D.R.M. *Tetrahedron* **1972**, 28, 4591; Ghose, B.N.; Walton, D.R.M. *Synthesis* **1974**, 890.

³¹⁸Johnson, T.R.; Walton, D.R.M. Tetrahedron 1972, 28, 5221.

since there is a base present and acetylenic protons are acidic. It is known, of course, that cuprous ion can form complexes with triple bonds. The last step is probably the coupling of two radicals:

$$R-C\equiv C \cdot \longrightarrow R-C\equiv C-C\equiv C-R$$


but just how the carbanion becomes oxidized to the radical and what part the cuprous ion plays (other than forming the acetylide salt) are matters of considerable speculation,³¹⁹ and depend on the oxidizing agent. One proposed mechanism postulated Cu(II) as the oxidant.³²⁰ It has been shown that molecular oxygen forms adducts with Cu(I) supported by tertiary amines, which might be the intermediates in the Glaser reaction where molecular oxygen is the oxidant.³²¹ For the Hay reaction, the mechanism involves a Cu^I/Cu^{III}/Cu^{II}/Cu^I catalytic cycle, and the key step for this reaction is the dioxygen activation during complexation of two molecules of acetylide with molecular oxygen, giving a Cu(III) complex.³²² This mechanism is supported by isolation and characterization of Cu(III) complexes formed under the conditions of the Glaser coupling.

Terminal alkynes are not the only reaction partners. 1-Trimethylsilyl alkynes $(R-C\equiv C-SiMe_3)$ give the diyne $R-C\equiv C-C\equiv C-R)$ upon reaction with $CuCl^{323}$ or $Cu(OAc)_2/Bu_4NF.^{324}$

OS V, 517; VI, 68, 925; VIII, 63.

14-17 Alkylation and Arylation of Aromatic Compounds by Peroxides

Alkylation or Alkyl-de-hydrogenation

This reaction is most often carried out with R = aryl, so the net result is the same as in 13-27, though the reagent is different.³²⁵ It is used less often than 13-27, but

³¹⁹See the discussions, in Nigh, W.G., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. B, Academic Press, NY, **1973**, pp. 27–31; Fedenok, L.G.; Berdnikov, V.M.; Shvartsberg, M.S. J. Org. Chem. USSR **1973**, 9, 1806; Clifford, A.A.; Waters, W.A. J. Chem. Soc. **1963**, 3056.

³²⁰Bohlmann, F.; Schönowsky, H.; Inhoffen, E.; Grau, G. Chem. Ber. 1964, 97, 794.

³²¹Wieghardt, K.; Chaudhuri, P. Prog. Inorg. Chem. 1987, 37, 329.

³²²Fomina, L.; Vazquez, B.; Tkatchouk, E.; Fomine, S. Tetrahedron 2002, 58, 6741.

³²³Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.-i.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.

³²⁴Heuft, M.A.; Collins, S.K.; Yap, G.P.A.; Fallis, A.E. Org. Lett. 2001, 3, 2883.

³²⁵For reviews, see Bolton, R.; Williams, G.H. Chem. Soc. Rev. **1986**, 15, 261; Hey, D.H. Adv. Free-Radical Chem. **1966**, 2, 47.

the scope is similar. When R = alkyl, the scope is more limited.³²⁶ Only certain aromatic compounds, particularly benzene rings with two or more nitro groups, and fused ring systems, can be alkylated by this procedure. 1,4-Quinones can be alkylated with diacyl peroxides or with lead tetraacetate (methylation occurs with this reagent).

The mechanism is as shown on p. 940 (CIDNP has been observed³²⁷); the radicals are produced by

$$R \xrightarrow{C} O \xrightarrow{O} C \xrightarrow{R} 2 \xrightarrow{O} R \xrightarrow{C} O \xrightarrow{O} 2 R \cdot + 2 CO_2$$

Since no relatively stable free radical is present (such as $\cdot O-N=N-Ar$ in 13-27), most of the product arises from dimerization and disproportionation.³²⁸ The addition of a small amount of nitrobenzene increases the yield of arylation product because the nitrobenzene is converted to diphenyl nitroxide, which abstracts the hydrogen from **5** and reduces the extent of side reactions.³²⁹

$$ArH + Ar'Pb(OAc)_3 \longrightarrow ArAr'$$

Aromatic compounds can also be arylated by aryllead tricarboxylates.³³⁰ Best yields (~70–85%) are obtained when the substrate contains alkyl groups; an electrophilic mechanism is likely. Phenols are phenylated ortho to the OH group (and enols are a phenylated) by triphenylbismuth dichloride or by certain other Bi(V) reagents.³³¹ *O*-Phenylation is a possible side reaction. As with the aryllead tricarboxylate reactions, a free-radical mechanism is unlikely.³³²

OS V, 51. See also, OS V, 952; VI, 890.

14-18 Photochemical Arylation of Aromatic Compounds

Arylation or Aryl-de-hydrogenation

 $ArH + Ar'I \xrightarrow{hv} ArAr'$

³²⁶For reviews of the free-radical alkylation of aromatic compounds, see Tiecco, M.; Testaferri, L. *React. Intermed. (Plenum)* **1983**, *3*, 61; Dou, H.J.; Vernin, G.; Metzger, J. *Bull. Soc. Chim. Fr.* **1971**, 4593.

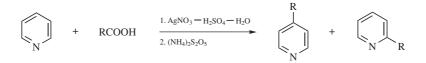
³²⁷Kaptein, R.; Freeman, R.; Hill, H.D.W.; Bargon, J. J. Chem. Soc., Chem. Commun. 1973, 953.

³²⁸We have given the main steps that lead to biphenyls. The mechanism is actually more complicated than this and includes >100 elementary steps resulting in many side products, including those mentioned on p. \$\$\$: DeTar, D.F.; Long, R.A.J.; Rendleman, J.; Bradley, J.; Duncan, P. J. Am. Chem. Soc. **1967**, 89, 4051; DeTar, D.F. J. Am. Chem. Soc. **1967**, 89, 4058. See also, Jandu, K.S.; Nicolopoulou, M.; Perkins, M.J. J. Chem. Res. (S) **1985**, 88.

³³⁰Bell, H.C.; Kalman, J.R.; May, G.L.; Pinhey, J.T.; Sternhell, S. Aust. J. Chem. 1979, 32, 1531.

³²⁹Chalfont, G.R.; Hey, D.H.; Liang, K.S.Y.; Perkins, M.J. J. Chem. Soc. B 1971, 233.

³³¹For a review, see Abramovitch, R.A.; Barton, D.H.R.; Finet, J. *Tetrahedron* **1988**, 44, 3039, pp. 3040–3047.


³³²Barton, D.H.R.; Finet, J.; Giannotti, C.; Halley, F. J. Chem. Soc. Perkin Trans. 1 1987, 241.

982 SUBSTITUTION REACTIONS: FREE RADICALS

Another free-radical arylation method consists of the photolysis of aryl iodides in an aromatic solvent.³³³ Yields are generally higher than in **13-27** or **14-17**. The aryl iodide may contain OH or COOH groups. The coupling reaction of iodobenzene and azulene to give a phenylazulene was reported (41% conversion and 85% yield).³³⁴ The mechanism is similar to that of **13-27**. The aryl radicals are generated by the photolytic cleavage ArI \rightarrow AR• + I•. The reaction has been applied to intramolecular arylation (analogous to the Pschorr reaction).³³⁵ A similar reaction is photolysis of an arylthallium bis(trifluoroacetate) (**12-23**) in an aromatic solvent. Here too, an unsymmetrical biaryl is produced in good yields.³³⁶ In this case, it is the C–Tl bond that is cleaved to give aryl radicals.

$$Ar'Tl(OCOCF_3)_2 \xrightarrow{hv} ArAr'$$

14-19 Alkylation, Acylation, and Carbalkoxylation of Nitrogen Heterocycles³³⁷ **Alkylation** or **Alkyl-de-hydrogenation**, and so on

Alkylation of protonated nitrogen heterocycles (e.g., pyridines, quinolines) can be accomplished by treatment with a carboxylic acid, silver nitrate, sulfuric acid, and ammonium peroxydisulfate.³³⁸ The R group can be primary, secondary, or tertiary. The attacking species is R•, formed by³³⁹

$$2 \operatorname{Ag}^{+} + \operatorname{S}_{2}\operatorname{O}_{8}^{2-} \longrightarrow 2 \operatorname{Ag}^{2+} + 2 \operatorname{SO}_{4}^{2-}$$

$$\operatorname{RCOOH} + \operatorname{Ag}^{2+} \longrightarrow \operatorname{RCOO} + \operatorname{H}^{+} + \operatorname{Ag}^{+}$$

$$\operatorname{RCOO} \cdot \qquad \longrightarrow \qquad \operatorname{R} \cdot + \operatorname{CO}_{2}$$

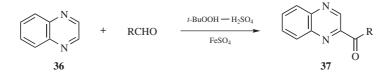
³³³Wolf, W.; Kharasch, N. J. Org. Chem. **1965**, 30, 2493. For a review, see Sharma, R.K.; Kharasch, N. Angew. Chem. Int. Ed. **1968**, 7, 36.

³³⁴Ho, T.-I.; Ku, C.-K.; Liu, R.S.H. Tetrahedron Lett. 2001, 42, 715.

³³⁵See, for example, Kupchan, S.M.; Wormser, H.C. J. Org. Chem. **1965**, 30, 3792; Jeffs, P.W.; Hansen, J.F. J. Am. Chem. Soc. **1967**, 89, 2798; Thyagarajan, B.S.; Kharasch, N.; Lewis, H.B.; Wolf, W. Chem. Commun. **1967**, 614.

³³⁶Taylor, E.C.; Kienzle, F.; McKillop, A. J. Am. Chem. Soc. 1970, 92, 6088.

³³⁷For reviews; see Heinisch, G. *Heterocycles* **1987**, 26, 481; Minisci, F.; Vismara, E.; Fontana, F. *Heterocycles* **1989**, 28, 489; Minisci, F. *Top. Curr. Chem.* **1976**, 62, 1, pp. 17; *Synthesis* **1973**, 1, pp. 12–19. For a review of substitution of carbon groups on nitrogen heterocycles see Vorbrüggen, H.; Maas, M. *Heterocycles* **1988**, 27, 2659.

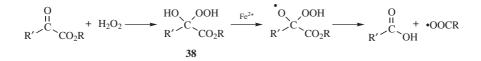

³³⁸Fontana, F.; Minisci, F.; Barbosa, M.C.N.; Vismara, E. Tetrahedron 1990, 46, 2525.

³³⁹Anderson, J.M.; Kochi, J.K. J. Am. Chem. Soc. 1970, 92, 1651.

CHAPTER 14

A hydroxymethyl group can be introduced (ArH \rightarrow ArCH₂OH) by several variations of this method.³⁴⁰ Alkylation of these substrates can also be accomplished by generating the alkyl radicals in other ways: from hydroperoxides and FeSO₄,³⁴¹ from alkyl iodides and H₂O₂—Fe(II),³⁴² from carboxylic acids and lead tetraacetate, or from the photochemically induced decarboxylation of carboxylic acids by iodosobenzene diacetate.³⁴³

Protonated nitrogen heterocycles, such as quinoxaline (36), can be acylated by treatment with an aldehyde, *tert*-butyl hydroperoxide, sulfuric acid, and ferrous sulfate, in this case giving 37.³⁴⁴



Photochemical alkylation of protonated quinoline occurred with $Ph_2Se(O_2Cc-C_6H_{11})_2$.³⁴⁵

Other positively charged heterocycles react as well. When *N*-fluoropyridinium triflate was treated with the enolate anion of acetone, 2-(2-oxopropyl)pyridine was formed in modest yield.³⁴⁶

These alkylation and acylation reactions are important because Friedel–Crafts alkylation and acylation (11-11, 11-17) cannot be applied to most nitrogen heterocycles (see also 13-17).

Protonated nitrogen heterocycles can be carbalkoxylated³⁴⁷ by treatment with esters of α -keto acids and Fenton's reagent. Pyridine is carbalkoxylated at C-2 and C-4, for example. The attack is by •COOR radicals generated from the esters via a hydroperoxide (**38**).

³⁴⁰See Citterio, A.; Gentile, A.; Minisci, F.; Serravalle, M.; Ventura, S. *Tetrahedron* **1985**, 41, 617; Katz, R.B.; Mistry, J.; Mitchell, M.B. *Synth. Commun.* **1989**, 19, 317.

³⁴¹Minisci, F.; Selva, A.; Porta, O.; Barilli, P.; Gardini, G.P. *Tetrahedron* 1972, 28, 2415.

³⁴²Fontana, F.; Minisci, F.; Barbosa, M.C.N.; Vismara, E. Acta Chem. Scand, 1989, 43, 995.

³⁴³Minisci, F.; Vismara, E.; Fontana, F.; Barbosa, M.C.N. Tetrahedron Lett. 1989, 30, 4569.

³⁴⁴Caronna, T.; Gardini, G.P.; Minisci, F. Chem. Commun. 1969, 201; Arnoldi, A.; Bellatti, M.; Caronna,

T.; Citterio, A.; Minisci, F.; Porta, O.; Sesana, G. Gazz. Chim. Ital. 1977, 107, 491.

³⁴⁵Togo, H.; Miyagawa, N.; Yokoyama, M. Chem. Lett, 1992, 1677.

³⁴⁶Kiselyov, A.S.; Strekowski, L. J. Org. Chem. 1993, 58, 4476.

³⁴⁷Bernardi, R.; Caronna, T.; Galli, R.; Minisci, F.; Perchinunno, M. Tetrahedron Lett. 1973, 645; Heinisch, G.; Lötsch, G. Angew. Chem. Int. Ed. 1985, 24, 692.

Similarly, a carbamoyl group can be introduced³⁴⁸ by the use of the radicals $H_2N-C \cdot Me_2N-C \cdot H_0$ generated from formamide or DMF and H_2SO_4 , H_2O_2 , and FeSO₄ or other oxidants.

N₂ AS LEAVING GROUP³⁴⁹

In these reactions diazonium salts are cleaved to aryl radicals,³⁵⁰ in most cases with the assistance of copper salts. Reactions **13-27** and **13-26** may also be regarded as belonging to this category with respect to the attacking compound. For nucleophilic substitutions of diazonium salts (see **13-20–13-23**). Removal of nitrogen and replacement with a hydrogen atom is a reduction, found in Chapter 19.

14-20 Replacement of the Diazonium Group by Chlorine or Bromine

Chloro-de-diazoniation, and so on

$$ArN_2^+ + CuCl \longrightarrow ArCl$$

Treatment of diazonium salts with cuprous chloride or bromide leads to aryl chlorides or bromides, respectively. In either case, the reaction is called the *Sandmeyer reaction*.³⁵¹ The reaction can also be carried out with copper and HBr or HCl, in which case it is called the *Gatterman reaction* (not to be confused with **11-18**). The Sandmeyer reaction is not useful for the preparation of fluorides or iodides, but for bromides and chlorides it is of wide scope and is probably the best way of introducing bromine or chlorine into an aromatic ring. The yields are usually high.

The mechanism is not known with certainty, but is believed to take the following course: 352

$$\begin{array}{rcl} ArN_2^+X^-+CuX & \longrightarrow & Ar^\bullet+N_2+CuX_2\\ Ar^\bullet+CuX_2 & \longrightarrow & ArX+CuX \end{array}$$

³⁴⁸Minisci, F.; Citterio, A.; Vismara, E.; Giordano, C. *Tetrahedron* 1985, 41, 4157.

³⁴⁹For a review, see Wulfman, D.S., in Patai, S. *The Chemistry of Diazonium and Diazo Groups*, pt. 1, Wiley, NY, **1978**, pp. 286–297.

³⁵⁰For reviews, see Galli, C. Chem. Rev. 1988, 88, 765; Zollinger, H. Acc. Chem. Res. 1973, 6, 355, pp. 339–341.

³⁵¹Rate constants for this reaction have been determined. See Hanson, P.; Hammond, R.C.; Goodacre, P.R.; Purcell, J.; Timms, A.W. *J. Chem. Soc. Perkin Trans.* 2 **1994**, 691.

³⁵²Dickerman, S.C.; Weiss, K.; Ingberman, A.K. J. Am. Chem. Soc. **1958**, 80, 1904; Kochi, J.K. J. Am. Chem. Soc. **1957**, 79, 2942; Dickerman, S.C.; DeSouza, D.J.; Jacobson, N. J. Org. Chem. **1969**, 34, 710; Galli, C. J. Chem. Soc. Perkin Trans. 2 **1981**, 1459; **1982**, 1139; **1984**, 897. See also, Hanson, P.; Jones, J.R.; Gilbert, B.C.; Timms, A.W. J. Chem. Soc. Perkin Trans. 2 **1991**, 1009.

The first step involves a reduction of the diazonium ion by the cuprous ion, which results in the formation of an aryl radical. In the second step, the aryl radical abstracts halogen from cupric chloride, reducing it. The CuX is regenerated and is thus a true catalyst.

Aryl bromides and chlorides can be prepared from primary aromatic amines in one step by several procedures,³⁵³ including treatment of the amine (1) with *tert*-butyl nitrite and anhydrous CuCl₂ or CuBr₂ at 65°C,³⁵⁴ and (2) with *tert*-butyl thionitrite or *tert*-butyl thionitrate and CuCl₂ or CuBr₂ at room temperature.³⁵⁵ These procedures are, in effect, a combination of **13-19** and the Sandmeyer reaction. A further advantage is that cooling to 0°C is not needed. A mixture of Me₃SiCl and NaNO₂ was used to convert aniline to chlorobenzene in a related reaction.³⁵⁶

For the preparation of fluorides and iodides from diazonium salts (see 13-32 and 13-31).

$$ArN_2^+ + CuCN \longrightarrow ArCN$$

It is noted that the reaction of aryl diazonium salts with CuCN to give benzonitrile derivatives is also called the *Sandmeyer reaction*. It is usually conducted in neutral solution to avoid liberation of HCN.

OS I, 135, 136, 162, 170; II, 130; III, 185; IV, 160. Also see, OS III, 136; IV, 182. For the reaction with CuCN, see OS I, 514.

14-21 Replacement of the Diazonium Group by Nitro

Nitro-de-diazoniation

 $ArN_2^+ + NaNO_2 \xrightarrow{Cu^+} ArNO_2$

Nitro compounds can be formed in good yields by treatment of diazonium salts with sodium nitrite in the presence of cuprous ion. The reaction occurs only in neutral or alkaline solution. This is not usually called the Sandmeyer reaction, although, like **14-20**, it was discovered by Sandmeyer. Tetrafluoroborate (BF₄–) is often used as the negative ion since the diminished nucleophilicity avoids competition from the chloride ion. The mechanism is probably like that of **14-20**.³⁵⁷ If electron-withdrawing groups are present, the catalyst is not needed; NaNO₂ alone gives nitro compounds in high yields.³⁵⁸

³⁵³For other procedures, see Brackman,W.; Smit, P.J. *Recl. Trav. Chim. Pays-Bas*, **1966**, 85, 857; Cadogan, J.I.G.; Roy, D.A.; Smith, D.M. *J. Chem. Soc. C* **1966**, 1249.

³⁵⁴Doyle, M.P.; Siegfried, B.; Dellaria, Jr, J.F. J. Org. Chem. 1977, 42, 2426.

³⁵⁵Oae, S.; Shinhama, K.; Kim, Y.H. Bull. Chem. Soc. Jpn. 1980, 53, 1065.

³⁵⁶Lee, J.G.; Cha, H.T. Tetrahedron Lett. 1992, 33, 3167.

³⁵⁷For discussions, see Opgenorth, H.; Rüchardt, C. *Liebigs Ann. Chem.* 1974, 1333; Singh, P.R.; Kumar, R.; Khanna, R.K. *Tetrahedron Lett.* 1982, 23, 5191.

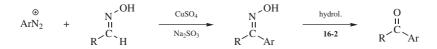
³⁵⁸Bagal, L.I.; Pevzner, M.S.; Frolov, A.N. J. Org. Chem. USSR 1969, 5, 1767.

An alternative procedure used electrolysis, in 60% HNO₃ to convert 1-aminonaphthalene to naphthalene.³⁵⁹

OS II, 225; III, 341.

14-22 Replacement of the Diazonium Group by Sulfur-Containing Groups

Chlorosulfo-de-diazoniation


 $ArN_2^+ + SO_2 \xrightarrow{CuCl_2} ArSO_2Cl$

Diazonium salts can be converted to sulfonyl chlorides by treatment with sulfur dioxide in the presence of cupric chloride.³⁶⁰ The use of FeSO₄ and copper metal instead of CuCl₂ gives sulfinic acids (ArSO₂H)³⁶¹ (see also, **13-21**).

OS V, 60; VII, 508.

14-23 Conversion of Diazonium Salts to Aldehydes, Ketones, or Carboxylic Acids

Acyl-de-diazoniation, and so on

Diazonium salts react with oximes to give aryl oximes, which are easily hydrolyzed to aldehydes (R = H) or ketones.³⁶² A copper sulfate-sodium sulfite catalyst is essential. In most cases higher yields (40–60%) are obtained when the reaction is used for aldehydes than for ketones. In another method³⁶³ for achieving the conversion $ArN_2^+ \rightarrow ArCOR$, diazonium salts are treated with R₄Sn and CO with palladium acetate as catalyst.³⁶⁴ In a different kind of reaction, silyl enol ethers of aryl ketones $Ar'C(OSiMe_3)$ =CHR react with solid diazonium fluoroborates (ArN_2^+ BF_4^-) to give ketones (ArCHRCOAr').³⁶⁵ This is, in effect, an arylation of the aryl ketone.

Carboxylic acids can be prepared in moderate-to-high yields by treatment of diazonium fluoroborates with carbon monoxide and palladium acetate 366 or

³⁵⁹Torii, S.; Okumoto, H.; Satoh, H.; Minoshima, T.; Kurozumi, S. SynLett, 1995, 439.

³⁶⁰Gilbert, E.E. Synthesis 1969, 1, p. 6.

³⁶¹Wittig, G.; Hoffmann, R.W. Org. Synth. V, 60.

³⁶²Beech, W.F. J. Chem. Soc. 1954, 1297.

³⁶³For still another method, see Citterio, A.; Serravalle, M.; Vimara, E. Tetrahedron Lett. 1982, 23, 1831.

³⁶⁴Kikukawa, K.; Idemoto, T.; Katayama, A.; Kono, K.; Wada, F.; Matsuda, T. J. Chem. Soc. Perkin Trans. *1* 1987, 1511.

³⁶⁵Sakakura, T.; Hara, M.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1985, 1545.

³⁶⁶Nagira, K.; Kikukawa, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1980, 45, 2365.

copper(II) chloride.³⁶⁷ The mixed anhydride ArCOOCOMe is an intermediate that can be isolated. Other mixed anhydrides can be prepared by the use of other salts instead of sodium acetate.³⁶⁸ An arylpalladium compound is probably an intermediate.³⁶⁸

OS V, 139.

METALS AS LEAVING GROUPS

14-24 Coupling of Grignard Reagents

De-metallo-coupling

 $2 RMgX \xrightarrow{TlBr} RR$

This organometallic coupling reaction is clearly related to the Wurtz coupling, discussed in 10-56, and the coupling of other organometallic compounds is discussed in 14-25. Grignard reagents can be coupled to give symmetrical dimers³⁶⁹ by treatment with either thallium(I) bromide³⁷⁰ or with a transition-metal halide, such as CrCl₂, CrCl₃, CoCl₂, CoBr₂, or CuCl₂.³⁷¹ The metallic halide is an oxidizing agent and becomes reduced. Both aryl and alkyl Grignard reagents can be dimerized by either procedure, though the TIBr method cannot be applied to R = primary alkyl or to aryl groups with ortho substituents. Aryl Grignard reagents can also be dimerized by treatment with 1,4-dichloro-2-butene, 1,4-dichloro-2butyne, or 2,3-dichloropropene.³⁷² Vinylic and alkynyl Grignard reagents can be coupled (to give 1,3-dienes and 1,3-diynes, respectively) by treatment with thionyl chloride.³⁷³ Primary alkyl, vinylic, aryl, and benzylic Grignard reagents give symmetrical dimers in high yield (\sim 90%) when treated with a silver(I) salt (e.g., AgNO₃, AgBr, AgClO₄) in the presence of a nitrogen-containing oxidizing agent, such as lithium nitrate, methyl nitrate, or NO2.374 This method has been used to close rings of four, five, and six members.³⁷⁵

³⁶⁷Olah, G.A.; Wu, A.; Bagno, A.; Prakash, G.K.S. Synlett, 1990, 596.

³⁶⁸Kikukawa, K.; Kono, K.; Nagira, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1981, 46, 4413.

³⁶⁹For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed, Wiley-VCH, NY, *1999*, pp. 85–88.

³⁷⁰McKillop, A.; Elsom, L.F.; Taylor, E.C. *Tetrahedron* 1970, 26, 4041.

³⁷¹For reviews, see Kauffmann, T. Angew. Chem. Int. Ed. **1974**, 13, 291; Elsom, L.F.; Hunt, J.D.; McKillop, A. Organomet. Chem. Rev. Sect. A **1972**, 8, 135; Nigh, W.G., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. B, Academic Press, NY, **1973**, pp. 85–91.

³⁷²Taylor, S.K.; Bennett, S.G.; Heinz, K.J.; Lashley, L.K. J. Org. Chem. **1981**, 46, 2194; Cheng, J.; Luo, F. Tetrahedron Lett. **1988**, 29, 1293.

³⁷³Uchida, A.; Nakazawa, T.; Kondo, I.; Iwata, N.; Matsuda, S. J. Org. Chem. 1972, 37, 3749.

³⁷⁴Tamura, M.; Kochi, J.K. Bull. Chem. Soc. Jpn. 1972, 45, 1120.

³⁷⁵Whitesides, G.M.; Gutowski, F.D. J. Org. Chem. 1976, 41, 2882.

The mechanisms of the reactions with metal halides, at least in some cases, probably begin with conversion of RMgX to the corresponding RM (**12-36**), followed by its decomposition to free radicals.³⁷⁶

OS VI, 488.

14-25 Coupling of Other Organometallic Reagents³³²

De-metallo-coupling

$$R_2CuLi \xrightarrow[-78^{\circ}C, THF]{O_2} RR$$

Lithium dialkylcopper reagents can be oxidized to symmetrical dimers by O_2 at $-78^{\circ}C$ in THF.³⁷⁷ The reaction is successful for R = primary and secondary alkyl, vinylic, or aryl. Other oxidizing agents, for example, nitrobenzene, can be used instead of O_2 . Vinylic copper reagents dimerize on treatment with oxygen, or simply on standing at 0°C for several days or at 25°C for several hours, to yield 1,3-dienes.³⁷⁸ The finding of retention of configuration for this reaction demonstrates that free-radical intermediates are not involved.

The coupling reaction of Grignard reagents was discussed in **14-24**. Lithium organoaluminates (LiAlR₄) are dimerized to RR by treatment with Cu(OAc)₂.³⁷⁹ Terminal vinylic alanes (prepared by **15-17**) can be dimerized to 1,3-dienes with CuCl in THF.³⁸⁰ Symmetrical 1,3-dienes can also be prepared in high yields by treatment of vinylic mercury chlorides³⁸¹ with LiCl and a rhodium catalyst³⁸² and by treatment of vinylic tin compounds with a palladium catalyst.³⁸³ Arylmercuric salts are converted to biaryls by treatment with copper and a catalytic amount of PdCl₂.³⁸⁴ Vinylic, alkynyl, and aryl tin compounds were dimerized with

³⁷⁹Sato, F.; Mori, Y.; Sato, M. Chem. Lett. 1978, 1337.

³⁸⁰Zweifel, G.; Miller, R.L. J. Am. Chem. Soc. 1970, 92, 6678.

³⁸³Tolstikov, G.A.; Miftakhov, M.S.; Danilova, N.A.; Vel'der, Ya.L.; Spirikhin, L.V. *Synthesis* 1989, 633.
 ³⁸⁴Kretchmer, R.A.; Glowinski, R. J. Org. Chem. 1976, 41, 2661. See also, Bumagin, N.A.; Kalinovskii, I.O.; Beletskaya, I.P. J. Org. Chem. USSR 1982, 18, 1151; Larock, R.C.; Bernhardt, J.C. J. Org. Chem. 1977, 42, 1680.

³⁷⁶For a review of the mechanism, see Kashin, A.N.; Beletskaya, I.P. Russ. Chem. Rev. 1982, 51, 503.

³⁷⁷Whitesides, G.M.; San Filippo, Jr, J.; Casey, C.P.; Panek, E.J. J. Am. Chem. Soc. **1967**, 89, 5302. See also, Kauffmann, T.; Kuhlmann, D.; Sahm, W.; Schrecken, H. Angew. Chem. Int. Ed. **1968**, 7, 541; Bertz, S.H.; Gibson, C.P. J. Am. Chem. Soc. **1986**, 108, 8286.

³⁷⁸Whitesides, G.M.; Casey, C.P.; Krieger, J.K. J. Am. Chem. Soc. **1971**, 93, 1379; Walborsky, H.M.; Banks, R.B.; Banks, M.L.A.; Duraisamy, M. Organometallics **1982**, 1, 667; Rao, S.A.; Periasamy, M. J. Chem. Soc., Chem. Commun. **1987**, 495. See also, Lambert, G.J.; Duffley, R.P.; Dalzell, H.C.; Razdan, R.K. J. Org. Chem. **1982**, 47, 3350.

³⁸¹For reviews of coupling with organomercury compounds, see Russell, G.A. Acc. Chem. Res. **1989**, 22, 1; Larock, R.C. Organomercury Compounds in Organic Synthesis, Springer, NY, **1985**, pp. 240–248.

³⁸²Larock, R.C.; Bernhardt, J.C. J. Org. Chem. 1977, 42, 1680. For extension to unsymmetrical 1,3dienes, see Larock, R.C.; Riefling, B. J. Org. Chem. 1978, 43, 1468.

989

 $Cu(NO_3)_2$.³⁸⁵ Alkyl- and aryllithium compounds can be dimerized by transitionmetal halides in a reaction similar to **14-24**.³⁸⁶ Triarylbismuth compounds Ar₃Bi react with palladium(0) complexes to give biaryls ArAr.³⁸⁷ Diethylzinc reacted with Ph₂I⁺ BF₄⁻ in the presence of palladium acetate, to give biphenyl.³⁸⁸

Unsymmetrical coupling of vinylic, alkynyl, and arylmercury compounds was achieved in moderate-to-good yields by treatment with alkyl and vinylic dialkylcopper reagents, for example, PhCH=CHHgCl + Me₂CuLi \rightarrow PhCH=CHMe.³⁸⁹ Unsymmetrical biaryls were prepared by treating a cyanocuprate (ArCu(CN)Li, prepared from ArLi and CuCN) with an aryllithium (Ar'Li).³⁹⁰

A radical coupling reaction has been reported, in which an aryl halide reacted with Bu_3SnH , AIBN, and benzene, followed by treatment with methyllithium to give the biaryl.³⁹¹

14-26 Coupling of Boranes

Alkyl-de-dialkylboration

$$\begin{array}{c} | \\ B_{\times} & B_{\times} & + \\ R' & B_{\times} & \xrightarrow{AgNO_3} \\ \hline & NaOH & R-R' \end{array}$$

Alkylboranes can be coupled by treatment with silver nitrate and base.³⁹² Since alkylboranes are easily prepared from alkenes (**15-16**), this is essentially a way of coupling and reducing alkenes; in fact, alkenes can be hydroborated and coupled in the same flask. For symmetrical coupling (R = R') yields range from 60 to 80% for terminal alkenes and from 35 to 50% for internal ones. Unsymmetrical coupling has also been carried out,³⁹³ but with lower yields. Arylboranes react similarly, yielding biaryls.³⁹⁴ The mechanism is probably of the free-radical type.

Dimerization of two vinylborane units to give a conjugated diene can be achieved by treatment of divinylchloroboranes (prepared by addition of BH_2Cl to alkynes; see **15-16**) with methylcopper. (*E*,*E*)-1,3-Dienes are prepared in high

³⁹⁰Lipshutz, B.H.; Siegmann, K.; Garcia, E. J. Am. Chem. Soc. 1991, 113, 8161.

³⁹³Brown, H.C.; Verbrugge, C.; Snyder, C.H. J. Am. Chem. Soc. 1961, 83, 1001.

³⁸⁵Ghosal, S.; Luke, G.P.; Kyler, K.S. J. Org. Chem. 1987, 52, 4296.

³⁸⁶Morizur, J. Bull. Soc. Chim. Fr. 1964, 1331.

³⁸⁷Barton, D.H.R.; Ozbalik, N.; Ramesh, M. Tetrahedron 1988, 44, 5661.

³⁸⁸Kang, S.-K.; Hong, R.-K.; Kim, T.-H.; Pyun, S.-J. Synth. Commun. 1997, 27, 2351.

³⁸⁹Larock, R.C.; Leach, D.R. *Tetrahedron Lett.* **1981**, 22, 3435; *Organometallics* **1982**, *1*, 74. For another method, see Larock, R.C.; Hershberger, S.S. *Tetrahedron Lett.* **1981**, 22, 2443.

³⁹¹Studer, A.; Bossart, M.; Vasella, T. Org. Lett. 2000, 2, 985.

³⁹²Pelter, A.; Smith, K.; Brown, H.C. Borane Reagents, Academic Press, NY, 1988, pp. 306–308.

³⁹⁴Breuer, S.W.; Broster, F.A. Tetrahedron Lett. 1972, 2193.

yields.395

$$R-C \equiv C-R' \xrightarrow{BH_2Cl} \begin{pmatrix} R & R' \\ C = C \end{pmatrix}_{B-Cl} \xrightarrow{3 \text{ MeCu}} \begin{pmatrix} R & R' \\ C = C & H \\ H & C = C \\ R' & R \end{pmatrix}$$

In a similar reaction, symmetrical conjugated divers $RC \equiv C - C \equiv CR$ can be prepared by reaction of lithium dialkyldialkynylborates, $Li^+ [R'_2B(C \equiv CR)_2]^-$, with iodine.³⁹⁶

HALOGEN AS LEAVING GROUP

The conversion of RX to RH can occur by a free-radical mechanism but is treated at **19-53**.

SULFUR AS LEAVING GROUP

14-27 Desulfurization

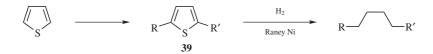
Hydro-de-thio-substitution, and so on

$$RSH \xrightarrow[Ni]{H_2} RH$$

$$RSR' \xrightarrow[Ni]{H_2} RH + R'H$$

Thiols and thioethers,³⁹⁷ both alkyl and aryl, can be desulfurized by hydrogenolysis with Raney nickel.³⁹⁸ The hydrogen is usually not applied externally, since Raney nickel already contains enough hydrogen for the reaction. Other sulfur compounds can be similarly desulfurized, among them disulfides (RSSR),

³⁹⁵Yamamoto, Y.; Yatagai, H.; Maruyama, K.; Sonoda, A.; Murahashi, S. J. Am. Chem. Soc. 1977, 99, 5652; Bull. Chem. Soc. Jpn. 1977, 50, 3427. For other methods of dimerizing vinylic boron compounds, see Rao, V.V.R.; Kumar, C.V.; Devaprabhakara, D. J. Organomet. Chem. 1979, 179, C7; Campbell, Jr, J.B.; Brown, H.C. J. Org. Chem. 1980, 45, 549.


³⁹⁶Pelter, A.; Smith, K.; Tabata, M. J. Chem. Soc., Chem. Commun. **1975**, 857. For extensions to unsymmetrical conjugated diynes, see Pelter, A.; Hughes, R.; Smith, K.; Tabata, M. Tetrahedron Lett. **1976**, 4385; Sinclair, J.A.; Brown, H.C. J. Org. Chem. **1976**, 41, 1078.

³⁹⁷For a review of the reduction of thioethers, see Block, E., in Patai, S. *The Chemistry of Functional Groups, Supplement E*, pt. 1, Wiley, NY, **1980**, pp. 585–600.

³⁹⁸For reviews, see Belen'kii, L.I., in Belen'kii, L.I. *Chemistry of Organosulfur Compounds*, Ellis Horwood, Chichester, **1990**, pp. 193–228; Pettit, G.R.; van Tamelen, E.E. *Org. React.* **1962**, *12*, 356; Hauptmann, H.; Walter, W.F. *Chem. Rev.* **1962**, *62*, 347.

thiono esters (RCSOR'),³⁹⁹ thioamides (RCDNHR'), sulfoxides, and dithioacetals. The last reaction, which is an indirect way of accomplishing reduction of a carbonyl to a methylene group (see **19-61**), can also give the alkene if an a hydrogen is present.⁴⁰⁰ In most of the examples given, R can also be aryl. Other reagents⁴⁰¹ have also been used,⁴⁰² including samarium in acetic acid for desulfurization of vinyl sulfones.⁴⁰³

An important special case of RSR reduction is desulfurization of thiophene derivatives. This proceeds with concomitant reduction of the double bonds. Many compounds have been made by alkylation of thiophene (see **39**), followed by reduction to the corresponding alkane.

Thiophenes can also be desulfurized to alkenes (RCH₂CH=CHCH₂R' from **39**) with a nickel boride catalyst prepared from nickel(II) chloride and NaBH₄ in methanol.⁴⁰⁴ It is possible to reduce just one SR group of a dithioacetal by treatment with borane–pyridine in trifluoroacetic acid or in CH₂Cl₂ in the presence of AlCl₃.⁴⁰⁵ Phenyl selenides RSePh can be reduced to RH with Ph₃SnH⁴⁰⁶ and with nickel boride.⁴⁰⁷

The exact mechanisms of the Raney nickel reactions are still in doubt, though they are probably of the free-radical type.⁴⁰⁸ It has been shown that reduction of thiophene proceeds through butadiene and butene, not through 1-butanethiol or other sulfur compounds, that is, the sulfur is removed before the double bonds

⁴⁰⁴Schut, J.; Engberts, J.B.F.N.; Wynberg, H. Synth. Commun. 1972, 2, 415.

- 406 Clive, D.L.J.; Chittattu, G.; Wong, C.K. J. Chem. Soc., Chem. Commun. 1978, 41.
- ⁴⁰⁷Back, T.G. J. Chem. Soc., Chem. Commun. 1984, 1417.

³⁹⁹See Baxter, S.L.; Bradshaw, J.S. J. Org. Chem. 1981, 46, 831.

⁴⁰⁰Fishman, J.; Torigoe, M.; Guzik, H. J. Org. Chem. 1963, 28, 1443.

⁴⁰¹For lists of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd

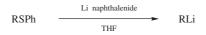
ed, Wiley-VCH, NY, **1999**, pp. 53–60. For a review with respect to transition-metal reagents, see Luh, T.; Ni, Z. *Synthesis* **1990**, 89. For some very efficient nickel-containing reagents, see Becker, S.; Fort, Y.;

Vanderesse, R.; Caubère, P. J. Org. Chem. 1989, 54, 4848.

⁴⁰²For example, diphosphorus tetraiodide by Suzuki, H.; Tani, H.; Takeuchi, S. *Bull. Chem. Soc. Jpn.* **1985**, 58, 2421; Shigemasa, Y.; Ogawa, M.; Sashiwa, H.; Saimoto, H. *Tetrahedron Lett.* **1989**, 30, 1277; NiBr₂-Ph₃P-LiAlH₄ by Ho, K.M.; Lam, C.H.; Luh, T. *J. Org. Chem.* **1989**, 54, 4474.

⁴⁰³Liu, Y.; Zhang, Y. Org. Prep. Proceed. Int. 2001, 33, 376.

⁴⁰⁵Kikugawa, Y. J. Chem. Soc. Perkin Trans. 1 1984, 609.


⁴⁰⁸For a review, see Bonner, W.A.; Grimm, R.A., in Kharasch, N.; Meyers, C.Y. *The Chemistry of Organic Sulfur Compounds*, Vol. 2, Pergamon, NY, **1966**, pp. 35–71, 410–413. For a review of the mechanism of desulfurization on molybdenum surfaces, see Friend, C.M.; Roberts, J.T. *Acc. Chem. Res.* **1988**, *21*, 394.

are reduced. This was demonstrated by isolation of the olefins and the failure to isolate any potential sulfur-containing intermediates.⁴⁰⁹

OS IV, 638; V, 419; VI, 109, 581, 601. See also OS VII, 124, 476.

14-28 Conversion of Sulfides to Organolithium Compounds

Lithio-de-phenylthio-substitution

Sulfides can be cleaved, with a phenylthio group replaced by a lithium,⁴¹⁰ by treatment with lithium or lithium naphthalenide in THF.⁴¹¹ Good yields have been obtained with R = primary, secondary, or tertiary alkyl, or allylic,⁴¹² and containing groups, such as double bonds or halogens. Dilithio compounds can be made from compounds containing two separated SPh groups, but it is also possible to replace just one SPh from a compound with two such groups on a single carbon, to give an α -lithio sulfide.⁴¹³ The reaction has also been used to prepare α -lithio ethers and α -lithio organosilanes.⁴¹⁰ For some of these compounds lithium 1-(dimethylamino)naphthalenide is a better reagent than either Li or lithium naphthalenide.⁴¹⁴ The mechanism is presumably of the free-radical type.

CARBON AS LEAVING GROUP

14-29 Decarboxylative Dimerization: The Kolbe Reaction

De-carboxylic-coupling

```
2 \text{RCOO}^- \xrightarrow{\text{electrolysis}} \text{R-R}
```

Electrolysis of carboxylate ions, results in decarboxylation and combination of the resulting radicals to give the coupling product R–R. This coupling

⁴⁰⁹Owens, P.J.; Ahmberg, C.H. Can. J. Chem. 1962, 40, 941.

⁴¹⁰For a review, see Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152.

⁴¹¹Screttas, C.G.; Micha-Screttas, M. J. Org. Chem. 1978, 43, 1064; 1979, 44, 713.

⁴¹²See Cohen, T.; Guo, B. Tetrahedron 1986, 42, 2803.

⁴¹³See, for example, Cohen, T.; Sherbine, J.P.; Matz, J.R.; Hutchins, R.R.; McHenry, B.M.; Willey, P.R. J. Am. Chem. Soc. **1984**, 106, 3245; Ager, D.J. J. Chem. Soc. Perkin Trans. 1 **1986**, 183; Screttas, C.G.; Micha-Screttas, M. J. Org. Chem. **1978**, 43, 1064; **1979**, 44, 713.

⁴¹⁴See Cohen, T.; Matz, J.R. Synth. Commun. 1980, 10, 311.

reaction is called the *Kolbe reaction* or the *Kolbe electrosynthesis*.⁴¹⁵ It is used to prepare symmetrical R–R, where R is straight chained, since little or no yield is obtained when there is a branching. The reaction is not successful for R = aryl. Many functional groups may be present, though many others inhibit the reaction.⁴¹⁵ Unsymmetrical RR' have been made by coupling mixtures of acid salts.

A free-radical mechanism is involved:

$$RCOO^{-} \xrightarrow[\text{oxidation}]{\text{electrolytic}} RCOO \bullet \xrightarrow[]{-CO_{2}} R \bullet \longrightarrow R-R$$

There is much evidence⁴¹⁶ for this mechanism, including side products (RH, alkenes) characteristic of free-radical intermediates and the fact that electrolysis of acetate ion in the presence of styrene caused some of the styrene to polymerize to polystyrene (such polymerizations can be initiated by free radicals, see p. 1015). Other side products (ROH, RCOOR) are sometimes found, stemming from further oxidation of the radical R• to a carbocation $R^{+.417}$

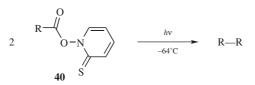
When the reaction is conducted in the presence of 1,3-dienes, additive dimerization can occur: 418

$$2 \operatorname{RCOO}^{-} + \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH} = \operatorname{CH}_2 \longrightarrow \operatorname{RCH}_2 \operatorname{CH} = \operatorname{CHCH}_2 \operatorname{CH}_2 \operatorname{CH} = \operatorname{CHCH}_2 \operatorname{R}$$

The radical R• adds to the conjugated system to give $RCH_2CH=CHCH_2$ •, which dimerizes. Another possible product is $RCH_2CH=CHCH_2R$, from coupling of the two kinds of radicals.⁴¹⁹

In a nonelectrolytic reaction, which is limited to R = primary alkyl, the thiohydroxamic esters 40 give dimers when irradiated at $-64^{\circ}C$ in an argon

⁴¹⁵For reviews, see Nuding, G.; Vögtle, F.; Danielmeier, K.; Steckhan, E. Synthesis **1996**, 71; Schäfer, H.J. Top. Curr. Chem. **1990**, 152, 91; Angew. Chem. Int. Ed. **1981**, 20, 911; Fry, A.J. Synthetic Organic Electrochemistry, 2nd ed, Wiley, NY, **1989**, pp. 238–253; Eberson, L.; Utley, J.H.P., in Baizer, M.M.; Lund, H. Organic Electrochemistry, Marcel Dekker, NY, **1983**, pp. 435– 462; Gilde, H. Methods Free-Radical Chem. **1972**, 3, 1; Eberson, L., in Patai, S. The Chemistry of Carboxylic Acids and Esters, Wiley, NY, **1969**, pp. 53–101; Vijh, A.K.; Conway, B.E. Chem. Rev. **1967**, 67, 623.


⁴¹⁶For other evidence, see Kraeutler, B.; Jaeger, C.D.; Bard, A.J. J. Am. Chem. Soc. 1978, 100, 4903.

⁴¹⁷See Corey, E.J.; Bauld, N.L.; La Londe, R.T.; Casanova, Jr, J.; Kaiser, E.T. *J. Am. Chem. Soc.* **1960**, 82, 2645.

⁴¹⁸Lindsey, Jr, R.V.; Peterson, M.L. J. Am. Chem. Soc. **1959**, 81, 2073; Khrizolitova, M.A.; Mirkind, L.A.; Fioshin, M.Ya. J. Org. Chem. USSR **1968**, 4, 1640; Bruno, F.; Dubois, J.E. Bull. Soc. Chim. Fr. **1973**, 2270.

⁴¹⁹Smith, W.B.; Gilde, H. J. Am. Chem. Soc. **1959**, 81, 5325; **1961**, 83, 1355; Schäfer, H.; Pistorius, R. Angew. Chem. Int. Ed. **1972**, 11, 841.

atmosphere:420

In another nonelectrolytic process, aryl acetic acids are converted to *vic*-diaryl compounds $2ArCR_2COOH \rightarrow ArCR_2CR_2Ar$ by treatment with sodium persulfate $Na_2S_2O_8$ and a catalytic amount of AgNO₃.⁴²¹ Photolysis of carboxylic acids in the presence of Hg₂F₂ leads to the dimeric alkane via decarboxylation.⁴²² Both of these reactions involve dimerization of free radicals. In still another process, electrondeficient aromatic acyl chlorides are dimerized to biaryls (2 ArCOCl \rightarrow Ar–Ar) by treatment with a disilane R₃SiSiR₃ and a palladium catalyst.⁴²³

OS III, 401; V, 445, 463; VII, 181.

14-30 The Hunsdiecker Reaction

Bromo-de-carboxylation

RCOOAg + Br_2 \longrightarrow RBr + CO_2 + AgBr

Reaction of a silver salt of a carboxylic acid with bromine is called the *Huns-diecker reaction*⁴²⁴ and is a way of decreasing the length of a carbon chain by one unit.⁴²⁵ The reaction is of wide scope, giving good results for *n*-alkyl R from 2 to 18 carbons and for many branched R too, producing primary, secondary, and tertiary bromides. Many functional groups may be present as long as they are not a substituted. The group R may also be aryl. However, if R contains unsaturation, the reaction seldom gives good results. Although bromine is the most often used halogen, chlorine and iodine have also been used. Catalytic Hunsdiecker reactions are known.⁴²⁶

When iodine is the reagent, the ratio between the reactants is very important and determines the products. A 1:1 ratio of salt/iodine gives the alkyl halide, as above.

⁴²⁰Barton, D.H.R.; Bridon, D.; Fernandez-Picot, I.; Zard, S.Z. *Tetrahedron* 1987, 43, 2733.

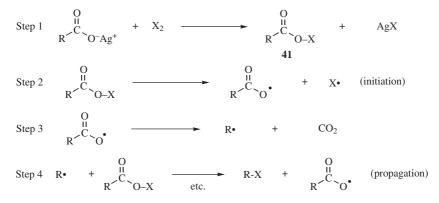
⁴²¹ Fristad, W.E.; Klang, J.A. Tetrahedron Lett. 1983, 24, 2219.

⁴²²Habibi, M.H.; Farhadi, S. Tetrahedron Lett. 1999, 40, 2821.

⁴²³Krafft, T.E.; Rich, J.D.; McDermott, P.J. J. Org. Chem. 1990, 55, 5430.

⁴²⁴This reaction was first reported by the Russian composer-chemist Alexander Borodin: *Liebigs Ann. Chem.* **1861**, *119*, 121.

⁴²⁵ For reviews, see Wilson, C.V. Org. React. 1957, 9, 332; Johnson, R.G.; Ingham, R.K. Chem. Rev. 1956,


^{56, 219.} Also see, Naskar, D.; Chowdhury, S.; Roy, S. Tetrahedron Lett. 1998, 39, 699.

⁴²⁶ Das, J.P.; Roy, S. J. Org. Chem. 2002, 67, 7861.

A 2:1 ratio, however, gives the ester RCOOR. This is called the *Simonini reaction* and is sometimes used to prepare carboxylic esters. The Simonini reaction can also be carried out with lead salts of acids.⁴²⁷ A more convenient way to perform the Hunsdiecker reaction is by use of a mixture of the acid and mercuric oxide instead of the salt, since the silver salt must be very pure and dry and such pure silver salts are often not easy to prepare.⁴²⁸

Other methods for accomplishing the conversion RCOOH \rightarrow RX are⁴²⁹ (1) treatment of thallium(I) carboxylates⁴³⁰ with bromine;⁴³¹ (2) treatment of carboxylic acids with lead tetraacetate and halide *ions* (Cl⁻, Br⁻, or I⁻);⁴³² (3) reaction of the acids with lead tetraacetate and NCS, which gives tertiary and secondary chlorides in good yields, but is not good for R = primary alkyl or phenyl;⁴³³ (4) treatment of thiohydroxamic esters with CCl₄, BrCCl₃ (which gives bromination), CHI₃, or CH₂I₂ in the presence of a radical initiator;⁴³⁴ (5) photolysis of benzophenone oxime esters of carboxylic acids in CCl₄ (RCON=CPh₂ \rightarrow RCl).⁴³⁵ Alkyl fluorides can be prepared in moderate to good yields by treating carboxylic acids RCOOH with XeF₂.⁴³⁶ This method works best for R = primary and tertiary alkyl, and benzylic. Aromatic and vinylic acids do not react.

The mechanism of the Hunsdiecker reaction is believed to be as follows:

⁴²⁷Bachman, G.B.; Kite, G.F.; Tuccarbasu, S.; Tullman, G.M. J. Org. Chem. 1970, 35, 3167.

⁴²⁸Cristol, S.J.; Firth, W.C. *J. Org. Chem.* **1961**, 26, 280. See also, Meyers, A.I.; Fleming, M.P. *J. Org. Chem.* **1979**, 44, 3405, and references cited therein.

⁴²⁹For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed, Wiley-VCH, NY, *1999*, pp. 741–744.

⁴³⁰These salts are easy to prepare and purify; see Ref. 501.

⁴³¹McKillop, A.; Bromley, D.; Taylor, E.C. J. Org. Chem. **1969**, *34*, 1172; Cambie, R.C.; Hayward, R.C.; Jurlina, J.L.; Rutledge, P.S.; Woodgate, P.D. J. Chem. Soc. Perkin Trans. 1 **1981**, 2608.

⁴³²Kochi, J.K. J. Am. Chem. Soc. 1965, 87, 2500; J. Org. Chem. 1965, 30, 3265. For a review, see Sheldon,
 R.A.; Kochi, J.K. Org. React. 1972, 19, 279, pp. 326–334, 390–399.

⁴³³Becker, K.B.; Geisel, M.; Grob, C.A.; Kuhnen, F. Synthesis 1973, 493.

⁴³⁴Barton, D.H.R.; Lacher, B.; Zard, S.Z. *Tetrahedron* **1987**, *43*, 4321; Stofer, E.; Lion, C. *Bull. Soc. Chim. Belg.* **1987**, *96*, 623; Della, E.W.; Tsanaktsidis, J. *Aust. J. Chem.* **1989**, *42*, 61.

⁴³⁵Hasebe, M.; Tsuchiya, T. Tetrahedron Lett. 1988, 29, 6287.

⁴³⁶Patrick, T.B.; Johri, K.K.; White, D.H.; Bertrand, W.S.; Mokhtar, R.; Kilbourn, M.R.; Welch, M.J. *Can. J. Chem.* **1986**, *64*, 138. For another method, see Grakauskas, V. J. Org. Chem. **1969**, *34*, 2446.

The first step is not a free-radical process, and its actual mechanism is not known.⁴³⁷ Compound **41** is an acyl hypohalite and is presumed to be an intermediate, though it has never been isolated from the reaction mixture. Among the evidence for the mechanism is that optical activity at R is lost (except when a neighboring bromine atom is present, see p. 942); if R is neopentyl, there is no rearrangement, which would certainly happen with a carbocation; and the side products, notably RR, are consistent with a free-radical mechanism. There is evidence that the Simonini reaction involves the same mechanism as the Hunsdiecker reaction, but that the alkyl halide formed then reacts with excess RCOOAg (**10-17**) to give the ester⁴³⁸ (see also **19-12**).

Vinyl carboxylic acids (conjugated acids) were shown to react with NBS and lithium acetate in aqueous acetonitrile, to give the corresponding vinyl bromide (C=C-COOH \rightarrow C=C-Br), using microwave irradiation.⁴³⁹ A similar reaction was reported using Na₂MoO₄, KBr and aqueous hydrogen peroxide.⁴⁴⁰

A related reaction reacts the sodium salt of an alkylsulfonic acid with thionyl chloride at 100°C, to give the alkyl chloride.⁴⁴¹

OS III, 578; V, 126; VI, 179; 75, 124; X, 237. See also OS VI, 403.

14-31 Decarboxylative Allylation

Allyl-de-carboxylation

$$R \xrightarrow{C} C \xrightarrow{COOH} + O \xrightarrow{O} CH_3 \xrightarrow{Pd(PPh_3)_4} R \xrightarrow{O} C \xrightarrow{C} C \xrightarrow{COOH} + CO_2 + CH_3COOH$$

The COOH group of a β -keto acid is replaced by an allylic group when the acid is treated with an allylic acetate and a palladium catalyst at room temperature.⁴⁴² The reaction is successful for various substituted allylic groups. The less highly substituted end of the allylic group forms the new bond. Thus, both

CH₂=CHCHMeOAc and MeCH=CHCH₂OAc gave O=C(R) $- CH_2CH=CHMe$ as the product.

 $^{^{437}}$ When Br₂ reacts with aryl R, at low temperature in inert solvents, it is possible to isolate a complex containing both Br₂ and the silver carboxylate: see Bryce-Smith, D.; Isaacs, N.S.; Tumi, S.O. *Chem. Lett.* **1984**, 1471.

⁴³⁸Oae, S.; Kashiwagi, T.; Kozuka, S. *Bull. Chem. Soc. Jpn.* **1966**, *39*, 2441; Bunce, N.J.; Murray, N.G. *Tetrahedron* **1971**, *27*, 5323.

⁴³⁹Kuang, C.; Senboku, H.; Tokuda, M. Synlett 2000, 1439.

⁴⁴⁰Sinha, J.; Layek, S.; Bhattacharjee, M.; Mandal, G.C. Chem. Commun. 2001, 1916.

⁴⁴¹ Carlsen, P.H.J.; Rist, Ø.; Lund, T.; Helland, I. Acta Chem. Scand. B 1995, 49, 701.

⁴⁴²Tsuda, T.; Okada, M.; Nishi, S.; Saegusa, T. J. Org. Chem. 1986, 51, 421.

14-32 Decarbonylation of Aldehydes and Acyl Halides

Carbonyl-Extrusion

Aldehydes, both aliphatic and aromatic, can be decarbonylated⁴⁴³ by heating with a rhodium catalyst⁴⁴⁴ or other catalysts, such as palladium.⁴⁴⁵ RhCl(Ph₃P)₃ is often called *Wilkinson's catalyst*.⁴⁴⁶ In an older reaction, aliphatic (but not aromatic) aldehydes are decarbonylated by heating with di-*tert*-butyl peroxide or other peroxides,⁴⁴⁷ usually in a solution containing a hydrogen donor, such as a thiol. The reaction has also been initiated with light, and thermally (without an initiator) by heating at ~500°C.

Wilkinson's catalyst has also been reported to decarbonylate aromatic acyl halides at 180°C (ArCOX \rightarrow ArX).⁴⁴⁸ This reaction has been carried out with acyl iodides,⁴⁴⁹ bromides, and chlorides. Aliphatic acyl halides that lack an a hydrogen also give this reaction,⁴⁵⁰ but if an α hydrogen is present, elimination takes place instead (**17-17**). Aromatic acyl cyanides give aryl cyanides (ArCOCN \rightarrow ArCN).⁴⁵¹ Aromatic acyl chlorides and cyanides can also be decarbonylated with palladium catalysts.⁴⁵²

It is possible to decarbonylate acyl halides in another way, to give alkanes (RCOCl \rightarrow RH). This is done by heating the substrate with tripropylsilane Pr₃SiH

⁴⁵²Verbicky, Jr, J.W.; Dellacoletta, B.A.; Williams, L. *Tetrahedron Lett.* **1982**, 23, 371; Murahashi, S.; Naota, T.; Nakajima, N. J. Org. Chem. **1986**, 51, 898.

⁴⁴³For reviews, see Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA **1987**, pp. 768–775; Baird, M.C., in Patai, S. *The Chemistry of Functional Groups, Supplement B* pt. 2, Wiley, NY, **1979**, pp. 825–857; Tsuji, J., in Wender, I.; Pino, P. *Organic Syntheses Via Metal Carbonyls*, Vol. 2, Wiley, NY, **1977**, pp. 595–654; Tsuji, J.; Ohno, K. *Synthesis* **1969**, 157; Bird, C.W. *Transition Metal Intermediates in Organic Synthesis*, Academic Press, NY, **1967**, pp. 239–247.

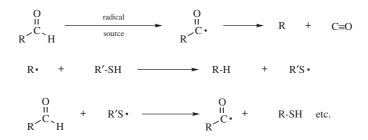
⁴⁴⁴Ohno, K.; Tsuji, J. J. Am. Chem. Soc. **1968**, 90, 99; Baird, C.W.; Nyman, C.J.; Wilkinson, G. J. Chem. Soc. A **1968**, 348.

⁴⁴⁵For a review, see Rylander, P.N. Organic Synthesis with Noble Metal Catalysts, Academic Press, NY, **1973**, pp. 260–267.

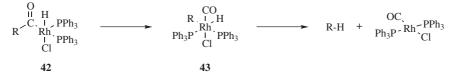
⁴⁴⁶For a review of this catalyst, see Jardine, F.H. Prog. Inorg. Chem. 1981, 28, 63.

⁴⁴⁷For reviews of free-radical aldehyde decarbonylations, see Vinogradov, M.G.; Nikishin, G.I. *Russ. Chem. Rev.* **1971**, 40, 916; Schubert, W.M.; Kintner, R.R., in Patai, S. *The Chemistry of the Carbonyl Group*, Vol. 1, Wiley, NY, **1966**, pp. 711–735.

⁴⁴⁸Kampmeier, J.A.; Rodehorst, R.; Philip, Jr, J.B. J. Am. Chem. Soc. **1981**, 103, 1847; Blum, J.; Oppenheimer, E.; Bergmann, E.D. J. Am. Chem. Soc. **1967**, 89, 2338.


⁴⁴⁹Blum, J.; Rosenman, H.; Bergmann, E.D. J. Org. Chem. 1968, 33, 1928.

⁴⁵⁰Tsuji, J.; Ohno, K. Tetrahedron Lett. 1966, 4713; J. Am. Chem. Soc. 1966, 88, 3452.


⁴⁵¹Blum, J.; Oppenheimer, E.; Bergmann, E.D. J. Am. Chem. Soc. 1967, 89, 2338.

in the presence of *tert*-butyl peroxide.⁴⁵³ Yields are good for R = primary or secondary alkyl and poor for R = tertiary alkyl or benzylic. There is no reaction when R = aryl. (See also the decarbonylation ArCOCl \rightarrow ArAr mentioned in **14-29**.)

The mechanism of the peroxide- or light-induced reaction seems to be as follows (in the presence of thiols): 454

The reaction of aldehydes with Wilkinson's catalyst goes through complexes of the form **42** and **43**, which have been trapped.⁴⁵⁵ The reaction has been shown to give retention of configuration at a chiral R;⁴⁵⁶ and deuterium labeling demonstrates that the reaction is intramolecular: RCOD give RD.⁴⁵⁷ Free radicals are not involved.⁴⁵⁸ The mechanism with acyl halides appears to be more complicated.⁴⁵⁹

For aldehyde decarbonylation by an electrophilic mechanism (see 11-34).

⁴⁵³Billingham, N.C.; Jackson, R.A.; Malek, F. J. Chem. Soc. Perkin Trans. 1 1979, 1137.

⁴⁵⁶Walborsky, H.M.; Allen, L.E. J. Am. Chem. Soc. 1971, 93, 5465. See also, Tsuji, J.; Ohno, K. Tetrahedron Lett. 1967, 2173.

⁴⁵⁷Prince, R.H.; Raspin, K.A. J. Chem. Soc. A **1969**, 612; Walborsky, H.M.; Allen, L.E. J. Am Chem. Soc. **1971**, 93, 5465. See, however, Baldwin, J.E.; Bardenm, T.C.; Pugh, R.L.; Widdison, W.C. J. Org. Chem. **1987**, 52, 3303.

⁴⁵⁸Kampmeier, J.A.; Harris, S.H.; Wedegaertner, D.K. J. Org. Chem. 1980, 45, 315.

⁴⁵⁹Kampmeier, J.A.; Liu, T. Organometallics 1989, 8, 2742.

⁴⁵⁴Slaugh, L.H. J. Am. Chem. Soc. **1959**, 81, 2262; Berman, J.D.; Stanley, J.H.; Sherman, V.W.; Cohen, S.G. J. Am. Chem. Soc. **1963**, 85, 4010.

⁴⁵⁵Suggs, J.W. J. Am. Chem. Soc. **1978**, 100, 640; Kampmeier, J.A.; Harris, S.H.; Mergelsberg, I. J. Org. Chem. **1984**, 49, 621.

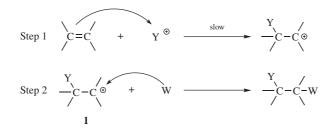
Addition to Carbon–Carbon Multiple Bonds

There are four fundamental ways in which addition to a double or triple bond can take place. Three of these are two-step processes, with initial attack by a nucleophile, or attack upon an electrophile or a free radical. The second step consists of combination of the resulting intermediate with, respectively, a positive species, a negative species, or a neutral entity. In the fourth type of mechanism, attack at the two carbon atoms of the double or triple bond is simultaneous (concerted). Which of the four mechanisms is operating in any given case is determined by the nature of the substrate, the reagent, and the reaction conditions. Some of the reactions in this chapter can take place by all four mechanistic types.

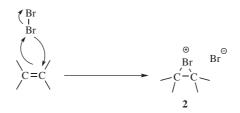
MECHANISMS

Electrophilic Addition¹

In this mechanism, a positive species approaches the double or triple bond and in the first step forms a bond by donation of the π pair of electrons² to the electrophilic


¹For a monograph, see de la Mare, P.B.D.; Bolton, R. *Electrophilic Additions to Unsaturated Systems*, 2nd ed.; Elsevier, NY, **1982**. For reviews, see Schmid, G.H., in Patai, S. *Supplement A: The Chemistry of Double-bonded Functional Groups*, Vol. 2, pt. 1, Wiley, NY, **1989**, pp. 679–731; Smit, W.A. *Sov. Sci. Rev. Sect. B* **1985**, 7, 155; V'yunov, K.A.; Ginak, A.I. *Russ. Chem. Rev.* **1981**, 50, 151; Schmid, G.H.; Garratt, D.G., in Patai, S. *Supplement A: The Chemistry of Double-bonded Functional Groups*, Vol. 1, pt. 2, Wiley, NY, **1977**, pp. 725–912; Freeman, F. *Chem. Rev.* **1975**, 75, 439; Bolton, R., in Bamford, C.H.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 9, Elsevier, NY, **1973**, pp. 1–86; Dolbier, Jr., W.R. J. Chem. Educ. **1969**, 46, 342.

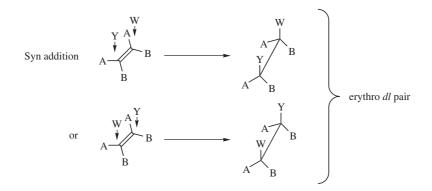
²For a review of the π -nucleophilicity in carbon–carbon bond-forming reactions, see Mayr, H.; Kempf, B.; Ofial, A.R. *Acc. Chem. Res.* **2003**, *36*, 66.


March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Sixth Edition, by Michael B. Smith and Jerry March

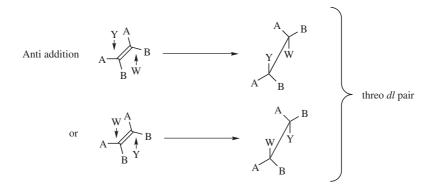
Copyright © 2007 John Wiley & Sons, Inc.

species to form a σ pair:

The IUPAC designation for this mechanism is $A_E + A_N$ (or $A_H + A_N$ if $Y^+ = H^+$). As in electrophilic substitution (p. 658), Y need not actually be a positive ion but can be the positive end of a dipole or an induced dipole, with the negative part breaking off either during the first step or shortly after. The second step is a combination of 1 with a species carrying an electron pair and often bearing a negative charge. This step is the same as the second step of the S_N1 mechanism. Not all electrophilic additions follow the simple mechanism given above. In many brominations it is fairly certain that 1, if formed at all, very rapidly cyclizes to a bromonium ion (2):



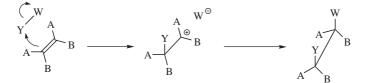
This intermediate is similar to those encountered in the neighboring-group mechanism of nucleophilic substitution (see p. 446). The attack of \overline{w} on an intermediate like 2 is an S_N2 step. Whether the intermediate is 1 or 2, the mechanism is called Ad_E2 (electrophilic addition, bimolecular).


In investigating the mechanism of addition to a double bond, perhaps the most useful type of information is the stereochemistry of the reaction.³ The two carbons of the double bond and the four atoms immediately attached to them are all in a plane (p. 9); there are thus three possibilities. Both Y and W may enter from the same side of the plane, in which case the addition is stereospecific and syn; they may enter from opposite sides for stereospecific anti addition; or the reaction may be nonstereospecific. In order to determine which of these possibilities is occurring in a given reaction, the following type of experiment is often done: YW is added to the cis and trans isomers of an alkene of the form ABC=CBA. We may use the cis alkene as an example. If the addition is syn, the product

³For a review of the stereochemistry of electrophilic additions to double and triple bonds, see Fahey, R.C. *Top. Stereochem.* **1968**, *3*, 237. For a review of the synthetic uses of stereoselective additions, see Bartlett, P.A. *Tetrahedron* **1980**, *36*, 2, pp. 3–15.

will be the erythro *dl* pair, because each carbon has a 50% chance of being attacked by Y:

On the other hand, if the addition is anti, the three *dl* pair will be formed:



Of course, the trans isomer will give the opposite results: the threo pair if the addition is syn and the erythro pair if it is anti. The threo and erythro isomers have different physical properties. In the special case, where Y = W (as in the addition of Br₂), the "erythro pair" is a meso compound. In addition to triple-bond compounds of the type AC \equiv CA, syn addition results in a cis alkene and anti addition in a trans alkene. By the definition given on p. 194 addition to triple bonds cannot be stereospecific, although it can be, and often is, stereoselective.

It is easily seen that in reactions involving cyclic intermediates like 2, addition must be anti, since the second step is an $S_N 2$ step and must occur from the back side. It is not so easy to predict the stereochemistry for reactions involving 1. If 1 has a relatively long life, the addition should be nonstereospecific, since there will be free rotation about the single bond. On the other hand, there may be some factor that maintains the configuration, in which case W may come in from the same side or the opposite side, depending on the circumstances. For example, the positive charge might be stabilized by an attraction for Y that does not involve a full bond (see 3).

The second group would then come in anti. A circumstance that would favor syn addition would be the formation of an ion pair after the addition of Y:⁴

Since W is already on the same side of the plane as Y, collapse of the ion pair leads to syn addition.

Another possibility is that anti addition might, at least in some cases, be caused by the operation of a mechanism in which attack by W and Y are essentially simultaneous but from opposite sides:

This mechanism, called the Ad_E3 mechanism (*termolecular addition*, IUPAC A_NA_E),⁵ has the disadvantage that three molecules must come together in the transition state. However, it is the reverse of the E2 mechanism for elimination, for which the transition state is known to possess this geometry (p. 1478).

There is much evidence that when the attack is on Br^+ (or a carrier of it), the bromonium ion **2** is often an intermediate and the addition is anti. As long ago as 1911, McKenzie and Fischer independently showed that treatment of maleic acid with bromine gave the *dl* pair of 2,3-dibromosuccinic acid, while fumaric acid (the trans isomer) gave the meso compound.⁶ Many similar experiments have been performed since with similar results. For triple bonds, stereoselective anti addition was shown even earlier. Bromination of dicarboxyacetylene gave 70%

⁴Dewar, M.J.S. *Angew. Chem. Int. Ed.* **1964**, *3*, 245; Heasley, G.E.; Bower, T.R.; Dougharty, K.W.; Easdon, J.C.; Heasley, V.L.; Arnold, S.; Carter, T.L.; Yaeger, D.B.; Gipe, B.T.; Shellhamer, D.F. *J. Org. Chem.* **1980**, *45*, 5150.

⁵For evidence for this mechanism, see, for example, Hammond, G.S.; Nevitt, T.D. J. Am. Chem. Soc. **1954**, 76, 4121; Bell, R.P.; Pring, M. J. Chem. Soc. B **1966**, 1119; Pincock, J.A.; Yates, K. J. Am. Chem. Soc. **1968**, 90, 5643; Fahey, R.C.; Payne, M.T.; Lee, D. J. Org. Chem. **1974**, 39, 1124; Roberts, R.M.G. J. Chem. Soc. Perkin Trans. 2, **1976**, 1374; Pasto, D.J.; Gadberry, J.F. J. Am. Chem. Soc. **1978**, 100, 1469; Naab, P.; Staab, H.A. Chem. Ber. **1978**, 111, 2982.

⁶This was done by Fischer, E. Liebigs Ann. Chem. **1911**, 386, 374; McKenzie, A. Proc. Chem. Soc. **1911**, 150; J. Chem. Soc. **1912**, 101, 1196.

of the trans isomer.⁷

HOOC-C
$$\equiv$$
C-COOH + Br₂ \longrightarrow HOOC
Br C=C Rr 70% trans

There is other evidence for mechanisms involving **2**. We have already mentioned (p. 449) that bromonium ions have been isolated in stable solutions in nucleophilic substitution reactions involving bromine as a neighboring group. Such ions have also been isolated in reactions involving addition of a Br^+ species to a double bond.⁸ The following is further evidence. If the two bromines approach the double bond from opposite sides, it is very unlikely that they could come from the same bromine molecule. This means that if the reaction is performed in the presence of nucleophiles, some of these will compete in the second step with the bromide liberated from the bromine. It has been found, indeed, that treatment of ethylene with bromine in the presence of chloride ions gives some 1-chloro-2-bromoethane along with the dibromoethane.⁹ Similar results are found when the reaction is carried out in the presence of water (**15-40**) or of other nucleophiles.¹⁰ *Ab initio* molecular orbital studies show that **2** is more stable than its open isomer **1** (Y = Br).¹¹ There is evidence that formation of **2** is reversible.¹²

However, a number of examples have been found where addition of bromine is not stereospecifically anti. For example, the addition of Br_2 to *cis*- and *trans*-1-phenylpropenes in CCl₄ was nonstereospecific.¹³ Furthermore, the stereospecificity of bromine addition to stilbene depends on the dielectric constant of the solvent. In solvents of low dielectric constant, the addition was 90–100% anti, but with an increase in dielectric constant, the reaction became less stereospecific, until, at a dielectric constant of ~35, the addition was completely nonstereospecific.¹⁴ Likewise in the case of triple bonds, stereoselective anti addition was found in bromi-

⁸Strating, J.; Wieringa, J.H.; Wynberg, H. Chem. Commun. 1969, 907; Olah, G.A. Angew. Chem. Int. Ed. 1973, 12, 173, p. 207; Slebocka-Tilk, H.; Ball, R.G.; Brown, R.S. J. Am. Chem. Soc. 1985, 107, 4504.
 ⁹Francis, A.W. J. Am. Chem. Soc. 1925, 47, 2340.

¹⁰See, for example, Zefirov, N.S.; Koz'min, A.S.; Dan'kov, Yu.V.; Zhdankin, V.V.; Kirin, V.N. J. Org. Chem. USSR **1984**, 20, 205.

¹¹Hamilton, T.P.; Schaefer III, H.F. J. Am. Chem. Soc. 1990, 112, 8260.

¹²Brown, R.S.; Gedye, R.; Slebocka-Tilk, H.; Buschek, J.M.; Kopecky, K.R. J. Am. Chem. Soc. 1984, 106, 4515; Ruasse, M.; Motallebi, S.; Galland, B. J. Am. Chem. Soc. 1991, 113, 3440; Bellucci, G.; Bianchini, R.; Chiappe, C.; Brown, R.S.; Slebocka-Tilk, H. J. Am. Chem. Soc. 1991, 113, 8012; Bennet, A.J.; Brown, R.S.; McClung, R.E.D.; Klobukowski, M.; Aarts, G.H.M.; Santarsiero, B.D.; Bellucci, G.; Bianchini, R. J. Am. Chem. Soc. 1991, 113, 8532.

¹³Fahey, R.C.; Schneider, H. J. Am. Chem. Soc. **1968**, 90, 4429. See also, Rolston, J.H.; Yates, K. J. Am. Chem. Soc. **1969**, 91, 1469, 1477, 1483.

¹⁴Heublein, G. J. Prakt. Chem. **1966**, [4] 31, 84. See also, Buckles, R.E.; Miller, J.L.; Thurmaier, R.J. J. Org. Chem. **1967**, 32, 888; Heublein, G.; Lauterbach, H. J. Prakt. Chem. **1969**, 311, 91; Ruasse, M.; Dubois, J.E. J. Am. Chem. Soc. **1975**, 97, 1977. For the dependence of stereospecificity in this reaction on the solvent concentration, see Bellucci, G.; Bianchini, R.; Chiappe, C.; Marioni, F. J. Org. Chem. **1990**, 55, 4094.

⁷Michael, A. J. Prakt. Chem. 1892, 46, 209.

nation of 3-hexyne, but both cis and trans products were obtained in bromination of phenylacetylene.¹⁵ These results indicate that a bromonium ion is not formed where the open cation can be stabilized in other ways (e.g., addition of Br^+ to 1-phenylpropene gives the ion PhC[⊕]HCHBrCH₃, which is a relatively stable benzylic cation) and that there is probably a spectrum of mechanisms between complete bromonium ion (**2**, no rotation) formation and completely open-cation (**1**, free rotation) formation, with partially bridged bromonium ions (**3**, restricted rotation) in between.¹⁶ We have previously seen cases (e.g., p. 461) where cations require more stabilization from outside sources as they become intrinsically less stable themselves.¹⁷ Further evidence for the open cation mechanism where aryl stabilization is present was reported in an isotope effect study of addition of Br₂ to ArCH=CHCHAr' (Ar = *p*-nitrophenyl, Ar' = *p*-tolyl). The ¹⁴C isotope effect for one of the double-bond carbons (the one closer to the NO₂ group) was considerably larger than for the other one.¹⁸

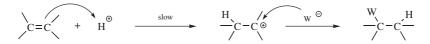
When the π -bond of an alkene attacks Cl⁺,¹⁹ I⁺,²⁰ and RS⁺,²¹ the result is similar to that when the electrophile is Br⁺; there is a spectrum of mechanisms between cyclic intermediates and open cations. As might be expected from our discussion in Chapter 10 (p. 446), iodonium ions compete with open carbocations more effectively than bromonium ions, while chloronium ions compete less effectively. There is kinetic and spectral evidence that at least in some cases, for example, in the addition of Br₂ or ICl, the electrophile forms a π complex with the alkene before a covalent bond is formed.²²

¹⁶For other evidence for this concept, see Pincock, J.A.; Yates, K. *Can. J. Chem.* 1970, 48, 2944; Heasley, V.L.; Chamberlain, P.H. *J. Org. Chem.* 1970, 35, 539; Dubois, J.E.; Toullec, J.; Barbier, G. *Tetrahedron Lett.* 1970, 4485; Dalton, D.R.; Davis, R.M. *Tetrahedron Lett.* 1972, 1057; Wilkins, C.L.; Regulski, T.W. *J. Am. Chem. Soc.* 1972, 94, 6016; Sisti, A.J.; Meyers, M. *J. Org. Chem.* 1973, 38, 4431; McManus, S.P.; Peterson, P.E. *Tetrahedron Lett.* 1975, 2753; Abraham, R.J.; Monasterios, J.R. *J. Chem. Soc. Perkin Trans.* 1, 1973, 1446; Schmid, G.H.; Modro, A.; Yates, K. *J. Org. Chem.* 1980, 45, 665; Ruasse, M.; Argile, A. *J. Org. Chem.* 1983, 48, 202; Cadogan, J.I.G.; Cameron D.K.; Gosney, I.; Highcock, R.M.; Newlands, S.F. *J. Chem. Soc., Chem. Commun.* 1985, 1751. For a review, see Ruasse, M. *Acc. Chem. Res.* 1990, 23, 87.
 ¹⁷In a few special cases, stereospecific syn addition of Br₂ has been found, probably caused by an ion pair mechanism as shown on p. 1002: Naae, D.G. *J. Org. Chem.* 1980, 45, 1394.

¹⁸Kokil, P.B.; Fry, A. Tetrahedron Lett. **1986**, 27, 5051.

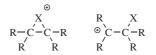
¹⁹Fahey, R.C. Top. Stereochem. 1968, 3, 237, pp. 273–277.

²⁰Hassner, A.; Boerwinkle, F.; Levy, A.B. J. Am. Chem. Soc. 1970, 92, 4879.


²¹For reviews of thiiranium and/or thiirenium ions, see Capozzi, G.; Modena, G., in Bernardi, F.; Csizmadia, I.G.; Mangini, A. Organic Sulfur Chemistry, Elsevier, NY, 1985, pp. 246–298; Smit, W.A. Sov. Sci. Rev. Sect. B 1985, 7, 155, see pp. 180–202; Dittmer, D.C.; Patwardhan, B.H., in Stirling, C.J.M. The Chemistry of the Sulphonium Group, pt. 1, Wiley, NY, 1981, pp. 387–412; Capozzi, G.; Lucchini, V.; Modena, G.; Rev. Chem. Intermed. 1979, 2, 347; Schmid, G.H. Top. Sulfur Chem. 1977, 3, 102; Mueller, W.H. Angew. Chem. Int. Ed. 1969, 8, 482. The specific nature of the three-membered sulfur-containing ring is in dispute; see Smit, W.A.; Zefirov, N.S.; Bodrikov, I.V.; Krimer, M.Z. Acc. Chem. Res. 1979, 12, 282; Bodrikov, I.V.; Borisov, A.V.; Chumakov, L.V.; Zefirov, N.S.; Smit, W.A. Tetrahedron Lett. 1980, 21, 115; Schmid, G.H.; Garratt, D.G.; Dean, C.L. Can. J. Chem. 1987, 65, 1172; Schmid, G.H.; Strukelj, M.; Dalipi, S. Can. J. Chem. 1987, 65, 1945.

²²See Nordlander, J.E.; Haky, J.E.; Landino, J.P. J. Am. Chem. Soc. **1980**, 102, 7487; Fukuzumi, S.; Kochi, J.K. Int. J. Chem. Kinet. **1983**, 15, 249; Schmid, G.H.; Gordon, J.W. Can. J. Chem. **1984**, 62, 2526; **1986**, 64, 2171; Bellucci, G.; Bianchini, R.; Chiappe, C.; Marioni, F.; Ambrosetti, R.; Brown, R.S.; Slebocka-Tilk, H. J. Am. Chem. Soc. **1989**, 111, 2640.

¹⁵Pincock, J.A.; Yates, K. Can. J. Chem. 1970, 48, 3332.


CHAPTER 15

When the electrophile is a proton,²³ a cyclic intermediate is not possible, and the mechanism is the simple $A_H + A_N$ process shown before

This is an A-S_E2 mechanism (p. 525). There is a great deal of evidence²⁴ for it, including:

- **1.** The reaction is general-acid, not specific-acid-catalyzed, implying ratedetermining proton transfer from the acid to the double bond.²⁵
- 2. The existence of open carbocation intermediates is supported by the contrast in the pattern of alkyl substituent effects²⁶ with that found in brominations, where cyclic intermediates are involved. In the latter case, substitution of alkyl groups on $H_2C=CH_2$ causes a cumulative rate acceleration

until all four hydrogens have been replaced by alkyl groups, because each group helps to stabilize the positive charge.²⁷ In addition of HX, the effect is not cumulative. Replacement of the two hydrogens on one carbon causes great rate increases (primary \rightarrow secondary \rightarrow tertiary carbocation), but additional substitution on the other carbon produces little or no acceleration.²⁸ This is evidence for open cations when a proton is the electrophile.²⁹

²³For a review of the addition of HCl, see Sergeev, G.B.; Smirnov, V.V.; Rostovshchikova, T.N. *Russ. Chem. Rev.* **1983**, *52*, 259.

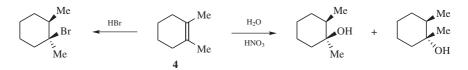
²⁴For other evidence, see Baliga, B.T.; Whalley, E. Can. J. Chem. **1964**, 42, 1019; **1965**, 43, 2453; Gold,
 V.; Kessick, M.A. J. Chem. Soc. **1965**, 6718; Corriu, R.; Guenzet, J. Tetrahedron **1970**, 26, 671;
 Simandoux, J.; Torck, B.; Hellin, M.; Coussemant, F. Bull. Soc. Chim. Fr. **1972**, 4402, 4410; Bernasconi,
 C.F.; Boyle, Jr., W.J. J. Am. Chem. Soc. **1974**, 96, 6070; Hampel, M.; Just, G.; Pisanenko, D.A.;
 Pritzkow, W. J. Prakt. Chem. **1976**, 318, 930; Allen, A.D.; Tidwell, T.T. J. Am. Chem. Soc. **1983**, 104, 3145.

²⁵Loudon, G.M.; Noyce, D.S. J. Am. Chem. Soc. **1969**, 91, 1433; Schubert, W.M.; Keeffe, J.R. J. Am. Chem. Soc. **1972**, 94, 559; Chiang, Y.; Kresge, A.J. J. Am. Chem. Soc. **1985**, 107, 6363.

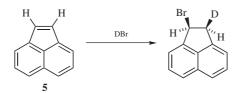
²⁶Bartlett, P.D.; Sargent, G.D. J. Am. Chem. Soc. **1965**, 87, 1297; Schmid, G.H.; Garratt, D.G. Can. J. Chem. **1973**, 51, 2463.

²⁷See, for example, Anantakrishnan, S.V.; Ingold, C.K. J. Chem. Soc. **1935**, 1396; Swern, D. in Swern Organic Peroxides, Vol. 2, Wiley, NY, **1971**, pp. 451–454; Nowlan, V.J.; Tidwell, T.T. Acc. Chem. Res. **1977**, 10, 252.

²⁸Bartlett, P.D.; Sargent, G.D. J. Am. Chem. Soc. 1965, 87, 1297; Riesz, P.; Taft, R.W.; Boyd, R.H. J. Am. Chem. Soc. 1957, 79, 3724.


²⁹A similar result (open cations) was obtained with carbocations Ar₂CH⁺ as electrophiles: Mayr, H.; Pock, R. *Chem. Ber.* **1986**, *119*, 2473.

1006 ADDITION TO CARBON–CARBON MULTIPLE BONDS


3. Open carbocations are prone to rearrange (Chapter 18). Many rearrangements have been found to accompany additions of HX and H_2O .³⁰

It may also be recalled that vinylic ethers react with proton donors in a similar manner (see **10-6**).

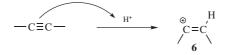
The stereochemistry of HX addition is varied. Examples are known of predominant syn, anti, and nonstereoselective addition. It was found that treatment of 1,2-dimethylcyclohexene (4) with HBr gave predominant anti addition,³¹ while addition of water to 4 gave equal amounts of the cis and trans alcohols:³²

On the other hand, addition of DBr to acenaphthylene (5) and to indene and 1-phenylpropene gave predominant syn addition.³³

In fact, it has been shown that the stereoselectivity of HCl addition can be controlled by changing the reaction conditions. Addition of HCl to **4** in CH₂Cl₂ at -98° C gave predominantly syn addition, while in ethyl ether at 0°C, the addition was mostly anti.³⁴

³¹Hammond, G.S.; Nevitt, T.D. J. Am. Chem. Soc. **1954**, 76, 4121; See also, Fahey, R.C.; Monahan, M.W. J. Am. Chem. Soc. **1970**, 92, 2816; Pasto, D.J.; Meyer, G.R.; Lepeska, B. J. Am. Chem. Soc. **1974**, 96, 1858.

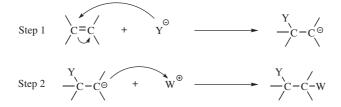
³²Collins, C.H.; Hammond, G.S. J. Org. Chem. 1960, 25, 911.


³³Dewar, M.J.S.; Fahey, R.C. *J. Am. Chem. Soc.* **1963**, *85*, 2245, 2248. For a review of syn addition of HX, see Dewar, M.J.S. Angew. Chem. Int. Ed. **1964**, *3*, 245; Heasley, G.E.; Bower, T.R.; Dougharty, K.W.; Easdon, J.C.; Heasley, V.L.; Arnold, S.; Carter, T.L.; Yaeger, D.B.; Gipe, B.T.; Shellhamer, D.F. J. Org. Chem. **1980**, *45*, 5150.

³⁴Becker, K.B.; Grob, C.A. *Synthesis* **1973**, 789. See also, Marcuzzi, F.; Melloni, G.; Modena, G. *Tetrahedron Lett.* **1974**, 413; Naab, P.; Staab, H.A. *Chem. Ber.* **1978**, 111, 2982.

³⁰For example, see Whitmore, F.C.; Johnston, F. J. Am. Chem. Soc. **1933**, 55, 5020; Fahey, R.C.; McPherson, C.A. J. Am. Chem. Soc. **1969**, 91, 3865; Bundel, Yu.G.; Ryabstev, M.N.; Sorokin, V.I.; Reutov, O.A. Bull. Acad. Sci. USSR Div. Chem. Sci. **1969**, 1311; Pocker, Y.; Stevens, K.D. J. Am. Chem. Soc. **1969**, 91, 4205; Staab, H.A.; Wittig, C.M.; Naab, P. Chem. Ber. **1978**, 111, 2965; Stammann, G.; Griesbaum, K. Chem. Ber. **1980**, 113, 598.

CHAPTER 15


Addition of HX to triple bonds has the same mechanism, although the intermediate in this case is a vinylic cation, 6^{35}

In all these cases (except for the Ad_E3 mechanism), we assumed that formation of the intermediate (1, 2, or 3) is the slow step and attack by the nucleophile on the intermediate is rapid, and this is probably true in most cases. However, some additions have been found in which the second step is rate determining.³⁶

Nucleophilic Addition³⁷

In the first step of nucleophilic addition, a nucleophile brings its pair of electrons to one carbon atom of the double or triple bond, creating a carbanion. The second step is combination of this carbanion with a positive species:

This mechanism is the same as the simple electrophilic one shown on p. 999 except that the charges are reversed (IUPAC $A_N + A_E$ or $A_N + A_H$). When the alkene contains a good leaving group (as defined for nucleophilic substitution), substitution is a side reaction (this is nucleophilic substitution at a vinylic substrate, see p. \$\$\$).

In the special case of addition of HY to a substrate of the form -C=C-Z, where Z = CHO, COR^{38} (including quinones³⁹), COOR, $CONH_2$, CN, NO₂, SOR,


³⁵For reviews of electrophilic addition to alkynes, including much evidence, see Rappoport, Z. *React. Intermed. (Plenum)* **1983**, *3*, 427, pp. 428–440; Stang, P.J.; Rappoport, Z.; Hanack, M.; Subramanian, L.R. Vinyl Cations; Academic Press, NY, **1979**, pp. 24–151; Stang, P.J. *Prog. Phys. Org. Chem.* **1973**, *10*, 205; Modena, G.; Tonellato, U. *Adv. Phys. Org. Chem.* **1971**, *9*, 185, pp. 187–231; Richey, Jr., H.G.; Richey, J.M., in Olah, G.A.; Schleyer, P.V.R. Carbonium Ions, Vol. 2, Wiley, NY, **1970**, pp. 906–922.

³⁶See, for example, Rau, M.; Alcais, P.; Dubois, J.E. *Bull. Soc. Chim. Fr.* **1972**, 3336; Bellucci, G.; Berti, G.; Ingrosso, G.; Mastrorilli, E. *Tetrahedron Lett.* **1973**, 3911.

 ³⁷For a review, see Patai, S.; Rappoport, Z., in Patai, S. *The Chemistry of Alkenes*, Vol. 1, Wiley, NY, *1964*, pp. 469–584.
 ³⁸For reviews of reactions of C=C-C=O compounds, see, in Patai, S.; Rappoport, Z. *The Chemistry of*

 ⁵⁰For reviews of reactions of C=C-C=O compounds, see, in Patai, S.; Rappoport, Z. *The Chemistry of Enones*, pt. 1, Wiley, NY, *1989*, the articles by Boyd, G.V. pp. 281–315; Duval, D.; Géribaldi, S. pp. 355–469.
 ³⁹For reviews of addition reactions of quinones, see Kutyrev, A.A.; Moskva, V.V. *Russ. Chem. Rev. 1991*, 60, 72; Finley, K.T., in Patai, S.; Rappoport, Z. *The Chemistry of the Quinonoid Compounds*, Vol. 2, pt. 1, Wiley, NY, *1988*, pp. 537–717, see pp. 539–589; Finley, K.T., in Patai, S. *The Chemistry of the Quinonoid Compounds*, pt. 2, Wiley, NY, *1974*, pp. 877–1144.

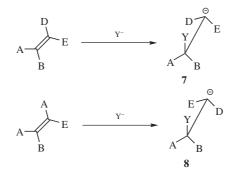
 SO_2R ⁴⁰ and so on, addition nearly always follows a nucleophilic mechanism,⁴¹ with Y⁻ bonding with the carbon *away* from the Z group, for example,

Protonation of the enolate ion is chiefly at the oxygen, which is more negative than the carbon, but this produces the enol, which tautomerizes (see p. 102). So although the net result of the reaction is addition to a carbon–carbon double bond, the *mechanism* is 1,4-nucleophilic addition to the C=C–C=O (or similar) system and is thus very similar to the mechanism of addition to carbon–oxygen double and similar bonds (see Chapter 16). When Z is CN or a C=O group, it is also possible for Y⁻ to attack at *this* carbon, and this reaction sometimes competes. When it happens, it is called 1,2-addition. 1,4-Addition to these substrates is also known as *conjugate addition*. The Y⁻ ion almost never attacks at the 3 position, since the resulting carbanion would have no resonance stabilization:⁴²

An important substrate of this type is acrylonitrile, and 1,4-addition to it is called *cyanoethylation* because the Y is cyanoethylated:

 $H_3C = CH - CN + H - Y \longrightarrow Y - CH_2 - CH_2 - CV$

With any substrate, when Y is an ion of the type $Z-C^{\ominus} R_2$ (Z is as defined above; R may be alkyl, aryl, hydrogen, or another Z), the reaction is called the *Michael reaction* (see **15-24**). In this book we will call all other reactions that follow this mechanism *Michael-type additions*. Systems of the type C=C-C=C-Z can give


⁴⁰For a review of vinylic sulfones, see Simpkins, N.S. *Tetrahedron* **1990**, *46*, 6951. For a review of conjugate addition to cycloalkenyl sulfones, see Fuchs, P.L.; Braish, T.F. *Chem. Rev.* **1986**, 86, 903.

⁴¹For a review of the mechanism with these substrates, see Bernasconi, C.F. *Tetrahedron* 1989, 45, 4017.

⁴²For 1,8-addition to a trienone, see Barbot, F.; Kadib-Elban, A.; Miginiac, P. J. Organomet. Chem. **1988**, 345, 239.

1,2-1,4- or 1,6-addition.⁴³ Michael-type reactions are reversible, and compounds of the type YCH₂CH₂Z can often be decomposed to YH and CH₂=CHZ by heating, either with or without alkali.

If the mechanism for nucleophilic addition is the simple carbanion mechanism outlined on p. 1007, the addition should be nonstereospecific, although it might well be stereoselective (see p. 194 for the distinction). For example, the (*E*) and (*Z*) forms of an alkene ABC=CDE would give **7** and **8**.

If the carbanion has even a short lifetime, 7 and 8 will assume the most favorable conformation before the attack of W. This is of course the same for both, and when W attacks, the same product will result from each. This will be one of two possible diastereomers, so the reaction will be stereoselective; but since the cis and trans isomers do not give rise to different isomers, it will not be stereospecific. Unfortunately, this prediction has not been tested on open-chain alkenes. Except for Michael-type substrates, the stereochemistry of nucleophilic addition to double bonds has been studied only in cyclic systems, where only the cis isomer exists. In these cases the reaction has been shown to be stereoselective, with syn addition reported in some cases⁴⁴ and anti addition in others.⁴⁵ When the reaction is performed on a Michael-type substrate, C=C-Z, the hydrogen does not arrive at the carbon directly but only through a tautomeric equilibrium. The product naturally assumes the most thermodynamically stable configuration, without relation to the direction of original attack of Y. In one such case (the addition of EtOD and of Me₃CSD to trans-MeCH=CHCOOEt) predominant anti addition was found; there is evidence that the stereoselectivity here results from the final protonation of the enolate, and not from the initial attack.⁴⁶ For obvious reasons, additions to triple bonds cannot be stereospecific. As with electrophilic additions, nucleophilic additions to triple bonds are usually stereoselective and

⁴³However, attack at the 3 position has been reported when the 4 position contains one or two carbanionstabilizing groups such as SiMe₃: Klumpp, G.W.; Mierop, A.J.C.; Vrielink, J.J.; Brugman, A.; Schakel, M. *J. Am. Chem. Soc.* **1985**, *107*, 6740.

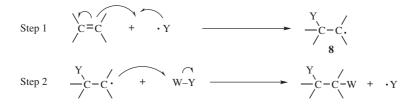
⁴⁴For example, Truce, W.E.; Levy, A.J. J. Org. Chem. 1963, 28, 679.

⁴⁵For example, Truce, W.E.; Levy, A.J. J. Am. Chem. Soc. **1961**, 83, 4641; Zefirov, N.S.; Yur'ev, Yu.K.; Prikazchikova, L.P.; Bykhovskaya, M.Sh. J. Gen. Chem. USSR **1963**, 33, 2100.

⁴⁶Mohrig, J.R.; Fu, S.S.; King, R.W.; Warnet, R.; Gustafson, G. J. Am. Chem. Soc. 1990, 112, 3665.

anti, 47 although syn addition 48 and nonstereoselective addition 49 have also been reported.

Free-Radical Addition


The mechanism of free-radical addition⁵⁰ follows the pattern discussed in Chapter 14 (pp. 934–939). The method of principal component analysis has been used to analyze polar and enthalpic effect in radical addition reactions.⁵¹ A radical is generated by

$$YW \xrightarrow{hv \text{ or spontaneous}} Y\bullet + W\bullet$$

or

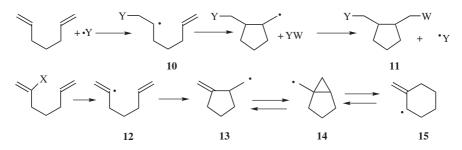
R• (from some other source) + YW \longrightarrow RW + Y•

Propagation then occurs by

⁴⁷Truce, W.E.; Simms, J.A. J. Am. Chem. Soc. 1956, 78, 2756; Shostakovskii, M.F.; Chekulaeva, I.A.;
 Kondrat'eva, L.V.; Lopatin, B.V. Bull. Acad. Sci. USSR Div. Chem. Sci. 1962, 2118; Théron F.; Vessière,
 R. Bull. Soc. Chim. Fr. 1968, 2994; Bowden, K.; Price, M.J. J. Chem. Soc. B 1970, 1466, 1472; Raunio,
 E.K.; Frey, T.G. J. Org. Chem. 1971, 36, 345; Truce, W.E.; Tichenor, G.J.W. J. Org. Chem. 1972, 37, 2391.
 ⁴⁸Truce, W.E.; Goldhamer, D.M.; Kruse, R.B. J. Am. Chem. Soc. 1959, 81, 4931; Dolfini, J.E. J. Org. Chem. 1965, 30, 1298; Winterfeldt, E.; Preuss, H. Chem. Ber. 1966, 99, 450; Hayakawa, K.; Kamikawaji,
 Y.; Wakita, A.; Kanematsu, K. J. Org. Chem. 1984, 49, 1985.

⁴⁹Gracheva, E.P.; Laba, V.I.; Kul'bovskaya, N.K.; Shostakovskii, M.F. J. Gen. Chem. USSR 1963, 33, 2431; Truce, W.E.; Brady, D.G. J. Org. Chem. 1966, 31, 3543; Prilezhaeva, E.N.; Vasil'ev, G.S.; Mikhaleshvili, I.L.; Bogdanov, V.S. Bull. Acad. Sci. USSR Div. Chem. Sci. 1970, 1820.

⁵⁰For a monograph on this subject, see Huyser, E.S. Free-Radical Chain Reactions, Wiley, NY, 1970. Other books with much of interest in this field are Nonhebel, D.C.; Walton, J.C. Free-Radical Chemistry; Cambridge University Press: London, 1974; Pyor, W.A. Free Radicals; McGraw-Hill, NY, 1965. For reviews, see Giese, B. Rev. Chem. Intermed. 1986, 7, 3; Angew. Chem. Int. Ed. 1983, 22, 753; Amiel, Y., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C pt. 1, Wiley, NY, 1983, pp. 341–382; Abell, P.I., in Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics, Vol. 18; Elsevier, NY, 1976, pp. 111–165; Abell, P.I. in Kochi, J.K. Free Radicals, Vol. 2, Wiley, NY, 1973, pp. 63–112; Minisci, F. Acc. Chem. Res. 1975, 8, 165; Julia, M., in Viehe, H.G. Acetylenes; Marcel Dekker, NY, 1969, pp. 335–354; Elad, D. Org. Photochem. 1969, 2, 168; Schönberg, A. Preparative Organic Photochemistry, Springer, NY, 1964, pp. 585–632.


⁵¹Héberger, K.; Lopata, A. J. Chem. Soc. Perkin Trans. 2, 1995, 91.

Step 2 is an abstraction (an atom transfer), so W is nearly always univalent, either hydrogen or halogen (p. 943). Termination of the chain can occur in any of the ways discussed in Chapter 14. If **9** adds to another alkene molecule,

a dimer is formed. This can add to still another, and chains, long or short, may be built up. This is the mechanism of free-radical polymerization. Short polymeric molecules (called *telomers*), formed in this manner, are often troublesome side products in free-radical addition reactions.

When free radicals are added to 1,5- or 1,6-dienes, the initially formed radical (10) can add intramolecularly to the other bond, leading to a cyclic product (11).⁵² When the radical is generated from an precursor that gives vinyl radical 12, however, cyclization leads to 13, which is in equilibrium with cyclopropylcarbinyl radical (14) via a 5-exo-trig reaction.⁵³ A 6-endo-trig reaction leads to 15, but unless there are perturbing substituent effects, however, cyclopropanation should be the major process.

Radicals of the type **10**, generated in other ways, also undergo these cyclizations. Both five- and six-membered rings can be formed in these reactions (see p. 1021).

The free-radical addition mechanism just outlined predicts that the addition should be non-stereospecific, at least if **9** has any, but an extremely short lifetime. However, the reactions may be stereoselective, for reasons similar to those discussed for nucleophilic addition on p. 1007. Not all free-radical additions have been found to be selective, but many are. For example, addition of HBr to 1-bromocyclohexene is regioselective in that it gave only *cis*-1,2-dibromocyclohexane

⁵²For reviews of these and other free-radical cyclization reactions, see RajanBabu, T.V. Acc. Chem. Res. 1991, 24, 139; Beckwith, A.L.J. Rev. Chem. Intermed. 1986, 7, 143; Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon, Elmsford, NY, 1986, pp. 141–209; Surzur, J. React. Intermed. (Plenum) 1982, 2, 121–295; Julia, M. Acc. Chem. Res. 1972, 4, 386; Pure Appl. Chem. 1974, 40, 553; 1967, 15, 167–183; Nonhebel, D.C.; Walton, J.C. Free-Radical Chemistry, Cambridge University Press, London, 1974, pp. 533–544; Wilt, J.W., in Kochi, J.K. Free Radicals, Vol. 1, Wiley, NY, 1973, pp. 418–446. For a review of cyclizations in general, see Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron 1990, 46, 1385.

⁵³Denis, R.C.; Rancourt, J.; Ghiro, E.; Boutonnet, F.; Gravel, D. Tetrahedron Lett. 1993, 34, 2091.

and none of the trans isomer (anti addition),⁵⁴ and propyne (at -78 to -60° C) gave only *cis*-1-bromopropene (anti addition), making it stereoselective.⁵⁵ However, stereospecificity has been found only in a few cases. Selectivity was observed in radical cyclization reactions of functionalized alkenes, which proceeded via a trans-ring closure.⁵⁶ The most important case is probably addition of HBr to 2- bromo-2-butene under free-radical conditions at -80° C. Under these conditions, the cis isomer gave 92% of the meso product, while the trans isomer gave mostly the *dl* pair.⁵⁷ This stereospecificity disappeared at room temperature, where both alkenes gave the same mixture of products (~78% of the *dl* pair and 22% of the meso compound), so the addition was still stereoselective but no longer stereospecific. The stereospecificity at low temperatures is probably caused by a stabilization of the intermediate radical through the formation of a bridged bromine radical, of the type mentioned on p. 942:

This species is similar to the bromonium ion that is responsible for stereospecific anti addition in the electrophilic mechanism. Further evidence for the existence of such bridged radicals was obtained by addition of Br• to alkenes at 77 K. The ESR spectra of the resulting species were consistent with bridged structures.⁵⁸

For many radicals, step 1 (C=C + Y• \rightarrow •C–C–Y) is reversible. In such cases, free radicals can cause cis \rightarrow trans isomerization of a double bond by the pathway⁵⁹

$$\begin{array}{c} R^{1} \\ C = C \\ R^{3} \\ R^{4} \end{array} \xrightarrow{Y} \begin{array}{c} Y \\ T \\ R^{3} \end{array} \xrightarrow{R^{1}} C - C \\ R^{3} \\ R^{4} \end{array} \xrightarrow{rotation} \begin{array}{c} R^{1} \\ Y \\ T \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{4}} \begin{array}{c} -Y \\ T \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{1} \\ C = C \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{1} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{2} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{2} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{3} \\ R^{3} \\ \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{3} \\ \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{3} \\ R^{3} \end{array} \xrightarrow{R^{1}$$

Cyclic Mechanisms

There are some addition reactions where the initial attack is not at one carbon of the double bond, but both carbons are attacked simultaneously. Some of these are

⁵⁴Goering, H.L.; Abell, P.I.; Aycock, B.F. *J. Am. Chem. Soc.* **1952**, 74, 3588. See also, LeBel, N.A.; Czaja, R.F.; DeBoer, A. *J. Org. Chem.* **1969**, *34*, 3112.

⁵⁵Skell, P.S.; Allen, R.G. J. Am. Chem. Soc. 1958, 80, 5997.

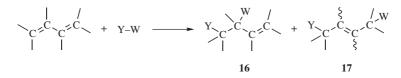
⁵⁶Ogura, K.; Kayano, A.; Fujino, T.; Sumitani, N.; Fujita, M. Tetrahedron Lett. 1993, 34, 8313.

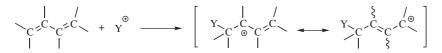
⁵⁷Goering, H.L.; Larsen, D.W. J. Am. Chem. Soc. 1957, 79, 2653; 1959, 81, 5937. Also see, Skell, P.S.; Freeman, P.K. J. Org. Chem. 1964, 29, 2524.

⁵⁸Abell, P.I.; Piette, L.H. *J. Am. Chem. Soc.* **1962**, *84*, 916. See also, Leggett, T.L.; Kennerly, R.E.; Kohl, D.A. *J. Chem. Phys.* **1974**, *60*, 3264.

⁵⁹Benson, S.W.; Egger, K.W.; Golden, D.M. J. Am. Chem. Soc. **1965**, 87, 468; Golden, D.M.; Furuyama, S.; Benson, S.W. Int. J. Chem. Kinet. **1969**, 1, 57.

CHAPTER 15

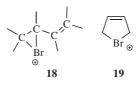

four-center mechanisms, which follow this pattern:


In others, there is a five- or a six-membered transition state. In these cases the addition to the double or triple bond must be syn. The most important reaction of this type is the Diels-Alder reaction (**15-60**).

Addition to Conjugated Systems

When electrophilic addition is carried out on a compound with two double bonds in conjugation, a 1,2-addition product (16) is often obtained, but in most cases there is also a 1,4-addition product (17), often in larger yield:⁶⁰

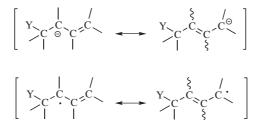
If the diene is unsymmetrical, there may be two 1,2-addition products. The competition between two types of addition product comes about because the carbocation resulting from attack on Y^+ is a resonance hybrid, with partial positive charges at the 2 and 4 positions:


 W^- may then attack either position. The original attack of Y^+ is always at the end of the conjugated system because an attack at a middle carbon would give a cation unstabilized by resonance:

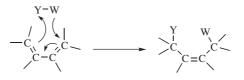
In the case of electrophiles like Br^+ , which can form cyclic intermediates, both 1,2and 1,4-addition products can be rationalized as stemming from an intermediate like **18**. Direct nucleophilic attack by W⁻ would give the 1,2-product, while the 1,4-product could be formed by attack at the 4 position, by an S_N2' -type mechanism (see p. 470). Intermediates like **19** have been postulated, but ruled out for Br and Cl

⁶⁰For a review of electrophilic addition to conjugated dienes, see Khristov, V.Kh.; Angelov, Kh.M.; Petrov, A.A. *Russ. Chem. Rev.* **1991**, *60*, 39.

by the observation that chlorination



or bromination of butadiene gives trans 1,4-products.⁶¹ If an ion like **19** were the intermediate, the 1,4-products would have to have the cis configuration.


In most cases, more 1,4- than 1,2-addition product is obtained. This may be a consequence of thermodynamic control of products, as against kinetic. In most cases, under the reaction conditions, **16** is converted to a mixture of **16** and **17** which is richer in **17**. That is, either isomer gives the same mixture of both, which contains more **17**. It was found that at low temperatures, butadiene and HCl gave only 20–25% 1,4-adduct, while at high temperatures, where attainment of equilibrium is more likely, the mixture contained 75% 1,4-product.⁶² 1,2-Addition predominated over 1,4- in the reaction between DCl and 1,3-pentadiene, where the

intermediate was the symmetrical (except for the D label) $\frac{\odot}{H_3CHC-CH-CHCH_2D^{63}}^{63}$

Ion pairs were invoked to explain this result, since a free ion would be expected to be attacked by Cl⁻ equally well at both positions, except for the very small isotope effect.

Addition to conjugated systems can also be accomplished by any of the other three mechanisms. In each case, there is competition between 1,2- and 1,4-addition. In the case of nucleophilic or free-radical attack,⁶⁴ the intermediates are resonance hybrids and behave like the intermediate from electrophilic attack. Dienes can give 1,4-addition by a cyclic mechanism in this way:

⁶¹Mislow, K. J. Am. Chem. Soc. 1953, 75, 2512.

⁶²Kharasch, M.S.; Kritchevsky, J.; Mayo, F.R. J. Org. Chem. 1938, 2, 489.

⁶³Nordlander, J.E.; Owuor, P.O.; Haky, J.E. J. Am. Chem. Soc. 1979, 101, 1288.

⁶⁴For a review of free-radical addition to conjugated dienes, see Afanas'ev, I.B.; Samokhvalov, G.I. *Russ. Chem. Rev.* **1969**, *38*, 318.

Other conjugated systems, including trienes, enynes, diynes, and so on, have been studied much less, but behave similarly. 1,4-Addition to enynes is an important way of making allenes:

Radical addition to conjugated systems is an important part of chain propagation reactions. The rate constants for addition of cyclohexyl radical to conjugated amides have been measured, and shown to be faster than addition to styrene.⁶⁵ In additions to RCH=C(CN)₂ systems, where the R group has a chiral center, the Felkin–Ahn rule (p. 169) is followed and the reaction proceeds with high selectivity.⁶⁶ Addition of some radicals, such as (Me₃Si)₃Si•, is reversible and this can lead to poor selectivity or isomerization.⁶⁷

ORIENTATION AND REACTIVITY

Reactivity

As with electrophilic aromatic substitution (Chapter 11), electron-donating groups increase the reactivity of a double bond toward electrophilic addition and electron-withdrawing groups decrease it. This is illustrated in Tables 15.1 and 15.2.⁶⁸ As a further illustration it may be mentioned that the reactivity toward electrophilic addition of a group of alkenes increased in the order CCl₃CH=CH₂ < Cl₂CHCH=CH₂ < Cl₂CHCH=CH₂ < Cl₃CH₂=CH₂.⁶⁹ For nucleophilic addition the situation is reversed. These reactions are best carried out on substrates containing three or four electron-withdrawing groups, two of the most common being $F_2C=CF_2^{70}$ and $(NC)_2C=C(CN)_2$.⁷¹ The effect of substituents is so great that it is possible to make the statement that *simple alkenes do not react by the nucleophilic mechanism, and polyhalo or polycyano alkenes do not generally react by the electrophilic mechanism.*⁷²

⁶⁹Shelton, J.R.; Lee, L. J. Org. Chem. 1960, 25, 428.

⁶⁵Curran, D.P.; Qi, H.; Porter, N.A.; Su, Q.; Wu, W.-X. Tetrahedron Lett. 1993, 34, 4489.

⁶⁶Giese, B.; Damm, W.; Roth, M.; Zehnder, M. Synlett 1992, 441.

⁶⁷Ferreri, C.; Ballestri, M.; Chatgilialoglu, C. Tetrahedron Lett. 1993, 34, 5147.

 ⁶⁸Table 15.1 is from de la Mare, P.B.D. *Q. Rev. Chem. Soc.* **1949**, *3*, 126, p. 145. Table 15.2 is from Dubois,
 J.E.; Mouvier, G. *Tetrahedron Lett.* **1963**, 1325. See also, Dubois, J.E.; Mouvier, G. *Bull. Soc. Chim. Fr.* **1968**, 1426; Grosjean, D.; Mouvier, G.; Dubois, J.E. *J. Org. Chem.* **1976**, *41*, 3869, 3872.

⁷⁰For a review of additions to $F_2C=CF_2$ and other fluoroalkenes, see Chambers, R.D.; Mobbs, R.H. *Adv. Fluorine Chem.* **1965**, *4*, 51.

⁷¹For reviews of additions to tetracyanoethylene, see Fatiadi, A.J. *Synthesis* **1987**, 249, 749; Dhar, D.N. *Chem. Rev.* **1967**, 67, 611.

⁷²Such reactions can take place under severe conditions. For example, electrophilic addition could be accomplished with $F_2C=CHF$ in super acid solutions [Olah, G.A.; Mo, Y.K. *J. Org. Chem.* **1972**, *37*, 1028] although $F_2C=CF_2$ did not react under these conditions. For reviews of electrophilic additions to fluoroalkenes, see Belen'kii, G.G.; German, L.S. *Sov. Sci. Rev. Sect. B* **1984**, *5*, 183; Dyatkin, B.L.; Mochalina, E.P.; Knunyants, I.L. *Russ. Chem. Rev.* **1966**, *35*, 417; *Fluorine Chem. Rev.* **1969**, *3*, 45; Chambers, R.D.; Mobbs, R.H. *Adv. Fluorine Chem.* **1965**, *4*, 51, pp. 77–81.

Relative Rate
Very fast
18
1.6
1.0
0.11
0.0011

TABLE 15.1. Relative Reactivity of Some Alkenes Toward Bromine in Acetic Acid at $24^\circ C^{68}$

 TABLE 15.2. Relative Reactivity of Some Alkenes

 Toward Bromine in Methanol⁶⁸

Alkene	Relative Rate
CH ₂ =CH ₂	3.0×10^{1}
CH ₃ CH ₂ CH=CH ₂	$2/9 \times 10^{3}$
cis-CH ₃ CH ₂ CH=CHCH ₃	$1.3 imes 10^5$
$(CH_3)_2 C = C(CH_3)_2$	$2.8 imes10^7$

There are some reagents that attack only as nucleophiles, for example, ammonia, and these add only to substrates susceptible to nucleophilic attack. Other reagents attack only as electrophiles, and, for example, $F_2C=CF_2$ does not react with these. In still other cases, the same reagent reacts with a simple alkene by the electrophilic mechanism and with a polyhalo alkene by a nucleophilic mechanism. For example, Cl_2 and HF are normally electrophilic reagents, but it has been shown that Cl_2 adds to $(N\equiv C)_2C=CHC\equiv N$ with initial attack by Cl^{-73} and that HF adds to $F_2C=CClF$ with initial attack by $F^{-,74}$ Compounds that have a double bond conjugated with a Z group (as defined on p. 1007) nearly always react by a nucleophilic mechanism.⁷⁵ These are actually 1,4-additions, as discussed on p. 1008. A number of studies have been made of the relative activating abilities of various Z groups.⁷⁶ On the basis of these studies, the following order of decreasing activating ability has been suggested: $Z = NO_2$, COAr, CHO, COR, SO₂Ar, CN, COOR, SOAr, CONH₂, CONHR.⁷⁷

It seems obvious that electron-withdrawing groups enhance nucleophilic addition and inhibit electrophilic addition because they lower the electron density of

⁷³Dickinson, C.L., Wiley, D.W.; McKusick, B.C. J. Am. Chem. Soc. **1960**, 82, 6132. For another example, see Atkinson, R.C.; de la Mare, P.B.D.; Larsen, D.S. J. Chem. Soc. Perkin Trans. 2, **1983**, 271.

⁷⁴Miller, Jr., W.T.; Fried, J.H.; Goldwhite, H. J. Am. Chem. Soc. 1960, 82, 3091.

⁷⁵For a review of electrophilic reactions of such compounds, see Müllen, K.; Wolf, P., in Patai, S.; Rappoport, Z. *The Chemistry of Enones*, pt. 1, Wiley, NY, *1989*, pp. 513–558.

⁷⁶See, for example, Friedman, M.; Wall, J.S. *J. Org. Chem.* **1966**, *31*, 2888; Ring, R.N.; Tesoro, G.C.; Moore, D.R. *J. Org. Chem.* **1967**, *32*, 1091.

⁷⁷Shenhav, H.; Rappoport, Z.; Patai, S. J. Chem. Soc. B 1970, 469.

the double bond. Addition of electrophilic radicals to electron rich alkenes has been reported, 78 so the reaction is possible in some cases. This is probably true, and yet similar reasoning does not always apply to a comparison between double and triple bonds.⁷⁹ There is a higher concentration of electrons between the carbons of a triple bond than in a double bond, and yet triple bonds are less subject to attack at an electrophilic site and more subject to nucleophilic attack than double bonds.⁸⁰ This statement is not universally true, but it does hold in most cases. In compounds containing both double and triple bonds (nonconjugated), bromine, an electrophilic reagent, always adds to the double bond.⁸¹ In fact, all reagents that form bridged intermediates like 2 react faster with double than with triple bonds. On the other hand, addition of electrophilic H⁺ (acid-catalyzed hydration, 15-3; addition of hydrogen halides, 15-2) takes place at about the same rates for alkenes as for corresponding alkynes.⁸² Furthermore, the presence of electron-withdrawing groups lowers the alkene/alkyne rate ratio. For example, while styrene PhCH=CH₂ was brominated 3000 times faster than PhC≡CH, the addition of a second phenyl group (PhCH=CHPh versus PhC=CPh) lowered the rate ratio to about 250.⁸³ In the case of *trans*-MeOOCCH=CHCOOMe versus MeOOCC=CCOOMe, the triple bond compound was actually brominated faster.⁸⁴

As mentioned, it is true that in general triple bonds are more susceptible to nucleophilic and less to attack on an electrophilic site than double bonds, in spite of their higher electron density. One explanation is that the electrons in the triple bond are held more tightly because of the smaller carbon–carbon distance; it is thus harder for an attacking electrophile to pull out a pair. There is evidence from far-UV spectra to support this conclusion.⁸⁵ Another possible explanation has to do with the availability of the unfilled orbital in the alkyne. It has been shown that a π^* orbital of bent alkynes (e.g., cyclooctyne) has a lower energy than the π^* orbital of alkenes, and it has been suggested⁸⁶ that linear alkynes can achieve a bent structure in their transition states when reacting with an electrophile. Where electrophilic addition involves bridged-ion intermediates, those arising from triple bonds (**20**) are more strained than the corresponding **21** and furthermore are antiaromatic systems

- ⁸³Robertson, P.W.; Dasent, W.E.; Milburn, R.M.; Oliver, W.H. J. Chem. Soc. 1950, 1628.
- ⁸⁴Wolf, S.A.; Ganguly, S.; Berliner, E. J. Am. Chem. Soc. 1985, 50, 1053.
- ⁸⁵Walsh, A.D. Q. Rev. Chem. Soc. 1948, 2, 73.

⁷⁸Curran, D.P.; Ko, S.-B. Tetrahedron Lett. 1998, 39, 6629.

⁷⁹For reviews of ionic additions to triple bonds, see, in Patai, S. *The Chemistry of the Carbon–Carbon Triple Bond*, Wiley, NY, **1978**, the articles by Schmid, G.H. pt. 1, pp. 275–341, and by Dickstein, J.I.; Miller, S.I. pt. 2, pp. 813–955; Miller, S.I.; Tanaka, R. *Sel. Org. Transform.* **1970**, *1*, 143; Winterfeldt, E., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, **1969**, pp. 267–334. For comparisons of double and triple bond reactivity, see Melloni, G.; Modena, G.; Tonellato, U. *Acc. Chem. Res.* **1981**, *14*, 227; Allen, A.D.; Chiang, Y.; Kresge, A.J.; Tidwell, T.T. J. Org. Chem. **1982**, *47*, 775.

⁸⁰For discussions, see Daniels, R.; Bauer, L. J. Chem. Educ. **1958**, 35, 444; DeYoung, S.; Ehrlich, S.; Berliner, E. J. Am. Chem. Soc. **1977**, 99, 290; Strozier, R.W.; Caramella, P.; Houk, K.N. J. Am. Chem. Soc. **1979**, 101, 1340.

⁸¹Petrov, A.A. Russ. Chem. Rev. 1960, 29, 489.

⁸²Melloni, G.; Modena, G.; Tonellato, U. Acc. Chem. Res. 1981, 14, 227, p. 228.

⁸⁶Ng, L.; Jordan, K.D.; Krebs, A.; Rüger, W. J. Am. Chem. Soc. 1982, 104, 7414.

(see p. 73), which **21** are not. This may be a reason why electrophilic addition by such electrophiles as Br, I, SR, and so on, is slower for triple than for double bonds.⁸⁷ As might be expected, triple bonds connected to a Z group ($C \equiv C-Z$) undergo nucleophilic addition especially well.⁸⁸

Although alkyl groups in general increase the rates of electrophilic addition, we have already mentioned (p. 1005) that there is a different pattern depending on whether the intermediate is a bridged ion or an open carbocation. For brominations and other electrophilic additions in which the first step of the mechanism is rate determining, the rates for substituted alkenes correlate well with the ionization potentials of the alkenes, which means that steric effects are not important.⁸⁹ Where the second step is rate determining [e.g., oxymercuration (**15-3**), hydroboration (**15-17**)], steric effects are important.⁸⁸

Free-radical additions can occur with any type of substrate. The determining factor is the presence of a free-radical attacking species. Some reagents (e.g., HBr, RSH) attack by ionic mechanisms if no initiator is present, but in the presence of a free-radical initiator, the mechanism changes and the addition is of the free-radical type. Nucleophilic radicals (see p. 938) behave like nucleophiles in that the rate is increased by the presence of electron-withdrawing groups in the substrate. The reverse is true for electrophilic radicals.⁹⁰ However, nucleophilic radicals react with alkynes more slowly than with the corresponding alkenes,⁹¹ which is contrary to what might have been expected.⁹²

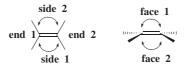
²²

⁸⁷Nevertheless, bridged ions 15 have been implicated in some additions to triple bonds. See, for example, Pincock, J.A.; Yates, K. *Can. J. Chem.* 1970, 48, 3332; Mauger, E.; Berliner, E. *J. Am. Chem. Soc.* 1972, 94, 194; Bassi, P.; Tonellato, U. *J. Chem. Soc. Perkin Trans.* 1, 1973, 669; Schmid, G.H.; Modro, A.; Lenz, F.; Garratt, D.G.; Yates, K. *J. Org. Chem.* 1976, 41, 2331.

⁸⁸For a review of additions to these substrates, see Winterfeldt, E. Angew. Chem. Int. Ed. **1967**, 6, 423; Newer Methods Prep. Org. Chem. **1971**, 6, 243.

⁸⁹Nelson, D.J.; Cooper, P.J.; Soundararajan, R. J. Am. Chem. Soc. **1989**, 111, 1414; Nelson, D.J.; Soundararajan, R. Tetrahedron Lett. **1988**, 29, 6207.

⁹⁰For reviews of reactivity in free-radical additions, see Tedder, J.M. Angew. Chem. Int. Ed. **1982**, 21, 401; Tedder, J.M.; Walton, J.C. Tetrahedron **1980**, 36, 701.


⁹¹Giese, B.; Lachhein, S. Angew. Chem. Int. Ed. 1982, 21, 768.

⁹²For a discussion of reactivity and orientation of polar radicals, see Volovik, S.V.; Dyadyusha, G.G.; Staninets, V.I. J. Org. Chem. USSR **1986**, 22, 1224.

Steric influences are important in some cases. In catalytic hydrogenation, where the substrate must be adsorbed onto the catalyst surface, the reaction becomes more difficult with increasing substitution. The hydrocarbon **22**, in which the double bond is entombed between the benzene rings, does not react with Br₂, H₂SO₄, O₃, BH₃, :CBr₂, or other reagents that react with most double bonds.⁹³ A similarly inactive compound is tetra-*tert*-butylallene (*t*-Bu)₂C=C=C(*t*-Bu)₂, which is inert to Br₂, Cl₂, O₃, and catalytic hydrogenation.⁹⁴

Orientation

When an unsymmetrical reagent is added to an unsymmetrical substrate, the question arises: Which side of the reagent goes to which side of the double or triple bond? The terms side and face are arbitrary, and a simple guide is shown to help understand the arguments used here. For electrophilic attack, the answer is given by

*Markovnikov's rule: The positive portion of the reagent goes to the side of the double or triple bond that has more hydrogens.*⁹⁵ A number of explanations have been suggested for this regioselectivity, but the most probable is that Y^+ adds to that side that will give the more stable carbocation. This premise has been examined by core electron spectroscopy and by theoretical analysis.⁹⁶ Thus, when an alkyl group is present, secondary carbocations are more stable than primary:

We may ask: Why does Y^+ add to give the more stable carbocation? As in the similar case of electrophilic aromatic substitution (p. 658), we invoke the Hammond postulate and say that the lower energy carbocation is preceded by the lower energy transition state. Markovnikov's rule also applies for halogen substituents because the halogen stabilizes the carbocation by resonance:

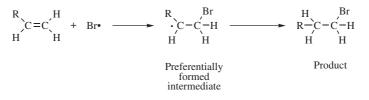
$$\begin{array}{c} Cl & H \\ \downarrow C = C \\ H \end{array} + \begin{array}{c} Y \\ \downarrow W \end{array} \xrightarrow{\otimes} C = C \\ \downarrow H \end{array} + \begin{array}{c} Cl & Y \\ \downarrow W \end{array} \xrightarrow{\otimes} C = C \\ \downarrow H \end{array} \xrightarrow{\otimes} C = C \\ \downarrow H \end{array} \xrightarrow{\otimes} C = C \\ \downarrow H \\ \downarrow H \end{array} \xrightarrow{\otimes} C = C \\ \downarrow H \\ \downarrow H$$

⁹³Butler, D.N.; Gupt, I.; Ng, W.W.; Nyburg, S.C. J. Chem. Soc., Chem. Commun. 1980, 596.

⁹⁴Bolze, R.; Eierdanz, H.; Schlüter, K.; Massa, W.; Grahn, W.; Berndt, A. Angew. Chem. Int. Ed. 1982, 21, 924.
 ⁹⁵For discussions of Markovnikov's rule, see Isenberg, N.; Grdinic, M. J. Chem. Educ. 1969, 46, 601;

Grdinic, M.; Isenberg, N. Intra-Sci. Chem. Rep., 1970, 4, 145-162.

⁹⁶Sæthre, L.J.; Thomas, T.D.; Svensson, S. J. Chem. Soc. Perkin Trans. 2, 1997, 749.

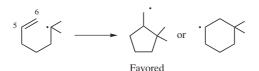

Markovnikov's rule is also usually followed where bromonium ions or other three-membered rings are intermediates.⁹⁷ This means that in these cases attack by W must resemble the S_N1 rather than the S_N2 mechanism (see p. 517), although the overall stereospecific anti addition in these reactions means that the nucleophilic substitution step is taking place with inversion of configuration.

Alkenes containing strong electron-withdrawing groups may violate Markovnikov's rule. For example, attack at the Markovnikov position of Me₃N⁺–CH=CH₂ would give an ion with positive charges on adjacent atoms. The compound CF₃CH=CH₂ has been reported to give electrophilic addition with acids in an anti-Markovnikov direction, but it has been shown⁹⁸ that, when treated with acids, this compound does not give simple electrophilic addition at all; the apparently anti-Markovnikov products are formed by other pathways. Molecular electrostatic potentials for the π -region of substituted alkenes were studied, with electron donating and withdrawing substituents (based on the increase or decrease in the negative character of V_{min} -most negative-valued point), and plots of V_{min} shows a good linear correlation with the Hammett $\sigma\rho$ constants, suggesting similar substituent electronic effects for substituted ethylenes and substituted benzenes.⁹⁹

For nucleophilic addition the direction of attack has been studied very little, except for Michael-type addition, with compounds of the type C=C-Z. Here the negative part of the reagent almost always attacks regioselectively at the carbon that does not carry the Z (see p. 1008).

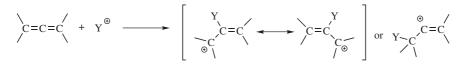
In free-radical addition¹⁰⁰ the main effect seems to be steric.¹⁰¹ All substrates $CH_2=CHX$ preferentially react at the CH_2 , regardless of the identity of X or of the radical. With a reagent such as HBr, this means that the addition is anti-Markovnikov:

⁹⁷This has been graphically demonstrated by direct treatment of stabilized bromonium ions by nucleophiles: Dubois, J.E.; Chrétien, J.R. J. Am. Chem. Soc. **1978**, 100, 3506.


⁹⁸Myhre, P.C.; Andrews, G.D. J. Am. Chem. Soc. **1970**, 92, 7595, 7596. See also, Newton, T.A. J. Chem. Educ. **1987**, 64, 531.

⁹⁹Suresh, C.H.; Koga, N.; Gadre, S.R. J. Org. Chem. 2001, 66, 6883.

¹⁰⁰For reviews of orientation in free-radical additions, see Tedder, J.M.; Walton, J.C. *Tetrahedron* **1980**, 36, 701; *Adv. Phys. Org. Chem.* **1978**, 16, 51; *Acc. Chem. Res.* **1976**, 9, 183. See also, Giese, B. *Rev. Chem. Intermed.* **1986**, 7, 3; Tedder, J.M. *J. Chem. Educ.* **1984**, 61, 237.


¹⁰¹See, however, Riemenschneider, K.; Bartels, H.M.; Dornow, R.; Drechsel-Grau, E.; Eichel, W.; Luthe, H.; Matter, Y.M.; Michaelis, W.; Boldt, P. *J. Org. Chem.* **1987**, *52*, 205; Gleicher, G.J.; Mahiou, B.; Aretakis, A.J. J. Org. Chem. **1989**, *54*, 308.

Thus the observed orientation in both kinds of HBr addition (Markovnikov electrophilic and anti-Markovnikov free radical) is caused by formation of the secondary intermediate. In the electrophilic case it forms because it is more stable than the primary; in the free-radical case because it is sterically preferred. The stability order of the free-radical intermediates is also usually in the same direction: $3^{\circ} > 2^{\circ} > 1^{\circ}$ (p. 272), but this factor is apparently less important than the steric factor. Internal alkenes with no groups present to stabilize the radical usually give an ~1:1 mixture via 5-exo-trig and 6-endo-trig (see Badwin's rules p. \$\$\$) reactions.

In *intramolecular* additions of radicals containing a 5,6 double bond,⁵² both fiveand six-membered rings can be formed, but in most cases¹⁰² the five-membered rings are greatly preferred kinetically, even (as in the case shown) where fivemembered ring closure means generating a primary radical and six-membered ring closure a secondary radical. This phenomenon may be caused by more favorable entropy factors leading to a five-membered ring, as well as by stereoelectronic factors, but other explanations have also been offered.¹⁰³ Similar behavior is found when the double bond is in other positions (from the 3,4 to the 7,8 position). In each case, the smaller ring (exo-trig addition) is preferred to the larger (endo-trig addition)¹⁰⁴ (see the Baldwin rules, p. 305). However, when a radical that is unsaturated in the 5,6 position contains an alkyl group in the 5 position, formation of the sixmembered ring is generally favored.¹⁰⁵

For conjugated dienes, attack by a positive ion, a negative ion, or a free radical is almost always at the *end* of the conjugated system, since in each case this gives an intermediate stabilized by resonance. In the case of an unsymmetrical diene, the more stable ion is formed. For example, isoprene ($CH_2=CMeCH=CH_2$), treated with HCl gives only Me₂CClCH=CH₂ and Me₂C=CHCH₂Cl, with none of the product arising from attack at the other end. PhCH=CHCH=CH₂ gives only PhCH=CHCHClCH₃ since it is the only one of the eight possible products that has a double bond in conjugation with the ring and that results from attack by H⁺ at an end of the conjugated system.

¹⁰²For an exception, see Wilt, J.W. Tetrahedron 1985, 41, 3979.

¹⁰³For discussions, see Beckwith, A.L.J. *Tetrahedron* 1981, 37, 3073; Verhoeven, J.W. *Revl. Trav. Chim. Pays-Bas* 1980, 99, 143. For molecular mechanics force-field approaches to this problem, see Beckwith, A.L.J.; Schiesser, C.H. *Tetrahedron* 1985, 41, 3925; Spellmeyer, D.C.; Houk, K.N. J. Org. Chem. 1987, 52, 959.
 ¹⁰⁴See Beckwith, A.L.J.; Easton, C.J.; Serelis, A.K. J. Chem. Soc., Chem. Commun. 1980, 482.

 ¹⁰⁵See Chuang, C.; Gallucci, J.C.; Hart, D.J.; Hoffman, C. J. Org. Chem. 1988, 53, 3218, and references

cited therein.

1022 ADDITION TO CARBON–CARBON MULTIPLE BONDS

When allenes attack electrophilic reagents,¹⁰⁶ Markovnikov's rule would predict that the formation of the new bond should be at the end of the system, since there are no hydrogens in the middle. Reaction at the center gives a carbocation stabilized by resonance, but not immediately. In order for such stabilization to be in effect the three p orbitals must be parallel, and it requires a rotation about the C–C bond for this to happen.¹⁰⁷ Therefore, the stability of the allylic cation has no effect on the transition state, which still has a geometry similar to that of the original allene (p. 148). Probably because of this, attack on the unsubstituted $CH_2=C=CH_2$ is most often at the end carbon, to give a vinylic cation, although center attack has also been reported. However, as alkyl or aryl groups are substituted on the allene carbons, attack at the middle carbon becomes more favorable because the resulting cation is stabilized by the alkyl or aryl groups (it is now a secondary, tertiary, or benzylic cation). For example, allenes of the form RCH=C=CH₂ are still attacked most often at the end, but with RCH=C=CHR' center attack is more prevalent. Tetramethylallene is also attacked predominantly at the center carbon.¹⁰⁸ Free radicals¹⁰⁹ attack allenes most often at the end,¹¹⁰ although attack at the middle has also been reported.¹¹¹ As with electrophilic attack and for the same reason, the stability of the allylic radical has no effect on the transition state of the reaction between a free radical and an allene. Again, as with electrophilic attack, the presence of alkyl groups increases the extent of attack by a radical at the middle carbon.¹¹²

Stereochemical Orientation

It has already been pointed out that some additions are syn, with both groups, approaching from the same side, and that others are anti, with the groups approaching from opposite sides of the double or triple bond. For cyclic compounds steric orientation must be considered. In syn addition to an unsymmetrical cyclic alkene,

 ¹⁰⁶For a monograph on addition to allenes, see Schuster, H.F.; Coppola, G.M. Allenes in Organic Synthesis
 Wiley, NY, *1984*. For reviews, see Pasto, D.J. Tetrahedron *1984*, 40, 2805; Smadja, W. Chem. Rev. *1983*, 83, 263; in Landor, S.R. The Chemistry of Allenes, Vol. 2; Academic Press, NY, *1982*, articles by Landor, S.R., Jacobs, T.L.; Hopf, H. pp. 351–577; Stang, P.J.; Rappoport, Z.; Hanack, M.; Subramanian, L.R. Vinyl Cations, Academic Press, NY, *1979*, pp. 152–167; Blake, P., in Patai, S. The Chemistry of Ketenes, Allenes and Related Compounds, pt. 1, Wiley, NY, *1980*; pp. 342–357; Modena, G.; Tonellato, U. Adv. Phys. Org. Chem. *1971*, 9, 185, pp. 215–231; Richey, Jr., H.G.; Richey, J.M., in Olah, G.A.; Schleyer, P.V.R. Carbonium Ions, Vol. 2, Wiley, NY, *1970*, pp. 917–922; Caserio, M.C. Sel. Org. Transform., *1970*, *1*, 239; Taylor, D.R. Chem. Rev. *1967*, 67, 317, 338–346; Mavrov, M.V.; Kucherov, V.F. Russ. Chem. Rev. *1967*, *36*, 233; Griesbaum, K. Angew. Chem. Int. Ed. *1966*, *5*, 933.

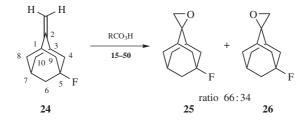
 ¹⁰⁷For evidence that this is so, see Okuyama, T.; Izawa, K.; Fueno, T. J. Am. Chem. Soc. 1973, 95, 6749.
 ¹⁰⁸For example, see Bianchini, J.; Guillemonat, A. Bull. Soc. Chim. Fr. 1968, 2120; Pittman Jr., C.U. Chem. Commun. 1969, 122; Poutsma, M.L.; Ibarbia, P.A. J. Am. Chem. Soc. 1971, 93, 440.

¹⁰⁹For a review, see Jacobs, T.L., in Landor, S.R. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, *1982*, pp. 399–415.

¹¹⁰Griesbaum, K.; Oswald, A.A.; Quiram, E.R.; Naegele, W. J. Org. Chem. 1963, 28, 1952.

¹¹¹See, for example, Pasto, D.J.; L'Hermine, G. J. Org. Chem. 1990, 55, 685.

¹¹²For example, see Byrd, L.R.; Caserio, M.C. J. Org. Chem. **1972**, 37, 3881; Pasto, D.J.; Warren, S.E.; Morrison, M.A. J. Org. Chem. **1981**, 46, 2837. See, however, Bartels, H.M.; Boldt, P. Liebigs Ann. Chem. **1981**, 40.


the two groups can come in from the more- or from the less-hindered face of the double bond. The rule is that syn addition is usually, although not always, from the less-hindered face. For example, epoxidation of 4-methylcyclopentene gave 76% addition from the less-hindered and 24% from the more-hindered face.¹¹³

In anti addition to a cyclic substrate, the initial attack on the electrophile is also from the less-hindered face. However, many (although not all) electrophilic additions to norbornene and similar strained bicycloalkenes are syn additions.¹¹⁴ In these cases reaction is always from the exo side, as in formation of **23**,¹¹⁵

unless the exo side is blocked by substituents in the 7 position, in which case endo attack may predominate; for example, 7,7-dimethylnorbornene undergoes syn–endo epoxidation (**15-50**) and hydroboration¹¹⁶ (**15-16**). However, addition of DCl and F_3CCOOD to, and oxymercuration (**15-2**) of, 7,7-dimethylnorbornene proceeds syn–exo in spite of the methyl groups in the 7 position.¹¹⁷ Similarly, free-radical additions to norbornene and similar molecules are often syn–exo, although anti additions and endo attacks are also known.¹¹⁸

Electronic effects can also play a part in determining which face reacts preferentially with the electrophilic species. In the adamantane derivative 24, steric

¹¹³Henbest, H.B.; McCullough, J.J. Proc. Chem. Soc. 1962, 74.

¹¹⁴For a discussion, see Traylor, T.G. Acc. Chem. Res. 1969, 2, 152.

¹¹⁵Cristol, S.J.; Morrill, T.C.; Sanchez, R.A. J. Org. Chem. **1966**, *31*, 2719; Brown, H.C.; Kawakami, J.H.; Liu, K. J. Am. Chem. Soc. **1970**, 92, 5536; Alvernhe, G.; Anker, D.; Laurent, A.; Haufe, G.; Beguin, C. Tetrahedron **1988**, 44, 3551; Koga, N.; Ozawa, T.; Morokuma, K. J. Phys. Org. Chem. **1990**, *3*, 519.

¹¹⁶Brown, H.C.; Kawakami, J.H.; Liu, K. J. Am. Chem. Soc. 1973, 95, 2209.

¹¹⁸For a review of free-radical addition to these systems, see Azovskaya, V.A.; Prilezhaeva, E.N. *Russ. Chem. Rev.* **1972**, *41*, 516.

¹¹⁷Brown, H.C.; Liu, K. J. Am. Chem. Soc. **1975**, 97, 600, 2469; Tidwell, T.T.; Traylor, T.G. J. Org. Chem. **1968**, 33, 2614.

effects are about the same for each face of the double bond. Yet epoxidation, dibromocarbene reactions (15-64), and hydroboration (15-16) all predominantly take place from the face that is syn to the electron-withdrawing fluorine.¹¹⁹ In the case shown, about twice as much 25 was formed, compared to 26. Similar results have been obtained on other substrates:¹²⁰ groups that are electron withdrawing by the field effect (-I) direct attack from the syn face; +I groups from the anti face, for both electrophilic and nucleophilic attack. These results are attributed¹²¹ to hyperconjugation: For the adamantane case, there is overlap between the σ^* orbital of the newly forming bond (between the attacking species and C-2 in 24) and the filled σ orbitals of the C_{\alpha}-C_{\beta} bonds on the opposite side. This is called the *Cieplak* effect. The LiAlH₄ reduction of 2-axial methyl or methoxy cyclohexanones supports Cieplak's proposal.¹²² In addition reactions of methanol to norbornanones, however, little evidence was found to support the Cieplak effect.¹²³ The four possible bonds are C-3-C-4 and C-1-C-9 on the syn side and C-3-C-10 and C-1-C-8 on the anti side. The preferred pathway is the one where the incoming group has the more electron-rich bonds on the side opposite to it (these are the ones it overlaps with). Since the electron-withdrawing F has its greatest effect on the bonds closest to it, the C-1–C-8 and C-3–C-10 bonds are more electron rich, and the group comes in on the face syn to the F.

It has been mentioned that additions of Br_2 and HOBr are often anti because of formation of bromonium ions and that free-radical addition of HBr is also anti. When the substrate in any of these additions is a cyclohexene, the addition is not only anti but the initially formed product is conformationally specific too, being mostly diaxial.¹²⁴ This is so because diaxial opening of the three-membered ring preserves a maximum coplanarity of the participating centers in the transition state; indeed, on opening, epoxides also give diaxial products.¹²⁵ However, the initial diaxial product may then pass over to the diequatorial conformer unless other groups on the ring render the latter less stable than the former. In free-radical additions to cyclohexenes in which cyclic intermediates are not involved, the initial reaction with the radical is also usually from the axial direction,¹²⁶ resulting in a diaxial initial product if the overall addition is anti. The direction from which unsymmetrical radicals react has also been studied.¹²⁷ For example, when the radical **27** adds

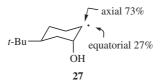
¹²⁵For example, see Anselmi, C.; Berti, G.; Catelani, G.; Lecce, L.; Monti, L. Tetrahedron 1977, 33, 2771.

¹¹⁹Srivastava, S.; le Noble, W.J. J. Am. Chem. Soc. **1987**, 109, 5874. See also, Bodepudi, V.R.; le Noble, W.J. J. Org. Chem. **1991**, 56, 2001.

¹²⁰Cieplak, A.S.; Tait, B.D.; Johnson, C.R. J. Am. Chem. Soc. 1989, 111, 8447.

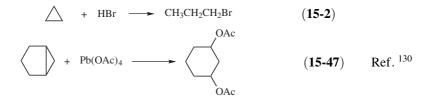
¹²¹Cieplak, A.S. J. Am. Chem. Soc. **1981**, 103, 4540. See also, Jorgensen, W.L. Chemtracts: Org. Chem. **1988**, 1, 71.

¹²²Senda, Y.; Nakano, S.; Kunii, H.; Itoh, H. J. Chem. Soc. Perkin Trans. 2, 1993, 1009.


¹²³Coxon, J.M.; McDonald, D.Q. Tetrahedron 1992, 48, 3353.

 ¹²⁴Barton, D.H.R., in *Theoretical Organic Chemistry The Kekulé Symposium*, Butterworth: London, *1959*,
 pp. 127–143; Goering, H.L.; Sims, L.L. J. Am. Chem. Soc. *1955*, 77, 3465; Shoppee, C.W.; Akhtar, M.I.;
 Lack, R.E. J. Chem. Soc. *1964*, 877; Readio, P.D.; Skell, P.S. J. Org. Chem. *1966*, *31*, 753, 759.

¹²⁶Huyser, E.S.; Benson, H.; Sinnige, H.J. J. Org. Chem. 1967, 32, 622; LeBel, N.A.; Czaja, R.F.; DeBoer, A. J. Org. Chem. 1969, 34, 3112


¹²⁷For a review, see Giese, B. Angew. Chem. Int. Ed. 1989, 28, 969.

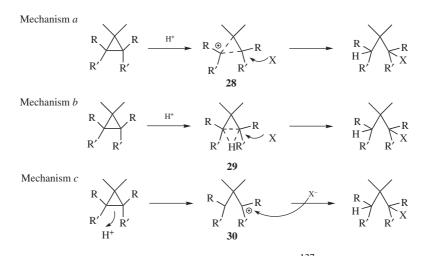
to a double bond it preferentially does so anti to the OH group, leading to a diaxial trans product.¹²⁵

Addition to Cyclopropane Rings¹²⁸

We have previously seen (p. 218) that in some respects, cyclopropane rings resemble double bonds.¹²⁹ It is not surprising, therefore, that cyclopropanes undergo addition reactions analogous to those undergone by double-bond compounds, resulting in the opening of the three-membered rings, as in the two examples shown where reaction numbers relating the reaction to alkene chemistry are in parentheses.

Other examples are discussed at 15-3, 15-15, and 15-63.

Additions to cyclopropanes can take place by any of the four mechanisms already discussed in this chapter, but the most important type involves attack on an electrophile.¹³¹ For substituted cyclopropanes, these reactions usually follow Markovnikov's rule, although exceptions are known and the degree of regioselectivity is often small. The application of Markovnikov's rule to these substrates can be illustrated by the reaction of 1,1,2-trimethylcyclopropane with HX.¹³² The rule predicts that the electrophile (in this case H^+) goes to the carbon


 ¹²⁸For a review, see Charton, M., in Zabicky, J. *The Chemistry of Alkenes*, Vol 2., Wiley, NY, **1970**, pp. 569–592. For reviews of the use of cyclopropanes in organic synthesis see Reissig, H. *Top. Curr. Chem.* **1988**, 144, 73; Wong, H.N.C.; Hon, M.; Tse, C.; Yip, Y.; Tanko, J.; Hudlicky, T. *Chem. Rev.* **1989**, 89, 165.
 ¹²⁹The analogies are by no means complete: see Gordon, A.J. *J. Chem. Educ.* **1967**, 44, 461.
 ¹³⁰Moon, S. *J. Org. Chem.* **1964**, *39*, 3456.

¹³¹For a review, see DePuy, C.H. *Top. Curr. Chem.* **1973**, 40, 73–101. For a list of references to pertinent mechanistic studies, see Wiberg, K.B.; Kass, S.R. *J. Am. Chem. Soc.* **1985**, 107, 988.

¹³²Kramer, G.M. J. Am. Chem. Soc. 1970, 92, 4344.

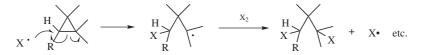
with the most hydrogens and the nucleophile goes to the carbon that can best stabilize a positive charge (in this case the tertiary rather than the secondary carbon). The stereochemistry of the reaction can be investigated at two positions the one that becomes connected to the electrophile and the one that becomes connected to the nucleophile. The results at the former position are mixed. Additions have been found to take place with 100% retention,¹³³ 100% inversion,¹³⁴ and with mixtures of retention and inversion.¹³⁵ At the carbon that becomes connected to the nucleophile the result is usually inversion, although retention has also been found,¹³⁶ and elimination, rearrangement, and racemization processes often compete, indicating that in many cases a positively charged carbon is generated at this position.

At least three mechanisms have been proposed for electrophilic addition (these mechanisms are shown for attack by HX, but analogous mechanisms can be written for other electrophiles).

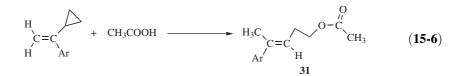
Mechanism *a* involves a corner-protonated cyclopropane¹³⁷ (**28**); we have already seen examples of such ions in the 2-norbornyl and 7-norbornenyl cations (pp. 453, 460). Mechanism *b* involves an edge-protonated cyclopropane (**29**). Mechanism *c*

¹³³For example, see DePuy, C.H.; Breitbeil, F.W.; DeBruin, K.R. J. Am. Chem. Soc. **1966**, 88, 3347; Hendrickson, J.B.; Boeckman, Jr., R.K. J. Am. Chem. Soc. **1969**, 91, 3269.

¹³⁴For example, see LaLonde, R.T.; Ding, J.; Tobias, M.A. J. Am. Chem. Soc. **1967**, 89, 6651; Warnet, R.J.; Wheeler, D.M.S. Chem. Commun. **1971**, 547; Hogeveen, H.; Roobeek, C.F.; Volger, H.C. Tetrahedron Lett. **1972**, 221; Battiste, M.A.; Mackiernan, J. Tetrahedron Lett. **1972**, 4095. See also, Jensen, F.R.; Patterson, D.B.; Dinizo, S.E. Tetrahedron Lett. **1974**, 1315; Coxon, J.M.; Steel, P.J.; Whittington, B.I. J. Org. Chem. **1990**, 55, 4136.


¹³⁵Nickon, A.; Hammons, J.H. J. Am. Chem. Soc. **1964**, 86, 3322; Hammons, J.H.; Probasco, E.K.; Sanders, L.A.; Whalen, E.J. J. Org. Chem. **1968**, 33, 4493; DePuy, C.H.; Fünfschilling, P.C.; Andrist, A.H.; Olson, J.M. J. Am. Chem. Soc. **1977**, 99, 6297.

¹³⁶Cristol, S.J.; Lim, W.Y.; Dahl, A.R. *J. Am. Chem. Soc.* **1970**, *92*, 4013; Hendrickson, J.B.; Boeckman, Jr., R.K. J. Am. Chem. Soc. **1971**, *93*, 4491.


¹³⁷For reviews of protonated cyclopropanes, see Collins, C.J. Chem. Rev. **1969**, 69, 543; Lee, C.C. Prog. Phys. Org. Chem. **1970**, 7, 129.

consists of a one-step S_E2 -type attack on H^+ to give the classical cation **30**, which then reacts with the nucleophile. Although the three mechanisms as we have drawn them show retention of configuration at the carbon that becomes attached to the proton, mechanisms *a* and *c* at least can also result in inversion at this carbon. Unfortunately, the evidence on hand at present does not allow us unequivocally to select any of these as the exclusive mechanism in all cases. Matters are complicated by the possibility that more than one edge-protonated cyclopropane is involved, at least in some cases. There is strong evidence for mechanism *b* with the electrophiles Br⁺ and Cl⁺;¹³⁸ and for mechanism *a* with D⁺ and Hg^{2+,139} *Ab initio* studies show that the corner-protonated **28** is slightly more stable (~1.4 kcal mol⁻¹, 6 kJ mol⁻¹) than the edge-protonated **29**.¹⁴⁰ There is some evidence against mechanism *c*.¹⁴¹

Free-radical additions to cyclopropanes have been studied much less, but it is known that Br_2 and Cl_2 add to cyclopropanes by a free-radical mechanism in the presence of UV light. The addition follows Markovnikov's rule, with the initial radical reacting at the least-substituted carbon and the second group going to the most-substituted position. Several investigations have shown that the reaction is stereospecific at one carbon, taking place with inversion there, but nonstereospecific at the other carbon.¹⁴² A mechanism that accounts for this behavior is¹⁴³

In some cases, conjugate addition has been performed on systems where a double bond is "conjugated" with a cyclopropyl ring. An example is the formation of 31.¹⁴⁴

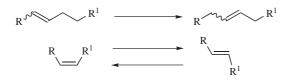
¹³⁸Coxon, J.M.; Steel, P.J.; Whittington, B.I.; Battiste, M.A. *J. Org. Chem.* **1989**, 54, 1383; Coxon, J.M.; Steel, P.J.; Whittington, B.I. *J. Org. Chem.* **1989**, 54, 3702.

¹³⁹Lambert, J.B.; Chelius, E.C.; Bible, Jr., R.H.; Hadju, E. J. Am. Chem. Soc. 1991, 113, 1331.

¹⁴⁰Koch, W.; Liu, B.; Schleyer, P.v.R. J. Am. Chem. Soc. 1989, 111, 3479, and references cited therein.
 ¹⁴¹Wiberg, K.B.; Kass, S.R. J. Am. Chem. Soc. 1985, 107, 988.

¹⁴²Maynes, G.G.; Applequist, D.E. J. Am. Chem. Soc. 1973, 95, 856; Incremona, J.H.; Upton, C.J.
 J. Am. Chem. Soc. 1972, 94, 301; Shea, K.J.; Skell, P.S. J. Am. Chem. Soc. 1973, 95, 6728; Poutsma, M.L.
 J. Am. Chem. Soc. 1965, 87, 4293; Jarvis, B.B. J. Org. Chem. 1970, 35, 924; Upton, C.J.; Incremona, J.H.
 J. Org. Chem. 1976, 41, 523.

¹⁴³For free-radical addition to [1.1.1]propellane and bicyclo[1.1.0]butane, see Wiberg, K.B.; Waddell, S.T.; Laidig, K. *Tetrahedron Lett.* **1986**, *27*, 1553.


¹⁴⁴Sarel, S.; Ben-Shoshan, B. Tetrahedron Lett. 1965, 1053. See also, Danishefsky, S. Acc. Chem. Res. 1979, 12, 66.

REACTIONS

Reactions are classified by type of reagent. Isomerization of double and triple bonds is followed by examination of all reactions, where hydrogen adds to one side of the double or triple bond.

ISOMERIZATION OF DOUBLE AND TRIPLE BONDS

15-1 Isomerization

There are several reagents that lead to isomerization of a double bond to form a new alkene. In general, there is an energetic preference of an α , β - versus. β , γ - double bond.¹⁴⁵ Transition metals have been used to induce isomerization of alkenes. Allylic arenes (Ar-CH₂CH=CH₂) have been converted to the corresponding (*Z*-)1-propenyl arene (Ar-CH=CHMe using a ruthenium catalyst¹⁴⁶ or a polymer-supported iridium catalyst.¹⁴⁷ Allyl decyl ether (CH₂=CHCH₂OC₁₀H₂₁) was isomerized to 1-decyloxy-1-propene (CH₃CH=CHOC₁₀H₂₁) by treatment with NaHFe(CO)₄.¹⁴⁸ Double-bond migration has been observed in sulfide photo-irradiation, induced by singlet oxygen.¹⁴⁹ *N*-Acyl allylamine can be isomerized to the *N*-acyl enamine by heating with a ruthenium catalyst.¹⁵⁰ Many of these reactions were discussed in **12-2**.

For conjugated carbonyl compounds that have a hydrogen atom at the γ -position (C-4), it is possible to move a double bond *out* of conjugation. Photolysis of conjugated esters, at -40° C in the presence of *N*,*N*- dimethylaminoethanol, gave the nonconjugated ester.¹⁵¹ Heating an *N*-allylic amide (*N*-C–C=C) with Fe(CO)₅, neat, gave the enamide (*N*-C=C–C).¹⁵²

Isomerization of (E/Z) isomers is another important transformation.¹⁵³ Isomerization of (E)- and (Z)-conjugated amides is effected photochemically¹⁵⁴

- ¹⁴⁸Crivello, J.V.; Kong, S. J. Org. Chem. 1998, 63, 6745.
- ¹⁴⁹Clennan, E.L.; Aebisher, D. J. Org. Chem. 2002, 67, 1036.

¹⁴⁵Lee, P.S.; Du, W.; Boger, D.L.; Jorgensen, W.L. J. Org. Chem. 2004, 69, 5448.

¹⁴⁶Sato, T.; Komine, N.; Hirano, M.; Komiya, S. Chem. Lett. 1999, 441.

¹⁴⁷Baxendale, I.R.; Lee, A.-L.; Ley, S.V. Synlett 2002, 516.

¹⁵⁰Krompiec, S.; Pigulla, M.; Krompiec, M.; Baj, S.; Mrowiec-Bialon, J.; Kasperczyk, J. *Tetrahedron Lett.* **2004**, *45*, 5257.

¹⁵¹Bargiggia, F.; Piva, O. Tetrahedron Asymmetry 2001, 12, 1389.

¹⁵²Sergeyev, S.; Hesse, M. Synlett 2002, 1313.

¹⁵³For a review, see Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475.

¹⁵⁴Kinbara, K.; Saigo, K. *Bull. Chem. Soc. Jpn.* **1996**, *69*, 779; Wada, T.; Shikimi, M.; Inoue, Y.; Lem, G.; Turro, N.J. *Chem. Commun.* **2001**, 1864.

(photoisomerization¹⁵⁵). There is a rather high energy barrier for the excited state required for (*E/Z*) isomerization.¹⁵⁶ Isomerization of the C=C units in dienes is also induced photochemically.¹⁵⁷ Isomerization of cyclic alkenes is more difficult but cyclooctene is isomerized photochemically.¹⁵⁸ The photosensitized cis–trans isomerization of 1,2-dichloroethylenes have been reported,¹⁵⁹ and also the photo-isomerization of cis/trans cyclooctene.¹⁶⁰ Radical-induced (*E/Z*) isomerization is known.¹⁶¹

Conjugated aldehydes have been isomerized using thiourea in DMF.¹⁶² A 1:1 mixture of cis/trans styrene derivatives was isomerized to a 90% yield of the trans styrene derivatives was reported using a palladium catalyst.¹⁶³ Thermal cis–trans isomerization of 1,3-diphenyltriazenes has been reported, in aqueous solution.¹⁶⁴

REACTIONS IN WHICH HYDROGEN ADDS TO ONE SIDE

A. Halogen on the Other Side

15-2 Addition of Hydrogen Halides

Hydro-halo-addition

Any of the four hydrogen halides can be added to double bonds.¹⁶⁵ HI, HBr, and HF¹⁶⁶ add at room temperature. The addition of HCl is more difficult and usually requires heat,²³ although HCl adds easily in the presence of silica gel.¹⁶⁷ The reaction has been carried out with a large variety of double-bond compounds, including

¹⁵⁸Tsuneishi, H.; Hakushi, T.; Inoue, Y. J. Chem. Soc. Perkin Trans. 2, 1996, 1601; Inoue, Y.; Tsuneishi,

¹⁶⁰Wada, T.; Sugahara, N.; Kawano, M.; Inoue, Y. Chem. Lett. 2000, 1174.

¹⁵⁵Inoue, Y.; Yamasaki, N.; Yokoyama, T.; Tai, A. J. Org. Chem. 1992, 57, 1332.

¹⁵⁶Arai, T.; Takahashi, O. J. Chem. Soc., Chem. Commun. 1995, 1837.

¹⁵⁷Wakamatsu, K.; Takahashi, Y.; Kikuchi, K.; Miyashi, T. J. Chem. Soc. Perkin Trans. 2, 1996, 2105.

H.; Hakushi, T.; Yagi, K.; Awazu, K.; Onuki, H. Chem. Commun. 1996, 2627; Tsuneishi, H.; Hakushi, T.;

Tai, A.; Inoue, Y. J. Chem. Soc. Perkin Trans. 2, 1995, 2057.

¹⁵⁹Kokubo, K.; Kakimoto, H.; Oshima, T. J. Am. Chem. Soc. 2002, 124, 6548.

¹⁶¹Baag, Md.M.; Kar, A.; Argade, N.P. *Tetrahedron* 2003, 59, 6489.

¹⁶²Phillips, O.A.; Eby, P.; Maiti, S.N. Synth. Commun. 1995, 25, 87.

¹⁶³Yu, J.; Gaunt, M.J.; Spencer, J.B. J. Org. Chem. 2002, 67, 4627.

¹⁶⁴Chen, N.; Barra, M.; Lee, I.; Chahal, N. J. Org. Chem. 2002, 67, 2271.

¹⁶⁵For a list of references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 633–636.

¹⁶⁶For reviews of addition of HF, see Sharts, C.M.; Sheppard, W.A. Org. React. **1974**, 21, 125, 192–198, 212–214; Hudlický, M. The Chemistry of Organic Fluorine Compounds, 2nd ed., Ellis Horwood, Chichester, **1976**, pp. 36–41.

¹⁶⁷Kropp, P.J.; Daus, K.A.; Tubergen, M.W.; Kepler, K.D.; Wilson, V.P.; Craig, S.L.; Baillargeon, M.M.; Breton, G.W. J. Am. Chem. Soc. **1993**, 115, 3071.

conjugated systems, where both 1,2- and 1,4-addition are possible. A convenient method for the addition of HF involves the use of a polyhydrogen fluoride-pyridine solution.¹⁶⁸ When the substrate is mixed with this solution in a solvent, such as THF at 0° C, alkyl fluorides are obtained in moderate-to-high yields.

The addition of hydrogen halides to simple alkenes, in the absence of peroxides, takes place by an electrophilic mechanism, and the orientation is in accord with Markovnikov's rule.¹⁶⁹ The addition follows second order kinetics.¹⁷⁰ When peroxides are added, the addition of HBr occurs by a free-radical mechanism and the orientation is anti-Markovnikov (p. 1021).¹⁷¹ It must be emphasized that this is true only for HBr. Free-radical addition of HF and HI has never been observed, even in the presence of peroxides, and of HCl only rarely. In the rare cases where free-radical addition of HCl was noted, the orientation was still Markovnikov, presumably because the more stable *product* was formed.¹⁷² Free-radical addition of HF, HI, and HCl is energetically unfavorable (see the discussions on pp. 943, 959). It has often been found that anti-Markovnikov addition of HBr takes place even when peroxides have not been added. This happens because the substrate alkenes absorb oxygen from the air, forming small amounts of peroxides (14-7). Markovnikov addition can be ensured by rigorous purification of the substrate, but in practice this is not easy to achieve, and it is more common to add inhibitors, for example, phenols or quinones, which suppress the free-radical pathway. The presence of free-radical precursors, such as peroxides does not inhibit the ionic mechanism, but the radical reaction, being a chain process, is much more rapid than the electrophilic reaction. In most cases, it is possible to control the mechanism (and hence the orientation) by adding peroxides to achieve complete freeradical addition, or inhibitors to achieve complete electrophilic addition, although there are some cases where the ionic mechanism is fast enough to compete with the free-radical mechanism and complete control cannot be attained. Markovnikov addition of HBr, HCl, and HI has also been accomplished, in high yields, by the use of phase-transfer catalysis.¹⁷³ For alternative methods of adding HBr (or HI) with anti-Markovnikov orientation, see 12-31.

It is also possible to add 1^{174} or 2 equivalents of any of the four hydrogen halides to triple bonds. Markovnikov's rule ensures that *gem*-dihalides and not *vic*-dihalides

¹⁶⁹For reviews of electrophilic addition of HX, see Sergeev, G.B.; Smirnov, V.V.; Rostovshchikova, T.N.; *Russ. Chem. Rev.* **1983**, *52*, 259, and Dewar, M.J.S. *Angew. Chem. Int. Ed.* **1964**, *3*, 245.

¹⁷³Landini, D.; Rolla, F. J. Org. Chem. **1980**, 45, 3527.

¹⁶⁸Olah, G.A.; Welch, J.T.; Vankar, Y.D.; Nojima, M.; Kerekes, I.; Olah, J.A. J. Org. Chem. **1979**, 44, 3872. For related methods, see Yoneda, N.; Abe, T.; Fukuhara, T.; Suzuki, A. Chem. Lett. **1983**, 1135; Olah, G.A.; Li, X. Synlett **1990**, 267.

¹⁷⁰Boregeaud, R.; Newman, H.; Schelpe, A.; Vasco, V.; Hughes, D.E.P. J. Chem. Soc., Perkin Trans. 2, **2002**, 810.

¹⁷¹For reviews of free-radical addition of HX, see Thaler, W.A. *Methods Free-Radical Chem.* **1969**, 2, 121, see pp. 182–195.

¹⁷²Mayo, F.R. J. Am. Chem. Soc. 1962, 84, 3964.

¹⁷⁴For a convenient method of adding one mole of HCl or HBr to a triple bond, see Cousseau, J.; Gouin, L. *J. Chem. Soc. Perkin Trans. 1*, **1977**, 1797; Cousseau, J. *Synthesis 1980*, 805. For the addition of one mole of HI, see Kamiya, N.; Chikami, Y.; Ishii, Y. *Synlett 1990*, 675.

are the products of the addition of two equivalents.

$$-C C \xrightarrow{HX}$$
 $-CH=CX \xrightarrow{HX}$ $-CH_2-CX_2-$

Chlorotrimethylsilane can be added to alkenes to give alkyl chlorides. 1-Hexene reacts with Me₃SiCl in water to give 2-chlorohexane.¹⁷⁵ Treatment of an alkene with KHF₂ and SiF₄ leads to the alkyl fluoride,¹⁷⁶ and bromotrimethylsilane adds to alkynes to give the vinyl bromide.¹⁷⁷ Trichloroisocyanuric acid reacts with terminal alkenes in water to give the 1-chloro alkane.¹⁷⁸

HX are electrophilic reagents, and many polyhalo and polycyano alkenes, for example, $Cl_2C=CHCl$, do not react with them at all in the absence of free-radical conditions. Vinylcyclopropanes, however, react with opening of the cyclopropane ring to give a homoallylic chloride.¹⁷⁹ When such reactions do occur, however, they take place by a nucleophilic addition mechanism, that is, initial attack is by X⁻. This type of mechanism also occurs with Michael-type substrates C=C-Z,¹⁸⁰ There the orientation is always such that the halogen goes to the carbon that does not bear the Z, so the product is of the form X–C–CH–Z, even in the presence of free-radical initiators. Hydrogen iodine adds 1,4 to conjugated dienes in the gas phase by a pericyclic mechanism:¹⁸¹

HX can be added to ketenes¹⁸² to give acyl halides:

OS I, 166; II, 137, 336; III, 576; IV, 238, 543; VI, 273; VII, 59; 80, 129.

¹⁷⁸Mendonça, G.F.; Sanseverino, A.M.; de Mattos, M.C.S. Synthesis 2003, 45.

¹⁷⁹Siriwardana, A.I.; Nakamura, I.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 985.

¹⁸⁰For an example, see Marx, J.N. Tetrahedron 1983, 39, 1529.

¹⁸¹Gorton, P.J.; Walsh, R. *J. Chem. Soc., Chem. Commun.* **1972**, 782. For evidence that a pericyclic mechanism may be possible, even for an isolated double bond, see Sergeev, G.B.; Stepanov, N.F.; Leenson, I.A.; Smirnov, V.V.; Pupyshev, V.I.; Tyurina, L.A.; Mashyanov, M.N. *Tetrahedron* **1982**, *38*, 2585.

¹⁸²For reviews of additions to ketenes, and their mechanisms, see Tidwell, T.T. Acc. Chem. Res. **1990**, 23, 273; Seikaly, H.R.; Tidwell, T.T. Tetrahedron **1986**, 42, 2587; Satchell, D.P.N.; Satchell, R.S. Chem. Soc. Rev. **1975**, 4, 231.

¹⁷⁵Boudjouk, P.; Kim, B.-K.; Han, B.-H. Synth. Commun. 1996, 26, 3479.

¹⁷⁶Tamura, M.; Shibakami, M.; Kurosawa, S.; Arimura, T.; Sekiya, A. J. Chem. Soc., Chem. Commun. **1995**, 1891.

¹⁷⁷Su, M.; Yu, W.; Jin, Z. Tetrahedron Lett. 2001, 42, 3771.

B. Oxygen on the Other Side

15-3 Hydration of Double bonds

Hydro-hydroxy-addition

Double bonds can be hydrated by treatment with water and an acid catalyst. The most common catalyst is sulfuric acid, but other acids that have relatively non-nucleophilic counterions, such as nitric or perchloric can also be used. The mechanism is electrophilic and begins with attack of the π -bond on an acidic proton (see p. 1005). The resulting carbocation is then attacked by negative species, such as HSO₄⁻ (or similar counterion in the case of other acids), to give the initial product **32**, which can be isolated in some cases, but under the conditions of the

reaction, is usually hydrolyzed to the alcohol (10-4). However, the conjugate base of the acid is not the only possible species that attacks the initial carbocation. The attack can also be by water to form 33.

When the reaction proceeds by this pathway, **32** and similar intermediates are not involved and the mechanism is exactly (by the principle of microscopic reversibility) the reverse of El elimination of alcohols (**17-1**).¹⁸³ It is likely that the mechanism involves both pathways. *The initial carbocation occasionally rearranges to a more stable one*. For example, hydration of $CH_2=CHCH(CH_3)_2$ gives $CH_3CH_2COH(CH_3)_2$. With ordinary alkenes the addition predominantly follows Markovnikov's rule. Another method for Markovnikov addition of water consists of simultaneously adding an oxidizing agent (O₂) and a reducing agent (either Et₃SiH¹⁸⁴ or a secondary alcohol, e.g., 2-propanol¹⁸⁵) to the alkene in the presence of a cobalt-complex catalyst. No rearrangement is observed with this

¹⁸³For discussions of the mechanism, see Vinnik, M.I.; Obraztsov, P.A. *Russ. Chem. Rev.* **1990**, 59, 63; Liler, M. *Reaction Mechanisms in Sulphuric Acid*, Academic Press, NY, **1971**, pp. 210–225.

¹⁸⁴Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 569.

¹⁸⁵Inoki, S.; Kato, K.; Takai, T.; Isayama, S.; Yamada, T.; Mukaiyama, T. Chem. Lett. 1989, 515.

method. The corresponding alkane and ketone are usually side products.

$$C = C \begin{pmatrix} 1. Hg(OAc)_2, H_2O \\ 2. NaBH_4 \end{pmatrix} H - C - C - OH$$

Alkenes can be hydrated quickly under mild conditions in high yields without rearrangement products by the use of *oxymercuration*¹⁸⁶ (addition of oxygen and mercury) followed by *in situ* treatment with sodium borohydride¹⁸⁷ (**12-24**). For example, 2-methyl-1-butene treated with mercuric acetate,¹⁸⁸ followed by NaBH₄, gave 2-methyl-2-butanol.

 $1. \text{Hg(OAc)}_2, \text{H}_2\text{O} \qquad OH$ $2. \text{NaBH}_4 \qquad 90\%$

This method, which is applicable to mono-, di-, tri-, and tetraalkyl as well as phenyl-substituted alkenes, gives almost complete Markovnikov addition. Hydroxy, methoxy, acetoxy, halo, and other groups may be present in the substrate without, in general, causing difficulties.¹⁸⁹ When two double bonds are present in the same molecule, the use of ultrasound allows oxymercuration of the less-substituted one without affecting the other.¹⁹⁰ A related reaction treats an alkene with zinc borohydride on silica gel to give a 35:65 mixture of secondary:primary alcohols.¹⁹¹

Water can be added indirectly, with anti-Markovnikov orientation, by treatment of the alkene with a 1:1 mixture of $PhCH_2NEt_3^+ BH_4^-$ and Me_3SiCl , followed by addition of an aqueous solution of K_2CO_3 .¹⁹² Reaction of alkenes with $Ti(BH_4)_3$, and then aqueous K_2CO_3 also leads to the anti-Markovnikov alcohol.¹⁹³ Reaction of

¹⁸⁸For a review of this reagent, see Butler, R.N., in Pizey, J.S. *Synthetic Reagents*, Vol. 4, Wiley, NY, *1981*, pp. 1–145.

 ¹⁸⁶For a monograph, see Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY, 1986. For reviews of this and other oxymetallation reactions, see Kitching, W. Organomet. React. 1972, 3, 319; Organomet. Chem. Rev. 1968, 3, 61; Oullette, R.J., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. B; Academic Press, NY, 1973, pp. 140–166; House, H.O. Modern Synthetic Reactions, 2nd ed., W.A. Benjamin, NY, 1972, pp. 387–396; Zefirov, N.S. Russ. Chem. Rev. 1965, 34, 527.
 ¹⁸⁷Brown, H.C.; Geoghegan, Jr., P.J. J. Org. Chem. 1972, 37, 1937; Brown, H.C.; Geoghegan, Jr., P.J.; Lynch, G.J.; Kurek, J.T. J. Org. Chem. 1972, 37, 1941; Moon, S.; Takakis, I.M.; Waxman, B.H. J. Org. Chem. 1969, 34, 2951; Moon, S.; Ganz, C.; Waxman, B.H. Chem. Commun. 1969, 866; Johnson, M.R.; Rickborn, B. Chem. Commun. 1968, 1073; Klein, J.; Levene, R. Tetrahedron Lett. 1969, 4833; Chamberlain, P.; Whitham, G.H. J. Chem. Soc. B 1970, 1382; Barrelle, M.; Apparu, M. Bull. Soc. Chim. Fr. 1972, 2016.

¹⁸⁹See the extensive tables, in Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY, **1986**, pp. 4–71.

¹⁹⁰Einhorn, J.; Einhorn, C.; Luche, J.L. J. Org. Chem. 1989, 54, 4479.

¹⁹¹Ranu, B.C.; Sarkar, A.; Saha, M.; Chakraborty, R. *Tetrahedron* **1994**, 50, 6579; Campelo, J.M.; Chakraborty, R.; Marinas, J.M. *Synth. Commun.* **1996**, 26, 1639; Ranu, B.C.; Chakraborty, R.; Saha, M. *Tetrahedron Lett.* **1993**, 34, 4659.

 ¹⁹²Baskaran, S.; Gupta, V.; Chidambaram, N.; Chandrasekaran, S. J. Chem. Soc., Chem. Commun. 1989, 903.
 ¹⁹³Kumar, K.S.R.; Baskaran, S.; Chandrasekaran, S. Tetrahedron Lett. 1993, 34, 171.

terminal alkynes with water and ruthenium catalyst, followed by sequential treatment with long chain sulfates and then ammonium salts gave the aldehyde via anti-Markovnikov addition of water.¹⁹⁴ With substrates of the type C=C–Z (Z is as defined on p. 1007) the product is almost always HO–C–CH–Z and the mechanism is usually nucleophilic,¹⁹⁵ although electrophilic addition gives the same product¹⁹⁶ since a cation CH–C–Z would be destabilized by the positive charges (full or partial) on two adjacent atoms. However, the α -hydroxy compound HC–CH(OH)Z, was obtained by treatment of the substrate with O₂, PhSiH₃, and a manganese- complex catalyst.¹⁹⁷ When the substrate is of the type RCH=CZZ', CZZ', addition of water may result in cleavage of the adduct, to give an aldehyde and CH₂ZZ', **34**.¹⁹⁸ The cleavage step is an example of **12-41**

For another method of anti-Markovnikov hydration, see hydroboration (15-16).

Alkenes react with PhO₂BH and a niobium catalyst, followed by oxidation with NaOO⁻, to give the alcohol,¹⁹⁹ and Cp₂TiCl₄ can also be used.²⁰⁰ Reaction with HSiCl₃ and a chiral palladium catalyst, followed by reaction with KF and hydrogen peroxide, leads to the alcohol with high asymmetric induction.²⁰¹ Conjugated alkenes also react with PhSiH₂ and oxygen, with a manganese catalyst, to give an α -hydroxy ketone.²⁰² Alkenes react with molecular oxygen in the presence of a cobalt porphyrin catalyst, and reduction with P(OMe)₃ leads to the secondary alcohol.²⁰³ This procedure has also been used to hydrate conjugated dienes,²⁰⁴ although conjugated dienes are seldom hydrated.

¹⁹⁴Alvarez, P.; Basetti, M.; Gimeno, J.; Mancini, G. Tetrahedron Lett. 2001, 42, 8467.

- ¹⁹⁵For example, see Fedor, L.R.; De, N.C.; Gurwara, S.K. J. Am. Chem. Soc. 1973, 95, 2905; Jensen, J.L.;
 Hashtroudi, H. J. Org. Chem. 1976, 41, 3299; Bernasconi, C.F.; Leonarduzzi, G.D. J. Am. Chem. Soc. 1982, 104, 5133, 5143.
- ¹⁹⁶For example, see Noyce, D.S.; DeBruin, K.E. J. Am. Chem. Soc. 1968, 90, 372.

- ¹⁹⁸Bernasconi, C.F.; Fox, J.P.; Kanavarioti, A.; Panda, M. J. Am. Chem. Soc. **1986**, 108, 2372; Bernasconi,
- C.F.; Paschalis, P. J. Am. Chem. Soc. 1989, 111, 5893, and other papers in this series.
- ¹⁹⁹Burgess, K.; Jaspars, M. Tetrahedron Lett. 1993, 34, 6813.
- ²⁰⁰Burgess, K.; van der Donk, W.A. *Tetrahedron Lett.* **1993**, *34*, 6817.
- ²⁰¹Uozumi, Y.; Hayashi, T. Tetrahedron Lett. 1993, 34, 2335.
- ²⁰²Magnus, P.; Payne, A.H.; Waring, M.J.; Scott, D.A.; Lynch, V. Tetrahedron Lett. 2000, 41, 9725.
- ²⁰³Matsushita, Y.; Sugamoto, K.; Matsui, T. Chem. Lett. 1993, 925.
- ²⁰⁴Matshshita, Y.; Sugamoto, K.; Nakama, T.; Sakamoto, T.; Matsui, T.; Nakayama, M. *Tetrahedron Lett.* **1995**, *36*, 1879.

¹⁹⁷Inoki, S.; Kato, K.; Isayama, S.; Mukaiyama, T. *Chem. Lett.* **1990**, 1869; Magnus, P.; Scott, D.A.; Fielding, M.R. *Tetrahedron Lett.* **2001**, *42*, 4127.

The addition of water to enol ethers causes hydrolysis to aldehydes or ketones (10-6). Ketenes add water to give carboxylic acids ($R_2C=C=O \rightarrow R_2COOH$) in a reaction catalyzed by acids:²⁰⁵

OS IV, 555, 560; VI, 766. Also see, OS V, 818.

15-4 Hydration of Triple Bonds

Dihydro-oxo-biaddition

The hydration of triple bonds is generally carried out with mercuric ion salts (often the sulfate or acetate) as catalysts.²⁰⁶ Mercuric oxide in the presence of an acid is also a common reagent. Since the addition follows Markovnikov's rule, only acetylene gives an aldehyde. All other triple-bond compounds give ketones (for a method of reversing the orientation for terminal alkynes, see 15-16). With alkynes of the form RC=CH methyl ketones are formed almost exclusively, but with $RC \equiv CR'$ both possible products are usually obtained. The reaction can be conveniently carried out with a catalyst prepared by impregnating mercuric oxide onto Nafion-H (a superacidic perfluorinated resinsulfonic acid, see p. 236).²⁰⁷ Terminal alkynes react with water at 200°C with microwave irradiation to give the corresponding methyl ketone.²⁰⁸ A gold catalyst was used in aqueous methanol with 50% sulfuric acid to convert terminal alkynes to the ketone.²⁰⁹ Conversion of phenyl acetylene to acetophenone was accomplished in water at 100°C with a catalytic amount of Tf₂NH (trifluoromethanesulfonimide).²¹⁰ In a modified reaction, internal alkynes were treated with 2-aminophenol in refluxing dioxane using a palladium catalyst to produce the corresponding ketone.²¹¹

Hydration of terminal alkynes can proceed with anti-Markovnikov addition. When 1-octyne was heated with water, isopropanol and a ruthenium catalyst, for example, the product was octanal.²¹² A similar reaction was reported in aqueous acetone using a ruthenium catalyst.²¹³ The presence of certain functionality can

²⁰⁵For discussions of the mechanism, see Poon, N.L.; Satchell, D.P.N. J. Chem. Soc. Perkin Trans. 2, **1983**, 1381; **1986**, 1485; Tidwell, T.T. Acc. Chem. Res. **1990**, 23, 273; Seikaly, H.R.; Tidwell, T.T. Tetrahedron **1986**, 42, 2587; Satchell, D.P.N.; Satchell, R.S. Chem. Soc. Rev. **1975**, 4, 231.

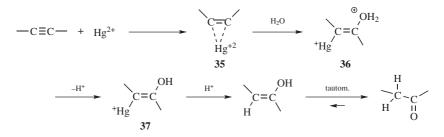
²⁰⁶For reviews, see Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY, **1986**, pp. 123–148; Khan, M.M.T.; Martell, A.E. Homogeneous Catalysis by Metal Complexes, Vol. 2, Academic Press, NY, **1974**, pp. 91–95. For a list of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1217–1219.

²⁰⁷Olah, G.A.; Meidar, D. Synthesis 1978, 671.

²⁰⁸Vasudevan, A.; Verzas, M.K. Synlett 2004, 631.

²⁰⁹Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563.

²¹⁰Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777.


²¹¹Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12670.

²¹²Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735.

²¹³Grotjahn, D.B.; Lev, D.A. J. Am. Chem. Soc. 2004, 126, 12232.

influence the regioselectivity of hydration. 1-Seleno alkynes, such as PhSe-C \equiv C-Ph, react with tosic acid in dichloromethane to give a seleno ester PhSeC(=O)SH₂Ph after treatment with water.²¹⁴

The first step of the mechanism is formation of a complex (**35**) (ions like Hg^{2+} form complexes with alkynes, p. 115). Water then attacks in an S_N^2 -type process to give the intermediate **36**,

which loses a proton to give **37**. Hydrolysis of **37** (an example of **12-34**) gives the enol, which tautomerizes to the product. A spectrum of the enol was detected by flash photolysis when phenylacetylene was hydrated photolytically.²¹⁵

Carboxylic esters, thiol esters, and amides can be made, respectively, by acidcatalyzed hydration of acetylenic ethers, thioethers,²¹⁶ and ynamines, without a mercuric catalyst.²¹⁷

$$-C \equiv C - A + H_2 O \xrightarrow{H^+} \xrightarrow{H^+} C \xrightarrow{C} A A = OR, SR, NR_2$$

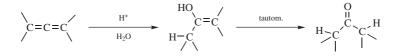
This is ordinary electrophilic addition, with rate-determining protonation as the first step.²¹⁸ Certain other alkynes have also been hydrated to ketones with strong acids in the absence of mercuric salts.²¹⁹ Simple alkynes can also be converted to ketones by heating with formic acid, without a catalyst.²²⁰ Lactones have been prepared from trimethylsilyl alkenes containing an hydroxyl unit elsewhere in the molecule, when reacted with molecular oxygen, CuCl₂, and a palladium catalyst.²²¹

²²⁰Menashe, N.; Reshef, D.; Shvo, Y. J. Org. Chem. 1991, 56, 2912.

²²¹Compain, P.; Goré, J.; Vatèle, J.-M. Tetrahedron 1996, 52, 10405.

²¹⁴Sheng, S.; Liu, X. Org. Prep. Proceed. Int. 2002, 34, 499.

²¹⁵Chiang, Y.; Kresge, A.J.; Capponi, M.; Wirz, J. Helv. Chim. Acta 1986, 69, 1331.


²¹⁶Braga, A.L.; Martins, T.L.C.; Silveira, C.C.; Rodrigues, O.E.D. *Tetrahedron* 2001, 57, 3297. For a review of acetylenic ethers and thioethers, see Brandsma, L.; Bos, H.J.T.; Arens, J.F., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, 1969, pp. 751–860.

 ²¹⁷Arens, J.F. Adv. Org. Chem. 1960, 2, 163; Brandsma, L.; Bos, H.J.T.; Arens, J.F., in Viehe, H.G. Acetylenes, Marcel Dekker, NY, 1969, pp. 774–775.
 ²¹⁸Hogeveen, H.; Drenth, W. Recl. Trav. Chim. Pays-Bas 1963, 82, 375, 410; Verhelst, W.F.; Drenth, W.

²¹⁰Hogeveen, H.; Drenth, W. *Recl. Trav. Chim. Pays-Bas* **1963**, 82, 375, 410; Verhelst, W.F.; Drenth, W. *J. Am. Chem. Soc.* **1974**, 96, 6692; Banait, N.; Hojatti, M.; Findlay, P.; Kresge, A.J. *Can. J. Chem.* **1987**, 65, 441.

²¹⁹See, for example, Noyce, D.S.; Schiavelli, M.D. J. Org. Chem. **1968**, 33, 845; J. Am. Chem. Soc. **1968**, 90, 1020, 1023.

Allenes can also be hydrolyzed to ketones, with an acid catalyst.²²²

OS III, 22; IV, 13; V, 1024.

15-5 Addition of Alcohols and Phenols

Hydro-alkoxy-addition

The addition of alcohols and phenols to double bonds is catalyzed by acids or bases. When the reactions are acid catalyzed, the mechanism is electrophilic, with H^+ as the species attacked by the π -bond. The resulting carbocation combines with a molecule of alcohol to give an oxonium ion, **38**.

$$\begin{array}{c} C = C + H^{+} \longrightarrow H^{-}C^{-}C \otimes + ROH \longrightarrow H^{-}C^{-}C \otimes R^{+} & H^{-}C^{-}C^{-}OR \\ 38 & 38 \end{array}$$

The addition, therefore, follows Markovnikov's rule. Primary alcohols give better results than secondary, and tertiary alcohols are very inactive. This is a convenient method for the preparation of tertiary ethers by the use of a suitable alkene, such as $Me_2C=CH_2$. Addition of alcohols to allylic systems can proceed with rearrangement, and the use of chiral additive can lead to asymmetric induction.²²³

Alcohols add intramolecularly to alkenes to generate cyclic ethers, often bearing a hydroxyl unit,.²²⁴ but not always.²²⁵ Furan derivatives are available for alkene-ketones using CuCl₂ and a palladium catalyst,²²⁶ but chromium catalysts have been used for a similar purpose.²²⁷ A gold catalyst was used with conjugated ketones bearing an alkyne substituent to give fused-ring furans.²²⁸ Pyrone derivatives are available by the coupling of conjugated ketones bearing an alcohol unit, via an addition

²²²For example, see Fedorova, A.V.; Petrov, A.A. J. Gen. Chem. USSR **1962**, 32, 1740; Mühlstadt, M.; Graefe, J. Chem. Ber. **1967**, 100, 223; Cramer, P.; Tidwell, T.T. J. Org. Chem. **1981**, 46, 2683.

²²³See Nakamura, H.; Ishihara, K.; Yamamoto, H. J. Org. Chem. 2002, 67, 5124.

²²⁴Bhaumik, A.; Tatsumi, T. *Chem. Commun.* **1998**, 463; Gruttadauria, M.; Aprile, C.; Riela, S.; Noto, R. *Tetrahedron Lett.* **2001**, 42, 2213.

²²⁵Miura, K.; Hondo, T.; Okajima, S.; Nakagawa, T.; Takahashi, T.; Hosomi, A. J. Org. Chem. 2002, 67, 6082; Marotta, E.; Foresti, E.; Marcelli, T.; Peri, F.; Righi, P.; Scardovi, N.; Rosini, G. Org. Lett. 2002, 4, 4451.

²²⁶Han, X.; Widenhoefer, R.A. J. Org. Chem. 2004, 69, 1738.

²²⁷Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260.

²²⁸Yao, T.; Zhang, X.; Larock, R.C. J. Am. Chem. Soc. 2004, 126, 11164.

elimination process mediated by a palladium catalyst.²²⁹ Intramolecular addition of alcohols to alkenes can be promoted by a palladium catalyst, with migration of the double bond in the final product.²³⁰ Rhenium compounds,²³¹ titanium compounds,²³² or platinum compounds²³³ facilitate this cyclization reaction to form functionalized tetrahydrofurans or tetrahydrofurans. Allylic alcohols have been converted to 2-bromo oxetanes using Br(collidine)₂⁺ PF₆.²³⁴ It is noted that the reaction of an alkene–alcohol and *N*-iodosuccinimide with a chiral titanium catalyst leads to a tetrahydrofuran with a pendant iodoalkyl group, with modest enantioselectivity.²³⁵

Allenes react with alcohols and allenic alcohols have been converted to tetrahydrofuran derivatives bearing a vinyl group at the α -position, using diphenyliodonium salts.²³⁶ In the presence of allylic bromide and a palladium catalyst, allenic alcohols lead to allylically substituted dihydrofurans.²³⁷ Intramolecular addition of alcohols to allenes leads to cyclic vinyl ethers.²³⁸ Alcohols add intramolecularly to a vinylidene dithiane under electrolytic conditions to form a tetrahydrofuran derivative with a pendant dithiane group.²³⁹

In the presence of other reagents, functionalized ethers can be formed. In methanol with an R–Se–Br reagent, alkenes are converted to selenoalkyl ethers (MeO-C-C-SeR).²⁴⁰

An interesting "double" addition was reported in which 2-(hydroxymethyl)phenol reacted with 2,3-dimethyl-2-butene in the presence of lithium perchlorate and Montmorillonite clay/water to give benzopyrans, but the reaction proceeded via an O-quinomethane generated *in situ*.²⁴¹

Alcohols add to alkynes under certain conditions to give vinyl ethers. In an excess of alcohol, and in the presence of a platinum catalyst, internal alkynes are converted to ketals.²⁴² The alcohol to alkyne addition reaction is quite useful for the preparation of heterocycles. Dihydrofurans,²⁴³ furans,²⁴⁴ benzofurans,²⁴⁵ and pyran

²³²Lattanzi, A.; Della Sala, G.G.D.; Russo, M.; Screttri, A. Synlett 2001, 1479.

²³³Qian, H.; Han, X.; Widenhoefer, R.A. J. Am. Chem. Soc. 2004, 126, 9536.

²³⁴Albert, S.; Robin, S.; Rousseau, G. Tetrahedron Lett. 2001, 42, 2477.

²³⁵Kang, S.H.; Park, C.M.; Lee, S.B.; Kim, M. Synlett 2004, 1279.

²³⁶In this case, the phenyl group also added to the allene. Kang, S.-K.; Baik, T.-G.; Kulak, A.N. *Synlett* **1999**, 324.

²³⁷Ma, S.; Gao, W. J. Org. Chem. 2002, 67, 6104.

²³⁹Sun, Y.; Liu, B.; Kao, J.; Andred'Avignon, D.; Moeller, K.D. Org. Lett. 2001, 3, 1729. See also, Mukai,
 C.; Yamashita, H.; Hanaoka, M. Org. Lett. 2001, 3, 3385.

²⁴⁰Back, T.G.; Moussa, Z.; Parvez, M. J. Org. Chem. 2002, 67, 499.

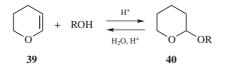
²⁴¹Chiba, K.; Hirano, T.; Kitano, Y.; Tada, M. Chem. Commun. 1999, 691.

²⁴²Hartman, J.W.; Sperry, L. Tetrahedron Lett. 2004, 45, 3787.

²⁴³Gabriele, B.; Salerno, G.; Lauria, E. J. Org. Chem. 1999, 64, 7687.

²⁴⁴Qing, F.L.; Gao, W.-Z.; Ying, J. J. Org. Chem. 2000, 65, 2003. See Kel'in, A.V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.

²⁴⁵Nan, Y.; Miao, H.; Yang, Z. Org. Lett. 2000, 2, 297. See also, Arcadi, A.; Cacchi, S.; DiGiuseppe, S.; Fabrizi, G.; Marinelli, F. Synlett 2002, 453.


²²⁹Reiter, M.; Ropp, S.; Gouverneur, V. Org. Lett. 2004, 6, 91

 ²³⁰Rönn, M.; Bäckvall, J.-E.; Andersson, P.G. *Tetrahedron Lett.* 1995, *36*, 7749; Semmelhack, M.F.; Epa,
 W.R. *Tetrahedron Lett.* 1993, *34*, 7205. See Tiecco, M.; Testaferri, L.; Santi, C. *Eur. J. Org. Chem.* 1999, 797.
 ²³¹Kennedy, R.M.; Tang, S. *Tetrahedron Lett.* 1992, *33*, 3729; McDonald, F.E.; Towne, T.B. J. Org. Chem.
 1995, *60*, 5750.

²³⁸Mukai, C.; Ohta, M.; Yamashita, H.; Kitagaki, S. J. Org. Chem. 2004, 69, 6867.

derivatives²⁴⁶ have been prepared using this approach. Tetrahydrofurans bearing an exocyclic double bond (vinylidene tetrahydrofurans) were prepared from alkynyl alcohols and a silver carbonate catalyst.²⁴⁷

For those substrates, more susceptible to nucleophilic attack, for example, polyhalo alkenes and alkenes of the type C=C–Z, it is better to carry out the reaction in basic solution, where the attacking species is RO^{-248} The reactions with C=C–Z are of the Michael type, and OR goes to the side away from the Z.²⁴⁹ Since triple bonds are more susceptible to nucleophilic attack than double bonds, it might be expected that bases would catalyze addition to triple bonds particularly well. This is the case, and enol ethers and acetals can be produced by this reaction.²⁵⁰ Because enol ethers are more susceptible than triple bonds to electrophilic attack, the addition of alcohols to enol ethers can also be catalyzed by acids.²⁵¹ One utilization of this reaction involves the compound dihydropyran

(39), which is often used to protect the OH groups of primary and secondary²⁵² alcohols and phenols.²⁵³ The tetrahydropyranyl acetal formed by this reaction (40) is stable to bases, Grignard reagents, LiAlH₄, and oxidizing agents, any of which can be used to react with functional groups located within the R group. When the reactions are completed, 40 is easily cleaved by treatment with dilute acids (10-6). The addition of alcohols to enol ethers is also catalyzed by $CoCl_2$.²⁵⁴

Conjugate addition of alcohols to conjugated esters, using ceric ammonium nitrate and LiBr, gave the corresponding α -bromo- β -alkoxy ester.²⁵⁵

In base-catalyzed addition to triple bonds, the rate falls in going from a primary to a tertiary alcohol, and phenols require more severe conditions. Other catalysts, namely, BF_3 and mercuric salts, have also been used in addition of ROH to triple bonds.

²⁴⁶Davidson, M.H.; McDonald, F.E. Org. Lett. 2004, 6, 1601.

²⁴⁷Pale, P.; Chuche, J. Eur. J. Org. Chem. 2000, 1019.

²⁴⁸For a review with respect to fluoroalkenes, see Chambers, R.D.; Mobbs, R.H. Adv. Fluorine Chem. **1965**, 4, 51, pp. 53–61.

²⁴⁹For an example using a rhodium catalyst, See Farnsworth, M.V.; Cross, M.J.; Louie, J. *Tetrahedron Lett.* **2004**, *45*, 7441.

²⁵⁰For a review, see Shostakovskii, M.F.; Trofimov, B.A.; Atavin, A.S.; Lavrov, V.I. Russ. Chem. Rev. **1968**, 37, 907.

²⁵¹For discussions of the mechanism, see Toullec, J.; El-Alaoui, M.; Bertrand, R. J. Chem. Soc. Perkin Trans. 2, **1987**, 1517; Kresge, A.J.; Yin, Y. J. Phys. Org. Chem. **1989**, 2, 43.

²⁵²Tertiary alcohols can also be protected in this way if triphenylphosphine hydrobromide is used as a catalyst: Bolitt, V.; Mioskowski, C.; Shin, D.; Falck, J.R. *Tetrahedron Lett.* **1988**, *29*, 4583.

²⁵³For useful catalysts for this reaction, some of which are also applicable to tertiary alcohols, see Miyashita, M.; Yoshikoshi, A.; Grieco, P.A. J. Org. Chem. 1977, 42, 3772; Olah, G.A.; Husain, A.; Singh, B.P. Synthesis 1985, 703; Johnston, R.D.; Marston, C.R.; Krieger, P.E.; Goem G.L. Synthesis 1988, 393.
 ²⁵⁴Iqbal, J.; Srivastava, R.R.; Gupta, K.B.; Khan, M.A. Synth. Commun. 1989, 19, 901.

²⁵⁵Roy, S.C.; Guin, C.; Rana, K.K.; Maiti, G. Synlett 2001, 226.

Alcohols can be added to certain double-bond compounds (cyclohexenes, cycloheptenes) photochemically²⁵⁶ in the presence of a photosensitizer such as benzene. The mechanism is electrophilic and Markovnikov orientation is found. The alkenes react in their first excited triplet states.²⁵⁷

The oxymercuration–demercuration procedure mentioned in **15-3** can be adapted to the preparation of ethers (Markovnikov orientation) if the oxymercuration is carried out in an alcohol ROH as solvent,²⁵⁸ for example 2-methyl-1-butene in ethanol gives $EtMe_2COEt$.²⁵⁹ Primary alcohols give good yields when mercuric acetate is used, but for secondary and tertiary alcohols it is necessary to use mercuric trifluoroacetate.²⁶⁰ However, even this reagent fails where the product would be a ditertiary ether. It is possible to combine the alcohol reactant with another reagent. The reaction of an alkene with iodine and allyl alcohol, in the presence of HgO, gave the *vic*-iodo ether.²⁶¹ Alkene-alcohols react with mercuric trifluoroacetate and the aq. KBr (with LiBH₄/BEt₃) to give a derivative bearing an iodoalkyl substituent, -O-C-CH(I)R.²⁶² Alkynes generally give acetals. If the oxymercuration is carried out in the presence of a hydroperoxide instead of an alcohol, the product (after demercuration with NaBH₄) is an alkyl peroxide (peroxy-mercuration).²⁶³ This can be done intramolecularly.²⁶⁴

Both alcohols and phenols add to ketenes to give carboxylic esters $[R_2C=C=O+ROH \rightarrow R_2CHCO_2R]$.²⁶⁵ This has been done intramolecularly (with the ketene end of the molecule generated and used *in situ*) to form mediumand large-ring lactones.²⁶⁶ In the presence of a strong acid, ketene reacts with aldehydes or ketones (in their enol forms) to give enol acetates. 1,4-Asymmetric induction is possible when chiral alcohols add to ketenes.²⁶⁷

²⁵⁶For a review of the photochemical protonation of double and triple bonds, see Wan, P.; Yates, K. *Rev. Chem. Intermed.* **1984**, *5*, 157.

²⁵⁷Marshall, J.A. Acc. Chem. Res. 1969, 2, 33.

²⁵⁸For a review, with tables of many examples, see Larock, R.C. *Solvation/Demercuration Reactions in Organic Synthesis*, Springer, NY, **1986**, pp. 162–345.

²⁵⁹Brown, H.C.; Rei, M. J. Am. Chem. Soc. 1969, 91, 5646.

²⁶⁰Brown, H.C.; Kurek, J.T.; Rei, M.; Thompson, K.L. J. Org. Chem. 1984, 49, 2551; 1985, 50, 1171.

²⁶¹Talybov, G.M.; Mekhtieva, V.Z.; Karaev, S.F. Russ. J. Org. Chem. 2001, 37, 600.

²⁶²Kang, S.H.; Kim, M. J. Am. Chem. Soc. 2003, 125, 4684. For an enantioselective example, see Kang, S.H.; Lee, S.B.; Park, C.M. J. Am. Chem. Soc. 2003, 125, 15748.

²⁶³Ballard, D.H.; Bloodworth, A.J. J. Chem. Soc. C 1971, 945; Sokolov, V.I.; Reutov, O.A. J. Org. Chem. USSR 1969, 5, 168. For a review, see Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY, 1986, pp. 346–366.

²⁶⁴Garavelas, A.; Mavropoulos, I.; Perlmutter, P.; Westman, F. Tetrahedron Lett. 1995, 36, 463.

 ²⁶⁵Quadbeck, G. Newer Methods Prep. Org. Chem. 1963, 2, 133–161. See also, Chihara, T.; Teratini, S.;
 Ogawa, H. J. Chem. Soc., Chem. Commun. 1981, 1120. For discussions of the mechanism, see Tille, A.;
 Pracejus, H. Chem. Ber. 1967, 100, 196–210; Brady, W.T.; Vaughn, W.L.; Hoff, E.F. J. Org. Chem. 1969, 34, 843; Tidwell, T.T. Acc. Chem. Res. 1990, 23, 273; Seikaly, H.R.; Tidwell, T.T. Tetrahedron 1986, 42, 2587; Satchell, D.P.N.; Satchell, R.S. Chem. Soc. Rev. 1975, 4, 231.; Jähme, J.; Rüchardt, C. Tetrahedron Lett. 1982, 23, 4011; Poon, N.L.; Satchell, D.P.N. J. Chem. Soc. Perkin Trans. 2, 1984, 1083; 1985, 1551.

²⁶⁶Boeckman, Jr., R.K.; Pruitt, J.R. J. Am. Chem. Soc. 1989, 111, 8286.

²⁶⁷Cannizzaro, C.E.; Strassner, T.; Houk, K.N. J. Am. Chem. Soc. 2001, 123, 2668.

Alcohols can also add to alkenes via the α -carbon (see 15-33).

OS III, 371, 774, 813; IV, 184, 558; VI, 916; VII, 66, 160, 304, 334, 381; VIII, 204, 254; IX, 472.

15-6 Addition of Carboxylic Acids to Form Esters

Hydro-acyloxy-addition

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} = \begin{array}{c} C \end{array} + RCOOH \end{array} \xrightarrow{H^+} \begin{array}{c} \\ \\ \end{array} \xrightarrow{H^+} \end{array} \xrightarrow{H^+} \begin{array}{c} \\ \\ \\ \end{array} \xrightarrow{H^-} C - \begin{array}{c} \\ C \end{array} \xrightarrow{C} \\ \end{array} \xrightarrow{R} \end{array}$$

Carboxylic esters are produced by the addition of carboxylic acids to alkenes, a reaction that is usually acid-catalyzed (by proton or Lewis acids²⁶⁸) and similar in mechanism to 15-5. Since Markovnikov's rule is followed, hard-to-get esters of tertiary alcohols can be prepared from alkenes of the form $R_2C=CHR$.²⁶⁹ A combination of V₂O₅ and trifluoroacetic acid converts alkenes to trifluoroacetate esters.²⁷⁰ When a carboxylic acid that contains a double bond in the chain is treated with a strong acid, the addition occurs internally and the product is a γ - and/or a δ -lactone, regardless of the original position of the double bond in the chain, since strong acids catalyze double-bond shifts (12-2).²⁷¹ The double bond always migrates (also see, 15-1) to a position favorable for the reaction, whether this has to be toward or away from the carboxyl group. The use of a chiral Cinchonidine alkaloid additive leads to lactone formation with modest enantioselectivity.²⁷² In the presence of diphenvl diselenide and DDO, alkene carboxylic acids react of form the lactone with a phenylselenomethyl group (PhSeCH₂-) at C-5.²⁷³ Carboxylic esters have also been prepared by the acyloxymercuration-demercuration of alkenes (similar to the procedures mentioned in 15-3 and 15-4).²⁷⁴ Conjugated esters has been converted to β-lactones with photolysis and added tributyltin hydride, radical cyclization conditions (15-30).²⁷⁵ Addition of carboxylic acids to alkenes to form esters or lactones is catalyzed by palladium compounds.²⁷⁶ Thallium acetate also promotes this cyclization reaction.²⁷⁷

²⁷⁰Choudary, B.M.; Reddy, P.N. J. Chem. Soc., Chem. Commun. 1993, 405.

²⁶⁸See, for example, Guenzet, J.; Camps, M. *Tetrahedron* **1974**, *30*, 849; Ballantine, J.A.; Davies, M.; Purnell, H.; Rayanakorn, M.; Thomas, J.M.; Williams, K.J. J. Chem. Soc., Chem. Commun. **1981**, 8.

²⁶⁹See, for example, Peterson, P.E.; Tao, E.V.P. J. Org. Chem. 1964, 29, 2322.

²⁷¹For a review of such lactonizations, see Ansell, M.F.; Palmer, M.H. *Q. Rev. Chem. Soc.* **1964**, *18*, 211. ²⁷²Wang, M.; Gao, L.X.; Mai, W.P.; Xia, A.X.; Wang, F.; Zhang, S.B. J. Org. Chem. **2004**, *69*, 2874.

 ²⁷³Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C. Synlett 2001, 1767.

²⁷⁴For a review, see Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY,

^{1986,} pp. 367-442.

²⁷⁵Castle, K.; Hau, C.-S.; Sweeney, J.B.; Tindall, C. Org. Lett. 2003, 5, 757.

²⁷⁶Larock, R.C.; Hightower, T.R. J. Org. Chem. 1993, 58, 5298; Annby, U.; Stenkula, M.; Andersson, C.-M. Tetrahedron Lett. 1993, 34, 8545.

²⁷⁷Ferraz, H.M.C.; Ribeiro, C.M.R. Synth. Commun. 1992, 22, 399.

Triple bonds can give enol esters²⁷⁸ or acylals when treated with carboxylic acids. Mercuric salts are usually catalysts,²⁷⁹ and vinylic mercury compounds

-C = C - OCOR are intermediates.²⁸⁰ Terminal alkynes RC = CH react with CO₂, Hgx

a secondary amine R'_2 NH, and a ruthenium complex catalyst, to give enol carbamates RCH=CHOC(=O)NR.²⁸¹ This reaction has also been performed intramolecularly, to produce unsaturated lactones.²⁸² Cyclic unsaturated lactones (internal vinyl esters) have been generated from alkyne-carboxylic acids using a palladium catalyst²⁸³ or a ruthenium catalyst.²⁸⁴ Carboxylic esters can also be obtained by the addition to alkenes of diacyl peroxides.²⁸⁵ These reactions are catalyzed by copper and are free-radical processes.

Allene carboxylic acids have been cyclized to butenolides with copper(II) chloride.²⁸⁶ Allene esters were converted to butenolides by treatment with acetic acid and LiBr.²⁸⁷ Cyclic carbonates can be prepared from allene alcohols using carbon dioxide and a palladium catalyst, and the reaction was accompanied by arylation when iodobenzene was added.²⁸⁸ Diene carboxylic acids have been cyclized using acetic acid and a palladium catalyst to form lactones that have an allylic acetate elsewhere in the molecule.²⁸⁹ With ketenes, carboxylic acids give anhydrides²⁹⁰ and acetic anhydride is prepared industrially in this manner [CH₂=C=O + MeCO₂H \rightarrow (MeC=O)₂O].

²⁸¹Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. *Tetrahedron Lett.* **1987**, 28, 4417; Mahé, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P.H. *J. Org. Chem.* **1989**, 54, 1518.

²⁸²See, for example, Sofia, M.J.; Katzenellenbogen, J.A. J. Org. Chem. **1985**, 50, 2331. For a list of other examples, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, p. 1895.

²⁸³Liao, H.-Y.; Cheng, C.-H. J. Org. Chem. 1995, 60, 3711

²⁸⁴Jiménez-Tenorio, M.; Puerta, M.C.; Valerga, P.; Moreno-Dorado, F.J.; Guerra, F.M.; Massanet, G.M. *Chem. Commun.* **2001**, 2324.

²⁸⁵Kharasch, M.S.; Fono, A. J. Org. Chem. 1959, 24, 606; Kochi, J.K. J. Am. Chem. Soc. 1962, 84, 1572.
 ²⁸⁶Ma, S.; Wu, S. J. Org. Chem. 1999, 64, 9314.

²⁸⁷Ma, S.; Li, L.; Wei, Q.; Xie, H.; Wang, G.; Shi, Z.; Zhang, J. Pure. Appl. Chem. 2000, 72, 1739.

²⁸⁸Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. Bull. Chem. Soc. Jpn. 1999, 72, 1063.

²⁸⁹Verboom, R.C.; Persson, B.A.; Bäckvall, J.-E. J. Org. Chem. 2004, 69, 3102.

²⁹⁰For discussions of the mechanism, see Briody, J.M.; Lillford, P.J.; Satchell, D.P.N. J. Chem. Soc. B 1968, 885; Corriu, R.; Guenzet, J.; Camps, M.; Reye, C. Bull. Soc. Chim. Fr. 1970, 3679; Blake, P.G.; Vayjooee, M.H.B. J. Chem. Soc. Perkin Trans. 2, 1976, 1533.

²⁷⁸Goossen, L.J.; Paetzold, J.; Koley, D. *Chem. Commun.* **2003**, 706. For a rhenium catalyzed example, see Hua, R.; Tian, X. J. Org. Chem. **2004**, 69, 5782.

²⁷⁹For the use of rhodium complex catalysts, see Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F.; Bruneau, C.; Dixneuf, P.H. *Organometallics* **1990**, *9*, 1155.

²⁸⁰See for example, Bach, R.D.; Woodard, R.A.; Anderson, T.J.; Glick, M.D. J. Org. Chem. **1982**, 47, 3707; Bassetti, M.; Floris, B. J. Chem. Soc. Perkin Trans. 2, **1988**, 227; Grishin, Yu.K.; Bazhenov, D.V.; Ustynyuk, Yu.A.; Zefirov, N.S.; Kartashov, V.R.; Sokolova, T.N.; Skorobogatova, E.V.; Chernov, A.N. Tetrahedron Lett. **1988**, 29, 4631. Ruthenium complexes have also been used as catalysts. See Rotem, M.; Shvo, Y. Organometallics **1983**, 2, 1689; Mitsudo, T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y.J. Org. Chem. **1987**, 52, 2230.

Sulfonic acids add to alkenes and alkynes. The reaction of an alkyne with para-toluenesulfonic acid and treatment with silica gives the vinyl sulfonate $(C=C-OSO_2Tol)$ ²⁹¹ Cyclic sulfonates can be generated by the reaction of an allylic sulfonate salt ($C=C-C-OSO_3^-$) with silver nitrate in acetonitrile containing an excess of bromine and a catalytic amount of water.²⁹² Sultones are formed when alkenes react with PhIO and two equivalents of Me₂SiSO₃Cl.²⁹³

OS III, 853; IV, 261, 417, 444; V, 852, 863; VII, 30, 411. Also see, OS I, 317.

C. Sulfur on the Other Side

Addition of H₂S and Thiols 15-7

Hydro-alkylthio-addition

$$C=C'$$
 + RSH \longrightarrow H $-C-C'$ -SR

Hydrogen sulfide (H₂S) and thiols add to alkenes to give alkyl thiols or sulfides by electrophilic, nucleophilic, or free-radical mechanisms.²⁹⁴ In the absence of initiators, the addition to simple alkenes is by an electrophilic mechanism, similar to that in 15-5, and Markovnikov's rule is followed. However, this reaction is usually very slow and often cannot be done or requires very severe conditions unless a proton or Lewis acid catalyst is used. For example, the reaction can be performed in concentrated $H_2SO_4^{295}$ or together with AlCl₃.²⁹⁶ In the presence of free-radical initiators, H₂S and thiols add to double and triple bonds by a free-radical mechanism and the orientation is anti-Markovnikov.²⁹⁷ The addition of thiophenol to an alkene with a zeolite also leads to the anti-Markovnikov sulfide.²⁹⁸ Additives can influence the regioselectivity. Styrene reacts with thiophenol to give primarily the anti-Markovnikov product, whereas addition of thiophenol in the presence of Montmorillonite K10 clay gives primarily the Markovnikov addition product.²⁹⁹ In fact, the orientation can be used as a diagnostic tool to indicate which mechanism is operating. Free-radical addition can be done with H_2S , RSH (R may be primary,

²⁹¹Braga, A.L.; Emmerich, D.J.; Silveira, C.C.; Martins, T.L.C.; Rodrigues, O.E.D. Synlett 2001, 371.

²⁹²Steinmann, J.E.; Phillips, J.H.; Sanders, W.J.; Kiessling, L.L. Org. Lett. 2001, 3, 3557.

²⁹³Bassindale, A.R.; Katampe, I.; Maesano, M.G.; Patel, P.; Taylor, P.G. Tetrahedron Lett. 199, 40, 7417. ²⁹⁴For a review, see Wardell, J.L., in Patai, S. The Chemistry of the Thiol Group, pt. 1, Wiley, NY, 1974,

pp. 69–178. ²⁹⁵Shostakovskii, M.F.; Kul'bovskaya, N.K.; Gracheva, E.P.; Laba, V.I.; Yakushina, L.M. *J. Gen. Chem.* USSR 1962, 32, 707.

²⁹⁶Belley, M.; Zamboni, R. J. Org. Chem. 1989, 54, 1230.

²⁹⁷For reviews of free-radical addition of H₂S and RSH, see Voronkov, M.G.; Martynov, A.V.; Mirskova, A.N. Sulfur Rep., 1986, 6, 77; Griesbaum, K. Angew. Chem. Int. Ed. 1970, 9, 273; Oswald, A.A.; Griesbaum, K., in Kharasch, N.; Meyers, C.Y. Organic Sulfur Compounds, Vol. 2, Pergamon, Elmsford, NY, 1966, pp. 233–256; Stacey, F.W.; Harris Jr., J.F. Org. React. 1963, 13, 150, pp. 165–196, 247–324. ²⁹⁸Kumar, P.; Pandey, R.K.; Hegde, V.R. Synlett 1999, 1921.

²⁹⁹Kanagasabapathy, S.; Sudalai, A.; Benicewicz, B.C. Tetrahedron Lett. 2001, 42, 3791.

secondary, or tertiary), ArSH, or RCOSH.³⁰⁰ The R group may contain various functional groups. The alkenes may be terminal, internal, contain branching, be cyclic, and have various functional groups including OH, COOH, COOR, NO₂, RSO₂, and so on. Addition of Ph₃SiSH to terminal alkenes under radical conditions also leads to the primary thiol.³⁰¹

Alkynes react with thiols to give vinyl sulfides. With alkynes it is possible to add 1 or 2 equivalents of RSH, giving a vinyl sulfide³⁰² or a dithioketal, respectively. Alternative preparations are available, as in the reaction of a terminal alkyne with Cp₂Zr(H)Cl followed by PhSCl to give the vinyl sulfide with the SPh unit at the less substituted position (PhCH=CHSPh).³⁰³ The intramolecular addition of a thiol to an ene-yne, with a palladium catalyst, leads to substituted thiophene derivatives.³⁰⁴

The fundamental addition reaction can be modified by the use of transition metals and different reagents. Alkenes react with diphenyl disulfide in the presence of GaCl₃ to give the product with two phenylthio units, PhS–C–C–SPh).³⁰⁵ The reaction of an alkyne with diphenyl disulfide and a palladium catalyst leads to the bis-vinyl sulfide, PhS–C=C–SPh.³⁰⁶

When thiols are added to substrates susceptible to nucleophilic attack, bases catalyze the reaction and the mechanism is nucleophilic. These substrates may be of the Michael type³⁰⁷ or may be polyhalo alkenes or alkynes.²⁵⁰ As with the freeradical mechanism, alkynes can give either vinylic thioethers or dithioacetals:

$$-C \equiv C - + RSH \xrightarrow{OH^-} H SR \xrightarrow{SR} + RSH \xrightarrow{OH^-} H C - C \xrightarrow{SR} H SR$$

Thiols add to alkenes under photochemical conditions to form thioethers, and the reaction can be done intramolecularly to give cyclic thioethers.³⁰⁸ Thiols also add to alkynes and with a palladium catalyst, vinyl sulfides can be formed.³⁰⁹ Thiocarbonates function as thiol surrogates, converting alkenes to alkyl thiol in the presence of TiCl₄; and CuO.³¹⁰

By any mechanism, the initial product of addition of H_2S to a double bond is a thiol, which is capable of adding to a second molecule of alkene, so that sulfides

³⁰⁰For a review of the addition of thio acids, see Janssen, M.J., in Patai, S. *The Chemistry of Carboxylic Acids and Esters*, Wiley, NY, **1969**, pp. 720–723.

³⁰¹Haché, B.; Gareau, Y. Tetrahedron Lett. 1994, 35, 1837.

³⁰²See Arjona, O.; Medel, R.; Rojas, J.; Costa, A.M.; Vilarrasa, J. Tetrahedron Lett. 2003, 44, 6369.

³⁰³Huang, X.; Zhong, P.; Guo, W.-r. Org. Prep. Proceed. Int. 1999, 31, 201.

³⁰⁴Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351.

³⁰⁵Usugi, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 601.

³⁰⁶Ananikov, V.P.; Beletskaya, I.P. Org. Biomol. Chem. 2004, 2, 284.

³⁰⁷Michael substrates usually give the expected orientation. For a method of reversing the orientation for RS groups (the RS group goes a to the C=O bond of a C=C–C=O system), see Gassman, P.G.; Gilbert, D.P.; Cole, S.M. *J. Org. Chem.* **1977**, *42*, 3233.

 ³⁰⁸Kirpichenko, S.V.; Tolstikova, L.L.; Suslova, E.N.; Voronkov, M.G. *Tetrahedron Lett.* **1993**, *34*, 3889.
 ³⁰⁹Kuniyasu, H.; Ogawa, A.; Sato, K.-I.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. **1992**, *114*, 5902.

³¹⁰Mukaiyama, T.; Saitoh, T.; Jona, H. Chem. Lett. 2001, 638.

are often produced:

$$c=c' + HSH \longrightarrow \frac{H}{H}c-c' + c=c' \longrightarrow \frac{H}{C}c-c' + c$$

As with alcohols, ketenes add thiols to give thiol esters $[R_2C{=}C{=}O{+}RSH{\rightarrow}R_2CHCOSR$].

Selenium compounds (RSeH) add in a similar manner to thiols.³¹² Vinyl selenides can be prepared from alkynes using diphenyl diselenide and sodium borohydride.³¹³

The conjugate addition of thiols to α , β -unsaturated carbonyl derivatives is discussed in **15-31**.

OS III, 458; IV, 669; VIII, 302. See also, OS VIII, 458.

D. Nitrogen or Phosphorus on the Other Side

15-8 Addition of Ammonia and Amines, Phosphines, and Related Compounds

Hydro-amino-addition Hydro-phosphino-addition

Ammonia and primary and secondary amines add to alkenes *that are susceptible* to nucleophilic attack.³¹⁴ Ammonia and amines are much weaker acids than water, alcohols, and thiols (see **15-3**, **15-5**, **15-7**) and since acids turn NH₃ into the weak

³¹¹For an example, see Blake, A.J.; Friend, C.L.; Outram, R.J.; Simpkins, N.S.; Whitehead, A.J. *Tetrahedron Lett.* **2001**, *42*, 2877.

³¹²Kuniyasu, H.; Ogawa, A.; Sato, K.-I.; Ryu, I.; Sonoda, N. Tetrahedron Lett. 1992, 33, 5525.

³¹³Dabdoub, M.J.; Baroni, A.C.M.; Lenardão, E.J.; Gianeti, T.R.; Hurtado, G.R. *Tetrahedron* 2001, 57, 4271.

³¹⁴For reviews, see Gasc, M.B.; Lattes, A.; Périé, J.J. *Tetrahedron* **1983**, *39*, 703; Pines, H.; Stalick, W.M. *Base-Catalyzed Reactions of Hydrocarbons and Related Compounds*, Academic Press, NY, **1977**, pp. 423–454; Suminov, S.I.; Kost, A.N. *Russ. Chem. Rev.* **1969**, *38*, 884; Gibson, M.S., in Patai, S. *The Chemistry of the Amino Group*, Wiley, NY, **1968**, pp. 61–65; Beller, M.; Breindl, C.; Eichberger, M.; Hartung, C.G.; Seayad, J.; Thiel, O.R.; Tillack, A.; Trauthwein, H. *Synlett* **2002**, 1579. For a discussion of Markovnikov versus anti-Markovnikov selectivity, see Tillack, A.; Khedkar, V.; Beller, M. *Tetrahedron Lett.* **2004**, *45*, 8875.

acid, the ammonium ion NH_4^+ , this reaction does not occur by an electrophilic mechanism. The reaction tends to give very low yields, if any, with ordinary alkenes, unless extreme conditions are used (e.g., $178-200^{\circ}C$, 800-1000 atm, and the presence of metallic Na, for the reaction between NH₃ and ethylene³¹⁵). Amine alkenes give cyclic amines as the major product, in good yield, when treated with *n*-butyllithium.³¹⁶ Ammonia gives three possible products, since the initial product is a primary amine, which may add to a second molecule of alkene, and so on. Similarly, primary amines give both secondary and tertiary products. In practice it is usually possible to control which product predominates. The mechanism is nearly always nucleophilic, and the reaction is generally performed on polyhalo alkenes³¹⁷ and alkynes.³¹⁸ Ammonia adds to alkenes photochemically.³¹⁹ Reaction of a secondary amine with butyllithium generates an amide base, which reacts with alkenes to give alkyl amines,³²⁰ and can add intramolecularly to an alkene to form a pyrrolidine.³²¹ Pyrroles can be generated in this manner.³²² *N*-Chloroamines add to alkenes intramolecularly to give β -chloropyrrolidines.³²³

Conjugated carbonyl compounds react via conjugate addition with amines to give β -amino derivatives (see **15-31**)³²⁴ As expected, on Michael-type substrates the nitrogen goes to the carbon that does not carry the Z. With substrates of the form RCH=CZZ', the same type of cleavage of the adduct can take place as in **15-3**.³²⁵

There are many examples of transition catalyzed addition of nitrogen compounds to alkenes, alkynes,³²⁶ and so on. Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts.³²⁷

³¹⁵Howk, B.W.; Little, E.L.; Scott, S.L.; Whitman, G.M. J. Am. Chem. Soc. 1954, 76, 1899.

³¹⁶Ates, A.; Quinet, C. Eur. J. Org. Chem. 2003, 1623.

- ³¹⁷For a review with respect to fluoroalkenes, see Chambers, R.D.; Mobbs, R.H. Adv. Fluorine Chem. **1965**, 4, 51–112, pp. 62–68.
- ³¹⁸For an intramolecular example see Cossy, J.; Belotti, D.; Bellosta, V.; Boggio, C. *Tetrahedron Lett.* **1997**, *38*, 2677. For intramolecular addition to a 1-ethoxy alkyne, see MaGee, D.I.; Ramaseshan, M. *Synlett* **1994**, 743.
- ³¹⁹Yasuda, M.; Kojima, R.; Ohira, R.; Shiragami, T.; Shima, K. *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1655. ³²⁰Hartung, C.G.; Breindl, C.; Tillack, A.; Beller, M. *Tetrahedron* **2000**, *56*, 5157.
- ³²¹Fujita, H.; Tokuda, M.; Nitta, M.; Suginome, H. Tetrahedron Lett. 1992, 33, 6359.
- ³²²Dieter, R.K.; Yu, H. Org. Lett. 2000, 2, 2283.

³²⁶For a review, see Doye, S. Synlett 2004, 1653.

³²³Göttlich, R. *Synthesis* **2000**, 1561; Göttlich, R.; Noack, M. *Tetrahedron Lett* **2001**, 42, 7771 For a reaction with an *N*-bromoamine, see Outurquin, F.; Pannecoucke, X.; Berthe, B.; Paulmier, C. *Eur. J. Org. Chem.* **2002**, 1007. For a TiCl₃—AlMe₃ mediated reaction, see Sjöholm, Å.; Hemmerling, M.; Pradeille, N.; Somfai, P. *J. Chem. Soc., Perkin Trans. 1* **2001**, 891. For a variation with a sulfonamide and iodine, see Jones, A.D.; Knight, D.W.; Hibbs, D.E. *J. Chem. Soc., Perkin Trans. 1* **2001**, 1182

³²⁴See Cossu, S.; DeLucchi, O.; Durr, R. *Synth. Commun.* **1996**, *26*, 4597 for an example involing methyl 2-propynoate.

³²⁵See, for example, Bernasconi, C.F.; Murray, C.J. J. Am. Chem. Soc. **1986**, 108, 5251, 5257; Bernasconi, C.F.; Bunnell, R.D. J. Org. Chem. **1988**, 53, 2001.

³²⁷For a review, see Gasc, M.B.; Lattes, A.; Périé, J.J. *Tetrahedron* **1983**, *39*, 703. For a review of metalcatalyzed nucleophilic addition, see Bäckvall, J. *Adv. Met.-Org. Chem.* **1989**, *1*, 135. See Löber, O.; Kawatsura, M.; Hartwig, J.F. J. Am. Chem. Soc. **2001**, *123*, 4366.

The complexation lowers the electron density of the double bond, facilitating nucleophilic attack.³²⁸ Markovnikov orientation is observed and the addition is anti.³²⁹ Molybdenum,³³⁰ titanium,³³¹ Yttrium,³³² and rhodium compounds³³³ have been used in the addition of amines to alkenes. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a palladium catalyst,³³⁴ a lanthanide reagent,³³⁵ or an yttrium reagent.³³⁶ Aniline reacts with dienes and a palladium catalyst to give allylic amines.³³⁷ Diene amines react with samarium catalysts to give 2-alkenyl pyrrolidines.³³⁸ Addition of secondary amines to dihydropyrans using a palladium catalyst gave the corresponding aminal (an α -amino ether).³³⁹ Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H₂, leads to an amine unit adding to the alkene moiety.³⁴⁰ Secondary amines react with alkenes to give the alkyl amine using a rhodium catalyst in a CO/H₂ atmosphere,³⁴¹ but modification of the chromium catalyst and conditions led to an enamine.³⁴² Note that the reaction of an alkene and a secondary amine with a rhodium catalyst can also give an enamine.³⁴³

Other nitrogen compounds, among them hydroxylamine and hydroxylamines,³⁴⁴ hydrazines, and amides (**15-9**), also add to alkenes. Azodicarboxylates (Boc-N= N-Boc) react with alkenes, in the presence of PhSiH₃ and a cobalt catalyst, to give

³³¹Ackermann, L.; Kaspr, L.T.; Gschrei, C.J. *Org. Lett.* **2004**, *6*, 2515. See Castro, I.G.; Tillack, A.; Hartung, C.G.; Beller, M. *Tetrahedron Lett.* **2003**, *44*, 3217.

³³³The anti-Markovkinov amine is produced: Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J.F. *J. Am. Chem. Soc.* **2003**, *125*, 5608; Utsonomiya, M.; Hartwig, J.F. *J. Am. Chem. Soc.* **2004**, *126*, 2702; Ahmed, M.; Seayad, A.M.; Jackstell, R.; Beller, M. *J. Am. Chem. Soc.* **2003**, *125*, 10311.

³³⁴Fix, S.R.; Brice, J.L.; Stahl, S.S. Angew. Chem. Int. Ed. 2002, 41, 164.

³³⁵Molander, G.A.; Dowdy, E.D. J. Org. Chem. 1998, 63, 8983; Ryu, J.-S.; Marks, T.J.; McDonald, F.E. Org. Lett. 2001, 3, 3091. The use of a chiral lanthanum catalyst led to pyrrolidines with modest asymmetric induction: Hong, S.; Tian, S.; Metz, M.V.; Marks, T.J. J. Am. Chem. Soc. 2003, 125, 14768.
 ³³⁶Kim, Y.K.; Livinghouse, T.; Bercaw, J.E. Tetrahedron Lett. 2001, 42, 2933.

³³⁷Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.; Yoshifuji, M. Angew. Chem. Int. Ed. 2001, 40, 4501.

³³⁸Hong, S.; Marks, T.J. J. Am. Chem. Soc. 2002, 124, 7886.

³³⁹Cheng, X.; Hii, K.K. Tetrahedron 2001, 57, 5445.

³⁴⁰Rische, T.; Eilbracht, P. *Tetrahedron* **1998**, *54*, 8441; Akazome, M.; Kondo, T.; Watanabe, Y. J. Org. Chem. **1994**, *59*, 3375.

³⁴¹Rische, J.; Bärfacker, L.; Eilbracht, P. Eur. J. Org. Chem. **1999**, 653; Lin, Y.-S.; El Ali, B.; Alper, H. Tetrahedron Lett. **2001**, 42, 2423.

³⁴²Ahmed, M.; Seayad, A.M.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2003, 42, 5615.

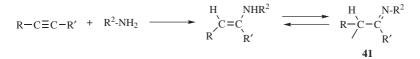
³⁴³Tillack, A.; Trauthwein, H.; Hartung, C.G.; Eichberger, M.; Pitter, S.; Jansen, A.; Beller, M. Monat. Chem. 2000, 131, 1327.

³⁴⁴Lin, X.; Stien, D.; Weinreb, S.M. *Tetrahedron Lett.* **2000**, *41*, 2333; Singh, S.; Nicholas, K.M. *Synth. Commun.* **2001**, *31*, 3087.

³²⁸For a discussion of the mechanism, see Hegedus, L.S.; Åkermark, B.; Zetterberg, K.; Olsson, L.F. J. Am. Chem. Soc. **1984**, 106, 7122.

³²⁹Åkermark, B.; Zetterberg, K. J. Am. Chem. Soc. **1984**, 106, 5560; Utsunomiya, M.; Hartwig, J.F. J. Am. Chem. Soc. **2003**, 125, 14286.

³³⁰Srivastava, R.S.; Nicholas, K.M. Chem. Commun. 1996, 2335.


³³²O'Shaughnessy, P.N.; Scott, P. Tetrahedron Asymmetry 2003, 14, 1979.

alkylhydrazides [RN(Boc)–NHBoc].³⁴⁵ Even with amines, basic catalysts are sometimes used, so that RNH⁻ or R₂N⁻ is the actual nucleophile. Tertiary amines (except those that are too bulky) add to Michael-type substrates in a reaction that is catalyzed by acids like HCl or HNO₃ to give the corresponding quaternary ammonium salts.³⁴⁶

$$\begin{array}{c} Z \\ C = C \\ \end{array} + R_3 NH Cl^{\Theta} \xrightarrow{HCl} Z \xrightarrow{-C} -C \xrightarrow{-NR_3} Cl^{\Theta} \end{array}$$

The tertiary amine can be aliphatic, cycloalkyl, or heterocyclic (including pyridine). The reaction of NaOH with an amine containing two distal alkene units, followed by addition of a neodymium catalyst leads to a bicyclic amine.³⁴⁷

Primary amines add to triple bonds³⁴⁸ to give enamines that have a hydrogen on the nitrogen and (analogously to enols) tautomerize to the more stable imines, **41**.³⁴⁹

The reaction has been done with a palladium catalyst,³⁵⁰ a titanium catalyst,³⁵¹ a tantalum catalyst,³⁵² and with a gold catalyst.³⁵³ An intramolecular addition of amines to an alkyne unit in the presence of a palladium catalyst generated heterocyclic or cyclic amine compounds.³⁵⁴ The titanium catalyzed addition of primary

³⁵⁰Kadota, I.; Shibuya, A.; Lutete, L.M.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4570.

³⁵¹Khedkar, V.; Tillack, A.; Beller, M. *Org. Lett.* **2003**, *5*, 4767; Tillack, A.; Castro, I.G.; Hartung, C.G.; Beller, M. Angew. Chem. Int. Ed. **2002**, *41*, 2541.

³⁵²Anderson, L.L.; Arnold, J.; Bergman R.G. *Org. Lett.* 2004, *6*, 2519; Shi, Y.; Hall, C.; Ciszewski, J.T.; Cao, C.; Odom, A.L. *Chem. Commun.* 2003, 586; Cao, C.; Li, Y.; Shi, Y.; Odom, A.L. *Chem. Commun.*, 2004, 2002.

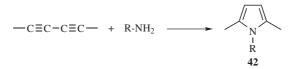
³⁴⁵Waser, J.; Carreira, E.M. J. Am. Chem. Soc. 2004, 126, 5676.

³⁴⁶Le Berre, A.; Delacroix, A. *Bull. Soc. Chim. Fr.* **1973**, 640, 647. See also, Vogel, D.E.; Büchi, G. *Org. Synth.*, *66*, 29.

³⁴⁷Molander, G.A.; Pack, S.K. J. Org. Chem. 2003, 68, 9214.

³⁴⁸For a review of addition of ammonia and amines to triple bonds, see Chekulaeva, I.A.; Kondrat'eva, L.V. *Russ. Chem. Rev.* **1965**, *34*, 669. For reactions with aniline, see Haak, E.; Bytschkov, I.; Doye, S. *Angew. Chem. Int. Ed.* **1999**, *38*, 3389; Hartung, C.G.; Tillack, A.; Trauthwein, H.; Beller, M. J. Org. Chem. **2001**, *66*, 6339.

³⁴⁹For example, see Kruse, C.W.; Kleinschmidt, R.F. J. Am. Chem. Soc. 1961, 83, 213, 216.


³⁵³Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.

³⁵⁴Müller, T.E. *Tetrahedron Lett.* **1998**, *39*, 5961; Hiroya, K.; Matsumoto, S.; Sakamoto, T. Org. Lett. **2004**, *6*, 2953; Lutete, L.M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc. **2004**, *126*, 1622; Hiroya, K.; Itoh, S.; Ozawa, M.; Kanamori, Y.; Sakamoto, T. *Tetrahedron Lett.* **2002**, *43*, 1277. See also, Karur, S.; Kotti, S.R.S.S.; Xu, X.; Cannon, J.F.; Headley, A.; Li, G. J. Am. Chem. Soc. **2003**, *125*, 13340.

amines to alkynes give the enamine, which can be hydrogenated (**15-11**) to give the corresponding amine.³⁵⁵ A variation treats an alkynyl imine with CuI to form pyrroles.³⁵⁶ *N*,*N*-Diphenylhydrazine reacts with diphenyl acetylene and a titanium catalyst to give indole derivatives.³⁵⁷ Treatment of an imine of 2-alkynyl benzaldehyde with iodide gave a functionalized isoquinoline.³⁵⁸ When ammonia

enough for isolation, but polymerizes. Ammonia and primary amines (aliphatic and aromatic) add to conjugated diynes to give pyrroles, **42**.³⁵⁹ A similar preparation of pyrroles was reported by heating non-conjugated diynes with aniline and a titanium catalyst.³⁶⁰ This is not 1,4-addition, but 1,2-addition twice. Conjugated ene-ynes containing an amino group also give pyrroles with a palladium catalyst.³⁶¹

Allenes are reaction partners,³⁶² and amines add to allenes in the presence of a catalytic amount of CuBr³⁶³ or palladium compounds.³⁶⁴ Intramolecular reaction of allene amines lead to dihydropyrroles, using a gold catalyst.³⁶⁵

Treatment of an allene amine with a ruthenium catalyst, 10% of TiCl₄ and methyl vinyl ketone to give a product of amine addition followed by Michael addition, a pyrrolidine derivative with a pendant alkenyl ketone unit.³⁶⁶ Cyclic imines can be prepared from allene amines using a titanium catalyst.³⁶⁷

³⁶¹Gabriele, B.; Salerno, G.; Fazio, A.; Bossio, M.R. *Tetrahedron Lett.* **2001**, 42, 1339; Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. **2003**, 68, 7853.

- ³⁶³Geri, R.; Polizzi, C.; Lardicci, L.; Caporusso, A.M. Gazz. Chim. Ital., 1994, 124, 241.
- ³⁶⁴Davies, I.W.; Scopes, D.I.C.; Gallagher, T. Synlett 1993, 85.
- ³⁶⁵Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121.

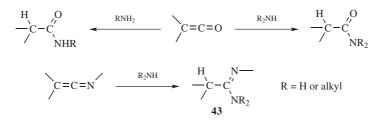
³⁶⁶Trost, B.M.; Pinkerton, A.B.; Kremzow, D. J. Am. Chem. Soc. 2000, 122, 12007.

³⁶⁷Ackermann, L.; Bergman, R.G. *Org. Lett.* **2002**, *4*, 1475; Ackerman, L.; Bergman, R.G.; Loy, R.N. *J. Am. Chem. Soc.* **2003**, *125*, 11956.

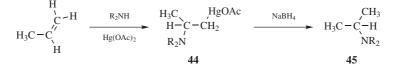
³⁵⁵Haak, E.; Siebeneicher, H.; Doye, S. *Org. Lett.* **2000**, *2*, 1935; Bytschkov, I.; Doye, S. *Eur. J. Org. Chem.* **2001**, 4411. For a variation using sodium cyanoborohydride and zinc chloride as the reducing agent, see Heutling, A.; Doye, S. *J. Org. Chem.* **2002**, *67*, 1961.

³⁵⁶Kel'in, A.; Sromek, A.W.; Gevorgyan, V. *J. Am. Chem. Soc.* **2001**, *123*, 2074. Another variation used a chromium carbene species to generate pyrroles from imino ene-ynes: Zhang, Y.; Herndon, J.W. Org. Lett. **2003**, *5*, 2043.

³⁵⁷Ackermann, L.; Born, R. *Tetrahedron Lett.* **2004**, 45, 9541. For a different approach using hypervalent iodine, see Barluenga, J.; Trincado, M.; Rubio, E.; González, J.M. *Angew. Chem. Int. Ed.* **2003**, 42, 2406.


³⁵⁸Huang, Q.; Hunter, J.A.; Larock, R.C J. Org. Chem. 2002, 67, 3437.

³⁵⁹Schult, K.E.; Reisch, J.; Walker, H. Chem. Ber. 1965, 98, 98.


³⁶⁰Ramanathan, B.; Keith, A.J.; Armstrong, D.; Odom, A.L. Org. Lett. 2004, 6, 2957.

³⁶²Meguro, M.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421.

Primary and secondary amines add to ketenes to give, respectively, *N*-substituted and *N*,*N*-disubstituted amides:³⁶⁸ and to ketenimines to give amidines, 43.³⁶⁹

 NH_3 can be added to double bonds (even ordinary double bonds) in an indirect manner by the use of hydroboration (**15-16**) followed by treatment with NH_2Cl or NH_2OSO_2OH (**12-32**). This produces a primary amine with anti-Markovnikov orientation. An indirect way of adding a primary or secondary amine to a double bond consists of aminomercuration followed by reduction (see **15-3** for the analogous oxymercuration–demercuration procedure), to give amine **45**.³⁷⁰

The addition of a secondary amine (shown above) produces a tertiary amine, while addition of a primary amine gives a secondary amine. The overall orientation follows Markovnikov's rule. For conversion of **44** to other products, see **15-53**.

$$C=C' + R_2PH \longrightarrow H-C-C-PR_2$$

Phosphines add to alkenes to give alkyl phosphines and to alkynes to give vinyl phosphines. In the presence of an ytterbium (Yb) catalyst, diphenylphosphine added to diphenyl acetylene to give the corresponding vinyl phosphine.³⁷¹ A palladium catalyst was used for the addition *o*-diphenylphosphine to terminal alkynes, giving the anti-Markovnikov vinyl phosphine but a nickel catalyst led to the Markovnikov vinyl phosphine.³⁷² Alkenes also react with diarylphosphines

³⁶⁸For discussions of the mechanism of this reaction, see Briody, J.M.; Satchell, D.P.N. *Tetrahedron* **1966**, 22, 2649; Tidwell, T.T. *Acc. Chem. Res.* **1990**, 23, 273; Satchell, D.P.N.; Satchell, R.S. *Chem. Soc. Rev.* **1975**, 4, 231. For an enantioselective reaction, see Hodous, B.L.; Fu, G.C. *J. Am. Chem. Soc.* **2002**, 124, 10006.

³⁶⁹Stevens, C.L.; Freeman, R.C.; Noll, K. J. Org. Chem. 1965, 30, 3718.

³⁷⁰For a review, see Larock, R.C. Solvation/Demercuration Reactions in Organic Synthesis, Springer, NY, **1986**, pp. 443–504. See also, Barluenga, J.; Perez-Prieto, J.; Asensio, G. Tetrahedron **1990**, 46, 2453.

³⁷¹Takaki, K.; Koshoji, G.; Komeyama, K.; Takeda, M.; Shishido, T.; Kitani, A.; Takehira, K. J. Org. Chem. **2003**, 68, 6554.

³⁷²Kazankova, M.A.; Efimova, I.V.; Kochetkov, A.N.; Atanas'ev, V.V.; Beletskaya, I.P.; Dixneuf, P.H. *Synlett* **2001**, 497.

and a nickel catalyst. to give the alkyl phosphine³⁷³ Silylphosphines (R₃Si–PAr₂) react with alkenes and Bu₄NF to give the anti-Markovnikov ally phosphine.³⁷⁴ Phosphine oxides can be prepared by the reaction of an aryl substituted alkene and diphenylphosphine oxide, Ph₂P(=O)H.³⁷⁵ Diphenylphosphine oxide also reacted with terminal alkynes to give the anti-Markovnikov vinyl phosphine oxide using a rhodium catalyst.³⁷⁶ Phosphonate esters were similar prepared from alkenes and diethyl phosphite, (EtO₂)P(=O)H, and a manganese catalyst in a reaction exposed to oxygen.³⁷⁷ Similar addition was observed in the reaction of an alkene with NaH₂PO₂ to give the phosphinate, RCH=CH₂ \rightarrow RCH₂CH₂PH(=O)ONa.³⁷⁸ Palladium catalysts were used for the preparation of similar compounds from alkenes³⁷⁹ and the reaction of terminal alkynes with dimethyl phosphite and a nickel catalyst gave the Markovnikov vinyl phosphonate ester.³⁸⁰ Other phosphites were added to dienes to give an allylic phosphonate ester using a palladium catalyst.³⁸¹ Diarylphosphines react with vinyl ethers and a nickel catalyst to give α -alkoxy phosphonate esters.³⁸²

OS I, 196; III, 91, 93, 244, 258; IV, 146, 205; V, 39, 575, 929; VI, 75, 943; VIII,188, 190, 536; 80, 75. See also, OS VI, 932.

15-9 Addition of Amides

Hydro-amido-addition

$$C = C + RHN \stackrel{O}{\underset{R^1}{\longleftarrow}} \xrightarrow{CH^-C^-N} R^1$$

Under certain conditions, amides can add directly to alkenes to form *N*-alkylated amides. Sulfonamides react in a similar manner. 3-Pentenamide was cyclized to 5-methyl-2-pyrrolidinone by treatment with trifluorosulfonic acid.³⁸³ Acyl hydrazine derivatives also cyclized in the presence of hypervalent iodine reagents to give lactams.³⁸⁴ When a carbamate was treated with Bu₃SnH, and AIBN, addition to an alkene led to a bicyclic lactam.³⁸⁵

- ³⁷⁵Bunlaksananusorn, T.; Knochel, P. J. Org. Chem. 2004, 69, 4595; Rey, P.; Taillades, J.; Rossi, J.C.; Gros, G. *Tetrahedron Lett.* 2003, 44, 6169.
- ³⁷⁶Han, L.-B.; Zhao, C.-Q.; Tanaka, M. J. Org. Chem. 2001, 66, 5929.
- ³⁷⁷Tayama, O.; Nakano, A.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 5494.
- ³⁷⁸Deprèle, S.; Montchamp, J.-L. J. Org. Chem. 2001, 66, 6745.
- ³⁷⁹Deprèle, S.; Montchamp, J.-L. J. Am. Chem. Soc. 2002, 124, 9386.
- ³⁸⁰Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am. Chem. Soc. 2004, 126, 5080.
- ³⁸¹Mirzaei, F.; Han, L.-B.; Tanaka, M. Tetrahedron Lett. 2001, 42, 297.
- ³⁸²Kazankova, M.A.; Shulyupin, M.O.; Beletskaya, I.P. Synlett 2003, 2155.
- ³⁸³Marson, C.M.; Fallah, A. Tetrahedron Lett. 1994, 35, 293.
- ³⁸⁴Scartozzi, M.; Grondin, R.; Leblanc, Y. Tetrahedron Lett. 1992, 33, 5717.
- ³⁸⁵Callier, A.-C.; Quiclet-Sire, B.; Zard, S.Z. Tetrahedron Lett. 1994, 35, 6109.

³⁷³Shulyupin, M.O.; Kazankova, M.A.; Beletskaya, I.P. Org. Lett., 2002, 4, 761.

³⁷⁴Hayashi, M.; Matsuura, Y.; Watanabe, Y. Tetrahedron Lett. 2004, 45, 9167.

The reaction can be done intramolecularly. *N*-Benzyl pent-4-ynamide reacted with tetrabutylammonium fluoride to an alkylidene lactam.³⁸⁶ Similar addition of a tosylamide-alkene, with a palladium catalyst, led to a vinyl *N*-tosyl pyrrolidine.³⁸⁷ Similar cyclization reactions occur with tosylamide-alkynes.³⁸⁸

Treatment of triflamide alkenes with triflic acid gives the corresponding *N*-triflyl cyclic amine.³⁸⁹ Using an alkene halide and an *N*-chlorosulfonamide, an amide is generated *in situ*, and addition to the alkene gives a pyrrolidine derivative.³⁹⁰ *N*-Bromocarbamates also add to alkenes, in the presence of BF₃•OEt₂ to give a *vic*-bromo *N*-Boc amine.³⁹¹ The titanium catalyzed reaction of alkenyl *N*-tosylamines give *N*-tosyl cyclic amines.³⁹²

Alkynes and allenes also react with amides. Phenylthiomethyl alkynes were converted to *N*-Boc-*N*-phenylthio allenes with Boc azide and an iron catalyst.³⁹³ The palladium-catalyzed reaction of an allene amide, with iodobenzene, leads to *N*-sulfonyl aziridines having an allylic group at C1.³⁹⁴ Other allene *N*-tosylamines similarly give *N*-tosyl tetrahydropyridines.³⁹⁵

Imides can also add to alkenes or alkynes. Ethyl 2-propynoate reacted with phthalimide, in the presence of a palladium catalyst, to give ethyl 2-phthalimido-2-propenoate.³⁹⁶

15-10 Addition of Hydrazoic Acid

Hydro-azido-addition

Hydrazoic acid (HN₃) can be added to certain Michael-type substrates (Z is as defined on p. 1007) to give β -azido compounds.³⁹⁷ The reaction apparently fails if R

³⁸⁶Jacobi, P.A.; Brielmann, H.L.; Hauck, S.I. J. Org. Chem. 1996, 61, 5013.

³⁸⁷Larock, R.C.; Hightower, T.R.; Hasvold, L.A.; Peterson, K.P. J. Org. Chem. **1996**, 61, 3584; Harris, Jr., G.D.; Herr, R.J.; Weinreb, S.M. J. Org. Chem. **1993**, 58, 5452. See also, Pinho, P.; Minnaard, A.J.; Feringa, B.L. Org. Lett. **2003**, 5, 259.

³⁸⁸Luo, F.-T.; Wang, R.-T. Tetrahedron Lett. 1992, 33, 6835.

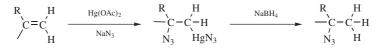
³⁸⁹Schlummer, B.; Hartwig, J.F. *Org. Lett.* **2002**, *4*, 1471; Haskins, C.M.; Knight, D.W. *Chem. Commun.* **2002**, 2724.

³⁹⁰Minakata, S.; Kano, D.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2002, 4, 2097.

³⁹¹Ś liwnń ska, A.; Zwierzak, A. Tetrahedron 2003, 59, 5927.

³⁹²Miura, K.; Hondo, T.; Nakagawa, T.; Takahashi, T.; Hosomi, A. Org. Lett. 2000, 2, 385.

³⁹³Bacci, J.P.; Greenman, K.L.; van Vranken, D.L. J. Org. Chem. 2003, 68, 4955.


³⁹⁴Ohno, H.; Toda, A.; Miwa, Y.; Taga, T.; Osawa, E.; Yamaoka, Y.; Fujii, N.; Ibuka, T. *J. Org. Chem.* **1999**, *64*, 2992.

³⁹⁵Rutjes, F.P.J.T.; Tjen, K.C.M.F.; Wolf, L.B.; Karstens, W.F.J.; Schoemaker, H.E.; Hiemstra, H. Org. Lett. **1999**, 1, 717; Na, S.; Yu, F.; Gao, W. J. Org. Chem. **2003**, 68, 5943; Ma. S.; Gao, W. Org. Lett. **2002**, 4, 2989.

³⁹⁶Trost, B.M.; Dake, G.R. J. Am. Chem. Soc. 1997, 119, 7595.

³⁹⁷Boyer, J.H. J. Am. Chem. Soc. **1951**, 73, 5248; Harvey, G.R.; Ratts, K.W. J. Org. Chem. **1966**, 31, 3907.
For a review, see Biffin, M.E.C.; Miller, J.; Paul, D.B., in Patai, S. The Chemistry of the Azido Group,
Wiley, NY, **1971**, pp. 120–136.

is phenyl. The HN₃ also adds to enol ethers CH_2 =CHOR to give CH_3 -CH(OR)N₃, and to silyl enol ethers,³⁹⁸ but it does not add to ordinary alkenes unless a Lewis acid catalyst, such as TiCl₄, is used, in which case good yields of azide can be obtained.³⁹⁸ Hydrazoic acid can also be added indirectly to ordinary alkenes by azidomercuration, followed by demercuration,³⁹⁹ analogous to the similar procedures

mentioned in **15-3**, **15-5**, **15-6**, and **15-8**. The method can be applied to terminal alkenes or strained cycloalkenes (e.g., norbornene) but fails for unstrained internal alkenes.

E. Hydrogen on Both Sides

15-11 Hydrogenation of Double and Triple Bonds⁴⁰⁰

Dihydro-addition

Most carbon–carbon double bonds, whether substituted by electron-donating or electron-withdrawing substituents, can be catalytically hydrogenated, usually in quantitative or near-quantitative yields.⁴⁰¹ Almost all known alkenes added hydrogen at temperatures between 0 and 275°C. The catalysts used can be divided into

³⁹⁸Hassner, A.; Fibiger, R.; Andisik, D. J. Org. Chem. 1984, 49, 4237.

³⁹⁹Heathcock, C.H. Angew. Chem. Int. Ed. **1969**, 8, 134. For a review, see Larock, R.C. Solvation/ Demercuration Reactions in Organic Synthesis, Springer, NY, **1986**, pp. 522–527.

⁴⁰⁰For a review, see Mitsui, S.; Kasahara, A., in Zabicky, J. *The Chemistry of Alkenes*, Vol. 2, Wiley, NY, **1970**, pp. 175–214. Also see, Smith, M.B. *Organic Synthesis*, 2nd ed., McGraw-Hill, NY, **2001**, pp. 369–382.

⁴⁰¹For books on catalytic hydrogenation, see Rylander, P.N. Hydrogenation Methods, Academic Press, NY, 1985; Catalytic Hydrogenation in Organic Synthesis, Academic Press, NY, 1979; Catalytic Hydrogenation over Platinum Metals, Academic Press, NY, 1967; Červený, L. Catalytic Hydrogenation, Elsevier, NY, 1986 (this book deals mostly with industrial aspects); Freifelder, M. Catalytic Hydrogenation in Organic Synthesis, Wiley, NY, 1978; Practical Catalytic Hydrogenation, Wiley, NY, 1971; Augustine, R.L. Catalytic Hydrogenation, Marcel Dekker, NY, 1965. For reviews, see Parker, D., in Hartley, F.R. The Chemistry of the Metal–Carbon Bond, Vol. 4, Wiley, NY, 1987, pp. 979–1047; Carruthers, W. Some Modern Methods of Organic Synthesis 3rd ed., Cambridge University Press, Cambridge, 1986, pp. 411–431; Colquhoun, H.M.; Holton, J.; Thompson, D.J.; Twigg, M.V. New Pathways for Organic Synthesis, Plenum, NY, 1984, pp. 266–300, 325–334; Kalinkin, M.I.; Kolomnikova, G.D.; Parnes, Z.N.; Kursanov, D.N. Russ. Chem. Rev. 1979, 48, 332; Candlin, J.P.; Rennie, R.A.C. in Bentley, K.W.; Kirby, G.W. Elucidation of Organic Structures by Physical and Chemical Methods, 2nd ed. (Vol. 4 of Weissberger, A. Techniques of Chemistry), pt. 2, Wiley, NY, 1973, pp. 97–117; House, H.O. Modern Synthetic Reactions, 2nd ed., W.A. Benjamin, NY, 1972, pp. 1–34.

two broad classes, both of which mainly consist of transition metals and their compounds: (1) catalysts insoluble in the reaction medium (heterogeneous cata*lysts*). Among the most effective are Raney nickel,⁴⁰² palladium-on-charcoal (perhaps the most common), 403 NaBH₄-reduced nickel⁴⁰⁴ (also called nickel boride), platinum metal or its oxide, rhodium, ruthenium, and zinc oxide.⁴⁰⁵ (2) Catalysts soluble in the reaction medium (homogeneous catalysts).⁴⁰⁶ An important example is chlorotris(triphenylphosphine)rhodium, RhCl(Ph₃P)₃,⁴⁰⁷ (**100**, *Wilkinson's catalvst*).⁴⁰⁸ which catalyzes the hydrogenation of many alkenyl compounds without disturbing such groups as COOR, NO₂, CN, or COR present in the same molecule.⁴⁰⁹ Even unsaturated aldehydes can be reduced to saturated aldehydes,⁴¹⁰ although in this case decarbonylation (14-32) may be a side reaction. In general, for catalytic hydrogenation, many functional groups may be present in the molecule, for example, OH, COOH, NR2 including NH2, N(R)COR' including carbamates,⁴¹¹ CHO, COR, COOR, or CN. Vinyl esters can be hydrogenated using homogeneous rhodium catalyst.⁴¹² Enamides are hydrogenated, with excellent enantioselectivity, using chiral rhodium catalysts.⁴¹³ Some of these groups are also susceptible to catalytic reduction, but it is usually possible to find conditions

⁴⁰³A recyclable Pd/CaCO₃ catalyst in polyethylene glycol (PEG) as been reported. See Chandrasekhar, S.; Narsihmulu, Ch.; Chandrashekar, G.; Shyamsunder, T. *Tetrahedron Lett.* **2004**, *45*, 2421.

⁴⁰⁴Paul, R.; Buisson, P.; Joseph, N. *Ind. Eng. Chem.* **1952**, *44*, 1006; Brown, C.A. *Chem. Commun.* **1969**, 952; *J. Org. Chem.* **1970**, *35*, 1900. For a review of reductions with nickel boride and related catalysts, see Ganem, B.; Osby, J.O. *Chem. Rev.* **1986**, *86*, 763.

⁴⁰⁵For reviews of hydrogenation with metal oxides, see Minachev, Kh.M.; Khodakov, Yu.S.; Nakhshunov, V.S. *Russ. Chem. Rev.* **1976**, *45*, 142; Kokes, R.J.; Dent, A.L. *Adv. Catal.* **1972**, *22*, 1 (ZnO).

⁴⁰⁶For a monograph, see James, B.R. *Homogeneous Hydrogenation*, Wiley, NY, *1973*. For reviews, see Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA *1987*, pp. 523–564; Birch, A.J.; Williamson, D.H. *Org. React. 1976*, *24*, 1; James, B.R. *Adv. Organomet. Chem. 1979*, *17*, 319; Harmon, R.E.; Gupta, S.K.; Brown, D.J. *Chem. Rev. 1973*, *73*, 21; Strohmeier, W. *Fortschr. Chem. Forsch. 1972*, *25*, 71; Heck, R.F. *Organotransition Metal Chemistry*, Academic Press, NY, *1974*, pp. 55–65; Rylander, P.N. *Organic Syntheses with Noble Metal Catalysts*, Academic Press, NY, *1973*, pp. 60–76; Lyons, J.E.; Rennick, L.E.; Burmeister, J.L. *Ind. Eng. Chem. Prod. Res. Dev. 1970*, *9*, 2; Vol'pin, M.E.; Kolomnikov, I.S. *Russ. Chem. Rev. 1969*, *38*, 273.

⁴⁰⁷Osborn, J.A.; Jardine, F.H.; Young, J.F.; Wilkinson, G. J. Chem. Soc, A 1966, 1711; Osborn, J.A.;
 Wilkinson, G. Inorg. Synth., 1967, 10, 67; Biellmann, J.F. Bull. Soc. Chim. Fr. 1968, 3055; van Bekkum,
 H.; van Rantwijk, F.; van de Putte, T. Tetrahedron Lett. 1969, 1.

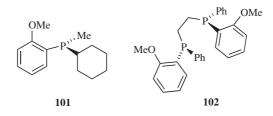
⁴⁰⁸For a review of Wilkinson's catalyst, see Jardine, F.H. Prog. Inorg. Chem. 1981, 28, 63–202.

⁴⁰⁹Harmon, R.E.; Parsons, J.L.; Cooke, D.W.; Gupta, S.K.; Schoolenberg, J. J. Org. Chem. **1969**, *34*, 3684.
 See also, Mohrig, J.R.; Dabora, S.L.; Foster, T.F.; Schultz, S.C. J. Org. Chem. **1984**, *49*, 5179.

⁴¹⁰Jardine, F.H.; Wilkinson, G. J. Chem. Soc. C 1967, 270.

⁴¹¹Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2000, 56, 8433.

⁴¹²Tang, W.; Liu, D.; Zhang, X Org. Lett. 2003, 5, 205.


⁴¹³Jia, X.; Guo, R.; Li, X.; Yao, X.; Chan, A.S.C. *Tetrahedron Lett.* 2002, *43*, 5541; Reetz, M.T.; Mehler, G.; Meiswinkel, A.; Sell, T. *Tetrahedron Lett.* 2002, *43*, 7941; Reetz, M.T.; Mehler, G. *Tetrahedron Lett.* 2003, *44*, 4593.

 $^{^{402}}$ For a review of Raney nickel, see Pizey, J.S. *Synthetic Reagents*, Vol. 2, Wiley, NY, **1974**, pp. 175–311. Double bonds have been reduced with Raney nickel alone; with no added H₂. The hydrogen normally present in this reagent was sufficient: Pojer, P.M. *Chem. Ind. (London)* **1986**, 177.

under which double bonds can be reduced selectively⁴¹⁴ (see Table 19.2). Controlling the solvent allows catalytic hydrogenation of an alkene in the presence of an aromatic nitro group.⁴¹⁵

Among other homogeneous catalysts are chlorotris(triphenylphosphine)hydridoruthenium(II), $(Ph_3P)_3RuClH$,⁴¹⁶ which is specific for terminal double bonds (other double bonds are hydrogenated slowly or not at all), and pentacyanocobaltate(II), $Co(CN)_5^{3-}$, which is effective for double and triple bonds only when they are part of conjugated systems⁴¹⁷ (the conjugation may be with C=C, C=O, or an aromatic ring). Colloidal palladium has also been used as a catalyst,⁴¹⁸ and a polymer bound ruthenium catalyst has also been used.⁴¹⁹ A polymer incarcerated palladium catalyst gave the hydrogenated product in quantitative yields.⁴²⁰ Rhodium on mesoporous silica can be used to hydrogenate alkenes.⁴²¹ A nanoparticulate palladium catalyst in an ionic liquid has been used for the hydrogenation of alkenes.⁴²²

Homogeneous catalysts often have the advantages of better catalyst reproducibility and better selectivity. They are also less susceptible to catalyst poisoning⁴²³ (heterogeneous catalysts are usually poisoned by small amounts of sulfur, often found in rubber stoppers, or by sulfur-containing compounds, such as thiols and sulfides).⁴²⁴ On the other hand, heterogeneous catalysts are usually easier to separate from the reaction mixture.

⁴¹⁴For a discussion, see Rylander, P.N. *Catalytic Hydrogenation over Platinum Metals*, Academic Press, NY, *1967*, pp. 59–120. Also see, Hudlický, M. *Reductions in Organic Chemistry*, Ellis Horwood Ltd., Chichester, *1984*.

⁴¹⁵Jourdant, A.; González-Zamora, E.; Zhu, J. J. Org. Chem. 2002, 67, 3163.

⁴¹⁶Hallman, P.S.; McGarvey, B.R.; Wilkinson, G. J. Chem. Soc. A **1968**, 3143; Jardine, F.H.; McQuillin, F.J. Tetrahedron Lett. **1968**, 5189.

⁴¹⁷Kwiatek, J.; Mador, I.L.; Seyler, J.K. J. Am. Chem. Soc. **1962**, 84, 304; Jackman, L.M.; Hamilton, J.A.; Lawlor, J.M. J. Am. Chem. Soc. **1968**, 90, 1914; Funabiki, T.; Matsumoto, M.; Tarama, K. Bull. Chem. Soc. Jpn. **1972**, 45, 2723; Reger, D.L.; Habib, M.M.; Fauth, D.J. Tetrahedron Lett. **1979**, 115.

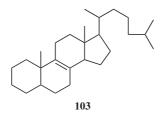
⁴¹⁸Fowley, L.A.; Michos, D.; Luo, X.-L.; Crabtree, R.H. Tetrahedron Lett. 1993, 34, 3075.

⁴¹⁹Taylor, R.A.; Santora, B.P.; Gagné, M.R. Org. Lett. 2000, 2, 1781.

⁴²⁰Okamoto, K.; Akiyama, R.; Kobayashi, S. J. Org. Chem. 2004, 69, 2871. See also, Bremeyer, N.; Ley, S.V.; Ramarao, C.; Shirley, I.M.; Smith, S.C. Synlett 2002, 1843.

421Crudden, C.M.; Allen, D.; Mikoluk, M.D.; Sun, J. Chem. Commun. 2001, 1154.

⁴²²In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Huang, J.; Jiang, T.; Han, B.; Gao, H.; Chang, Y.; Zhao, G.; Wu, W. *Chem. Commun.* 2003, 1654.


⁴²³Birch, A.J.; Walker, K.A.M. Tetrahedron Lett. 1967, 1935.

⁴²⁴For a review of catalyst poisoning by sulfur, see Barbier, J.; Lamy-Pitara, E.; Marecot, P.; Boitiaux, J.P.; Cosyns, J.; Verna, F. *Adv. Catal.* **1990**, *37*, 279–318.

1056 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Unfunctionalized alkenes are hydrogenated with good diastereoselectivity and enantioselectivity using various metal catalysts and chiral ligands.⁴²⁵ Soluble, chiral homogeneous catalysts are usually the best choice, especially for alkenes. The transition-metal catalyst (rhodium and ruthenium are probably the most common) is usually prepared with suitable chiral ligands prior to addition to the reaction, or an achiral catalyst, such as Wilkinson's catalyst, **100**: RhCl(Ph₃P)₃, is added along with a chiral ligand. The chiral ligand is typically a phosphine. In one case, the phosphorous may be chiral, as in **101** (called R-camp),⁴²⁶ but pyramidal inversion at elevated temperatures (see p. 142) limits the utility of such ligands. The alliterative is to prepare a phosphine containing a chiral carbon, and bis(phosphines), such as **102** (called dipamp)⁴²⁷ are the most common. There are many variations of chiral bis(phosphine) ligands. Mono-phosphine ligands have also been used.⁴²⁸ Titanocenes⁴²⁹ with chiral cyclopentadienyl ligands have given enantioselective hydrogenation of unfunctionalized alkenes, such as 2-phenyl-1-butene.⁴³⁰ Chiral poisoning has been used as a strategy for asymmetric catalysis.⁴³¹

Hydrogenations in most cases are carried out at room temperature and just above atmospheric pressure, but some double bonds are more resistant and require higher temperatures and pressures. The resistance is usually a function of increasing substitution and is presumably caused by steric factors. Trisubstituted double bonds require, say, 25°C and 100 atm, while tetrasubstituted double bonds may require 275° C and 1000 atm. Among

the double bonds most difficult to hydrogenate or which cannot be hydrogenated at all are those common to two rings, as in steroid **103**. Hydrogenations, even at about atmospheric pressure, are ordinarily performed in a special hydrogenator, but this is

⁴²⁶Knowles, W.S.; Sabacky, M.J.; Vineyard, B.D. Adv. Chem. Ser 1974, 132, 274.

 ⁴²⁵Zr: Troutman, M.V.; Appella, D.H.; Buchwald, S.L. J. Am. Chem. Soc. 1999, 121, 4916. Ir: Xu, G.;
 Gilbertson, S.R. Tetrahedron Lett. 2003, 44, 953; Tang, W.; Wang, W.; Zhang, X. Angew. Chem. Int. Ed. 2003, 42, 943; Cozzi, P.G.; Menges, F.; Kaiser, S. Synlett 2003, 833. Special ligands: Perry, M.C.; Cui, X.;
 Powell, M.T.; Hou, D.-R.; Reibenspies, J.H.; Burgess, K. J. Am. Chem. Soc. 2003, 125, 113.

 ⁴²⁷Brown, J.M.; Chaloner, P.A. J. Chem. Soc., Chem. Commun. 1980, 344; 1978, 321; Tetrahedron Lett.
 1978, 1877; J. Am. Chem. Soc. 1980, 102, 3040.

⁴²⁸Huang, H.; Zheng, Z.; Luo, H.; Bai, C.; Hu, X.; Chen, H. *J. Org. Chem.* **2004**, *69*, 2355; Hua, Z.; Vassar, V.C.; Ojima, I. *Org. Lett.* **2003**, *5*, 3831. For a review, see Jerphagnon, T.; Renaud, J.-L.; Bruneau, C. Tetrahedron Asymmetry **2004**, *15*, 2101.

⁴²⁹Burk, M.J.; Gross, M.F. Tetrahedron Lett. 1994, 35, 9363.

 ⁴³⁰Halterman, R.L.; Vollhardt, K.P.C.; Welker, M.E.; Bläser, D.; Boese, R. J. Am. Chem. Soc. 1987, 109, 8105; Lee, N.E.; Buchwald, S.L. J. Am. Chem. Soc. 1994, 116, 5985.

⁴³¹Faller, J.W.; Parr, J. J. Am. Chem. Soc. 1993, 115, 804.

not always necessary. Both the catalyst and the hydrogen can be generated *in situ*, by treatment of H_2PtCl_6 or RhCl₃ with NaBH₄,⁴³² ordinary glassware can then be used. The great variety of catalysts available often allows an investigator to find one that is highly selective. For example, the catalyst Pd(salen) encapsulated in zeolites permitted the catalytic hydrogenation of 1-hexene in the presence of cyclohexene.⁴³³ It has been shown that the pressure of the reaction can influence enantioselectivity in asymmetric catalytic hydrogenations.⁴³⁴

Triple bonds can be reduced, either by catalytic hydrogenation or by the other methods mentioned in the following two sections. The comparative reactivity of triple and double bonds depends on the catalyst. With most catalysts (e.g., Pd), triple bonds are hydrogenated more easily, and therefore it is possible to add just 1 equivalent of hydrogen and reduce a triple bond to a double bond (usually a stereoselective syn addition) or to reduce a triple bond without affecting a double bond present in the same molecule.⁴³⁵ A particularly good catalyst for this purpose is the Lindlar catalyst (Pd-CaCO₃–PbO).⁴³⁶ An alternative catalyst used for selective hydrogenation to cisalkenes is palladium on barium sulfate (BaSO₄) catalyst, poisoned with quinoline⁴³⁷ (sometimes called the *Rosenmund catalyst*). Palladium on calcium carbonate in polyethylene glycol (PEG) has also bee used as a recyclable catalyst system.⁴³⁸ Hydrogenation using a palladium catalyst on pumice was shown to give the cisalkene with excellent selectivit.⁴³⁹ Hydrogenation of a C \equiv C unit occurs in the presence of other functional groups, including NR₂ including NH₂,⁴⁴⁰ and sulfonyl.⁴⁴¹

⁴³²Brown, C.A.; Sivasankaran, K. J. Am. Chem. Soc. **1962**, 84, 2828; Brown, C.A.; Brown, H.C. J. Am. Chem. Soc. **1962**, 84, 1494, 1945, 2829; J. Org. Chem. **1966**, 31, 3989.

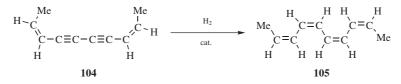
⁴³³Kowalak, S.; Weiss, R.C.; Balkus Jr., K.J. J. Chem. Soc., Chem. Commun. 1991, 57.

 ⁴³⁴Sun, Y.; Landau, R.N.; Wang, J.; LeBlond, C.; Blackmond, D.G. J. Am. Chem. Soc. 1996, 118, 1348.
 ⁴³⁵For reviews of the hydrogenation of alkynes, see Hutchins, R.O.; Hutchins, M.G.K., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C pt. 1, Wley, NY, 1983, pp. 571–601; Marvell, E.N.; Li, T. Synthesis 1973, 457; Gutmann, H.; Lindlar, H., in Viehe, H.G. Acetylenes, Marcel Dekker, NY, 1969, pp. 355–363.

 ⁴³⁶Lindlar, H.; Dubuis, R. *Org. Synth. V*, 880. See also, Rajaram, J.; Narula, A.P.S.; Chawla, H.P.S.; Dev,
 S. *Tetrahedron* 1983, 39, 2315; McEwen, A.B.; Guttieri, M.J.; Maier, W.F.; Laine, R.M.; Shvo, Y. J. Org. Chem. 1983, 48, 4436.

⁴³⁷Cram, D.J.; Allinger, N.L. J. Am. Chem. Soc. 1956, 78, 2518; Rosenmund, K.W. Ber. 1918, 51, 585; Mosettig, E.; Mozingo, R. Org. React. 1948, 4, 362.

⁴³⁸Chandrasekhar, S.; Narsihmulu, Ch.; Chandrashekar, G.; Shyamsunder, T. *Tetrahedron Lett.* **2004**, *45*, 2421.


 ⁴³⁹Gruttadauria, M.; Noto, R.; Deganello, G.; Liotta, L.F. *Tetrahedron Lett.* 1999, 40, 2857; Gruttadauria, M.; Liotta, L.F.; Noto, R.; Deganello, G. *Tetrahedron Lett.* 2001, 42, 2015.

⁴⁴⁰Campos, K.R.; Cai, D.; Journet, M.; Kowal, J.J.; Larsen, R.D.; Reider, P.J. *J. Org. Chem.* **2001**, *66*, 3634.

⁴⁴¹Zhong, P.; Huang, X.; Ping-Guo, M. Tetrahedron 2000, 56, 8921.

Conjugated dienes can add hydrogen by 1,2- or 1,4-addition. Selective 1,4-addition can be achieved by hydrogenation in the presence of carbon monoxide, with bis(cyclopentadienyl)chromium as catalyst.⁴⁴² With allenes⁴⁴³ catalytic hydrogenation usually reduces both double bonds.

Most catalytic reductions of double or triple bonds, whether heterogeneous or homogeneous, have been shown to be syn, with the hydrogens entering from the less-hindered side of the molecule.⁴⁴⁴ Stereospecificity can be investigated only for tetrasubstituted alkenes (except when the reagent is D_2), which are the hardest to hydrogenate, but the results of these investigations show that the addition is usually 80–100% syn, although some of the anti addition product is normally also found and in some cases predominates. Catalytic hydrogenation of alkynes is nearly always stereoselective, giving the cis alkene (usually at least 80%), even when it is thermodynamically less stable. For example, **104** gave **105**, even although the steric hindrance is such that a planar molecule is impossible.⁴⁴⁵ This is thus a useful method for preparing cis alkenes.

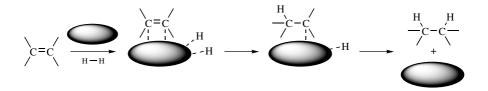
steric hindrance is too great, the trans alkene may be formed. One factor that complicates the study of the stereochemistry of heterogeneous catalytic hydrogenation is that exchange of hydrogens takes place, as can be shown by hydrogenation with deuterium.⁴⁴⁷ Thus deuterogenation of ethylene produced all the possible deuterated ethylenes and ethanes (even C_2H_6), as well as HD.⁴⁴⁸ With 2-butene, it was found that double-bond migration, cis–trans isomerization, and even exchange of hydrogen with groups not on the double bond could occur; for example, $C_4H_2D_8$ and C_4HD_9 were detected on treatment of *cis*-2-butene with deuterium and a catalyst.⁴⁴⁹ Indeed, *alkanes* have been found to exchange with deuterium over a catalyst,⁴⁵⁰ and even without deuterium, for example, $CH_4 + CD_4 \rightarrow CHD_3 + CH_3D$

445 Holme, D.; Jones, E.R.H.; Whiting, M.C. Chem. Ind. (London) 1956, 928.

⁴⁴⁶For a catalyst that leads to trans alkenes, see Burch, R.R.; Muetterties, E.L.; Teller, R.G.; Williams, J.M. J. Am. Chem. Soc. **1982**, 104, 4257.

⁴⁴⁷For a review of the use of deuterium to study the mechanism of heterogeneous organic catalysis see Gudkov, B.S. *Russ. Chem. Rev.* **1986**, *55*, 259.

⁴⁴⁸Turkevich, J.; Schissler, D.O.; Irsa, P. J. Phys. Chem. 1951, 55, 1078.


⁴⁴⁹Wilson, J.N.; Otvos, J.W.; Stevenson, D.P.; Wagner, C.D. Ind. Eng. Chem. 1953, 45, 1480.

⁴⁵⁰For a review, see Gudkov, B.S.; Balandin, A.A. *Russ. Chem. Rev.* **1966**, *35*, 756. For an example of intramolecular exchange, see Lebrilla, C.B.; Maier, W.F. *Tetrahedron Lett.* **1983**, *24*, 1119. See also, Poretti, M.; Gäumann, T. *Helv. Chim. Acta* **1985**, *68*, 1160.

⁴⁴²Miyake, A.; Kondo, H. *Angew. Chem. Int. Ed.* **1968**, 7, 631. For other methods, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 403–404.

⁴⁴³For a review, see Schuster, H.F.; Coppola, G.M. *Allenes in Organoic Synthesis* Wiley, NY, **1984**, pp. 57–61. ⁴⁴⁴For a review of homogeneous hydrogenation directed to only one face of a substrate molecule, see Brown, J.M. *Angew. Chem. Int. Ed.* **1987**, 26, 190.

D in the gas phase, with a catalyst. All this makes it difficult to investigate the stereochemistry of heterogeneous catalytic hydrogenation.

The mechanism of the heterogeneous catalytic hydrogenation of double bonds is not thoroughly understood because it is a very difficult reaction to study.⁴⁵¹ Because the reaction is heterogeneous, kinetic data, although easy to obtain (measurement of decreasing hydrogen pressure), are difficult to interpret. Furthermore, there are the difficulties caused by the aforementioned hydrogen exchange. The currently accepted mechanism for the common two-phase reaction was originally proposed in 1934.⁴⁵² According to this, the alkene is adsorbed onto the surface of the metal, although the nature of the actual bonding is unknown,⁴⁵³ despite many attempts to elucidate it.⁴⁵⁴ In the 1934 work, the metallic site was indicated by an asterisk, but here we use O . For steric reasons it is apparent that adsorption of the alkene takes place with its less-hindered side attached to the catalyst surface, probably as an η^2 complex (see p. 116). The fact that addition of hydrogen is generally also from the less-hindered side indicates that the hydrogen too is probably adsorbed on the catalyst surface before it reacts with the alkene. It is likely that as the H_2 molecule is adsorbed on (coordinated to) the metal catalyst, cleavage occurs to give η^1 - coordinated hydrogen atoms (see p. \$\$\$). Note that this model suggest a single metal particle for coordination of the alkene and the hydrogen atoms, but the hydrogen atoms and the alkene could be coordinated to different metal particles. It has been shown that platinum catalyzes homolytic cleavage of hydrogen molecules.⁴⁵⁵ In the second step, one of the adsorbed (η^1 -coordinated) hydrogen atoms becomes attached to a carbon atom, creating in effect, an alkyl radical (which is still bound to the catalyst although only by one bond, probably η^1 -coordination). Transfer of a hydrogen atom to carbon opens a site on the metal catalyst for coordination to additional hydrogen atoms. Finally, another hydrogen atom (not necessarily the one originally connected to the first hydrogen) combines with the radical

⁴⁵⁴See, for example, McKee, D.W. J. Am. Chem. Soc. **1962**, 84, 1109; Ledoux, M.J. Nouv. J. Chim. **1978**, 2, 9; Bautista, F.M.; Campelo, J.M.; Garcia, A.; Guardeño, R.; Luna, D.; Marinas, J.M. J. Chem. Soc. Perkin Trans. 2, **1989**, 493.

⁴⁵⁵Krasna, A.I. J. Am. Chem. Soc. 1961, 83, 289.

⁴⁵¹For reviews, see Webb, G., in Bamford, CH.; Tipper, C.F.H. *Comprehensive Chemical Kinetics*, Vol. 20, Elsevier, NY, **1978**, pp. 1–121; Clarke, J.K.A.; Rooney, J.J. *Adv. Catal.* **1976**, 25, 125–183; Siegel, S. *Adv. Catal.* **1966**, *16*, 123–177; Burwell, Jr., R.L. *Chem. Eng. News* **1966**, *44*(*34*), 56–67.

⁴⁵²Horiuti, I.; Polanyi, M. Trans. Faraday Soc. 1934, 30, 1164.

⁴⁵³See, for example, Burwell, Jr., R.L.; Schrage, K. J. Am. Chem. Soc. 1965, 87, 5234.

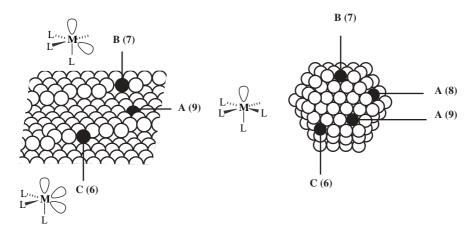


Fig. 15.1. The principal surface and particle sites for heterogeneous catalysts.

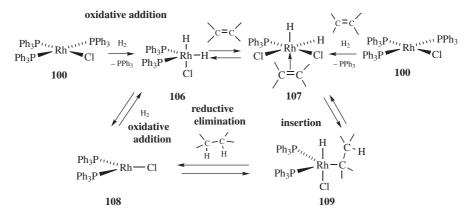
to give the reaction product, freed from the catalyst surface, and the metal catalyst that is now available for coordination of additional hydrogen atoms and/or alkenes. All the various side reactions, including hydrogen exchange and isomerism, can be explained by this type of process.⁴⁵⁶ Although this mechanism is satisfactory as far as it goes,⁴⁵⁷ there are still questions it does not answer, among them questions⁴⁵⁸ involving the nature of the asterisk, the nature of the bonding, and the differences caused by the differing nature of each catalyst.⁴⁵⁹

Heterogeneous catalysis occurs at the surface of the metal catalyst, and there are different types of metal particles on the surface. Maier suggested the presence of **terrace-**, **step-**, and **kink**-type atoms (in Fig. 6.1)⁴⁶⁰ on the surface of a heterogeneous catalyst. These terms refer to different atom types, characterized by the number of nearest neighbors,⁴⁶⁰ which correspond to different transition-metal fragments, as well as to different coordination states of that metal.⁴⁶¹ A terrace-type atom (A in Fig. 15.1) typically has eight or nine neighbors and corresponds to a geometry shown for the ML₅ particle. The step type of atom (B) usually has seven neighbors and can be correlated with the geometry shown for the ML₄

⁴⁵⁶Smith, G.V.; Burwell Jr., R.L. J. Am. Chem. Soc. 1962, 84, 925.

⁴⁵⁷A different mechanism has been proposed by Zaera, F.; Somorjai, G.A. J. Am. Chem. Soc. **1984**, 106, 2288, but there is evidence against it: Beebe, Jr., T.P.; Yates Jr., J.T. J. Am. Chem. Soc. **1986**, 108, 663. See also, Thomson, S.J.; Webb, G. J. Chem. Soc., Chem. Commun. **1976**, 526.

⁴⁵⁸For discussions, see Augustine, R.L.; Yaghmaie, F.; Van Peppen, J.F. J. Org. Chem. **1984**, 49, 1865; Maier, W.F. Angew. Chem. Int. Ed. **1989**, 28, 135.


⁴⁵⁹For a study of the detailed structure of Lindlar catalysts (which were shown to consist of seven distinct chemical phases), see Schlögl, R.; Noack, K.; Zbinden, H.; Reller, A. *Helv. Chim. Acta* **1987**, *70*, 627.

⁴⁶⁰Maier, W.F. Angew. Chem. Int. Ed. 1989, 28, 135.

⁴⁶¹Maier, W.F., in Rylander, P.N.; Greenfield, H.; Augustine, R.L. *Catalysis of Organic Reactions*, Marcel Dekker, NY, *1988*, pp. 211–231, Cf. p. 220.

particle. Finally, the kink-type atom (C) has six neighbors and corresponds to geometry shown for the ML_3 particle. In general, as the particle size increases, the relative concentration of terrace atoms will increase, whereas small particle size favors the kink type of surface atoms.

The mechanism of homogeneous hydrogenation⁴⁶² catalyzed by RhCl(Ph₃P)₃ (**100**, Wilkinson's catalyst)⁴⁶³ involves reaction of the catalyst with hydrogen to form a metal hydride (PPh₃)₂RhH₂Cl (**106**).⁴⁶⁴ Replacement of a triphenylphosphine ligand with two toms of hydrogen constitutes an oxidative addition.

After coordination of the alkene to form **107**, transfer of hydrogen to carbon is an insertion process, presumably generating **109**, and a second insertion liberates the hydrogenated compound, and rhodium species **108**, which adds hydrogen by oxidative addition to give **106**. Alternatively, replacement of triphenylphosphine can lead to **107**, with two hydrogen atoms and a η^2 -alkene complex. If a mixture of H₂ and D₂ is used, the product contains only dideuterated and non-deuterated compounds; no mono-deuterated products are found, indicating that (unlike the case of heterogeneous catalysis) H₂ or D₂ has been added to one alkene molecule and that no exchange takes place.³³⁰ Although conversion of **107** to the products takes place in two steps,⁴⁶⁵ the addition of H₂ to the double bond is syn, although bond rotation in **109** can lead to stereochemical mixtures.

The occurrence of hydrogen exchange and double-bond migration in heterogeneous catalytic hydrogenation means that the hydrogenation does not necessarily

⁴⁶²For reviews, see Crabtree, R.H. Organometallic Chemistry of the Transition Metals, Wiley, NY, **1988**, pp. 190–200; Jardine, F.H. in Hartley, F.R. The Chemistry of the Metal-Carbon Bond, Vol. 4, Wiley, NY, **1987**, pp. 1049–1071.

 ⁴⁶³Montelatici, S.; van der Ent, A.; Osborn, J.A.; Wilkinson, G. J. Chem. Soc. A 1968, 1054; Wink, D.;
 Ford, P.C. J. Am. Chem. Soc. 1985, 107, 1794; Koga, N.; Daniel, C.; Han, J.; Fu, X.Y.; Morokuma, K. J.
 Am. Chem. Soc. 1987, 109, 3455.

⁴⁶⁴Tolman, C.A.; Meakin, P.Z.; Lindner, D.L.; Jesson, J.P. J. Am. Chem. Soc. 1976, 96, 2762.

⁴⁶⁵Biellmann, J.F.; Jung, M.J. J. Am. Chem. Soc. **1968**, 90, 1673; Hussey, A.S.; Takeuchi, Y. J. Am. Chem. Soc. **1969**, 91, 672; Heathcock, C.H.; Poulter, S.R. Tetrahedron Lett. **1969**, 2755; Smith, G.V.; Shuford, D.J. J. Chem. Soc. **1969**, 91, 672; Heathcock, C.H.; Poulter, S.R. Tetrahedron Lett. **1969**, 2755; Smith, G.V.; Shuford, S.J. J. Chem. Soc. **1969**, 91, 672; Heathcock, C.H.; Poulter, S.R. Tetrahedron Lett. **1969**, 2755; Smith, G.V.; Shuford, S.J. J. Chem. Soc. **1968**, 90, 1673; Hussey, A.S.; Takeuchi, Y. J. Am. Chem. Soc. **1968**, 90, 1673; Hussey, A.S.; Takeuchi, Y. J. Am. Chem. Soc. **1969**, 91, 672; Heathcock, C.H.; Poulter, S.R. Tetrahedron Lett. **1969**, 2755; Smith, G.V.; Shuford, S.K. Tetrahedron Lett. **1969**, 2755; Smith, G.Y.; Shuford, S.K. Tetrahedron Lett. **1969**, 2755; Smith,

R.J. Tetrahedron Lett. 1970, 525; Atkinson, J.G.; Luke, M.O. Can. J. Chem. 1970, 48, 3580.

take place by straightforward addition of two hydrogen atoms at the site of the original double bond. Consequently, this method is not synthetically useful for adding D_2 to a double or triple bond in a regioselective or stereospecific manner. However, this objective can be achieved (with syn addition) by a homogeneous catalytic hydrogenation, which usually adds D_2 without scrambling⁴⁶⁶ or by the use of one of the diimide methods (**15-12**). Deuterium can also be regioselectively added by the hydroboration–reduction procedure previously mentioned.

Reductions of double and triple bonds are found at OS I, 101, 311; II, 191, 491; III, 385, 794; IV, 298, 304, 408; V, 16, 96, 277; VI, 68, 459; VII, 226, 287; VIII, 420. 609; IX, 169, 533.

Catalysts and apparatus for hydrogenation are found at OS I, 61, 463; II, 142; III, 176, 181, 685; V, 880; VI, 1007.

15-12 Other Reductions of Double and Triple Bonds

Although catalytic hydrogenation is the method most often used, double or triple bonds can be reduced by other reagents, as well. Among these are sodium in ethanol, sodium and *tert*-butyl alcohol in HMPA,⁴⁶⁷ lithium and aliphatic amines⁴⁶⁸ (see also, **15-13**), zinc and acids, sodium hypophosphate and Pd–C,⁴⁶⁹ (EtO)₃-SiHPd(OAc)₂,⁴⁷⁰ triethylsilane Et₃SiH and trifluoroacetic acid⁴⁷¹ or palladium chloride,⁴⁷² and hydroxylamine and ethyl acetate.⁴⁷³ Trialkylsilanes (R₃SiH) in conjunction with an acid will reduce double bonds.⁴⁷⁴ Siloxanes (RO₃SiH) and a ruthenium catalyst, followed by treatment with AgF convert alkynes to *trans*alkenes.⁴⁷⁵ Poly(methylhydrosiloxane) was used for reduction of conjugated alkenes using a copper carbene complex.⁴⁷⁶ Reduction of alkynes with silanes and a ruthenium catalyst, followed by treatment with CuI and Bu₄NF gave the

⁴⁷⁰Tour, J.M.; Pendalwar, S.L. Tetrahedron Lett. 1990, 31, 4719.

⁴⁷¹For a review, see Kursanov, D.N.; Parnes, Z.N.; Loim, N.M. *Synthesis* **1974**, 633. Also see, Doyle, M.P.; McOsker, C.C. *J. Org. Chem.* **1978**, 43, 693. For a monograph, see Kursanov, D.N.; Parnes, Z.N.; Kalinkin, M.I.; Loim, N.M. *Ionic Hydrogenation and Related Reactions*, Harwood Academic Publishers, Chur, Switzerland, **1985**.

⁴⁶⁶Biellmann, J.F.; Liesenfelt, H. Bull. Soc. Chim. Fr. **1966**, 4029; Birch, A.J.; Walker, K.A.M. Tetrahedron Lett. **1966**, 4939, J. Chem. Soc. C **1966**, 1894; Morandi, J.R.; Jensen, H.B. J. Org. Chem. **1969**, 34, 1889. See, however, Atkinson, J.G.; Luke, M.O. Can. J. Chem. **1970**, 48, 3580.

⁴⁶⁷Angibeaud, P.; Larchevêque, M.; Normant, H.; Tchoubar, B. *Bull. Soc. Chim. Fr.* **1968**, 595; Whitesides, G.M.; Ehmann, W.J. *J. Org. Chem.* **1970**, *35*, 3565.

⁴⁶⁸Benkeser, R.A.; Schroll, G.; Sauve, D.M. J. Am. Chem. Soc. 1955, 77, 3378.

⁴⁶⁹Sala, R.; Doria, G.; Passarotti, C. *Tetrahedron Lett.* **1984**, 25, 4565.

⁴⁷²Mirza-Aghayan, M.; Boukherroub, R.; Bolourtchian, M.; Hosseini, M. *Tetrahedron Lett.* 2003, 44, 4579.

⁴⁷³Wade, P.A.; Amin, N.V. Synth. Commun. 1982, 12, 287.

⁴⁷⁴Masuno, M.N.; Molinski, T.F. Tetrahedron Lett. 2001, 42, 8263.

⁴⁷⁵Fürstner, A.; Radkowski, K. Chem. Commun. 2002, 2182.

⁴⁷⁶Jurkauskas, V.; Sakighi, J.P.; Buchwald, S.L. Org. Lett. 2003, 5, 2417.

trans- alkene.⁴⁷⁷ Samarium iodide in water and a triamine additive led to reduction of alkenes.⁴⁷⁸ Similar reduction was reported using $Co_2(CO)_8$ and an excess of water in dimethoxyethane.⁴⁷⁹ Reduction of an alkyne to an alkene can be done via an organometallic, by heating the alkyne with indium metal in aqueous ethanol.⁴⁸⁰ Alkynes are reduced with palladium acetate and sodium ethoxide. In methanol the product is the alkane, whereas in THF the product is the cis-alkene.⁴⁸¹

In the above-mentioned reactions with hydrazine and hydroxylamine, the actual reducing species is diimide NH=NH, which is formed from N_2H_4 by the oxidizing agent and from NH₂OH by the ethyl acetate.⁴⁸² The rate of this reaction has been studied.⁴⁸³ Although both the syn and anti forms of diimide are produced, only the syn form reduces the double bond,⁴⁸⁴ at least in part by a cyclic mechanism:⁴⁸⁵

The addition is therefore stereospecifically syn⁴⁸⁶ and, like catalytic hydrogenation, generally takes place from the less-hindered side of a double bond, although not much discrimination in this respect is observed where the difference in bulk effects is small.⁴⁸⁷ Diimide reductions are most successful with symmetrical multiple bonds (C=C, C≡C, N=N) and are not useful for those inherently polar (C≡N, C=N, C=O, etc.). Diimide is not stable enough for isolation at ordinary temperatures, although it has been prepared⁴⁸⁸ as a yellow solid at −196°C. *N*-Arylsulfonylhydrazines bearing a phosphonate ester unit converted 1,1-diiodoalkenes (C=CI₂) to gem-diiodides, (CH−CHI₂).⁴⁸⁹

An indirect method⁴⁹⁰ of double-bond reduction involves hydrolysis of boranes (prepared by **15-16**). Trialkylboranes can be hydrolyzed by refluxing with carboxylic

⁴⁷⁸Dahlén, A.; Hilmersson, G. Tetrahedron Lett. 2003, 44, 2661.

⁴⁸¹Wei, L.-L.; Wei, L.-M.; Pan, W.-B.; Leou, S.-P.; Wu, M.-J. *Tetrahedron Lett.* 2003, 44, 1979.

Miller, C.E. J. Chem. Educ. 1965, 42, 254; House, H.O. Modern Synthetic Reaction, 2nd ed., W.A.

293; Hünig, S.; Müller, H.R.; Thier, W. Angew. Chem. Int. Ed. 1965, 4, 271.

- ⁴⁸⁴Aylward, F.; Sawistowska, M.H. J. Chem. Soc. 1964, 1435.
- ⁴⁸⁵van Tamelen, E.E.; Dewey, R.S.; Lease, M.F.; Pirkle, W.H. J. Am. Chem. Soc. 1961, 83, 4302; Willis,
- C.; Back, R.A.; Parsons, J.A.; Purdon, J.G. J. Am. Chem. Soc. 1977, 99, 4451.
- ⁴⁸⁶Corey, E.J.; Pasto, D.J.; Mock, W.L. J. Am. Chem. Soc. 1961, 83, 2957.
- ⁴⁸⁷van Tamelen, E.E.; Timmons, R.J. J. Am. Chem. Soc. 1962, 84, 1067.
- ⁴⁸⁸Wiberg, N.; Fischer, G.; Bachhuber, H. Chem. Ber. 1974, 107, 1456; Angew. Chem. Int. Ed. 1977, 16,
- 780. See also, Trombetti, A. Can. J. Phys. 1968, 46, 1005; Bondybey, V.E.; Nibler, J.W. J. Chem. Phys.
- 1973, 58, 2125; Craig, N.C.; Kliewer, M.A.; Shih, N.C. J. Am. Chem. Soc. 1979, 101, 2480.
- ⁴⁸⁹Cloarec, J.-M.; Charette, A.B. Org. Lett. 2004, 6, 4731.
- ⁴⁹⁰For a review, see Zweifel, G. Intra-Sci. Chem. Rep. 1973, 7(2), 181–189.

⁴⁷⁷Trost, B.M.; Ball, Z.T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922.

⁴⁷⁹Lee, H.-Y.; An, M. Tetrahedron Lett. 2003, 44, 2775.

⁴⁸⁰Ranu, B.C.; Dutta, J.; Guchhait, S.K. J. Org. Chem. 2001, 66, 5624.

⁴⁸²For reviews of hydrogenations with diimide, see Pasto, D.J.; Taylor, R.T. Org. React. 1991, 40, 91;

Benjamin, NY, 1972, pp. 248–256. For reviews of diimides, see Back, R.A. Rev. Chem. Intermed. 1984, 5,

⁴⁸³Nelson, D.J.; Henley, R.L.; Yao, Z.; Smith, T.D. *Tetrahedron Lett.* **1993**, *34*, 5835.

acids,⁴⁹¹ while monoalkylboranes, RBH₂, can be hydrolyzed with base.⁴⁹² Triple bonds can be similarly reduced, to cis alkenes.⁴⁹³ Further reduction is also possible. When an alkyne was treated with decaborane and Pd/C in methanol, two equivalents of hydrogen are transferred to give the alkane.⁴⁹⁴ Hydrogenation with Ni₂B on borohydride exchange resin (BER) has also been used.⁴⁹⁵ Reduction occurs *in situ* when an alkene is treated with NaBH₄, NiCl₂•6 H₂O with moist alumina.⁴⁹⁶ Reduction of alkenes occurs with *tert*-butylamine•borane complex in methanol with 10% Pd/C.⁴⁹⁷

Metallic hydrides, such as lithium aluminum hydride and sodium borohydride, do not in general reduce carbon–carbon double bonds, although this can be done in special cases where the double bond is polar, as in 1,1-diarylethenes⁴⁹⁸ and in enamines.⁴⁹⁹ Lithium aluminum hydride reduces cyclopropenes with a pendant alcohol in the allylic position to the corresponding cyclopropane.⁵⁰⁰

Triple bonds can also be selectively reduced to double bonds with diisobutylaluminum hydride (Dibal-H),⁵⁰¹ with activated zinc (see **12-38**),⁵⁰² with hydrogen and Bi₂B–borohydride exchange resin,⁵⁰³ or (internal triple bonds only) with alkali metals (Na, Li) in liquid ammonia or a low-molecular-weight amine.⁵⁰⁴ Terminal alkynes are not reduced by the Na–NH₃ procedure because they are converted to acetylide ions under these conditions. However, terminal triple bonds can be reduced to double bonds by the addition to the Na–NH₃ solution of (NH₄)₂SO₄, which liberates the free ethynyl group.⁵⁰⁵ The reaction of a terminal alkyne with

- 492 Weinheimer, A.J.; Marisco, W.E. J. Org. Chem. 1962, 27, 1926.
- ⁴⁹³Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. 1959, 81, 1512.
- ⁴⁹⁴Lee, S.H.; Park, Y.J.; Yoon, C.M. Tetrahedron Lett. 2000, 41, 887.
- ⁴⁹⁵Choi, J.; Yoon, N.M. Synthesis **1996**, 597.
- ⁴⁹⁶Yakabe, S.; Hirano, M.; Morimoto, T. Tetrahedron Lett. 2000, 41, 6795.

⁴⁹⁷Couturier, M.; Andresen, B.M.; Tucker, J.L.; Dubé, P.; Brenek, S.J.; Negri, J.J. *Tetrahedron Lett.* 2001, 42, 2763.

⁴⁹⁸See Granoth, I.; Segall, Y.; Leader, H.; Alkabets, R. J. Org. Chem. 1976, 41, 3682.

⁴⁹⁹For a review of the reduction of enamines and indoles with NaBH₄ and a carboxylic acid, see Gribble, G.W.; Nutaitis, C.F. *Org. Prep. Proced. Int.* **1985**, *17*, 317. Enamines can also be reduced by formic acid; see Nilsson, A.; Carlson, R. *Acta Chem. Scand. Sect. B* **1985**, *39*, 187.

⁵⁰⁰Zohar, E.; Marek, I. Org. Lett. 2004, 6, 341.

- ⁵⁰⁴For a list of methods of reducing triple to double bonds, with syn or anti addition, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 405–410.
- ⁵⁰⁵Henne, A.L.; Greenlee, K.W. J. Am. Chem. Soc. 1943, 65, 2020.

⁴⁹¹Brown, H.C.; Murray, K.J. *Tetrahedron* 1986, 42, 5497; Kabalka, G.W.; Newton, Jr., R.J.; Jacobus, J. J. Org. Chem. 1979, 44, 4185.

⁵⁰¹Wilke, G.; Müller, H. *Chem. Ber.* **1956**, *89*, 444, *Liebigs Ann. Chem.* **1960**, *629*, 224; Gensler, W.J.; Bruno, J.J. J. Org. Chem. **1963**, *28*, 1254; Eisch, J.J.; Kaska, W.C. J. Am. Chem. Soc. **1966**, *88*, 2213. For a catalyst with even better selectivity for triple bonds, see Ulan, J.G.; Maier, W.F.; Smith, D.A. J. Org. Chem. **1987**, *52*, 3132.

⁵⁰²Aerssens, M.H.P.J.; van der Heiden, R.; Heus, M.; Brandsma, L. Synth. Commun. 1990, 20, 3421; Chou, W.; Clark, D.L.; White, J.B. Tetrahedron Lett. 1991, 32, 299. See Sakai, M.; Takai, Y.; Mochizuki, H.; Sasaki, K.; Sakakibara, Y. Bull. Chem. Soc. Jpn. 1994, 67, 1984 for reduction with a NiBr₂–Zn reagent.

⁵⁰³Choi, J.; Yoon, N.M. Tetrahedron Lett. 1996, 37, 1057.

lithium naphthalenide and NiCl₂ effectively reduced the alkyne unit (i.e., PhC \equiv CH \rightarrow PhCH₂CH₃).⁵⁰⁶ This reagent is also effect for the reduction of simple alkenes.⁵⁰⁷ A mixture of NaBH₄ and BiCl₃ also reduced certain alkenes⁵⁰⁸ and An alkyne unit was reduced to an alkene, in the presence of a phenylthio group elsewhere in the molecule, using Cp₂Zr(H)Cl.⁵⁰⁹

Reduction of just one double bond of an allene, to give an alkene, has been accomplished by treatment with Na $-NH_3^{510}$ or with Dibal-H,⁵¹¹ and by hydrogenation with RhCl(PPh₃)₃ as catalyst.⁵¹²

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (**15-13**).⁵¹³ The reduction with trifluoroacetic acid and Et₃SiH has an ionic mechanism, with H⁺ coming in from the acid and H⁻ from the silane.²⁹⁰ In accord with this mechanism, the reaction can be applied only to those alkenes, which when protonated can form a tertiary carbocation or one stabilized in some other way, for example, by a OR substitution.⁵¹⁴ It has been shown, by the detection of CIDNP, that reduction of α -methylstyrene by hydridopentacarbonylmanganese(I), HMn(CO)₅, involves free-radical addition.⁵¹⁵

Catalytic hydrogenation of triple bonds and the reaction with Dibal-H usually give the cis-alkene (15-11). Most of the other methods of triple-bond reduction lead to the more thermodynamically stable trans alkene. However, this is not the case with the method involving hydrolysis of boranes or with the reductions with activated zinc, hydrazine, or NH_2OSO_3H , which also give the cis products.

The fact that ordinary double bonds are inert toward metallic hydrides is quite useful, since it permits reduction of, say, a carbonyl or nitro group, without disturbing a double bond in the same molecule (see Chapter 19 for a discussion of selectivity in reduction reactions). Sodium in liquid ammonia also does not reduce ordinary double bonds,⁵¹⁶ although it does reduce alkynes, allenes, conjugated dienes,⁵¹⁷ and aromatic rings (**15-13**).

⁵⁰⁶Alonso, F.; Yus, M. Tetrahedron Lett. 1997, 38, 149.

⁵⁰⁷Alonso, F.; Yus, M. Tetrahedron Lett. 1996, 37, 6925.

⁵⁰⁸Ren, P.-D.; Pan, S.-F.; Dong, T.-W.; Wu, S.-H. Synth. Commun. 1996, 26, 763.

⁵⁰⁹Lipshutz, B.H.; Lindsley, C.; Bhandari, A. Tetrahedron Lett. 1994, 35, 4669.

⁵¹⁰Gardner, P.D.; Narayana, M. J. Org. Chem. **1961**, 26, 3518; Vaidyanathaswamy, R.; Joshi, G.C.; Devaprabhakara, D. Tetrahedron Lett. **1971**, 2075.

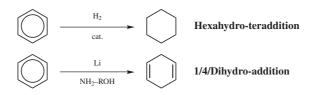
⁵¹²Bhagwat, M.M.; Devaprabhakara, D. Tetrahedron Lett. 1972, 1391.

⁵¹³For a review of the steric course of this reaction, see Toromanoff, E. *Bull. Soc. Chim. Fr.* **1987**, 893–901. For a review of this reaction as applied to α,β -unsaturated ketones, see Russell, G.A., in Patai, S.; Rappoport, Z. *The Chemistry of Enones*, pt. 2, Wiley, NY, **1989**, pp. 471–512.

⁵¹⁴Parnes, Z.N.; Bolestova, G.I.; Kursanov, D.N. *Bull. Acad. Sci. USSR Div. Chem. Sci.* 1972, 21, 1927.
 ⁵¹⁵Sweany, R.L.; Halpern, J. J. Am. Chem. Soc. 1977, 99, 8335. See also, Thomas, M.J.; Shackleton, T.A.;
 Wright, S.C.; Gillis, D.J.; Colpa, J.P.; Baird, M.C. J. Chem. Soc., Chem. Commun. 1986, 312; Garst, J.F.;
 Bockman, T.M.; Batlaw, R. J. Am. Chem. Soc. 1986, 108, 1689; Bullock, R.M.; Samsel, E.G. J. Am. Chem. Soc. 1987, 109, 6542.

⁵¹⁶There are some exceptions. See, for example, Butler, D.N. *Synth. Commun.* **1977**, *7*, 441, and references cited therein.

⁵¹⁷For a review of reductions of α , β -unsaturated carbonyl compounds with metals in liquid NH₃, see Caine, D. *Org. React.* **1976**, 23, 1–258.


⁵¹¹Montury, M.; Goré, J. Tetrahedron Lett. 1980, 21, 51.

Another hydrogenation method is called *transfer hydrogenation*.⁵¹⁸ In this method the hydrogen comes from another organic molecule, which is itself oxidized. A transition-metal catalyst, heterogeneous or homogeneous, is frequently employed. Dendritic catalysts have been used for asymmetric transfer hydrogenation.⁵¹⁹ A common reducing agent is cyclohexene, which, when a palladium catalyst is used, is oxidized to benzene, losing 2 mol of hydrogen.

Enantioselective reduction of certain alkenes has also been achieved by reducing with baker's yeast. 520

Reductions of double and triple bonds are found at OS III, 586, 742; IV, 136, 302, 887; V, 281, 993; VII, 524; 80, 120.

15-13 Hydrogenation of Aromatic Rings

Aromatic rings can be reduced by catalytic hydrogenation,⁵²¹ but higher temperatures (100–200°C) are required than for ordinary double bonds.⁵²² although the reaction is usually carried out with heterogeneous catalysts, homogeneous catalysts have also been used; conditions are much milder with these.⁵²³ Mild conditions are also successful in hydrogenations with phase transfer catalysts.⁵²⁴ Hydrogenation in ionic liquids is known,⁵²⁵ and also hydrogenation in supercritical ethane containing water.⁵²⁶ Many functional groups, such as OH, O⁻, COOH, COOR, NH₂, do not interfere with the reaction, but some groups may be preferentially reduced. Among these are CH₂OH groups, which undergo hydrogenolysis to CH₃ (**19-54**). Phenols may be reduced to cyclohexanones, presumably through the enol. Heterocyclic compounds are often reduced. Thus furan gives THF. The

⁵²⁰See, for example, Ferraboschi, P.; Reza-Elahi, S.; Verza, E.; Santaniello, E. *Tetrahedron Asymmetry* **1999**, 10, 2639. For reviews of baker's yeast, see Csuk, R.; Glänzer, B.I. *Chem. Rev.* **1991**, 91, 49; Servi, S. *Synthesis* **1990**, 1.

⁵²¹For reviews, see Karakhanov, E.A.; Dedov, A.G.; Loktev, A.S. Russ. Chem. Rev. 1985, 54, 171.

⁵²²For a highly active heterogeneous Rh catalyst, see Timmer, K.; Thewissen, D.H.M.W.; Meinema, H.A.; Bulten, E.J. *Recl. Trav. Chim. Pays-Bas* **1990**, *109*, 87.

⁵²³For reviews, see Bennett, M. *CHEMTECH* **1980**, *10*, 444–446; Muetterties, E.L.; Bleeke, J.R. Acc. Chem. Res. **1979**, *12*, 324. See also, Tsukinoki, T.; Kanda, T.; Liu, G.-B.; Tsuzuki, H.; Tashiro, M. Tetrahedron Lett. **2000**, *41*, 5865.

⁵²⁴Januszkiewicz, K.R.; Alper, H. Organometallics 1983, 2, 1055.

⁵²⁵In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Dyson, P.J.; Ellis, D.J.; Parker, D.G.; Welton, T. *Chem. Commun.* **1999**, 25.

⁵²⁶Bonilla, R.J.; James, B.R.; Jessop, P.G. Chem. Commun. 2000, 941.

⁵¹⁸For reviews, see Johnstone, R.A.W.; Wilby, A.H.; Entwistle, I.D. *Chem. Rev.* **1985**, 85, 129; Brieger, G.; Nestrick, T.J. *Chem. Rev.* **1974**, 74, 567.

⁵¹⁹Chen, Y.-C.; Wu, T.-F.; Deng, J.-G.; Liu, H.; Cui, X.; Zhu, J.; Kiang, Y.-Z.; Choi, M.C.K.; Chan, A.S.C. *J. Org. Chem.* **2002**, *67*, 5301.

nitrogen-containing ring of quinolines is reduced by hydrogenation using iodine and an iridium catalyst.⁵²⁷ Catalytic hydrogenation of the five-membered ring in indole derivatives using a chiral rhodium catalyst gave hydroindoles with excellent enantioselectivity.⁵²⁸

With benzene rings it is usually impossible to stop the reaction after only one or two bonds have been reduced, since alkenes are more easily reduced than aromatic rings.⁵²⁹ Thus, 1 equivalent of benzene, treated with 1 equivalent of hydrogen, gives no cyclohexadiene or cyclohexene, but $\frac{1}{3}$ equivalent of cyclohexane and $\frac{2}{3}$ equivalent of recovered benzene. This is not true for all aromatic systems. With anthracene, for example, it is easy to stop after only the 9,10-bond has been reduced (see p. 59). Hydrogenation of phenol derivatives can lead to conjugated cyclohexenones.⁵³⁰ Hydrogenation of toluene in an ionic liquid using a ruthenium catalyst gave methyl-cyclohexane.⁵³¹

When aromatic rings are reduced by lithium (or potassium or sodium) in liquid ammonia (such reductions are known as *dissolving metal reductions*), usually in the presence of an alcohol (often ethyl, isopropyl, or *tert*-butyl alcohol), 1,4-addition of hydrogen takes place and nonconjugated cyclohexadienes are produced.⁵³² This reaction is called the *Birch reduction*.⁵³³ Heterocycles, such as pyrroles, ⁵³⁴ furans, ⁵³⁵ pyridines, ⁵³⁶ and indolones, ⁵³⁷ can be reduced using Birch reduction. Ammonia obtained commercially often has iron salts as impurities that lower the yield in the Birch reduction. Therefore it is often necessary to distill the ammonia. When substituted aromatic compounds are subjected to the Birch reduction, electron-donating groups, such as alkyl or alkoxyl decrease the rate of the reaction and are generally found on the nonreduced positions of the product. For example, anisole gives 1-methoxy-1,4-cyclohexadiene, not 3-methoxy-1,4-cyclohexadiene. On the other hand, electron-withdrawing groups, such as COOH or CONH₂,

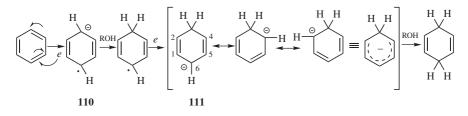
⁵³¹In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Boxwell, C.J.; Dyson, P.J.; Ellis, D.J.; Welton, T. J. Am. Chem. Soc. **2002**, 124, 9334.

 ⁵²⁷Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
 ⁵²⁸Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.; Kurokawa, T.; Ito, Y. Org. Lett. 2004, 6, 2213.

⁵²⁹For an indirect method of hydrogenating benzene to cyclohexene, see Harman, W.D.; Taube, H. *J. Am. Chem. Soc.* **1988**, *110*, 7906.

⁵³⁰Higashijima, M.; Nishimura, S. Bull. Chem. Soc. Jpn. 1992, 65, 824.

⁵³²For a procedure that converts benzene to pure 1,4-cyclohexadiene, see Brandsma, L.; van Soolingen, J.; Andringa, H. Synth. Commun. **1990**, 20, 2165. Also see, Weitz, I.S.; Rabinovitz, M. J. Chem. Soc. Perkin Trans. 1, **1993**, 117.


⁵³³For a monograph, see Akhrem, A.A.; Reshotova, I.G.; Titov, Yu.A. Birch Reduction of Aromatic Compounds, Plenum, NY, 1972. For reviews, see Birch, A.J. Pure Appl. Chem. 1996, 68, 553; Rabideau, P.W. Tetrahedron 1989, 45, 1579; Birch, A.J.; Subba Rao, G. Adv. Org. Chem. 1972, 8, 1; Kaiser, E.M. Synthesis 1972, 391; Harvey, R.G. Synthesis 1970, 161; House, H.O. Modern Synthetic Reaction, 2nd ed., W.A. Benjamin, NY, 1972, pp. 145–150, 173–209; Hückel, W. Fortschr. Chem. Forsch. 1966, 6, 197; Smith, M., in Augustine, R.L. Reduction Techniques and Applications in Organic Synthesis, Marcel Dekker, NY, 1968, pp. 95–170.

⁵³⁴Donohoe, T.J.; House, D. J. Org. Chem. 2002, 67, 5015.

⁵³⁵Kinoshita, T.; Ichinari, D.; Sinya, J. J. Heterocyclic Chem. 1996, 33, 1313.

 ⁵³⁶Donohoe, T.J.; McRiner, A.J.; Helliwell, M.; Sheldrake, P. J. Chem. Soc., Perkin Trans. 1 2001, 1435.
 ⁵³⁷Guo, Z.; Schultz, A.G. J. Org. Chem. 2001, 66, 2154.

increase the reaction rate and are found on the reduced positions of the product.⁵³⁸ The regioselectivity of the reaction has been examined.⁵³⁹ The mechanism involves solvated electrons,⁵⁴⁰ which are transferred from the metal to the solvent, and hence to the ring:⁵⁴¹

The sodium becomes oxidized to Na⁺ and creates a radical ion (110).⁵⁴² There is a great deal of evidence from ESR spectra for these species.⁵⁴³ The radical ion accepts a proton from the alcohol to give a radical, which is reduced to a carbanion by another sodium atom. Finally, **111** accepts another proton. Thus the function of the alcohol is to supply protons, since with most substrates ammonia is not acidic enough for this purpose. In the absence of the alcohol, products arising from dimerization of **110** are frequently obtained. There is evidence⁵⁴⁴ at least with some substrates, for example, biphenyl, that the radical ion corresponding to **110** is converted to the carbanion corresponding to **111** by a different pathway, in which the order of the steps is reversed: first a second electron is gained to give a dianion,⁵⁴² which then acquires a proton, producing the intermediate corresponding to **111**.

Ordinary alkenes are usually unaffected by Birch-reduction conditions, and double bonds may be present in the molecule if they are not conjugated with the ring. However, phenylated alkenes, internal alkynes (**15-12**),⁵⁴⁵ and conjugated alkenes (with C=C or C=O) are reduced under these conditions.

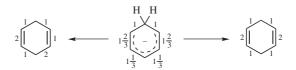
Note that **111** is a resonance hybrid; that is, we can write the two additional canonical forms shown. The question therefore arises: Why does the carbanion pick up a proton at the 6 position to give the 1,4-diene? Why not at the 2 position

⁵⁴¹Birch, A.J.; Nasipuri, D. *Tetrahedron* **1959**, *6*, 148.

⁵³⁸These regioselectivities have generally been explained by molecular-orbital considerations regarding the intermediates involved. For example, see Birch, A.J.; Hinde, A.L.; Radom, L. J. Am. Chem. Soc. **1980**, *102*, 3370, 4074, 6430; **1981**, *103*, 284; Zimmerman, H.E.; Wang, P.A. J. Am. Chem. Soc. **1990**, *112*, 1280. For methods of reversing the regioselectivities, see Epling, G.A.; Florio, E. Tetrahedron Lett. **1986**, *27*, 1469; Rabideau, P.W.; Karrick, G.L. *Tetrahedron Lett.* **1987**, *28*, 2481.

⁵³⁹Zimmerman, H.E.; Wang, P.A. J. Am. Chem. Soc. 1993, 115, 2205.

⁵⁴⁰For reviews of solvated electrons and related topics, see Dye, J.L. *Prog. Inorg. Chem.* **1984**, *32*, 327–441; Alpatova, N.M.; Krishtalik, L.I.; Pleskov, Y.V. *Top. Curr. Chem.* **1987**, *138*, 149–219.


⁵⁴²For a review of radical ions and diions generated from aromatic compounds, see Holy, N.L. *Chem. Rev.* **1974**, 74, 243.

⁵⁴³For example, see Jones, M.T., in Kaiser, E.T.; Kevan, L. *Radical Ions*, Wiley, NY, **1968**, pp. 245–274; Bowers, K.W. *Adv. Magn. Reson.*, **1965**, *1*, 317; Carrington, A. *Q. Rev. Chem. Soc.* **1963**, *17*, 67.

⁵⁴⁴Lindow, D.F.; Cortez, C.N.; Harvey, R.G. J. Am. Chem. Soc. **1972**, 94, 5406; Rabideau, P.W.; Peters, N.K.; Huser, D.L. J. Org. Chem. **1981**, 46, 1593.

⁵⁴⁵See Brandsma, L.; Nieuwenhuizen, W.F.; Zwikker, J.W. Mäeorg, U. Eur. J. Org. Chem. 1999, 775.

to give the 1,3-diene?⁵⁴⁶ An answer to this question has been proposed by Hine, who has suggested that this case is an illustration of the operation of the *principle* of least motion.⁵⁴⁷ According to this principle, "those elementary reactions will be favored that involve the least change in atomic position and electronic configuration."⁵⁴⁷ The principle can be applied to the case at hand in the following manner (simplified): The valence-bond bond orders (p. 32) for the six carbon–carbon bonds (on the assumption that each of the three forms contributes equally) are (going around the ring) $1\frac{2}{3}$, 1, 1, $1\frac{2}{3}$, $1\frac{1}{3}$, and $1\frac{1}{3}$. When the carbanion is converted to the diene, these bond orders change as follows:

It can be seen that the two bonds whose bond order is 1 are unchanged in the two products, but for the other four bonds there is a change. If the 1,4-diene is formed, the change is $\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$, while formation of the 1,3-diene requires a change of $\frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{1}{3}$. Since a greater change is required to form the 1,3-diene, the principle of least motion predicts formation of the 1,4-diene. This may not be the only factor, because the ¹³C NMR spectrum of **111** shows that the 6 position has a somewhat greater electron density than the 2 position, which presumably would make the former more attractive to a proton.⁵⁴⁸

Reduction of aromatic rings with lithium⁵⁴⁹ or calcium⁵⁵⁰ in amines (instead of ammonia: called *Benkeser reduction*) proceeds further and cyclohexenes are obtained. It is thus possible to reduce a benzene ring, by proper choice of reagent, so that one, two, or all three double bonds are reduced.⁵⁵¹ Lithium triethylborohydride (LiBEt₃H) has also been used, to reduce pyridine derivatives to piperidine derivatives.⁵⁵²

Transition metals and metal compounds can reduce aromatic rings in the proper medium. Indium metal reduces the pyridine ring in quinoline in aqueous ethanol solution⁵⁵³ as well as the C=C unit in the five-membered ring of indole

⁵⁴⁶For a discussion of this question, see Rabideau, P.W.; Huser, D.L. J. Org. Chem. 1983, 48, 4266.

 ⁵⁴⁷Hine, J. J. Org. Chem. 1966, 31, 1236. For a review of this principle, see Hine, J. Adv. Phys. Org. Chem. 1977, 15, 1. See also, Tee, O.S. J. Am. Chem. Soc. 1969, 91, 7144; Jochum, C.; Gasteiger, J.; Ugi, I. Angew. Chem. Int. Ed. 1980, 19, 495.

⁵⁴⁸Bates, R.B.; Brenner, S.; Cole, C.M.; Davidson, E.W.; Forsythe, G.D.; McCombs, D.A.; Roth, A.S. *J. Am. Chem. Soc.* **1973**, *95*, 926.

⁵⁴⁹Reggel, L.; Friedel, R.A.; Wender, I. J. Org. Chem. 1957, 22, 891; Benkeser, R.A.; Agnihotri, R.K.; Burrous, M.L.; Kaiser, E.M.; Mallan, J.M.; Ryan, P.W. J. Org. Chem. 1964, 29, 1313; Kwart, H.; Conley, R.A. J. Org. Chem. 1973, 38, 2011.

⁵⁵⁰Benkeser, R.A.; Belmonte, F.G.; Kang, J. J. Org. Chem. **1983**, 48, 2796. See also, Benkeser, R.A.; Laugal, J.A.; Rappa, A. *Tetrahedron Lett.* **1984**, 25, 2089.

⁵⁵¹One, two, or all three double bonds of certain aromatic nitrogen heterocycles can be reduced with metallic hydrides, such as NaBH₄ or LiAlH₄. For a review, see Keay, J.G. *Adv. Heterocycl. Chem.* **1986**, *39*, 1.


⁵⁵²Blough, B.E.; Carroll, F.I. Tetrahedron Lett. 1993, 34, 7239.

⁵⁵³Moody, C.J.; Pitts, M.R. Synlett 1998, 1029.

derivatives.⁵⁵⁴ Samarium iodide (SmI₂) reduces pyridine in aq. THF⁵⁵⁵ and phenol in MeOH/KOH.⁵⁵⁶ Ammonium formate and a Pd-C catalyst reduces pyridine *N*-oxide to piperidine in methanol.⁵⁵⁷ The nitrogen-containing ring of quinolines is reduced with an iridium catalyst in isopropanol.⁵⁵⁸

OS I, 99, 499; II, 566; III, 278, 742; IV, 313, 887, 903; V, 398, 400, 467, 591, 670, 743, 989; VI, 371, 395, 461, 731, 852, 856, 996; VII, 249.

15-14 Reduction Of The Double or Triple Bonds Conjugated to Carbonyls, Cyano, and so on.

In certain cases,⁵⁵⁹ metallic hydride reagents may also reduce double bonds in conjugation with C=O bonds, as well as reducing the C=O bonds, as in the conversion of cyclopentenone to cyclopentanol.⁵⁶⁰ The reagent NaBH₄ has a greater tendency than LiAlH₄ to effect this double reduction, although even with NaBH₄ the product of single reduction (of the C=O bond) is usually formed in larger amount than the doubly reduced product. Lithium aluminium hydride gives significant double reduction only in cinnamyl systems, for example, with PhCH=CHCOOH.⁵⁶¹ Lithium aluminium hydride also reduces the double bonds of allylic alcohols⁵⁶² and NaBH₄ in MeOH–THF⁵⁶³ or NaCNBH₃ on a zeolite⁵⁶⁴ reduces α,β -unsaturated nitro compounds to nitroalkanes. The C=C unit proximal to the carbonyl in dienyl amides is selectively reduced with NaBH₄/I₂.⁵⁶⁵ Mixed hydride reducing agents, such as NaBH₄–BiCl₃,⁵⁶⁶ NaBH₄–InCl₃,⁵⁶⁷ borohydride exchange resin (BER)–CuSO₄,⁵⁶⁸ and Dibal–Co(acac)₂⁵⁶⁹ have been

- ⁵⁵⁴Pitts, M.R.; Harrison, J.R.; Moody, C.J. J. Chem. Soc., Perkin Trans. 1, 2001, 955.
- ⁵⁵⁵Kamochi, Y.; Kudo, T. Heterocycles 1993, 36, 2383.
- ⁵⁵⁶Kamochi, Y.; Kudo, T. Tetrahedron Lett. 1994, 35, 4169.
- ⁵⁵⁷Zacharie, B.; Moreau, N.; Dockendorff, C. J. Org. Chem. 2001, 66, 5264.
- ⁵⁵⁸Fujita, K.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45, 3215.
- ⁵⁵⁹For discussion, see Meyer, G.R. J. Chem. Educ. 1981, 58, 628.

⁵⁶⁰Brown, H.C.; Hess, H.M. J. Org. Chem. 1969, 34, 2206. For other methods of reducing both double bonds, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, p. 1096. ⁵⁶¹Nystrom, R.F.; Brown, W.G. J. Am. Chem. Soc. 1947, 69, 2548; 1948, 70, 3738; Gammill, R.B.; Gold, P.M.; Mizsak, S.A. J. Am. Chem. Soc. 1980, 102, 3095.

⁵⁶²For discussions of the mechanism of this reaction, see Snyder, E.I. J. Org. Chem. 1967, 32, 3531; Borden, W.T. J. Am. Chem. Soc. 1968, 90, 2197; Blunt, J.W.; Hartshorn, M.P.; Soong, L.T.; Munro,

M.H.G. Aust. J. Chem. 1982, 35, 2519; Vincens, M.; Fadel, R.; Vidal, M. Bull. Soc. Chim. Fr. 1987, 462. ⁵⁶³Varma, R.S.; Kabalka, G.W. Synth. Commun. 1985, 15, 151.

- ⁵⁶⁴Gupta, A.; Haque, A.; Vankar, Y.D. Chem. Commun. 1996, 1653.
- ⁵⁶⁵Das, B.; Kashinatham, A.; Madhusudhan, P. Tetrahedron Lett. 1998, 39, 677.
- ⁵⁶⁶Ren, P.-D.; Pan, S.-F.; Dong, T.-W.; Wu, S.-H. Synth. Commun. 1995, 25, 3395.
- ⁵⁶⁷Ranu, B.C.; Samanta, S. Tetrahedron Lett. 2002, 43, 7405.
- ⁵⁶⁸Sim, T.B.; Yoon, N.M. Synlett 1995, 726.
- ⁵⁶⁹Ikeno, T.; Kimura, T.; Ohtsuka, Y.; Yamada, T. Synlett 1999, 96.

used. The $InCl_3$ -NaBH₄ reagent was used to covert conjugated diene ketones (C=C-C=C-C=O) selectively to the nonconjugated alkenyl ketone (C=C-CH₂CH₂-C=O).⁵⁷⁰

Note that both LiAlH₄ and NaBH₄, as well as NaH, reduce ordinary alkenes and alkynes when complexed with transition-metal salts, such as $FeCl_2$ or $CoBr_2$.⁵⁷¹

Reduction of only the C=C bond of conjugated C=C–C=O and C=C–C≡N systems⁵⁷² has been achieved by many reducing agents,⁵⁷³ a few of which are H₂ and a Rh catalyst,⁵⁷⁴ a Ru catalyst,⁵⁷⁵ a Pd catalyst,⁵⁷⁶ or an Ir catalyst,⁵⁷⁷ and Raney nickel alone.⁵⁷⁸ Reagents such as SmI₂,⁵⁷⁹ and catecholborane⁵⁸⁰ are effective. Conjugated ketones react with 2 equivalents of Cp₂TiCl in THF/MeOH to give the corresponding saturated ketone.⁵⁸¹ Indium metal in aqueous ethanol with ammonium chloride converts alkylidene dimalononitriles to the saturated dinitrile.⁵⁸² Zinc and acetic acid has been used for the conjugate reduction of dihydropyridin-4-ones.⁵⁸³ Formic acid with a palladium catalysts reduced conjugated carboxylic acids.⁵⁸⁴

Silanes can be effective for the reduction of the C=C unit in conjugated systems in the presence of copper species.⁵⁸⁵ PhSiH₃ and a nickel catalyst,⁵⁸⁶ CuCl,⁵⁸⁷ or a manganese catalyst.⁵⁸⁸ In addition, PhR₂SiH with a copper catalyst,⁵⁸⁹ and

⁵⁷⁰Ranu, B.C.; Samanta, S. J. Org. Chem. 2003, 68, 7130.

⁵⁷¹See, for example, Ashby, E.C.; Lin, J.J. J. Org. Chem. **1978**, 43, 2567; Chung, S. J. Org. Chem. **1979**, 44, 1014. See also, Osby, J.O.; Heinzman, S.W.; Ganem, B. J. Am. Chem. Soc. **1986**, 108, 67.

⁵⁷²For a review of the reduction of α,β-unsaturated carbonyl compounds, see Keinan, E.; Greenspoon, N., in Patai, S.; Rappoport, Z. *The Chemistry of Enones*, pt. 2, Wiley, NY, **1989**, pp. 923–1022. For a review of the stereochemistry of catalytic hydrogenation of α,β-unsaturated ketones, see Augustine, R.L. *Adv. Catal.* **1976**, 25, 56.

⁵⁷³For a long list of these, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 13–27.

⁵⁷⁴Djerassi, C.; Gutzwiller, J. J. Am. Chem. Soc. **1966**, 88, 4537; Cabello, J.A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M. J. Org. Chem. **1986**, 51, 1786; Harmon, R.E.; Parsons, J.L.; Cooke, D.W.; Gupta, S.K.; Schoolenberg, J. J. Org. Chem. **1969**, 34, 3684.

⁵⁷⁵Chen, Y.-C.; Xue, D.; Deng, J.-G.; Cui, X.; Zhu, J.; Jiang, Y.-Z. Tetrahedron Lett. 2004, 45, 1555.

⁵⁷⁶Sajiki, H.; Ikawa, T.; Hirota, K. *Tetrahedron Lett.* **2003**, *44*, 8437; Nagano, H.; Yokota, M.; Iwazaki, Y. *Tetrahedron Lett.* **2004**, *45*, 3035.

⁵⁷⁷Yue, T.-Y.; Nugent, W.A. J. Am. Chem. Soc. 2002, 124, 13692.

⁵⁷⁸Barrero, A.F.; Alvarez-Manzaneda, E.J.; Chahboun, R.; Meneses, R. *Synlett* **1999**, 1663. For an ultrasound-mediated reduction with Raney nickel, see Wang, H.; Lian, H.; Chen, J.; Pan, Y.; Shi, Y. *Synth. Commun.* **1999**, *29*, 129.

⁵⁷⁹Cabrera, A.; Alper, H. *Tetrahedron Lett.* **1992**, *33*, 5007. See also, Guo, H.; Zhang, Y. *Synth. Commun.* **2000**, *30*, 1879.

⁵⁸⁰Evans, D.A.; Fu, G.C. J. Org. Chem. 1990, 55, 5678.

⁵⁸¹Moisan, L.; Hardouin, C.; Rousseau, B.; Doris, E. Tetrahedron Lett. 2002, 43, 2013.

⁵⁸²Ranu, B.C.; Dutta, J.; Guchhait, S.K. Org. Lett. 2001, 3, 2603.

⁵⁸³Comins, D.L.; Brooks, C.A.; Ingalls, C.L. J. Org. Chem. 2001, 66, 2181.

⁵⁸⁴Arterburn, J.B.; Pannala, M.; Gonzlez, A.M.; Chamberlin, R.M. Tetrahedron Lett. 2000, 41, 7847.

⁵⁸⁵Mori, A.; Fujita, A.; Nishihara, Y.; Hiyama, R. Chem. Commun. 1997, 2159.

⁵⁸⁶Boudjouk, P.; Choi, S.-B.; Hauck, B.J.; Rajkumar, A.B. *Tetrahedron Lett.* 1998, 39, 3951.

⁵⁸⁷Ito, H.; Ishizuka, T.; Arimoto, K.; Miura, K.; Hosomi, A. Tetrahedron Lett. 1997, 38, 8887.

⁵⁸⁸Magnus, P.; Waring, M.J.; Scott, D.A. Tetrahedron Lett. 2000, 41, 9731.

⁵⁸⁹Mori, A.; Fujita, A.; Kajiro, H.; Nishihara, Y.; Hiyama, T. *Tetrahedron* 1999, 55, 4573.

 $PhSiH_3 - Mo(CO)_6^{590}$ have been used. Triphenylsilane was also used for the asymmetric reduction of nitro alkenes (C=C-NO₂).⁵⁹¹ Poly(methylhydrosiloxane) with a chiral copper catalyst gave conjugate reduction of conjugated esters to give the saturated derivative with high enantioselectivity.⁵⁹²

A β -bromo conjugated lactone was reduced to the β -bromolactone with modest enantioselectivity using an excess of Ph₃SiH and a CuCl catalyst with a chiral ligand.⁵⁹³ A copper complex with a chiral ligand and poly(methylhydrosiloxane) gave reduction of the C=C unit in conjugated carbonyl systems with good enantioselectivity.⁵⁹⁴ Tributyltin hydride, in the presence of MgBr₂•OEt₂ gave 1,4-reduction of conjugated esters.⁵⁹⁵

$$\begin{array}{ccc} H & COOH & H_2 & H & COOH \\ C = C & & & H_2 & H - C - C - H \\ Ph & NHCOMe & & Ph' & NHCOMe \end{array} (+) or (-)$$
112 113

Optically active catalysts, primarily homogeneous, have been used to achieve enantioselective hydrogenations⁵⁹⁶ of many prochiral conjugated substrates.⁵⁹⁷ For example,⁵⁹⁸ hydrogenation of **112** with a suitable catalyst gives (+) or (-)

⁵⁹⁰Keinan, E.; Perez, D. J. Org. Chem. 1987, 52, 2576.

⁵⁹¹Czekelius, C.; Carreira, E.M. Org. Lett. 2004, 6, 4575.

⁵⁹²Appella, D.H.; Moritani, Y.; Shintani, R.; Ferreira, E.M.; Buchwald, S.L. J. Am. Chem. Soc. **1999**, 121, 9473.

⁵⁹³Hughes, G.; Kimura, M.; Buchwald, S.L. J. Am. Chem. Soc. 2003, 125, 11253.

⁵⁹⁴Jurkauskas, V.; Buchwald, S.L. J. Am. Chem. Soc. **2002**, 124, 2892; Lipshutz, B.H.; Servesko, J.M.; Taft, B.R. J. Am. Chem. Soc. **2004**, 126, 8352.

⁵⁹⁵Hirasawa, S.; Nagano, H.; Kameda, Y. Tetrahedron Lett. 2004, 45, 2207.

⁵⁹⁶For a discussion of the mechanism of asymmetric hydrogenation of such systems using a ruthenium catalyst, see Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. *J. Am. Chem. Soc.* **2002**, *124*, 6649. For a review of the mechanism of stereoselection in rhodium-catalyzed asymmetric hydrogenations, see Gridnev, I.D.; Imamoto, T. *Acc. Chem. Res.* **2004**, *37*, 633.

⁵⁹⁷For reviews, see, in Morrison, J.D. Asymmetric Synthesis, Vol. 5, Academic Press, NY, 1985, the reviews by Halpern, J. pp. 41–69, Koenig, K.E. pp. 71–101, Harada, K. pp. 345–383; Ojima, I.; Clos, N.; Bastos, C. Tetrahedron 1989, 45, 6901, 6902–6916; Jardine, F.H., in Hartley, F.R. The Chemistry of the Metal–Carbon Bond, Vol. 4, Wiley, NY, 1987, pp. 751–775; Nógrádi, M. Stereoselective Synthesis, VCH, NY, 1986, pp. 53–87; Knowles, W.S. Acc. Chem. Res. 1983, 16, 106; Brunner, H. Angew. Chem. Int. Ed. 1983, 22, 897; Klabunovskii, E.I. Russ. Chem. Rev. 1982, 51, 630; Čaplar, V.; Comisso, G.;Šunjić, V. Synthesis 1981, 85; Morrison, J.D.; Masler, W.F.; Neuberg, M.K. Adv. Catal. 1976, 25, 81; Kagan, H.B. Pure Appl. Chem. 1975, 43, 401; Bogdanović, B. Angew. Chem. Int. Ed. 1973, 12, 954. See also, Brewster, J.H. Top. Stereochem. 1967, 2, 1, J. Am. Chem. Soc. 1959, 81, 5475, 5483, 5493; Davis, D.D.; Jensen, F.R. J. Org. Chem. 1970, 35, 3410; Jullien, F.R.; Requin, F.; Stahl-Larivière, H. Nouv. J. Chim. 1979, 3, 91; Sathyanarayana, B.K.; Stevens, E.S. J. Org. Chem. 1987, 52, 3170; Wroblewski, A.E.; Applequist, J.; Takaya, A.; Honzatko, R.; Kim, S.; Jacobson, R.A.; Reitsma, B.H.; Yeung, E.S.; Verkade, J.G. J. Am. Chem. Soc. 1988, 110, 4144; Knowles, W.S. Angew. Chem. Int. Ed. 2002, 41, 1999.

⁵⁹⁸For some other recent examples, see Hayashi, T.; Kawamura, N.; Ito, Y. *Tetrahedron Lett.* **1988**, *29*, 5969; Muramatsu, H.; Kawano, H.; Ishii, Y.; Saburi, M.; Uchida, Y. J. Chem. Soc., Chem. Commun. **1989**, 769; Amrani, Y.; Lecomte, L.; Sinou, D.; Bakos, J.; Toth, I.; Heil, B. *Organometallics* **1989**, *8*, 542; Yamamoto, K.; Ikeda, K.; Lin, L.K. J. Organomet. Chem. **1989**, *370*, 319; Waymouth, R.; Pino, P. J. Am. Chem. Soc. **1990**, *112*, 4911; Ohta, T.; Takaya, H.; Noyori, R. *Tetrahedron Lett.* **1990**, *31*, 7189; Ashby, M.T.; Halpern, J. J. Am. Chem. Soc. **1991**, *113*, 589; Heiser, B.; Broger, E.A.; Crameri, Y. *Tetrahedron: Asymmetry* **1991**, *2*, 51; Burk, M.J. J. Am. Chem. Soc. **1991**, *113*, 8518.

113 (depending on which enantiomer of the catalyst is used) with an enantiomeric excess as high as 96%.⁵⁹⁹ Prochiral substrates that give such high optical yields generally contain functional groups, such as a carbonyl group,⁶⁰⁰ amide groups, cyano groups, or combinations of such groups as in **112**.⁶⁰¹ The catalyst in such cases⁶⁰² is usually a ruthenium⁶⁰³ or rhodium complex with chiral phosphine ligands.⁶⁰⁴ Iridium complexes have been used with excellent enantioselectivity.⁶⁰⁵ Good asymmetric induction⁶⁰⁶ has been achieved using chiral rhodium complexes with other chiral additives.⁶⁰⁷ The role of solvent has been examined.⁶⁰⁸ A pressure dependent enantioselective hydrogenation has been reported.⁶⁰⁹ There are many examples for the reduction of alkylidene amino acids, amino esters or amido acids or esters that vary the catalyst and/or the chiral ligand.⁶¹⁰ Asymmetric catalytic hydrogenation has been reported for conjugated carboxylic acids⁶¹¹ and conjugated ketones.⁶¹² A ruthenium catalyst with a polymer supported chiral ligand has also

⁵⁹⁹Koenig, K.E., in Morrison, J.D. Asymmetric Synthesis, Vol. 5, Academic Press, NY, **1985**, p. 74.

⁶⁰⁰Reetz, M.T.; Mehler, G. Angew. Chem. Int. Ed. 2000, 39, 3889.

⁶⁰¹For tables of substrates that have been enantioselectively hydrogenated, see Koenig, K.E., in Morrison, J.D. *Asymmetric Synthesis* Vol. 5, Academic Press, NY, **1985**, pp. 83–101.

⁶⁰²For a list of these, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 8–12. For reviews of optically active nickel catalysts, see Izumi, Y. *Adv. Catal.* **1983**, *32*, 215; *Angew. Chem. Int. Ed.* **1971**, *10*, 871. For a review of the synthesis of some of these phosphines, see Mortreux, A.; Petit, F.; Buono, G.; Peiffer, G. Bull. Soc. Chim. Fr. **1987**, 631.

⁶⁰³Wu, H.-P.; Hoge, G. *Org. Lett.* **2004**, *6*, 3645; Tang, W.; Wu, S.; Zhang, X. J. Am. Chem. Soc. **2003**, *125*, 9570.

⁶⁰⁴Lee, S.-g.; Zhang, Y.J. Org. Lett. 2002, 4, 2429; Le, J.C.D.; Pagenkopf, B.L. J. Org. Chem. 2004, 69, 4177; Fu, Y.; Guo, X.-X.; Zhu, S.-F.; Hu, A.-G.; Xie, J.-H.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 4648; Yi, B.; Fan, Q.-H.; Deng, G.-J.; Li, Y.-M.; Qiu, L.-Q.; Chan, A.S.C. Org. Lett. 2004, 6, 1361.; Hoen, R.; van den Berg, M.; Bernsmann, H.; Minnaard, A.J.; de Vries, J.G.; Feringa, B.L. Org. Lett. 2004, 6, 1433; Fu, Y.; Hou, G.-H.; Xie, J.-H.; Xing, L.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 8157; Peña, D.; Minnaard, A.J.; de Vries, J.G.; Feringa, B.L. J. Am. Chem. Soc. 2002, 124, 14552; Evans, D.A.; Michael, F.E.; Tedrow, J.S.; Campos, K.R. J. Am. Chem. Soc. 2003, 125, 3534; Hoge, G.; Wu, H.-P.; Kissel, W.S.; Pflum, D.A.; Greene, D.J.; Bao, J. J. Am. Chem. Soc. 2004, 126, 5966; Ikeda, S.-i.; Sanuki, R.; Miyachi, H.; Miyashita, H.; Taniguchi, M.; Odashima, K. J. Am. Chem. Soc. 2004, 126, 10331; Huang, H.; Liu, X.; Chen, S.; Chen, H.; Zheng, Z. Tetrahedron Asymmetry 2004, 15, 2011.

⁶⁰⁵Smidt, S.P.; Menges, F.; Pgaltz, A. Org. Lett. 2004, 6, 2023.

⁶⁰⁶Zhu, G.; Zhang, X. J. Org. Chem. **1998**, 63, 9590; Burk, M.J.; Casy, G.; Johnson, N.B. J. Org. Chem. **1998**, 63, 6084; Burk, M.J.; Allen, J.G.; Kiesman, W.F. J. Am. Chem. Soc. **1998**, 120, 657.

⁶⁰⁷Noyori, R.; Hashiguchi, S. Accts. Chem. Res. **1997**, 30, 97; Inoguchi, K.; Sakuraba, S.; Achiwa, K. Synlett **1992**, 169.

⁶⁰⁸Maki, S.; Harada, Y.; Matsui, R.; Okawa, M.; Hirano, T.; Niwa, H.; Koizumi, M.; Nishiki, Y.; Furuta, T.; Inoue, H.; Iwakura, C. *Tetrahedron Lett.* **2001**, *42*, 8323; Heller, D.; Drexler, H.-J.; Spannenberg, A.; Heller, B.; You, J.; Baumann, W. *Angew. Chem. Int. Ed.* **2002**, *41*, 777.

⁶⁰⁹Heller, D.; Holz, J.; Drexler, H.-J.; Lang, J.; Drauz, K.; Krimmer, H.-P.; Börner, A. *J. Org. Chem.* **2001**, *66*, 6816.

⁶¹⁰Rhodium catalyst with a chiral bis(phosphine): Li. W.; Zhang, Z.; Xiao, D.; Zhang, X. *Tetrahedron Lett.* **1999**, *40*, 6701. New chiral phosphines: Ohashi, A.; Imamoto, T. Org. Lett. **2001**, *3*, 373.

⁶¹¹Uemura, T.; Zhang, X.; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. *J. Org. Chem.* **1996**, *61*, 5510; Suárez, A.; Pizzano, A. *Tetrahedron Asymmetry* **2001**, *12*, 2501. See, Okano, T.; Kaji, M.; Isotani, S.; Kiji, J. *Tetrahedron Lett.* **1992**, *33*, 5547 for the influence of water on the regioselectivity of this reduction.

⁶¹²Yamaguchi, M.; Nitta, A.; Reddy, R.S.; Hirama, M. Synlett 1997, 117.

been used for conjugated acids.⁶¹³ Asymmetric hydrogenation of conjugated carboxylic acids in an ionic liquid is known using a chiral ruthenium complex⁶¹⁴ Enamino esters have been hydrogenated with high enantioselectivity using chiral rhodium catalysts.⁶¹⁵

See 19-36 for methods of reducing C=O bonds in the presence of conjugated C=C bonds.

The C=C unit of conjugated aldehydes has been reduced using AlMe₃ with a catalytic amount of CuBr⁶¹⁶ and with ammonium formate/Pd–C.⁶¹⁷ Polymersupported formate has been used for the 1,4-reduction of conjugated ketones⁶¹⁸ and conjugated acids using a rhodium catalyst and microwave irradiation.⁶¹⁹ Selective reduction of the C=C unit in conjugated ketones was accomplished with Na₂S₂O₄ in aqueous dioxane, and nonconjugated alkenes were not reduced.⁶²⁰ Isopropanol and an iridium catalyst gives conjugate reduction of conjugated ketones.⁶²¹ Conjugate hydrostannation by an iodotin hydride ate complex, followed by hydrolysis converts unsaturated esters to saturated esters.⁶²² The reaction of conjugated ketones with aluminum chlorides, followed by treatment with water generates the saturated ketone.⁶²³

Baker's yeast reduces conjugated nitro compounds to nitroalkanes⁶²⁴ and also the C=C unit of conjugated ketones.⁶²⁵ Other enzymatic reductions are possible. A reductase from *Nicotiana tabacum* reduced a conjugated ketone to the saturated ketone, with excellent enantioselectivity.⁶²⁶ Enzyme YNAR-I and NADP-H reduces conjugated nitro compounds to nitroalkanes.⁶²⁷

15-15 Reductive Cleavage of Cyclopropanes

$$\begin{array}{c} \xrightarrow{H_2} \\ \hline \\ cat. \end{array} CH_3CH_2CH_3$$

⁶¹³Fan, Q.H.; Deng, G.-J.; Lin, C.-C.; Chan, A.S.C. Tetrahedron Asymmetry 2001, 12, 1241.

⁶¹⁴In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Brown, R.A.; Pollet, P.; McKoon, E.; Eckert, C.A.; Liotta, C.L.; Jessop, P.G. J. Am. Chem. Soc. **2001**, 123, 1254.

⁶¹⁵Hsiao, Y.; Rivera, N.R.; Rosner, T.; Krska, S.W.; Njolito, E.; Wang, F.; Sun, Y.; Armstrong III, J.D.;

Grabowski, E.J.J.; Tillyer, R.D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918.

⁶¹⁶Kabbara, J.; Flemming, S.; Nickisch, K.; Neh, H.; Westermann, J. Synlett 1994, 679.

⁶¹⁷Ranu, B.C.; Sarkar, A. Tetrahedron Lett. 1994, 35, 8649.

⁶¹⁸Basu, B.; Bhuiyan, Md.M.H.; Das, P.; Hossain, I. Tetrahedron Lett. 2003, 44, 8931.

⁶¹⁹Desai, B.; Danks, T.N. Tetrahedron Lett. 2001, 42, 5963.

620 Dhillon, R.S.; Singh, R.P.; Kaur, D. Tetrahedron Lett. 1995, 36, 1107.

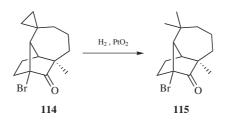
⁶²¹Sakaguchi, S.; Yamaga, T.; Ishii, Y. J. Org. Chem. 2001, 66, 4710.

622Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Org. Chem. 2001, 66, 8690.

623 Koltunov, K.Yu.; Repinskaya, I.B.; Borodkin, G.I. Russ. J. Org. Chem. 2001, 37, 1534.

624 Bak, R.R.; McAnda, A.F.; Smallridge, A.J.; Trewhella, M.A. Aust. J. Chem. 1996, 49, 1257; Takeshita,

M.; Yoshida, S.; Kohno, Y. *Heterocycles* 1994, 37, 553; Kawai, Y.; Inaba,Y.; Tokitoh, N. *Tetrahedron Asymmetry* 2001, 12, 309.


⁶²⁵Kawai, Y.; Saitou, K.; Hida, K.; Ohno, A. *Tetrahedron Asymmetry* 1995, 6, 2143; Filho, E.P.S.;
 Rodrigues, J.A.R.; Moran, P.J.S. *Tetrahedron Asymmetry* 2001, 12, 847; Kawai, Y.; Hayashi, M.; Tokitoh, N. *Tetrahedron Asymmetry* 2001, 12, 3007.

⁶²⁶Shimoda, K.; Kubota, N.; Hamada, H. *Tetrahedron Asymmetry* **2004**, *15*, 2443; Hirata, T.; Shimoda, K.; Gondai, T. *Chem. Lett.* **2000**, 850.

627 Kawai, Y.; Inaba, Y.; Hayashi, M.; Tokitoh, N. Tetrahedron Lett. 2001, 42, 3367.

CHAPTER 15

Cyclopropanes can be cleaved by catalytic hydrogenolysis.⁶²⁸ Among the catalysts used have been Ni, Pd, Rh,⁶²⁹ and Pt. The reaction can often be run under mild conditions.⁶³⁰ Certain cyclopropane rings, especially cyclopropyl ketones and aryl-substituted cyclopropanes,⁶³¹ can be reductively cleaved by an alkali metal (generally Na or Li) in liquid ammonia.⁶³² Similar reduction has been accomplished photochemically in the presence of LiClO₄.⁶³³ This reaction is an excellent way to introduce a *gem*-dimethyl unit into a molecule. Hydrogenation of the cyclopropane ring in **114**, for example, gave the *gem*-dimethyl unit in **115** using PtO₂ (Adam's catalyst).⁶³⁴

F. A Metal on the Other Side

15-16 Hydroboration

3
$$C=C$$
 + BH₃ \longrightarrow $(H-C-C+B)_3$

When alkenes are treated with borane⁶³⁵ in ether solvents, BH_3 adds across the double bond.⁶³⁶ Borane cannot be prepared as a stable pure compound⁶³⁷ (it dimerizes to diborane, B_2H_6), but it is commercially available in the form of

⁶³²For a review, see Staley, S.W. Sel. Org. Transform. 1972, 2, 309.

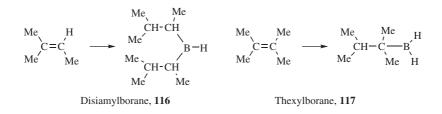
634 Karimi, S.; Tavares, P. J. Nat. Prod. 2003, 66, 520.

637 Fehlner, T.P. J. Am. Chem. Soc. 1971, 93, 6366.

⁶²⁸For reviews, see Charton, M., in Zabicky, J. *The Chemistry of Alkenes*, Vol. 2, Wiley, NY, **1970**, pp. 588–592; Newham, J. *Chem. Rev.* **1963**, 63, 123; Rylander, P.N. *Catalytic Hydrogenation over Platinum Metals, Academic Press, NY*, **1967**, pp. 469–474.

⁶²⁹ Bart, S.C.; Chirik, P.J. J. Am. Chem. Soc. 2003, 125, 886.

⁶³⁰See, for example, Woodworth, C.W.; Buss, V.; Schleyer, P.v.R. Chem. Commun. 1968, 569.


⁶³¹See, for example, Walborsky, H.M.; Aronoff, M.S.; Schulman, M.F. J. Org. Chem. 1970, 36, 1036.

⁶³³Cossy, J.; Furet, N. Tetrahedron Lett. 1993, 34, 8107.

⁶³⁵For a review of this reagent, see Lane, C.F., in Pizey, J.S. *Synthetic Reagents*, Vol. 3, Wiley, NY, **1977**, pp. 1–191.

⁶³⁶For books on this reaction and its many applications, see Pelter, A.; Smith, K.; Brown, H.C. Borane Reagents, Academic Press, NY, **1988**; Brown, H.C. Boranes in Organic Chemistry, Cornell University Press, Ithaca, NY, **1972**, Organic Syntheses Via Boranes, Wiley, NY, **1975**; Cragg, G.M.L. Organoboranes in Organic Synthesis, Marcel Dekker, NY, **1973**. For reviews, see Matteson, D.S., in Hartley, F.R. The Chemistry of the Metal-Carbon Bond, Vol. 4, Wiley, NY, **1987**, pp. 307–409, 315–337; Smith, K. Chem. Ind. (London) **1987**, 603; Brown, H.C.; Vara Prasad, J.V.N. Heterocycles **1987**, 25, 641; Suzuki, A.; Dhillon, R.S. Top. Curr. Chem. **1986**, 130, 23.

'ate' complexes with THF, Me₂S,⁶³⁸ phosphines, or tertiary amines. The alkenes can be treated with a solution of one of these complexes (THF-BH₃ reacts at 0°C and is the most convenient to use; R₃N-BH₃ generally require temperatures of $\sim 100^{\circ}$ C; however, the latter can be prepared as air-stable liquids or solids, while the former can only be used as relatively dilute solutions in THF and are decomposed by moisture in air) or with a mixture of NaBH₄ and BF₃ etherate, which generates borane in situ.⁶³⁹ With relatively unhindered alkenes, the process cannot be stopped with the addition of one molecule of BH₃ because the resulting RBH₂ adds to another molecule of alkene to give R_2BH , which in turn adds to a third alkene molecule, so that the isolated product is a trialkylborane R_3B . The reaction can be performed on alkenes with one to four substituents, including cyclic alkenes, but when the alkene is moderately hindered, the product is the dialkylborane R₂BH or even the monalkylborane RBH2.⁶⁴⁰ For example, 116 (disiamylborane) and 117 (thexylborane)⁶⁴¹ have been prepared in this manner. Monoalkylboranes RBH₂ (which can be prepared from hindered alkenes, as above) and dialkylboranes R_2BH also add to alkenes, to give the mixed trialkylboranes RR_2^{2} B and $R_2R'B$, respectively. Surprisingly, when methylborane MeBH₂,⁶⁴² which is not a bulky molecule, adds to alkenes in the solvent THF, the reaction can be stopped with one addition to give the dialkylboranes RMeBH.⁶⁴³ Reaction of this with a second alkene produces the trialkylborane RR'MeB.⁶⁴⁴ Other monoalkylboranes, *i*PrBH₂, n-BuBH₂, s-BuBH₂, and t-BuBH₂, behave similarly with internal alkenes, but not with alkenes of the type $RCH = CH_2$.⁶⁴⁵

⁶³⁸For a review of BH₃•SMe₂, see Hutchins, R.O.; Cistone, F. Org. Prep. Proced. Int. **1981**, 13, 225. See Cadot, C.; Dalko, P.I.; Cossy, J. Tetrahedron Lett. **2001**, 42, 1661.

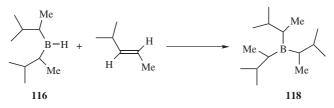
⁶³⁹For a list of hydroborating reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 1005–1009.

 640 Unless coordinated with a strong Lewis base such as a tertiary amine, mono and dialkylboranes

actually exist as dimers, for example, $R_2B_1^{H_2}BR_2$ Brown, H.C.; Klender, G.J. *Inorg. Chem.*

1962, *1*, 204.

⁶⁴¹For a review of the chemistry of thexylborane, see Negishi, E.; Brown, H.C. Synthesis 1974, 77.


⁶⁴²Prepared from lithium methylborohydride and HCl: Brown, H.C.; Cole, T.E.; Srebnik, M.; Kim, K. J. Org. Chem. **1986**, *51*, 4925.

⁶⁴³Srebnik, M.; Cole, T.E.; Brown, H.C. J. Org. Chem. 1990, 55, 5051.

⁶⁴⁴For a method of synthesis of RR¹R²B, see Kulkarni, S.U.; Basavaiah, D.; Zaidlewicz, M.; Brown, H.C. *Organometallics* **1982**, *1*, 212.

⁶⁴⁵Srebnik, M.; Cole, T.E.; Ramachandran, P.V.; Brown, H.C. J. Org. Chem. 1989, 54, 6085.

In all cases, the boron goes to the side of the double bond that has more hydrogens, whether the substituents are aryl or alkyl.⁶⁴⁶ This actually follows Markovnikov's rule, since boron is more positive than hydrogen. However, the regioselectivity is caused mostly by steric factors, although electronic factors also play a part. Studies of the effect of ring substituents on rates and on the direction of attack in hydroboration of substituted styrenes showed that the reaction with boron and the alkene has electrophilic character.⁶⁴⁷ When both sides of the double bond are monosubstituted or both disubstituted, about equal amounts of each isomer are obtained. However, it is possible in such cases to make the addition regioselective by the use of a large borane molecule. For example, treatment of *i*PrCH=CHMe with borane gave 57% of product with boron on the methyl-bearing carbon and 43% of the other, while treatment with **116** gave 95% **118** and only 5% of the other isomer.⁶⁴⁸

Another reagent with high regioselectivity is 9-borabicyclo[3.3.1]nonane (9-BBN), which is prepared by hydroboration of 1,5-cyclooctadiene,⁶⁴⁹ and has the advantage that it is stable in air. Borane is quite unselective and attacks all sorts of double bonds. Disiamylborane, 9-BBN, and similar molecules are far more selective and preferentially attack less-hindered bonds, so it is often possible to hydroborate one double bond in a molecule and leave others unaffected or to hydroborate one alkene in the presence of a less reactive alkene.⁶⁵⁰ For example, 1-pentene can be removed from a mixture of 1- and 2-pentenes, and a cis alkene can be selectively hydroborate in a mixture of the cis and trans isomers.

⁶⁴⁶For a thorough discussion of the regioselectivity with various types of substrate and hydroborating agents, see Cragg, G.M.L.*Organoboranes in Organic Synthesis* Marcel Dekker, NY, **1973**, pp.63–84, 137–197. See also, Brown, H.C.; Vara Prasad, J.V.N.; Zee, S. J. Org. Chem. **1986**, *51*, 439.


⁶⁴⁷Brown, H.C.; Sharp, R.L. J. Am. Chem. Soc. 1966, 88, 5851; Klein, J.; Dunkelblum, E.; Wolff, M.A. J. Organomet. Chem. 1967, 7, 377. See also, Marshall, P.A.; Prager, R.H. Aust. J. Chem. 1979, 32, 1251.
 For a study of hyperconjugation effects in substituted methylboranes, see Mo, Y.; Jiao, H. Schleyer, P.v.R. J. Org. Chem. 2004, 69, 3493.

648Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 1241.

⁶⁴⁹See Knights, E.F.; Brown, H.C. J. Am. Chem. Soc. 1968, 90, 5280, 5281; Brown, H.C.; Chen, J.C. J. Org. Chem. 1981, 46, 3978; Soderquist, J.A.; Brown, H.C. J. Org. Chem. 1981, 46, 4599.

⁶⁵⁰Brown, H.C.; Moerikofer, A.W. J. Am. Chem. Soc. 1963, 85, 2063; Zweifel, G.; Brown, H.C. J. Am. Chem. Soc. 1963, 85, 2066; Zweifel, G.; Ayyangar, N.R.; Brown, H.C. J. Am. Chem. Soc. 1963, 85, 2072;
 Brown, H.C.; Sharp, R.L. J. Am. Chem. Soc. 1966, 88, 5851; Klein, J.; Dunkelblum, E.; Wolff, M.A. J. Organomet. Chem. 1967, 7, 377.

For most substrates, the addition in hydroboration is stereospecific and syn, with attack taking place from the less-hindered side.⁶⁵¹ Note that organoboranes can be analyzed using ¹¹B nmr.⁶⁵² The mechanism⁶⁵³ may be a cyclic four-center one:⁶⁵⁴

When the substrate is an allylic alcohol or amine, the addition is generally anti,⁶⁵⁵ although the stereoselectivity can be changed to syn by the use of catecholborane and the rhodium complexes mentioned above.⁶⁵⁶ Because the mechanism is different, use of this procedure can result in a change in regioselectivity as well, for example, styrene PhCH=CH₂ gave PhCH(OH)CH₃.⁶⁵⁷

Monochloroborane⁶⁵⁸ BH₂Cl coordinated with dimethyl sulfide shows greater regioselectivity than BH₃ for terminal alkenes or those of the form R₂C=CHR, and the hydroboration product is a dialkylchloroborane R₂BCl).⁶⁵⁹ For example, 1-hexene gave 94% of the anti-Markovnikov product (the boron is on the less substituted carbon) with BH₃—THF, but 99.2% with BH₂Cl—SMe₂. Treatment of alkenes with dichloroboranedimethyl sulfide BHCl₂—SMe₂ in the presence of BF₃⁶⁶⁰ or with BCl₃ and Me₃SiH⁶⁶¹ gives alkyldichloroboranes RBCl₂. Extensions of this basic approach are possible with dihalo alkylboranes. The reaction of an alkene with allyl dibromoborane, incorporated an allyl group and the born on adjacent carbons.⁶⁶²

655See Still, W.C.; Barrish, J.C. J. Am. Chem. Soc. 1983, 105, 2487.

- ⁶⁵⁹Brown, H.C.; Ravindran, N.; Kulkarni, S.U. J. Org. Chem. 1979, 44, 2417.
- ⁶⁶⁰Brown, H.C.; Racherla, U.S. J. Org. Chem. 1986, 51, 895.
- ⁶⁶¹Soundararajan, R.; Matteson, D.S. J. Org. Chem. 1990, 55, 2274.
- 662Frantz, D.E.; Singleton, D.A. Org. Lett. 1999, 1, 485.

⁶⁵¹Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. **1961**, 83, 2544; Bergbreiter, D.E.; Rainville, D.P. J. Org. Chem. **1976**, 41, 3031; Kabalka, G.W.; Newton, Jr., R.J.; Jacobus, J. J. Org. Chem. **1978**, 43, 1567.

⁶⁵²Medina, J.R.; Cruz, G.; Cabrera, C.R.; Soderquist, J.A. J. Org. Chem. 2003, 68, 4631.

 ⁶⁵³For kinetic studies, see Vishwakarma. L.C.; Fry, A. J. Org. Chem. 1980, 45, 5306; Brown, H.C.;
 Chandrasekharan, J.; Wang, K.K. J. Org. Chem. 1983, 48, 2901; Pure Appl. Chem. 1983, 55, 1387–1414;
 Nelson, D.J.; Cooper, P.J. Tetrahedron Lett. 1986, 27, 4693; Brown, H.C.; Chandrasekharan, J. J. Org. Chem. 1988, 53, 4811.

⁶⁵⁴Brown, H.C.; Zweifel, G. J. Am. Chem. Soc. **1959**, 81, 247; Pasto, D.J.; Lepeska, B.; Balasubramaniyan, V. J. Am. Chem. Soc. **1972**, 94, 6090; Pasto, D.J.; Lepeska, B.; Cheng, T. J. Am. Chem. Soc. **1972**, 94, 6083; Narayana, C.; Periasamy, M. J. Chem. Soc., Chem. Commun. **1987**, 1857. See, however, Jones, P.R. J. Org. Chem. **1972**, 37, 1886.

⁶⁵⁶See Evans, D.A.; Fu, G.C.; Hoveyda, A.H. J. Am. Chem. Soc. **1988**, 110, 6917; Burgess, K.; Cassidy, J.; Ohlmeyer, M.J. J. Org. Chem. **1991**, 56, 1020; Burgess, K.; Ohlmeyer, M.J. J. Org. Chem. **1991**, 56, 1027.

⁶⁵⁷Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. **1989**, 111, 3426; Zhang, J.; Lou, B.; Guo, G.; Dai, L. J. Org. Chem. **1991**, 56, 1670.

⁶⁵⁸For a review of haloboranes, see Brown, H.C.; Kulkarni, S.U. J. Organomet. Chem. 1982, 239, 23.

CHAPTER 15

An important use of the hydroboration reaction is oxidation of an organoborane to alcohols with hydrogen peroxide and NaOH (**12-27**). Organoboranes have been oxidized with Oxone^{(R)663} and methanol/triethylamine/molecular oxygen.⁶⁶⁴ The synthetic result is an indirect way of adding H₂O across a double bond in an anti-Markovnikov manner. However, boranes undergo many other reactions as well. Among other things, they react with α -halo carbonyl compounds to give alkylated products (**10-73**), with α , β -unsaturated carbonyl compounds to give Michael-type addition of R and H (**15-27**), with CO to give alcohols and ketones (**18-23–18-24**); they can be reduced with carboxylic acids, providing an indirect method for reduction of double bonds (**15-11**), or they can be oxidized with chromic acid or pyridinium chlorochromate to give ketones⁶⁶⁵ or aldehydes (from terminal alkenes),⁶⁶⁶ dimerized with silver nitrate and NaOH (**14-26**), isomerized (**18-11**), or converted to amines (**12-32**), halides (**12-31**), or carboxylic acids.⁶⁶⁷ They are thus useful intermediates for the preparation of a wide variety of compounds. Intramolecular hydroboration reaction are possible.⁶⁶⁸

Such functional groups as OR, OH, NH₂, SMe, halogen, and COOR may be present in the molecule, ⁶⁶⁹ but not groups that are reducible by borane. Hydroboration of enamines with 9-BBN provides an indirect method for reducing an aldehyde or ketone to an alkene, e.g. ⁶⁷⁰

$$R^{1} \xrightarrow[HNR^{3}_{2}]{} R^{1}HC = C^{R^{2}}_{NR^{3}_{2}} \xrightarrow[2.MeOH]{} R^{1}HC = C^{R^{2}}_{L} + R^{3}_{2}N - R^{1}HC = C^{R^{2}}_{H} + R^{3}_{2}N - R^{1}HC = C^{1}_{L}$$

Enamines can also be converted to amino alcohols via hydroboration.⁶⁷¹ Allene– boranes react with aldehydes to give alkyne–alcohols.⁶⁷²

Use of the reagent diisopinocampheylborane **119** (prepared by treating optically active α -pinene with BH₃) results in enantioselective hydroboration–oxidation.⁶⁷³ Since both (+) and (-) α -pinene are readily available, both enantiomers

⁶⁶³Ripin, D.H.B.; Cai, W.; Brenek, S.J. Tetrahedron Lett. 2000, 41, 5817.

⁶⁶⁴Cadot, C.; Dalko, P.I.; Cossy, J.; Ollivier, C.; Chuard, R.; Renaud, P. J. Org. Chem. 2002, 67, 7193.

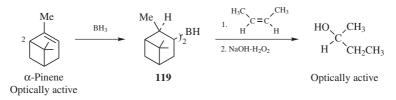
⁶⁶⁵Brown, H.C.; Garg, C.P. J. Am. Chem. Soc. 1961, 83, 2951; Tetrahedron 1986, 42, 5511; Rao, V.V.R.;
 Devaprabhakara, D.; Chandrasekaran, S. J. Organomet. Chem. 1978, 162, C9; Parish, E.J.; Parish, S.;
 Honda, H. Synth. Commun. 1990, 20, 3265.

666 Brown, H.C.; Kulkarni, S.U.; Rao, C.G.; Patil, V.D. Tetrahedron 1986, 42, 5515.

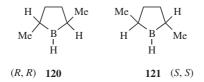
⁶⁶⁷Soderquist, J.A.; Martinez, J.; Oyola, Y.; Kock, I. Tetrahedron Lett. 2004, 45, 5541.

⁶⁶⁸See Shapland, P.; Vedejs, E. J. Org. Chem. 2004, 69, 4094.

⁶⁶⁹See, for example, Brown, H.C.; Unni, M.K. J. Am. Chem. Soc. **1968**, 90, 2902; Brown, H.C.; Gallivan, Jr., R.M. J. Am. Chem. Soc. **1968**, 90, 2906; Brown, H.C.; Sharp, R.L. J. Am. Chem. Soc. **1968**, 90, 2915.


⁶⁷⁰Singaram, B.; Rangaishenvi, M.V.; Brown, H.C.; Goralski, C.T.; Hasha, D.L. J. Org. Chem. 1991, 56, 1543.

⁶⁷¹Goralski, C.T.; Hasha, D.L.; Nicholson, L.W.; Singaram, B. Tetrahedron Lett. 1994, 35, 5165.


⁶⁷²Brown, H.C.; Khire, U.R.; Racherla, U.S. Tetrahedron Lett. 1993, 34, 15.

⁶⁷³Brown, H.C.; Vara Prasad, J.V.N. J. Am. Chem. Soc. 1986, 108, 2049.

can be prepared. Alcohols with moderate-to-excellent enantioselectivities have been

obtained in this way.⁶⁷⁴ However, **119** does not give good results with even moderately hindered alkenes; a better reagent for these compounds is isopinocampheylborane⁶⁷⁵ although optical yields are lower. Limonylborane,⁶⁷⁶ 2- and 4-dicaranylboranes,⁶⁷⁷ a myrtanylborane,⁶⁷⁸ and dilongifolylborane⁶⁷⁹ have also been used. Other new asymmetric boranes have also been developed. The chiral cyclic boranes *trans*-2,15-dimethylborolanes (**51** and **52**) also add enantioselectively to alkenes (except

alkenes of the form RR'C=CH₂) to give boranes of high optical purity.⁶⁸⁰ When chiral boranes are added to trisubstituted alkenes of the form RR'C=CHR", two new chiral centers are created, and, with **120** or **121**, only one of the four possible diastereomers is predominantly produced, in yields > 90%.⁶⁸⁰ This has been called *double-asymmetric synthesis*.⁶⁸¹ An alternative asymmetric synthesis of alcohols involves the reaction of catechol borane with an alkene in the presence

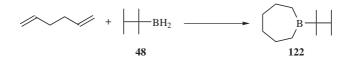
⁶⁷⁴For reviews of enantioselective syntheses with organoboranes, see Brown, H.C.; Singaram, B. Acc. Chem. Res. **1988**, 21, 287; Srebnik, M.; Ramachandran, P.V. Aldrichimica Acta **1987**, 20, 9; Brown, H.C.; Jadhav, P.K.; Singaram, B. Mod. Synth. Methods, **1986**, 4, 307; Matteson, D.S. Synthesis **1986**, 973; Brown, H.C.; Jadhav, P.K., in Morrison, J.D. Asymmetric Synthesis Vol. 2, Academic Press, NY, **1983**, pp. 1–43. For a study of electronic effects, see Garner, C.M.; Chiang, S.; Nething, M.; Monestel, R. Tetrahedron Lett. **2002**, 43, 8339.

⁶⁷⁵Brown, H.C.; Jadhav, P.K.; Mandal, A.K. J. Org. Chem. **1982**, 47, 5074. See also, Brown, H.C.; Weissman, S.A.; Perumal, P.T.; Dhokte, U.P. J. Org. Chem. **1990**, 55, 1217. For an improved method, see Brown, H.C.; Singaram, B. J. Am. Chem. Soc. **1984**, 106, 1797; Brown, H.C.; Gupta, A.K.; Vara Prasad, J.V.N. Bull. Chem. Soc. Jpn. **1988**, 61, 93. For the crystal structure of this adduct, see Soderquist, J.A.; Hwang-Lee, S.; Barnes, C.L. Tetrahedron Lett. **1988**, 29, 3385.

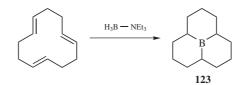
⁶⁷⁶Jadhav, P.K.; Kulkarni, S.U. Heterocycles 1982, 18, 169.

⁶⁷⁷ Brown, H.C.; Vara Prasad, J.V.N.; Zaidlewicz, M. J. Org. Chem. 1988, 53, 2911.

⁶⁷⁸Kiesgen de Richter, R.; Bonato, M.; Follet, M.; Kamenka, J. J. Org. Chem. 1990, 55, 2855.


⁶⁷⁹Jadhav, P.K.; Brown, H.C. J. Org. Chem. 1981, 46, 2988.

⁶⁸⁰Masamune, S.; Kim, B.M.; Petersen, J.S.; Sato, T.; Veenstra, J.S.; Imai, T. J. Am. Chem. Soc. **1985**, 107, 4549.


⁶⁸¹For another enantioselective hydroboration method, see p. 1082.

of a chiral rhodium catalyst, giving the alcohol enantios electivity after the usual oxidation. 682

The double bonds in a conjugated diene are hydroborated separately, that is, there is no 1,4-addition. However, it is not easy to hydroborate just one of a conjugated system, since conjugated double bonds are less reactive than isolated ones. Thexylborane⁶⁴¹ (**117**) is particularly useful for achieving the cyclic hydroboration of dienes, conjugated or nonconjugated, as in the formation of **122**.⁶⁸³

Rings of five, six, or seven members can be formed in this way. Similar cyclization can also be accomplished with other monoalkylboranes and, in some instances, with BH₃ itself.⁶⁸⁴ One example is the formation of 9-BBN, shown above. Another is conversion of 1,5,9-cyclododecatriene to perhydro-9*b*-boraphenalene, **123**.⁶⁸⁵ If a diene is treated with a diaminoborane and a samarium catalyst, oxidation leads to a carbocyclic ring with a pendant hydroxymethyl group.⁶⁸⁶

Triple bonds⁶⁸⁷ can be monohydroborated to give vinylic boranes, which can be reduced with carboxylic acids to cis-alkenes or oxidized and hydrolyzed to aldehydes or ketones. Terminal alkynes give aldehydes by this method, in contrast to the mercuric or acid-catalyzed addition of water discussed at **15-4**. However, terminal alkynes give vinylic boranes⁶⁸⁸ (and hence aldehydes) only when treated with a hindered borane, such as **116**, **117**, or catecholborane (p. 820),⁶⁸⁹ or with BHBr₂–SMe₂.⁶⁹⁰ The reaction between terminal alkynes and BH₃ produces

690 Brown, H.C.; Campbell Jr., J.B. J. Org. Chem. 1980, 45, 389.

⁶⁸²Demay, S.; Volant, F.; Knochel, P. Angew. Chem. Int. Ed. 2001, 40, 1235.

⁶⁸³Brown, H.C.; Negishi, E. J. Am. Chem. Soc. 1972, 94, 3567.

⁶⁸⁴For a review of cyclic hydroboration, see Brown, H.C.; Negishi, E. *Tetrahedron* 1977, 33, 2331. See also, Brown, H.C.; Pai, G.G.; Naik, R.G. J. Org. Chem. 1984, 49, 1072.

 ⁶⁸⁵Rotermund, G.W.; Köster, R. *Liebigs Ann. Chem.* 1965, 686, 153; Brown, H.C.; Negishi, E.; Dickason, W.C. J. Org. Chem. 1985, 50, 520.

⁶⁸⁶Molander, G.A; Pfeiffer, D. Org. Lett. 2001, 3, 361.

⁶⁸⁷For a review of hydroboration of triple bonds, see Hudrlik, P.F.; Hudrlik, A.M., in Patai, S. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 1, Wiley, NY, **1978**, pp. 203–219.

⁶⁸⁸For a review of the preparation and reactions of vinylic boranes, see Brown, H.C.; Campbell, Jr., J.B. *Aldrichimica Acta* **1981**, *14*, 1.

⁶⁸⁹Brown, H.C.; Gupta, S.K. J. Am. Chem. Soc. **1975**, 97, 5249. For a review of catecholborane, see Lane, C.F.; Kabalka, G.W. Tetrahedron **1976**, 32, 981; Garrett, C.E.; Fu, G.C. J. Org. Chem. **1996**, 61, 3224.

1,1-dibora compounds, which can be oxidized either to primary alcohols (with NaOH–H₂O₂) or to carboxylic acids (with *m*-chloroperoxybenzoic acid).⁶⁹¹ Double bonds can be hydroborated in the presence of triple bonds if the reagent is 9-BBN.⁶⁹² On the other hand, dimesitylborane selectively hydroborates triple bonds in the presence of double bonds.⁶⁹³ Furthermore, it is often possible to hydroborate selectively one particular double bond of a nonconjugated diene.⁶⁹⁴ A triple bond can be hydroborated in the presence of a ketone, and treatment with acetic acid reduces the C≡C unit to a cis- alkene (see **15-12**).⁶⁹⁵ When the reagent is catecholborane, hydroboration is catalyzed by rhodium complexes,⁶⁹⁶ such as Wilkinson's catalyst,⁶⁹⁷ by SmI₂,⁶⁹⁸ or lanthanide reagents.⁶⁹⁹ Enantioselective hydroboration–oxidation has been achieved by the use of optically active rhodium complexes.⁷⁰⁰

A chain extension variation involved the reaction of styrene with catecholborane and then Me_3SiCHN_2 .⁷⁰¹ Subsequent oxidation with NaOH/H₂O₂ and the reaction with Bu_4NF gave 3-phenyl-1-propanol.

An unusual extension of hydroboration involves remote C–H activation. Aryl alkenes are treated with borane and then oxidized in the usual manner. The product is a phenol and a hydroxymethyl group (Ph–C=C–CH₃ \rightarrow *o*-Ph–CH–CH–CH₂OH.⁷⁰²

OS VI, 719, 852, 919, 943; VII, 164, 339, 402, 427; VIII, 532.

15-17 Other Hydrometalation

Hydro-metallo-addition

Metal hydrides of Groups 13 (III A) and 14 (IV B) of the periodic table (e.g., AlH_3 , GaH_3) as well as many of their alkyl and aryl derivatives (e.g., R_2AlH ,

⁶⁹¹Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 291.

⁶⁹²Brown, H.C.; Coleman, R.A. J. Org. Chem. 1979, 44, 2328.

⁶⁹³Pelter, A.; Singaram, S.; Brown, H.C. Tetrahedron Lett. 1983, 24, 1433.

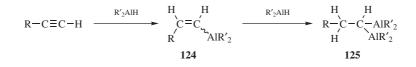
⁶⁹⁴For a list of references, see Gautam, V.K.; Singh, J.; Dhillon, R.S. J. Org. Chem. **1988**, 53, 187. See also, Suzuki, A.; Dhillon, R.S. *Top. Curr. Chem.* **1986**, 130, 23.

⁶⁹⁵Kabalka, G.W.; Yu, S.; Li, N.-S. Tetrahedron Lett. 1997, 38, 7681.

⁶⁹⁶Burgess, K.; van der Donk, W.A.; Westcott, S.A.; Marder, T.B.; Baker, R.T.; Calabrese, J.C. J. Am. Chem. Soc. **1992**, 114, 9350; Wescott, S.A.; Blom, H.P.; Marder, T.B.; Baker, R.T. J. Am. Chem. Soc. **1992**, 114, 8863; Evans, D.A.; Fu, G.C.; Hoveyda, A.H. J. Am. Chem. Soc. **1992**, 114, 6671.

 ⁶⁹⁷Männig, D.; Nöth, H. Angew. Chem. Int. Ed. 1985, 24, 878. For a review, see Burgess, K.; Ohlmeyer, M.J. Chem. Rev. 1991, 91, 1179.

⁶⁹⁸Evans, D.A.; Muci, A.R.; Stürmer, R. J. Org. Chem. 1993, 58, 5307.


⁶⁹⁹ Harrison, K.N.; Marks, T.J. J. Am. Chem. Soc. 1992, 114, 9220.

⁷⁰⁰Burgess, K.; Ohlmeyer, M.J. J. Org. Chem. **1988**, 53, 5178; Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. **1989**, 111, 3426; Sato, M.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. **1990**, 31, 231; Brown, J.M.; Lloyd-Jones, G.C. Tetrahedron: Asymmetry **1990**, 1, 869.

⁷⁰¹Goddard, J.-P.; LeGall, T.; Mioskowski, C. Org. Lett. 2000, 2, 1455.

⁷⁰²Varela, J.A.; Peña, D.; Goldfuss, B.; Polborn, K.; Knochel, P. Org. Lett. 2001, 3, 2395.

Ar₃SnH) add to double bonds to give organometallic compounds.⁷⁰³ The hydroboration reaction (15-16) is the most important example, but other important metals in this reaction are aluminum,⁷⁰⁴ tin,⁷⁰⁵ and zirconium⁷⁰⁶ [a Group 4 (IV B) metal]. Some of these reactions are uncatalyzed, but in other cases various types of catalyst have been used.⁷⁰⁷ Hydrozirconation is most commonly carried out with Cp_2ZrHCl (Cp = cyclopentadienyl),⁷⁰⁸ known as *Schwartz's reagent*. The mechanism with Group 13 (III A) hydrides seems to be electrophilic (or four-centered pericyclic with some electrophilic characteristics) while with Group 14 (IV A) hydrides a mechanism involving free radicals seems more likely. Dialkylmagnesium reagents have been obtained by adding MgH₂ to double bonds.⁷⁰⁹ With Grignard reagents such as RMgX, the Grignard reagent can be added to an alkene R'CH=CH₂ to give R'CH₂CH₂MgX, with TiCl₄ as a catalyst.⁷¹⁰ With some reagents triple bonds⁷¹¹ can add 1 or 2 equivalents, to give **124** or **125**.⁷¹²

⁷⁰³Negishi, E. Adv. Met.-Org. Chem. 1989, 1, 177; Eisch, J.J. The Chemistry of Organometallic Compounds; Macmillan, NY, 1967, pp. 107-111. See also, Eisch, J.J.; Fichter, K.C. J. Organomet. Chem. 1983, 250, 63.

⁷⁰⁴For reviews of organoaluminums in organic synthesis, see Dzhemilev, U.M.; Vostrikova, O.S.; Tolstikov, G.A. Russ. Chem. Rev. 1990, 59, 1157; Maruoka, K.; Yamamoto, H. Tetrahedron 1988, 44, 5001.

⁷⁰⁵For a review with respect to Al, Si, and Sn, see Negishi, E. Organometallics in Organic Synthesis, Vol. 1, Wiley, NY, 1980, pp. 45–48, 357–363, 406–412. For reviews of hydrosilylation, see Ojima, I. in Patai, S.; Rappoport, Z. The Chemistry of Organic Silicon Compounds, pt. 2, Wiley, NY, 1989, pp. 1479-1526; Alberti, A.; Pedulli, G.F. Rev. Chem. Intermed. 1987, 8, 207; Speier, J.L. Adv. Organomet. Chem. 1979, 17, 407; Andrianov, K.A.; Souč ek, J.; Khananashvili, L.M. Russ. Chem. Rev. 1979, 48, 657.

⁷⁰⁶For reviews of hydrozirconation, and the uses of organozirconium compounds, see Negishi, E.; Takahashi, T. Synthesis 1988, 1; Dzhemilev, U.M.; Vostrikova, O.S.; Tolstikov, G.A. J. Organomet. Chem. 1986, 304, 17; Schwartz, J.; Labinger, J.A. Angew. Chem. Int. Ed. 1976, 15, 333. Also see Hoveyda, A.H.; Morken, J.P. J. Org. Chem. 1993, 58, 4237.

⁷⁰⁷See, for example, Oertle, K.; Wetter, H. Tetrahedron Lett. 1985, 26, 5511; Randolph, C.L.; Wrighton, M.S. J. Am. Chem. Soc. 1986, 108, 3366; Maruoka, K.; Sano, H.; Shinoda, K.; Nakai, S.; Yamamoto, H. J. Am. Chem. Soc. 1986, 108, 6036; Miyake, H.; Yamamura, H. Chem. Lett. 1989, 981; Doyle, M.P.; High, K.G.; Nesloney, C.L.; Clayton, Jr., T.W.; Lin, J. Organometallics 1991, 10, 1225.

⁷⁰⁸For a method of preparing this reagent (which is also available commercially), see Buchwald, S.L.; LaMaire, S.J.; Nielsen, R.B.; Watson, B.T.; King, S.M. Tetrahedron Lett. 1987, 28, 3895. It can also be generated *in situ*: Lipshutz, B.H.; Keil, R.; Ellsworth, E.L. *Tetrahedron Lett.* **1990**, *31*, 7257. ⁷⁰⁹For a review, see Bogdanović, B. *Angew. Chem. Int. Ed.* **1985**, *24*, 262.

⁷¹⁰For a review, see Sato, F. J. Organomet. Chem. 1985, 285, 53-64. For another catalyst, see Hoveyda, A.H.; Xu, Z. J. Am. Chem. Soc. 1991, 113, 5079.

⁷¹¹For a review of the hydrometalation of triple bonds, see Hudrlik, P.F.; Hudrlik, A.M., in Patai, S. *The* Chemistry of the Carbon-Carbon Triple Bond, pt. 1, Wiley, NY, 1978, pp. 219-232.

⁷¹²Wilke, G.; Müller, H. Liebigs Ann. Chem. 1960, 629, 222; Eisch, J.J.; Kaska, W.C. J. Am. Chem. Soc. 1966, 88, 2213; Eisch, J.J.; Rhee, S. Liebigs Ann. Chem. 1975, 565.

When 2 equivalents are added, electrophilic addition generally gives 1,1-dimetallic products **125** (as with hydroboration), while free-radical addition usually gives the 1,2-dimetallic products.

OS VII, 456; VIII, 268, 295, 507; 80, 104. See also, OS VIII, 277, 381.

G. Carbon or Silicon on the Other Side

15-18 Addition of Alkanes

Hydro-alkyl-addition

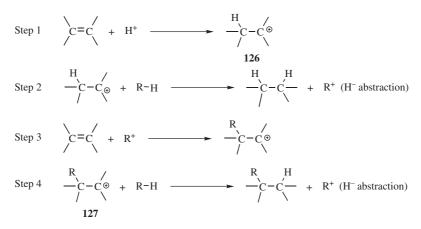
 $C = C + R-H \longrightarrow \frac{H}{C} - C \frac{R}{C}$

There are two important ways of adding alkanes to alkenes: the thermal and the acid-catalysis method.⁷¹³ Both give chiefly mixtures, and neither is useful for the preparation of relatively pure compounds in reasonable yields. However, both are useful industrially. In the thermal method the reactants are heated to high temperatures (\sim 500°C) at high pressures (150–300 atm) without a catalyst. As an example, propane and ethylene gave 55.5% isopentane, 7.3% hexanes, 10.1% heptanes, and 7.4% alkenes.⁷¹⁴ The mechanism is undoubtedly of a free-radical type and can be illustrated by one possible sequence in the reaction between propane and ethylene:

Step 1 $CH_3CH_2CH_3 + CH_2=CH_2 \xrightarrow{\Delta} CH_3-CH-CH_3 + CH_3CH_2 \cdot$ Step 2 $CH_3-CH-CH_3 + CH_2=CH_2 \longrightarrow (CH_3)_2CHCH_2CH_2 \cdot$ Step 3 $(CH_3)_2CHCH_2CH_2 \cdot + CH_3CH_2CH_3 \longrightarrow (CH_3)_2CHCH_2CH_3 + CH_3CHCH_3$

There is kinetic evidence that the initiation takes place primarily by steps like 1, which are called *symproportionation* steps⁷¹⁵ (the opposite of disproportionation, p. 280).

In the acid-catalysis method, a proton or Lewis acid is used as the catalyst and the reaction is carried out at temperatures between -30 and 100° C. This is a Friedel–Crafts process with a carbocation mechanism⁷¹⁶ (illustrated for a proton


⁷¹³For reviews, see Shuikin, N.I.; Lebedev, B.L. Russ. Chem. Rev. **1966**, 35, 448; Schmerling, L., in Olah, G.A. Friedel–Crafts and Related Reactions, Vol. 2, Wiley, NY, **1964**, pp. 1075–1111, 1121–1122.

⁷¹⁴Frey, E.J.; Hepp, H.J. Ind. Eng. Chem. 1936, 28, 1439.

⁷¹⁵Metzger, J.O. Angew. Chem. Int. Ed. **1983**, 22, 889; Hartmanns, J.; Klenke, K.; Metzger, J.O. Chem. Ber. **1986**, 119, 488.

⁷¹⁶For a review, see Mayr, H. Angew. Chem. Int. Ed. 1990, 29, 1371.

acid catalyst):

Carbocation **127** often rearranges before it abstracts a hydride, explaining, for example, why the principal product from the reaction between isobutane and ethylene is 2,3-dimethylbutane. It is also possible for **126** (or **127**) instead of abstracting a hydride, to add to another mole of alkene, so that not only rearrangement products but also dimeric and polymeric products are frequent. If the tri- or tetrasubstituted alkenes are treated with Me₄Si, HCl, and AlCl₃, they become protonated to give a tertiary carbocation, which reacts with the Me₄Si to give a product that is the result of addition of H and Me to the original alkene.⁷¹⁷ (For a free-radical hydromethyl-addition, see **15-28**.) Addition a cation to a vinyl bromide, generated from an α -ethoxy-lactam with trifluoroacetic acid, generated a ketone.⁷¹⁸ An intramolecular cyclization of 1-dodecene to cyclododecane was reported using aluminum chloride in an ionic liquid.⁷¹⁹

Alkanes add to alkynes under photolysis conditions to give an alkene.⁷²⁰ Tetrahydrofuran adds to alkynes to give the alkene with microwave irradiation.⁷²¹

The reaction can also be base catalyzed, in which case there is nucleophilic addition and a carbanion mechanism.⁷²² Carbanions most often used are those stabilized by one or more α -aryl groups. For example, toluene adds to styrene in the presence of sodium to give 1,3-diphenylpropane:⁷²³

 $PhCH_3 \xrightarrow{\text{Na}} PhCH_2 + PhCH=CH_2 \longrightarrow PhCH_2CH_2Ph \xrightarrow{\text{solvent}} PhCH_2CH_2CH_2Ph$

⁷¹⁹In bmim Cl, 1-butyl-3-methylimidazolium chloride: Qiao, K.; Deng, Y. Tetrahedron Lett. 2003, 44, 2191.

⁷²⁰Geraghty, N.W.A.; Hannan, J.J. Tetrahedron Lett. 2001, 42, 3211.

⁷²³Pines, H.; Wunderlich, D. J. Am. Chem. Soc. 1958, 80, 6001.

⁷¹⁷Bolestova, G.I.; Parnes, Z.N.; Kursanov, D.N. J. Org. Chem. USSR 1983, 19, 2175.

⁷¹⁸Gesson, J.-P.; Jacquesy, J.-C.; Rambaud, D. *Tetrahedron* 1993, 49, 2239.

⁷²¹Zhang, Y.; Li, C.-J. Tetrahedron Lett. 2004, 45, 7581.

⁷²²For reviews, see Pines, H.; Stalick, W.M. *Base-Catalyzed Reactions of Hydrocarbons and Related Compounds*, Academic Press, NY, **1977**, pp. 240–422; Pines, H. *Acc. Chem. Res.* **1974**, 7, 155; Pines, H.; Schaap, L.A. *Adv. Catal.* **1960**, *12*, 117, pp. 126.

Conjugated dienes give 1,4-addition.⁷²⁴ This reaction has also been performed with salts of carboxylic acids in what amounts to a method of alkylation of carboxylic acids⁷²⁵ (see also, **10-59**).

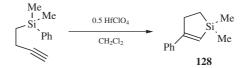
 $\mathsf{CH}_3\mathsf{COOK} \xrightarrow{\mathsf{NaNH}_2} \overset{\Theta}{\longrightarrow} \mathsf{CH}_2\mathsf{COOK} + \mathsf{CH}_2=\mathsf{CH}_2 \xrightarrow{\Theta} \mathsf{CH}_2-\mathsf{CH}_2\mathsf{CH}_2\mathsf{COOK}$

There are transition-metal catalyzed addition reaction of alkyl units to alkenes,⁷²⁶ often proceeding with metal hydride elimination to form an alkene. An intramolecular cyclization reaction of an *N*-pyrrolidino amide alkene was reported using an iridium catalyst for addition of the carbon α to nitrogen to the alkene unit.⁷²⁷

OS I, 229; IV, 665; VII, 479.

15-19 Addition of Silanes

Silyl-hydro-addition


$$\overset{R}{\searrow}_{C=C} + (R^{1})_{4-n} - SiH_{n} \xrightarrow{\text{catalyst}} R \xrightarrow{H} C - C \xrightarrow{Si-(R^{1})_{4-n}}$$

Although silanes bearing at least one Si–H unit do not generally react with alkenes or alkynes, in the presence of certain catalyst addition occurs to give the corresponding alkyl or vinyl silane. The reaction of an alkene with an yttrium,⁷²⁸ ruthenium,⁷²⁹ rhodium,⁷³⁰ palladium,⁷³¹ lanthanum,⁷³² platinum⁷³³, or samarium⁷³⁴ catalyst addition occurs with high anti-Markovnikov selectivity. Silanes add to dienes with a palladium catalyst, and asymmetric induction is achieved by using a binapthyl additive.⁷³⁵ Alkenes react with Li-(0) and *t*-Bu₂SiCl₂ to give a three-membered ring silane.⁷³⁶ In the presence of BEt₃, silanes add to alkynes to give the corresponding vinyl silane⁷³⁷ or to alkenes to give the alkylsilane, with

- ⁷²⁵Schmerling, L.; Toekelt, W.G. J. Am. Chem. Soc. 1962, 84, 3694.
- ⁷²⁶Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826.
- ⁷²⁷DeBoef, B.; Pastine, S.J.; Sames, D. J. Am. Chem. Soc. 2004, 126, 6556.
- ⁷²⁸Molander, G.A.; Julius, M. J. Org. Chem. 1992, 57, 6347.
- ⁷²⁹Glaser, P.B.; Tilley, T.D. J. Am. Chem.Soc. 2003, 125, 13640.
- ⁷³⁰Itami, K.; Mitsudo, K.; Nishino, A.; Yoshida, J.-i. J. Org. Chem. **2002**, 67, 2645; Tsuchiya, Y.; Uchimura, H.; Kobayashi, K.; Nishiyama, H. Synlett **2004**, 2099.
- ⁷³¹Motoda, D.; Shinokubo, H.; Oshima, K. Synlett 2002, 1529.
- ⁷³²Takaki, K.; Sonoda, K.; Kousaka, T.; Koshoji, G.; Shishido, T.; Takehira, K. *Tetrahedron Lett.* 2001, 42, 9211.
- ⁷³³Perales, J.B.; van Vranken, D.L. J. Org. Chem. 2001, 66, 7270; Sabourault, N.; Mignani, G.; Wagner, A.; Mioskowski, C. Org. Lett. 2002, 4, 2117.
- ⁷³⁴Hou, Z.; Zhang, Y.; Tardif, O.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 9216.
- ⁷³⁵Hatanaka, Y.; Goda, K.; Yamashita, F.; Hiyama, T. Tetrahedron Lett. 1994, 35, 7981.
- ⁷³⁶Driver, T.G.; Franz, A.K.; Woerpel, K.A. J. Am. Chem. Soc. 2002, 124, 6524.
- ⁷³⁷Miura, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1993, 66, 2356.

⁷²⁴Eberhardt, G.G.; Peterson, H.J. J. Org. Chem. **1965**, 30, 82; Pines, H.; Stalick, W.M. Tetrahedron Lett. **1968**, 3723.

anti-Markovnikov selectivity.⁷³⁸ Similar selectivity was observed when a silylated zinc reagent was added to a terminal alkyne.⁷³⁹ Silanes add to alkynes to give a vinyl silane using Cp₂TiCl₂-*n*-butyllithium.⁷⁴⁰ Siloxanes such as (RO)₃SiH add to alkynes with a ruthenium catalyst to give the corresponding vinyl silane.⁷⁴¹ The reaction of Cl₂MeSiH and terminal alkynes, in ethanol-triethylamine with a ruthenium catalyst, to give primarily the Markovnikov vinyl silane.⁷⁴² However, Et₃SiH adds to terminal alkynes with a rhodium⁷⁴³ or a platinum⁷⁴⁴ catalyst to give the anti-Markovnikov vinyl silane. Using 0.5 equivalent of HfClO₄ with alkynes bearing a dimethylphenylsilyl unit gave a cyclic vinyl silane with transfer of the phenyl group to carbon (see 128).⁷⁴⁵ Dienes react with zirconium compounds and silanes to produce cyclic compounds in which the silyl group has also added to one C=C unit.746 With an yttrium catalyst, PhSiH3 reacts with nonconjugated dienes to give cyclic alkenes with a pendant CH₂SiH₂Ph group.⁷⁴⁷ Rhodium compounds allow silanes to add to enamides to give the α -silylamide.⁷⁴⁸ Allylsilanes add to certain allylic alcohols in the presence of Me₃SiOTf, via a S_N2'-like reaction, to give dienes.⁷⁴⁹ Note that silanes open cyclopropane rings in the presence of 20% AlCl₃ to give the alkylsilane.⁷⁵⁰ Formation of silanes via reaction with alkenes can be followed by reaction with fluoride ion and then oxidation to give an alcohol⁷⁵¹ (see 10-16).

Silanes also add to alkenes under radical conditions (using AIBN) with high anti-Markovnikov selectivity.⁷⁵² An alternative route to alkylsilanes reacted an alkene with lithium metal in the presence of 3 equivalents of chlorotrimethylsilane, giving bis-1,2-trimethylsilyl compounds after treatment with water.⁷⁵³ Silanes also

⁷⁴⁰Takahashi, T.; Bao, F.; Gao, G.; Ogasawara, M. Org. Lett. 2003, 5, 3479.

- ⁷⁴²Kawanami, Y.; Sonoda, Y.; Mori, T.; Yamamoto, K. Org. Lett. 2002, 4, 2825.
- ⁷⁴³Sato, A.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 2217.
- ⁷⁴⁴Wu, W.; Li, C.-J. Chem. Commun. 2003, 1668.
- ⁷⁴⁵Asao, N.; Shimada, T.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. 2001, 123, 10899. See also, Sudo, T.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2000, 65, 8919.
- ⁷⁴⁶Molander, G.A.; Corrette, C.P. Tetrahedron Lett. 1998, 39, 5011.
- ⁷⁴⁷Muci, A.R.; Bercaw, J.E. Tetrahedron Lett. 2000, 41, 7609.
- ⁷⁴⁸Murai, T.; Oda, T.; Kimura, F.; Onishi, H.; Kanda, T.; Kato, S. J. Chem. Soc., Chem. Commun. **1994**, 2143.
- ⁷⁴⁹Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. Tetrahedron Lett. 1994, 35, 5673.
- ⁷⁵⁰Nagahara, S.; Yamakawa, T.; Yamamoto, H. Tetrahedron Lett. 2001, 42, 5057.
- ⁷⁵¹Jensen, J.F.; Svendsen, B.H.; la Cour, T.V.; Pedersen, H.L.; Johannsen, M. J. Am. Chem. Soc. 2002, 124, 4558.
- ⁷⁵²Kopping, B.; Chatgilialoglu, C.; Zehnder, M.; Giese, B. J. Org. Chem. 1992, 57, 3994.
- ⁷⁵³Yus, M.; Martínez, P.; Guijarro, D. Tetrahedron 2001, 57, 10119.

⁷³⁸Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936.

⁷³⁹Nakamura, S.; Uchiyama, M.; Ohwada, T. J. Am. Chem. Soc. 2004, 126, 11146.

⁷⁴¹Trost, B.M.; Ball, Z.T. J. Am. Chem. Soc. 2001, 123, 12726.

add to alkenes to form anti-Markovnikov alkylsilane ($R_3Si-C-C-R'$) in the presence of a hyponitrite.⁷⁵⁴

Vinyl silanes add to conjugated carbonyl compounds in the presence of a ruthenium catalyst,⁷⁵⁵ or to acrylonitriles with a cobalt catalyst.⁷⁵⁶ Silyl phosphines react with conjugated ynones directly to give an enone with an α -trimethylsilyl and a β -phosphine group.⁷⁵⁷ Siloxanes of the type (RO)₃SiH add to the α -carbon of enamines in the presence of a dirhodium catalyst.⁷⁵⁸ The uncatalyzed reaction of trimethylsilyl cyanide and ynamines, however, gave an enamine with a β -trimethylsilyl and an α -cyano group.⁷⁵⁹

15-20 Addition of Alkenes and/or Alkynes to Alkenes and/or Alkynes

Hydro-alkenyl-addition

 $CH_2=CH_2 + CH_2=CH_2 \xrightarrow{H^+} CH_2=CHCH_2CH_3$

With certain substrates, alkenes can be dimerized by acid catalysts, so that the product is a dimer that contains one double bond.⁷⁶⁰ A combination of zinc and a CoCl₂ catalyst accomplished the same type of coupling.⁷⁶¹ One alkene adds to another in the presence of a nickel catalyst.⁷⁶² Coupling conjugated alkenes with vinyl esters to give a functionalized conjugated diene is known, using a complex palladium–vanadium catalyst in an oxygen atmosphere.⁷⁶³ This reaction is more often carried out internally, as in the formation of cyclohexene **129**. A palladium catalyzed cyclization is known, in which dienes are converted to cyclopentene derivatives such as **130**.⁷⁶⁴ Ring-forming reactions with heterocyclic compounds such as indoles are known using PtCl₂.⁷⁶⁵ A ruthenium catalyzed version of this reaction gave the five-membered ring with an exocyclic double bond.⁷⁶⁶ Carbocyclization of an alkene unit to another alkene unit was reported

⁷⁵⁴Dang, H.-S.; Roberts, B.P. Tetrahedron Lett. 1995, 36, 2875.

Saito, N.; Tanaka, D.; Takimoto, M.; Sato, Y. J. Am. Chem. Soc. 2003, 125, 5606; Michaut, M.; Santelli, M.; Parrain, J.-L. Tetrahedron Lett. 2003, 44, 2157.

⁷⁵⁵Kakiuchi, F.; Tanaka, Y.; Sato, T.; Chatani, N.; Murai, S. *Chem. Lett.* **1995**, 679; Trost, B.M.; Imi, K.; Davies, I.W. J. Am. Chem. Soc. **1995**, 117, 5371.

⁷⁵⁶Tayama, O.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. Eur. J. Org. Chem. 2003, 2286.

⁷⁵⁷Reisser, M.; Maier, A.; Maas, G. Synlett 2002, 1459.

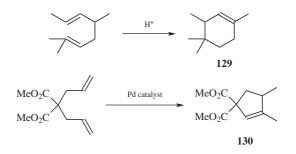
⁷⁵⁸Hewitt, G.W.; Somers, J.J.; Sieburth, S.Mc.N. Tetrahedron Lett. 2000, 41, 10175.

⁷⁵⁹Lukashev, N.V.; Kazantsev, A.V.; Borisenko, A.A.; Beletskaya, I.P. Tetrahedron 2001, 57, 10309.

⁷⁶⁰For a review, see Onsager, O.; Johansen, J.E., in Hartley, F.R.; Patai, S. *The Chemistry of the Metal-Carbon Bond*, Vol. 3, Wiley, NY, **1985**, pp. 205–257.

⁷⁶¹Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. Tetrahedron Lett. 2004, 45, 6203.

⁷⁶²RajanBabu, T.V.; Nomura, N.; Jin, J.; Nandi, M.; Park, H.; Sun, X. J. Org. Chem. 2003, 68, 8431.


⁷⁶³Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2004, 6, 4623.

⁷⁶⁴Kisanga, P.; Goj, L.A.; Widenhoefer, R.A. J. Org. Chem. 2001, 66, 635.

⁷⁶⁵Liu, C.; Han, X.; Wang, X.; Widenhoefer, R.A. J. Am. Chem. Soc. 2004, 126, 3700.

⁷⁶⁶Yamamoto, Y.; Nakagai, Y.-i.; Ohkoshi, N.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6372; Mori, M.;

using an yttrium catalyst,⁷⁶⁷ or a titanium catalyst.⁷⁶⁸ In some cases, internal coupling of two alkenes can form larger rings.⁷⁶⁹ Variations include treatment of similar dienes with HSiMe₂OSiMe₃ and KF-acetic acid to give a cyclopentane with a pendant trimethylsilylmethyl group trans to a methyl.⁷⁷⁰ Exo-dig carbocyclization was reported using HfCl₄⁷⁷¹ palladium,⁷⁷² or titanium,⁷⁷³ catalysts. Alkynes also add to alkenes for form rings in the presence of a palladium,⁷⁷⁴ rhodium,⁷⁷⁵ ruthenium,⁷⁷⁶ iridium,⁷⁷⁷ or a zirconium catalyst.⁷⁷⁸ Alkene allene substrates were cyclized to form cyclic products with an exocyclic double bond using a palladium catalyst.⁷⁷⁹ An interesting variation adds a silyl enol ether to an alkyne using GaCl₃ to give an unconjugated ketone (O=C-C-C=C).⁷⁸⁰ Alkenes and alkynes can also add to each other to give cyclic products in other ways (see **15-63** and **15-65**).

Processes of this kind are important in the biosynthesis of steroids and tetra- and pentacyclic terpenes. For example, squalene 2,3-oxide is converted by enzymatic

- ⁷⁶⁹Toyota, M.; Majo, V.J.; Ihara, M. Tetrahedron Lett. 2001, 42, 1555.
- ⁷⁷⁰Pei, T.; Widenhoefer, R.A. J. Org. Chem. 2001, 66, 7639.

⁷⁷¹Imamura, K.-i.; Yoshikawa, E.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. **1998**, 120, 5339. ⁷⁷²Xie, X.; Lu, X. Synlett **2000**, 707.

⁷⁷³Berk, S.C.; Grossman, R.B.; Buchwald, S.L. J. Am. Chem. Soc. **1994**, 116, 8593; J. Am. Chem. Soc. **1993**, 115, 4912.

⁷⁷⁴Galland, J.-C.; Savignac, M.; Genêt, J.-P. *Tetrahedron Lett.* **1997**, *38*, 8695; Widenhoefer, R.A.; Perch, N.S. Org. Lett. **1999**, *1*, 1103.

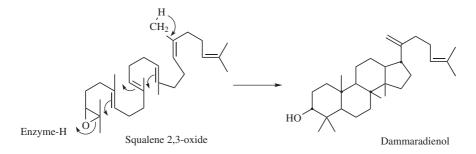
⁷⁷⁵Wender, P.A.; Dyckman, A.J. Org. Lett. **1999**, *1*, 2089; Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc.
 2000, *122*, 6490; Cao, P.; Zhang, X. Angew. Chem. Int. Ed. **2000**, *39*, 4104.

⁷⁷⁶Fernández-Rivas, C.; Méndez, M.; Echavarren, A.M. J. Am. Chem. Soc. **2000**, 122, 1221; Fürstner, A.; Ackermann, L. Chem. Commun. **1999**, 95.

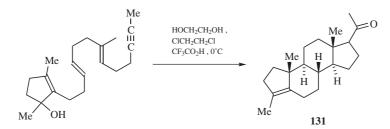
⁷⁷⁷Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem. 2001, 66, 4433.

⁷⁷⁸Miura, K.; Funatsu, M.; Saito, H.; Ito, H.; Hosomi, A. Tetrahedron Lett. 1996, 37, 9059; Kemp, M.I.;

Whitby, R.J.; Coote, S.J. Synlett **1994**, 451; Wischmeyer, U.; Knight, K.S.; Waymouth, R.M. Tetrahedron Lett. **1992**, 33, 7735. Also see Maye, J.P.; Negishi, E. Tetrahedron Lett. **1993**, 34, 3359.


⁷⁷⁹Iodobenzene was added and a phenyl substituent was incorporated in the product. See Ohno, H.; Takeoka, Y.; Kadoh, Y.; Miyamura, K.; Tanaka, T. J. Org. Chem. **2004**, 69, 4541.

⁷⁸⁰Yamaguchi, M.; Tsukagoshi, T.; Arisawa, M. J. Am. Chem. Soc. 1999, 121, 4074.


⁷⁶⁷Molander, G.A.; Dowdy, E.D.; Schumann, H. J. Org. Chem. 1998, 63, 3386.

⁷⁶⁸Okamoto, S.; Livinghouse, T. J. Am. Chem. Soc. **2000**, 122, 1223. See Hart, D.J.; Bennett, C.E. Org. Lett. **2003**, *5*, 1499.

catalysis to dammaradienol.

The squalene \rightarrow lanosterol biosynthesis (which is a key step in the biosynthesis of cholesterol) is similar. The idea that the biosynthesis of such compounds involves this type of multiple ring closing was proposed in 1955 and is known as the *Stork–Eschenmoser hypothesis*.⁷⁸¹ Such reactions can also be carried out in the laboratory, without enzymes.⁷⁸² By putting cation-stabilizing groups at positions at which positive charges develop, Johnson and co-workers have been able to close as many as four rings stereoselectively and in high yield, in one operation.⁷⁸³ An example is formation of **131**,⁷⁸⁴ also known as the *Johnson polyene cyclization*.⁷⁸⁵

Lewis acids can be used to initiate this cyclization,⁷⁸⁶ including EtAlCl₂ used for the coupling of an alkyne and an alkene.⁷⁸⁷ Cyclization to a tricyclic systems that included formation of a dihydropyran ring was reported using mercuric

⁷⁸¹Stork, G.; Burgstahler, A.W. J. Am. Chem. Soc. 1955, 77, 5068; Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890.

⁷⁸²For reviews, see Gnonlonfoun, N. Bull. Soc. Chim. Fr. 1988, 862; Sutherland, J.K. Chem. Soc. Rev. 1980, 9, 265; Johnson, W.S. Angew. Chem. Int. Ed. 1976, 15, 9; Bioorg. Chem. 1976, 5, 51; Acc. Chem. Res. 1968, 1, 1; van Tamelen, E.E. Acc. Chem. Res. 1975, 8, 152. For a review of the stereochemical aspects, see Bartlett, P.A., in Morrison, J.D. Asymmetric Synthesis Vol. 3, Academic Press, NY, 1985, pp. 341–409.

⁷⁸³Guay, D.; Johnson, W.S.; Schubert, U. J. Org. Chem. 1989, 54, 4731 and references cited therein.

⁷⁸⁴Johnson, W.S.; Gravestock, M.B.; McCarry, B.E. J. Am. Chem. Soc. 1971, 93, 4332.

⁷⁸⁵Johnson, W.S. Acc. Chem. Res. 1968, 1, 1; Hendrickson, J.B. The Molecules of Nature, W.A. Benjamin, NY, 1965, pp. 12–57; Kametani T.; Fukumoto, K. Synthesis 1972, 657.

⁷⁸⁶Sen, S.E.; Roach, S.L.; Smith, S.M.; Zhang, Y.Z. *Tetrahedron Lett.* **1998**, *39*, 3969. For an asymmetric version using SnCl₄, see Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. **1999**, *121*, 4906.
⁷⁸⁷Asao, N.; Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc. **1999**, *121*, 3797.

bis(trifluorosulfonate) as an initiator.⁷⁸⁸ A radical cyclization approach (**15-30**) to polyene cyclization using a seleno-ester anchor gave a tetracyclic system.⁷⁸⁹ The addition of alkenes to alkenes⁷⁹⁰ can also be accomplished by bases.⁷⁹¹

The addition of alkenes to alkenes⁷⁹⁰ can also be accomplished by bases.⁷⁹¹ Coupling reactions can occur using catalyst systems⁷⁹² consisting of nickel complexes and alkylaluminum compounds (known as *Ziegler catalysts*),⁷⁹³ rhodium catalysts,⁷⁹⁴ and other transition-metal catalysts, including iron.⁷⁹⁵ The 1,4-addition of alkenes to conjugated dienes to give nonconjugated dienes⁷⁹⁶ occurs with various transition-metal catalysts.

and the dimerization of 1,3-butadienes to octatrienes.⁷⁹⁷ Ethylene adds to alkenes to form a new alkene in the presence of a nickel catalyst⁷⁹⁸ or a zirconium catalyst,⁷⁹⁹ to alkynes in the presence of a ruthenium catalyst⁸⁰⁰ to form a diene, and allenes add to alkynes to give a diene with a titanium catalyst.⁸⁰¹

In the presence of cuprous chloride and ammonium chloride, acetylene adds to another molecule of itself to give vinylacetylene.

$$HC\equiv CH + HC\equiv CH \xrightarrow{CuCl} HC\equiv C-CH=CH_2$$

⁷⁸⁸Gopalan, A.S.; Prieto, R.; Mueller, B.; Peters, D. Tetrahedron Lett. 1992, 33, 1679.

⁷⁸⁹Chen, L.; Gill, G.B.; Pattenden, G. Tetrahedron Lett. 1994, 35, 2593.

⁷⁹⁰For a review of alkene dimerization and oligomerization with all catalysts, see Fel'dblyum, V.Sh.; Obeshchalova, N.V. *Russ. Chem. Rev.* **1968**, *37*, 789.

⁷⁹¹For a review, see Pines, H. Synthesis 1974, 309.

⁷⁹²For reviews, see Pillai, S.M.; Ravindranathan, M.; Sivaram, S. Chem. Rev. 1986, 86, 353; Jira, R.;
 Freiesleben, W. Organomet. React. 1972, 3, 1, 117; Heck, R.F. Organotransition Metal Chemistry,
 Academic Press, NY, 1974, pp. 84–94, 150–157; Khan, M.M.T.; Martell, A.E. Homogeneous Catalysis by
 Metal Complexes, Vol. 2, Academic Press, NY, 1974, pp. 135–15; Rylander, P.N. Organic Syntheses with
 Noble Metal Catalysts, Academic Press, NY, 1973, pp. 175–196; Tsuji, J. Adv. Org. Chem. 1969, 6, 109,
 pp. 213. Also see, Kaur, G.; Manju, K.; Trehan, S. Chem. Commun. 1996, 581.
 ⁷⁹³See, for example, Onsager, O.; Wang, H.; Blindheim, U. Helv. Chim. Acta 1969, 52, 187, 230;

¹⁹⁵See, for example, Onsager, O.; Wang, H.; Blindheim, U. *Helv. Chim. Acta* **1969**, *52*, 187, 230; Fischer, K.; Jonas, K.; Misbach, P.; Stabba, R.; Wilke, G. *Angew. Chem. Int. Ed.* **1973**, *12*, 943.

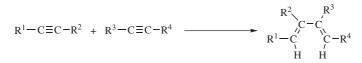
⁷⁹⁴Cramer, R. J. Am. Chem. Soc. **1965**, 87, 4717; Acc. Chem. Res. **1968**, 1, 186; Kobayashi, Y.; Taira, S. *Tetrahedron* **1968**, 24, 5763; Takahashi, N.; Okura, I.; Keii, T. J. Am. Chem. Soc. 1975, 97, 7489.

⁷⁹⁵Takacs, J.M.; Myoung, Y.C. Tetrahedron Lett. 1992, 33, 317.

⁷⁹⁶Alderson, T.; Jenner, E.L.; Lindsey, Jr., R.V. J. Am. Chem. Soc. **1965**, 87, 5638; Hilt, G.; du Mesnil, F.-X.; Lüers, S. Angew. Chem. Int. Ed. **2001**, 40, 387. For a review see Su, A.C.L. Adv. Organomet. Chem. **1979**, 17, 269.

⁷⁹⁷See, for example, Denis, P.; Jean, A.; Croizy, J.F.; Mortreux, A.; Petit, F. J. Am. Chem. Soc. 1990, 112, 1292.
 ⁷⁹⁸Nomura, N.; Jin, J.; Park, H.; RajanBabu, T.V. J. Am. Chem. Soc. 1998, 120, 459; Monteiro, A.L.;

Seferin, M.; Dupont, J.; de Souza, R.F. Tetrahedron Lett. 1996, 37, 1157.


⁷⁹⁹Takahashi, T.; Xi, Z.; Fischer, R.; Huo, S.; Xi, C.; Nakajima, K. *J. Am. Chem. Soc.* **1997**, *119*, 4561; Takahashi, T.; Xi, Z.; Rousset, C.J.; Suzuki, N. *Chem. Lett.* **1993**, 1001.

⁸⁰⁰Kinoshita, A.; Sakakibara, N.; Mori, M. J. Am. Chem. Soc. **1997**, 119, 12388; Trost, B.M.; Indolese, A. J. Am. Chem. Soc. **1993**, 115, 4361.

⁸⁰¹Urabe, H.; Takeda, T.; Hideura, D.; Sato, F. J. Am. Chem. Soc. 1997, 119, 11295.

This type of alkyne dimerization is also catalyzed by nickel,⁸⁰² palladium,⁸⁰³ lutetium,⁸⁰⁴ and ruthenium catalysts.⁸⁰⁵ Similar products are obtained by the cross-coupling an terminal alkynes with allene, using a combination of palladium and CuI catalysts.⁸⁰⁶ The reaction has been carried out internally to convert diynes to large-ring cycloalkynes with an exocyclic double bond.⁸⁰⁷ Diynes have also been cyclized to form cyclic enynes (an endocyclic double bond) using a diruthenium catalyst with ammonium tetrafluoroborate in methanol.⁸⁰⁸ Enynes are similarly cyclized to cyclic alkenes with an endocyclic C=C unit, analogous to formation of **200** above, using a dicobalt catalyst.⁸⁰⁹ A molecule containing two distal conjugated diene units was cyclized to give a bicyclic molecule with an exocyclic double bond using a palladium catalyst.⁸¹⁰ A nickel catalyst converted a similar system to a saturated five-membered ring containing an allylic group and a vinyl group.⁸¹¹

In another type of alkyne dimerization is the reductive coupling in which two molecules of alkyne, the same or different, give a 1,3-diene.⁸¹²

In this method, one alkyne is treated with Schwartz's reagent (see **15-17**) to produce a vinylic zirconium intermediate. Addition of MeLi or MeMgBr, followed by the second alkyne, gives another intermediate, which, when treated with aqueous acid, gives the diene in moderate-to-good yields. The stereoisomer shown is the one formed in usually close to 100% purity. If the second intermediate is treated with I₂ instead of aqueous acid, the 1,4-diiodo-1,3-diene is obtained instead, in comparable yield and isomeric purity. The reaction of alkynes with two equivalents of trimethylsilyldiazomethane and a ruthenium catalyst gave a conjugated diene with trimethylsilyl groups at C-1 and C-4.⁸¹³ Alkynes can also be coupled to allylic silyl ethers with a ruthenium catalysts to give dienes.⁸¹⁴ Other alkyne–allylic coupling reactions are known to give dienes.⁸¹⁵

⁸⁰⁴Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184.
 ⁸⁰⁵Smulik, J.A.; Diver, S.T. J. Org. Chem. 2000, 65, 1788.

⁸⁰⁶Bruyere, D.; Grigg, R.; Hinsley, J.; Hussain, R.K.; Korn, S.; Del Cierva, C.O.; Sridharan, V.; Wang, J. *Tetrahedron Lett.* **2003**, *44*, 8669.

- ⁸⁰⁷Trost, B.M.; Matusbara, S.; Carninji, J.J. J. Am. Chem. Soc. 1989, 111, 8745.
- ⁸⁰⁸Nishibayashi, Y.; Yamanashi, M.; Wakiji, I.; Hidai, M. Angew. Chem. Int. Ed. 2000, 39, 2909.
- ⁸⁰⁹Ajamian, A.; Gleason, J.L. Org. Lett. 2003, 5, 2409.
- 810 Takacs, J.M.; Leonov, A.P. Org. Lett. 2003, 5, 4317.
- ⁸¹¹Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2002, 124, 10008; Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956.
- ⁸¹²Buchwald, S.L.; Nielsen, R.B. J. Am. Chem. Soc. 1989, 111, 2870.
- ⁸¹³Le Paih, J.; Dérien, S.; Özdemir, I.; Dixneuf, P.H. J. Am. Chem. Soc. 2000, 122, 7400.
- ⁸¹⁴Trost, B.M.; Surivet, J.-P.; Toste, F.D. J. Am. Chem. Soc. 2001, 123, 2897.
- ⁸¹⁵Trost, B.M.; Pinkerton, A.B.; Toste, F.D.; Sperrle, M. J. Am. Chem. Soc. 2001, 123, 12504; Giessert, A.J.; Snyder, L.; Markham, J.; Diver, S.T. Org. Lett. 2003, 5, 1793.

⁸⁰²Ogoshi, S.; Ueta, M.; Oka, M.-A.; Kurosawa, H. Chem. Commun. 2004, 2732.

⁸⁰³Rubina, M.; Gevergyan, V. J. Am. Chem. Soc. **2001**, 123, 11107; Yang, C.; Nolan, S.P. J. Org. Chem. **2002**, 67, 591.

This reaction can also be done intramolecularly, as in the cyclization of diyne **132** to (E,E)-exocyclic dienes **133** by treatment with a zirconium,⁸¹⁶ rhodium,⁸¹⁷ or platinum complex.⁸¹⁸ A similar reaction was reported using a titanium catalyst from a diyne amide.⁸¹⁹

Rings of four, five, and six members were obtained in high yield; seven-membered rings in lower yield. When the reaction is applied to enynes, compounds similar to **133** are formed using various catalysts, but with only one double bond⁸²⁰ Internal coupling of alkene–allenes and a rhodium catalyst give similar products bearing a pendant vinyl group.⁸²¹ With a PtCl₂ catalyst, ring closure leads to a diene in some cases.⁸²² Larger rings can be formed from the appropriate enyne, including forming cyclohexadiene compounds.⁸²³ Spirocyclic compounds can be prepared from enynes in this manner using formic acid and a palladium catalyst.⁸²⁴ Enynes can also be converted to bicyclo[3.1.0]hexenes⁸²⁵ or nonconjugated cyclohexadienes⁸²⁶ using a gold catalyst. Internal coupling of an alkyne and a vinylidene cyclopropane unit with a palladium catalyst leads to a cyclopentene derivative with an exocyclic double bond.⁸²⁷ Enynes having a conjugated alkene unit also undergo this reaction

⁸¹⁸Madine, J.W.; Wang, X.; Widenhoefer, R.A. *Org. Lett.* **2001**, *3*, 385; Méndez, M.; Muñoz, M.P.; Nevado, C.; Cárdenas, D.J.; Echavarren, A.M. *J. Am. Chem. Soc.* **2001**, *123*, 10511; Wang, X.; Chakrapani, H.; Madine, J.W.; Keyerleber, M.A.; Widenhoefer, R.A. *J. Org. Chem.* **2002**, *67*, 2778. See also, Fürstner, A.; Stelzer, F.; Szillat, H. *J. Am. Chem. Soc.* **2001**, *123*, 11863.

⁸¹⁹Urabe, H.; Nakajima, R.; Sato, F. Org. Lett. 2000, 2, 3481.

⁸²⁰RajanBabu, T.V.; Nugent, W.A.; Taber, D.F.; Fagan, P.J. J. Am. Chem. Soc. 1988, 110, 7128; Méndez, M.; Muñoz, M.P.; Echavarren, A.M. J. Am. Chem. Soc. 2000, 122, 11549; Chakrapani, H.; Liu, C.; Widenhoefer, R.A. Org. Lett. 2003, 5, 157; Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 8198; Ojima, I.; Vu, A.T.; Lee, S.-Y.; McCullagh, J.V.; Moralee, A.C.; Fujiwara, M.; Hoang, T.H. J. Am. Chem. Soc. 2002, 124, 9164; Lee, P.H.; Kim, S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Livinghouse, T. Org. Lett. 2004, 6, 4825.

825Luzung, M.R.; Markham, J.P.; Toste, F.D. J. Am. Chem. Soc. 2004, 126, 10858.

827 Delgado, A.; Rodríguez, J.R.; Castedo, L.; Mascareñas, J.L. J. Am. Chem. Soc. 2003, 125, 9282.

⁸¹⁶Nugent, W.A.; Thorn, D.L.; Harlow, R.L. J. Am. Chem. Soc. **1987**, 109, 2788. See also, Trost, B.M.; Lee, D.C. J. Am. Chem. Soc. **1988**, 110, 7255; Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. **1989**, 111, 6478.

⁸¹⁷Jang, H.-Y.; Krische, M.J. J. Am. Chem. Soc. 2004, 126, 7875.

⁸²¹Makino, T.; Itoh, K. *Tetrahedron Lett.* **2003**, *44*, 6335; Lei, A.; He, M.; Wu, S.; Zhang, X. *Angew. Chem. Int. Ed.* **2002**, *41*, 3457.

⁸²²Harrison, T.J.; Dake, G.R. Org. Lett. 2004, 6, 5023. See also, Ikeda, S.-i.; Sanuki, R.; Miyachi, H.; Miyashia, H.; Taniguchi, M.; Odashima, K. J. Am. Chem. Soc. 2004, 126, 10331.

⁸²³Yamamoto, Y.; Kuwabara, S.; Ando, Y.; Nagata, H.; Nishiyama, H.; Itoh, K. J. Org. Chem. **2004**, 69, 6697.

⁸²⁴Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704.

⁸²⁶Zhang, L.; Kozmin, S.A. J. Am. Chem. Soc. 2004, 126, 11806.

in the presence of ZnBr₂.⁸²⁸ Using mercury (II) triflate in water, cyclization leads to five-membered rings having an exocyclic double bond, and a pendant alcohol group.⁸²⁹ Enynes give cyclic compounds with an endocyclic double bond conjugated to another alkene unit (a conjugated diene) when treated with GaCl₃⁸³⁰ or a platinum catalyst in an ionic liquid.⁸³¹ Allene–alkenes give a similar product with a palladium catalyst.⁸³⁴ Ethers having an enyne unit (propargylic and allylic) give dihydrofurans upon treatment with Co₂(CO)₈.⁸³⁵ Amines and sulfonamides bearing two propargyl groups cyclize with a ruthenium catalyst to give the corresponding dihydropyrrole.⁸³⁶

There are many useful variations. Internal coupling of an alkyne with a vinyl halide, using triethylsilane and a palladium catalyst, gave the saturated cyclic compound with two adjacent exocyclic double bonds (a 2,3-disubstituted diene.⁸³⁷ Alkynes can added to propargyl acetates using palladium catalyst to give an alkyne allene.⁸³⁸ Two-Substituted malonate esters having a distal alkyne unit generated vinylidene cycloalkanes when treated with a catalytic amount of *n*-butyllithium.⁸³⁹ Intramolecular coupling of alkenes and allylic sulfides using *tert*-butoxide/*n*-butyllithium, and then LiBr leads to a bicyclic compound containing a fused cyclopropane ring.⁸⁴⁰ The reaction of an alkyne with a vinyl iodide and silver carbonate, with a palladium catalyst, gave a fulvene.⁸⁴¹ The reaction of a terminal alkyne and a vinyl cyclopropane, with a dirhodium catalyst, gives a cycloheptadiene.⁸⁴² Alkyne–alkenes were formed by coupling terminal alkynes and allenes in the presence of a palladium catalyst, with an exocyclic methylene

832 Frazén, J.; Löfstedt, J.; Dorange, I.; Bäckvall, J.-E. J. Am. Chem. Soc. 2002, 124, 11246.

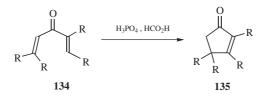
⁸³³Kang, S.-K.; Ko, B.-S.; Lee, D.-M. *Tetrahedron Lett.* 2002, 43, 6693.

- 836Trost, B.M.; Rudd, M.T. Org. Lett. 2003, 5, 1467.
- ⁸³⁷Oh, C.H.; Park, S.J. Tetrahedron Lett. 2003, 44, 3785.
- ⁸³⁸Condon-Gueugnot, S.; Linstrumelle, G. Tetrahedron 2000, 56, 1851.
- ⁸³⁹Kitagawa, O.; Suzuki, T.; Fujiwra, H.; Fujita, M.; Taguchi, T. Tetrahedron Lett. 1999, 40, 4585.
- ⁸⁴⁰Cheng, D.; Knox, K.R.; Cohen, T. J. Am. Chem. Soc. 2000, 122, 412.
- ⁸⁴¹Kotora, M.; Matsumura, H.; Gao, G.; Takahashi, T. Org. Lett. 2001, 3, 3467.
- ⁸⁴²Wender, P.A.; Barzilay, C.M.; Dyckman, A.J. J. Am. Chem. Soc. 2001, 123, 179.
- ⁸⁴³Rubin, M.; Markov, J.; Chuprakov, S.; Wink, D.J.; Gevorgyan, V. J. Org. Chem. 2003, 68, 6251.

⁸²⁸Yamazaki, S.; Yamada, K.; Yamabe, S.; Yamamoto, K. J. Org. Chem. 2002, 67, 2889.

⁸²⁹Nishizawa, M.; Yadav, V.K.; Skwarczynski, M.; Takao, H.; Imagawa, H.; Sugihara, T. Org. Lett. 2003, 5, 1609.

⁸³⁰Chatani, N.; Inoue, H.; Kotsuma, T.; Morai, S. J. Am. Chem. Soc. 2002, 124, 10294.


⁸³¹In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Miyanohana, Y.; Inoue, H.; Chatani, N. J. Org. Chem. **2004**, 69, 8541.

⁸³⁴Brummond, K.M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. **2002**, 124, 15186. See also, Candran, N.; Cariou, K.; Hervé, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. J. Am. Chem. Soc. **2004**, 126, 3408.

⁸³⁵Ajamian, A.; Gleason, J.L. Org. Lett. 2001, 3, 4161; Oh, C.H.; Han, J.W.; Kim, J.S.; Um, S.Y.; Jung, H.H.; Jang, W.H.; Won, H.S. Tetrahedron Lett. 2000, 41, 8365; Ackermann, L.; Bruneau, C.; Dixneuf, P.H. Synlett 2001, 397.

group trapped and a vinyltin derivative.⁸⁴⁴ A similar process occurred with a rhodium catalyst, RhCl(PPh₃)₃, to incorporate a vinyl chloride.⁸⁴⁵ Allene–allylic halide systems reacted with phenylboronic acid and a palladium catalyst to give cyclopentane rings with two pendant vinyl groups, one of which contained a phenyl group.⁸⁴⁶

In another reductive coupling, substituted alkenes (CH₂=CH–Y; Y=R, COOMe, OAc, CN, etc.) can be dimerized to substituted alkanes CH₃CHY-CHYCH₃ by photolysis in an H₂ atmosphere, using Hg as a photosensitizer.⁸⁴⁷ Still another procedure involves palladium-catalyzed addition of vinylic halides to triple bonds to give 1,3-dienes.⁸⁴⁸

An important cyclization procedure involves acid-catalyzed addition of dieneketones, such as **134**, where one conjugated alkene adds to the other conjugated alkene to form cyclopentenones (**135**). This is called the *Nazarov cyclization*.⁸⁴⁹ Structural variations are possible that prepare a variety of cyclopentenones. When one of the C=C units is a vinyl ether, a cyclopentenone is formed with an oxygen attached to the alkenyl carbon.⁸⁵⁰ Substituents on the C=C units, including $-CO_2Et$, lead to cyclopentenones that bear those substituents. The use of such a substrate with AgSbF₆, CuBr₂ and a chiral ligand gave the cyclopentenone with modest enantioselectivity.⁸⁵¹ Cyclization can also give the nonconjugated fivemembered ring.⁸⁵² A reductive Nazarov cyclization was reported using BF₃•OEt₂ and Et₃SiH, giving a cyclopentanone rather than a cyclopentenone.⁸⁵³ A palladium catalyzed reaction that is related to the Nazarov cyclization converts terminal

⁸⁴⁴Shin, S.; RajanBabu, T.V. J. Am. Chem. Soc. 2001, 123, 8416.

⁸⁴⁵Tong, X.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 6370.

⁸⁴⁶Zhu, G.; Zhang, Z. Org. Lett. 2004, 6, 4041.

⁸⁴⁷Muedas, C.A.; Ferguson, R.R.; Crabtree, R.H. Tetrahedron Lett. 1989, 30, 3389.

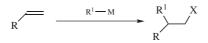
⁸⁴⁸Arcadi, A.; Bernocchi, E.; Burini, A.; Cacchi, S.; Marinelli, F.; Pietroni, B. *Tetrahedron Lett.* **1989**, *30*, 3465.

⁸⁴⁹Nazarov, I.N.; Torgov, I.B.; Terekhova, L.N. *Izv. Akad. Nauk. SSSR otd. Khim. Nauk*, **1942**, 200; Braude, E.A.; Forbes, W.F. *J. Chem. Soc.* **1953**, 2208. Also see, Motoyoshiya, J.; Mizuno, K.; Tsuda, T.; Hayashi, S. *Synlett* **1993**, 237; Oda, M.; Yamazaki, T.; Kajioka, T.; Miyatake, R.; Kuroda, S. *Liebigs Ann. Chem.* **1997**, 2563. See Smith, D.A.; Ulmer II, C.W. *J. Org. Chem.* **1993**, 58, 4118 for a discussion of torquoselectivity and hyperconjugation in this reaction.

⁸⁵⁰Using AlCl₃, see Liang, G.; Gradl, S.N.; Trauner, D. *Org. Lett.* **2003**, *5*, 4931. Using a Cu(OTf)₂ catalyst, see He, W.; Sun, X.; Frontier, A.J. J. Am. Chem. Soc. **2003**, *125*, 14278. Using a scandium catalyst, see Liang, G.; Trauner, D. J. Am. Chem. Soc. **2004**, *126*, 9544.

⁸⁵¹Aggarwal, V.K.; Belfield, A.J. Org. Lett. 2003, 5, 5075.

⁸⁵²Giese, S.; West, F.G. Tetrahedron Lett. 1998, 39, 8393.


⁸⁵³Giese, S.; West, F.G. Tetrahedron 2000, 56, 10221.

alkynes to fulvenes.⁸⁵⁴ Note that a *retro*-Nazarov is possible with α -bromocyclopentanones.⁸⁵⁵ In one variation using a aluminum complex, a cyclohexenone was formed.⁸⁵⁶

OS VIII, 190, 381, 505; IX, 310.

15-21 Addition of Organometallics to Double and Triple Bonds Not Conjugated to Carbonyls

Hydro-alkyl-addition

Neither Grignard reagents nor lithium dialkylcopper reagents generally add to ordinary C=C double bonds.⁸⁵⁷ An exception is the reaction of (PhMe₂Si)₂Cu(CN)Li to 8-oxabicyclo[3.2.1]oct-2-ene derivatives.⁸⁵⁸ Grignard reagents usually add only to double bonds susceptible to nucleophilic attack, (e.g., fluoroalkenes and tetracya-noethylene).⁸⁵⁹ However, active Grignard reagents (benzylic, allylic) also add to the double bonds of allylic amines,⁸⁶⁰ and of allylic and homoallylic alcohols,⁸⁶¹ as well as to the triple bonds of propargyl alcohols and certain other alkynols.⁸⁶² Grignard reagents also add to alkynes in the presence of MnCl₂ at 100°C⁸⁶³ and to alkenes in the presence of zirconium⁸⁶⁴ or nickel⁸⁶⁵ catalysts. It is likely that cyclic intermediates are involved in these cases, in which the magnesium coordinates with the heteroatom. Allylic, benzylic, and tertiary alkyl Grignard reagents also add to 1-alkenes (e.g., norbornene), if the reaction is carried

858Lautens, M.; Belter, R.K.; Lough, A.J. J. Org. Chem. 1992, 57, 422.

⁸⁵⁹Gardner, H.C.; Kochi, J.K. J. Am. Chem. Soc. 1976, 98, 558.

⁸⁵⁴Radhakrishnan, U.; Gevorgyan, V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 1971.

⁸⁵⁵Harmata, M.; Lee, D.R. *J. Am. Chem. Soc.* **2002**, *124*, 14328. For a discussion of the scope and mechanism of the retro-Nazarov reaction, see Harmata, M.; Schreiner, P.R.; Lee, D.R.; Kirchhoefer, P.L. *J. Am. Chem. Soc.* **2004**, *126*, 10954.

⁸⁵⁶Magomedev, N.A.; Ruggiero, P.L.; Tang, Y. Org. Lett. 2004, 6, 3373.

⁸⁵⁷For reviews of the addition of RM to isolated double bonds, see Wardell, J.L.; Paterson, E.S., in Hartley, F.R.; Patai, S. *The Chemistry of the Metal–Carbon Bond*, Vol. 2, Wiley, NY, *1985*, 219–338, pp. 268–296;

Vara Prasad, J.V.N.; Pillai, C.N. J. Organomet. Chem. 1983, 259, 1.

⁸⁶⁰Richey, Jr., H.G.; Moses, L.M.; Domalski, M.S.; Erickson, W.F.; Heyn, A.S. J. Org. Chem. 1981, 46, 3773.

⁸⁶¹Felkin, H.; Kaeseberg, C. *Tetrahedron Lett.* **1970**, 4587; Richey Jr., H.G.; Szucs, S.S. *Tetrahedron Lett.* **1971**, 3785; Eisch, J.J.; Merkley, J.H. J. Am. Chem. Soc. **1979**, 101, 1148; Kang, J. Organometallics **1984**, 3, 525.

⁸⁶²Eisch, J.J.; Merkley, J.H. J. Am. Chem. Soc. **1979**, 101, 1148; Von Rein, F.W.; Richey Jr., H.G. Tetrahedron Lett. **1971**, 3777; Miller, R.B.; Reichenbach, T. Synth. Commun. **1976**, 6, 319. See also, Duboudin, J.G.; Jousseaume, B. J. Organomet. Chem. **1979**, 168, 1; Synth. Commun. **1979**, 9, 53.

⁸⁶³Yorimitsu, H.; Tang, J.; Okada, K.; Shinokubo, H.; Oshima, K. Chem. Lett. 1998, 11.

⁸⁶⁴Rousset, C.J.; Negishi, E.; Suzuki, N.; Takahashi, T. *Tetrahedron Lett.* **1992**, *33*, 1965; de Armas, J.; Hoveyda, A.H. *Org. Lett.* **2001**, *3*, 2097.

⁸⁶⁵Pellet-Rostaing, S.; Saluzzo, C.; Ter Halle, R.; Breuzard, J.; Vial, L.; LeGuyader, F.; Lemaire, M. *Tetrahedron Asymmetry* **2001**, *12*, 1983.

out in a hydrocarbon solvent, such as pentane rather than ether, or in the alkene itself as solvent, heated, under pressure if necessary, to $60-130^{\circ}C$.⁸⁶⁶ Yields are variable. *Intramolecular* addition of RMgX to completely unactivated double and triple bonds has been demonstrated.⁸⁶⁷ The reaction of tosylates bearing a remote alkene unit and a Grignard reagent leads to cyclization when a zirconium catalyst is used.⁸⁶⁸ The intramolecular addition of a CH₂Br unit to the C=C unit of an allylic ether was accomplished using PhMgBr and a cobalt catalyst, give a functionalized tetrahydrofuran and incorporation of the phenyl group on the C=C unit as well.⁸⁶⁹ Grignard reagents add to the C=C unit of (MeO)₂CRCH=CH–R moieties to give a 3-alkyl substituted ketone with good enantioselectivity using a nickel catalyst and a chiral additive.⁸⁷⁰ In a useful variation, vinyl epoxides react with Grignard reagents and CuBr to give an allylic alcohol via reaction at the C=C unit and concomitant opening of the epoxide.⁸⁷¹ Conjugated dienes react with arylmagnesium halides, Ph₃SiCl and a palladium catalyst to give a coupling product involving the reaction of two equivalents of the diene and incorporation of two SiPh₃ units.⁸⁷²

Organolithium reagents (primary, secondary, and tertiary alkyl and in some cases aryl) also add to the double and triple bonds of allylic and propargylic alcohols⁸⁷³ (in this case tetramethylethylenediamine is a catalyst) and to certain other alkenes containing hetero groups, such as OR, NR₂, or SR. Addition of butyllithium to alkenes has been observed with good enantioselectivity when sparteine was added.⁸⁷⁴ Mixing an organolithium reagent with transition metal compounds, such as CeCl₃⁸⁷⁵ or Fe(acac)₃⁸⁷⁶ leads to addition of the alkyl group. The intramolecular addition of RLi and R₂CuLi has been reported.⁸⁷⁷ Organolithium reagents

⁸⁶⁸Cesati III, R.R.; de Armas, J.; Hoveyda, A.H. Org. Lett. 2002, 4, 395.

⁸⁶⁹Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374.

⁸⁷⁰Gomez-Bengoa, E.; Heron N.M.; Didiuk, M.T.; Luchaco, C.A.; Hoveyda, A.H. J. Am. Chem. Soc. **1998**, 120, 7649.

⁸⁷¹Taber, D.F.; Mitten, J.V. J. Org. Chem. 2002, 67, 3847.

⁸⁷²Terao, J.; Oda, A.; Kambe, N. Org. Lett. 2004, 6, 3341.

⁸⁷³For a review of the addition of organolithium compounds to double or triple bonds, see Wardell, J.L., in Zuckerman, J.J. *Inorganic Reactions and Methods*, Vol. 11; VCH, NY, **1988**, pp. 129–142. For a tandem reaction, see García, G.V.; Budelman, N.S. *Org. Prep. Proceed. Int.* **2003**, *35*, 445.

⁸⁷⁴Norsikian, S.; Marek, I.; Poisson, J.-F.; Normant, J.F. J. Org. Chem. 1997, 62, 4898.

⁸⁷⁵Bartoli, G.; Dalpozzo, R.; DeNino, A.; Procopio, A.; Sanbri, L.; Tagarelli, A. *Tetrahedron Lett.* **2001**, 42, 8823.

⁸⁶⁶Lehmkuhl, H.; Reinehr, D. J. Organomet. Chem. **1970**, 25, C47; **1973**, 57, 29; Lehmkuhl, H.; Janssen, E. Liebigs Ann. Chem. **1978**, 1854. This is actually a type of ene reaction. For a review of the intramolecular version of this reaction, see Oppolzer, W. Angew. Chem. Int. Ed. **1989**, 28, 38.

⁸⁶⁷See, for example, Richey Jr., H.G.; Rees, T.C. *Tetrahedron Lett.* 1966, 4297; Drozd, V.N.; Ustynyuk, Yu.A.; Tsel'eva, M.A.; Dmitriev, L.B. *J. Gen. Chem. USSR* 1969, *39*, 1951; Felkin, H.; Umpleby, J.D.; Hagaman, E.; Wenkert, E. *Tetrahedron Lett.* 1972, 2285; Hill, E.A.; Myers, M.M. *J. Organomet. Chem.* 1979, *173*, 1. See also, Yang, D.; Gu, S.; Yan, Y.-L.; Zhu, N.-Y.; Cheung, K.-K. *J. Am. Chem. Soc.* 2001, *123*, 8612.

⁸⁷⁶Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.; Hosomi, A. Angew. Chem. Int. Ed. 2001, 40, 621.

⁸⁷⁷Wender, P.A.; White, A.W. J. Am. Chem. Soc. **1988**, 110, 2218; Bailey, W.F.; Nurmi, T.T.; Patricia, J.J.; Wang, W. J. Am. Chem. Soc. **1987**, 109, 2442.

containing an alkene^{377,878} or alkyne⁸⁷⁹ unit cyclize⁸⁸⁰ at low temperatures and quenching with methanol replaces the new C–Li bond with C–H. Cyclopropane derivatives have been formed in this manner.⁸⁸¹ Alkyllithium and alkenyllithium derivatives containing an ester moiety can be cyclized.⁸⁸² Tandem cyclization are possible with dienes and enynes to form more than one ring,⁸⁸³ including bicyclic compounds.⁸⁸⁴ Tandem cyclization is possible with alkyne iodides⁸⁸⁵ or alkynes with a homoallylic CH₂Li unit.⁸⁸⁶ The organolithium reagents can contain heteroatoms, such as nitrogen elsewhere in the molecule, and the organolithium species can be generated from an intermediate organotin derivative.⁸⁸⁷ Organolithium reagents add to the less substituted C=C unit of conjugated dienes.⁸⁸⁸ The organolithium compound can be generated *in situ* by reaction of an organotin compound with butyllithium, allowing cyclization of occur upon treatment with an excess of LiCl.⁸⁸⁹

Ketones with an α -hydrogen add to alkenes, intramolecular, when heated in a sealed tube with CuCl₂ and a palladium catalyst.⁸⁹⁰ A similar reaction was reported using Yb(OTf)₃ and a palladium catalyst.⁸⁹¹ Keto esters add to alkynes using 10% benzoic acid and a palladium catalyst.⁸⁹² or an indium catalyst.⁸⁹³ 1,3-Diketones add to dienes (1,4-addition) using a palladium catalyst,⁸⁹⁴ a AuCl₃/AgOTf catalyst,⁸⁹⁵ and this addition has been done intramolecularly using 2.4 equivalents of CuCl₂ and a palladium catalyst.⁸⁹⁶ A related cyclization reaction was reported for diesters having a remote terminal alkyne unit in the molecule, with a palladium

- ⁸⁷⁹Bailey, W.F.; Ovaska, T.V. J. Am. Chem. Soc. 1993, 115, 3080, and references cited therein. See Funk,
 R.L.; Bolton, G.L.; Brummond, K.M.; Ellestad, K.E.; Stallman, J.B. J. Am. Chem. Soc. 1993, 115, 7023.
 ⁸⁸⁰A conformational radical clock has been developed to evaluate organolithium-mediated cyclization reactions. See Rychnovsky, S.D.; Hata, T.; Kim, A.I.; Buckmelter, A.J. Org. Lett. 2001, 3, 807.
- ⁸⁸¹Gandon, V.; Laroche, C.; Szymoniak, J. Tetrahedron Lett. 2003, 44, 4827.
- ⁸⁸²Cooke, Jr., M.P. J. Org. Chem. 1992, 57, 1495 and references cited therein.
- ⁸⁸³Bailey, W.F.; Ovaska, T.V. Chem. Lett. 1993, 819.
- ⁸⁸⁴Bailey, W.F.; Khanolkar, A.D.; Gavaskar, K.V. J. Am. Chem. Soc. 1992, 114, 8053.
- ⁸⁸⁵Harada, T.; Fujiwara, T.; Iwazaki, K.; Oku, A. Org. Lett. 2000, 2, 1855.
- ⁸⁸⁶Wei, X.; Taylor, R.J.K. Angew. Chem. Int. Ed. 2000, 39, 409.
- ⁸⁸⁷Coldham, I.; Hufton, R.; Rathmell, R.E. *Tetrahedron Lett.* **1997**, *38*, 7617; Coldham, I.; Lang-Anderson, M.M.S.; Rathmell, R.E.; Snowden, D.J. *Tetrahedron Lett.* **1997**, *38*, 7621.
- ⁸⁸⁸Norsikian, S.; Baudry, M.; Normant, J.F. *Tetrahedron Lett.* 2000, 41, 6575.
- ⁸⁸⁹Komine, N.; Tomooka, K.; Nakai, T. Heterocycles 2000, 52, 1071.
- ⁸⁹⁰Wang, X.; Pei, T.; Han, X.; Widenhoefer, R.A. Org. Lett. 2003, 5, 2699.
- ⁸⁹¹Yang, D.; Li, J.-H.; Gao, Q.; Yan, Y.-L. Org. Lett. 2003, 5, 2869.
- ⁸⁹²Patil, N.T.; Yamamoto, Y. J. Org. Chem. 2004, 69, 6478.
- ⁸⁹³Nakamura, M.; Endo, K.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 13002.
- ⁸⁹⁴Leitner, A.; Larsen, J.; Steffens, C.; Hartwig, J.F. J. Org. Chem. 2004, 69, 7552.
- ⁸⁹⁵Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884.
- ⁸⁹⁶Pei, T.; Wang, X.; Widenhoefer, R.A. J. Am. Chem. Soc. **2003**, 125, 648; Pei, T.; Widenhoefer, R.A. J. Am. Chem. Soc. **2001**, 123, 11290.

 ⁸⁷⁸Bailey, W.F.; Khanolkar, A.D. J. Org. Chem. 1990, 55, 6058 and references cited therein; Bailey, W.F.;
 Mealy, M.J. J. Am. Chem. Soc 2000, 122, 6787; Gil, G.S.; Groth, U.M. J. Am. Chem. Soc. 2000, 122, 6789;
 Bailey, W.F.; Daskapan, T.; Rampalli, S. J. Org. Chem. 2003, 68, 1334. Also see Bailey, W.F.; Carson,
 M.W. J. Org. Chem. 1998, 63, 361; Fretwell, P.; Grigg, R.; Sansano, J.M.; Sridharan, V.;
 Sukirthalingam, S.; Wilson, D.; Redpath, J. Tetrahedron 2000, 56, 7525.

catalyst.⁸⁹⁷ The intermolecular addition of diesters, such as malonates, to alkynes was accomplished in acetic acid and a palladium catalyst under microwave irradiation.⁸⁹⁸ Enolate anions can add to allylic sulfides, forming β -lactams in some cases.⁸⁹⁹ α -Potassio amines (from an *N*-Boc amine and KHMDS) undergoes intramolecular cyclization with an alkene unit to form a dihydropyrrole.⁹⁰⁰ The enolate anion derived from the reaction of a nitrile with potassium *tert*-butoxide added to the less substituted carbon of the C=C unit of styrene in DMSO.⁹⁰¹ Similarly, the intramolecular addition of a nitrile enolate (from treatment with CsOH in *N*-methylpyrrolidinone) to an alkyne gave a cyclized product with an exocyclic methylene unit.⁹⁰² Silyl enol ethers add to alkynes using a tungsten catalyst.⁹⁰³ Malonate derivatives add to alkenes in the presence of an Al(OR)₃ catalyst.⁹⁰⁴

Unactivated alkenes or alkynes⁹⁰⁵ can react with other organometallic compounds under certain conditions. Trimethylaluminum reacts with 4-methyl-1-pentene, in the presence of Cl₂ZrCp₂, for example, and subsequent reaction with molecular oxygen leads to (2*R*),4-dimethyl-1-pentanol in good yield and 74% ee.⁹⁰⁶ These reagents also add to alkynes.⁹⁰⁷ Aluminum chloride mediated cyclization of α -iodo ketones to a pendant alkyne unit, in the presence of ICl, gave the spirocyclic ketone with an exocyclic C=CHI unit.⁹⁰⁸ Isopropylchloroformate (*i*PrO₂CCl) reacts with an alkene, in conjunction with Et₃Al₂Cl₃, to add an isopropyl group.⁹⁰⁹ Ruthenium catalysts have been used to add allylic alcohols to alkynes.⁹¹⁰ Samarium iodide (SmI₂) induces cyclized products. Copper complexes can catalyze similar cyclization to alkenes, even when an ester unit is present in the molecule.⁹¹³ The reaction of a dithioketal containing a remote alkene moiety, with a titanium complex, leads to cyclization and incorporation of an endocyclic C=C unit in the final product.⁹¹⁴ Allyl manganese compounds add to allenes to give nonconjugated dienes.⁹¹⁵

- ⁸⁹⁷Liu, G.; Lu, X. Tetrahedron Lett. 2002, 43, 6791.
- ⁸⁹⁸Patil, N.T.; Khan, F.N.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 8497.
- ⁸⁹⁹Attenni, B.; Cereti, A.; D'Annibale, A.; Resta, S.; Trogolo, C. Tetrahedron 1998, 54, 12029.
- 900Green, M.P.; Prodger, J.C.; Sherlock, A.E.; Hayes, C.J. Org. Lett. 2001, 3, 3377.
- ⁹⁰¹Rodriguez, A.L.; Bunlaksananusorn, T.; Knochel, P. Org. Lett. 2000, 2, 3285.
- ⁹⁰²Koradin, C.; Rodriguez, A.; Knochel, P. Synlett 2000, 1452.
- ⁹⁰³Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P.H. Org. Lett. 2002, 4, 4463.
- 904Black, P.J.; Harris, W.; Williams, J.M.J. Angew. Chem. Int. Ed. 2001, 40, 4475.
- ⁹⁰⁵See Trost, B.M.; Ball, Z.T. Synthesis 2005, 853.

⁹⁰⁶Kondakov, D.Y.; Negishi, E. J. Am. Chem. Soc. **1995**, 117, 10771. Also see, Shibata, K.; Aida, T.; Inoue, S. *Tetrahedron Lett.* **1993**, 33, 1077 for reactions of Et₃Al catalyzed by a zirconium complex.

⁹⁰⁷Wipf, P.; Lim, S. Angew. Chem. Int. Ed. 1993, 32, 1068.

- ⁹⁰⁸Sha, C.-K.; Lee, F.-C.; Lin, H.-H. Chem. Commun. 2001, 39.
- 909Biermann, U.; Metzger, J.O. Angew. Chem. Int. Ed. 1999, 38, 3675.
- ⁹¹⁰Trost, B.M.; Indolese, A.F.; Müller, T.J.J.; Treptow, B. J. Am. Chem. Soc. 1995, 117, 615.
- ⁹¹¹Zhou, Z.; Larouche, D.; Bennett, S.M. Tetrahedron 1995, 51, 11623.
- 912Fukuzawa, S.; Tsuchimoto, T. Synlett 1993, 803.

- ⁹¹⁴Fujiwara, T.; Kato, Y.; Takeda, T. *Heterocycles* 2000, 52, 147.
- ⁹¹⁵Nishikawa, T.; Shinokubo, H.; Oshima, K. Org. Lett. 2003, 5, 4623.

⁹¹³Pirrung, F.O.H.; Hiemstra, H.; Speckamp, W.N.; Kaptein, B.; Schoemaker, H.E. *Tetrahedron* **1994**, *50*, 12415.

1100 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Vinyl halides add to allylic amines in the presence of Ni(cod)₂ where cod =1, 5-cyclooctodine, followed by reduction with sodium borohydride.⁹¹⁶ Aryl iodides add to alkynes using a platinum complex in conjunction with a palladium catalyst.⁹¹⁷ A palladium catalyst has been used alone for the same purpose,⁹¹⁸ and the intramolecular addition of a arene to an alkene was accomplished with a palladium⁹¹⁹ or a GaCl₃ catalyst,⁹²⁰ Alkyl iodides add intramolecularly to alkenes with a titanium catalyst,⁹²¹ or to alkynes using indium metal and additives.⁹²² The latter cyclization of aryl iodides to alkenes was accomplished with indium and iodine⁹²³ or with SmI₂.⁹²⁴

Aromatic hydrocarbons, such as benzene add to alkenes using a ruthenium catalyst⁹²⁵ a catalytic mixture of AuCl₃/AgSbF₆,⁹²⁶ or a rhodium catalyst,⁹²⁷ and ruthenium complexes catalyze the addition of heteroaromatic compounds, such as pyridine, to alkynes.⁹²⁸ Such alkylation reactions are clearly reminiscent of the Friedel–Crafts reaction (**11-11**). Palladium catalysts can also be used to for the addition of aromatic compounds to alkynes,⁹²⁹ and rhodium catalysts for addition to alkenes (with microwave irradiation).⁹³⁰ Note that vinylidene cyclopropanes react with furans and a palladium catalyst to give allylically substituted furans.⁹³¹

Arylboronic acids (p. 905) add to alkynes to give the substituted alkene using a rhodium catalyst.⁹³² Allenes react with phenylboronic acid and an aryl iodide, in the presence of a palladium catalyst, to give a substituted alkene.⁹³³ 2-Bromo-1,6-dienes react with phenylboronic acid with a palladium catalyst to give a cyclopentane with an exocyclic double bond and a benzyl substituent.⁹³⁴

- ⁹¹⁸Wu, M.-J.; Wei, L.-M.; Lin, C.-F.; Leou, S.-P.; Wei, L.-L. *Tetrahedron* **2001**, *57*, 7839; Havránek, M.; Dvořák, D. *J. Org. Chem.* **2002**, *67*, 2125. See also, Lee, K.; Seomoon, D.; Lee, P.H. *Angew. Chem. Int. Ed.* **2002**, *41*, 3901.
- ⁹¹⁹Huang, Q.; Fazio, A.; Dai, G.; Campo, M.A.; Larock, R.C. J. Am. Chem. Soc. 2004, 126, 7460.

⁹²⁰Inoue, H.; Chatani, N.; Murai, S. J. Org. Chem. 2002, 67, 1414.

⁹²¹Zhou, L.; Hirao, T. J. Org. Chem. 2003, 68, 1633.

⁹²³Yanada, R.; Obika, S.; Nishimori, N.; Yamauchi, M.; Takemoto, Y. *Tetrahedron Lett.* 2004, 45, 2331.

- 925Lail, M.; Arrowood, B.N.; Gunnoe, T.B. J. Am. Chem. Soc. 2003, 125, 7506.
- 926Reetz, M.T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485.
- 927 Thalji, R.K.; Ellman, J.A.; Bergman, R.G. J. Am. Chem. Soc. 2004, 126, 7192.
- ⁹²⁸Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720. For a review, see Alonso, F.; Beletskaya, I.P.; Yus, M. Chem. Rev. 2004, 104, 3079.
- 929 Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 12102.
- ⁹³⁰Vo-Thanh, G.; Lahrache, H.; Loupy, A.; Kim, I.-J.; Chang, D.-H.; Jun, C.-H. *Tetrahedron* 2004, 60, 5539.
 ⁹³¹Nakamura, I.; Siriwardana, A.I.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 3445.
- ⁹³²Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am. Chem. Soc. 2001, 123, 9918; Lautens, M.; Yoshida, M. J. Org. Chem. 2003, 68, 762; Genin, E.; Michelet, V.; Genêt, J.-P. Tetrahedron Lett. 2004, 45, 4157.
- ⁹³³Huang, T.-H.; Chang, H.-M.; Wu, M.-Y.; Cheng, C.-H. J. Org. Chem. 2002, 67, 99; Oh, C.H.; Ahn, T.W.;
 Reddy, R. Chem. Commun. 2003, 2622; Yoshida, M.; Gotou, T.; Ihara, M. Chem. Commun. 2004, 1124.
 ⁹³⁴Oh, C.H.; Sung, H.R.; Park, S.J.; Ahn, K.H. J. Org. Chem. 2002, 67, 7155.

 ⁹¹⁶Solé, D.; Cancho, Y.; Llebaria, A.; Moretó, J.M.; Delgado, A. J. Am. Chem. Soc. 1994, 116, 12133.
 ⁹¹⁷Denmark, S.E.; Wang, Z. Org. Lett. 2001, 3, 1073.

 ⁹²²Yanada, R.; Koh, Y.; Nishimori, N.; Matsumura, A.; Obika, S.; Mitsuya, H.; Fujii, N.; Takemoto, Y.
 J. Org. Chem. 2004, 69, 2417; Yanada, R.; Obika, S.; Oyama, M.; Takemoto, Y. Org. Lett. 2004, 6, 2825.

⁹²⁴Dahlén, A.; Petersson, A.; Hilmersson, G. Org. Biomol. Chem. 2003, 1, 2423.

Organomanganese reagents add to alkenes.⁹³⁵ Manganese triacetate [Mn(OAc)₃], in the presence of cupric acetate, facilitates intramolecular cyclization of a halide unit to an alkene.⁹³⁶ A combination of Mn(OAc)₂ and Co(OAc)₂ catalysts, and an oxygen atmosphere in acetic acid, leads to addition of ketones to simple alkenes, give the 2-alkyl ketone.⁹³⁷ Alkynes react with indium reagents, such as (allyl)₃In₂I₃, to form dienes (allyl substituted alkenes from the alkyne).⁹³⁸ Allylic halides add to propargyl alcohols using indium metal to form the aryl organometallic *in situ*.⁹³⁹ Allyltin reagents add to alkynes in a similar manner in the presence of ZrCl₄.⁹⁴⁰ Alkylzinc reagents add to alkynes to give substituted alkenes in the presence of a cobalt catalyst.⁹⁴¹ Allylzinc reagents add to alkynes in the presence of a cobalt catalyst.⁹⁴² A variation reacts dialkylzinc compounds with a 7-oxabicyclo[2.2.1]hept-2-ene system to give incorporation of the alkyl group and opening of the ring to give a cyclohexenol derivative.⁹⁴³ Vinyltellurium add to alkynes in the presence of CuI/PdCl₂.⁹⁴⁴

An indirect addition converts alkynes to an organozinc compound using a palladium catalyst, which then reacts with allylic halides.⁹⁴⁵ Similarly, the reaction of an alkyne with $Ti(OiPr)_4/2$ *i*PrMgCl followed by addition of an alkyne leads to a conjugated diene.⁹⁴⁶

OS 81, 121.

15-22 The Addition of Two Alkyl Groups to an Alkyne

Dialkyl-addition

$$R-C\equiv C-H$$
 + $R^{1}CuMgBr_{2}$ + $R^{2}-I$
 $\xrightarrow{(EtO)_{2}P}$
 \xrightarrow{R} + H
 $\xrightarrow{C=C}$
 R^{1} R^{2}

Two different alkyl groups can be added to a terminal alkyne⁹⁴⁷ in one laboratory step by treatment with an alkylcopper-magnesium bromide reagent (called *Normant*

946 Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. 2003, 5, 67.

⁹³⁵Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1997, 62, 1910.

⁹³⁶Snider, B.B.; Merritt, J.E. Tetrahedron 1991, 47, 8663.

⁹³⁷ Iwahama, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 2317.

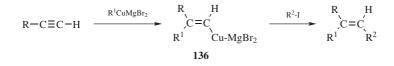
⁹³⁸ Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095.

⁹³⁹Klaps, E.; Schmid, W. J. Org. Chem. 1999, 64, 7537.

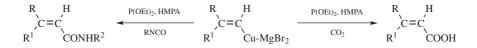
⁹⁴⁰Asao, N.; Matsukawa, Y.; Yamamoto, Y. Chem. Commun. 1996, 1513.

⁹⁴¹Luo, F.-T.; Fwu, S.-L.; Huang, W.-S. Tetrahedron Lett. 1992, 33, 6839.

⁹⁴²Nishikawa, T.; Yorimitsu, H.; Oshima, K. Synlett 2004, 1573.


⁹⁴³Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437.

⁹⁴⁴Zeni, G.; Nogueira, C.W.; Pena, J.M.; Pialssã, C.; Menezes, P.H.; Braga, A.L.; Rocha, J.B.T. *Synlett.* 2003, 579.


⁹⁴⁵ Matsubara, S.; Ukai, K.; Toda, N.; Utimoto, K.; Oshima, K. Synlett 2000, 995.

⁹⁴⁷For reviews of this and related reactions, see Raston, C.L.; Salem, G., in Hartley, F.R. *The Chemistry of the Metal–Carbon Bond*, Vol. 4, Wiley, NY, **1987**, pp. 159–306, pp. 233–248; Normant, J.F.; Alexakis, A. *Synthesis* **1981**, 841; Hudrlik, P.F.; Hudrlik, A.M., in Patai, S. *The Chemistry of the Carbon–Carbon Triple Bond*, pt. 1, Wiley, NY, **1978**, pp. 233–238. For a list of reagents and references for this and related reactions, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 452–460.

reagents)⁹⁴⁸ and an alkyl iodide in ether–HMPA containing triethyl phosphite.⁹⁴⁹ The groups add stereoselectively syn. The reaction, which has been applied to primary⁹⁵⁰ R' and to primary, allylic, benzylic, vinylic, and α -alkoxyalkyl R', involves initial addition of the alkylcopper reagent,⁹⁵¹ followed by a coupling reaction (**10-57**):

Acetylene itself (R =H) undergoes the reaction with R₂CuLi instead of the Normant reagent.⁹⁵² The use of R' containing functional groups has been reported.⁹⁵³ If the alkyl iodide is omitted, the vinylic copper intermediate

136 can be converted to a carboxylic acid by the addition of CO_2 (see **16-30**) or to an amide by the addition of an isocyanate, in either case in the presence of HMPA and a catalytic amount of triethyl phosphite.⁹⁵⁴ The use of I₂ results in a vinylic iodide.⁹⁵⁵

Similar reactions, in which two alkyl groups are added to a triple bond, have been carried out with trialkylalanes (R_3Al), with zirconium complexes as catalysts.⁹⁵⁶ Allyl ethers and iodobenzene have also been added using a

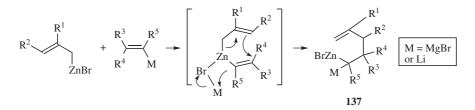
⁹⁵⁰For a method of using secondary and tertiary R, see Rao, S.A.; Periasamy, M. *Tetrahedron Lett.* **1988**, 29, 4313.

⁹⁵¹The initial product, **136**, can be hydrolyzed with acid to give RR'C=CH₂. See Westmijze, H.; Kleijn, H.; Meijer, J.; Vermeer, P. *Recl. Trav. Chim. Pays-Bas* **1981**, 100, 98, and references cited therein.

⁹⁵²Alexakis, A.; Cahiez, G.; Normant, J.F. Synthesis **1979**, 826; *Tetrahedron* **1980**, *36*, 1961; Furber, M.; Taylor, R.J.K.; Burford, S.C. J. Chem. Soc. Perkin Trans. 1, **1986**, 1809.

⁹⁵³Rao, S.A.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 5735.

⁹⁵⁴Normant, J.F.; Cahiez, G.; Chuit, C.; Villieras, J. J. Organomet. Chem. 1973, 54, C53.


955 Alexakis, A.; Cahiez, G.; Normant, J.F. Org. Synth. VII, 290.

⁹⁴⁸For the composition of these reagents see Ashby, E.C.; Smith, R.S.; Goel, A.B. J. Org. Chem. **1981**, 46, 5133; Ashby, E.C.; Goel, A.B. J. Org. Chem. **1983**, 48, 2125.

⁹⁴⁹Gardette, M.; Alexakis, A.; Normant, J.F. *Tetrahedron* **1985**, *41*, 5887, and references cited therein. For an extensive list of references, see Marfat, A.; McGuirk, P.R.; Helquist, P. J. Org. Chem. **1979**, *44*, 3888.

⁹⁵⁶Negishi, E.; Van Horn, D.E.; Yoshida, T. J. Am. Chem. Soc. **1985**, 107, 6639. For reviews, see Negishi, E. Acc. Chem. Res. **1987**, 20, 65; Pure Appl. Chem. **1981**, 53, 2333; Negishi, E.; Takahashi, T. Aldrichimica Acta **1985**, 18, 31.

zirconium complex. 957 Similarly, allyl ethers and allyl chlorides have been added. 958

Allylic zinc bromides add to vinylic Grignard and lithium reagents to give the gem-dimetallo compounds **137**. The two metallo groups can be separately reacted with various nucleophiles.⁹⁵⁹

Arylboronic acids (p. 905) react with alkynes and 1 equivalent of an aryl iodide, with a palladium catalyst, to add two aryl groups across the triple bond.⁹⁶⁰

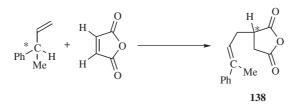
OS VII, 236, 245, 290.

15-23 The Ene Reaction

Hydro-allyl-addition

Alkenes can add to double bonds in a reaction different from those discussed in **15-20**, which, however, is still formally the addition of RH to a double bond. This is called the *ene reaction* or the *ene synthesis*.⁹⁶¹ For the reaction to proceed without a catalyst, one of the components must be a reactive dienophile (see **15-60** for a definition of this word), such as maleic anhydride, but the other (which supplies the hydrogen) may be a simple alkene such as propene. Rather high reaction temperatures ($250-450^{\circ}$ C) are common unless the substrates are very

⁹⁵⁷ Hara, R.; Nishihara, Y.; Landré, P.D.; Takahashi, T. Tetrahedron Lett. 1997, 38, 447.


⁹⁵⁸Takahashi, T.; Kotora, M.; Kasai, K.; Suzuki, N. Tetrahedron Lett. 1994, 35, 5685.

⁹⁵⁹Knochel, P.; Normant, J.F. Tetrahedron Lett. 1986, 27, 1039, 1043, 4427, 4431, 5727.

⁹⁶⁰Zhou, C.; Emrich, D.E.; Larock, R.C. Org. Lett. 2003, 5, 1579.

⁹⁶¹Alder, K.; von Brachel, H. Liebigs Ann. Chem. 1962, 651, 141. For a monograph, see Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon, Elmsford, NY, 1990. For reviews, see Boyd, G.V., in Patai, S. Supplement A: The Chemistry of Double-Bonded Functional Groups, Vol. 2, pt. 1, Wiley, NY, 1989, pp. 477–525; Keung, E.C.; Alper, H. J. Chem. Educ. 1972, 49, 97–100; Hoffmann, H.M.R. Angew. Chem. Int. Ed. 1969, 8, 556. For reviews of intramolecular ene reactions see, Taber, D.F. Intramolecular Diels–Alder and Alder Ene Reactions, Springer, NY, 1984; pp. 61–94; Oppolzer, W.; Snieckus, V. Angew. Chem. Int. Ed. 1978, 17, 476–486; Conia, J.M.; Le Perchec, P. Synthesis 1975, 1. See Desimoni, G.; Faita, G.; Righetti, P.P.; Sfulcini, A.; Tsyganov, D. Tetrahedron 1994, 50, 1821 for solvent effects in the ene reaction.

activated. Note that steric acceleration of the uncatalyzed ene reaction is known.⁹⁶² Cyclopropene has also been used.⁹⁶³ The reaction is compatible with a variety of functional groups that can be appended to the ene and dienophile.⁹⁶⁴ *N*,*N*-Diallyl amides give an ene cyclization, for example.⁹⁶⁵ The ene reaction is known with fullerene (see p. 94) derivatives.⁹⁶⁶ There has been much discussion of the mechanism of this reaction, and both concerted pericyclic (as shown above) and stepwise

mechanisms have been suggested. The mechanism of the ene reaction of singlet $({}^{1}\Delta_{g})$ oxygen with simple alkenes was found to involve two steps, with no intermediate.⁹⁶⁷ A retro-ene reaction is known with allylic dithiocarbonate.⁹⁶⁸ The reaction between maleic anhydride and optically active PhCHMeCH=CH₂ gave an optically active product (**138**),⁹⁶⁹ which is strong evidence for a concerted rather than a stepwise mechanism.⁹⁷⁰ The reaction can be highly stereoselective.⁹⁷¹

The reaction can be extended to less-reactive enophiles by the use of Lewis acid catalysts, especially alkylaluminum halides.⁹⁷² Titanium catalysts,⁹⁷³ Sc(OTf)₃,⁹⁷⁴

⁹⁶³Deng, Q.; Thomas IV, B.E.; Houk, K.N.; Dowd, P. J. Am. Chem. Soc. 1997, 119, 6902.

⁹⁶⁴For a review of ene reactions in which one of the reactants bears a Si or Ge atom, see Dubac, J.; Laporterie, A. *Chem. Rev.* **1987**, 87, 319.

⁹⁶⁵Cossy, J.; Bouzide, A. *Tetrahedron* 1997, 53, 5775; Oppolzer, W.; Fürstner, A. *Helv. Chim. Acta* 1993, 76, 2329; Oppolzer, W.; Schröder, F. *Tetrahedron Lett.* 1994, 35, 7939.

966Wu, S.; Shu, L.; Fan, K. Tetrahedron Lett. 1994, 35, 919.

⁹⁶⁷Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 1319.

⁹⁶⁸Eto, M.; Nishimoto, M.; Kubota, S.; Matsuoka, T.; Harano, K. Tetrahedron Lett. 1996, 37, 2445.

⁹⁶⁹Hill, R.K.; Rabinovitz, M. J. Am. Chem. Soc. **1964**, 86, 965. See also, Garsky, V.; Koster, D.F.; Arnold, R.T. J. Am. Chem. Soc. **1974**, 96, 4207; Stephenson, L.M.; Mattern, D.L. J. Org. Chem. **1976**, 41, 3614;

Nahm, S.H.; Cheng, H.N. J. Org. Chem. 1986, 51, 5093.

⁹⁷⁰For other evidence for a concerted mechanism see Benn, F.R.; Dwyer, J.; Chappell, I. *J. Chem. Soc. Perkin Trans.* 2, **1977**, 533; Jenner, G.; Salem, R.B.; El'yanov, B.; Gonikberg, E.M. *J. Chem. Soc. Perkin Trans.* 2, **1989**, 1671. See Thomas IV, B.E.; Loncharich, R.J.; Houk, K.N. *J. Org. Chem.* **1992**, *57*, 1354 for transition-state structures of the intramolecular ene reaction.

⁹⁷¹Cossy, J.; Bouzide, A.; Pfau, M. *Tetrahedron Lett.* **1992**, *33*, 4883; Ooi, T.; Maruoka, K.; Yamamoto, H. *Tetrahedron* **1994**, *50*, 6505; Thomas IV, B.E.; Houk, K.N. J. Am. Chem. Soc. **1993**, *115*, 790; Also see Masaya, K.; Tanino, K.; Kuwajima, I. *Tetrahedron Lett.* **1994**, *35*, 7965.

⁹⁷²For reviews, see Chaloner, P.A., in Hartley, F.R. *The Chemistry of the Metal–Carbon Bond*, Vol. 4, Wiley, NY, **1987**, pp. 456–460; Snider, B.B. *Acc. Chem. Res.* **1980**, *13*, 426.

⁹⁷³Waratuke, S.A.; Johnson, E.S.; Thorn, M.G.; Fanwick, P.E.; Rothwell, I.P. Chem. Commun. 1996, 2617; Sturla, S.J.; Kablaoui, N.M.; Buchwald, S.L. J. Am. Chem. Soc. 1999, 121, 1976.

⁹⁷⁴Aggarwal, V.K.; Vennall, G.P.; Davey, P.N.; Newman, C. Tetrahedron Lett. 1998, 39, 1997.

⁹⁶²Choony, N.; Kuhnert, N.; Sammes, P.G.; Smith, G.; Ward, R.W. J. Chem. Soc., Perkin Trans. 1 2002, 1999.

LiClO₄⁹⁷⁵ yttrium,⁹⁷⁶ nickel catalysts,⁹⁷⁷ as well as a combination of silver and gold catalysts⁹⁷⁸ have also been used. A magnesium-ene cyclization stereochemically directed by an allylic oxyanionic group has been reported.⁹⁷⁹ The Lewis acid catalyzed reaction probably has a stepwise mechanism.⁹⁸⁰ The ene reaction has also been mediated on certain resins,⁹⁸¹ and using formaldehyde that was encapsulated in zeolite.⁹⁸² An iridium catalyzed ene reaction has been done in an ionic liquid.⁹⁸³ The carbonyl-ene reaction is also very useful, and often gives synthetically useful yields of products when catalyzed by Lewis acids,⁹⁸⁴ including asymmetric catalysts.⁹⁸⁵ Among the useful Lewis acids are scandium triflate⁹⁸⁶ and chromium complexes.⁹⁸⁷ Carbonyl ene cyclization has been reported on silica gel at high pressure (15 kbar).⁹⁸⁸ Ene reactions with imines,⁹⁸⁹ nitrile oxides,⁹⁹⁰ as well as nitroso ene reactions are known.⁹⁹¹

OS IV, 766; V, 459. See also, OS VIII, 427.

15-24 The Michael Reaction

Hydro-bis(ethoxycarbonyl)methyl-addition, and so on

Compounds containing electron-withdrawing groups (Z is defined on p. 1007) add, in the presence of bases, to alkenes of the form C=C-Z (including quinones).

- 977 Michelet, V.; Galland, J.-C.; Charruault, L.; Savignac, M.; Genêt, J.-P. Org. Lett. 2001, 3, 2065.
- ⁹⁷⁸Kennedy-Smith, J.J.; Staben, S.T.; Toste, F.D. J. Am. Chem. Soc. 2004, 126, 4526.
- 979Cheng, D.; Zhu, S.; Yu, Z.; Cohen, T. J. Am. Chem. Soc. 2001, 123, 30.
- 980See Snider, B.B.; Ron E. J. Am. Chem. Soc. 1985, 107, 8160.
- ⁹⁸¹Cunningham, I.D.; Brownhill, A.; Hamereton, I.; Howlin, B.J. Tetrahedron 1997, 53, 13473.
- ⁹⁸²Okachi, T.; Onaka, M. J. Am. Chem. Soc. 2004, 126, 2306.
- ⁹⁸³Shibata, T.; Yamasaki, M.; Kadowaki, S.; Takagi, K. Synlett 2004, 2812.

⁹⁸⁴See Achmatowicz, O.; Bialeck-Florjańczyk, E. *Tetrahedron* 1996, 52, 8827; Marshall, J.A.; Andersen, M.W. J. Org. Chem. 1992, 57, 5851 for mechanistic discussions of this reaction.

⁹⁸⁵Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. *Synlett* **1992**, 255; Wu, X.-M.; Funakoshi, K.; Sakai, K. *Tetrahedron Lett.* **1993**, *34*, 5927. For a discussion of the mechanism of the chiral copper complexcatalyzed carbonyl ene reaction, see Morao, I.; McNamara, J.P.; Hillier, I.H. J. Am. Chem. Soc. **2003**, *125*, 628.

⁹⁸⁶See Aggarwal, V.K.; Vennall, G.P.; Davey, P.N.; Newman, C. Tetrahedron Lett. 1998, 39, 1997.

- 987Ruck, R.T.; Jacobsen, E.N. J. Am. Chem. Soc. 2002, 124, 2882.
- ⁹⁸⁸Dauben, W.G.; Hendricks, R.T. Tetrahedron Lett. 1992, 33, 603.
- ⁹⁸⁹Tohyama, Y.; Tanino, K.; Kuwajima, I. *J. Org. Chem.* **1994**, *59*, 518; Yamanaka, M.; Nishida, A.; Nakagawa, M.; Org. Lett. **2000**, *2*, 159.

⁹⁹¹Lu, X. Org. Lett. **2004**, 6, 2813. See also, Leach, A.G.; Houk, K.N. J. Am. Chem. Soc. **2002**, 124, 14820. For a review, see Adam, W.; Krebs, O. Chem. Rev. **2003**, 103, 4131.

⁹⁷⁵ Davies, A.G.; Kinart, W.J. J. Chem. Soc. Perkin Trans. 2, 1993, 2281.

⁹⁷⁶ Molander, G.A.; Corrette, C.P. J. Org. Chem. 1999, 64, 9697.

⁹⁹⁰For a discussion of the mechanism of the intramolecular reaction, see Yu, Z.-X.; Houk, K.N. J. Am. Chem. Soc. **2003**, 125, 13825.

This is called the *Michael reaction* and involves conjugate addition.⁹⁹² The compound RCH₂Z or RCHZZ' can include aldehydes,⁹⁹³ ketones,⁹⁹⁴ esters⁹⁹⁵ and diesters,⁹⁹⁶ diketones,⁹⁹⁷ keto-esters,⁹⁹⁸ carboxylic acids and dicarboxylic acids,⁹⁹⁹ nitriles,¹⁰⁰⁰ and nitro compounds,¹⁰⁰¹ often with chiral catalysts or additives that give asymmetric induction. Enamines can also be used as the nucleophilic partner in Michael additions.¹⁰⁰² In the most common examples, a base removes the acidic proton and then the mechanism is as outlined on p. 1008. The reaction has been carried out with conjugated substrates that include malonates, cyanoacetates, acetoacetates, other β -keto esters, and compounds of the form ZCH₃, ZCH₂R, ZCHR₂, and ZCHRZ', including carboxylic esters, amides,¹⁰⁰³ ketones, aldehydes, nitriles, nitro compounds,¹⁰⁰⁴

⁹⁹²For reviews, see Yanovskaya, L.A.; Kryshtal, G.V.; Kulganek, V.V. Russ. Chem. Rev. 1984, 53, 744; Bergmann, E.D.; Ginsburg, D.; Pappo, R. Org. React. 1959, 10, 179; House, H.O. Modern Synthetic Reaction, 2nd ed., W.A. Benjamin, NY, 1972, pp. 595–623. The subject is also discussed at many places, in Stowell, J.C. Carbanions in Organic Synthesis, Wiley, NY, 1979.

⁹⁹³Hagiwara, H.; Okabe, T.; Hakoda, K.; Hoshi, T.; Ono, H.; Kamat, V.P.; Suzuki, T.; Ando, M. *Tetrahedron Lett.* 2001, 42, 2705; Melchiorre, P.; Jørgensen, K.A. J. Org. Chem. 2003, 68, 4151; Shimizu, K.; Suzuki, H.; Hayashi, E.; Kodama, T.; Tsuchiya, Y.; Hagiwara, H.; Kityama, Y. Chem. Commun. 2002, 1068; Willis, M.C.; McNally, S.J.; Beswick, P.J. Angew. Chem. Int. Ed. 2004, 43, 340. For an intramolecular example, see Fonseca, M.T.H.; List, B. Angew. Chem. Int. Ed. 2004, 43, 3958.

⁹⁹⁴Betancort, J.M.; Sakthivel, K.; Thayumanavan, R.; Barbas III, C.F. *Tetahedron Lett.* **2001**, 42, 4441; Enders, D.; Seki, A. *Synlett* **2002**, 26. For an example using an α-hydroxy ketone, see Andrey, O.; Alexakis, A.; Bernardinelli, G. *Org. Lett.* **2003**, *5*, 2559; Harada, S.; Kumagai, N.; Kinoshita, T.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. **2003**, *125*, 2582.

⁹⁹⁵Kim, S.-G.; Ahn, K.H. Tetrahedron Lett. 2001, 42, 4175.

996 Halland, N.; Aburel, P.S.; Jørgensen, K.A. Angew. Chem. Int. Ed. 2003, 42, 661.

997 da silva, F.M.; Gomes, A.K.; Jones Jr., J. Can. J. Chem. 1999, 77, 624.

⁹⁹⁸Suzuki, T.; Torii, T. *Tetrahedron Asymmetry* 2001, *12*, 1077; García-Gómez, G.; Moretó, J.M. *Eur. J. Org. Chem.* 2001, 1359; Kobayashi, S.; Kakumoto, K.; Mori, Y.; Manabe, K. *Isr. J. Chem.* 2001, *41*, 247.
 ⁹⁹⁹Méou, A.; Lamarque, L.; Brun, P. *Tetrahedron Lett.* 2002, *43*, 5301.

¹⁰⁰⁰Kraus, G.A.; Dneprovskaia, E. *Tetrahedron Lett.* **2000**, *41*, 21. For an example using an α-cyano amide, see Wolckenhauer, S.A.; Rychnovsky, S.D. *Org. Lett.* **2004**, *6*, 2745. For a review of conjugate addition to this relatively unreactive class of compounds, see Fleming, F.F.; Wang, Q. *Chem. Rev.* **2003**, *103*, 2035.

¹⁰⁰¹Sebti, S.; Boukhal, H.; Hanafi, N.; Boulaajaj, S. *Tetrahedron Lett.* **1999**, 40, 6207; Novák, T.; Tatai, J.; Bakó, P.; Czugler, M.; Keglevich, G. Töke, L. *Synlett* **2001**, 424; Halland, N.; Hazell, R.G.; Jørgensen, K.A. *J. Org. Chem.* **2002**, 67, 8331; Ooi, T.; Fujioka, S.; Maruoka, K. *J. Am. Chem. Soc.* **2004**, *126*, 11790. For a reaction using nitromethane and a Mg—Al hydrotalcite catalyst, see Choudary, B.M.; Kantam, M.L.; Kavita, B.; Reddy, Ch.V.; Figueras, F. *Tetrahedron* **2000**, *56*, 9357. For the importance of the aggregation state, see Strzalko, T.; Seyden-Penne, J.; Wartski, L.; Froment, F.; Corset, J. *Tetrahedron Lett.* **1994**, *35*, 3935.

¹⁰⁰²Sharma, U.; Bora, U.; Boruah, R.C.; Sandhu, J.S. *Tetrahedron Lett.* **2002**, *43*, 143.

¹⁰⁰³Taylor, M.S.; Jacobsen, E.N. J. Am. Chem. Soc. 2003, 125, 11204.

¹⁰⁰⁴For reviews of Michael reactions, where Z or Z' is nitro, see Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284; Baer, H.H.; UrBas L., in Feuer, H. The Chemistry of the Nitro and Nitroso Groups, pt. 2, Wiley, NY, 1970, pp. 130–148. See Kumar, H.M.S.; Reddy, B.V.S.; Reddy, P.T.; Yadav, J.S. Tetrahedron Lett. 1999, 40, 5387; Ji, J.; Barnes, D.M.; Zhang, J.; King, S.A.; Wittenberger, S.J.; Morton, H.E. J. Am. Chem. Soc. 1999, 121, 10215; List, B.; Pojarliev, P.; Martin, H.J. Org. Lett. 2001, 3, 2423; Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611; Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas III, C.F. Org. Lett. 2004, 6, 2527; Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672; Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558; Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906; Watanabe, M.; Ikagawa, A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148. and sulfones, as well as other compounds with relatively acidic hydrogens, such as indenes and fluorenes. Vinylogous Michael reaction are well known, using a variety of nucleophilic species.¹⁰⁰⁵ Michael addition of methyl 2,2-dichloroacetate/LiN(TMS)₂ where TMS = trinethysilyl, leads to formation of a cyclopropane ring.¹⁰⁰⁶ Similarly, the intramolecular Michael addition of an α -chloro ketone enolate anion, formed *in situ* using DABCO, leads to formation of a bicyclo[4.1.0] diketone.¹⁰⁰⁷ It is noted that activated aryl compounds undergo Michael addition in the presence of an imidazolidinone catalyst.¹⁰⁰⁸ Conjugate addition of nitrones using SmI₂ has been reported.¹⁰⁰⁹

These reagents do not add to ordinary double bonds, except in the presence of free-radical initiators (**15-33**). 1,2 Addition (to the C=O or C≡N group) often competes and sometimes predominates (**16-38**).¹⁰¹⁰ In particular, α,β -unsaturated *aldehydes* seldom give 1,4 addition.¹⁰¹¹ The Michael reaction has traditionally been performed in protic solvents, with catalytic amounts of base,¹⁰¹² but more recently better yields with fewer side reactions have been obtained in some cases by using an equimolar amount of base to convert the nucleophile to its enolate form (*preformed enolate*). In particular, preformed enolates are often used where stereo-selective reactions are desired.¹⁰¹⁴ Phase-transfer catalysts have been used,¹⁰¹⁵ and ionic liquids have been used in conjunction with phase-transfer catalysts.¹⁰¹⁶ Michael addition has been done in ionic liquids, adding aldehydes to conjugated nitro compounds using proline as a catalyst.¹⁰¹⁷ Transition-metal compounds, such as CeCl₃,¹⁰¹⁸ Yb(OTf)₃,¹⁰¹⁹ Bi(OTf)₃,¹⁰²⁰ ferric chloride hexahydrate,¹⁰²¹

¹⁰⁰⁵Ballini, R.; Bosica, G.; Fiorini, D. Tetrahedron Lett. 2001, 42, 8471.

¹⁰⁰⁶Escribano, A.; Pedregal, C.; González, R.; Fernádez, A.; Burton, K.; Stephenson, G.A. *Tetrahedron* **2001**, *57*, 9423.

¹⁰⁰⁷Bremeyer, N.; Smith, S.C.; Ley, S.V.; Gaunt, M.J. Angew. Chem. Int. Ed. 2004, 43, 2681.

¹⁰⁰⁸Paras, N.A.; MacMillan, D.W.C. J. Am. Chem. Soc. 2002, 124, 7894.

¹⁰⁰⁹Masson, G.; Cividino, P.; Py, S.; Vallée, Y. Angew. Chem. Int. Ed. 2003, 42, 2265.

¹⁰¹⁰For a discussion of 1,2 versus 1,4-addition, see, Oare, D.A.; Heathcock, C.H. *Top. Stereochem.* **1989**, 19, 227, pp. 232–236.

 1011 For reports of successful 1,4-additions to α,β -unsaturated aldehydes, see Kryshtal, G.V.; Kulganek,

V.V.; Kucherov, V.F.; Yanovskaya, L.A. Synthesis 1979, 107; Yamaguchi, M.; Yokota, N.; Minami, T. J. Chem. Soc., Chem. Commun. 1991, 1088.

¹⁰¹²See Macquarrie, D.J. *Tetrahedron Lett.* **1998**, *39*, 4125 for the use of supported phenolates as catalysts. ¹⁰¹³For reviews of stereoselective Michael additions, see Oare, D.A.; Heathcock, C.H. *Top. Stereochem.*

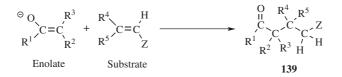
1991, 20, 87; **1989**, 19, 227.

¹⁰¹⁴Harada, T.; Adachi, S.; Wang, X. Org. Lett. 2004, 6, 4877.

¹⁰¹⁵Kim, D.Y.; Huh, S.C. *Tetrahedron* **2001**, *57*, 8933.

¹⁰¹⁶Dere, R.T.; Pal, R.R.; Patil, P.S.; Salunkhe, M.M. Tetrahedron Lett. 2003, 44, 5351.

¹⁰¹⁷In bmim PF₆, 3-butyl-1-methylimidazolium hexafluorophosphate: Kotrusz, P.; Toma, S.; Schamlz, H.-G.; Adler, A. *Eur. J. Org. Chem.* **2004**, 1577.


- ¹⁰¹⁸Boruah, A.; Baruah, M.; Prajapati, D.; Sandhu, J.S. *Synth. Commun.* **1998**, *28*, 653; Bartoli, G.; Bosco, M.; Bellucci, M.C.; Marcantoni, E.; Sambri, L.; Torregiani, E. *Eur. J. Org. Chem.* **1999**, 617.
- ¹⁰¹⁹Keller, E.; Feringa, B.L. *Tetrahedron Lett.* **1996**, *37*, 1879; Kotsuki, H.; Arimura, K. *Tetrahedron Lett.* **1997**, *38*, 7583.

¹⁰²⁰Varala, R.; Alam, M.M.; Adapa, S.R. Synlett 2003, 720.

¹⁰²¹For a review, see Christoffers, J. Synlett 2001, 723.

copper compounds,¹⁰²² lanthanum complexes,¹⁰²³ ruthenium complexes,¹⁰²⁴ or scandium complexes¹⁰²⁵ also induce the reaction. In many cases, such compounds lead to catalytic enantioselective Michael additions.¹⁰²⁶ Conjugate addition has also been promoted by Y-zeolite,¹⁰²⁷ and water-promoted Michael additions have also been reported.¹⁰²⁸ Other catalysts have also been used.¹⁰²⁹ Vinylzinc complexes add to conjugate keotnes in the presence of a CuBr catlayst.¹⁰³⁰

In a Michael reaction with suitably different R groups, two new stereogenic centers are created (see 139).

In a diastereoselective process, one of the two pairs is formed exclusively or predominantly, as a racemic mixture.¹⁰³¹ Many such examples have been reported.⁶⁷² In many of these cases, both the enolate anion and substrate can exist as (*Z*) or (*E*) isomers. With enolates derived from ketones or carboxylic esters, The (*E*) enolates gave the syn pair of enantiomers (p. 166), while (*Z*) enolates gave the anti pair.¹⁰³² Nitro compounds add to conjugated ketones in the presence of a dipeptide and a piperazine.¹⁰³³ Malonate derivatives also add to conjugated ketones,¹⁰³⁴ and keto esters add to conjugated esters.¹⁰³⁵ Addition of chiral additives to the reaction, such as metal–salen complexes,¹⁰³⁶ proline derivatives,¹⁰³⁷ or (–)-sparteine,¹⁰³⁸

¹⁰²²Iguchi, Y.; Itooka, R.; Miyaura, N. *Synlett* **2003**, 1040; Meyer, O.; Becht, J.-M.; Helmchen, G. *Synlett* **2003**, 1539. For a discussion of the mechanism, see Comelles, J.; Moreno-Mañas, M.; Pérez, E.; Roglans, A.; Sebastián, R.M.; Vallribera, A. *J. Org. Chem.* **2004**, *69*, 6834.

¹⁰²³Kim, Y.S.; Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6506.

¹⁰²⁴Watanabe, M.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2003, 125, 7508; Wadsworth, K.J.; Wood, F.K.; Chapman, C.J.; Frost, C.G. Synlett 2004, 2022. For a review, see Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.

¹⁰²⁵Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S. Tetahedron Lett. 2000, 41, 3107.

¹⁰²⁶For a review, see Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171.

¹⁰²⁷Sreekumar, R.; Rugmini, P.; Padmakumar, R. Tetrahedron Lett. 1997, 38, 6557.

¹⁰²⁸Lubineau, A.; Augé, J. Tetrahedron Lett. 1992, 33, 8073.

¹⁰²⁹Phosphoramidites: Grossman, R.B.; Comesse, S.; Rasne, R.M.; Hattori, K.; Delong, M.N. J. Org. Chem. 2003, 68, 871. Fluorapatite: Zahouily, M.; Abrouki, Y.; Rayadh, A.; Sebti, S.; Dhimane, H.; David, M. Tetrahedron Lett. 2003, 44, 2463.

¹⁰³⁰Huang, X.; Pi, J. Synlett 2003, 481.

¹⁰³¹For a more extended analysis, see Oare, D.A.; Heathcock, C.H. *Top. Stereochem.* 1989, 19, p. 237.
 ¹⁰³²For example, see Oare, D.A.; Heathcock, C.H. J. Org. Chem. 1990, 55, 157.

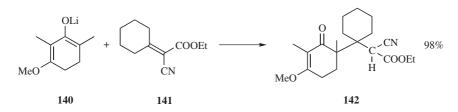
¹⁰³³Tsogoeva, S.B.; Jagtap, S.B. *Synlett* **2004**, 2624; Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. *Synthesis* **2002**, 2725.

¹⁰³⁴Zhang, Z.; Dong, Y.-W.; Wang, G.-W.; Komatsu, K. Synlett 2004, 61.

¹⁰³⁵Yadav, J.S.; Geetha, V.; Reddy, B.V.S. Synth. Commun. 2002, 32, 3519.

¹⁰³⁶Jha, S.C.; Joshi, N.N. Tetrahedron Asymmetry **2001**, *12*, 2463.

¹⁰³⁷Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. 1996, 61, 3520.


¹⁰³⁸Xu, F.; Tillyer, R.D.; Tschaen, D.M.; Grabowski, E.J.J.; Reider, P.J. Tetrahedron Assymetry 1998, 9, 1651.

lead to product formation with good-to-excellent asymmetric induction. Ultrasound has also been used to promote asymmetric Michael reactions.¹⁰³⁹ Intramolecular versions of Michael addition are known.¹⁰⁴⁰ A double Michael process is possible, where conjugate addition to an alkynyl ketone is followed by an intramolecular Michael to form a functionalized ring.¹⁰⁴¹

When either or both of the reaction components has a chiral substituent, the reaction can be enantioselective (only one of the four diastereomers formed predominantly).¹⁰⁴² Enantioselective addition has also been achieved by the use of a chiral catalyst¹⁰⁴³ and by using optically active enamines instead of enolates.¹⁰⁴⁴ Chiral imines have also been used.¹⁰⁴⁵

Mannich bases (see **16-19**) and β -halo carbonyl compounds can also be used as substrates; these are converted to the C=C-Z compounds *in situ* by the base (**16-19**, **17-13**).¹⁰⁴⁶ Substrates of this kind are especially useful in cases where the C=C-Z compound is unstable. The reaction of C=C-Z compounds with enamines (**10-69**) can also be considered a Michael reaction. Michael reactions are reversible.

When the substrate contains *gem-Z* groups (e.g., **141**), bulky groups can be added, if the reaction is carried out under aprotic conditions. For example, addition of enolate **140** to **141** gave **142** in which two adjacent quaternary centers have been formed.¹⁰⁴⁷

¹⁰³⁹Mirza-Aghayan, M.; Etemad-Moghadam, G.; Zaparucha, A.; Berlan, J.; Loupy, A.; Koenig, M. *Tetrahedron Asymmetry* **1995**, *6*, 2643.

¹⁰⁴⁰Christoffers, J. Tetrahedron Lett. 1998, 39, 7083.

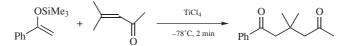
¹⁰⁴¹Holeman, D.S.; Rasne, R.M.; Grossman, R.B. J. Org. Chem. 2002, 67, 3149.

¹⁰⁴²See, for example, Töke, L.; Fenichel, L.; Albert, M. *Tetrahedron Lett.* 1995, 36, 5951; Corey, E.J.;
 Peterson, R.T. *Tetrahedron Lett.* 1985, 26, 5025; Calderari, G.; Seebach, D. *Helv. Chim. Acta* 1985, 68, 1592; Tomioka, K.; Ando, K.; Yasuda, K.; Koga, K. *Tetrahedron Lett.* 1986, 27, 715; Posner, G.H.;
 Switzer, C. J. Am. Chem. Soc. 1986, 108, 1239; Enders, D.; Demir, A.S.; Rendenbach, B.E.M. Chem. Ber. 1987, 120, 1731. Also see, Hawkins, J.M.; Lewis, T.A. J. Org. Chem. 1992, 57, 2114.

¹⁰⁴³Yura, T.; Iwasawa, N.; Mukaiyama, T. *Chem. Lett.* **1988**, 1021; Yura, T.; Iwasawa, N.; Narasaka, K.; Mukaiyama, T. *Chem. Lett.* **1988**, 1025; Desimoni, G.; Quadrelli, P.; Righetti, P.P. *Tetrahedron* **1990**, 46, 2927.

¹⁰⁴⁴See d'Angelo, J.; Revial, G.; Volpe, T.; Pfau, M. Tetrahedron Lett. 1988, 29, 4427.

¹⁰⁴⁵d'Angelo, J.; Desmaële, D.; Dumas, F.; Guingant, A. Tetrahedron Asymmetry 1992, 3, 459.


¹⁰⁴⁶Mannich bases react with ketones *without* basic catalysts to give 1,5-diketones, but this process, known as the *thermal-Michael reaction*, has a different mechanism: Brown, H.L.; Buchanan, G.L.; Curran, A.C.W.; McLay, G.W. *Tetrahedron* **1968**, *24*, 4565; Gill, N.S.; James, K.B.; Lions, F.; Potts, K.T. J. Am. Chem. Soc. **1952**, *74*, 4923.

¹⁰⁴⁷Holton, R.A.; Williams, A.D.; Kennedy, R.M. J. Org. Chem. 1986, 51, 5480.

In certain cases, Michael reactions can take place under acidic conditions.¹⁰⁴⁸ Michael-type addition of radicals to conjugated carbonyl compounds is also known.¹⁰⁴⁹ Radical addition can be catalyzed by Yb(OTf)₃,¹⁰⁵⁰ but radicals add under standard conditions as well, even intramolecularly.¹⁰⁵¹ Electrochemical-initiated Michael additions are known.

Michael reactions are sometimes applied to substrates of the type $C \equiv C-Z$, where the coproducts are conjugated systems of the type C=C-Z.¹⁰⁵² Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this reaction.¹⁰⁵³

In a closely related reaction, silyl enol ethers add to α , β -unsaturated ketones and esters when catalyzed¹⁰⁵⁴ by TiCl₄, for example,¹⁰⁵⁵

InCl₃ also catalyzes this reaction.¹⁰⁵⁶ Aluminum compounds also catalyze this reaction¹⁰⁵⁷ and the reaction has been done in neat tri-*n*-propylaluminum.¹⁰⁵⁸ A solid-state version of the reaction used alumina•ZnCl₂.¹⁰⁵⁹ This reaction, also, has been performed diastereoselectively.¹⁰⁶⁰ Tin enolates have been used.¹⁰⁶¹

OS I, 272; II, 200; III, 286; IV, 630, 652, 662, 776; V, 486, 1135; VI, 31, 648, 666, 940; VII, 50, 363, 368, 414, 443; VIII, 87, 210, 219, 444, 467; IX, 526. See also, OS VIII, 148.

¹⁰⁵⁰Sibi, M.P.; Jasperse, C.P.; Ji, J. *J. Am. Chem. Soc.* **1995**, *117*, 10779. See Wu, J.H.; Radinov, R.; Porter, N.A. *J. Am. Chem. Soc.* **1995**, *117*, 11029 for a related reaction involving Zn(OTf)₂.

¹⁰⁵¹Enholm, E.J.; Kinter, K.S. J. Org. Chem. 1995, 60, 4850.

¹⁰⁵²Rudorf, W.-D.; Schwarz, R. Synlett 1993, 369.

¹⁰⁵³See, for example, Makosza, M. Tetrahedron Lett. 1966, 5489.

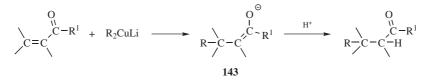
¹⁰⁵⁴Other catalysts have also been used. For a list of catalysts, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1576–1582. See also, Mukaiyama, T.; Kobayashi, S.; Tamura, M.; Sagawa, Y. *Chem. Lett.* **1987**, 491; Mukaiyama, T.; Kobayashi, S. *J. Organomet. Chem.* **1990**, 382, 39.

¹⁰⁵⁵Narasaka, K.; Soai, K.; Aikawa, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. **1976**, 49, 779; Saigo, K.;
 Osaki, M.; Mukaiyama, T. Chem. Lett. **1976**, 163; Matsuda, I. J. Organomet. Chem. **1987**, 321, 307;
 Narasaka, K. Org. Synth., 65, 12. See also, Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. **1985**, 18, 284.
 ¹⁰⁵⁶Loh, T.-P.; Wei, L.-L. Tetrahedron **1998**, 54, 7615.

¹⁰⁵⁷Tucker, J.A.; Clayton, T.L.; Mordas, D.M. J. Org. Chem. 1997, 62, 4370.

¹⁰⁵⁸Kabbara, J.; Flemming, S.; Nickisch, K.; Neh, H.; Westermann, J. Tetrahedron 1995, 51, 743.

¹⁰⁵⁹Ranu, B.C.; Saha, M.; Bhar, S. Tetrahedron Lett. 1993, 34, 1989.


¹⁰⁶⁰See Heathcock, C.H.; Uehling, D.E. J. Org. Chem. **1986**, 51, 279; Mukaiyama, T.; Tamura, M.; Kobayashi, S. Chem. Lett. **1986**, 1017, 1817, 1821; **1987**, 743.

¹⁰⁶¹Yasuda, M.; Ohigashi, N.; Shibata, I.; Baba, A. J. Org. Chem. **1999**, 64, 2180; Yasuda, M.; Chiba, K.; Ohigashi, N.; Katoh, Y.; Baba, A. J. Am. Chem. Soc. **2003**, 125, 7291.

¹⁰⁴⁸See Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1612; Org. Synth. VII, 363.

¹⁰⁴⁹Undheim, K.; Williams, K. J. Chem. Soc., Chem. Commun. **1994**, 883; Bertrand, S.; Glapski, C.; Hoffmann, N.; Pete, J.-P. Tetrahedron Lett. **1999**, 40, 3169.

15-25 1,4 Addition of Organometallic Compounds to Activated Double BondsHydro-alkyl-addition

Lithium dialkylcopper reagents (see **10-57**) add to α , β -unsaturated aldehydes¹⁰⁶² and ketones (R' =H, R, Ar) to give conjugate addition products¹⁰⁶³ in a reaction closely related to the Michael reaction. α , β -Unsaturated esters are less reactive,¹⁰⁶⁴ and the corresponding acids do not react at all. R can be primary alkyl, vinylic,¹⁰⁶⁵ or aryl. If Me₃SiCl is present, the reaction takes place much faster and with higher yields; in this case the product is the silyl enol ether of **143** (see **12-17**).¹⁰⁶⁶ The use of Me₃SiCl also permits good yields with allylic R groups.¹⁰⁶⁷ Conjugated alkynylketones also react via 1,4-addition to give substituted alkenyl-ketones.¹⁰⁶⁸

Various functional groups, such as OH and unconjugated C=O groups, may be present in the substrate.¹⁰⁶⁹ Conjugated sulfones are also good substrates.¹⁰⁷⁰ An excess of the cuprate reagent relative to the conjugated substrate is often required. In general, only one of the R groups of R₂CuLi adds to the substrate; the other is wasted. This can be a limitation where the precursor (RLi or RCu, see **12-36**) is expensive or available in limited amounts, particularly if an excess of the reagent

¹⁰⁶²For reviews, see Alexakis, A.; Chuit, C.; Commerçon-Bourgain, M.; Foulon, J.P.; Jabri, N.; Mangeney, P.; Normant, J.F. *Pure Appl. Chem.* **1984**, *56*, 91.

¹⁰⁶³House, H.O.; Respess, W.L.; Whitesides, G.M. J. Org. Chem. **1966**, *31*, 3128. For reviews, see Posner, G.H. Org. React. **1972**, *19*, 1; House, H.O. Acc. Chem. Res. **1976**, *9*, 59. For a discussion of the mechanism and regioselectivity, see Yamanaka, M.; Kato, S.; Nakamura, E. J. Am. Chem. Soc. **2004**, *126*, 6287. For examples of the use of this reaction in the synthesis of natural products, see Posner, G.H. An Introduction to Synthesis Using Organocopper Reagents, Wiley, NY, **1980**, pp. 10–67. For a list of organocopper reagents that give this reaction, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1599–1613, 1814–1824.

 $^{^{1064}}$ R₂CuLi also add to *N*-tosylated α , β -unsaturated amides: Nagashima, H.; Ozaki, N.; Washiyama, M.; Itoh, K. *Tetrahedron Lett.* **1985**, 26, 657.

 ¹⁰⁶⁵Bennabi, S.; Narkunan, K.; Rousset, L.; Bouchu, D.; Ciufolini, M.A. *Tetrahedron Lett.* 2000, 41, 8873.
 ¹⁰⁶⁶Corey, E.J.; Boaz, N.W. *Tetrahedron Lett.* 1985, 26, 6019; Alexakis, A.; Berlan, J.; Besace, Y. *Tetrahedron Lett.* 1986, 27, 1047; Matsuza, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I. *Tetrahedron* 1989, 45, 349; Horiguchi, Y.; Komatsu, M.; Kuwajima, I. *Tetrahedron Lett.* 1989, 30, 7087; Linderman, R.J.; McKenzie, J.R. J. Organomet. Chem. 1989, 361, 31; Bertz, S.H.; Smith, R.A.J. *Tetrahedron* 1990, 46, 4091. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 1491–1492.

¹⁰⁶⁷Lipshutz, B.H.; Ellsworth, E.L.; Dimock, S.H.; Smith, R.A.J. J. Am. Chem. Soc. **1990**, 112, 4404; Lipshutz, B.H.; James, B. Tetrahedron Lett. **1993**, 34, 6689.

¹⁰⁶⁸Degl'Innocenti, A.; Stucchi, E.; Capperucci, A.; Mordini, A.; Reginato, G.; Ricci, A. *Synlett* **1992**, 329, 332.

¹⁰⁶⁹For the use of enol tosylates of 1,2-diketones as substrates, see Charonnat, J.A.; Mitchell, A.L.; Keogh, B.P. *Tetrahedron Lett.* **1990**, *31*, 315.

¹⁰⁷⁰Domínguez, E.; Carretero, J.C. Tetrahedron Lett. 1993, 34, 5803.

is required. The difficulty of group transfer can be overcome by using one of the mixed reagents $R(R'C\equiv C)CuLi$,¹⁰⁷¹ R(O-t-Bu)CuLi,¹⁰⁷² R(PhS)CuLi,¹⁰⁷³ each of which transfers only the R group. Mixed reagents are easily prepared by the reaction of RLi with $R'C\equiv CCu$ (R'=n-Pr or t-Bu), t-BuOCu, or PhSCu, respectively. A further advantage of the mixed reagents is that good yields of addition product are achieved when R is tertiary, so that use of one of them permits the introduction of a tertiary alkyl group. The mixed reagents $R(CN)CuLi^{1074}$ (prepared from RLi and CuCN) and $R_2Cu(CN)Li_2^{1075}$ also selectively transfer the R group.¹⁰⁷⁶ Other mixed reagents incorporate a ligand that is not easily transferred, such as $R(R'Se)Cu(CN)Li_2$, leading to selective transfer of the R group.¹⁰⁷⁷ The reaction has also been carried out¹⁰⁷⁸ with α,β -acetylenic ketones,¹⁰⁷⁹ esters, and nitriles.

Both Grignard and R₂CuLi reagents¹⁰⁸⁰ have also been added to systems of the form $C \equiv C - C = O$.¹⁰⁸¹ Conjugate addition to α,β -unsaturated and acetylenic acids and esters, as well as ketones, can be achieved by the use of the coordinated reagents RCu•BF₃ (R = primary).¹⁰⁸² Alkylcopper compounds RCu (R = primary or secondary alkyl) have also been used with tetramethylethylenediamine and Me₃SiCl to give silyl enol ethers from α,β -unsaturated ketones in high yield.¹⁰⁸³ Amine units have been transferred in this manner using α -lithio amides, CuCN, and additives ranging from LiCl to Me₂NCH₂SnBu₃, which gave conjugate addition of an amidomethyl unit, $-CH_2N(Me)Boc$.¹⁰⁸⁴ Other amino-cuprates are known to give conjugate addition reactions.¹⁰⁸⁵

¹⁰⁷¹House, H.O.; Umen, M.J. J. Org. Chem. **1973**, 38, 3893; Corey, E.J.; Floyd, D.; Lipshutz, B.H. J. Org. Chem. **1978**, 43, 3419.

¹⁰⁷²Posner, G.H.; Whitten, C.E. Tetrahedron Lett. 1973, 1815.

¹⁰⁷³Posner, G.H.; Whitten, C.E.; Sterling, J.J. J. Am. Chem. Soc. 1973, 95, 7788.

¹⁰⁷⁴Gorlier, J.; Hamon, L.; Levisalles, J.; Wagnon, J. J. Chem. Soc., Chem. Commun. **1973**, 88. For another useful mixed reagent, see Ledlie, D.B.; Miller, G. J. Org. Chem. **1979**, 44, 1006.

¹⁰⁷⁵Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J. *Tetrahedron Lett.* **1982**, *23*, 3755; Lipshutz, B.H. *Tetrahedron Lett.* **1983**, *24*, 127.

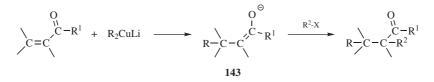
¹⁰⁷⁶When the two R groups of R₂Cu(CN)Li₂ are different, one can be selectively transferred: Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J.A. *J. Org. Chem.* **1984**, *49*, 3938.

¹⁰⁷⁷Zinn, F.K.; Ramos, E.C.; Comasseto, J.V. Tetahedron Lett. 2001, 42, 2415.

¹⁰⁷⁸For a list of references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 456–457.

¹⁰⁷⁹Lee, P.H.; Park, J.; Lee, K.; Kim, H.-C. Tetrahedron Lett. 1999, 40, 7109.

¹⁰⁸⁰For example, see Corey, E.J.; Kim, C.U.; Chen, H.K.; Takeda, M. *J. Am. Chem. Soc.* **1972**, 94, 4395; Anderson, R.J.; Corbin, V.L.; Cotterrell, G.; Cox, G.R.; Henrick, C.A.; Schaub, F.; Siddall, J.B. *J. Am. Chem. Soc.* **1975**, 97, 1197.


¹⁰⁸¹For a review of the addition of organometallic reagents to conjugated enynes see Miginiac, L. *J. Organomet. Chem.* **1982**, 238, 235.

¹⁰⁸²For a review, see Yamamoto, Y. *Angew. Chem. Int. Ed.* **1986**, *25*, 947. For a discussion of the role of the BF₃, see Lipshutz, B.H.; Ellsworth, E.L.; Siahaan, T.J. J. Am. Chem. Soc. **1988**, *110*, 4834; **1989**, *111*, 1351.
 ¹⁰⁸³Johnson, C.R.; Marren, T.J. Tetrahedron Lett. **1987**, *28*, 27.

¹⁰⁸⁴Dieter, R.K.; Velu, S.E. J. Org. Chem. 1997, 62, 3798; Dieter, R.K.; Alexander, C.W. Synlett 1993, 407; Dieter, R.K.; Alexander, C.W.; Nice, L.E. Tetrahedron 2000, 56, 2767; Dieter, R.K.; Lu, K.; Velu, S.E. J. Org. Chem. 2000, 65, 8715. See Dieter, R.K.; Topping, C.M.; Nice, L.E. J. Org. Chem. 2001, 66, 2302.

¹⁰⁸⁵Yamamoto, Y.; Asao, N.; Uyehara, T. J. Am. Chem. Soc. 1992, 114, 5427.

There is generally little or no competition from 1,2-addition (to the C=O). However, when R is allylic, 1,4-addition is observed with some substrates and 1,2-addition with others.¹⁰⁸⁶ R₂CuLi also add to α , β -unsaturated sulfones¹⁰⁸⁷ but not to simple α , β -unsaturated nitriles.¹⁰⁸⁸ Organocopper reagents (RCu), as well as certain R₂CuLi add to α , β -unsaturated and acetylenic sulfoxides.¹⁰⁸⁹

Conjugate addition of the cuprate to the α , β -unsaturated ketone leads to an enolate ion, **143**. It is possible to have this enolate anion reacts with an electrophilic species (*tandem vicinal difunctionalization*), in some cases at the O and in other cases at the C.¹⁰⁹⁰ For example, if an alkyl halide R²X is present (R² = primary alkyl or allylic), the enolate **143** can be alkylated directly.¹⁰⁹¹ Thus, by this method, both the α and β positions of a ketone are alkylated in one synthetic operation (see also, **15-22**).

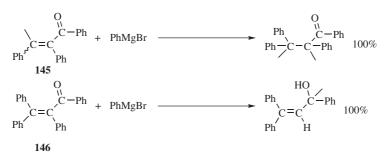
As with the Michael reaction (**15-24**) the 1,4-addition of organometallic compounds has been performed diastereoselectively¹⁰⁹² and enantioselectively.¹⁰⁹³

¹⁰⁸⁶House, H.O.; Fischer, Jr., W.F. J. Org. Chem. **1969**, 34, 3615. See also, Daviaud, G.; Miginiac, P. Tetrahedron Lett. **1973**, 3345.

¹⁰⁸⁷Posner, G.H.; Brunelle, D.J. Tetrahedron Lett. 1973, 935.

¹⁰⁸⁸House, H.O.; Umen, M.J. J. Org. Chem. 1973, 38, 3893.

¹⁰⁸⁹Truce, W.E.; Lusch, M.J. J. Org. Chem. 1974, 39, 3174; 1978, 43, 2252.


¹⁰⁹⁰For reviews of such reactions, see Chapdelaine, M.J.; Hulce, M. Org. React. **1990**, 38, 225; Taylor, R.J.K. Synthesis **1985**, 364. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1609–1612, 1826.

¹⁰⁹¹Coates, R.M.; Sandefur, L.O. J. Org. Chem. **1974**, 39, 275; Posner, G.H.; Lentz, C.M. Tetrahedron Lett. **1977**, 3215.

¹⁰⁹²For some examples, see Isobe, M.; Funabashi, Y.; Ichikawa, Y.; Mio, S.; Goto, T. *Tetrahedron Lett. 1984*, *25*, 2021; Kawasaki, H.; Tomioka, K.; Koga, K. *Tetrahedron Lett. 1985*, *26*, 3031; Yamamoto, Y.; Nishii, S.; Ibuka, T. J. Chem. Soc., Chem. Commun. *1987*, 464, 1572; Smith III, A.B.; Dunlap, N.K.; Sulikowski, G.A. *Tetrahedron Lett. 1988*, *29*, 439; Smith III, A.B.; Trumper, P.K. *Tetrahedron Lett. 1988*, *29*, 443; Alexakis, A.; Sedrani, R.; Mangeney, P.; Normant, J.F. *Tetrahedron Lett. 1988*, *29*, 4411; Larchevêque, M.; Tamagnan, G.; Petit, Y. J. Chem. Soc., Chem. Commun. *1989*, 31; Page, P.C.B.; Prodger, J.C.; Hursthouse, M.B.; Mazid, M. J. Chem. Soc. Perkin Trans. *1*, *1990*, 167; Corey, E.J.; Hannon, F.J. *Tetrahedron Lett. 1990*, *31*, 1393.

¹⁰⁹³For reviews, see Posner, G.H. *Acc. Chem. Res.* **1987**, *20*, 72; in Morrison, J.D. *Assymmetric Synthesis* Vol. 2, Academic Press, NY, **1983**, the articles by Tomioka, K.; Koga, K. pp. 201–224; Posner, G. pp. 225–241.

The influence of solvent and additives on yield and selectivity has been examined.¹⁰⁹⁴ The conjugate addition of dimethyl cuprate in the presence of a chiral ligand, such as **144**, is an example.¹⁰⁹⁵ The use of chiral ligands with MgI₂/I₂ and Bu₃SnI gave conjugate addition products with α , β -unsaturated amides with good % ee.¹⁰⁹⁶ Chiral bis(oxazoline) copper catalysts have been used for the conjugate addition of indoles to α , β -unsaturated esters.¹⁰⁹⁷ Chiral templates have also been used with Grignard reagents, directly¹⁰⁹⁸ and in the presence of AlMe₂Cl.¹⁰⁹⁹ Many of the examples cited below involve the use of chiral additives, chiral catalysts, or chiral templates.

Grignard reagents also add to conjugated substrates such as α,β -unsaturated ketones, cyano-ketones,¹¹⁰⁰ esters, and nitriles,¹¹⁰¹ but 1,2-addition may seriously compete:¹¹⁰² The product is often controlled by steric factors. Thus **145** with phenylmagnesium bromide gives 100% 1,4-addition, while **146** gives 100% 1,2-addition. In general, substitution at the carbonyl group increases 1,4-addition, while substitution at the double bond increases 1,2-addition. In most cases, both products are obtained, but α,β -unsaturated *aldehydes* nearly always give exclusive 1,2-addition when treated with Grignard reagents. However, the extent of 1,4-addition of Grignard reagents can be increased by the use of a copper ion catalyst, for example, CuCl, Cu(OAc)₂.¹¹⁰³ A dialkyl copper–magnesium iodide complex (R₂Cu•MgI) has been used for conjugate addition to chiral α,β -unsaturated amides.¹¹⁰⁴ Grignard reagents mixed with CeCl₃ generates a reactive species that gives primarily 1,4-addition.¹¹⁰⁵ It is likely that alkylcopper reagents, formed from RMgX and

¹⁰⁹⁴Christenson, B.; Ullenius, C.; Håkansson, M.; Jagner, S. Tetrahedron 1992, 48, 3623.

¹⁰⁹⁵Kanai, M.; Koga, K.; Tomioka, K. Tetrahedron Lett. 1992, 33, 7193.

¹⁰⁹⁶Sibi, M.P.; Ji, J.; Wu, J.H.; Gürtler, S.; Porter, N.A. J. Am. Chem. Soc. 1996, 118, 9200.

¹⁰⁹⁷Jensen, K.B.; Thorhauge, J.; Hazell, R.G.; Jørgensen, K.A. Angew. Chem. Int. Ed. 2001, 40, 160.
 ¹⁰⁹⁸Han, Y.; Hruby, V.J. Tetrahedron Lett. 1997, 38, 7317.

¹⁰⁹⁹Bongini, A.; Cardillo, G.; Mingardi, A.; Tomasini, C. Tetrahedron Asymmetry 1996, 7, 1457.

¹¹⁰⁰Kung, L.-R.; Tu, C.-H.; Shia, K.-S.; Liu, H.-J. Chem. Commun. 2003, 2490.

¹¹⁰¹Fleming, F.F.; Wang, Q.; Zhang, Z.; Steward, O.W. J. Org. Chem. 2002, 67, 5953.

¹¹⁰²For a discussion of the factors affecting 1,2- versus 1,4-addition, see Negishi, E. Organometallics in Organic Synthesis Vol. 1, Wiley, NY, **1980**, pp. 127–133.

¹¹⁰⁵Bartoli, G.; Bosco, M.; Sambri, L.; Marcantoni, E. Tetrahedron Lett. 1994, 35, 8651.

¹¹⁰³Posner, G.H. Org. React. 1972, 19, 1; López, F.; Harutyanyan, S.R.; Minnaard, A.J.; Feringa, B.L. J. Am. Chem. Soc. 2004, 126, 12784.

¹¹⁰⁴Schneider, C.; Reese, O. Synthesis 2000, 1689.

 Cu^+ (cupric acetate is reduced to cuprous ion by excess RMgX), are the actual attacking species in these cases.¹⁰⁶³ Alkylidene malonic ester derivatives, C=C(CO₂R), increase the facility of 1,4-addition with the two electron withdrawing groups.¹¹⁰⁶ Alkylidene amido esters, C=C(CO₂R)NHCOAr, react with EtI/Mg(ClO₄)₂ and Bu₃SnH, in the presence of BEt₃/O₂ and a chiral ligand, to give the ethylated product EtCHCH(CO₂R)NHCOAr.¹¹⁰⁷ This is probably a radical process (see **15-35**).

Organolithium reagents¹¹⁰⁸ generally react with conjugated aldehydes, ketones and esters by 1,2-addition,¹¹⁰⁹ but 1,4-addition was achieved with esters of the form C=C-COOAr, where Ar was a bulky group such as 2,6-di-*tert*-butyl-4methoxyphenyl.¹¹¹⁰ Alkyllithium reagents can be made to give 1,4-addition with α ,β-unsaturated ketones¹¹¹¹ and aldehydes¹¹¹² if the reactions are conducted in the presence of HMPA.¹¹¹³ Among organolithium reagents that have been found to add 1,4 in this manner are 2-lithio-1,3-dithianes (see **10-71**),¹¹¹⁴ vinyllithium reagents,¹¹¹⁵ and α-lithio allylic amides.¹¹¹⁶ Lithium-halogen exchange (**12-22**) generates an organolithium species that adds intramolecularly to conjugated esters to give cyclic and bicyclic products.¹¹¹⁷ 1,4-Addition of alkyllithium reagents to α ,β-unsaturated aldehydes can also be achieved by converting the aldehyde to a benzothiazole derivative (masking the aldehyde function),¹¹¹⁸ from which the aldehyde group can be regenerated. When some conjugated acids are added to organolithium reagents, the conjugate addition product was isolated in good yield.¹¹¹⁹ α ,β-Unsaturated nitro compounds undergo conjugate addition with aryllithium reagents, and subsequent treatment with acetic acid gives the α -aryl ketone.¹¹²⁰

¹¹⁰⁶See Kim, Y.M.; Kwon, T.W.; Chung, S.K.; Smith, M.B. Synth. Commun. 1999, 29, 343.

¹¹⁰⁷Sibi, M.P.; Asano, Y.; Sausker, J.B. Angew. Chem. Int. Ed. 2001, 40. 1293.

¹¹⁰⁸For a review of addition of organolithium compounds to double bonds, see Hunt, D.A. Org. Prep. Proced. Int. **1989**, 21, 705–749.

¹¹⁰⁹Rozhkov, I.N.; Makin, S.M. *J. Gen. Chem. USSR* **1964**, *34*, 57. For a discussion of 1,2- versus 1,4-addition with organolithiums, see Cohen, T.; Abraham, W.D.; Myers, M. *J. Am. Chem. Soc.* **1987**, *109*, 7923.
 ¹¹¹⁰Cooke, Jr., M.P. *J. Org. Chem.* **1986**, *51*, 1637.

¹¹¹¹Roux, M.C.; Wartski, L.; Seyden-Penne, J. *Tetrahedron* **1981**, *37*, 1927; *Synth. Commun.* **1981**, *11*, 85. ¹¹¹²El-Bouz, M.; Wartski, L. *Tetrahedron Lett.* **1980**, *21*, 2897.

¹¹¹³Sikorski, W.H.; Reich, H.J. J. Am. Chem. Soc. 2001, 123, 6527.

¹¹¹⁴Lucchetti, J.; Dumont, W.; Krief, A. *Tetrahedron Lett.* **1979**, 2695; Brown, C.A.; Yamaichi, A. *J. Chem. Soc., Chem. Commun.* **1979**, 100; El-Bouz, M.; Wartski, L. *Tetrahedron Lett.* **1980**, 21, 2897. See also, Bürstinghaus, R.; Seebach, D. *Chem. Ber.* **1977**, *110*, 841.

¹¹¹⁵For an intramolecular example, see Maezaki, N.; Sawamoto, H.; Yuyama, S.; Yoshigami, R.; Suzuki, T.; Izumi, M.; Ohishi, H.; Tanaka, T. J. Org. Chem. 2004, 69, 6335.

¹¹¹⁶For an example using sparteine as a chiral additive, see Curtis, M.D.; Beak, P. J. Org. Chem. 1999, 64, 2996.

¹¹¹⁷Cooke Jr., M.P.; Gopal, D. *Tetrahedron Lett.* **1994**, *35*, 2837. For an example involving the intramolecular addition of a vinyllithium reagent, see Piers, E.; Harrison, C.L.; Zetina-Rocha, C. *Org. Lett.* **2001**, *3*, 3245.

¹¹¹⁸Corey, E.J.; Boger, D.L. *Tetrahedron Lett.* **1978**, 9. For another indirect method, see Sato, T.; Okazaki, H.; Otera, J.; Nozaki, H. *Tetrahedron Lett.* **1988**, 29, 2979.

¹¹¹⁹Aurell, M.J.; Mestres, R.; Muñoz, E. *Tetrahedron Lett.* **1998**, *39*, 6351. Also see, Plunian, B.; Vaultier, M.; Mortier, J. *Chem. Commun.* **1998**, 81. For a discussion of the mechansim, see Aurell, M.J.; Bañuls, M.J.; Mestres, R.; Muñoz, E. *Tetrahedron* **2001**, *57*, 1067.

¹¹²⁰Santos, R.P.; Lopes, R.S.C.; Lopes, C.C. Synthesis 2001, 845.

1116 ADDITION TO CARBON–CARBON MULTIPLE BONDS

If the organolithium reagent is modified, 1,4-addition is more successful. The reaction of an aryllithium reagent with B(OMe)₃, for example, led to a rhodium-catalyzed conjugate addition with excellent enantioselectivity in when a chiral ligand was employed.¹¹²¹ Allylic tellurium reagents that are treated with lithium diisopropyl amide, and then conjugated esters give the 1,4-addition product, which cyclizes to form the corresponding cyclopropane derivative.¹¹²²

Boron reagents add to conjugated carbonyl compounds.¹¹²³ Alkynyl borate esters (p. 815) give conjugate addition in the presence of boron trifluoride etherate,¹¹²⁴ as do arylboronic acids (p. 815) with a rhodium,¹¹²⁵ palladium,¹¹²⁶ or a bismuth catalyst.¹¹²⁷ Diethylzinc has also been used.¹¹²⁸ Aryl boronic acids add to the double bond of vinyl sulfones in the presence of a rhodium catalyst.¹¹²⁹ Similarly, LiBPh(OMe)₃ and a rhodium catalyst gave conjugate addition of the phenyl group to α , β -unsaturated esters.¹¹³⁰ Potassium vinyltrifluoroborates (see p. 607) give 1,4-addition with a rhodium catalyst,¹¹³¹ as do aryltrifluoroborates.¹¹³²

Organozinc compounds add to conjugated systems. The use of chiral ligands is effective for conjugate addition of dialkylzinc compounds to α , β -unsaturated ketones, esters, and so on,¹¹³³ including conjugated lactones.¹¹³⁴ Many dialkylzinc compounds can be used, including vinylzinc compounds.¹¹³⁵ Dialkylzinc

- ¹¹²³Kabalka, G.W.; Das, B.C.; Das, S. *Tetrahedron Lett.* **2002**, *43*, 2323.
- ¹¹²⁴Chong, J.M.; Shen, L.; Taylor, N.J. J. Am. Chem. Soc. 2000, 122, 1822.

- ¹¹²⁶Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem. Int. Ed. 2003, 42, 2768.
- ¹¹²⁷Sakuma, S.; Miyaura, N. J. Org. Chem. 2001, 66, 8944.
- ¹¹²⁸Dong, L.; Xu, Y.-J.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Synthesis 2004, 1057.
- ¹¹²⁹With a chiral ligand, see Mauleón, P.; Carretero, J.C. Org. Lett. 2004, 6, 3195.
- ¹¹³⁰Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi, T. *Tetrahedron Asymmetry* **1999**, *10*, 4047.

¹¹³¹Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J.A.F.; de Vries, A.H.M.; de Vires, J.G.; Minnaard, A.J.; Feringa, B.L. *J. Org. Chem.* **2004**, *69*, 8045.

¹¹²¹Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1999, 40, 6957.

¹¹²²Liao, W.-W.; Li, K.; Tang, Y. J. Am. Chem. Soc. 2003, 125, 13030.

¹¹²⁵Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000; Ramnauth, J.; Poulin, O.; Bratovanov, S.S.; Rakhit, S.; Maddaford, S.P. Org. Lett. 2001, 3, 2571; Reetz, M.T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083; Kuriyama, M.; Nagai, K.; Yamada, K.-i.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am. Chem. Soc. 2002, 124, 8932; Boiteau, J.-G.; Minnaard, A.J.; Feringa, B.L. J. Org. Chem. 2003, 68, 9481; Boiteau, J.-G.; Imbos, R.; Minnaard, A.J.; Feringa, B.L. Org. Lett. 2003, 5, 681; Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett. 2004, 6, 3425; Shi, Q.; Xu, L.; Li, X.; Wang, R.; Au-Yeung, T.T.-L.; Chan, A.S.C.; Hayashi, T.; Cao, R.; Hong, M. Tetrahedron Lett. 2003, 44, 6505; Amengual, R.; Michelet, V.; Genêt, J.-P. Synlett. 2002, 1791. For a review, see Hayashi, T. Synlett 2001, 879.

¹¹³²Moss, R.J.; Wadsworth, K.J.; Chapman, C.J.; Frost, C.G. *Chem. Commun.* **2004**, 1984; Pucheault, M.; Darses, S.; Genêt, J.-P. *Eur. J. Org. Chem.* **2002**, 3552.

¹¹³³Alexakis, A.; Burton, J.; Vastra, J.; Mangeney, P. *Tetrahedron Asymm.*, **1997**, *8*, 3987. Yan, M.; Yang, L.,-W.; Wong, K.-Y.; Chan, A.S.C. Chem. Commun. **1999**, 11; Tong, P.-E.; Li, P.; Chan, A.S.C. *Tetrahedron Asymmetry* **2001**, *12*, 2301; Liang, L.; Au-Yeung, T.T.-L.; Chan, A.S.C. Org. Lett. **2002**, *4*, 3799.

¹¹³⁴Reetz, M.T.; Gosberg, A.; Moulin, D. Tetrahedron Lett. 2002, 43, 1189.

¹¹³⁵For an example using a nickel catalyst with a chiral ligand, see Ikeda, S.-i.; Cui, D.-M.; Sato, Y. J. Am. Chem. Soc. **1999**, 121, 4712.

compounds and a chiral complex leads to enantioselective conjugate addition in conjunction with Cu(OTf)₂¹¹³⁶ or other copper compounds.¹¹³⁷ Diethylzinc adds to conjugated nitro compounds in the presence of a catalytic amount of Cu(OTf)₂ to give the conjugate addition product.¹¹³⁸ Other transition-metal compounds can be used in conjunction with dialkylzinc compounds¹¹³⁹ or with arylzinc halides (ArZnCl).¹¹⁴⁰ Reaction of alkyl iodides with Zn/CuI with ultrasound generates an organometallic that adds to conjugated esters.¹¹⁴¹ Diarylzinc compounds (prepared with the aid of ultrasound) in the presence of nickel acetylacetonate, undergo 1,4-addition not only to α , β -unsaturated ketones, but also to α , β -unsaturated aldehydes.¹¹⁴² Mixed alkylzinc compounds also add to conjugated systems.¹¹⁴³ Functionalized allylic groups can be added to terminal alkynes with allylic halides, zinc, and ultrasound, to give 1,4-dienes.¹¹⁴⁴ Internal alkynes undergo 1,4-addition to conjugated esters using a combination of zinc metal and a cobalt complex as catalysts.¹¹⁴⁵

¹¹³⁶Liang, L.; Yan, M.; Li, Y.-M.; Chan, A.S.C. *Tetrahedron Asymmetry* 2004, *15*, 2575, and references cited therein; Pàmies, O.; Net, G.; Ruiz, A.; Claver, C.; Woodward, S. *Tetrahedron Asymmetry* 2000, *11*, 871; Diéguez, M. Ruiz, A.; Claver, C. *Tetrahedron Asymmetry* 2001, *12*, 2861; Arena, C.G.; Calabrò, G.P.; Franciò, G.; Faraone, F. *Tetrahedron Asymmetry* 2000, *11*, 2387; Mandoli, A.; Arnold, L.A.; de Vries, A.H.M.; Salvadori, P.; Feringa, B.L. *Tetrahedron Asymmetry* 2001, *12*, 1929; Martorell, A.; Naasz, R.; Feringa, B.L.; Pringle, P.G. *Tetrahedron Asymmetry* 2001, *12*, 2497; Escher, I.H.; Pfaltz, A. *Tetrahedron* 2000, *56*, 2879; Morimoto, T.; Yamaguchi, Y.; Suzuki, M.; Saitoh, A. *Tetrahedron Lett.* 2000, *41*, 10025; Alexakis, A.; Polet, D.; Rosset, S.; March, S. J. Org. Chem. 2004, *69*, 5660, and references cited therein; Pytkowicz, J.; Roland, S.; Mangeney, P. *Tetrahedron Asymmetry* 2001, *12*, 2007; Zhou, H.; Wang, W.-H.; Fu, Y.; Xie, J.-H.; Shi, W.-J.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2003, *68*, 1582; Duncan, A.P.; Leighton, J.L. Org. Lett. 2004, *6*, 4117, and references cited therein; Choi, Y.H.; Choi, J.Y.; Yang, H.-Y.; Kim, H.Y. *Tetrahedron Asymmetry* 2002, *13*, 801; Kang, J.; Lee, J.H.; Lim, D.S. *Tetrahedron Asymmetry* 2003, *14*, 305; Scafato, P.; Labano, S.; Cunsolo, G.; Rosini, C. *Tetrahedron Asymmetry* 2003, *14*, 3873; Hird, A.W.; Hoveyda, A.H. Angew. Chem. Int. Ed. 2003, *42*, 1276.

 ¹¹³⁷Delapierre, G.; Brunel, J.M.; Constantieux, T.; Buono, G. *Tetrahedron Asymmetry* 2001, 12, 1345; Hu,
 Y.; Liang, X.; Wang, J.; Zheng, Z.; Hu, X. J. Org. Chem. 2003, 68, 4542; Wan, H.; Hu, Y.; Liang, Y.; Gao,
 S.; Wang, J.; Zheng, Z.; Hu, X. J. Org. Chem. 2003, 68, 8277; Alexakis, A.; Polet, D.; Benhaim, C.;
 Rosset, S. *Tetrahedron Asymmetry* 2004, 15, 2199; Breit, B.; Laungani, A.Ch. *Tetrahedron Asymmetry* 2003, 14, 3823; Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507.

¹¹³⁸Yan, M.; Chan, A.S.C. *Tetrahedron Lett.* 1999, 40, 6645; Rimkus, A.; Sewald, N. Org. Lett. 2002, 4,
3289; Choi, H.; Hua, Z.; Ojima, I. Org. Lett. 2004, 6, 2689; Mampreian, D.M.; Hoveyda, A.H. Org. Lett.
2004, 6, 2829; Duursma, A.; Minnaard, A.J.; Feringa, B.L. J. Am. Chem. Soc. 2003, 125, 3700.

¹¹³⁹With a vanadium complex: Hirao, T.; Takada, T.; Sakurai, H. *Org. Lett.* **2000**, *2*, 3659. With a nickel complex: Yin, Y.; Li, X.; Lee, D.-S.; Yang, T.-K. *Tetrahedron Asymmetry* **2000**, *11*, 3329; Shadakshari, U.; Nayak, S.K. *Tetrahedron* **2001**, *57*, 8185.

¹¹⁴⁰Shitani, R.; Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 6240.

¹¹⁴¹Sarandeses, L.A.; Mouriño, A.; Luche, J.-L. J. Chem. Soc., Chem. Commun. **1992**, 798. See also, Das, B.; Banerjee, J.; Mahender, G.; Majhi, A. Org. Lett. **2004**, 6, 3349.

¹¹⁴²Pétrier, C.; de Souza Barboza, J.C.; Dupuy, C.; Luche, J. J. Org. Chem. 1985, 50, 5761.

¹¹⁴³Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T.A.; Reddy, C.K. Angew. Chem. Int. Ed. **1997**, 36, 1496.

¹¹⁴⁴Knochel, P.; Normant, J.F. J. Organomet. Chem. 1986, 309, 1.

¹¹⁴⁵Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. J. Am. Chem. Soc. 2002, 124, 9696.

1118 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Trialkylalanes R₃Al add 1,4 to α , β -unsaturated carbonyl compounds in the presence of nickel acetylacetonate¹¹⁴⁶ or Cu(OTf)₂.¹¹⁴⁷ In the presence of aluminum chloride, benzene reacts with conjugated amides to add a phenyl group to C-4.¹¹⁴⁸ Alkyl halides react via conjugate addition using BEt₃ or AlEt₃.¹¹⁴⁹ An alkynyl group can be added to the double bond of an α , β -unsaturated ketone by use of the diethylalkynylalane reagents Et₂AlC≡CR.¹¹⁵⁰ In a similar manner, the alkenyl reagents R₂AlCH=CR transfer an alkenyl group.¹¹⁵¹

Terminal alkynes add to conjugated systems when using a ruthenium,¹¹⁵² palladium,¹¹⁵³ or a rhodium catalyst.¹¹⁵⁴ Triphenylbismuth (Ph₃Bi) and a rhodium catalyst gives conjugate addition of the phenyl group upon exposure to air.¹¹⁵⁵ Similar reactivity is observed with a palladium catalyst in aqueous media.¹¹⁵⁶ Lithium tetraalkylgallium reagents give 1,4-addition.¹¹⁵⁷ Trimethyl(phenyl)tin and a rhodium catalyst gives conjugate addition of a methyl group¹¹⁵⁸ and tetraphenyltin and a palladium catalyst adds a phenyl group.¹¹⁵⁹ Allyltin compounds add an allyl group in the presence of a scandium catalyst.¹¹⁶⁰ Benzylic bromides add to conjugated nitriles using a 2:1 mixture of CrCl₃ and manganese metal.¹¹⁶¹ Electrochemical conjugate addition to α , β -unsaturated ketones was reported using aryl halides and a cobalt catalyst.¹¹⁶² Aryl halides add in the presence of NiBr₂.¹¹⁶³ Vinyl zirconium complexes undergo conjugate addition when using a rhodium catalyst.¹¹⁶⁴ Pyrrole adds to conjugated alkynyl esters in the presence

- ¹¹⁴⁷Su, L.; Li, X.; Chan, W.L.; Jia, X.; Chan, A.S.C. Tetrahedron Asymmetry 2003, 14, 1865.
- ¹¹⁴⁸Koltunov, K.Yu.; Walspurger, S.; Sommer, J. Tetrahedron Lett. 2004, 45, 3547.
- ¹¹⁴⁹Liu, J.-Y.,; Jang, Y.-J.; Lin, W.-W.; Liu, J.-T.; Yao, C.-F. J. Org. Chem. 2003, 68, 4030.

¹¹⁵⁰Hooz, J.; Layton, R.B. J. Am. Chem. Soc. **1971**, 93, 7320; Schwartz, J.; Carr, D.B.; Hansen, R.T.; Dayrit, F.M. J. Org. Chem. **1980**, 45, 3053.

¹¹⁵¹Hooz, J.; Layton, R.B. *Can. J. Chem.* **1973**, *51*, 2098. For a similar reaction with an alkenylzirconium reagent, see Dayrit, F.M.; Schwartz, J. J. Am. Chem. Soc. **1981**, *103*, 4466.

¹¹⁵²With SnCl₄, see Trost, B.M.; Pinkerton, A.B. *J. Am. Chem. Soc.* **1999**, *121*, 1988. See Chang, S.; Na, Y.; Choi, E.; Kim, S. Org. Lett. **2001**, *3*, 2089.

¹¹⁵³Chen, L.; Li, C.-J. Chem. Commun. 2004, 2362.

¹¹⁵⁴Hayashi, T.; Tokunaga, N.; Yoshida, K.; Han, J.W. J. Am. Chem. Soc. **2002**, *124*, 12102; Lerum, R.V.; Chisholm, J.D. *Tetrahedron Lett.* **2004**, *45*, 6591.

¹¹⁵⁵Venkatraman, S.; Li, C.-J. Tetrahedron Lett. 2001, 42, 781.

¹¹⁵⁶Nishikata, T.; Yamamoto, Y.; Miyaura, N. Chem. Commun. 2004, 1822.

¹¹⁵⁷Han, Y.; Huang, Y.-Z.; Fang, L.; Tao, W.-T. Synth. Commun. 1999, 29, 867.

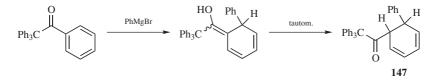
¹¹⁵⁸Venkatraman, S.; Meng, Y.; Li, C.-J. *Tetrahedron Lett.* **2001**, *42*, 4459; Oi, S.; Moro, M.; Ito, H.; Honma, Y.; Miyano, S.; Inoue, Y. *Tetrahedron* **2002**, *58*, 91.

¹¹⁵⁹Ohe, T.; Wakita, T.; Motofusa, S.-i; Cho, C.S.; Ohe, K.; Uemura, S. Bull. Chem. Soc. Jpn. 2000, 73,

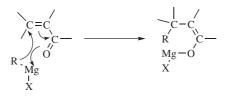
2149; Ohe, T.; Uemura, S. Tetrahedron Lett. 2002, 43, 1269.

¹¹⁶⁰Williams, D.R.; Mullins, R.J.; Miller, N.A. Chem. Commun. 2003, 2220.

¹¹⁶¹Augé, J.; Gil, R.; Kalsey, S. Tetrahedron Lett. 1999, 40, 67.


¹¹⁴⁶Bagnell, L.; Meisters, A.; Mole, T. Aust. J. Chem. **1975**, 28, 817; Ashby, E.C.; Heinsohn, G. J. Org. Chem. **1974**, 39, 3297. See also, Sato, F.; Oikawa, T.; Sato, M. Chem. Lett. **1979**, 167; Kunz, H.; Pees, K.J. J. Chem. Soc. Perkin Trans. 1, **1989**, 1168.

¹¹⁶²Gomes, P.; Gosmini, C.; Nédélec, J.-Y.; Périchon, J. Tetrahedron Lett. 2000, 41, 3385.


¹¹⁶³Condon, S.; Dupré, D.; Falgayrac, G.; Nédélec, J.-Y. Eur. J. Org. Chem. 2002, 105.

¹¹⁶⁴Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron 2004, 60, 1293.

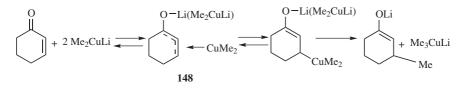
of palladium acetate, to give the 2-alkenyl pyrrole.¹¹⁶⁵

In certain cases, Grignard reagents add 1,4 to *aromatic* systems to give **147** after tautomerization (p. \$\$\$) of the initial formed enol.¹¹⁶⁶ Such cyclohexadienes are easily oxidizable to benzenes (often by atmospheric oxygen), so this reaction becomes a method of alkylating and arylating suitably substituted (usually hindered) aryl ketones. A similar reaction has been reported for aromatic nitro compounds where 1,3,5-trinitrobenzene reacts with excess methylmagnesium halide to give 2,4,6-trinitro-1,3,5-trimethylcyclohexane.¹¹⁶⁷

The mechanisms of most of these reactions are not well known. The 1,4 uncatalyzed Grignard reaction has been postulated to proceed by the cyclic mechanism shown, but there is evidence against it.¹¹⁶⁸ The R₂CuLi¹¹⁶⁹ and copper-catalyzed Grignard additions may involve a number of mechanisms, since the actual attacking species and substrates are so diverse.¹¹⁷⁰ A free-radical mechanism of some type

¹¹⁶⁵Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org. Lett. 2000, 2, 2927.

¹¹⁶⁷Severin, T.; Schmitz, R. *Chem. Ber.* **1963**, *96*, 3081. See also, Bartoli, G. *Acc. Chem. Res.* **1984**, *17*, 109; Bartoli, G.; Dalpozzo, R.; Grossi, L. J. *Chem. Soc. Perkin Trans.* **2**, **1989**, 573. For a study of the mechanism, see Bartoli, G.; Bosco, M.; Cantagalli, G.; Dalpozzo, R.; Ciminale, F. J. *Chem. Soc. Perkin Trans.* **2**, **1985**, 773.

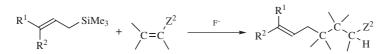

¹¹⁶⁸House, H.O.; Thompson, H.W. J. Org. Chem. **1963**, 28, 360; Klein, J. Tetrahedron **1964**, 20, 465. See, however, Marets, J.; Rivière, H. Bull. Soc. Chim. Fr. **1970**, 4320.

¹¹⁶⁹See Kingsbury, C.L.; Smith, R.A.J. J. Org. Chem. **1997**, 62, 4629. Also see, Bertz, S.H.; Miao, G.; Rossiter, B.E.; Snyder, J.P. J. Am. Chem. Soc. **1995**, 117, 11023; Snyder, J.P. J. Am. Chem. Soc. **1995**, 117, 11025; Vellekoop, A.S.; Smith, R.A.J. J. Am. Chem. Soc. **1994**, 116, 2902.

¹¹⁷⁰For some mechanistic investigations, see Berlan, J.; Battioni, J.; Koosha, K. J. Organomet. Chem.
 1978, 152, 359; Bull. Soc. Chim. Fr. 1979, II-183; Four, P.; Riviere, H.; Tang, P.W. Tetrahedron Lett. 1977, 3879; Casey, C.P.; Cesa, M.C. J. Am. Chem. Soc. 1979, 101, 4236; Krauss, S.R.; Smith, S.G. J. Am. Chem. Soc. 1981, 103, 141; Bartoli, G.; Bosco, M.; Dal Pozzo, R.; Ciminale, F. J. Org. Chem. 1982, 47, 5227; Corey, E.J.; Boaz, N.W. Tetrahedron Lett. 1985, 26, 6015; Yamamoto, Y.; Yamada, J.; Uyehara, T. J. Am. Chem. Soc. 1987, 109, 5820; Ullenius, C.; Christenson, B. Pure Appl. Chem. 1988, 60, 57; Christenson, B.; Olsson, T.; Ullenius, C. Tetrahedron 1989, 45, 523; Krause, N. Tetrahedron Lett. 1989, 30, 5219.

¹¹⁶⁶This example is from Schmidlin, J.; Wohl, J. *Ber.* **1910**, 43, 1145; Mosher, W.A.; Huber, M.B. *J. Am. Chem. Soc.* **1953**, 75, 4604. For a review of such reactions see Fuson, R.C. *Adv. Organomet. Chem.* **1964**, *1*, 221.

(perhaps SET) has been suggested¹¹⁷¹ although the fact that retention of configuration at R has been demonstrated in several cases rules out a completely free R• radical.¹¹⁷² For simple α , β -unsaturated ketones, such as 2-cyclohexenone, and Me₂CuLi, there is evidence¹¹⁷³ for this mechanism:



148 is a d,π^* complex, with bonding between copper, as a base supplying a pair of d electrons, and the enone as a Lewis acid using the π^* orbital of the allylic system.¹¹⁷³ The ¹³C NMR spectrum of an intermediate similar to **148** has been reported.¹¹⁷⁴

For the addition of organocopper reagents to alkynes and conjugated dienes, see **15-22**.

OS IV, 93; V, 762; VI, 442, 666, 762, 786; VIII, 112, 257, 277, 479; IX, 328, 350, 640.

15-26 The Sakurai Reaction

Allylic silanes R_2C =CHCH₂SiMe₃ can be used instead of silyl enol ethers (the *Sakurai reaction*).¹¹⁷⁵ An allyl group can be added, to α , β -unsaturated carboxylic esters, amides and nitriles, with CH₂=CHCH₂SiMe₃ and F⁻ ion (see **15-47**).¹¹⁷⁶ This reagent gave better results than lithium diallylcuprate (**15-25**). Catalytic Sakurai reactions are known.¹¹⁷⁷ The palladium catalyzed reaction of conjugated ketones with PhSi(OEt)₃ with SbCl₃ and Bu₄NF in acetic acid gave the 1,4-addition product.¹¹⁷⁸ A similar reaction was reported using PhSi(OMe)₃

¹¹⁷³Corey, E.J.; Hannon, F.J.; Boaz, N.W. Tetrahedron 1989, 45, 545.

¹¹⁷⁴Bertz, S.H.; Smith, R.A.J. J. Am. Chem. Soc. 1989, 111, 8276.

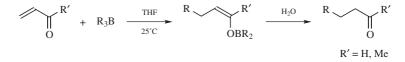
¹¹⁷⁵Hosomi, A.; Sakurai, H. *J. Am. Chem. Soc.* **1977**, *99*, 1673; Jellal, A.; Santelli, M. *Tetrahedron Lett.* **1980**, *21*, 4487; Sakurai, H.; Hosomi, A.; Hayashi, J. Org. Synth. VII, 443; Kuhnert, N.; Peverley, J.; Robertson, J. *Tetrahedron Lett.* **1998**, *39*, 3215. For a review, see Fleming, I.; Dunoguès, J.; Smithers, R. Org. React. **1989**, *37*, 57, see pp. 127, 335–370. For a review of intramolecular additions, see Schinzer, D. Synthesis **1988**, 263.

¹¹⁷⁶Majetich, G.; Casares, A.; Chapman, D.; Behnke, M. J. Org. Chem. 1986, 51, 1745.

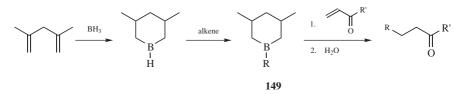
¹¹⁷⁷InCl₃: Lee, P.H.; Lee, K.; Sung, S.-y.; Chang, S. J. Org. Chem. 2001, 66, 8646.

¹¹⁷⁸Denmark, S.E.; Amishiro, N. J. Org. Chem. 2003, 68, 6997.

¹¹⁷¹See, for example, Ruden, R.A.; Litterer, W.E. *Tetrahedron Lett.* **1975**, 2043; House, H.O.; Snoble, K.A.J. *J. Org. Chem.* **1976**, *41*, 3076; Wigal, C.T.; Grunwell, J.R.; Hershberger, J. J. Org. Chem. **1991**, *56*, 3759.


¹¹⁷²Näf, F.; Degen, P. *Helv. Chim. Acta* **1971**, *54*, 1939; Whitesides, G.M.; Kendall, P.E. J. Org. Chem. **1972**, *37*, 3718. See also, Ref. 1063.

with a rhodium catalyst.¹¹⁷⁹ In a related reaction, Ph₂SiCl₂, NaF and a rhodium catalyst gives conjugate addition of a phenyl group to α , β -unsaturated ketones.¹¹⁸⁰ An interesting rhodium-catalyzed, conjugate addition of a phenyl group was reported using a siloxane polymer bearing Si—Ph units.¹¹⁸¹

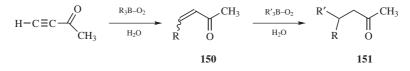

Silyl ketene acetals, RCH=C(OMe)OSiMe₃, add to conjugated ketones to give δ -keto esters, in MeNO₂ as solvent.¹¹⁸²

15-27 Conjugate Addition of Boranes to Activated Double Bonds

Hydro-alkyl-addition (overall transformation)

Just as trialkylboranes add to simple alkenes (**15-16**), they rapidly add to the double bonds of acrolein, methyl vinyl ketone, and certain of their derivatives in THF at 25°C to give enol borinates (also see, p. 631), which can be hydrolyzed to aldehydes or ketones.¹¹⁸³ If water is present in the reaction medium from the beginning, the reaction can be run in one laboratory step. Since the boranes can be prepared from alkenes (**15-16**), this reaction provides a means of lengthening a carbon chain by three or four carbons, respectively. Compounds containing a terminal alkyl group, such as crotonaldehyde (CH₃CH=CHCHO) and 3-penten-2-one, fail to react under these conditions, as does acrylonitrile, but these compounds can be induced to react by the slow and controlled addition of O₂ or by initiation with peroxides or UV light.¹¹⁸⁴ A disadvantage is

¹¹⁷⁹Oi, S.; Honma, Y.; Inoue, Y. Org. Lett. **2002**, *4*, 667; Oi, S.; Taira, A.; Honma, Y.; Inoue, Y. Org. Lett. **2003**, *5*, 97.


¹¹⁸⁰Huang, T.-S.; Li, C.-J. Chem. Commun. 2001, 2348.

¹¹⁸¹Koike, T.; Du, X.; Mori, A.; Osakada, K. Synlett 2002, 301.

¹¹⁸²RajanBabu, T.V. J. Org. Chem. 1984, 49, 2083.

¹¹⁸³Suzuki, A.; Arase, A.; Matsumoto, H.; Itoh, M.; Brown, H.C.; Rogić, M.M.; Rathke, M.W. J. Am. Chem. Soc. **1967**, 89, 5708; Köster, R.; Zimmermann, H.; Fenzl, W. Liebigs Ann. Chem. **1976**, 1116. For reviews, see Pelter, A.; Smith, K.; Brown, H.C. Borane Reagents, Academic Press, NY, **1988**, pp. 301–305, 318–323; Brown, H.C.; Midland, M.M. Angew. Chem. Int. Ed. **1972**, 11, 692, sse pp. 694–698; Kabalka, G.W. Intra-Sci. Chem. Rep. **1973**, 7(1), 57; Brown, H.C. Boranes in Organic Chemistry, Cornell University Press, Ithica, NY, **1972**, pp. 413–433.

¹¹⁸⁴Brown, H.C.; Kabalka, G.W. J. Am. Chem. Soc. **1970**, 92, 712, 714. See also, Utimoto, K.; Tanaka, T.; Furubayashi, T.; Nozaki, H. *Tetrahedron Lett.* **1973**, 787; Miyaura, N.; Kashiwagi, M.; Itoh, M.; Suzuki, A. Chem. Lett. **1974**, 395. that only one of the three R groups of R₃B adds to the substrate, so that the other two are wasted. This difficulty is overcome by the use of a β -alkyl borinate, such as **149**,¹¹⁸⁵ which can be prepared as shown. **149** (R = *tert*-butyl) can be made by treatment of **149** (R = OMe) with *t*-BuLi. The use of this reagent permits *tert*-butyl groups to be added. β -1-Alkenyl-9-BBN compounds β -RCH = CR'-9-BBN (prepared by treatment of alkynes with 9-BBN or of RCH=CR'Li with β -methoxy-9-BBN¹¹⁸⁶) add to methyl vinyl ketones to give, after hydrolysis, γ , δ -unsaturated ketones,¹¹⁸⁷ although β -R-9-BBN, where R = a saturated group, are not useful here, because the R group of these reagents does not preferentially add to the substrate.¹¹⁸⁴ The corresponding β -1-alkynyl-9-BBN compounds also give the reaction.¹¹⁸⁸ Like the three substrates mentioned above, 3-butyn-2-one fails to react in the absence of air, but undergoes the reaction when exposed to a slow stream of air:¹¹⁸⁹ Since the product, **150**, is an α , β -unsaturated ketone, it can be made to react with another BR₃, the same or different, to produce a wide variety of ketones **151**.

Vinyl boranes add to conjugated ketones in the presence of a rhodium catalyst (with high asymmetric induction in the presence of BINAP).¹¹⁹⁰ Alkynyl-boranes also add to conjugated ketones, in the presence of BF_3 .¹¹⁹¹

The fact that these reactions are catalyzed by free-radical initiators and inhibited by galvinoxyl¹¹⁹² (a free-radical inhibitor) indicates that free-radical mechanisms are involved.

15-28 Radical Addition to Activated Double Bonds

Hydro-alkyl-addition

¹¹⁸⁵Brown, H.C.; Negishi, E. J. Am. Chem. Soc. 1971, 93, 3777.

¹¹⁸⁶Brown, H.C.; Bhat, N.G.; Rajagopalan, S. Organometallics 1986, 5, 816.

¹¹⁸⁷Jacob III, P.; Brown, H.C. *J. Am. Chem. Soc.* **1976**, *98*, 7832; Satoh, Y.; Serizawa, H.; Hara, S.; Suzuki, A. *J. Am. Chem. Soc.* **1985**, *107*, 5225. See also, Molander, G.A.; Singaram, B.; Brown, H.C. *J. Org. Chem.* **1984**, *49*, 5024. Alkenyldialkoxyboranes, together with BF₃–etherate, also transfer vinylic groups: Hara, S.; Hyuga, S.; Aoyama, M.; Sato, M.; Suzuki, A. *Tetrahedron Lett.* **1990**, *31*, 247.

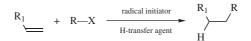
¹¹⁸⁸Sinclair, J.A.; Molander, G.A.; Brown, H.C. *J. Am. Chem. Soc.* **1977**, *99*, 954. See also, Molander, G.A.; Brown, H.C. *J. Org. Chem.* **1977**, *42*, 3106.

¹¹⁹⁰Takaya, Y.; Ogasawara, M.; Hayashi, T. Tetrahedron Lett. 1998, 39, 8479.

¹¹⁹¹Fujishima, H.; Takada, E.; Hara, S.; Suzuki, A. Chem. Lett. 1992, 695.

¹¹⁹²Kabalka, G.W.; Brown, H.C.; Suzuki, A.; Honma, S.; Arase, A.; Itoh, M. J. Am. Chem. Soc. 1970, 92, 710. See also, Arase, A.; Masuda, Y.; Suzuki, A. Bull. Chem. Soc. Jpn. 1976, 49, 2275.

¹¹⁸⁹Suzuki, A.; Nozawa, S.; Itoh, M.; Brown, H.C.; Kabalka, G.W.; Holland, G.W. J. Am. Chem. Soc. **1970**, *92*, 3503.


In a reaction similar to 15-25, alkyl groups can be added to alkenes activated by, such groups as COR', COOR', CN, and even Ph.¹¹⁹³ In the method illustrated above, the R group comes from an alkyl halide (R = primary, secondary, or tertiary alkyl; X = Br or I) and the hydrogen from the tin hydride. The reaction of *tert*-butyl bromide, Bu₃SnH and AIBN (p. 935), for example, adds a *tert*-butyl group to a conjugated ester via 1,4-addition.¹¹⁹⁴ An alkene is converted to an alkylborane with catecholborane (p. 817) and when treated with a conjugated ketone and O_2 , radical conjugate addition leads to the β -substituted ketone.¹¹⁹⁵ Organomercury hydrides (RHgH) generated in situ from RHgX and NaBH₄, can also be used.¹¹⁹⁶ When the tin method is used, Bu₃SnH can also be generated in a similar way, from R₃SnX and NaBH₄. The tin method has a broader scope (e.g., it can be used on $CH_2=CCl_2$), but the mercury method uses milder reaction conditions. Like 15-27, these additions have free-radical mechanisms. The reaction has been used for free-radical cyclizations of the type discussed on p. 1125.¹¹⁹⁷ Such cyclizations normally give predominant formation of 15-membered rings, but large rings (11-20 members) have also been synthesized by this reaction.¹¹⁹⁸

Free-radical addition of an aryl group and a hydrogen has been achieved by treatment of activated alkenes with a diazonium salt and $TiCl_3$.¹¹⁹⁹ The addition of R₃Al takes place by a free-radical mechanism.¹¹⁴⁶

OS VII, 105.

15-29 Radical Addition to Unactivated Double Bonds¹²⁰⁰

Alkyl-hydro-addition

¹¹⁹³For reviews, see Giese, B. *Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds*, Pergamon, Elmsford, NY, **1986**, pp. 36–68; Giese, B. *Angew. Chem. Int. Ed.* **1985**, 24, 553; Larock, R.C. *Organomercury Compounds in Organic Synthesis*, Springer, NY, **1985**, pp. 263–273. The last review includes a table with many examples of the mercury method. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1809–1813. ¹¹⁹⁴Hayen, A.; Koch, R.; Metzger, J.O. *Angew. Chem. Int. Ed.* **2000**, *39*, 2758.

¹¹⁹⁵Ollivier, C.; Renaud, P. Chem. Eur. J. 1999, 5, 1468.

¹¹⁹⁶For the use of tris(trimethylsilyl)silane, see Giese, B.; Kopping, B.; Chatgilialoglu, C. *Tetrahedron Lett.* **1989**, *30*, 681.

¹¹⁹⁷For reviews, see Jasperse, C.P.; Curran, D.P.; Fevig, T.L. Chem. Rev. 1991, 91, 1237; Curran, D.P. Adv.
 Free Radical Chem. (Greenwich, Conn.) 1990, 1, 121; Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon, Elmsford, NY, 1986, pp. 151–169. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 413–418.
 ¹¹⁹⁸See Porter, N.A.; Chang, V.H. J. Am. Chem. Soc. 1987, 109, 4976.

¹¹⁹⁹Citterio, A.; Vismara, E. Synthesis 1980, 291. For other methods of adding an alkyl or aryl group and a hydrogen to activated double bonds by free-radical processes, see Cacchi, S.; Palmieri, G. Synthesis 1984, 575; Lebedev, S.A.; Lopatina, V.S.; Berestova, S.S.; Petrov, E.S.; Beletskaya, I.P. J. Org. Chem. USSR 1986, 22, 1238; Luche, J.L.; Allavena, C. Tetrahedron Lett. 1988, 29, 5369; Varea, T.; González-Núñez, M.E.; Rodrigo-Chiner, J.; Asensio, G. Tetrahedron Lett. 1989, 30, 4709; Barton, D.H.R.; Sarma, J.C. Tetrahedron Lett. 1990, 31, 1965.

¹²⁰⁰See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY 2001, pp. 1167–1172

1124 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Radical addition to alkenes is usually difficult, except when addition occurs to conjugated carbonyl compounds (15-24). An important exception involves radicals bearing a heteroatom α to the carbon bearing the radical center. These radical are much more stable and can add to alkenes, usually with anti-Markovnikov orientation, as in the radical induced addition of HBr to alkenes (15-2).¹²⁰¹ Examples of this type of reaction include the use of alcohol-, ester-,¹²⁰² amino-, and aldehydestabilized radicals.⁴⁵⁵ Carbon tetrachloride can be cleaved homolytically to generate Cl• and Cl₃C•, which can add to alkenes. The alkyl group of alkyl iodides adds to alkenes with BEt₃/O₂ as the initiator and in the presence of a tetraalkylammonium hypophosphite.¹²⁰³ When chloroform was treated with a ruthenium carbene complex, Cl₂CH add to the less substituted carbon of an alkene, and Cl to the more substituted carbon.¹²⁰⁴ The radical generated from (EtO)₂POCH₂Br adds to alkenes to generate a new phosphonate ester.¹²⁰⁵ α -Bromo esters add to alkenes in the presence of BEt₃/air to give a γ -bromo ester.¹²⁰⁶ α -Bromo amides add the Br and the acyl carbon to an alkene using Yb(OTf)₃ with BEt₃/O₂ as the radical initiator.¹²⁰⁷ α -Iodo amides add to alkenes using a water soluble azobis initiator to give the iodo ester, which cyclizes under the reaction conditions to give a lactone.¹²⁰⁸ β -Keto dithiocarbonates, RC(=O)–C–SC(=S)OEt, generate the radical in the presence of a peroxide and add to alkenes.¹²⁰⁹ Malonate derivatives add to alkenes in the presence of a mixture of Mn/Co catalyst, in oxygenated acetic acid.1210

Other radicals can add to alkenes, and the rate constant for the addition of methyl radicals to alkenes has been studied,¹²¹¹ and the rate of radical additions to alkenes in general has also been studied.¹²¹² The kinetic and thermodynamic control of a radical addition regiochemistry has also been studied.¹²¹³ Alkynes are generally less reactive than alkenes in radical coupling reactions.¹²¹⁴ Nonradical nucleophiles usually react faster with alkynes than with alkenes, however.¹²¹⁵

- ¹²⁰³Jang, D.O.; Cho, D.H.; Chung, C.-M. Synlett 2001, 1923.
- ¹²⁰⁴Tallarico, J.A.; Malnick, L.M.; Snapper, M.L. J. Org. Chem. 1999, 64, 344.
- ¹²⁰⁵Baczewski, P.; Mikoajczyk, M. Synthesis 1995, 392.
- ¹²⁰⁶Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K.; Omoto, K.; Fujimoto, H. J. Org. Chem. **2001**, 66, 7776.
- ¹²⁰⁷Mero, C.L.; Porter, N.A. J. Am. Chem. Soc. 1999, 121, 5155.

¹²⁰⁸Yorimitsu, H.; Wakabayashi, K.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2001, 74, 1963.
 ¹²⁰⁹Ouvry, G.; Zard, S.Z. Chem. Commun. 2003, 778.

- ¹²¹⁰Hirase, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2002, 67, 970.
- ¹²¹¹Zytowski, T.; Fischer, H. J. Am. Chem. Soc. 1996 118, 437.
- ¹²¹²Avila, D.V.; Ingold, K.U.; Lusztyk, J.; Dolbier Jr., W.R.; Pan, H.-Q. J. Org. Chem. 1996, 61, 2027.

¹²¹³Leach, A.G.; Wang, R.; Wohlhieter, G.E.; Khan, S.I.; Jung, M.E.; Houk, K.N. J. Am. Chem. Soc. 2003, 125, 4271.

¹²⁰¹See Curran, D.P. Synthesis 1988, 489 (see pp. 497-498).

¹²⁰²Deng, L.X.; Kutateladze, A.G. Tetrahedron Lett. 1997, 38, 7829.

¹²¹⁴Giese, B.; Lachhein, S. Angew. Chem. Int. Ed. **1982**, 21, 768; Giese, B.; Meixner, J. Angew. Chem. Int. Ed. **1979** 18 154.

¹²¹⁵Dickstein, J.I.; Miller, G.I., in *The Chemistry of Carbon Carbon Triple Bonds*, Vol. 2, Patai, S., Ed., Wiley, NY **1978**.

15-30 Radical Cyclization¹²¹⁶

Alkyl-hydro-addition

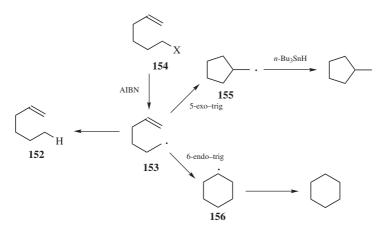
ω-Haloalkenes generate radicals upon treatment with reagents, such as AIBN or under photolysis conditions,¹²¹⁷ and the radical carbon adds to the alkene to form cyclic compounds.¹²¹⁸ This intramolecular addition of a radical to an alkene is called radical cyclization. In a typical example, haloalkene 154 reacts with the radical produced by AIBN to give radical 153. The radical can add to the more substituted carbon to give **155** via a 5-exo-trig reaction (p. 305).¹²¹⁹ If the radical adds to the less substituted carbon, **156** is formed via a 6-endo-trig reaction.¹²²⁰ In both cases, the product is another radical, which must be converted to an unreactive product. This is generally accomplished by adding a hydrogen transfer agent,¹²²¹ such as tributyltin hydride (Bu₃SnH), which reacts with 155 to form methylcyclopentane and Bu₃Sn•, or with 156 to give cyclohexane. The Bu₃Sn• formed in both cases usually dimerizes to form Bu₃SnSnBu₃. Cyclization can compete with hydrogen transfer¹²²² of Bu₃SnH to 153 to give 152, the reduction product. In general, formation of the five-membered ring dominates the cyclization, but if addition to the C=C unit is relatively slow, the reduction product is formed preferentially. Radical rearrangements can also diminish the yield of the desired product.¹²²³ Given a choice between a larger and a smaller ring, radical cyclization generally gives the smaller ring, ¹²²⁴ but not

¹²¹⁶See Smith, M.B. *Organic Synthesis*, 2nd ed., McGraw-Hill, NY **2001**, pp. 1172–1181. For a review of radical-mediated annulation reactions, see Rheault, T.R.; Sibi, M.P. *Synthesis* **2003**, 803.

¹²¹⁷For example, see Pandey, G.; Reddy, G.D.; Chakrabarti, D. J. Chem. Soc., Perkin Trans. 1 **1996**, 219; Abe, M.; Hayashi, T.; Kurata, T. Chem. Lett. **1994** 1789; Pandey, G.; Hajra, S.; Ghorai, M.K. Tetrahedron Lett. **1994**, 35, 7837; Pandey, G.; Reddy, G.D. Tetrahedron Lett. **1992**, 33, 6533.

¹²¹⁸Curran, D.P. *Synthesis* **1988**, 417, 489; Chang, S.-Y.; Jiang, W.-T.; Cherng, C.-D.; Tang, K.-H.; Huang, C.-H.; Tsai, Y.-M. *J. Org. Chem.* **1997**, 62, 9089. For a review of applications to organic synthesis see McCarroll, A.J.; Walton, J.C. *J. Chem. Soc., Perkin Trans.* **1 2001**, 3215.

 ¹²¹⁹For a discussion of whether 5-endo-trig radical cyclizations are favored or disfavored, see Chatgilialoglu,
 C.; Ferreri, C.; Guerra, M.; Timokhin, V.; Froudakis, G.; Gimisis, Z.T. J. Am. Chem. Soc. 2002, 124, 10765.
 ¹²²⁰For a review of 5-endo-trig radical cyclizations, see Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 695.


¹²²¹See Ha, C.; Horner, J.H.; Newcomb, M.; Varick, T.R.; Arnold, B.R.; Lusztyk, J. J. Org. Chem. **1993**, 58 1194.

¹²²²For a discussion of the kinetics of radical cyclization, see Furxhi, E.; Horner, J.H.; Newcomb, M. *J. Org. Chem.* **1999**, *64*, 4064. Rate constants have been determined for selected reactions: Tauh, P.; Fallis, A.G. J. Org. Chem. **1999**, *64*, 6960.

¹²²³Mueller, A.M.; Chen, P. J. Org. Chem. 1998, 63, 4581.

¹²²⁴Bogen, S; Malacria, M. J. Am. Chem. Soc. **1996** 118, 3992.; Beckwith, A.L.J.; Ingold, K.U., in Vol 1 of *Rearrangements in Ground States and Excited States*, de Mayo, P., Ed., Academic Press, NY **1980**, pp. 162–283. For a discussion of six- versus five-membered rings, see Gómez, A.M.; Company, M.D.; Uriel, C.; Valverde, S.; López, J.C. *Tetrahedron Lett.* **2002**, *43*, 4997.

always.¹²²⁵ The mechanism of this reaction has been discussed.¹²²⁶ Formation of other size rings is possible of course. A 4-exo-trig radical cyclization has been studied,¹²²⁷ selectivity in a 7-endo versus 6-exo cyclization,¹²²⁸ and also an 8-endo-trig reaction.¹²²⁹ In radical cyclization to form large rings, 1,5- and 1,9-hydrogen atom abstractions can pose a problem¹²³⁰

In cases where hydrogen atom transfer gives primarily reduced products, $Bu_3Sn-SnBu_3$ under photochemical generates the radical which can cyclize (see **15-46**),¹²³¹ but a halogen atom transfer agent, such as iodoethane, is used rather than a hydrogen-transfer agent, so the final product is an alkyl iodide.

A mixture of a Grignard reagent and CoCl₂ has also been used to initiate aryl radical cyclizations.¹²³² Titanium(III)-mediated radical cyclizations are known,¹²³³ and SmI₂-mediate reactions are possible in the presence of a nickel catalyst.¹²³⁴ Organoborane-mediated radical cyclizations are known.¹²³⁵ Electrochemically generated radicals also cyclize.¹²³⁶ The influence of the halogen atom on radical cyclization has been studied.¹²³⁷ Both phenylthio¹²³⁸ and phenylseleno

- ¹²²⁷Jung, M.E.; Marquez, R.; Houk, K.N. Tetrahedron Lett. 1999, 40, 2661.
- ¹²²⁸Kamimura, A.; Taguchi, Y. Tetrahedron Lett. 2004, 45, 2335.
- ¹²²⁹Wang, Li.C. J. Org. Chem. 2002, 67, 1271.
- ¹²³⁰Kraus, G.A.; Wu, Y. J. Am. Chem. Soc. 1992 114, 8705.

- ¹²³³Barrero, A.F.; Oltra, J.E.; Cuerva, J.M.; Rosales, A. J. Org. Chem. 2002, 67, 2566.
- ¹²³⁴Molander, G.A.; St. Jean, Jr., D.J. J. Org. Chem. 2002, 67, 3861.
- ¹²³⁵Becattini, B.; Ollivier, C.; Renaud, P. Synlett 2003, 1485.

¹²²⁵Mayon, P.; Chapleur, Y. Tetrahedron Lett. 1994, 35, 3703; Marco-Contelles, J.; Sánchez, B. J. Org. Chem. 1993, 58, 4293.

¹²²⁶Bailey, W.F.; Carson, M.W. Tetrahedron Lett. 1999, 40, 5433.

¹²³¹A polymer-bound tin catalyst has been used under photochemical conditions. See Hernán, A.G.; Kilburn, J.D. *Tetrahedron Lett.* **2004**, *45*, 831.

¹²³²Clark, A.J.; Davies, D.I.; Jones, K.; Millbanks, C. J. Chem. Soc., Chem. Commun. 1994, 41.

¹²³⁶Olivero, S.; Clinet, J.C.; Duñach, E. *Tetrahedron Lett.* **1995**, *36*, 4429; Ozaki, S.; Horiguchi, I.; Matsushita, H.; Ohmori, H. *Tetrahedron Lett.* **1994**, *35*, 725.

¹²³⁷Tamura, O.; Matsukida, H.; Toyao, A.; Takeda, Y.; Ishibashi, H. J. Org. Chem. 2002, 67, 5537.

¹²³⁸See, for example, Ikeda, M.; Shikaura, J.; Maekawa, N.; Daibuzono, K.; Teranishi, H.; Teraoka, Y.; Oda, N.; Ishibashi, H. *Heterocycles 1999*, *50*, 31.

groups¹²³⁹ can be used as 'leaving groups' for radical cyclization, where sulfur or selenium atom transfer leads to formation of the radical. A seleno ester, $R_2N-CH_2C(-O)SeMe$, has also been used with $(Me_3Si)_3SiH$ (tristrimethylsilylsilane, TTMSS) and AIBN to generate R_2NCH_2 .¹²⁴⁰ *O*-Phosphonate esters have also served as the leaving group.¹²⁴¹ *N*-(2-bromophenylbenzyl)methylamino groups have been used as leaving groups for formation of a radical.¹²⁴² Alkenes also serve as radical precursors, adding to another alkene,¹²⁴³ including conjugated systems.¹²⁴⁴

Radical cyclization reaction often proceeds with high diastereoselectivity¹²⁴⁵ and high asymmetric induction when chiral precursors are used. Internal alkynes are good substrates for radical cyclization,¹²⁴⁶ but terminal alkynes tend to give mixtures of *exo/endo–dig* products (p. 305).¹²⁴⁷ *N*-Alkenyl pyridinium salts, with ortho-halogen substituents generate the aryl radical with Bu₃SnH/AIBN, which cyclizes on the pendant alkene unit.¹²⁴⁸ Cyclization of vinyl radicals¹²⁴⁹ and allenyl radicals¹²⁵⁰ are also well known. Ring expansion during radical cyclization is possible when the terminal intermediate is a cyclobutylcarbinyl radical.¹²⁵¹

Aryl radicals participate in radical cyclization reactions when the aromatic ring has an alkene or alkyne substituent. *o*-Iodo aryl allyl ethers cyclize to benzofuran derivatives, for example, when treated with AIBN, aqueous H₃PO₂ and NaHCO₃ in ethanol.¹²⁵² Cyclization of an *o*-bromo-*N*-acyl aniline (a methacrylic acid derivative) with AIBN/Bu₃SnH gave an indolone under the typical conditions used for cyclization of alkenes.¹²⁵³

Radical cyclization is compatible with the presence of other functional groups. Treatment of $XCH_2CON(R)-C(R^1)=CH_2$ derivatives (X = Cl, Br, I) with Ph₃SnH

¹²⁴⁵For a discussion of stereocontrol in radical processes, see Bouvier, J.-P.; Jung, G.; Liu, Z.; Guérin, B.; Guindon, Y. *Org. Lett.* **2001**, *3*, 1391. See Bailey, W.F.; Longstaff, S.C. *Org. Lett.* **2001**, *3*, 2217; Stalinski, K.; Curran, D.P. J. Org. Chem. **2002**, 67, 2982.

¹²⁴⁶See Sha, C.-K.; Shen, C.-Y.; Jean, T.-S.; Chiu, R.-T.; Tseng, W.-H. *Tetrahedron Lett.* **1993**, *34*, 764. ¹²⁴⁷Choi, J.-K.; Hart, D.J.; Tsai, Y.-M. *Tetrahedron Lett.* **1982**, *23*, 4765; Burnett, D.A.; Choi, J.-K.; Hart,

D.-J.; Tsai, Y.-M. J. Am. Chem. Soc. 1984 106, 8201; Hart, D.J.; Tsai, Y.-M. Ibid 1984 106, 8209; Choi, J.-K.; Hart, D.J. Tetrahedron 1985, 41, 3959; Hart, D.J.; Tsai, Y.-M. J. Am. Chem. Soc. 1982 104 1430;

Kano, S.; Yuasa, Y.; Asami, K.; Shibuya, S. *Chem. Lett.* **1986**, 735; Robertson, J.; Lam, H.W.; Abazi, S.; Roseblade, S.; Lush, R.K. *Tetrahedron* **2000**, *56*, 8959.

¹²³⁹See, for example, Ericsson, C.; Engman, L. Org. Lett. 2001, 3, 3459.

¹²⁴⁰Quirante, J.; Vila, X.; Escolano, C.; Bonjoch, J. J. Org. Chem. 2002, 67, 2323.

¹²⁴¹Crich, D.; Ranganathan, K.; Huang, X. Org. Lett. 2001, 3, 1917.

¹²⁴²Andrukiewicz, R.; Loska, R.; Prisyahnyuk, V.; Staliński, K. J. Org. Chem. 2003, 68, 1552.

¹²⁴³See Jessop, C.M.; Parsons, A.F.; Routledge, A.; Irvine, D. Tetrahedron Lett. 2003, 44, 479.

¹²⁴⁴Bebbington, D.; Bentley, J.; Nilsson, P.A.; Parsons, A.F. Tetrahedron Lett. 2000, 41, 8941; Menes-

Arzate, M.; Martínez, R.; Cruz-Almanza, R.; Muchowski, J.M.; Osornio, Y.M.; Miranda, L.D. J. Org. Chem. 2004, 69, 4001. For a review, see Zhang, W. Tetrahedron 2001, 57, 7237.

¹²⁴⁸Dobbs, A.P.; Jones, K.; Veal, K.T. Tetrahedron Lett. 1997, 38, 5383.

¹²⁴⁹Crich, D.; Hwang, J.-T.; Liu, H. *Tetrahedron Lett.* **1996**, *37*, 3105; Sha, C.-K.; Zhan, Z.-P.; Wang, F.-S. Org. Lett. **2000**, *2*, 2011.

¹²⁵⁰Wartenberg, F.-H.; Junga, H.; Blechert, S. *Tetrahedron Lett.* 1993, 34, 5251.

¹²⁵¹Zhang, W.; Dowd, P. Tetrahedron Lett. 1995, 36, 8539.

¹²⁵²Yorimitsu, H.; Shinokubo, H.; Oshima, K. Chem. Lett. 2000, 104.

¹²⁵³Jones, K.; Brunton, S.A.; Gosain, R. Tetrahedron Lett. 1999, 40, 8935.

and AIBN led to formation of a lactam via radical cyclization.¹²⁵⁴ Cyclization of *N*-iodoethyl-5-vinyl-2-pyrrolidinone led to the corresponding bicyclic lactam,¹²⁵⁵ and there are other examples of radical cyclization with molecules containing a lactam unit¹²⁵⁶ or an amide unit.¹²⁵⁷ β-Lactams can be produced by radical cyclization, using Mn(OAc)₃.¹²⁵⁸ Radical cyclization occurs with enamines as well.¹²⁵⁹ Photochemical irradiation of N,N-diallyl acrylamide leads to formation of a lactam ring, and in this case thiophenol was added to generate the phenylthio derivative.¹²⁶⁰ Phenylseleno N-allylamines lead to cyclic amines.¹²⁶¹ ω -Iodo acrylate esters cyclize to form lactones,¹²⁶² and allylic acetoxy compounds of the type C=C-C-O₂C-CH₂I cyclize in a similar manner to give lactones.¹²⁶³ Iodolactonization (p. 1154) occurs under standard radical cyclization conditions using allylic acetoxy compounds¹²⁶⁴ and HGaCl₂/BEt₃ has been used to initiate the radical process.¹²⁶⁵ α -Bromo mixed acetals give α -alkoxy tetrahydrofuran derivatives¹²⁶⁶ and α -iodoacetals cyclize to give similar products.¹²⁶⁷ The reaction of an ortho-alkynyl aryl isonitrile with AIBN and 2.2 equivalents of Bu₃SnH gave an indole via 5-exo-digcyclization.¹²⁶⁸ Indole derivatives have also been prepared from orthoiodo aniline derivatives, using AIBN and tristrimethylsilylsilane (TTMSS).¹²⁶⁹

Acyl radicals can be generated and they cyclize in the usual manner.¹²⁷⁰A polyene-cyclization reaction generated four rings, initiating the sequence by treatment

¹²⁵⁴Baker, S.R.; Parsons, A.F.; Pons, J.-F.; Wilson, M. *Tetrahedron Lett.* 1998, 39, 7197; Sato, T.; Chono, N.; Ishibashi, H.; Ikeda, M. J. Chem. Soc, Perkin Trans. 1 1995 1115; Goodall, K.; Parsons, A.F. J. Chem. Soc., Perkin Trans. 1 1994, 3257; Sato, T.; Machigashira, N.; Ishibashi, H.; Ikeda, M. Heterocycles 1992, 33 139; Bryans, J.S.; Large, J.M.; Parsons, A.F. *Tetrahedron Lett.* 1999, 40, 3487; Gilbert, B.C.; Kalz, W.; Lindsay, C.I.; McGrail, P.T.; Parsons, A.F.; Whittaker, D.T.E. J. Chem. Soc., Perkin Trans. 1 2000, 1187. For a tandem cyclization to give a tricyclic compound, see Parsons, A.F.; Williams, D.A.J. *Tetrahedron 2000*, 56, 7217; Wakabayashi, K.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2000, 73, 2377; El Bialy, S.A.A.; Ohtani, S.; Sato, T.; Ikeda, M. Heterocycles 2001, 54, 1021; Liu, L.; Wang, X.; Li, C. Org. Lett. 2003, 5, 361.

¹²⁵⁵Keusenkothen, P.F.; Smith, M.B. J. Chem. Soc., Perkin Trans. 1 1994, 2485; Keusenkothen, P.F.; Smith, M.B. Tetrahedron 1992, 48, 2977.

¹²⁵⁶Rigby, J.H.; Qabar, M.N. J. Org. Chem. 1993, 58, 4473.

¹²⁵⁷Beckwith, A.L.J.; Joseph, S.P.; Mayadunne, R.T.A. J. Org. Chem. 1993, 58, 4198.

¹²⁵⁸D'Annibale, A.; Nanni, D.; Trogolo, C.; Umani, F. Org. Lett. **2000**, 2, 401. See Lee, E.; Kim, S.K.; Kim, J.Y.; Lim, J. *Tetrahedron Lett.* **2000**, *41*, 5915.

¹²⁵⁹Glover, S.A.; Warkentin, J. J. Org. Chem. 1993, 58, 2115.

¹²⁶⁰Naito, T.; Honda, Y.; Miyata, O.; Ninomiya, I. J. Chem. Soc., Perkin Trans. 1 1995, 19.

¹²⁶¹Gupta, V.; Besev, M.; Engman, L. Tetrahedron Lett. 1998, 39, 2429.

¹²⁶²Ryu, I.; Nagahara, K.; Yamazaki, H.; Tsunoi, S.; Sonoda, N. Synlett 1994, 643.

¹²⁶³Ollivier, C.; Renaud, P. J. Am. Chem. Soc. 2000, 122, 6496.

¹²⁶⁴Ollivier, C.; Bark, T.; Renaud, P. Synthesis 2000, 1598.

¹²⁶⁵Mikami, S.; Fujita, K.; Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1853.

¹²⁶⁶Villar, F.; Equey, O.; Renaud, P. Org. Lett. 2000, 2, 1061.

¹²⁶⁷Fujioka, T.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2257.

¹²⁶⁸Rainer, J.D.; Kennedy, A.R.; Chase, E. Tetrahedron Lett. 1999, 40, 6325.

¹²⁶⁹Kizil, M.; Patro, B.; Callaghan, O.; Murphy, J.A.; Hursthouse, M.B.; Hobbs, D. J. Org. Chem. 1999, 64, 7856.

¹²⁷⁰See Jiaang, W.-T.; Lin, H.-C.; Tang, K.-H.; Chang, L.-B.; Tsai, Y.-M. J. Org. Chem. 1999, 64, 618.

of a phenylseleno ester with Bu₃SnH/AIBN to form the acyl radical, which added to the first alkene unit.¹²⁷¹ The newly formed carbon radical added to the next alkene, and so on. Acyl radicals generated from Ts(R)NCOSePh derivatives cyclize to form lactams.¹²⁷²

Radical cyclization of iodo aldehydes or ketones, at the carbon of the carbonyl, is effectively an acyl addition reaction (**16-24**, **16-25**). This cyclization is often reversible, and there are many fewer examples can addition to an alkene or alkyne. In one example, a δ -iodo aldehyde was treated with BEt₃/O₂ to initiate formation of the radical, and in the presence of Bu₃SnH cyclization gave a cyclopentanol.¹²⁷³ The reaction of an aldehyde-alkene with AIBN, 0.5 PhSiH₃ and 0.1 Bu₃SnH generated a radical from the alkene, which cyclized at the aldehyde to give cyclopentanol derivatives.¹²⁷⁴ An aldehyde-*O*-methyloxime generated a radical adjacent to nitrogen under standard conditions, which cyclized at the carbonyl to give a cyclic α -hydroxy *N*-methoxyamine.¹²⁷⁵ Alternatively an α -bromoacetal-*O*-methyl oxime cyclized at the C=NOMe unit under electrolytic conditions in the presence of cobaloxime.¹²⁷⁶

The attacking radical in radical cyclization reactions is not limited to a carbon, and a number of heterocycles can be prepared.¹²⁷⁷ Amidyl radical are known and give cyclization reactions.¹²⁷⁸ Aminyl radical cyclizations have been reported.¹²⁷⁹ *N*-Chloroamine-alkenes give an aminyl radical when treated with TiCl₃•BF₃, and cyclization give a pyrrolidine derivative with a pendant chloromethyl group.¹²⁸⁰ *N*-(S-substituted) amines give similar results using AIBN/Bu₃SnH.¹²⁸¹ Oxime–alkenes cyclize to imines when treated with PhSSPh and TEMPO (p. 274).¹²⁸² An oxygen radical can be generated under photochemical conditions, and they add to alkenes in a normal manner.¹²⁸³ Note that radical substitution occurs, and reaction of Ph₃SnH/AIBN and an *O*-amidyl compound having a phosphonate ester elsewhere in the molecule gave cyclization to a tetrahydrofuran derivative.¹²⁸⁴

- ¹²⁷²Rigby, J.H.; Danca, D.M.; Horner, J.H. *Tetrahedron Lett.* **1998**, *39*, 8413.
- ¹²⁷³Devin, P.; Fensterbank, L.; Malacria, M. Tetrahedron Lett. 1999, 40, 5511.
- ¹²⁷⁴Hays, D.S.; Fu, G.C. Tetrahedron 1999, 55, 8815.
- ¹²⁷⁵Naito, T.; Nakagawa, K.; Nakamura, T.; Kasei, A.; Ninomiya, I.; Kiguchi, T. J. Org. Chem. **1999**, 64, 2003.
- ¹²⁷⁶Inokuchi, T.; Kawafuchi, H. Synlett 2001, 421.

¹²⁷⁷See Majumdar, K.C.; Basu, P.K.; Mukhopadhyay, P.P. *Tetrahedron* **2004**, 60, 6239. For a review, see Bowman, W.R.; Cloonan, M.O.; Krintel, S.L. J. Chem. Soc., Perkin Trans. 1 **2001**, 2885.

- ¹²⁷⁸Clark, A.J.; Peacock, J.L. *Tetrahedron Lett.* **1998**, *39*, 6029. See Prabhakaran, E.N.; Nugent, B.M.; Williams, A.L.; Nailor, K.E.; Johnston, J.N. Org. Lett. **2002**, *4*, 4197.
- ¹²⁷⁹Maxwell, B.J.; Tsanaktsidis, J. J. Chem. Soc., Chem. Commun. 1994, 533.
- ¹²⁸⁰Hemmerling, M.; Sjöholm, Å,; Somfai, P. Tetrahedron Asymmetry 1999, 10, 4091.
- ¹²⁸¹Guindon, Y.; Guérin, B.; Landry, S.R. Org. Lett. 2001, 3, 2293.
- ¹²⁸²Lin, X.; Stien, D.; Weinreb, S.M. Org. Lett. 1999, 1, 637.
- ¹²⁸³Newcomb, M.; Dhanabalasingam, B. *Tetrahedron Lett.* **1994**, 35, 5193. For a review, see Hartung, J. *Eur. J. Org. Chem.* **2001**, 619.
- ¹²⁸⁴Crich, D.; Huang, X.; Newcomb, M. Org. Lett. 1999, 1, 225.

¹²⁷¹Pattenden, G.; Roberts, L.; Blake, A.J. *J. Chem. Soc., Perkin Trans. 1* **1998**, 863; Batsanov, A.; Chen, L.; Gill, G.B.; Pattenden, G. *J. Chem. Soc., Perkin Trans. 1* **1996**, 45. Also see, Pattenden, G.; Smithies, A.J.; Tapolczay, D.; Walter, D.S. *J. Chem. Soc., Perkin Trans. 1* **1996**, 7 for a related reaction that generates a bicyclic species from an initially generated alkyl radical.

15-31 Conjugate Addition With Heteroatom Nucleophiles

Other nucleophiles add to conjugated systems to give Michael-type products. Aniline derivatives add to conjugated aldehydes in the presence of a catalytic amount of DBU (p. 1132).¹²⁸⁵ Amines add to conjugated esters in the presence of InCl₃,¹²⁸⁶ Bi(NO)₃,¹²⁸⁷ Cu(OTf)₂,¹²⁸⁸ CeCl₃/NaI/SiO₂,¹²⁸⁹ La(OTf)₃,¹²⁹⁰ or Yb(OTf)₃ at 3 kbar,¹²⁹¹ for example, to give β -amino esters. Palladium catalysts have been used as well.¹²⁹² Conjugate addition of amines has also been promoted by lithium perchlorate,¹²⁹³ and by clay.¹²⁹⁴ This reaction can be initiated photochemically¹²⁹⁵ or with microwave irradiation.¹²⁹⁶ Lithium amides add to conjugated esters to give the β -amino ester.¹²⁹⁷ An intramolecular addition of an amine unit to a conjugated ketone in the presence of a palladium catalyst, or photochemically, led to cyclic amines.¹²⁹⁸ Amines add to conjugated thio-lactams.¹²⁹⁹ Chiral catalysts lead to enantioselective reactions.¹³⁰⁰ Chiral imines add in a highly stereose-lective manner.¹³⁰¹ Chiral additives, such as chiral Cinchona alkaloids¹³⁰² or chiral naphthol derivatives,¹³⁰³ have also been used. The nitrogen of carbamates add to conjugated ketones with a platinum,¹³⁰⁴ palladium,¹³⁰⁵ copper,¹³⁰⁶ or with a bis-(triflamide) catalyst.¹³⁰⁷ The amine moiety of a carbamate adds to conjugated

- ¹²⁸⁵Markó, I.E.; Chesney, A. Synlett 1992, 275.
- ¹²⁸⁶Loh, T.-P.; Wei, L.-L. Synlett 1998, 975.
- ¹²⁸⁷Srivastava, N.; Banik, B.K. J. Org. Chem. 2003, 68, 2109.
- ¹²⁸⁸Xu, L.-W.; Wei, J.-W.; Xia, C.-G.; Zhou, S.-L.; Hu, X.-X. Synlett 2003, 2425.
- ¹²⁸⁹Bartoli, G.; Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri, L.; Torregiani, E. J. Org. Chem. 2001, 66, 9052.
- ¹²⁹⁰Matsubara, S.; Yoshioka, M.; Utimoto, K. Chem. Lett. 1994, 827.
- ¹²⁹¹Jenner, G. Tetrahedron Lett. 1995, 36, 233.
- ¹²⁹²Takasu, K.; Nishida, N.; Ihara, M. Synlett 2004, 1844.
- ¹²⁹³Azizi, N.; Saidi, M.R. Tetrahedron 2004, 60, 383.
- ¹²⁹⁴Shaikh, N.S.; Deshpande, V.H.; Bedekar, A.V. Tetrahedron 2001, 57, 9045.
- ¹²⁹⁵Das, S.; Kumar, J.S.D.; Shivaramayya, K.; George, M.V. J. Chem. Soc. Perkin Trans. 1, 1995, 1797; Hoegy, S.E.: Mariano, P.S. Tetrahedron Lett. 1994, 35, 8319.
- ¹²⁹⁶Moghaddam, F.M.; Mohammadi, M.; Hosseinnia, A. Synth. Commn. 2000, 30, 643.
- ¹²⁹⁷Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.-i.; Tomioka, K. J. Am. Chem. Soc. 2003, 125, 2886.
- ¹²⁹⁸Zhang, X.; Jung, Y.S.; Mariano, P.S.; Fox, M.A.; Martin, P.S.; Merkert, J. *Tetrahedron Lett.* **1993**, 34, 5239.
- ¹²⁹⁹Sośnicki, J.G.; Jagodziński, T.S.; Liebscher, J. J. Heterocyclic Chem. 1997, 34, 643.
- ¹³⁰⁰Sugihara, H.; Daikai, K.; Jin, X.L.; Furuno, H.; Inanaga, J. Tetrahedron Lett. 2002, 43, 2735.
- ¹³⁰¹Ambroise, L.; Desmaële, D.; Mahuteau, J.; d'Angelo, J. Tetrahedron Lett. 1994, 35, 9705.
- ¹³⁰²Jew, S.-s.; Jeong, B.S.; Yoo, M.-S.; Huh, H.; Park, H.-g. Chem. Commun. 2001, 1244.
- ¹³⁰³Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 16178.
- ¹³⁰⁴Kakumoto, K.; Kobayashi, S.; Sugiura, M. Org. Lett. 2002, 4, 1319.
- ¹³⁰⁵Gaunt, M.J.; Spencer, J.B. Org. Lett. 2001, 3, 25.
- ¹³⁰⁶Wabnitz, T.C.; Spencer, J.B. Tetrahedron Lett. 2002, 43, 3891.
- ¹³⁰⁷Wabnitz, T.C.; Spencer, J.B. Org. Lett. 2003, 5, 2141.

ketones with a polymer-supported acid catalyst,¹³⁰⁸ or with BF₃•OEt₂.¹³⁰⁹ Chiral catalysts have been used for the conjugated addition of carbamates.¹³¹⁰ The reaction of ammonium formate with 1,4-diphenylbut-2-en-1,4-dione, in PEG-200 and a palladium catalyst under microwave irradiation, gave 2,5-diphenylpyrrole.¹³¹¹

Lactams have been shown to add to conjugated esters in the presence of Si(OEt)₄ and CsF.¹³¹² Phthalimide adds to alkylidene malononitriles via 1,4-addition with a palladium catalyst, and the resulting anion can be alkylated with an added allylic halide.¹³¹³ Alkylidene amido amides, C=C(NHAc)CONHR, react with secondary amines in water to give the β -amino amido amide.¹³¹⁴ Amines also add in a conjugate manner to alkynyl phosphonate esters, C=C–PO(OEt)₂, using a CuI catalyst.¹³¹⁵ Hydroxylamines add to conjugated nitro compounds to give 2-nitro hydroxylamines.¹³¹⁶ *N*,*O*-Trimethylsilyl hydroxylamines add to conjugated esters, via nitrogen, using a copper catalyst.¹³¹⁷ Trimethylsilyl azide with acetic acid reacts with conjugated ketones to give the β -azido ketone.¹³¹⁸ Sodium azide adds to conjugated ketones in aqueous acetic acid and 20% PBu₃.¹³¹⁹

Phosphines react similarly to amines under certain conditions. Conjugate addition of R₂PH and a nickel catalyst give conjugate addition to α , β -unsaturated nitriles.¹³²⁰

Alcohols add to conjugated ketones with a PMe₃ catalyst to give the β -alkoxy ketone.¹³²¹ The conjugate addition of peroxide anions (HOO⁻ and ROO⁻) to α , β -unsaturated carbonyl compounds is discussed in **15-48**.

bis(Silanes) add to alkylidene malonate derivatives in the presence of a copper catalyst to give β -silyl malonates, RCH(SiR₃)CH(CO₂Me)₂.¹³²² Alkylsilane units add using bis(trialkylsilyl)zinc reagents with a CuCN catalyst.¹³²³

Thiophenol and butyllithium (lithium phenylthiolate) adds to conjugated esters.¹³²⁴ Similar addition is observed with selenium compounds RSeLi.¹³²⁵

¹³⁰⁹Xu, L.-W.; Li, L.; Xia, C.-G.; Zhou, S.-L.; Li, J.-W.; Hu, X.-X. Synlett 2003, 2337.

¹³¹⁰Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Gómez-Bengoa, E.; García, J.M. J. Am. Chem. Soc. 2004, 126, 9188.

- ¹³¹¹Rao, H.S.P.; Jothilingam, S. *Tetrahedron Lett.* **2004**, 42, 6595.
- ¹³¹²Ahn, K.H.; Lee, S.J. Tetrahedron Lett. 1994, 35, 1875.
- ¹³¹³Aoyagi, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 2002, 67, 5977.
- ¹³¹⁴Naidu, B.N.; Sorenson, M.E.; Connolly, J.P.; Ueda, Y. J. Org. Chem. 2003, 68, 10098.
- ¹³¹⁵Panarina, A.E.; Dogadina, A.V.; Zakharov, V.I.; Ionin, B.I. Tetrahedron Lett. 2001, 42, 4365.

¹³¹⁶O'Neil, I.A.; Cleator, E.; Southern, J.M.; Bickley, J.F.; Tapolczay, D.J. *Tetrahedron Lett.* 2001, 42, 8251.

¹³¹⁷Cardillo, G.; Gentilucci, L.; Gianotti, M.; Kim, H.; Perciaccante, R.; Tolomelli, A. *Tetrahedron Asymmetry* **2001**, *12*, 2395.

- ¹³¹⁸Guerin, D.J.; Horstmann, T.E.; Miller, S.J. Org. Lett. 1999, 1, 1107.
- ¹³¹⁹Xu, L.-W.; Xia, C.-G.; Li, J.-W.; Zhou, S.-L. Synlett 2003, 2246.
- ¹³²⁰Sadow, A.D.; Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004, 126, 14704.
- ¹³²¹Stewart, I.C.; Bergman, R.G.; Toste, F.D. J. Am. Chem. Soc. 2003, 125, 8696.
- ¹³²²Clark, C.T.; Lake, J.F.; Scheidt, K.A. J. Am. Chem. Soc. 2004, 126, 84.
- ¹³²³Oestreich, M.; Weiner, B. Synlett 2004, 2139.
- ¹³²⁴Kamimura, A.; Kawahara, F.; Omata, Y.; Murakami, N.; Morita, R.; Otake, H.; Mitsudera, H.; Shirai, M.; Kakehi, A. *Tetrahedron Lett.* 2001, 42, 8497.
- ¹³²⁵Zeni, G.; Stracke, M.P.; Nogueira, C.W.; Braga, A.L.; Menezes, P.H.; Stefani, H.A. Org. Lett. 2004, 6, 1135.

¹³⁰⁸Wabnitz, T.C.; Yu, J.-Q.; Spencer, J.B. Synlett 2003, 1070.

Thiols react with conjugated amides via 1,4-addition with the addition of 10% Hf(OTf)₄ or other lanthanide triflates¹³²⁶ or to conjugated ketones in ionic solvents.¹³²⁷ Thiophenol adds in a similar manner in the presence of Na₂Ca-P₂O₇¹³²⁸ or LiAl-poly2a.¹³²⁹ Thioaryl moieties can be added in the presence of Yb¹³³⁰ or a catalytic amount of (DHQD)₂PYR (a dihydroquinidine, see **15-48**).¹³³¹ Thioalkyl units, such as BuS—, add to conjugated ketones using BuS—SnBu and In–I.¹³³² Addition of conjugated lactones is possible to produce β-arylthiolated lactones.¹³³³

 α,β -Unsaturated sulfones undergo conjugate addition of a cyano group using Et₂AlCN.¹³³⁴ Trimethylsilyl cyanide (Me₃SiCN) adds a cyano group to α,β -unsaturated amines with a specialized aluminum salen-ytterbium catalyst.¹³³⁵

15-32 Acylation of Activated Double Bonds and of Triple Bonds

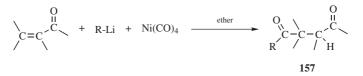
Hydro-acyl-addition

Under some conditions, acid derivatives add directly to activated double bonds. Acetic anhydride, magnesium metal, and Me₃SiCl reacts with conjugated esters to give a γ -keto ester.¹³³⁶ Similar reaction with vinyl phosphonate esters leads to a γ -keto phosphonate ester.¹³³⁷ Thioesters undergo conjugate addition to α , β -unsaturated ketones in the presence of SmI₂.¹³³⁸ Using DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) (p. 1132) and a thioimidazolium salt, acyl silanes, Ar(C=O)SiMe₃, add in a similar manner.¹³³⁹ Under microwave irradiation, aldehydes add to conjugated ketones using DBU/Al₂O₃ and a thiazolium salt.¹³⁴⁰ The conjugate addition

- ¹³²⁹Sundararajan, G.; Prabagaran, N. Org. Lett. 2001, 3, 389.
- ¹³³⁰Taniguchi, Y.; Maruo, M.; Takaki, K.; Fujiwara, Y. Tetrahedron Lett. 1994, 35, 7789.
- ¹³³¹McDaid, P.; Chen, Y.; Deng, L. Angew. Chem. Int. Ed. 2002, 41, 338.
- ¹³³²Ranu, B.C.; Mandal, T. Synlett 2004, 1239.
- ¹³³³Nishimura, K.; Tomioka, K. J. Org. Chem. 2002, 67, 431.

¹³³⁴Ruano, J.L.G.; García, M.C.; Laso, N.M.; Castro, A.M.M.; Ramos, J.H.R. Angew. Chem. Int. Ed. **2001**, 40, 2507.

¹³³⁵With high enantioselectivity, see Sammis, G.M.; Danjo, H.; Jacobsen, E.N. J. Am. Chem. Soc. 2004, 126, 9928.


- ¹³³⁶Ohno, T.; Sakai, M.; Ishino, Y.; Shibata, T.; Maekawa, H.; Nishiguchi, I. Org. Lett. 2001, 3, 3439.
- ¹³³⁷Kyoda, M.; Yokoyama, T.; Maekawa, H.; Ohno, T.; Nishiguchi, I. Synlett 2001, 1535.
- ¹³³⁸Blakskjær, P.; Høj, B.; Riber, D.; Skrydstrup, T. J. Am. Chem. Soc. 2003, 125, 4030.
- ¹³³⁹Mattson, A.E.; Bharadwaj, A.R.; Scheidt, K.A. J. Am. Chem. Soc. 2004, 126, 2314.
- ¹³⁴⁰Yadav, J.S.; Anuradha, K.; Reddy, B.V.S.; Eeshwaraiah, B. Tetrahedron Lett. 2003, 44, 8959.

¹³²⁶Kobayashi, S.;Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett 2001, 983.

¹³²⁷In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Yadav, J.S.; Reddy, B.V.S.; Baishya, G. J. Org. Chem. **2003**, 68, 7098.

¹³²⁸Zahouily, M.; Abrouki, Y.; Rayadh, A. Tetrahedron Lett. 2002, 43, 7729.

of acyl zirconium complexes in the presence of BF3 \bullet OEt₂ is catalyzed by palladium acetate.¹³⁴¹

An acyl group can be introduced into the 4 position of an α , β -unsaturated ketone by treatment with an organolithium compound and nickel carbonyl.¹³⁴² The product is a 1,4-diketone, **157**. The R group may be aryl or primary alkyl. The reaction can also be applied to alkynes (which need not be activated), in which case 2 mol add and the product is also a 1,4-diketone (e.g., R'C=CH \rightarrow RCOCHR'CH₂COR).¹³⁴³ In a different procedure, α , β -unsaturated ketones and aldehydes are acylated by treatment at -110° C with R₂(CN)CuLi₂ and CO. This method is successful for R = primary, secondary, and tertiary alkyl.¹³⁴⁴ For secondary and tertiary groups, R(CN)CuLi (which does not waste an R group) can be used instead.¹³⁴⁵

Another method involves treatment with an aldehyde and cyanide ion (see **16-52**) in a polar aprotic solvent (e.g., DMF or DMSO).¹³⁴⁶

This method has been applied to α,β -unsaturated ketones, esters, and nitriles to give the corresponding 1,4-diketones, γ -keto esters, and γ -keto nitriles, respectively (see also, **16-55**). The ion **158** is a synthon for the unavailable R^{\ominus} C=O anion (see also, p. 634); it is a masked R^{\ominus} C=O anion. Other masked carbanions that have been used in this reaction are the RC^{\ominus}(CN) NR ion,¹³⁴⁷ the EtSC^{\ominus} RSOEt ion¹³⁴⁸ (see p. 634), the CH₂=C^{\ominus} OEt ion,¹³⁴⁹ CH₂=C(OEt)Cu₂Li,¹³⁵⁰ CH₂=CMe(SiMe₃),⁷⁵⁰

¹³⁴¹Hanzawa, Y.; Tabuchi, N.; Narita, K.; Kakuuchi, A.; Yabe, M.; Taguchi, T. *Tetrahedron* 2002, 58, 7559.

¹³⁴²Corey, E.J.; Hegedus, L.S. J. Am. Chem. Soc. 1969, 91, 4926.

¹³⁴³Sawa, Y.; Hashimoto, I.; Ryang, M.; Tsutsumi, S. J. Org. Chem. 1968, 33, 2159.

¹³⁴⁴Seyferth, D.; Hui, R.C. J. Am. Chem. Soc. **1985**, 107, 4551. See also, Lipshutz, B.H.; Elworthy, T.R. Tetrahedron Lett. **1990**, 31, 477.

¹³⁴⁵Seyferth, D.; Hui, R.C. Tetrahedron Lett. 1986, 27, 1473.

¹³⁴⁶For reviews, see Stetter, H.; Kuhlmann, H. Org. React. **1991**, 40, 407–496; Stetter, H. Angew. Chem. Int. Ed. **1976**, 15, 639. For a similar method involving thiazolium salts, see Stetter, H.; Skobel, H. Chem. Ber. **1987**, 120, 643; Stetter, H.; Kuhlmann, H.; Haese, W. Org. Synth., 65, 26.

¹³⁴⁷Enders, D.; Gerdes, P.; Kipphardt, H. Angew. Chem. Int. Ed. 1990, 29, 179.

¹³⁴⁸Herrmann, J.L.; Richman, J.E.; Schlessinger, R.H. Tetrahedron Lett. 1973, 3271, 3275.

¹³⁴⁹Beockman Jr., R.K.; Bruza, K.J.; Baldwin, J.E.; Lever Jr., O.W. J. Chem. Soc., Chem. Commun. 1975, 519.

¹³⁵⁰Boeckman Jr., R.K ; Bruza, K.J. J. Org. Chem. 1979, 44, 4781.

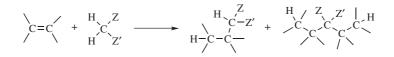
and the RC^{\ominus}(OCHMeOEt) CN ion¹³⁵¹ (see p. 640). In the last case, best results are obtained when R is a vinylic group. Anions of 1,3-dithianes (**10-71**) do not give 1,4-addition to these substrates (except in the presence of HMPA, see **15-25**), but add 1,2 to the C=O group instead (**16-38**).

In another procedure, acyl radicals derived from phenyl selenoesters ArCOSePh (by treatment of them with Bu₃SnH) add to α , β -unsaturated esters and nitriles to give γ -keto esters and γ -keto nitriles, respectively.¹³⁵²

OS VI, 866; VIII, 620.

15-33 Addition of Alcohols, Amines, Carboxylic Esters, Aldehydes, and so on.

Hydro-acyl-addition, and so on.


Formates, primary, and secondary alcohols, amines, ethers, alkyl halides, compounds of the type Z–CH₂– Z', and a few other compounds add to double bonds in the presence of free-radical initiators.¹³⁵³ This is formally the addition of RH to a double bond, but the "R" is not just any carbon but one connected to an oxygen or a nitrogen, a halogen, or to two Z groups (defined as on p. 1007). Formates and formamides¹³⁵⁴ add similarly:

Alcohols, ethers, amines, and alkyl halides add as follows (shown for alcohols):

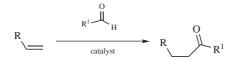
ZCH₂Z' compounds react at the carbon bearing the active hydrogen:¹³⁵⁵

¹³⁵¹Stork, G.; Maldonado, L. J. Am. Chem. Soc. 1974, 96, 5272.

¹³⁵²Boger, D.L.; Mathvink, R.J. J. Org. Chem. 1989, 54, 1777.

¹³⁵³For reviews, see Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon, Elmsford, NY, **1986**, pp. 69–77; Vogel, H. Synthesis **1970**, 99; Huyser, E.S. Free-Radical Chain Reactions, Wiley, NY, **1970**, pp. 152–159; Elad, D. Fortschr. Chem. Forsch. **1967**, 7, 528. Hyponitrites have been used to initiate this reaction; see Dang, H.-S.; Roberts, B.P. Chem. Commun. **1996**, 2201.

¹³⁵⁴Elad, D. Fortschr. Chem. Forsch. 1967, 7, 528, see pp. 530–543.


¹³⁵⁵For example, see Cadogan, J.I.G.; Hey, D.H.; Sharp, J.T. J. Chem. Soc. C 1966, 1743; J. Chem. Soc. B 1967, 803; Hájek, M.; Málek, J. Coll. Czech. Chem. Commun. 1979, 44, 3695. Similar additions have been successfully carried out with carboxylic acids, anhydrides, $^{1356}_{1357}$ acyl halides, carboxylic esters, nitriles, and other types of compounds. 1357

Similar reactions have been carried out on acetylene.¹³⁵⁸ In an interesting variation, thiocarbonates add to alkynes in the presence of a palladium catalyst to give a β -phenylthio α , β -unsaturated ester.¹³⁵⁹ Aldehydes add to alkynes in the presence of a rhodium catalyst to give conjugated ketones.¹³⁶⁰ In a cyclic version of the addition of aldehydes, 4-pentenal was converted to cyclopentanone with a rhodium–complex catalyst.¹³⁶¹ An intramolecular acyl addition to an alkyne was reported using silyl ketones, acetic aid and a rhodium catalyst.¹³⁶² In the presence of a palladium catalyst, a tosylamide group added to an alkene unit to generate *N*-tosylpyrrolidine derivatives.¹³⁶³

OS IV, 430; V, 93; VI, 587, 615.

15-34 Addition of Aldehydes

Alkyl-carbonyl-addition

In the presence of metal catalysts, such as rhodium compounds¹³⁶⁴ or Yb(OTf)₃,¹³⁶⁵ aldehydes can add directly to alkenes to form ketones. The reaction of ω -alkenyl aldehydes with rhodium catalyst leads to cyclic ketones,¹³⁶⁶ with high enantioselectivity if chiral ligands are employed. Aldehydes also add to vinyl esters in the presence of hyponitrites and thioglycolates.¹³⁶⁷ The addition of aldehydes to activated double bonds, mediated by a catalytic amount of thiazolium salt in the presence of a

¹³⁶⁰Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564.

¹³⁵⁶ de Klein, W.J. Recl. Trav. Chim. Pays-Bas 1975, 94, 48.

¹³⁵⁷Allen, J.C.; Cadogan, J.I.G.; Hey, D.H. J. Chem. Soc. 1965, 1918; Cadogan, J.I.G. Pure Appl. Chem. 1967, 15, 153, pp. 153–158. See also, Giese, B.; Zwick, W. Chem. Ber. 1982, 115, 2526; Giese, B.; Erfort, U. Chem. Ber. 1983, 116, 1240.

¹³⁵⁸For example, see Cywinski, N.F.; Hepp, H.J. J. Org. Chem. **1965**, 31, 3814; DiPietro, J.; Roberts, W.J. Angew. Chem. Int. Ed. **1966**, 5, 415.

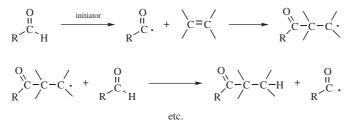
¹³⁵⁹Hua, R.; Takeda, H.; Onozawa, S.-y.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899.

¹³⁶¹Fairlie, D.P.; Bosnich, B. *Organometallics* **1988**, 7, 936, 946. Also see, Barnhart, R.W.; Wang, X.; Noheda, P.; Bergens, S.H.; Whelan, J.; Bosnich, B. *J. Am. Chem. Soc.* **1994**, *116*, 1821 for an enantioselective version of this cyclization.

¹³⁶²Yamane, M.; Amemiya, T.; Narasaka, K. Chem. Lett. 2001, 1210.

¹³⁶³Larock, R.C.; Hightower, T.R.; Hasvold, L.A.; Peterson, K.P. J. Org. Chem. 1996, 61, 3584.

¹³⁶⁴Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200.


¹³⁶⁵Curini, M.; Epifano, F.; Maltese, F.; Rosati, O. Synlett 2003, 552.

¹³⁶⁶Barnhart, R.W.; McMorran, D.A.; Bosnich, B. Chem. Commun. 1997, 589.

¹³⁶⁷Dang, H.-S.; Roberts, B.P. J. Chem. Soc, Perkin Trans. 1, 1998, 67.

weak base, is called the *Stetter reaction*,¹³⁶⁸ An internal addition of an alkynyl aldehyde, catalyzed by a rhodium complex, led to a cyclopentenone derivative.¹³⁶⁹ A similar carbonyl addition with benzaldehyde derivatives having an ortho-allylic ether led to a benzopyranone when treated with potassium hexamethyldisilazide.¹³⁷⁰

These reactions are not successful when the alkene contains electron-withdrawing groups, such as halo or carbonyl groups. A free-radical initiator is required, ¹³⁷¹ usually peroxides or UV light. The mechanism is illustrated for aldehydes but is similar for the other compounds:

Polymers are often side products. Photochemical addition of aldehyde to conjugated C=C units can be efficient when a triplet sensitizer (p. 340), such as benzophenone is used.¹³⁷²

A variation that is more of an acyl addition (16-25) involves the reaction of an allylic alcohol with benzaldehyde. With a ruthenium catalyst and in an ionic liquid, the C=C unit reacts with the aldehyde, with concomitant oxidation of the allylic alcohol unit, to give a β -hydroxy ketone, PhCHO+C=C-CH(OH)R \rightarrow PhCH(OH)-CH(Me)COR.¹³⁷³ In another variation, formate esters add to alkenes using a ruthenium catalyst to give an alkyl ester via a formylation process.¹³⁷⁴

15-35 Hydrocarboxylation

Hydro-carboxy-addition

$$C=C' + CO + H_2O \xrightarrow{H^+} H^-C-C-COOH$$

¹³⁶⁸Stetter, H.; Schreckenberg, M. Angew. Chem., Int. Ed 1973, 12, 81; Stetter, H.; Kuhlmann, H. Angew. Chem., Int. Ed. 1974, 13, 539; Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639; Stetter, H.; Haese, W. Chem. Ber. 1984, 117, 682; Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407; Enders, D.; Breuer, K.; Runsink, J.; Teles, J.H. Helv. Chim. Acta 1996, 79, 1899; Kerr, M.S.; Rovis, T. Synlett 2003, 1934; Kerr, M.S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876; Pesch, J.; Harms, K.; Bach, T. Eur. J. Org. Chem. 2004, 2025; Mennen, S.; Blank, J.; Tran-Dube, M.B.; Imbriglio, J.E.; Miller, S.J. Chem. Commun. 2005, 195. For examples of the Stetter reaction with acyl silanes, see Mattson, A.E.; Bharadwaj, A.R.; Scheidt, K.A. J. Am. Chem. Soc. 2004, 126, 2314.

¹³⁶⁹Tanaka, K.; Fu, G.C. J. Am. Chem. Soc. 2002, 124, 10296.

¹³⁷⁰Kerr, M.S.; de Alaniz, J.R.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298.

¹³⁷¹See Lee, E.; Tae, J.S.; Chong, Y.H.; Park, Y.C.; Yun, M.; Kim, S. *Tetrahedron Lett.* **1994**, 35, 129 for an example.

¹³⁷²Kraus, G.A.; Liu, P. Tetrahedron Lett. 1994, 35, 7723.

¹³⁷³In bmim PF₆, 3-butyl-1-methylimidazolium hexafluorophosphate: Yang, X.-F.; Wang, M.; Varma, R.S.; Li, C.-J. Org. Lett. **2003**, 5, 657.

¹³⁷⁴Na, Y.; Ko, S.; Hwang, L.K.; Chang, S. Tetrahedron Lett. 2003, 44, 4475.

The acid-catalyzed hydrocarboxylation of alkenes (the Koch reaction) can be performed in a number of ways.¹³⁷⁵ In one method, the alkene is treated with carbon monoxide and water at 100-350°C and 500-1000-atm pressure with a mineral acid catalyst. However, the reaction can also be performed under milder conditions. If the alkene is first treated with CO and catalyst and then water added, the reaction can be accomplished at $0-50^{\circ}$ C and 1-100 atm. If formic acid is used as the source of both the CO and the water, the reaction can be carried out at room temperature and atmospheric pressure.¹³⁷⁶ The formic acid procedure is called the Koch-Haaf reaction (the Koch-Haaf reaction can also be applied to alcohols, see **10-77**). Nearly all alkenes can be hydrocarboxylated by one or more of these procedures. However, conjugated dienes are polymerized instead. Hydrocarboxylation can also be accomplished under mild conditions (160°C and 50 atm) by the use of nickel carbonyl as catalyst. Acid catalysts are used along with the nickel carbonyl, but basic catalysts can also be employed.¹³⁷⁷ Other metallic salts and complexes can be used, sometimes with variations in the reaction procedure, including palladium,¹³⁷⁸ platinum,¹³⁷⁹ and rhodium¹³⁸⁰ catalysts. The Ni(CO)₄-catalyzed oxidative carbonylation with CO and water as a nucleophile is often called *Reppe carbonylation*.¹³⁸¹ The toxic nature of nickel

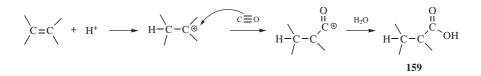
¹³⁷⁶Haaf, W. Chem. Ber. 1966, 99, 1149; Christol, H.; Solladié, G. Bull. Soc. Chim. Fr. 1966, 1307.

¹³⁷⁷Sternberg, H.W.; Markby, R.; Wender, P. J. Am. Chem. Soc. 1960, 82, 3638.

¹³⁷⁸For reviews, see Heck, R.F. *Palladium Reagents in Organic Synthesis*, Academic Press, NY, **1985**, pp. 381–395; Bittler, K.; Kutepow, N.V.; Neubauer, D.; Reis, H. *Angew. Chem. Int. Ed.* **1968**, *7*, 329. For a review with respect to fluoroalkenes, see Ojima, I. *Chem. Rev.* **1988**, *88*, 1011, p. 1016. Seayad, A.; Jayasree, S.; Chaudhari, R.V. Org. Lett. **1999**, *1*, 459; Mukhopadhyay, K.; Sarkar, B.R.; Chaudhari, R.V. J. Am. Chem. Soc. **2002**, *124*, 9692. See also, the references cited in these latter articles.

¹³⁷⁹Xu, Q.; Fujiwara, M.; Tanaka, M.; Souma, Y. J. Org. Chem. 2000, 65, 8105.

¹³⁸⁰Xu, Q.; Nakatani, H.; Souma, Y. J. Org. Chem. 2000, 65, 1540.

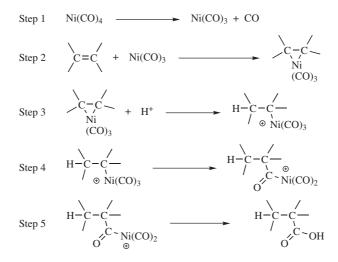

¹³⁷⁵For reviews of hydrocarboxylation of double and triple bonds catalyzed by acids or metallic compounds, see Lapidus, A.L.; Pirozhkov, S.D. *Russ. Chem. Rev.* **1989**, 58, 117; Anderson, G.K.; Davies, J.A., in Hartley, F.R.; Patai, S. *The Chemistry of the Metal-Carbon Bond*, Vol. 3, Wiley, NY, **1985**, pp. 335–359, 335–348; in Falbe, J. *New Syntheses with Carbon Monoxide*, Springer, NY, **1980**, the articles by Mullen, A. pp. 243–308; and Bahrmann, H. pp. 372–413; in Wender, I.; Pino, P. *Organic Syntheses via Metal Carbonyls*, Vol. 2, Wiley, NY, **1977**, the articles by Pino, P.; Piacenti, F.; Bianchi, M. pp. 233–296; and Pino, P.; Braca, G. pp. 419–516; Eidus, Ya.T.; Lapidus, A.L.; Puzitskii, K.V.; Nefedov, B.K. *Russ. Chem. Rev.* **1973**, 42, 199; *Russ. Chem. Rev.* **1971**, 40, 429; Falbe, J. *Carbon Monoxide in Organic Synthesis*, Springer, Berlin, **1970**, pp. 78–174.

¹³⁸¹Tsuji, J. Palladium Reagents and Catalysts, Wiley, NY, **1999**; Hohn, A., in Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, NY, **1996**, p. 137; Beller, M.; Tafesh, A.M., in Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, NY, **1996**, p. 187; Drent, E.; Jager, W.W.; Keijsper, J.J.; Niele, F.G.M., in Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, NY, **1996**, p. 187; Drent, E.; Jager, W.W.; Keijsper, J.J.; Niele, F.G.M., in Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, NY, **1996**, p. 1119.; Parshall, G.W.; Ittel, S.D. Homogeneous Catalysis, 2nd ed., Wiley, NY, **1992**; Mullen, A. in New Syntheses with Carbon Monoxide, Springer-Verlag, NY, **1980**; Bertoux, F.; Monflier, E.; Castanet, Y.; Mortreux, A. J. Mol. Catal. A: Chem. **1999**, 143, 11; Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J. Mol. Catal. A: Chem. **1999**, 143, 11; Chiusoli, G. P. Transition Met. Chem. **1991**, 16, 553; Roeper, M. Stud. Surf. Sci. Catal. **1991**, 64, 381; Milstein, D. Acc. Chem. Res. **1988**, 21, 428; Escaffre, P.; Thorez, A.; Kalck, P. J. Mol. Catal. **1985**, 33, 87; Cassar, L.; Chiusoli, G. P.; Guerrieri, F. Synthesis **1973**, 509; Tsuji, J. Acc. Chem. Res. **1969**, 2, 144; Bird, C. W. Chem. Rev. **1962**, 62, 283.

tetracarbonyl has led to development of other catalysts, including Co, Rh, Ir, Pd, and Pt, and Mo compounds.¹³⁸² This reaction converts alkenes, alkynes and dienes and is tolerant of a wide variety of functional groups. When the additive is alcohol or acid, saturated or unsaturated acids, esters, or anhydrides are produced (see **15-36**). The transition-metal-catalyzed carbonylation has been done enantioselectively, with moderate-to-high optical yields, by the use of an optically active palladium complex catalyst.¹³⁸³ Dienes react with Cp₂TiCl₂/RMgCl and then with Me₂NCOCl to give amides.¹³⁸⁴ In the presence of formic acid, CO, and palladium acids can similarly be formed.¹³⁸⁵ Alkenes also react with Fe(CO)₅ and CO to give carboxylic acids.¹³⁸⁶ Electrochemical carboxylation procedures have been developed, including the conversion of alkenes to 1,4-butane-dicarboxylic acids.¹³⁸⁷

When applied to triple bonds, hydrocarboxylation gives α,β -unsaturated acids under very mild conditions. Triple bonds give unsaturated acids and saturated dicarboxylic acids when treated with carbon dioxide and an electrically reduced nickel complex catalyst.¹³⁸⁸ Alkynes also react with NaHFe(CO)₄, followed by CuCl₂•2 H₂O, to give alkenyl acid derivatives.¹³⁸⁹ A related reaction with CO and palladium catalysts in the presence of SnCl₂ also leads to conjugated acid derivatives.¹³⁹⁰ Terminal alkynes react with CO₂ and Ni(cod)₂, and subsequent treatment with DBU (p. 1132) gives the α,β -unsaturated carboxylic acid.¹³⁹¹

When acid catalysts are employed, in the absence of nickel carbonyl, the mechanism¹³⁹² involves initial attack by a proton, followed by attack of the resulting carbocation on carbon monoxide to give an acyl cation, which, with water, gives the product, **159**. Markovnikov's rule is followed, and carbon skeleton rearrangements and double-bond isomerizations (prior to attack by CO) are frequent.

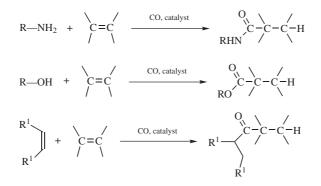


¹³⁸²For a review, see Kiss, G. Chem. Rev. 2001, 101, 3435.

¹³⁸³Alper, H.; Hamel, N. J. Am. Chem. Soc. 1990, 112, 2803.

- ¹³⁸⁴Szymoniak, J.; Felix, D.; Moïse, C. Tetrahedron Lett. 1996, 37, 33.
- ¹³⁸⁵Vasapollo, G.; Somasunderam, A.; El Ali, B.; Alper, H. *Tetrahedron Lett.* **1994**, *35*, 6203. See El Ali, B.; Vasapollo, G.; Alper, H. *J. Org. Chem.* **1993**, *58*, 4739 and El Ali, B.; Alper, H. *J. Org. Chem.* **1993**, *58*, 3595 for the same reaction with alkenes.
- ¹³⁸⁶Brunet, J.-J.; Neibecker, D.; Srivastava, R.S. Tetrahedron Lett. 1993, 34, 2759.
- ¹³⁸⁷Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M. Synlett 2001, 418.
- ¹³⁸⁸Duñach, E.; Dérien, S.; Périchon, J. J. Organomet. Chem. 1989, 364, C33.
- ¹³⁸⁹Periasamy, M.; Radhakrishnan, U.; Rameshkumar, C.; Brunet, J.-J. Tetrahedron Lett. 1997, 38, 1623.
- ¹³⁹⁰Takeuchi, R.; Sugiura, M. J. Chem. Soc. Perkin Trans. 1, 1993, 1031.
- ¹³⁹¹Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. *J. Org. Chem.* **1999**, *64*, 3975. See also, Takimoto, M.; Shimizu, K.; Mori, M. *Org. Lett.* **2001**, *3*, 3345.
- ¹³⁹²For a review, see Hogeveen, H. Adv. Phys. Org. Chem. 1973, 10, 29.

For the transition metal catalyzed reactions, the nickel carbonyl reaction has been well studied and the addition is syn for both alkenes and alkynes.¹³⁹³ The following is the accepted mechanism:⁷⁸⁵



Step 3 is an electrophilic substitution. The principal step of the mechanism, step 4, is a rearrangement.

An indirect method for hydrocarboxylation involves the reaction of an alkene with a borate, $(RO)_2BH$ and a rhodium catalysts. Subsequent reaction with LiCHCl₂ and then NaClO₂ gives the Markovnikov carboxylic acid (RC=C \rightarrow RC(COOH)CH₃.¹³⁹⁴ When a chiral ligand is used, the reaction proceeds with good enantioselectivity.

15-36 Carbonylation, Alkoxycarbonylation and Aminocarbonylation of Double and Triple Bonds

Alkyl, Alkoxy or Amino-carbonyl-addition

¹³⁹³Bird, C.W.; Cookson, R.C.; Hudec, J.; Williams, R.O. J. Chem. Soc. 1963, 410.
 ¹³⁹⁴Chen, A.; Ren, L.; Crudden, C.M. J. Org. Chem. 1999, 64, 9704.

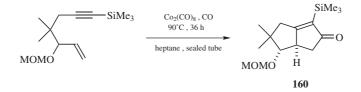
1140 ADDITION TO CARBON–CARBON MULTIPLE BONDS

In the presence of certain metal catalysts, alkenes and alkynes can be carbonylated or converted to amides or esters.¹³⁹⁵ There are several variations. The reaction of an alkyl iodide and a conjugated ester with CO, (Me₃Si)₃SiH and AIBN (p. 935) in supercritical CO₂ (p. 414) gave a γ -keto ester.¹³⁹⁶ Terminal alkynes react with CO and methanol, and in the presence of CuCl₂ and PdCl₂ the product is a β -chloro- α - β -unsaturated methyl ester.¹³⁹⁷ Conjugated dienes react with thiophenol, CO and palladium(II) acetate to give the β , γ -unsaturated thioester.¹³⁹⁸ Allene reacts with CO, methanol and a ruthenium catalyst go give methacrylic acid.¹³⁹⁹ 5-Iodo-1-pentene reacted with 40 atm of CO in butanol to give a cyclopentanone with a pendant ester (-CH₂CO₂Bu).¹⁴⁰⁰ Alkynes react with thiophenol and CO with a palladium¹⁴⁰¹ or platinum¹⁴⁰² catalyst to give a conjugated thioester. Terminal alkynes react with CO and methanol, using a combination of a palladium (II) halide and a copper (II) halide, to give a conjugated diester, $MeO_2C-C=C-CO_2Me$.¹⁴⁰³ A similar reaction with alkenes using a combination of a palladium and a molybdenum catalyst led to a saturated diester, MeO₂C-C-C-CO₂Me.¹⁴⁰⁴ Alkenes were converted to the dimethyl ester of 1,4-butanedioic acid derivatives with CO/O₂ and a combination of PdCl₂ and CuCl catalysts.¹⁴⁰⁵ Note that alkenes are converted to primarily the anti-Markovnikov ester upon treatment with arylmethyl formate esters (ArCH₂OCHO) and a ruthenium catalyst.¹⁴⁰⁶

A bicyclic ketone was generated when 1,2-diphenylethyne was heated with CO, methanol and a dirhodium catalyst.¹⁴⁰⁷ 2-Iodostyrene reacted at 100°C with CO and a palladium catalyst to give the bicyclic ketone 1-indanone.¹⁴⁰⁸ Another variation reacted a conjugated allene–alkene with 5 atm of CO and a rhodium catalyst to give a bicyclic ketone.¹⁴⁰⁹ An intermolecular version of this reaction is known

- ¹³⁹⁶Kishimoto, Y.; Ikariya, T. J. Org. Chem. 2000, 65, 7656.
- ¹³⁹⁷Li, J.; Jiang, H.; Feng, A.; Jia, L. J. Org. Chem. **1999**, 64, 5984. See also, Clarke, M.L. Tetrahedron Lett. **2004**, 45, 4043.
- ¹³⁹⁸Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138; Xiao, W.-J.; Alper, H. J. Org. Chem. 2001, 66, 6229.
- ¹³⁹⁹Zhou, D.-Y.; Yoneda, E.; Onitsuka, K.; Takahashi, S. Chem. Commun. 2002, 2868.
- ¹⁴⁰⁰Ryu, I.; Kreimerman, S.; Araki, S. Nishitani, S.; Oderaotosi, Y.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 2002, 124, 3812.
- ¹⁴⁰¹Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1999, 64, 2080.
- ¹⁴⁰²Kawakami, J.-i.; Mihara, M.; Kamiya, I.; Takeba, M.; Ogawa, A.; Sonoda, N. *Tetrahedron* 2003, 59, 3521.
- ¹⁴⁰³Li, J.; Jiang, H.; Jia, L. Synth. Commun. **1999**, 29, 3733; Li, J.; Jiang, H.; Chen, M. Synth. Commun. **2001**, *31*, 3131. For the identical reaction using only a palladium catalyst, see El Ali, B.; Tijani, J.; El-Ghanam, A.; Fettouhi, M. Tetrahedron Lett. **2001**, *42*, 1567.
- ¹⁴⁰⁴Yokota, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2002, 67, 5005.
- ¹⁴⁰⁵Dai, M.; Wang, C.; Dong, G.; Xiang, J.; Luo, J.; Liang, B.; Chen, J.; Yang, Z. *Eur. J. Org. Chem.* 2003, 4346.

¹⁴⁰⁹Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 4130.


¹³⁹⁵For a review of carbometallation of alkenes and alkynes containing adjacent heteroatoms, see Fallis, A.G.; Forgione, P. *Tetrahedron* **2001**, *57*, 5899.

¹⁴⁰⁶Ko, S.; Na, Y.; Chang, S. J. Am. Chem. Soc. 2002, 124, 750.

 ¹⁴⁰⁷Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. *Tetrahedron Lett.* **1999**, 40, 7811.
 ¹⁴⁰⁸Gagnier, S.V.; Larock, R.C. J. Am. Chem. Soc. **2003**, 125, 4804.

using a cobalt catalyst, giving a cyclopentenone¹⁴¹⁰ in a reaction related to the Pauson–Khand reaction (see below). The reaction of a conjugated diene having a distal alkene unit and CO with a rhodium catalyst led to a bicyclic conjugated ketone.¹⁴¹¹ When a Stille coupling (**12-15**) is done in a CO atmosphere, conjugated ketones of the type C=C–CO–C=C are formed,¹⁴¹² suitable for a Nazarov cyclization (**15-20**). Alkynes were converted to cyclobutenones using Fe₃(CO)₁₂ to form the initial complex, followed by reaction with copper(II) chloride.¹⁴¹³ An interesting variation treated cyclohexene with 5 equivalents of Oxone[®] and a RuCl₃ catalyst to give 2-hydroxycyclohexanone.¹⁴¹⁴

The reaction of dienes, diynes, or en-ynes with transition metals¹⁴¹⁵ (usually cobalt)¹⁴¹⁶ forms organometallic coordination complexes. In the presence of carbon monoxide, the metal complexes derived primarily from enynes (alkene– alkynes) form cyclopentenone derivatives in what is known as the *Pauson–Khand reaction*.¹⁴¹⁷ The reaction involves (*1*) formation of a hexacarbonyldicobalt–alkyne complex and (2) decomposition of the complex in the presence of an alkene.¹⁴¹⁸ A typical example is formation of **160**.¹⁴¹⁹ Cyclopentenones can be prepared by an intermolecular reaction of a vinyl silane and an alkyne using CO and a ruthenium catalyst.¹⁴²⁰ Carbonylation of an alkene–diene using a rhodium catalyst leads to cyclization to an α -vinyl cyclopentanone.¹⁴²¹ An yne–diene can also be used for the Pauson–Khand reaction.¹⁴²²

¹⁴¹⁰Jeong, N.; Hwang, S.H. Angew. Chem. Int. Ed. 2000, 39, 636.

¹⁴¹¹Lee, S.I.; Park, J.H.; Chung, Y.K.; Lee, S.-G. J. Am. Chem. Soc. 2004, 126, 2714.

¹⁴¹²Mazzola Jr., R.D.; Giese, S.; Benson, C.L.; West, F.G. J. Org. Chem. 2004, 69, 220.

¹⁴¹³Rameshkumar, C.; Periasamy, M. Tetrahedron Lett. 2000, 41, 2719.

¹⁴¹⁴Plietker, B. J. Org. Chem. 2004, 69, 8287.

¹⁴¹⁵For a discussion of catalytic precursors, see Krafft, M.E.; Hirosawa, C.; Bonaga, L.V.R. *Tetrahedron Lett.* **1999**, *40*, 9177.

¹⁴¹⁶For development of practical cobalt catalysts, see Krafft, M.E.; Boñaga, L.V.R.; Hirosawa, c. J. Org. Chem. 2001, 66, 3004.

¹⁴¹⁷Khand, I.U.; Knox, G.R.; Pauson, P.L.; Watts, W.E.; Foreman, M.I. J. Chem. Soc. Perkin Trans. 1, 1973, 977; Khand, I.U.; Pauson, P.L.; Habib, M.J. J. Chem. Res. (S) 1978, 348; Khand, I.U; Pauson, P.L. J. Chem. Soc. Perkin Trans. 1, 1976, 30. Gibson, S.E.; Stevenazzi, A. Angew. Chem. Int. Ed. 2003, 42, 1800.

¹⁴¹⁸For a discussion of the reactivity of alkenes, see de Bruin, T.J.M.; Milet, A.; Greene, A.E.; Gimbert, Y. *J. Org. Chem.* **2004**, 69, 1075. See also, Rivero, M.R.; Adrio, J.; Carretero, J.C. *Eur. J. Org. Chem.* **2002**, 2881.

¹⁴¹⁹Magnus, P.; Principe, L.M. Tetrahedron Lett. 1985, 26, 4851.

¹⁴²⁰Itami, K.; Mitsudo, K.; Fujita, K.; Ohashi, Y.; Yoshida, J.-i. J. Am. Chem. Soc. 2004, 126, 11058.

¹⁴²¹Wender, P.A.; Croatt, M.P.; Deschamps, N.M. J. Am. Chem. Soc. 2004, 126, 5948.

¹⁴²²Wender, P.A; Deschamps, N.M.; Gamber, G.G. Angew. Chem. Int. Ed. 2003, 42, 1853.

Rhodium,¹⁴²³ titanium,¹⁴²⁴ and tungsten¹⁴²⁵ complexes have also been used for this reaction. The reaction can be promoted photochemically¹⁴²⁶ and the rate is enhanced by the presence of primary amines.¹⁴²⁷ Coordinating ligands also accelerate the reaction,¹⁴²⁸ polymer-supported promoters have been developed¹⁴²⁹ and there are many possible variations in reaction conditions.¹⁴³⁰ The Pauson–Khand reaction has been done under heterogeneous reaction conditions,¹⁴³¹ and with cobalt nanoparticles.¹⁴³² A dendritic cobalt catalyst has been used.¹⁴³³ Ultrasound promoted¹⁴³⁴ and microwave promoted¹⁴³⁵ reactions have been developed. Polycyclic compounds (tricyclic and higher) are prepared in a relatively straightforward manner using this reaction.¹⁴³⁶ Asymmetric Pauson–Khand reactions are known.¹⁴³⁷

The Pauson–Khand reaction is compatible with other groups or heteroatoms elsewhere in the molecule. These include ethers and aryl halides,¹⁴³⁸ esters,¹⁴³⁹

¹⁴²⁵Hoye, T.R.; Suriano, J.A. J. Am. Chem. Soc. 1993, 115, 1154.

¹⁴²⁶Pagenkopf, B.L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285.

¹⁴²⁷Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C. Angew. Chem. Int. Ed. 1997, 36, 2801.
 ¹⁴²⁸Krafft, M.E.; Scott, I.L.; Romero, R.H. Tetrahedron Lett. 1992, 33, 3829.

¹⁴²⁹Kerr, W.J.; Lindsay, D.M.; McLaughlin, M.; Pauson, P.L. *Chem. Commun.* **2000**, 1467; Brown, D.S.; Campbell, E. Kerr, W.J.; Lindsay, D.M.; Morrison, A.J.; Pike, K.G.; Watson, S.P. *Synlett* **2000**, 1573.

¹⁴³⁰Krafft, M.E.; Boñaga, L.V.R.; Wright, J.A.; Hirosawa, C. J. Org. Chem. 2002, 67, 1233; Blanco-Urgoiti, J.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2002, 43, 5763. The reaction has been done in aqueous media: Krafft, M.E.; Wright, J.A.; Boñaga, L.V.R. Tetrahedron Lett. 2003, 44, 3417.

¹⁴³¹Kim, S.-W.; Son, S.U.; Lee, S.I.; Hyeon, T.; Chung, Y.K. J. Am. Chem. Soc. 2000, 122, 1550.

¹⁴³²Kim, S.-W.; Son, S.U.; Lee, S.S.; Hyeon, T.; Chung, Y.K. Chem. Commun. 2001, 2212; Son, S.U.; Lee,

S.I.; Chung, Y.K.; Kim, S.-W.; Hyeon, T. Org. Lett. 2002, 4, 277.

¹⁴³³Dahan, A.; Portnoy, M. Chem. Commun. 2002, 2700.

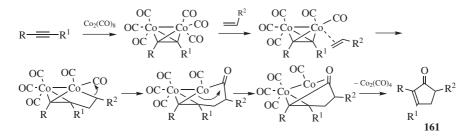
¹⁴³⁴Ford, J.G.; Kerr, W.J.; Kirk, G.G.; Lindsay, D.M.; Middlemiss, D. Synlett 2000, 1415.

¹⁴³⁵Iqbal, M.; Vyse, N.; Dauvergne, J.; Evans, P. Tetrahedron Lett. 2002, 43, 7859.

¹⁴³⁶Ishizaki, M.; Iwahara, K.; Niimi, Y.; Satoh, H.; Hoshino, O. *Tetrahedron* 2001, *57*, 2729; Son, S.U.;
 Chung, Y.K.; Lee, S.-G. *J. Org. Chem.* 2000, *65*, 6142; Son, S.U.; Yoon, Y.A.; Choi, D.S.; Park, J.K.; Kim,
 B.M.; Chung, Y.K. *Org. Lett.* 2001, *3*, 1065; Jung, J.-C.; Jung, Y.-J.; Park, O.-S. *Synth. Commun.* 2001, *31*, 2507; Pérez-Serrano, L.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. *Chem. Commun.*, 2001, 2602.

¹⁴³⁷Ingate, S.T.; Marco-Contelles, J. Org. Prep. Proceed. Int. **1998**, 30, 121; Urabe, H.; Hideura, D.; Sato, F. Org. Lett. **2000**, 2, 381; Verdaguer, X.; Moyano, A.; Pericás, M.A.; Riera, A.; Maestro, M.A.; Mahía, J. J. Am. Chem. Soc. **2000**, 122, 102421; Konya, D.; Robert, F.; Gimbert, Y.; Greene, A.E. Tetrahedron Lett. **2004**, 45, 6975.

¹⁴³⁸Pérez-Serrano, L.; Banco-Urgoiti, J.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. *J. Org. Chem.* **2000**, 65, 3513. For a review, see Suh. W.H.; Choi, M.; Lee, S.I.; Chung, Y.K. *Synthesis* **2003**, 2169.


¹⁴³⁹Son, S.U.; Choi, D.S.; Chung, Y.K.; Lee, S.-G. Org. Lett. 2000, 2, 2097; Krafft, M.E.; Boñaga, L.V.R.
 Angew. Chem. Int. Ed. 2000, 39, 3676, and references cited therein; Jeong, N.; Sung, B.S.; Choi, Y.K. J.
 Am. Chem. Soc. 2000, 122, 6771; Hayashi, M.; Hashimoto, Y.; Yamamoto, Y.; Usuki, J.; Saigo, K. Angew.
 Chem. Int. Ed. 2000, 39, 631; Son, C.U.; Lee, S.I.; Chung, Y.K. Angew. Chem. Int. Ed. 2000, 39, 4158;
 Sturla, S.J.; Buchwald, S.L. J. Org. Chem. 2002, 67, 3398.

¹⁴²³Koga, Y.; Kobayashi, T.; Narasaka, K. *Chem. Lett.* **1998**, 249. An entrapped-rhodium catalyst has been used: Park, K.H.; Son, S.U.; Chung, Y.K. *Tetrahedron Lett.* **2003**, 44, 2827.

¹⁴²⁴Hicks, F.A.; Buchwald, S.L. J. Am. Chem. Soc. **1996**, 118, 11688; Hicks, F.A.; Kablaoui, N.M.; Buchwald, S.L. J. Am. Chem. Soc. **1997**, 118, 9450; Hicks, F.A.; Kablaoui, N.M.; Buchwald, S.L. J. Am. Chem. Soc. **1999**, 121, 5881.

amides,¹⁴⁴⁰ alcohols,¹⁴⁴¹ diols,¹⁴⁴² and an indole unit.¹⁴⁴³ A silicon-tethered Pauson–Khand reaction is known.¹⁴⁴⁴ Allenes are reaction partners in the Pauson–Khand reaction.¹⁴⁴⁵ This type of reaction can be extended to form six-membered rings using a ruthenium catalyst.¹⁴⁴⁶ A double-Pauson–Khand process was reported.¹⁴⁴⁷ In some cases, an aldehyde can serve as the source of the carbonyl for carbonylation.¹⁴⁴⁸

The accepted mechanism was proposed by Magnus,¹⁴⁴⁹ shown for the formation of **161**,¹⁴⁵⁰ and supported by Krafft's work.¹⁴⁵¹ It has been shown that CO is lost from the Pauson–Khand complex prior to alkene coordination and insertion.¹⁴⁵² Calculations concluded that the LUMO of the coordinated alkene plays a crucial role in alkene reactivity by determining the degree of back-donation in the complex.¹⁴⁵³

Other carbonylation methods are available. Carbonylation occurs with conjugated ketones to give 1.4-diketones, using phenylboronic acid (**13-12**), CO and a rhodium catalyst.¹⁴⁵⁴ A non-carbonylation route treated a conjugated diene with an

¹⁴⁴⁰Comely, A.C.; Gibson, S.E.; Stevenazzi, A.; Hales, N.J. Tetrahedron Lett. 2001, 42, 1183.

¹⁴⁴²Mukai, C.; Kim, J.S.; Sonobe, H.; Hanaoka, M. J. Org. Chem. 1999, 64, 6822.

¹⁴⁴³Pérez-Serrano, L.; Domínguez, G.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 5413.

¹⁴⁴⁴Brummond, K.M.; Sill, P.C.; Rickards, B.; Geib, S.J. *Tetrahedron Lett.* **2002**, *43*, 3735; Reichwein, J.F.; Iacono, S.T.; Patel, U.C.; Pagenkopf, B.L. *Tetrahedron Lett.* **2002**, *43*, 3739.

¹⁴⁴⁵Antras, F.; Ahmar, M.; Cazes, B. *Tetrahedron Lett.* **2001**, *42*, 8153, 8157; Brummond, K.M.; Chen, H.; Fisher, K.D.; Kerekes, A.D.; Rickards, B.; Sill, P.C.; Geib, A.D. *Org. Lett.* **2002**, *4*, 1931. For an intramolecular version, see Shibata, T.; Kadowaki, S.; Hirase, M.; Takagi, K. Synlett **2003**, 573.

¹⁴⁴⁶Trost, B.M.; Brown, R.E.; Toste, F.D. J. Am. Chem. Soc. 2000, 122, 5877.

¹⁴⁴⁷Rausch, B.J.; Gleiter, R. Tetrahedron Lett. 2001, 42, 1651.

¹⁴⁴⁸For example, see Shibata, T.; Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446; Shibata, T.; Toshida, N.; Takagi, K. Org. Lett. 2002, 4, 1619; Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am. Chem. Soc. 2002, 124, 3806; Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Tetrahedron Lett. 2004, 45, 9163.

¹⁴⁴⁹Magnus, P.; Principe, L.M. Tetrahedron Lett. 1985, 26, 4851.

¹⁴⁵⁰For a review, see Brummond, K.M.; Kent, J.L. Tetrahedron 2000, 56, 3263.

¹⁴⁵¹Krafft, M.E. Tetrahedron Lett. 1988, 29, 999.

¹⁴⁵⁴Sauthier, M.; Castanet, Y.; Mortreux, A. Chem. Commun. 2004 1520.

¹⁴⁴¹Blanco-Urgoiti, J.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. *Tetrahedron Lett.* 2001, 42, 3315.

¹⁴⁵²Gimbert, Y.; Lesage, D.; Milet, A.; Fournier, F.; Greene, A.E.; Tabet, J.-C. *Org. Lett.* **2003**, *5*, 4073. See Robert, F.; Milet, A.; Gimbert, Y.; Konya, D.; Greene, A.E. J. Am. Chem. Soc. **2001**, *123*, 5396.

¹⁴⁵³de Bruin, T.J.M.; Milet, A.; Greene, A.E.; Gimbert, Y. J. Org. Chem., 2004 69, 1075.

excess of *tert*-butyllithium and quenching with carbon dioxide led to a cyclopentadienone.¹⁴⁵⁵ When quenched with CO rather than CO_2 , a nonconjugated cyclopentenone was formed.¹⁴⁵⁶ It is noted that a carbonylation reaction with CO, a diyne and an iridium catalyst¹⁴⁵⁷ or a cobalt catalyst¹⁴⁵⁸ provided similar molecules.

The reaction of a secondary amine, CO, a terminal alkyne and *t*-BuMe₂SiH with a rhodium catalyst led to a conjugated amide bearing the silyl group of the C=C unit.¹⁴⁵⁹ Reaction of a molecule containing an amine and an alkene unit was carboxylated with CO in the presence of a palladium catalyst to give a lactam.¹⁴⁶⁰ A similar reaction with a molecule containing an amine and an alkyne also generated a lactam, in the presence of CO and a rhodium catalyst.¹⁴⁶¹ An intramolecular carbonylation reaction of a conjugated imine, with CO, ethylene and a ruthenium catalyst, led to a highly substituted β , γ -unsaturated lactam.¹⁴⁶²

With any method, if the alkene contains a functional group, such as OH, NH₂, or CONH₂, the corresponding lactone (**16-63**),¹⁴⁶³ lactam (**16-74**), or cyclic imide may be the product.¹⁴⁶⁴ Titanium,¹⁴⁶⁵ palladium,¹⁴⁶⁶ ruthenium,¹⁴⁶⁷ and rhodium¹⁴⁶⁸ catalysts have been used to generate lactones. Allenic alcohols are converted to butenolides with 10 atm of CO and a ruthenium catalyst.¹⁴⁶⁹ Larger ring conjugated lactones can also be formed by this route using the appropriate allenic alcohol.¹⁴⁷⁰ Propargylic alcohols lead to β -lactones.¹⁴⁷¹ Allenic tosyl-amides are converted to *N*-tosyl α , β -unsaturated pyrrolidinones using 20 atm of CO and a ruthenium catalyst.¹⁴⁷² Conjugated imines are converted to similar products with CO, ethylene and a ruthenium catalyst.¹⁴⁷³ Propargyl alcohols are converted to

¹⁴⁵⁵Xi, Z.; Song, Q. J. Org. Chem. 2000, 65, 9157.

¹⁴⁵⁶Song, Q.; Chen, J.; Jin, X.; Xi, Z. J. Am. Chem. Soc. 2001, 123, 10419; Song, Q.; Li, Z.; Chen, J.; Wang, C.; Xi, Z. Org. Lett. 2002, 4, 4627.

¹⁴⁵⁷Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Org. Lett. 2001, 3, 1217; Shibata, T.; Yamashita, K.; Katayama, E.; Takagi, K. Tetrahedron 2002, 58, 8661.

¹⁴⁵⁸Sugihara, T.; Wakabayashi, A.; Takao, H.; Imagawa, H.; Nishizawa, M. *Chem. Commun.* 2001, 2456.
 ¹⁴⁵⁹Matsuda, I.; Takeuchi, K.; Itoh, K. *Tetrahedron Lett.* 1999, 40, 2553.

¹⁴⁶⁰Okuro, K.; Kai, H.; Alper, H. Tetrahedron Asymmetry 1997, 8, 2307.

¹⁴⁶¹Hirao, K.; Morii, N.; Joh, T.; Takahashi, S. *Tetrahedron Lett.* **1995**, *36*, 6243; Shiba, T.; Zhou, D.-Y.; Onitsuka, K.; Takahashi, S. *Tetrahedron Lett.* **2004**, *45*, 3211.

¹⁴⁶²Berger, D.; Imhof, W. *Tetrahedron* **2000**, *56*, 2015.

¹⁴⁶³Dong, C.; Alper, H. J. Org. Chem. 2004, 69, 5011.

¹⁴⁶⁴For reviews of these ring closures see Ohshiro, Y.; Hirao, T. *Heterocycles* **1984**, 22, 859; Falbe, J. New Syntheses with Carbon Monoxide, Springer, NY, **1980**, pp. 147–174, Angew. Chem. Int. Ed. **1966**, 5, 435; Newer Methods Prep. Org. Chem. **1971**, 6, 193. See also, Krafft, M.E.; Wilson, L.J.; Onan, K.D. Tetrahedron Lett. **1989**, 30, 539.

¹⁴⁶⁵Kablaoui, N.M.; Hicks, F.A.; Buchwald, S.L. J. Am. Chem. Soc. 1997, 119, 4424.

¹⁴⁶⁶El Ali, B.; Okuro, K.; Vasapollo, G.; Alper, H. J. Am. Chem. Soc. 1996, 118, 4264. Also see, Brunner, M.; Alper, H. J. Org. Chem. 1997, 62, 7565.

¹⁴⁶⁷Kondo, T.; Kodoi, K.; Mitsudo, T.-a.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1994, 755.

¹⁴⁶⁸Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Takahashi, S. Tetrahedron Lett. 1998, 39, 5061.

¹⁴⁶⁹Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Org. Lett. 2000, 2, 441.

¹⁴⁷⁰Yoneda, E.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Tetrahedron Lett. 2001, 42, 5459.

¹⁴⁷¹Ma, S.; Wu, B.; Zhao, S. Org. Lett. 2003, 5, 4429.

¹⁴⁷²Kang, S.-K.; Kim, K.-J.; Yu, C.-M.; Hwang, J.-W.; Do, Y.-K. Org. Lett. 2001, 3, 2851.

¹⁴⁷³Chatani, N.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67, 7014.

butenolides with CO/H₂O and a rhodium catalyst.¹⁴⁷⁴ Propargyl alcohols generate lactones when treated with a chromium pentacarbonyl carbene complex.¹⁴⁷⁵ Amines add to allenes, in the presence of CO and a palladium catalyst, to form conjugated amides.¹⁴⁷⁶

15-37 Hydroformylation

Hydro-formyl-addition

$$C=C$$
 + CO + H₂ $\xrightarrow{[Co(CO)_4]_2}$ H-C-C-CHO

Alkenes can be hydroformylated¹⁴⁷⁷ by treatment with carbon monoxide and hydrogen over a catalyst. The most common catalysts are cobalt carbonyls (see below for a description of the mechanism) and rhodium complexes,¹⁴⁷⁸ but other transition metal compounds have also been used. Cobalt catalysts are less active than the rhodium type, and catalysts of other metals are generally less active.¹⁴⁷⁹ Commercially, this is called the *oxo process*, but it can be carried out in the laboratory in an ordinary hydrogenation apparatus. The order of reactivity is straight-chain terminal alkenes > straight-chain internal alkenes > branched-chain alkenes. With terminal alkenes, for example, the aldehyde unit is formed on both the primary and secondary carbon, but proper choice of catalyst and additive leads to selectivity for the secondary product¹⁴⁸⁰ or primary

¹⁴⁷⁴Fukuta, Y.; Matsuda, I.; Itoh, K. Tetrahedron Lett. 2001, 42, 1301.

¹⁴⁷⁵Good, G.M.; Kemp, M.I.; Kerr, W.J. Tetahedron Lett. 2000, 41, 9323.

¹⁴⁷⁶Grigg, R.; Monteith, M.; Sridharan, V.; Terrier, C. Tetrahedron 1998, 54, 3885.

 ¹⁴⁷⁷For reviews, see Kalck, P.; Peres, Y.; Jenck, J. Adv. Organomet. Chem. 1991, 32, 121; Davies, J.A., in Hartley, F.R.; Patai, S. The Chemistry of the Metal–Carbon Bond, Vol. 3, Wiley, NY, 1985, pp. 361–389; Pino, P.; Piacenti, F.; Bianchi, M., in Wender, I.; Pino, P. Organic Syntheses via Metal Carbonyls, Vol. 2, Wiley, NY, 1977, pp. 43–231; Cornils, B., in Falbe, J. New Syntheses with Carbon Monoxide, Springer, NY, 1980, pp. 1–225; Collman, J.P., Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA 1987, pp. 621–632; Pino, P. J. Organomet. Chem. 1980, 200, 223; Pruett, R.L. Adv. Organomet. Chem. 1979, 17, 1; Stille, J.K.; James, D.E., in Patai, S. Supplement A: The Chemistry of Double-Bonded Functional Groups, Vol. 1, pt. 2, Wiley, NY, 1977, pp. 1099–1166; Heck, R.F. Organotransition Metal Chemistry, Academic Press, NY, 1974, pp. 215–224; Khan, M.M.T.; Martell, A.E. Homogeneous Catalysis by Metal Complexes, Vol. 2, Academic Press, NY, 1974, pp. 39–60; Falbe, J. Carbon Monoxide in Organic Synthesis Springer, NY, 1980, pp. 3–77; Chalk, A.J.; Harrod, J.F. Adv. Organomet. Chem. 1968, 6, 119. For a review with respect to fluoroalkenes, see Ohshiro, Y.; Hirao, T. Heterocycles 1984, 22, 859.

¹⁴⁷⁸For example, see Brown, J.M.; Kent, A.G. J. Chem. Soc. Perkin Trans. 1, **1987**, 1597; Hanson, B.E.; Davis, M.E. J. Chem. Ed., **1987**, 64, 928; Jackson, W.R.; Perlmutter, P.; Suh, G. J. Chem. Soc., Chem. Commun. **1987**, 724; Amer, I.; Alper, H. J. Am. Chem. Soc. **1990**, 112, 3674. See the references cited in these papers. For a review of the rhodium-catalyzed process, see Jardine, F.H., in Hartley, F.R. The Chemistry of the Metal–Carbon Bond, Vol. 4, Wiley, NY, **1987**, pp. 733–818, pp. 778–784.

¹⁴⁷⁹Collman, J.P., Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA **1987**, p. 630.

 ¹⁴⁸⁰Chan, A.S.C.; Pai, C.-C.; Yang, T.-K.; Chen, S.M. J. Chem. Soc., Chem. Commun. 1995, 2031; Doyle,
 M.P.; Shanklin, M.S.; Zlokazov, M.V. Synlett 1994, 615; Higashizima, T.; Sakai, N.; Nozaki, K.; Takaya,
 H. Tetrahedron Lett. 1994, 35, 2023.

product.¹⁴⁸¹ Good yields for hydroformylation have been reported using rhodium catalysts in the presence of certain other additives.¹⁴⁸² Among the side reactions are the aldol reaction (**16-34**), acetal formation, the Tishchenko reaction (**19-82**), and polymerization. In one case using a rhodium catalyst, 2-octene gave nonanal, presumably via a η^3 -allyl complex (p. 116).¹⁴⁸³ Conjugated dienes give dialde-hydes when rhodium catalysts are used¹⁴⁸⁴ but saturated mono-aldehydes (the second double bond is reduced) with cobalt carbonyls. Both 1,4- and 1,5-dienes may give cyclic ketones.¹⁴⁸⁵ Hydroformylation of triple bonds proceeds very slowly, and few examples have been reported.¹⁴⁸⁶ However, in the presence of a rhodium catalyst, the triple bond of a conjugated enyne is formylated.¹⁴⁸⁷ Many functional groups such as OH, CHO, COOR,¹⁴⁸⁸ CN, can be present in the molecule, although halogens usually interfere. Stereoselective syn addition has been reported,¹⁴⁸⁹ and also stereoselective anti addition.¹⁴⁹⁰ Asymmetric hydroformylation has been accomplished with a chiral catalyst,¹⁴⁹¹ and in the presence of chiral additives.¹⁴⁹² Cyclization to prolinal derivatives has been reported with allylic amines.¹⁴⁹³

When dicobalt octacarbonyl, $[Co(CO)_4]_2$, is the catalyst, the species that actually adds to the double bond is tricarbonylhydrocobalt, $HCo(CO)_3$.¹⁴⁹⁴ Carbonylation $RCo(CO)_3 + CO \rightarrow RCo(CO)_4$ takes place, followed by a rearrangement and a

¹⁴⁸²Johnson, J.R.; Cuny, G.D.; Buchwald, S.L. Angew. Chem. Int. Ed. 1995, 34, 1760.

¹⁴⁸³van der Veen, L.A.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. Angew. Chem. Int. Ed. 1999, 38, 336.
 ¹⁴⁸⁴Fell, B.; Rupilius, W. Tetrahedron Lett. 1969, 2721.

¹⁴⁸⁵For a review of ring closure reactions with CO, see Mullen, A., in Falbe, J. *New Syntheses with Carbon Monoxide*, Springer, NY, *1980*, pp. 414–439. See also, Eilbracht, P.; Hüttmann, G.; Deussen, R. *Chem. Ber. 1990*, *123*, 1063, and other papers in this series.

¹⁴⁸⁶For examples with rhodium catalysts, see Fell, B.; Beutler, M. *Tetrahedron Lett.* **1972**, 3455; Botteghi, C.; Salomon, C. *Tetrahedron Lett.* **1974**, 4285. For an indirect method, see Campi, E.; Fitzmaurice, N.J.; Jackson, W.R.; Perlmutter, P.; Smallridge, A.J. *Synthesis* **1987**, 1032.

¹⁴⁸⁷van den Hoven, B.G.; Alper, H. J. Org. Chem. 1999, 64, 3964.

¹⁴⁸⁸For formylation at the β-carbon of methyl acrylate, see Hu, Y.; Chen, W.; Osuna, A.M.B.; Stuart, A.M.; Hope, E.G.; Xiao, J. *Chem. Commun.* **2001**, 725.

¹⁴⁸⁹See, for example, Haelg, P.; Consiglio, G.; Pino, P. Helv. Chim. Acta 1981, 64, 1865.

¹⁴⁹⁰Krauss, I.J.; Wang, C.C-Y.; Leighton, J.L. J. Am. Chem. Soc. 2001, 123, 11514.

¹⁴⁹¹For reviews, see Ojima, I.; Hirai, K., in Morrison, J.D. Organic Synthesis, Vol. 5, Wiley, NY, **1985**, pp. 103–145, 125–139; Consiglio, G.; Pino, P. Top. Curr. Chem. **1982**, 105, 77; Breit, B.; Seiche, W. Synthesis **2001**, 1; Diéguez, M.; Pàmies, O.; Claver, C. Tetrahedron Asymmetry **2004**, 15, 2113. See also, Hegedüs, C.; Madrász, J.; Gulyás, H.; Szöllöy, A.; Bakos, J. Tetrahedron Asymmetry **2001**, 12, 2867.

¹⁴⁹²Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 4051; Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395; Rajan Babu, T.V.; Ayers, T.A. Tetrahedron Lett. 1994, 35, 4295. See Gladiali, S.; Bayón, J.C.; Claver, C. Tetrahedron Asymmetry 1995, 6, 1453.

¹⁴⁹³Anastasiou, D.; Campi, E.M.; Chaouk, H.; Jackson, W.R.; McCubbin, Q.J. *Tetrahedron Lett.* **1992**, *33*, 2211.

¹⁴⁹⁴Heck, R.F.; Breslow, D.S. J. Am. Chem. Soc. 1961, 83, 4023; Karapinka, G.L.; Orchin, M. J. Org. Chem. 1961, 26, 4187; Whyman, R. J. Organomet. Chem. 1974, 81, 97; Mirbach, M.F. J. Organomet. Chem. 1984, 265, 205. For discussions of the mechanism, see Orchin, M. Acc. Chem. Res. 1981, 14, 259; Versluis, L.; Ziegler, T.; Baerends, E.J.; Ravenek, W. J. Am. Chem. Soc. 1989, 111, 2018.

¹⁴⁸¹Fernández, E.; Castillón, S. *Tetrahedron Lett.* **1994**, 35, 2361; Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M. Angew. Chem. Int. Ed. **2001**, 40, 3408; Breit, B.; Seiche, W. J. Am. Chem. Soc. **2003**, 125, 6608.

reduction of the C–Co bond, similar to steps 4 and 5 of the nickel carbonyl mechanism shown in **15-35**. The reducing agent in the reduction step is tetracarbonylhydrocobalt, $HCo(CO)_4$,¹⁴⁹⁵ or, under some conditions, H_2 .¹⁴⁹⁶ When $HCo(CO)_4$ was the agent used to hydroformylate styrene, the observation of CIDNP indicated that the mechanism is different, and involves free radicals.¹⁴⁹⁷ Alcohols can be obtained by allowing the reduction to continue after all the carbon monoxide is used up. It has been shown¹⁴⁹⁸ that the formation of alcohols is a second step, occurring after the formation of aldehydes, and that $HCo(CO)_3$ is the reducing agent.

OS VI, 338.

15-38 Addition of HCN

Hydro-cyano-addition

$$C=C$$
 + HCN \longrightarrow H-C-C-CN

Ordinary alkenes do not react with HCN, but polyhalo alkenes and alkenes of the form C=C–Z add HCN to give nitriles.¹⁴⁹⁹ The reaction is therefore a nucleophilic addition and is base catalyzed. When Z is COR or, more especially, CHO, 1,2-addition (**16-53**) is an important competing reaction and may be the only reaction. Triple bonds react very well when catalyzed by an aqueous solution of CuCl, NH₄Cl, and HCl or by Ni or Pd compounds.¹⁵⁰⁰ The HCN can be generated *in situ* from acetone cyanohydrin (see **16-52**), avoiding the use of the poisonous HCN.¹⁵⁰¹ One or 2 equivalents of HCN can be added to a triple bond, since the initial product is a Michael-type substrate. Acrylonitrile is commercially prepared this way, by the addition of HCN to acetylene. Alkylaluminum cyanides, for example, Et₂AlCN, or mixtures of HCN and trialkylalanes R₃Al are especially good reagents for conjugate addition of HCN¹⁵⁰² to α,β -unsaturated ketones and α,β -unsaturated acyl halides. Hydrogen cyanide can be added to ordinary alkenes in the presence of dicobalt octacarbonyl¹⁵⁰³ or certain other

¹⁴⁹⁵Alemdaroğ lu, N.H.; Penninger, J.L.M.; Oltay, E. Monatsh. Chem. 1976, 107, 1153; Ungváry, F.; Markó, L. Organometallics 1982, 1, 1120.

¹⁴⁹⁶See Kovács, I.; Ungváry, F.; Markó, L. Organometallics 1986, 5, 209.

 ¹⁴⁹⁷Bockman, T.M.; Garst, J.F.; King, R.B.; Markó, L.; Ungváry, F. J. Organomet. Chem. 1985, 279, 165.
 ¹⁴⁹⁸Aldridge, C.L.; Jonassen, H.B. J. Am. Chem. Soc. 1963, 85, 886.

¹⁴⁹⁹For reviews see Friedrich, K., in Patai, S.; Rappoport, Z. *The Chemistry of Functional Groups, Supplement C*, pt. 2, Wiley, NY, *1983*, pp. 1345–1390; Nagata, W.; Yoshioka, M. *Org. React. 1977*, *25*, 255; Brown, E.S., in Wender, I.; Pino, P. *Organic Syntheses via Metal Carbonyls*, Vol. 2, Wiley, NY, *1977*, pp. 655–672; Friedrich, K.; Wallenfels, K., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, *1970*, pp. 68–72.

¹⁵⁰⁰Jackson, W.R.; Lovel, C.G. Aust. J. Chem. 1983, 36, 1975.

¹⁵⁰¹Jackson, W.R.; Perlmutter, P. Chem. Br. 1986, 338.

¹⁵⁰²For a review, see Nagata, W.; Yoshioka, M. Org. React. 1977, 25, 255.

¹⁵⁰³Arthur, Jr., P.; England, D.C.; Pratt, B.C.; Whitman, G.M. J. Am. Chem. Soc. 1954, 76, 5364.

transition-metal compounds.¹⁵⁰⁴ An indirect method for the addition of HCN to ordinary alkenes uses an isocyanide (RNC) and Schwartz's reagent (see **15-17**); this method gives anti-Markovnikov addition.¹⁵⁰⁵ *tert*-Butyl isocyanide and TiCl₄ have been used to add HCN to C=C–Z alkenes.¹⁵⁰⁶ Pretreatment with NaI/Me₃SiCl followed by CuCN converts alkynes to vinyl nitriles.¹⁵⁰⁷

When an alkene is treated with Me₃SiCN and AgClO₄, followed by aq. NaHCO₃, the product is the isonitrile (RNC) formed with Markovnikov selectivity.¹⁵⁰⁸ An alternative reagent is the cyanohydrin of acetone, which adds to alkenes to give a nitrile in the presence of a nickel complex.¹⁵⁰⁹

OS I, 451; II, 498; III, 615; IV, 392, 393, 804; V, 239, 572; VI, 14. For addition of ArH, see 11-12 (Friedel–Crafts alkylation).

REACTIONS IN WHICH HYDROGEN ADDS TO NEITHER SIDE

Some of these reactions are *cycloadditions* (reactions **15-50**, **15-62**, **15-54**, and **15-57–15-66**). In such cases, addition to the multiple bond closes a ring:

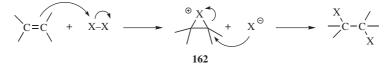
A. Halogen on One or Both Sides

15-39 Halogenation of Double and Triple Bonds (Addition of Halogen, Halogen) **Dihalo-Addition**

$C = C + Br_2 \longrightarrow \frac{Br}{C - C}$

¹⁵⁰⁴For a review, see Brown, E.S., in Wender, P.; Pino, P. Organic Syntheses via Metal Carbonyls, Vol. 2, Wiley, NY, 1977, pp. 658–667. For a review of the nickel-catalyzed process, see Tolman, C.A.; McKinney, R.J.; Seidel, W.C.; Druliner, J.D.; Stevens, W.R. Adv. Catal. 1985, 33, 1. For studies of the mechanism see Tolman, C.A.; Seidel, W.C.; Druliner, J.D.; Domaille, P.J. Organometallics 1984, 3, 33; Druliner, J.D. Organometallics 1984, 3, 205; Bäckvall, J.E.; Andell, O.S. Organometallics 1986, 5, 2350; McKinney, R.J.; Roe, D.C. J. Am. Chem. Soc. 1986, 108, 5167; Funabiki, T.; Tatsami, K.; Yoshida, S. J. Organomet. Chem. 1990, 384, 199. See also, Jackson, W.R.; Lovel, C.G.; Perlmutter, P.; Smallridge, A.J. Aust. J. Chem. 1988, 41, 1099.

¹⁵⁰⁵Buchwald, S.L.; LeMaire, S.J. Tetrahedron Lett. 1987, 28, 295.


¹⁵⁰⁶Ito, Y.; Kato, H.; Imai, H.; Saegusa, T. J. Am. Chem. Soc. 1982, 104, 6449.

¹⁵⁰⁷Luo, F.-T.; Ko, S.-L.; Chao, D.-Y. Tetrahedron Lett. 1997, 38, 8061.

¹⁵⁰⁸Kitano, Y.; Chiba, K.; Tada, M. Synlett 1999, 288.

¹⁵⁰⁹Yan, M.; Xu, Q.-Y.; Chan, A.S.C. Tetrahedron Asymmetry 2000, 11, 845.

Most double bonds are easily halogenated¹⁵¹⁰ with bromine, chlorine, or inter-halogen compounds.¹⁵¹¹ Substitution can compete with addition in some cases.¹⁵¹² Iodination has also been accomplished, but the reaction is slower.¹⁵¹³ Under free-radical conditions, iodination proceeds more easily.¹⁵¹⁴ However, *vic*-diiodides are generally unstable and tend to revert to iodine and the alkene.

The mechanism is usually electrophilic (see p. 1002), involving formation of an halonium ion (162),¹⁵¹⁵ followed by nucleophilic opening to give the *vic*-dihalide. Nucleophilic attack is occurs with selectivity for the less substituted carbon with unsymmetrical alkenes. When free-radical initiators (or UV light) are present, addition can occur by a free-radical mechanism.¹⁵¹⁶ Once Br• or Cl• radicals are formed, however, substitution may compete (14-1 and 14-3). This is especially important when the alkene has allylic hydrogens. Under free-radical conditions (UV light) bromine or chlorine adds to the benzene ring to give, respectively, hexabromo- and hexachlorocyclohexane. These are mixtures of stereoisomers (see p. 187).¹⁵¹⁷

Under ordinary conditions fluorine itself is too reactive to give simple addition; it attacks other bonds and mixtures are obtained.¹⁵¹⁸ However, F₂ has been successfully added to certain double bonds in an inert solvent at low temperatures (-78° C), usually by diluting the F₂ gas with Ar or N₂.¹⁵¹⁹ Addition of fluorine has also been accomplished with other reagents (e.g., *p*-Tol–IF₂/Et₃N•5 HF),¹⁵²⁰ and a mixture of PbO₂ and SF₄.¹⁵²¹

¹⁵¹²McMillen, D.W.; Grutzner, J.B. J. Org. Chem. 1994, 59, 4516.

¹⁵¹³Sumrell, G.; Wyman, B.M.; Howell, R.G.; Harvey, M.C. *Can. J. Chem.* **1964**, 42, 2710; Zanger, M.; Rabinowitz, J.L. J. Org. Chem. **1975**, 40, 248.

¹⁵¹⁴Skell, P.S.; Pavlis, R.R. J. Am. Chem. Soc. **1964**, 86, 2956; Ayres, R.L.; Michejda, C.J.; Rack, E.P. J. Am. Chem. Soc. **1971**, 93, 1389.

¹⁵¹⁵See Lenoir, D.; Chiappe, C. Chem. Eur. J. 2003, 9, 1037.

¹⁵¹⁶For example, see Poutsma, M.L. J. Am. Chem. Soc. **1965**, 87, 2161, 2172; J. Org. Chem. **1966**, 31, 4167; Dessau, R.M. J. Am. Chem. Soc. **1979**, 101, 1344.

¹⁵¹⁷For a review, see Cais, M., in Patai, S. *The Chemistry of Alkenes*, Vol. 1, Wiley, NY, **1964**, p. 993. ¹⁵¹⁸See, for example, Fuller, G.; Stacey, F.W.; Tatlow, J.C.; Thomas, C.R. *Tetrahedron* **1962**, *18*, 123.

¹⁵¹⁰For a list of reagents that have been used for di-halo-addition, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 629–632.

¹⁵¹¹For a monograph, see de la Mare, P.B.D. *Electrophilic Halogenation*, Cambridge University Press, Cambridge, *1976*. For a review, see House, H.O. *Modern Synthetic Reaction*, 2nd ed., W.A. Benjamin, NY, *1972*, pp. 422–431.

¹⁵¹⁹Merritt, R.F. J. Am. Chem. Soc. **1967**, 89, 609; Barton, D.H.R.; Lister-James, J.; Hesse, R.H.; Pechet, M.M.; Rozen, S. J. Chem. Soc. Perkin Trans. 1 **1982**, 1105; Rozen, S.; Brand, M. J. Org. Chem. **1986**, 51, 3607.

¹⁵²⁰Hara, S.; Nakahigashi, J.; Ishi-i, K.; Sawaguchi, M.; Sakai, H.; Fukuhara, T.; Yoneda, N. *Synlett* **1998**, 495.

¹⁵²¹Bissell, E.R.; Fields, D.B. J. Org. Chem. 1964, 29, 1591.

The reaction with bromine is very rapid and is easily carried out at room temperature, ¹⁵²² although the reaction is reversible under some conditions. ¹⁵²³ In the case of bromine, an alkene•Br₂ complex has been detected in at least one case. ¹⁵²⁴ Bromine is often used as a test, qualitative or quantitative, for unsaturation. ¹⁵²⁵ The vast majority of double bonds can be successfully brominated. Even when aldehyde, ketone, amine, and so on functions are present in the molecule, they do not interfere, since the reaction with double bonds is faster. Bromination has been carried out in an ionic liquid. ¹⁵²⁶

Several other reagents add Cl_2 to double bonds, among them Me_3SiCl^- MnO₂,¹⁵²⁷ NaClO₂/Mn(acac)₂/moist Al₂O₃,¹⁵²⁸ BnNEt₃MnO₄/Me₃SiCl,¹⁵²⁹ and KMnO₄-oxalyl chloride.¹⁵³⁰ A convenient reagent for the addition of Br₂ to a double bond on a small scale is the commercially available pyridinium bromide perbromide $C_5H_5NH^+Br_3^{-}$.¹⁵³¹ Potassium bromide with ceric ammonium nitrate, in water/ dichloromethane, gives the dibromide.¹⁵³² A combination of KBr and Selectfluor also give the dibromide.¹⁵³³ A combination of CuBr₂ in aq. THF and a chiral ligand led to the dibromide with good enantioselectivity.¹⁵³⁴ A mixture of (decyl)Me₃ NMnO₄ and Me₃SiBr is also an effective reagent.¹⁵³⁵ Either Br₂ or Cl₂ can also be added with CuBr₂ or CuCl₂ in the presence of a compound, such as acetonitrile, methanol, or triphenylphosphine.¹⁵³⁶

- ¹⁵²³Zheng, C.Y.; Slebocka-Tilk, H.; Nagorski, R.W.; Alvarado, L.; Brown, R.S. *J. Org. Chem.* **1993**, *58*, 2122.
- ¹⁵²⁴Bellucci, G.; Chiappe, C.; Bianchini, R.; Lenoir, D.; Herges, R. J. Am. Chem. Soc. 1995, 117, 12001.
 ¹⁵²⁵For a review of this, see Kuchar, E.J., in Patai, S. The Chemistry of Alkenes, Vol. 1, Wiley, NY, 1964, pp. 273–280.
- ¹⁵²⁶In bmim Br, 1-butyl-3-methylimidazolium bromide: Chiappe, C.; Capraro, D.; Conte, V.; Picraccini, D. *Org. Lett.* **2001**, *3*, 1061.
- ¹⁵²⁷Bellesia, F.; Ghelfi, F.; Pagnoni, U.M.; Pinetti, A. J. Chem. Res. (S) 1989, 108, 360.

¹⁵²⁸Yakabe, S.; Hirano, M.; Morimoto, T. Synth. Comun. 1998, 28, 1871.

¹⁵²⁹Markó, I.E.; Richardson, P.R.; Bailey, M.; Maguire, A.R.; Coughlan, N. *Tetrahedron Lett.* **1997**, *38*, 2339.

¹⁵³⁰Markó, I.E.; Richardson, P.F. Tetrahedron Lett. 1991, 32, 1831.

¹⁵³¹Fieser, L.F.; Fieser, M. *Reagents for Organic Synthesis*, Vol. 1, Wiley, NY, **1967**, pp. 967–970. For a discussion of the mechanism with Br₃⁻, see Bellucci, G.; Bianchini, R.; Vecchiani, S. *J. Org. Chem.* **1986**, *51*, 4224.

¹⁵³²Nair, V.; Panicker, S.B.; Augstine, A.; George, T.G.; Thomas, S.; Vairamani, M. *Tetrahedron* **2001**, *57*, 7417.

¹⁵³³Ye, C.; Shreeve, J.M. J. Org. Chem. 2004, 69, 8561.

¹⁵³⁴El-Quisairi, A.K.; Qaseer, H.A.; Katsigras, G.; Lorenzi, P.; Tribedi, U.; Tracz, S.; Hartman, A.; Miller, J.A.; Henry, P.M. Org. Lett. **2003**, *5*, 439.

¹⁵²²See Bellucci, G.; Chiappe, C. J. Org. Chem. 1993, 58, 7120 for a study of the rate and kinetics of alkene bromination.

¹⁵³⁵Hazra, B.G.; Chordia, M.D.; Bahule, B.B.; Pore, V.S.; Basu, S. J. Chem. Soc. Perkin Trans. 1 1994, 1667.

 ¹⁵³⁶Koyano, T. Bull. Chem. Soc. Jpn. 1970, 43, 1439, 3501; Uemura, S.; Tabata, A.; Kimura, Y.; Ichikawa,
 K. Bull. Chem. Soc. Jpn. 1971, 44, 1973; Or, A.; Levy, M.; Asscher, M.; Vofsi, D. J. Chem. Soc. Perkin Trans. 2 1974, 857; Uemura, S.; Okazaki, H.; Onoe, A.; Okano, M. J. Chem. Soc. Perkin Trans. 1 1977, 676; Baird, Jr., W.C.; Surridge, J.H.; Buza, M. J. Org. Chem. 191, 36, 2088, 3324.

Mixed halogenations have also been achieved, and the order of activity for some of the reagents is $BrCl > ICl^{1537} > Br_2 > IBr > I_2$.¹⁵³⁸ Mixtures of Br_2 and Cl_2 have been used to give bromochlorination,¹⁵³⁹ as has tetrabutylammonium dichlorobromate, Bu₄NBrCl₂;¹⁵⁴⁰ iodochlorination has been achieved with KICl₂,¹⁵⁴¹ CuCl₂, and either I₂, HI, or CdI₂; iodofluorination¹⁵⁴² with mixtures of AgF and I₂;¹⁵⁴³ and mixtures of N-bromo amides in anhydrous HF give bromofluorination.¹⁵⁴⁴ Bromo-, iodo-, and chlorofluorination have also been achieved by treatment of the substrate with a solution of Br₂, I₂, or an N-halo amide in polyhydrogen fluoride-pyridine;¹⁵⁴⁵ while addition of I along with Br, Cl, or F has been accomplished with the reagent bis(pyridine)iodo(I) tetrafluoroborate I(Py)₂BF₄ and Br⁻, Cl⁻, or F^{-} , respectively.¹⁵⁴⁶ This reaction (which is also successful for triple bonds¹⁵⁴⁷) can be extended to addition of I and other nucleophiles (e.g., NCO, OH, OAc, and NO₂).¹⁵⁴⁷ Cyclohexene is converted to *trans*-2-fluoroiodocyclohexane under electrolytic conditions using Et₄NI-Et₃N•HF in the reaction medium.¹⁵⁴⁸

Conjugated systems give both 1,2- and 1,4-addition.¹⁵¹⁸ Triple bonds add bromine, although generally more slowly than double bonds (see p. 1015). Molecules that contain both double and triple bonds are preferentially attacked at the double bond. Addition of 2 equivalents of bromine to triple bonds gives tetrabromo products. There is evidence that the addition of the first mole of bromine to a triple bond may take place by a nucleophilic mechanism.¹⁵⁴⁹ Molecular diiodine on Al₂O₃ adds to triple bonds to give good yields of 1,2-diiodoalkenes.¹⁵⁵⁰ Interestingly, 1,1-diiodo alkenes are prepared from an alkynyltin compound, via initial treatment with Cp₂Zr(H)Cl, and then 2.15 equivalents of iodine.¹⁵⁵¹ A mixture of

- ¹⁵³⁹Buckles, R.E.; Forrester, J.L.; Burham, R.L.; McGee, T.W. J. Org. Chem. 1960, 25, 24.
- ¹⁵⁴⁰Negoro, T.; Ikeda, Y. Bull. Chem. Soc. Jpn. 1986, 59, 3519.
- ¹⁵⁴¹Zefirov, N.S.; Sereda, G.A.; Sosounk, S.E.; Zyk, N.V.; Likhomanova, T.I. Synthesis 1995, 1359.
- ¹⁵⁴²For a review of mixed halogenations where one side is fluorine, see Sharts, C.M.; Sheppard, W.A. Org.

¹⁵⁴³Evans, R.D.; Schauble, J.H. Synthesis 1987, 551; Kuroboshi, M.; Hiyama, T. Synlett 1991, 185.

¹⁵⁵¹Dabdoub, M.J.; Dabdoub, V.B.; Baroni, A.C.M. J. Am. Chem. Soc. 2001, 123, 9694.

¹⁵³⁷For a review of ICl, see McCleland, C.W., in Pizey, J.S. Synthetic Reagents, Vol. 5, Wiley, NY, 1983, pp. 85–164. ¹⁵³⁸White, E.P.; Robertson, P.W. J. Chem. Soc. **1939**, 1509.

React. 1974, 21, 125, see pp. 137-157. For a review of halogen fluorides in organic synthesis, see Boguslavskaya, L.S. Russ. Chem. Rev. 1984, 53, 1178.

¹⁵⁴⁴ Pattison, F.L.M.; Peters, D.A.V.; Dean, F.H. Can. J. Chem. 1965, 43, 1689. For other methods, see Boguslavskaya, L.S.; Chuvatkin, N.N.; Kartashov, A.V.; Ternovskoi, L.A. J. Org. Chem. USSR 1987, 23,

^{230;} Shimizu, M.; Nakahara, Y.; Yoshioka, H. J. Chem. Soc., Chem. Commun. 1989, 1881.

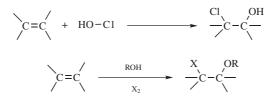
¹⁵⁴⁵Olah, G.A.; Nojima, M.; Kerekes, I. Synthesis 1973, 780; Olah, G.A.; Welch, J.T.; Vankar, Y.D.; Nojima, M.; Kerekes, I.; Olah, J.A. J. Org. Chem. 1979, 44, 3872. For other halofluorination methods, see Rozen, S.; Brand, M. J. Org. Chem. 1985, 50, 3342; 1986, 51, 222; Alvernhe, G.; Laurent, A.; Haufe, G. Synthesis 1987, 562; Camps, F.; Chamorro, E.; Gasol, V.; Guerrero, A. J. Org. Chem. 1989, 54, 4294; Ichihara, J.; Funabiki, K.; Hanafusa, T. Tetrahedron Lett. 1990, 31, 3167.

¹⁵⁴⁶Barluenga, J.; González, J.M.; Campos, P.J.; Asensio, G. Angew. Chem. Int. Ed. 1985, 24, 319.

¹⁵⁴⁷Barluenga, J.; Rodríguez, M.A.; González, J.M.; Campos, P.J.; Asensio, G. Tetrahedron Lett. 1986, 27, 3303.

¹⁵⁴⁸Kobayashi, S.; Sawaguchi, M.; Ayuba, S.; Fukuhara, T.; Hara, S. Synlett 2001, 1938.

¹⁵⁴⁹Sinn, H.; Hopperdietzel, S.; Sauermann, D. Monatsh. Chem. 1965, 96, 1036.


¹⁵⁵⁰Hondrogiannis, G.; Lee, L.C.; Kabalka, G.W.; Pagni, R.M. Tetrahedron Lett. 1989, 30, 2069.

NaBO₃ and NaBr adds two bromine atoms across a triple bond.¹⁵⁵² With allenes it is easy to stop the reaction after only 1 equivalent has added, to give X–C–CX=C.¹⁵⁵³ Addition of halogen to ketenes gives α -halo acyl halides, but the yields are not good.

OS I, 205, 521; II, 171, 177, 270, 408; III, 105, 123, 127, 209, 350, 526, 531, 731, 785; IV, 130, 195, 748, 851, 969; V, 136, 370, 403, 467; VI, 210, 422, 675, 862, 954; IX, 117; **76**, 159.

15-40 Addition of Hypohalous Acids and Hypohalites (Addition of Halogen, Oxygen)

Hydroxy-chloro-addition, and so on.¹⁵⁵⁴ **Alkoxy-chloro-addition**, and so on.

Hypohalous acids (HOCl, HOBr, and HOI) can be added to alkenes¹⁵⁵⁵ to produce halohydrins.¹⁵⁵⁶ Both HOBr and HOCl are often generated *in situ* by the reaction between water and Br₂ or Cl₂, respectively. HOI, generated from I₂ and H₂O, also adds to double bonds, if the reaction is carried out in tetramethylene sulfone-CHCl₃¹⁵⁵⁷ or if an oxidizing agent, such as HIO₃ is present.¹⁵⁵⁸ Iodine and cerium sulfate in aqueous acetonitrile generates iodohydrins,¹⁵⁵⁹ as does iodine and ammonium acetate in acetic acid,¹⁵⁶⁰ or NaIO₄ with sodium bisulfite.¹⁵⁶¹ The HOBr can also be conveniently added by the use of a reagent consisting of an *N*-bromo amide

¹⁵⁵³For a review of additions of halogens to allenes, see Jacobs, T.L., in Landor, S.R. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, *1982*, pp. 466–483.

¹⁵⁵⁴Addends are listed in order of priority in the Cahn–Ingold–Prelog system (p. 155).

¹⁵⁵⁵For a list of reagents used to accomplish these additions, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 638–642.

¹⁵⁵⁶For a review, see Boguslavskaya, L.S. Russ. Chem. Rev. 1972, 41, 740.

¹⁵⁵⁷Cambie, R.C.; Noall, W.I.; Potter, G.J.; Rutledge, P.S.; Woodgate, P.D. J. Chem. Soc. Perkin Trans. 1 1977, 266.

¹⁵⁵⁸See, for example, Cornforth, J.W.; Green, D.T. *J. Chem. Soc. C* **1970**, 846; Furrow, S.D. *Int. J. Chem. Kinet.* **1982**, *14*, 927; Antonioletti, R.; D'Auria, M.; De Mico, A.; Piancatelli, G.; Scettri, A. *Tetrahedron* **1983**, *39*, 1765.

¹⁵⁵⁹Horiuchi, C.A.; Ikeda, A.; Kanamori, M.; Hosokawa, H.; Sugiyama, T.; Takahashi, T.T. *J. Chem. Res.* (*S*) **1997**, 60.

¹⁵⁶⁰Myint, Y.Y.; Pasha, M.A. Synth. Commun. 2004, 34, 4477.

¹⁵⁶¹Masuda, H.; Takase, K.; Nishio, M.; Hasegawa, A.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1994, 59, 5550.

¹⁵⁵²Kabalka, G.W.; Yang, K. Synth. Commun. 1998, 28, 3807; Kabalka, G.W.; Yang, K.; Reddy, N.K.; Narayana, A. Synth. Commun. 1998, 28, 925.

(e.g., NBS or *N*-bromoacetamide) and a small amount of water in a solvent, such as DMSO or dioxane.¹⁵⁶² *N*-Iodosuccinimide (NIS) in aqueous dimethoxyethane leads to the iodohydrin.¹⁵⁶³ An especially powerful reagent for HOCl addition is *tert*-butyl hydroperoxide (or di-*tert*-butyl peroxide) along with TiCl₄. This reaction is generally complete within 15 min at -78° C.¹⁵⁶⁴ Chlorohydrins can be conveniently prepared by treatment of the alkene with Chloramine T (TsNCl⁻ Na⁺)¹⁵⁶⁵ in acetone–water.¹⁵⁶⁶ The compound HOI can be added by treatment of alkenes with periodic acid and NaHSO₃.¹⁵⁶⁷ The reaction of an alkene with polymeric (SnO)_n, and then HCl with Me₃SiOOSiMe₃ leads to the chlorohydrin.¹⁵⁶⁸ Hypervalent iodine compounds react with an alkene and iodine in aqueous media to give the iodohydrin.¹⁵⁶⁹

The compound HOF has also been added, but this reagent is difficult to prepare in a pure state and *explosions have occurred*.¹⁵⁷⁰

The mechanism of HOX addition is electrophilic, with initial attack by the positive halogen end of the HOX dipole. Following Markovnikov's rule, the positive halogen goes to the side of the double bond that has more hydrogens (forming a more stable carbocation). This carbocation (or bromonium or iodonium ion in the absence of an aqueous solvent) reacts with ^{-}OH or H₂O to give the product. If the substrate is treated with Br₂ or Cl₂ (or another source of positive halogen such as NBS) in an alcohol or a carboxylic acid solvent, it is possible to obtain,

directly $X - \begin{array}{c} | & | \\ C - C - O \\ | & | \end{array}$ or $X - \begin{array}{c} | & | \\ C - C - O \\ | & | \end{array}$ (see also, **15-48**).¹⁵⁷¹

Even the weak nucleophile $CF_3SO_2O^-$ can participate in the second step: The addition of Cl_2 or Br_2 to alkenes in the presence of this ion resulted in the formation of some β -haloalkyl triflates.¹⁵⁷² There is evidence that the mechanism with Cl_2 and H_2O is different from that with HOCl.¹⁵⁷³ HOCl and HOBr can be added to triple bonds to give dihalo carbonyl compounds $-CX_2-CO-$.

¹⁵⁶⁶Damin, B.; Garapon, J.; Sillion, B. Synthesis 1981, 362.

¹⁵⁶²For examples, see Dalton, D.R.; Hendrickson, J.B.; Jones, D. Chem. Commun. **1966**, 591; Dalton, D.R.; Dutta, V.P. J. Chem. Soc. B **1971**, 85; Sisti, A.J. J. Org. Chem. **1970**, 35, 2670.

¹⁵⁶³Smietana, M.; Gouverneur, V.; Mioskowski, C. Tetahedron Lett. 2000, 41, 193.

¹⁵⁶⁴Klunder, J.M.; Caron M.; Uchiyama, M.; Sharpless, K.B. J. Org. Chem. 1985, 50, 912.

¹⁵⁶⁵For reviews of this reagent, see Bremner, D.H., in Pizey, J.S. *Synthetic Reagents*, Vol. 6, Wiley, NY, **1985**, pp. 9–59; Campbell, M.M.; Johnson, G. *Chem. Rev.* **1978**, 78, 65.

¹⁵⁶⁷Ohta, M.; Sakata, Y.; Takeuchi, T.; Ishii, Y. Chem. Lett. 1990, 733.

¹⁵⁶⁸Sakurada, I.; Yamasaki, S.; Göttlich, R.; Iida, T.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 1245.

¹⁵⁶⁹DeCorso, A.R.; Panunzi, B.; Tingoli, M. Tetrahedron Lett. 2001, 42, 7245.

¹⁵⁷⁰Migliorese, K.G.; Appelman, E.H.; Tsangaris, M.N. J. Org. Chem. 1979, 44, 1711.

¹⁵⁷¹For a list of reagents that accomplish alkoxy-halo-addition, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 642–643.

¹⁵⁷²Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D.; Zhdankin, V.V. *J. Org. Chem. USSR* **1982**, *18*, 1546. For reviews of this and related reactions, see Zefirov, N.S.; Koz'min, A.S. Acc. Chem. Res. **1985**, *18*, 154; *Sov. Sci. Rev. Sect. B* **1985**, *7*, 297.

¹⁵⁷³Buss, E.; Rockstuhl, A.; Schnurpfeil, D. J. Prakt. Chem. 1982, 324, 197.

Alcohols and halogens react with alkenes to form halo ethers. When a homoallylic alcohol is treated with bromine, cyclization occurs to give a 3-bromotetrahydrofuran derivative.¹⁵⁷⁴ *tert*-Butyl hypochlorite (Me₃COCl), hypobromite, and hypoiodite¹⁵⁷⁵ add to double bonds to give halogenated *tert*-butyl ethers, X–C–C–OCMe₃. This is a convenient method for the preparation of tertiary ethers. Iodine and ethanol convert some alkenes to iodo-ethers.¹⁵⁷⁶ Iodine, alcohol and a Ce(OTf)₂ catalyst also generates the iodo-ether.¹⁵⁷⁷ When Me₃COCl or Me₃COBr is added to alkenes in the presence of excess ROH, the ether produced

is X - C - C - OR.¹⁵⁷⁸ Vinylic ethers give β -halo acetals.¹⁵⁷⁹ A mixture of Cl₂ and

 SO_3 at $-78^{\circ}C$ converts alkenes to 2-chloro chlorosulfates ClCHRCHROSO₂Cl, which are stable compounds.¹⁵⁸⁰ Chlorine acetate [solutions of which are prepared by treating Cl₂ with Hg(OAc)₂ in an appropriate solvent] adds to alkenes to give acetoxy chlorides.¹⁵⁸¹ Acetoxy fluorides have been obtained by treatment of alkenes with CH₃COOF.¹⁵⁸²

For a method of iodoacetyl addition, see 15-48.

An oxidative variation of this reaction treats a vinyl chloride with NaOCl and acetic acid, generating an α -chloro ketone.¹⁵⁸³

OS I, 158; IV, 130, 157; VI, 184, 361, 560; VII, 164; VIII, 5, 9.

15-41 Halolactonization and Halolactamization

Halo-alkoxylation

Halo esters can be formed by addition of halogen atoms and ester groups to an alkene. Alkene carboxylic acids give a tandem reaction of formation of a halonium ion followed by intramolecular displacement of the carboxylic group to give a halo lactone. This tandem addition of X and OCOR is called

¹⁵⁷⁵Glover, S.A.; Goosen, A. Tetrahedron Lett. 1980, 21, 2005.

¹⁵⁷⁴Chirskaya, M.V.; Vasil'ev, A.A.; Sergovskaya, N.L.; Shovshinev, S.V.; Sviridov, S.I. *Tetrahedron Lett.* **2004**, *45*, 8811.

¹⁵⁷⁶Sanseverino, A.M.; de Mattos, M.C.S. *Synthesis* **1998**, 1584. See Horiuchi, C.A.; Hosokawa, H.; Kanamori, M.; Muramatsu, Y.; Ochiai, K.; Takahashi, E. *Chem. Lett.* **1995**, 13 for an example using I₂/ MeOH/ceric ammonium nitrate.

¹⁵⁷⁷Iranpoor, N.; Shekarriz, M. Tetahedron 2000, 56, 5209.

¹⁵⁷⁸Bresson, A.; Dauphin, G.; Geneste, J.; Kergomard, A.; Lacourt, A. *Bull. Soc. Chim. Fr.* **1970**, 2432; **1971**, 1080.

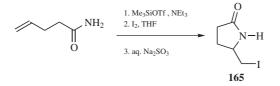
¹⁵⁷⁹Weissermel, K.; Lederer, M. Chem. Ber. 1963, 96, 77.

¹⁵⁸⁰Zefirov, N.S.; Koz'min, A.S.; Sorokin, V.D. J. Org. Chem. 1984, 49, 4086.

¹⁵⁸¹de la Mare, P.B.D.; O'Connor, C.J.; Wilson, M.A. J. Chem. Soc. Perkin Trans. 2, 1975, 1150. For the addition of bromine acetate, see Wilson, M.A.; Woodgate, P.D. J. Chem. Soc. Perkin Trans. 2, 1976, 141. For a list of reagents that accomplish acyloxy-halo-addition, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 643–644. ¹⁵⁸²Rozen, S.; Lerman, O.; Kol, M.; Hebel, D. J. Org. Chem. 1985, 50, 4753.

¹⁵⁸³Van Brunt, M.P.; Ambenge, R.O.; Weinreb, S.M. J. Org. Chem. **2003**, 68, 3323.

CHAPTER 15


halolactonization.¹⁵⁸⁴

The most common version of this reaction is known as *iodolactonization*,¹⁵⁸⁵ and a typical example is the conversion of **163** to **164**.¹⁵⁸⁶ Bromo lactones and, to a lesser extent, chloro lactones have also been prepared. In general, addition of the halogen to an alkenyl acid, as shown, leads to the halo-lactone. Other reagents include $I^+(collidine)_2 PF_6^{-,1587}$ KI/sodium persulfate.¹⁵⁸⁸ Thallium reagents, along with the halogen, have also been used.¹⁵⁸⁹ When done in the presence of a chiral titanium reagent, I₂, and CuO, lactones are formed with good enantioselectivity.¹⁵⁹⁰ ICl has been used, with formation of a quaternary center at the oxygen-bearing carbon of the lactone.¹⁵⁹¹

In the case of γ , δ -unsaturated acids, 5-membered rings (γ -lactones) are predominantly formed (as shown above; note that Markovnikov's rule is followed), but 6-membered and even 4-membered lactones have also been made by this procedure. There is a gem-dimethyl effect that favors formation of 7–11-membered ring lactones by this procedure.¹⁵⁹²

Formation of halo-lactams (15-43) by a similar procedure is difficult, but the problems have been overcome. Formation of a triflate followed by treatment with iodine leads to the iodo-lactam, 165.¹⁵⁹³

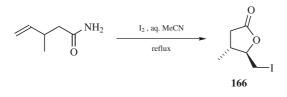
¹⁵⁸⁴For reviews, see Cardillo, G.; Orena, M. *Tetrahedron* **1990**, *46*, 3321; Dowle, M.D.; Davies, D.I. *Chem. Soc. Rev.* **1979**, *8*, 171. For a list of reagents that accomplish this, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 1870–1876. For a review with respect to the stereochemistry of the reaction, see Bartlett, P.A., in Morrison, J.D. *Organic Synthesis*, Vol. 3, Wiley, NY, **1984**, pp. 411–454, 416–425.

¹⁵⁸⁵Klein, J. J. Am. Chem. Soc. **1959**, 81, 3611; van Tamelen, E.E.; Shamma, M. J. Am. Chem. Soc. **1954**, 76, 2315; House, H.O.; Carlson, R.G.; Babad, H. J. Org. Chem. **1963**, 28, 3359; Corey, E.J.; Albonico, S.M.; Koelliker, V.; Schaaf, T.K.; Varma, R.K. J. Am. Chem. Soc. **1971**, 93, 1491.

¹⁵⁸⁶Yaguchi, Y.; Akiba, M.; Harada, M.; Kato, T. Heterocycles 1996, 43, 601.

¹⁵⁸⁷Homsi, F.; Rousseau, G. J. Org. Chem. **1998**, 63, 5255; Simonet, B.; Rousseau, G. J. Org. Chem. **1993**, 58, 4.

¹⁵⁸⁸Royer, A.C.; Mebane, R.C.; Swafford, A.M. Synlett 1993, 899.


¹⁵⁹⁰Inoue, T.; Kitagawa, O.; Kurumizawa, S.; Ochiai, O.; Taguchi, T. *Tetrahedron Lett.* 1995, 36, 1479.
 ¹⁵⁹¹Haas, J.; Piguel, S.; Wirth, T. Org. Lett. 2002, 4, 297.

¹⁵⁹²Simonot, B.; Rousseau, G. Tetrahedron Lett. 1993, 34, 4527.

¹⁵⁹³Knapp, S.; Rodriques, K.E. Tetrahedron Lett. 1985, 26, 1803.

¹⁵⁸⁹See Cambie, R.C.; Rutledge, P.S.; Somerville, R.F.; Woodgate, P.D. *Synthesis* 1988, 1009, and references cited therein.

A related cyclization of *N*-sulfonyl-amino-alkenes and NBS gave the bromolactam,¹⁵⁹⁴ and a dichloro-*N*,*N*-bis(allylamide) was converted to a dichloro-lactam with FeCl₂.¹⁵⁹⁵ It is noted that lactone formation is possible from unsaturated amides. The reaction of 3-methyl *N*,*N*-dimethylpent-4-ene amide with iodine in aqueous acetonitrile, for example, gave iodolactone **166**.¹⁵⁹⁶

OS IX, 516.

15-42 Addition of Sulfur Compounds (Addition of Halogen, Sulfur)

Alkylsulfonyl-chloro-addition, and so on.¹⁵⁹⁷

$$C = C' + RSO_2 X \xrightarrow{CuCl} X' C - C' SO_2 R$$

Sulfonyl halides add to double bonds, to give β -halo sulfones, in the presence of free-radical initiators or UV light. A particularly good catalyst is cuprous chloride.¹⁵⁹⁸ A combination of the anion ArSO₂Na, NaI, and ceric ammonium nitrate converts alkenes to vinyl sulfones.¹⁵⁹⁹ Triple bonds behave similarly, to give β -halo- α , β -unsaturated sulfones.¹⁶⁰⁰ In a similar reaction, sulfenyl chlorides, RSCl, give β -halo thioethers.¹⁶⁰¹ The latter may be free-radical or electrophilic additions, depending on conditions. The addition of MeS and Cl has also been accomplished by treating the alkene with Me₃SiCl and Me₂SO.¹⁶⁰² The use of Me₃SiBr and Me₂SO does not give this result; dibromides (**15-39**) are formed instead. β -Iodo

¹⁵⁹⁵Tseng, C.K.; Teach, E.G.; Simons, R.W. Synth. Commun. 1984, 14, 1027.

¹⁵⁹⁶Ha, H.-J.; Lee, S.-Y.; Park, Y.-S. Synth. Commun. 2000, 30, 3645.

¹⁵⁹⁹Nair, V.; Augustine, A.; George, T.G.; Nair, L.G. Tetrahedron Lett. 2001, 42, 6763.

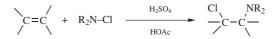
¹⁶⁰⁰Truce, W.E.; Wolf, G.C. J. Org. Chem. 1971, 36, 1727; Amiel, Y. J. Org. Chem. 1974, 39, 3867;
 Zakharkin, L.I.; Zhigareva, G.G. J. Org. Chem. USSR 1973, 9, 918; Okuyama, T.; Izawa, K.; Fueno, T. J. Org. Chem. 1974, 39, 351.

¹⁶⁰¹For reviews, see Rasteikiene, L.; Greiciute, D.; Lin'kova, M.G.; Knunyants, I.L. *Russ. Chem. Rev.* **1977**, *46*, 548; Kühle, E. *Synthesis* **1971**, 563.

¹⁶⁰²Bellesia, F.; Ghelfi, F.; Pagnoni, U.M.; Pinetti, A. J. Chem. Res. (S) 1987, 238. See also, Liu, H.; Nyangulu, J.M. Tetrahedron Lett. 1988, 29, 5467.

¹⁵⁹⁴Tamaru, Y.; Kawamura, S.; Tanaka, K.; Yoshida, Z. Tetrahedron Lett. 1984, 25, 1063.

¹⁵⁹⁷When a general group (e.g., halo) is used, its priority is that of the lowest member of its group (see Ref. 1555). Thus the general name for this transformation is halo-alkylsulfonyl-addition because "halo" has the same priority as "fluoro," its lowest member.


¹⁵⁹⁸Asscher, M.; Vofsi, D. J. Chem. Soc. **1964**, 4962; Truce, W.E.; Goralski, C.T.; Christensen, L.W.; Bavry, R.H. J. Org. Chem. **1970**, 35, 4217; Sinnreich, J.; Asscher, M. J. Chem. Soc. Perkin Trans. 1, **1972**, 1543.

thiocyanates can be prepared from alkenes by treatment with I₂ and isothiocyanatotributylstannane Bu₃SnNCS.¹⁶⁰³ Bromothiocyanation can be accomplished with Br₂ and thallium(I) thiocyanate.¹⁶⁰⁴ Lead (II) thiocyanate reacts with terminal alkynes in the presence of PhICl₂ to give the bis(thiocyanato) alkene, ArC(SCN)–CHSCN.¹⁶⁰⁵ Such compounds were also prepared from alkenes using KSCN and FeCl₃.¹⁶⁰⁶ β-Halo disulfides, formed by addition of arenethiosulfenyl chlorides to double-bond compounds, are easily converted to thiiranes by treatment with sodium amide or sodium sulfide.¹⁶⁰⁷

OS VIII, 212. See also OS VII, 251.

15-43 Addition of Halogen and an Amino Group (Addition of Halogen, Nitrogen)

Dialkylamino-chloro-addition

The groups R₂N and Cl can be added directly to alkenes, allenes, conjugated dienes, and alkynes, by treatment with dialkyl-*N*-chloroamines and acids.¹⁶⁰⁸ The reaction of TsNCl₂ and a ZnCl₂ catalyst gave the chloro tosylamine.¹⁶⁰⁹ These are free-radical additions, with initial attack by the R₂NH^{•+} radical ion.¹⁶¹⁰ *N*-Halo amides RCONHX add RCONH and X to double bonds under the influence of uv light or chromous chloride.¹⁶¹¹ Amines add to allenes in the presence of a palladium catalyst.¹⁶¹² A mixture of *N*-(2-nosyl)NCl₂ and sodium *N*-(2-nosyl)NH⁻ with a CuOTf catalyst reacted with conjugated esters to give the *vicinal* (*E*)-3-chloro-2-amino ester.¹⁶¹³ A variation of this latter reaction was done in an ionic liquid.¹⁶¹⁴

¹⁶⁰³Woodgate, P.D.; Janssen, S.J.; Rutledge, P.S.; Woodgate, S.D.; Cambie, R.C. *Synthesis* **1984**, 1017, and references cited therein. See also, Watanabe, N.; Uemura, S.; Okano, M. *Bull. Chem. Soc. Jpn.* **1983**, 56, 2458.

¹⁶⁰⁴Cambie, R.C.; Larsen, D.S.; Rutledge, P.S.; Woodgate, P.D. J. Chem. Soc. Perkin Trans. 1, 1981, 58.
 ¹⁶⁰⁵Prakash, O.; Sharma, V.; Batra, H.; Moriarty, R.M. Tetrahedron Lett. 2001, 42, 553.

¹⁶⁰⁶Yadav, J.S.; Reddy, B.V.S.; Gupta, M.K. Synthesis 2004, 1983.

¹⁶⁰⁷Fujisawa, T.; Kobori, T. *Chem. Lett.* **1972**, 935. For another method of alkene-thiirane conversion, see Capozzi, F.; Capozzi, G.; Menichetti, S. *Tetrahedron Lett.* **1988**, 29, 4177.

¹⁶⁰⁸For reviews see Mirskova, A.N.; Drozdova, T.I.; Levkovskaya, G.G.; Voronkov, M.G. *Russ. Chem. Rev.* **1989**, *58*, 250; Neale, R.S. *Synthesis* **1971**, 1; Sosnovsky, G.; Rawlinson, D.J. *Adv. Free-Radical Chem.* **1972**, *4*, 203, see pp. 238–249.

¹⁶⁰⁹Li, G.; Wei, H.-X.; Kim, S.H.; Neighbors, M. Org. Lett. **1999**, *1*, 395; Wei, H.-X.; Ki, S.H.; Li, G. Tetrahedron **2001**, *57*, 3869.

¹⁶¹⁰For a review of these species, see Chow, Y.L.; Danen, W.C.; Nelson, S.F.; Rosenblatt, D.H. *Chem. Rev.* **1978**, 78, 243.

¹⁶¹¹Tuaillon, J.; Couture, Y.; Lessard, J. *Can. J. Chem.* **1987**, *65*, 2194, and other papers in this series. For a review, see Labeish, N.N.; Petrov, A.A. *Russ. Chem. Rev.* **1989**, *58*, 1048.

¹⁶¹²Besson, L.; Goré, J.; Cazes, B. Tetrahedron Lett. 1995, 36, 3857.

¹⁶¹³Li, G.; Wei, H.-X.; Kim, S.H. Org. Lett. **2000**, 2, 2249; Li, G.; Wei, H.-X.; Kim, S.H. Tetrahedron **2001**, 57, 8407.

¹⁶¹⁴In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Xu, X.; Kotti, S.R.S.S.; Liu, J.; Cannon, J.F.; Headley, A.D.; Li, G. Org. Lett. **2004**, *6*, 4881.

15-44 Addition of NOX and NO₂X (Addition of Halogen, Nitrogen)

Nitroso-chloro-addition

There are three possible products when NOCl is added to alkenes, a β -halo nitroso compound, an oxime, or a β -halo nitro compound.¹⁶¹⁵ The initial product is always the β -halo nitroso compound,¹⁶¹⁶ but these are stable only if the carbon bearing the nitrogen has no hydrogen. If it has, the nitroso compound tautomerizes to the oxime, H–C–N=O \rightarrow C=N–OH. With some alkenes, the initial β -halo nitroso compound is oxidized by the NOCl to a β -halo nitro compound.¹⁶¹⁷ Many functional groups can be present without interference (e.g., COOH, COOR, CN, OR). The mechanism in most cases is probably simple electrophilic addition, and the addition is usually anti, although syn addition has been reported in some cases.¹⁶¹⁸ Markovnikov's rule is followed, the positive NO going to the carbon that has more hydrogens.

Nitryl chloride NO₂Cl also adds to alkenes, to give β -halo nitro compounds, but this is a free-radical process. The NO₂ goes to the less-substituted carbon.¹⁶¹⁹ Nitryl chloride also adds to triple bonds to give the expected 1-nitro-2-chloro alkenes.¹⁶²⁰ The compound FNO₂ can be added to alkenes¹⁶²¹ by treatment with HF in HNO₃¹⁶²² or by addition of the alkene to a solution of nitronium tetrafluoroborate (NO₂⁺ BF₄⁻) (see **11-2**) in 70% polyhydrogen fluoride–pyridine solution¹⁶²³ (see also **15-37**).

OS IV, 711; V, 266, 863.

15-45 Addition of XN₃ (Addition of Halogen, Nitrogen)

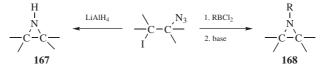
Azido-iodo-addition

¹⁶¹⁵For a review, see Kadzyauskas, P.P.; Zefirov, N.S. Russ. Chem. Rev. 1968, 37, 543.

¹⁶¹⁶For a review of preparations of C-nitroso compounds, see Gowenlock, B.G.; Richter-Addo, G.B. Chem. Rev. 2004, 104, 3315.

¹⁶¹⁷For a review of the preparation of halo nitro compounds, see Shvekhgeimer, G.A.; Smirnyagin, V.A.; Sadykov, R.A.; Novikov, S.S. *Russ. Chem. Rev.* **1968**, *37*, 351.

¹⁶¹⁸For example, see Meinwald, J.; Meinwald, Y.C.; Baker III, T.N. J. Am. Chem. Soc. 1964, 86, 4074.
 ¹⁶¹⁹Shechter, H. Rec. Chem. Prog. 1964, 25, 55–76.


¹⁶²⁰Schlubach, H.H.; Braun, A. Liebigs Ann. Chem. 1959, 627, 28.

¹⁶²¹For a review, see Sharts, C.M.; Sheppard, W.A. Org. React. 1974, 21, 125–406, see pp. 236–243.

¹⁶²²Knunyants, I.L.; German, L.S.; Rozhkov, I.N. Bull Acad. Sci. USSR Div. Chem. Sci. 1963, 1794.

¹⁶²³Olah, G.A.; Nojima, M. Synthesis 1973, 785.

The addition of iodine azide to double bonds gives β -iodo azides.¹⁶²⁴ The reagent can be prepared *in situ* from KI–NaN₃ in the presence of Oxone[®]-wet alumina.¹⁶²⁵ The addition is stereospecific and anti, suggesting that the mechanism involves a cyclic iodonium ion intermediate.¹⁶²⁶ The reaction has been performed on many double-bond compounds, including allenes¹⁶²⁷ and α , β -unsaturated ketones. Similar reactions can be performed with BrN₃¹⁶²⁸ and ClN₃. 1,4-Addition has been found with acyclic conjugated dienes.¹⁶²⁹ In the case of BrN₃, both electrophilic and free-radical mechanisms are important,¹⁶³⁰ while with ClN₃ the additions are chiefly free radical.¹⁶³¹ The compound IN₃ also adds to triple bonds to give β -iodo- α , β -unsaturated azides.¹⁶³²

β-Iodo azides can be reduced to aziridines (**167**) with LiAlH₄¹⁶³³ or converted to *N*-alkyl- or *N*-arylaziridines (**168**) by treatment with an alkyl- or aryldichloroborane followed by a base.¹⁶³⁴ In both cases, the azide is first reduced to the corresponding amine (primary or secondary, respectively) and ring closure (**10-31**) follows. With Chloramine T (TsNCl⁻ Na⁺) and 10% of pyridinium bromide perbromide, however, the reaction with alkenes give an *N*-tosyl aziridine directly.¹⁶³⁵

OS VI, 893.

15-46 Addition of Alkyl Halides (Addition of Halogen, Carbon)

Alkyl-halo-addition¹⁰⁶²

¹⁶²⁴For reviews, see Dehnicke, K. Angew. Chem. Int. Ed. 1979, 18, 507; Hassner, A. Acc. Chem. Res. 1971, 4, 9; Biffin, M.E.C.; Miller, J.; Paul, D.B., in Patai, S. The Chemistry of the Azido Group, Wiley, NY, 1971, pp. 136–147. See Nair, V.; George, T.G.; Sheeba, V.; Augustine, A.; Balagopal, L.; Nair, L.G. Synlett 2000, 1597.

¹⁶²⁵Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. Tetrahedron Lett. 2002, 43, 1201.

¹⁶²⁶See, however, Cambie, R.C.; Hayward, R.C.; Rutledge, P.S.; Smith-Palmer, T.; Swedlund, B.E.; Woodgate, P.D. J. Chem. Soc. Perkin Trans. 1, **1979**, 180.

¹⁶²⁷Hassner, A.; Keogh, J. J. Org. Chem. 1986, 51, 2767.

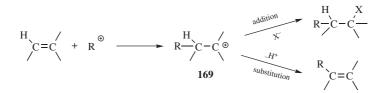
¹⁶²⁸Azido-bromo-addition has also been done with another reagent: Olah, G.A.; Wang, Q.; Li, X.; Prakash, G.K.S. *Synlett* **1990**, 487.

¹⁶²⁹Hassner, A.; Keogh, J. Tetrahedron Lett. 1975, 1575.

¹⁶³⁰Hassner, A.; Teeter, J.S. J. Org. Chem. 1971, 36, 2176.

¹⁶³¹Even IN₃ can be induced to add by a free-radical mechanism [see, e.g., Cambie, R.C.; Jurlina, J.L.; Rutledge, P.S.; Swedlund, B.E.; Woodgate, P.D. *J. Chem. Soc. Perkin Trans. 1*, *1982*, 327]. For a review of free-radical additions of XN₃, see Hassner, A. *Intra-Sci. Chem. Rep. 1970*, *4*, 109.

¹⁶³²Hassner, A.; Isbister, R.J.; Friederang, A. Tetrahedron Lett. 1969, 2939.


¹⁶³³Hassner, A.; Matthews, G.J.; Fowler, F.W. J. Am. Chem. Soc. 1969, 91, 5046.

¹⁶³⁴Levy, A.B.; Brown, H.C. J. Am. Chem. Soc. 1973, 95, 4067.

¹⁶³⁵Ali, S.I.; Nikalje, M.D.; Sudalai, A. Org. Lett. 1999, 1, 705.

1160 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Alkyl halides can be added to alkenes in the presence of a Friedel–Crafts catalyst, most often AlCl₃.¹⁶³⁶ The yields are best for tertiary R. Secondary R can also be used, but primary R give rearrangement products (as with **11-11**). Methyl and ethyl halides, which cannot rearrange to a more stable secondary or tertiary carbocation, give no reaction at all. The attacking species is the carbocation formed from the alkyl halide and the catalyst (see **11-11**).¹⁶³⁷ The addition therefore follows Markovnikov's rule, with the cation going to the carbon with more hydrogens. Substitution is a side reaction, arising from loss of hydrogen from the carbocation formed when an additional molecule of alkene attacks the initially formed carbocation (**169**). Conjugated dienes can add 1,4.¹⁶³⁸ Triple bonds also undergo the reaction, to give vinylic halides.¹⁶³⁹

Simple polyhalo alkanes, such as CCl₄, BrCCl₃, ICF₃ and related molecules, add to alkenes in good yield.¹⁶⁴⁰ These are free-radical additions and require initiation, for example, ¹⁶⁴¹ by peroxides, metal halides (e.g., FeCl₂, CuCl),¹⁶⁴² ruthenium catalysts, ¹⁶⁴³ or UV light. The initial attack is by the carbon, and it goes to the carbon with more hydrogens, as in most free-radical attack:

$$RHC-CH_2 + \bullet CX_3 \longrightarrow RHC-CH_2CX_3 \xrightarrow{CX_4} X_{I} + \bullet CX_3$$

¹⁶³⁷For a discussion of the mechanism, see Pock, R.; Mayr, H.; Rubow, M.; Wilhelm, E. J. Am. Chem. Soc. **1986**, 108, 7767.

¹⁶³⁸Kolyaskina, Z.N.; Petrov, A.A. J. Gen. Chem. USSR 1962, 32, 1067.

¹⁶³⁹See, for example, Maroni, R.; Melloni, G.; Modena, G. J. Chem. Soc. Perkin Trans. 1, 1973, 2491; 1974, 353.

¹⁶⁴⁰For reviews, see Freidlina, R.Kh.; Velichko, F.K. *Synthesis* **1977**, 145; Freidlina, R.Kh.; Chukovskaya, E.C. *Synthesis* **1974**, 477.

¹⁶⁴¹For other initiators, see Matsumoto, H.; Nakano, T.; Takasu, K.; Nagai, Y. J. Org. Chem. **1978**, 43, 1734; Tsuji, J.; Sato, K.; Nagashima, H. *Tetrahedron* **1985**, 41, 393; Bland, W.J.; Davis, R.; Durrant, J.L.A. J. Organomet. Chem. **1985**, 280, 397; Phelps, J.C.; Bergbreiter, D.E.; Lee, G.M.; Villani, R.; Weinreb, S.M. *Tetrahedron Lett.* **1989**, 30, 3915.

¹⁶⁴²For example, see Asscher, M.; Vofsi, D. J. Chem. Soc. 1963, 1887, 3921; J. Chem. Soc. B 1968, 947;
Murai, S.; Tsutsumi, S. J. Org. Chem. 1966, 31, 3000; Martin, P.; Steiner, E.; Streith, J.; Winkler, T.;
Bellus, D. Tetrahedron 1985, 41, 4057. For the addition of CH₂Cl₂ and PhBr, see Mitani, M.; Nakayama,
M.; Koyama, K. Tetrahedron Lett. 1980, 21, 4457.

¹⁶⁴³Simal, F.; Wlodarczak, L.; Demonceau, A.; Noels, A.F. Eur. J. Org. Chem. 2001, 2689.

¹⁶³⁶For a review, see Schmerling, L., in Olah, G.A. *Friedel–Crafts and Related Reactions*, Vol. 2, Wiley, NY, **1964**, pp. 1133–1174. See also, Mayr, H.; Schade, C.; Rubow, M.; Schneider, R. *Angew. Chem. Int. Ed.* **1987**, 26, 1029.

This type of polyhalo alkane adds to halogenated alkenes in the presence of $AlCl_3$ by an electrophilic mechanism. This is called the *Prins reaction* (not to be confused with the other Prins reaction, **16-54**).¹⁶⁴⁴

 α -Iodolactones add to alkenes in the presence of BEt₃/O₂ to give the addition product.¹⁶⁴⁵ Other α -iodoesters add under similar conditions to give the lactone.¹⁶⁴⁶ Iodoesters also add to alkenes in the presence of BEt₃ to give iodo-esters that have not cyclized.¹⁶⁴⁷

A variant of the free-radical addition method has been used for ring closure (see **15-30**).

For another method of adding R and I to a triple bond (see **15-23**).

OS II, 312; IV, 727; V, 1076; VI, 21; VII, 290.

15-47 Addition of Acyl Halides (Addition of Halogen, Carbon)

Acyl-halo-addition

Acyl halides have been added to many alkenes, in the presence of Friedel–Crafts catalysts, although polymerization is a problem. The reaction has been applied to straight-chain, branched, and cyclic alkenes, but to very few containing functional groups, other than halogen.¹⁶⁴⁸ The mechanism is similar to that of **15-46**, and, as in that case, substitution competes (**12-16**). Increasing temperature favors substitution,¹⁶⁴⁹ and good yields of addition products can be achieved if the temperature is kept under 0°C. The reaction usually fails with conjugated dienes, since polymerization predominates.¹⁶⁵⁰ Iodo acetates have been formed from alkenes using iodine, Pb(OAc)₂ in acetic acid.¹⁶⁵¹ The reaction can be performed on triple-bond compounds, producing compounds of the form $\frac{\text{RCO}-\text{C}=\text{C}-\text{Cl}}{||}$.¹⁶⁵² A *formyl* group and a halogen can be added to triple bonds by treatment with *N*,*N*-disubstituted formamides

¹⁶⁴⁴For a review with respect to fluoroalkenes, see Paleta, O. Fluorine Chem. Rev. 1977, 8, 39.

¹⁶⁴⁵Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Synlett 1998, 1351.

¹⁶⁴⁶Yorimitsu, H.; Nakamura, T.; Shinokubo, H.; Oshima, K. J. Org. Chem. 1998, 63, 8604.

¹⁶⁴⁷Baciocchi, E.; Muraglia, E. Tetrahedron Lett. 1994, 35, 2763.

¹⁶⁴⁸For reviews, see Groves, J.K. *Chem. Soc. Rev.* **1972**, *1*, 73; House, H.O. *Modern Synthetic Reaction*, 2nd ed., W.A. Benjamin, NY, **1972**, pp. 786–797; Nenitzescu, C.D.; Balaban, A.T., in Olah, G.A. *Friedel–Crafts and Related Reactions*, Vol. 3, Wiley, NY, **1964**, pp. 1033–1152.

¹⁶⁴⁹Jones, N.; Taylor, H.T.; Rudd, E. J. Chem. Soc. 1961, 1342.

¹⁶⁵⁰For examples of 1,4-addition at low temperatures, see Melikyan, G.G.; Babayan, E.V.; Atanesyan, K.A.; Badanyan, Sh.O. *J. Org. Chem. USSR* **1984**, *20*, 1884.

¹⁶⁵¹Bedekar, A.V.; Nair, K.B.; Soman, R. Synth. Commun. 1994, 24, 2299.

¹⁶⁵²For example, see Nifant'ev, E.Ye.; Grachev, M.A.; Bakinovskii, L.V.; Kara-Murza, C.G.; Kochetkov, N.K. J. Appl. Chem. USSR 1963, 36, 646; Savenkov, N.F.; Khokhlov, P.S.; Nazarova, T.A.; Mochalkin, A.I. J. Org. Chem. USSR 1973, 9, 914; Martens, H.; Janssens, F.; Hoornaert, G. Tetrahedron 1975, 31, 177; Brownstein, S.; Morrison, A.; Tan, L.K. J. Org. Chem. 1985, 50, 2796.

and POCl₃ (Vilsmeier conditions, see **11-18**).¹⁶⁵³ Chloroformates add to allenes in the presence of a rhodium catalyst go give a β -chloro, β , γ -unsaturated ester.¹⁶⁵⁴ OS **IV**, 186; **VI**, 883; **VIII**, 254.

B. Oxygen, Nitrogen, or Sulfur on One or Both Sides

15-48 Hydroxylation (Addition of Oxygen, Oxygen)

Dihydroxy-addition

There are many reagents that add two OH groups to a double bond.¹⁶⁵⁵ The most common are OsO_4^{1656} and alkaline KMnO₄,¹⁶⁵⁷ which give syn addition from the less-hindered side of the double bond. Less substituted double bonds are oxidized more rapidly than more substituted alkenes.¹⁶⁵⁸ Permanganate adds to alkenes to form an intermediate manganate ester (**171**), which is decomposed under alkaline conditions. Bases catalyze the decomposition of **171** by coordinating with the ester. Osmium tetroxide adds rather slowly but almost quantitatively to form a cyclic ester, such as **170**, as an intermediate, which can be isolated,¹⁶⁵⁹ but is usually decomposed solution, with sodium sulfite in ethanol or other reagents. The chief drawback to the use of OsO_4 is expensive and highly toxic, but the reaction is made catalytic in OsO_4 by using *N*-methylmorpholine-*N*-oxide (NMO),¹⁶⁶⁰ *tert*-butyl hydroperoxide in alkaline solution,¹⁶⁶¹ H₂O₂,¹⁶⁶² peroxyacid,¹⁶⁶³ flavin and

¹⁶⁵⁶For a review, see Schröder, M. Chem. Rev. **1980**, 80, 187. OsO₄ was first used for this purpose by Criegee, R. Liebigs Ann. Chem. **1936**, 522, 75. Also see, Norrby, P.-O.; Gable, K.P. J. Chem. Soc. Perkin Trans. 2, **1996**, 171; Lohray, B.B.; Bhushan, V. Tetrahedron Lett. **1992**, 33, 5113.

¹⁶⁵⁷For a review, see Fatiadi, A.J. Synthesis 1987, 85, 86. See Nelson, D.J.; Henley, R.L. Tetrahedron Lett. 1995, 36, 6375 for rate of oxidation of alkenes.

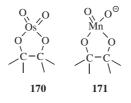
¹⁶⁵⁸Crispino, G.A.; Jeong, K.-S.; Kolb, H.C.; Wang, Z.-M.; Xu, D.; Sharpless, K.B. J. Org. Chem. 1993, 58, 3785.

¹⁶⁵⁹For a molecular-orbital study of the formation of **170**, see Jørgensen, K.A.; Hoffmann, R. J. Am. Chem. Soc. **1986**, 108, 1867.

¹⁶⁶⁰VanRheenen, V.; Kelly, R.C.; Cha, D.Y. *Tetrahedron Lett.* 1976, 1973; Iwasawa, N.; Kato, T.;
 Narasaka, K. *Chem. Lett.* 1988, 1721. See also, Ray, R.; Matteson, D.S. *Tetrahedron Lett.* 1980, 449.
 ¹⁶⁶¹Akashi, K.; Palermo, R.E.; Sharpless, K.B. J. Org. Chem. 1978, 43, 2063.

¹⁶⁶²For a review, see Rylander, P.N. Organic Syntheses with Noble Metal Catalysts, Academic Press, NY,

1973, pp. 121–133. See Venturello, C.; Gambaro, M. Synthesis 1989, 295; Usui, Y.; Sato, K.; Tanaka, M. Angew. Chem. Int. Ed. 2003, 42, 5623.


¹⁶⁶³Bergstad, K.; Piet, J.J.N.; Bäckvall, J.-E. J. Org. Chem. 1999, 64, 2545.

¹⁶⁵³Yen, V.Q. Ann. Chim. (Paris) 1962, [13] 7, 785.

¹⁶⁵⁴Hua, R.; Tanaka, M. Tetrahedron Lett. 2004, 45, 2367.

¹⁶⁵⁵For reviews, see Hudlický, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, 1990, pp. 67–73; Haines, A.H. Methods for the Oxidation of Organic Compounds, Academic Press, NY, 1985, pp. 73–98, 278–294; Sheldon, R.A.; Kochi, J.K. Metal-Catalyzed Oxidations of Organic Compounds, Academic Press, NY, 1981, pp. 162–171, 294–296. For a list of reagents, with references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 996–1003.

TEAA,¹⁶⁶⁴ $K_3Fe(CN)_6^{1665}$ and non-heme iron catalysts.¹⁶⁶⁶ Polymer-bound OsO₄,¹⁶⁶⁷ and encapsulated OsO₄ have been shown to give the diol in the presence of NMO,¹⁶⁶⁸ as well as OsO₄⁻² on an ion exchange resin.¹⁶⁶⁹ Dihydroxylation has also been reported in ionic liquids,¹⁶⁷⁰ and with fluorous osmium tetroxide.¹⁶⁷¹ A catalytic amount of K₂OsO₄ with a Cinchona alkaloid on a ordered inorganic support, in the presence of K₃Fe(CN)₆, gives the cis-diol.¹⁶⁷² Oxidation of pent-4-en-1-ol to valerolactone was accomplished with Oxone[®] and a catalytic amount of OsO₄ in DMF.¹⁶⁷³

The end-product of the reaction of either potassium permanganate or osmium tetroxide under the conditions described above is a 1,2-diol. Potassium permanganate is a strong oxidizing agent and can oxidize the glycol product¹⁶⁷⁴ (see **19-7** and **19-10**). In acid and neutral solution it always does so; hence glycols must be prepared with alkaline¹⁶⁷⁵ permanganate, but the conditions must be mild. Even so, yields are seldom >50%, although they can be improved with phase-transfer catalysis¹⁶⁷⁶ or increased stirring.¹⁶⁷⁷ The use of ultrasound with permanganate

- ¹⁶⁶⁵Minato, M.; Yamamoto, K.; Tsuji, J. J. Org. Chem. 1990, 55, 766; Torii, S.; Liu, P.; Tanaka, H. Chem.
- Lett. 1995, 319; Soderquist, J.A.; Rane, A.M.; López, C.J. Tetrahedron Lett. 1993, 34, 1893. See Corey,
- E.J.; Noe, M.C.; Grogan, M.J. *Tetrahedron Lett.* **1994**, *35*, 6427; Imada, Y.; Saito, T.; Kawakami, T.; Murahashi, S.-I. *Tetrahedron Lett.* **1992**, *33*, 5081 for oxidation using an asymmetric ligand.
- ¹⁶⁶⁶Chen, K.; Costas, M.; Kim, J.; Tipton, A.K.; Que, Jr., L. J. Am. Chem. Soc. 2002, 124, 3026.
- ¹⁶⁶⁷Cainelli, G.; Contento, M.; Manescalchi, F.; Plessi, L. *Synthesis* **1989**, 45; Ley, S.V.; Ramarao, C.; Lee, A.-L.; Østergaard, N.; Smith, S.C.; Shirley, I.M. *Org. Lett.* **2003**, *5*, 185.

¹⁶⁶⁸Nagayama, S.; Endo, M.; Kobayashi, S. J. Org. Chem. **1998**, 63, 6094.

¹⁶⁶⁹Choudary, B.M.; Chowdari, N.S.; Jyothi, K.; Kantam, M.L. J. Am. Chem. Soc. **2002**, 124, 5341.

¹⁶⁷⁰In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Yao, Q. Org. Lett. 2002, 4, 2197; Closson, A.; Johansson, M.; Bäckvall, J.-E. Chem. Commun. 2004, 1494. In emim BF₄, 1-ethyl-3methylimidazolium tetrafluoroborate: Yanada, R.; Takemoto, Y. Tetrahedron Lett. 2002, 43, 6849.

¹⁶⁷¹Huang, Y.; Meng, W.-D.; Qing, F.L. *Tetrahedron Lett.* **2004**, *45*, 1965.

¹⁶⁷²Motorina, I.; Crudden, C.M. Org. Lett. 2001, 3, 2325.

¹⁶⁷³Schomaker, J.M.; Travis, B.R.; Borhan, B. Org. Lett. 2003, 5, 3089.

¹⁶⁷⁴Or give more highly oxidized products, such as α-hydroxy ketones without going through the glycols. See, for example, Wolfe, S.; Ingold, C.F.; Lemieux, R.U. *J. Am. Chem. Soc.* **1981**, *103*, 938; Wolfe, S.; Ingold, C.F. *J. Am. Chem. Soc.* **1981**, *103*, 940. Also see, Lohray, B.B.; Bhushan, V.; Kumar, R.K. *J. Org. Chem.* **1994**, *59*, 1375.

¹⁶⁶⁴Jonsson, S.Y.; Färnegårdh, K.; Bäckvall, J.-E. J. Am. Chem. Soc. 2001, 123, 1365.

¹⁶⁷⁵The role of the base seems merely to be to inhibit acid-promoted oxidations. The base does not appear to play any part in the mechanism: Taylor, J.E.; Green, R. *Can. J. Chem.* **1985**, *63*, 2777.

¹⁶⁷⁶See, for example, Weber, W.P.; Shepherd, J.P. *Tetrahedron Lett.* **1972**, 4907; Ogino, T.; Mochizuki, K. *Chem. Lett.* **1979**, 443.

¹⁶⁷⁷Taylor, J.E.; Williams, D.; Edwards, K.; Otonnaa, D.; Samanich, D. Can. J. Chem. **1984**, 62, 11; Taylor, J.E. Can. J. Chem. **1984**, 62, 2641.

dihydroxylation has resulted in good yields of the diol.¹⁶⁷⁸ There is evidence that cyclic esters (**171**) are intermediates for OsO_4 dihydroxylation.¹⁶⁷⁹ This reaction is the basis of the *Baeyer test* for the presence of double bonds. The oxidation is compatible with a number of functional groups, including trichloroacetamides.¹⁶⁸⁰

Anti hydroxylation can be achieved by treatment with H_2O_2 and formic acid. In this case, epoxidation (15-50) occurs first, followed by an S_N2 reaction, which results in overall anti addition:

The same result can be achieved in one step with *m*-chloroperoxybenzoic acid and water.¹⁶⁸¹ Overall anti addition can also be achieved by the method of Prévost (the *Prévost reaction*). In this method, the alkene is treated with iodine and silver benzoate in a 1:2 molar ratio. The initial addition is anti and results in a β -halo benzoate (**172**). These can be isolated, and this represents a method of addition of IOCOPh. However, under the normal reaction conditions, the iodine is replaced by a second PhCOO group. This is a nucleophilic substitution reaction, and it operates by the neighboring-group mechanism (p. 446), so the groups are still anti:

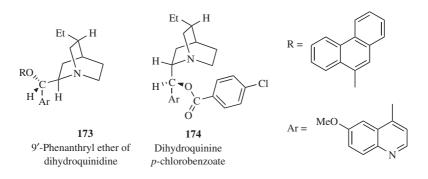
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} C = C \end{array} & \begin{array}{c} I_2 \end{array} & \begin{array}{c} I \\ PhCOOAg \end{array} & \begin{array}{c} C - C \\ OCOPh \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} PhOCO \\ C - C \\ OCOPh \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} HO \\ C - C \\ OCOPh \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} HO \\ C - C \\ OH \end{array} \end{array}$$

Hydrolysis of the ester does not change the configuration. The *Woodward modification* of the Prévost reaction is similar, but results in overall syn hydroxylation.¹⁶⁸² The alkene is treated with iodine and silver acetate in a 1:1 molar ratio in acetic acid containing water. Here again, the initial product is a β -halo ester; the addition is anti and a nucleophilic replacement of the iodine occurs. However, in the presence of water, neighboring-group participation is prevented or greatly decreased by solvation of the ester function, and the mechanism is the normal S_N2 process,¹⁶⁸³

¹⁶⁸²See Brimble, M.A.; Nairn, M.R. J. Org. Chem. 1996, 61, 4801.

¹⁶⁷⁸Varma, R.S.; Naicker, K.P. Tetrahedron Lett. 1998, 39, 7463.

¹⁶⁷⁹For some recent evidence, see Lee, D.G.; Chen, T. J. Am. Chem. Soc. **1989**, 111, 7534; Ogino, T.; Hasegawa, K.; Hoshino, E. J. Org. Chem. **1990**, 55, 2653. See, however, Freeman, F.; Chang, L.Y.; Kappos, J.C.; Sumarta, L. J. Org. Chem. **1987**, 52, 1461; Freeman, F.; Kappos, J.C. J. Org. Chem. **1989**, 54, 2730, and other papers in this series; Perez-Benito, J.F.; Lee, D.G. Can. J. Chem. **1985**, 63, 3545.


¹⁶⁸⁰Donohoe, T.J.; Blades, K.; Moore, P.R.; Waring, M.J.; Winter, J.J.G.; Helliwell, M.; Newcombe, N.J.; Stemp, G. J. Org. Chem. 2002, 67, 7946.

¹⁶⁸¹Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. Synth. Commun. 1989, 19, 1939.

¹⁶⁸³For another possible mechanism that accounts for the stereochemical result of the Woodward method, see Woodward, R.B.; Brutcher, Jr., F.V. J. Am. Chem. Soc. **1958**, 80, 209.

so the monoacetate is syn and hydrolysis gives the glycol that is the product of overall syn addition. Although the Woodward method results in overall syn addition, the product may be different from that with OsO₄ or KMnO₄, since the overall syn process is from the more-hindered side of the alkene.¹⁶⁸⁴ Both the Prévost and the Woodward methods¹⁶⁸⁵ have also been carried out in high yields with thallium(I) acetate and thallium(I) benzoate instead of the silver carboxylates.¹⁶⁸⁶ Note that cyclic sulfates can be prepared from alkenes by reaction with PhIO and SO₃•DMF.¹⁶⁸⁷

With suitable substrates, addition of two OH groups creates one new stereogenic center from a terminal alkene and two new stereogenic centers from internal alkenes. Addition to alkenes of the form $RCH=CH_2$ has been made enantioselective, and addition to RCH=CHR' both diastereoselective¹⁶⁸⁸ and enantioselective,¹⁶⁸⁹ by using chiral additives or chiral catalysts,¹⁶⁹⁰ such as **173**, **174** (derivatives of the

¹⁶⁸⁴For another method of syn hydroxylation, which can be applied to either face, see Corey, E.J.; Das, J. *Tetrahedron Lett.* **1982**, *23*, 4217.

¹⁶⁸⁵For some related methods, see Jasserand, D.; Girard, J.P.; Rossi, J.C.; Granger, R. *Tetrahedron Lett.* 1976, 1581; Ogata, Y.; Aoki, K. J. Org. Chem. 1966, 31, 1625; Mangoni, L.; Adinolfi, M.; Barone, G.; Parrilli, M. *Tetrahedron Lett.* 1973, 4485; Gazz. Chim. Ital. 1975, 105, 377; Horiuchi, C.A.; Satoh, J.Y. Chem. Lett. 1988, 1209; Campi, E.M.; Deacon, G.B.; Edwards, G.L.; Fitzroy, M.D.; Giunta, N.; Jackson, W.R.; Trainor, R. J. Chem. Soc., Chem. Commun. 1989, 407.

¹⁶⁸⁶Cambie, R.C.; Hayward, R.C.; Roberts, J.L.; Rutledge, P.S. J. Chem. Soc. Perkin Trans. 1, **1974**, 1858, 1864; Cambie, R.C.; Rutledge, P.S. Org. Synth. VI, 348.

¹⁶⁸⁷Robinson, R.I.; Woodward, S. Tetrahedron Lett. 2003, 44, 1655.

¹⁶⁸⁸For diastereoselective, but not enantioselective, addition of OsO₄, see Cha, J.K.; Christ, W.J.; Kishi, Y. *Tetrahedron* **1984**, 40, 2247; Stork, G.; Kahn, M. *Tetrahedron Lett.* **1983**, 24, 3951; Vedejs, E.; McClure, C.K. *J. Am. Chem. Soc.* **1986**, 108, 1094; Evans, D.A.; Kaldor, S.W. *J. Org. Chem.* **1990**, 55, 1698.

¹⁶⁸⁹Lohray, B.B. Tetrahedron Asymmetry 1992, 3, 1317.

¹⁶⁹⁰For a review of enantioselective oxidation methodologies, see Bonini, C.; Righi, G. *Tetrahedron* **2002**, 58, 4981. For a study using triazines as a new class of ligand, see McNamara, C.A.; King, F.; Bradley, M. *Tetrahedron Lett.* **2004**, 45, 8527. See also, Kuang, Y.-Q.; Zhang, S.-Y.; Jiang, R.; Wei, L.-L. *Tetrahedron Lett.* **2002**, 43, 3669; Jiang, R.; Kuang, Y.; Sun, X.; Zhang, S. *Tetrahedron Asymmetry* **2004**, 15, 743. naturally occurring quinine and quinuclidine),¹⁶⁹¹ along with OsO₄, in what is called *Sharpless asymmetric dihydroxylation*.¹⁶⁹² Other chiral ligands¹⁶⁹³ have also been used, as well as polymer¹⁶⁹⁴ and silica-bound¹⁶⁹⁵ *Cinchona* alkaloids. These amines bind to the OsO₄ *in situ* as chiral ligands, causing it to add asymmetrically.¹⁶⁹⁶ This has been done both with the stoichiometric and with the catalytic method.¹⁶⁹⁷ The catalytic method has been extended to conjugated dienes, which give tetrahydroxy products diastereoselectively,¹⁶⁹⁸ and to conjugated ketones.¹⁶⁹⁹ Asymmetric dihydroxylation has also been reported with chiral alkenes.¹⁷⁰⁰ Ligands **173** and **174** not only cause enantioselective addition, but also accelerate the reaction, so that they may be useful even where enantioselective addition is not required.¹⁷⁰¹ Although **173** and **174** are not enantiomers, they give enantioselective addition to a given alkene in the opposite sense; for example, styrene predominantly gave the (*R*)-diol with **173**, and the

¹⁶⁵²Kolb, H.C.; Van Nieuwenhze, M.S.; Sharpless, K.B. *Chem. Rev.* **1994**, 94, 2483. Also see, Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, **2001**, pp. 248–254.

¹⁶⁹³Wang, L.; Sharpless, K.B. J. Am. Chem. Soc. **1992**, 114, 7568; Xu, D.; Crispino, G.A.; Sharpless, K.B. J. Am. Chem. Soc. **1992**, 114, 7570; Corey, E.J.; Jardine, P.D.; Virgil, S.; Yuen, P.; Connell, R.D. J. Am. Chem. Soc. **1989**, 111, 9243; Corey, E.J.; Lotto, G.I. Tetrahedron Lett. **1990**, 31, 2665; Tomioka, K.; Nakajima, M.; Koga, K. J. Am. Chem. Soc. **1987**, 109, 6213; Tetrahedron Lett. **1990**, 31, 1741; Rosini, C.; Tanturli, R.; Pertici, P.; Salvadori, P. Tetrahedron Asymmetry **1996**, 7, 2971; Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. **1992**, 57, 2768.

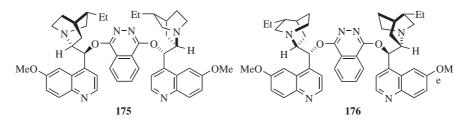
¹⁶⁹⁴Bolm, C.; Gerlach, A. *Eur. J. Org. Chem.* **1998**, 21; Lohray, B.B.; Nandanan, E.; Bhushan, V. *Tetrahedron Asymmetry* **1996**, 7, 2805; Lohray, B.B.; Thomas, A.; Chittari, P.; Ahuja, J.; Dhal, P.K. *Tetrahedron Lett.* **1992**, 33, 5453. For a review, see Karjalainen, J.K.; Hormi, O.E.O.; Sherrington, D.C. *Tetrahedron Asymmetry* **1998**, 9, 1563.

¹⁶⁹⁵Song, C.E.; Yang, J.W.; Ha, H.-J. *Tetrahedron Asymmetry* **1997**, 8, 841.

¹⁶⁹⁶For discussions of the mechanism of the enantioselectivity, see Corey, E.J.; Noe, M.C. J. Am. Chem. Soc. 1996, 118, 319; Norrby, P.-O.; Kolb, H.C.; Sharpless, K.B. J. Am. Chem. Soc. 1994, 116, 8470; Veldkamp, A.; Frenking, G. J. Am. Chem. Soc. 1994, 116, 4937; Wu, Y.-D.; Wang, Y.; Houk, K.N. J. Org. Chem. 1992, 57, 1362; Jørgensen, K.A. Tetrahedron Lett. 1990, 31, 6417. See Nelson, D.W.; Gypser, A.; Ho, P.T.; Kolb, H.C.; Kondo, T.; Kwong, H.-L.; McGrath, D.V.; Rubin, A.E.; Norrby, P.-O.; Gable, K.P.; Sharpless, K.B. J. Am. Chem. Soc. 1997, 119, 1840 for a discussion of electronic effects and Kolb, H.C.; Andersson, P.G.; Sharpless, K.B. J. Am. Chem. Soc. 1994, 116, 1278 for a kinetic study.

¹⁶⁹⁷For other examples of asymmetric dihydroxylation, see Yamada, T.; Narasaka, K. Chem. Lett. 1986, 131; Tokles, M.; Snyder, J.K. Tetrahedron Lett. 1986, 27, 3951; Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L.; Stefanelli, S. Tetrahedron Lett. 1987, 28, 3139; Hirama, M.; Oishi, T.; Itô, S. J. Chem. Soc., Chem. Commun. 1989, 665.

¹⁶⁹⁸Park, C.Y.; Kim, B.M.; Sharpless, K.B. Tetrahedron Lett. 1991, 32, 1003.


¹⁶⁹⁹Walsh, P.J.; Sharpless, K.B. Synlett 1993, 605.

¹⁷⁰⁰Oishi, T.; Iida, K.; Hirama, M. Tetrahedron Lett. 1993, 34, 3573.

¹⁷⁰¹See Jacobsen, E.N.; Marko, I.; France, M.B.; Svendsen, J.S.; Sharpless, K.B. *J. Am. Chem. Soc.* **1989**, 111, 737.

¹⁶⁹¹Wai, J.S.M.; Marko, I.; Svendsen, J.S.; Finn, M.G.; Jacobsen, E.N.; Sharpless, K.B. J. Am. Chem. Soc. 1989, 111, 1123; Kwong, H.; Sorato, C.; Ogina, Y.; Chen, H.; Sharpless, K.B. Tetrahedron Lett. 1990, 31, 2999; Shibata, T.; Gilheany, D.C.; Blackburn, B.K.; Sharpless, K.B. Tetrahedron Lett. 1990, 31, 3817; Sharpless, K.B.; Amberg, W.; Beller, M.; Chens, H.; Hartung, J.; Kawanami, Y.; Lübben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. 1991, 56, 4585.

(S)-diol with 174.¹⁷⁰² Note that ionic liquids have been used in asymmetric dihydroxylation.¹⁷⁰³

Two phthalazine derivatives,¹⁷⁰⁴ (DHQD)₂PHAL (**175**) and (DHQ)₂PHAL (**176**) used in conjunction with an osmium reagent improve the efficiency and ease of use, and are commercial available as AD-mix- β^{TM} (using **175**) and AD-mix- α^{TM} (using **176**). Catalyst **175** is prepared from dihydroquinidine (DHQD) and 1,4-dichlorophthalazine (PHAL), and **176** is prepared from dihydroquinine (DHQ) and PHAL. The actual oxidation labeled AD-mix α - or β -uses **176** or **175**, respectively, mixed with potassium osmate [K₂OSO₂(OH)₄], powdered K₃Fe(CN)₆, and powdered K₂CO₃ in an aqueous solvent mixture.¹⁷⁰⁵ These additives have been used in conjunction with microencapsulated OsO₄,¹⁷⁰⁵ and polymer bound **175** has been used.¹⁷⁰⁶ A catalytic amount of flavin has been used.¹⁷⁰⁷ Both **175**¹⁷⁰⁸ and **176**¹⁷⁰⁹ have been used to generate diols with high enantioselectivity. Oxidation of a terminal alkene with AD-mix and then oxidation with TEMPO/NaOCI/NaOCl₂ leads to α -hydroxyl carboxylic acids with high enantioselectivity.¹⁷¹⁰

Enantioselective and diastereoselective addition have also been achieved by using preformed derivatives of OsO_4 , already containing chiral ligands,¹⁷¹¹ and by the use of OsO_4 on alkenes that have a chiral group elsewhere in the molecule.¹⁷¹²

¹⁷⁰³See Branco, L.C.; Afonso, C.A.M. J. Org. Chem. 2004, 69, 4381; Branco, L.C.; Afonso, C.A.M. Chem. Commun. 2002, 3036.

¹⁷⁰⁴Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Org. Chem.* **1992**, *57*, 2768.

¹⁷⁰⁵Kobayashi, S.; Ishida, T.; Akiyama, R. Org. Lett. 2001, 3, 2649.

¹⁷⁰⁶Kuang, Y.-Q.; Zhang, S.-Y.; Wei, L.-L. Tetrahedron Lett. 2001, 42, 5925.

¹⁷⁰⁷Jonsson, S.Y.; Adolfsson, H.; Bäckvall, J.-E. Org. Lett. 2001, 3, 3463.

¹⁷⁰⁸Krief, A.; Colaux-Castillo, C. Tetrahedron Lett. 1999, 40, 4189.

¹⁷⁰⁹Junttila, M.H.; Hormi, O.E.O. J. Org. Chem. 2004, 69, 4816.

¹⁷¹⁰Aladro, F.J.; Guerra, I.M.; Moreno-Dorado, F.J.; Bustamante, J.M.; Jorge, Z.D.; Massanet, G.M. *Tetrahedron Lett.* **2000**, *41*, 3209.

¹⁷¹¹Kokubo, T.; Sugimoto, T.; Uchida, T.; Tanimoto, S.; Okano, M. J. Chem. Soc., Chem. Commun. **1983**, 769.

¹⁷¹²Hauser, F.M.; Ellenberger, S.R.; Clardy, J.C.; Bass, L.S. J. Am. Chem. Soc. **1984**, 106, 2458; Johnson, C.R.; Barbachyn, M.R. J. Am. Chem. Soc. **1984**, 106, 2459.

¹⁷⁰²Jacobsen, E.N.; Marko, I.; Mungall, W.S.; Schröder, G.; Sharpless, K.B. *J. Am. Chem. Soc.* **1988**, *110*, 1968.

Alkenes can also be oxidized with metallic acetates such as lead tetraacetate¹⁷¹³ or thallium(III) acetate¹⁷¹⁴ to give bis(acetates) of glycols.¹⁷¹⁵ Oxidizing agents, such as benzoquinone, MnO₂, or O₂, along with palladium acetate, have been used to convert conjugated dienes to 1,4-diacetoxy-2-alkenes (1,4-addition).¹⁷¹⁶ Sodium periodate and sulfuric acid in aqueous media converts conjugated esters to dihydroxy esters.¹⁷¹⁷ Diols are also produced by the reaction of a terminal alkyne with Bu₃SnH, followed by ozonolysis, followed by reduction with BH₃•SMe₂.¹⁷¹⁸ 1,2-Diols are also generated from terminal alkynes by two sequential reactions with a platinum catalyst, and then a palladium catalyst, both with HSiCl₃, and a final oxidation with H₂O₂–KF.¹⁷¹⁹

1,2-Dithiols can be prepared from alkenes.¹⁷²⁰

OS II, 307; III, 217; IV, 317; V, 647; VI, 196, 342, 348; IX, 251, 383.

15-49 Dihydroxylation of Aromatic Rings

Dihydroxy-addition

One π -bond of an aromatic ring can be converted to a cyclohexadiene 1,2-diol by reaction with enzymes associated with *Pseudomonas putida*.¹⁷²¹ A variety of substituted aromatic compounds can be oxidized, including bromobenzene, chlorobenzene, ¹⁷²² and toluene.¹⁷²³ In these latter cases, introduction of the hydroxyl

¹⁷¹⁵For another method, see Fristad, W.E.; Peterson, J.R. Tetrahedron 1984, 40, 1469.

¹⁷¹⁷Plietker, B.; Niggemann, M. Org. Lett. 2003, 5, 3353.

¹⁷¹⁸Gómez, A.M.; Company, M.D.; Valverde, S.; López, J.C. Org. Lett. 2002, 4, 383.

¹⁷¹⁹Shimada, T.; Mukaide, K.; Shinohara, A.; Han, J.W.; Hayashi, T. *J. Am. Chem. Soc.* **2004**, *124*, 1584. ¹⁷²⁰Elgemeie, G.H.; Sayed, S.H. *Synthesis* **2001**, 1747.

¹⁷²¹Gibson, D.T.; Koch, J.R.; Kallio, R.E. *Biochemistry* **1968**, 7, 2653; Brown, S.M., in Hudlicky, T. *Organic Synthesis: Theory and Practice*, JAI Press, Greenwich, CT., **1993**, Vol. 2, p. 113; Carless, H.A.J. *Tetrahedron Asymmetry* **1992**, *3*, 795; Widdowson, D.A.; Ribbons, D.A.; Thomas, S.D. Janssenchimica Acta **1990**, *8*, 3.

¹⁷¹³For a review, see Moriarty, R.M. Sel Org. Transform. 1972, 2, 183–237.

¹⁷¹⁴See, for example, Uemura, S.; Miyoshi, H.; Tabata, A.; Okano, M. *Tetrahedron* **1981**, *37*, 291. For a review of the reactions of thallium (III) compounds with alkenes, see Uemura, S., in Hartley, F.R. *The Chemistry of the Metal–Carbon Bond*, Vol. 4, Wiley, NY, **1987**, pp. 473–538, 497–513. For a review of thallium (III) acetate and trifluoroacetate, see Uemura, S., in Pizey, J.S. *Synthetic Reagents*, Vol. 5, Wiley, NY, **1983**, pp. 165–187.

¹⁷¹⁶See Bäckvall, J.E.; Awasthi, A.K.; Renko, Z.D. *J. Am. Chem. Soc.* **1987**, *109*, 4750, and references cited therein. For articles on this and related reactions, see Bäckvall, J.E. Bull. Soc. Chim. Fr. **1987**, 665; *New. J. Chem.* **1990**, *14*, 447. For another method, see Uemura, S.; Fukuzawa, S.; Patil, S.R.; Okano, M. J. Chem. Soc. Perkin Trans. **1**, **1985**, 499.

¹⁷²²Gibson, D.T.; Koch, J.R.; Schuld, C.L.; Kallio, R.E. *Biochemistry* **1968**, *7*, 3795; Hudlicky, T.; Price, J.D. *Synlett.* **1990**, 159.

¹⁷²³Gibson, D.T.; Hensley, M.; Yoshioka, H.; Mabry, T.J. Biochemsitry 1970, 9, 1626.

CHAPTER 15

groups generates a chiral molecule that can be used as a template for asymmetric syntheses.¹⁷²⁴

OS X, 217.

15-50 Epoxidation (Addition of Oxygen, Oxygen)

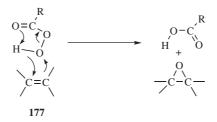
epi-Oxy-addition

Alkenes can be epoxidized with many peroxyacids,¹⁷²⁵ of which *m*-chloroperoxybenzoic has been the most often used. The reaction, called the *Prilezhaev reaction*, has wide utility.¹⁷²⁶ Alkyl, aryl, hydroxyl, ester, and other groups may be present, although not amino groups, since these are affected by the reagent. Electron-donating groups increase the rate, and the reaction is particularly rapid with tetraalkyl alkenes. Conditions are mild and yields are high. Other peroxyacids, especially peroxyacetic and peroxybenzoic, are also used; trifluoroperoxyacetic acid¹⁷²⁷ and 3,5-dinitroperoxybenzoic acid¹⁷²⁸ are particularly reactive ones. Transition metal catalysts can facilitate epoxidation of alkenes at low temperatures or with alkenes that may otherwise react sluggishly.¹⁷²⁹ Magnesium monoperoxyphthalate (MMPP)¹⁷³⁰ is commercially available, and has been

¹⁷²⁷Emmons, W.D.; Pagano, A.S. J. Am. Chem. Soc. 1955, 77, 89.

¹⁷²⁸Rastetter, W.H.; Richard, T.J.; Lewis, M.D. J. Org. Chem. 1978, 43, 3163.

 ¹⁷²⁴Hudlicky, T.; Gonzalez, D.; Gibson, D.T. Aldrichimica Acta 1999, 32, 35; Hudlicky, T.; Luna, H.;
 Barbieri, G.; Kwart, L.D. J. Am. Chem. Soc. 1988, 110, 4735; Hudlicky, T.; Seoane, G.; Pettus, T. J. Org. Chem. 1989, 54, 4239; Ley, S.V.; Redgrave, A.J. Synlett 1990, 393; Ley, S.V.; Sternfeld, F.; Taylor, S. Tetrahedron Lett. 1987, 28, 225; Hudlicky, T.; Olivo, H.F. Tetrahedron Lett. 1991, 32, 6077; Hudlicky, T.; Luna, H.; Price, J.D.; Rulin, F. J. Org. Chem. 1990, 55, 4683; Hudlicky, T.; Olivo, H.F. J. Am. Chem. Soc. 1992, 114, 9694. Also see, Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 256–258.


¹⁷²⁵For a list of reagents, including peracids and others, used for epoxidation, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 915–927.

¹⁷²⁶For reviews, see Hudlický, M. Oxidations in Organic Chemistry, American Chemical Society, Washington, DC, 1990, pp. 60–64; Haines, A.H. Methods for the Oxidation of Organic Compunds, Academic Press, NY, 1985, pp. 98–117, 295–303; Dryuk, V.G. Russ. Chem. Rev. 1985, 54, 986; Plesničar, B., in Trahanovsky, W.S. Oxidation in Organic Chemistry, pt. C, Academic Press, NY, 1978, pp. 211–252; Swern, D., in Swern, D. Organic Peroxides, Vol. 2, Wiley, NY, 1971, pp. 355–533; Metelitsa, D.I. Russ. Chem. Rev. 1972, 41, 807; Hiatt, R., in Augustine, R.L.; Trecker, D.J. Oxidation, Vol. 2, Marcel Dekker, NY, 1971; pp. 113–140; House, H.O. Modern Synthetic Reaction, 2nd ed., W.A. Benjamin, NY, 1972, pp. 292–321. For a review pertaining to the stereochemistry of the reaction, see Berti, G. Top Stereochem. 1973, 7, 93, p. 95.

¹⁷²⁹Cu catalysts: Andrus, M.B.; Poehlein, B.W. *Tetrahedron Lett.* **2000**, *41*, 1013. Fe catalysts: Dubois, G.; Murphy, A.; Stack, T.D.P. Org. Lett. **2003**, *5*, 2469. Mn catalysts: Murphy, A.; Pace, A.; Stack, T.D.P. Org. Lett. **2004**, *6*, 3119; Murphy, A.; Dubois, G.; Stack, T.D.P. J. Am. Chem. Soc. **2003**, *125*, 5250.

¹⁷³⁰Brougham, P.; Cooper, M.S.; Cummerson, D.A.; Heaney, H.; Thompson, N. *Synthesis* **1987**, 1015; Querci, C.; Ricci, M. *J. Chem. Soc., Chem. Commun.* **1989**, 889. For a reaction using moist MMPP, see Foti, C.J.; Fields, J.D.; Kropp, P.J. *Org. Lett.* **1999**, *1*, 903.

shown to be a good substitute for *m*-chloroperoxybenzoic acid in a number of reactions.¹⁷³¹

The one-step mechanism involving a transition state, such as 177,¹⁷³¹ was proposed by Bartlett:¹⁷³² Evidence for this concerted mechanism is as follows:¹⁷³³ (1) The reaction is second order. If ionization were the rate-determining step, it would be first order in peroxyacid. (2) The reaction readily takes place in nonpolar solvents, where formation of ions is inhibited.¹⁷³⁴ (3) Measurements of the effect on the reaction rate of changes in the substrate structure show that there is no carbocation character in the transition state.¹⁷³⁵ (4) The addition is stereospecific (i.e., a trans-alkene gives a trans-epoxide and a cis-alkene a cisepoxide) even in cases where electron-donating substituents would stabilize a hypothetical carbocation intermediate.¹⁷³⁶ However, where there is an OH group in the allylic or homoallylic position, the stereospecificity diminishes or disappears, with both cis and trans isomers giving predominantly or exclusively the product where the incoming oxygen is syn to the OH group. This probably indicates a transition state in which there is hydrogen bonding between the OH group and the peroxy acid.¹⁷³⁷

¹⁷³¹For discussions of the mechanism, see Dryuk, V.G. *Tetrahedron* **1976**, *32*, 2855; Finn, M.G.; Sharpless, K.B., in Morrison, J.D. *Asymmetric Synthesis*, Vol. 5, Wiley, NY, **1985**, pp. 247–308; Bach, R.D.; Canepa, C.; Winter, J.E.; Blanchette, P.E. *J. Org. Chem.* **1997**, *62*, 5191. For a review of polar mechanisms involving peroxides, see Plesnicar, B., in Patai, S. *The Chemistry of Peroxides*, Wiley, NY, **1983**, pp. 521–584. See Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.; Rastelli, A. *J. Org. Chem.* **2002**, *67*, 8519. For a discussion of arene–arene interactions as related to selectivity, see Kishikawa, K.; Naruse, M.; Kohmoto, S.; Yamamoto, M.; Yamaguchi, K. J. Chem. Soc., Perkin Trans. 1 **2001**, 462.

¹⁷³²Bartlett, P.D. Rec. Chem. Prog. **1957**, *18*, 111. For other proposed mechanisms, see Kwart, H.; Hoffman, D.M. J. Org. Chem. **1966**, *31*, 419; Hanzlik, R.P.; Shearer, G.O. J. Am. Chem. Soc. **1975**, 97, 5231.

 ¹⁷³³Ogata, Y.; Tabushi, I. J. Am. Chem. Soc. 1961, 83, 3440; Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.;
 Rastelli, A. J. Org. Chem. 2004, 69, 7479. See also, Woods, K.W.; Beak, P. J. Am. Chem. Soc. 1991, 113, 6281. Also see, Vedejs, E.; Dent III, W.H.; Kendall, J.T.; Oliver, P.A. J. Am. Chem. Soc. 1996, 118, 3556.
 ¹⁷³⁴See Gisdakis, P.; Rösch, N. Eur. J. Org. Chem. 2001, 719.

¹⁷³⁵Khalil, M.M.; Pritzkow, W. J. Prakt. Chem. **1973**, 315, 58; Schneider, H.; Becker, N.; Philippi, K. Chem. Ber. **1981**, 114, 1562; Batog, A.E.; Savenko, T.V.; Batrak, T.A.; Kucher, R.V. J. Org. Chem. USSR **1981**, 17, 1860.

¹⁷³⁶For a computational study of facial selectivity, see Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M.; Rastelli, A. *J. Org. Chem.* **2000**, *65*, 8948.

¹⁷³⁷See Berti, G. *Top. Stereochem.* **1973**, *7*, 93, 130–162; Houk, K.N.; Liu, J.; DeMello, N.C.; Condroski, K.R. J. Am. Chem. Soc. **1997**, *119*, 10147.

In general, peroxides (HOOH and ROOH) are poor regents for epoxidation of simple alkenes since OH and OR are poor leaving groups in the concerted mechanism shown above.¹⁷³⁸ Aqueous hydrogen peroxide epoxidizes alkenes in the presence of fluorous compounds, such as $CF_3CH_2OH^{1739}$ or hexafluoroacetone.¹⁷⁴⁰ Transition-metal catalysts¹⁷⁴¹ have been used with alkyl hydroperoxides.¹⁷⁴² In the presence of other reagents,¹⁷⁴³ peroxides give good yields of the epoxide. These coreagents include dicyclohexylcarbodiimide,¹⁷⁴⁴ magnesium aluminates,¹⁷⁴⁵ metalloporphyrins,¹⁷⁴⁶ hydrotalcite¹⁷⁴⁷ with microwave irradiation,¹⁷⁴⁸ fluorous aryl selenides,¹⁷⁴⁹ and arsines in fluorous solvents.¹⁷⁵⁰ The catalyst MeReO₃¹⁷⁵¹ has been used for epoxidation with sodium percarbonate and pyrazole,¹⁷⁵² with hydrogen peroxide,¹⁷⁵³ and with urea–H₂O₂.¹⁷⁵⁴ Epoxidation occurs with FeSO₄/ silica,¹⁷⁵⁵ and with N₂O and a zinc catalyst.¹⁷⁵⁶ Epoxidation occurs when alkenes

¹⁷⁴⁰Shu, L.; Shi, Y. J. Org. Chem. 2000, 65, 8807.

¹⁷⁴¹V: Sharpless, K.B.; Verhoeven, T.R. Aldrichimica Acta 1979, 12, 63; Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 10452; Lattanzi, A.; Leadbeater, N.E. Org. Lett. 2002, 4, 1519; Torres, G.; Torres, W.; Prieto, J.A. Tetrahedron 2004, 60, 10245. Mn: Lane, B.S.; Vogt, M.; De Rose, V.T.; Burgess, K. J. Am. Chem. Soc. 2002, 124, 11946. Ti: Della Sala, G.D.; Giordano, L.; Lattanzi, A.; Proto, A.; Screttri, A. Tetrahedron 2000, 56, 3567; Lattanzi, A.; Iannece, P.; Screttri, A. Tetrahedron Lett. 2002, 43, 5629. Pd: Yu, J.-Q.; Corey, E.J. Org. Lett. 2002, 4, 2727. Ru: Adam, W.; Alsters, P.L.; Neumann, R.; Saha-Möller, C.; Sloboda-Rozner, D.; Zhang, R. Synlett 2002, 2011. La: Nemoto, T.; Ohshima, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2725; Chen, R.; Qian, C.; de Vries, J.G. Tetrahedron 2001, 57, 9837; Nemoto, T.; Kakei, H.; Gnanadesikan, V.; Tosaki, S.-y.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2002, 124, 14544.

¹⁷⁴²For a table containing several common catalysts, see Hiatt, R., in Augustine, R.L.; Trecker, D.J. *Oxidation*, Vol. 2, Marcel Dekker, NY, **1971**, p. 124.

¹⁷⁴³For other methods of converting alkenes to epoxides, see Bruice, T.C. *Aldrichimica Acta* **1988**, 21, 87; Adam, W.; Curci, R.; Edwards, J.O. *Acc. Chem. Res.* **1989**, 22, 205.

¹⁷⁴⁴Majetich, G.; Hicks, R.; Sun, G.-r.; McGill, P. J. Org. Chem. **1998**, 63, 2564; Murray, R.W.; Iyanar, K. J. Org. Chem. **1998**, 63, 1730.

¹⁷⁴⁵Yamaguchi, K.; Ebitani, K.; Kaneda, K. J. Org. Chem. 1999, 64, 2966.

¹⁷⁴⁶Chan, W.-K.; Liu, P.; Yu, W.-Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2004, 6, 1597.

¹⁷⁴⁷For an example without microwave irradiation, see Pillai, U.R.; Sahle-Demessie, E.; Varma, R.S. Synth. Commun. **2003**, *33*, 2017.

¹⁷⁴⁸Pillai, U.R.; Sahle-Demessie, E.; Varma, R.S. Tetrahedron Lett. 2002, 43, 2909.

¹⁷⁴⁹Betzemeier, B.; Lhermitte, F.; Knochel, P. Synlett 1999, 489.

¹⁷⁵⁰Van Vliet, M.C.A.; Arends, I.W.C.E.; Sheldon, R.A. Tetrahedron Lett. 1999, 40, 5239.

¹⁷⁵¹For a polymer-supported MeReO₃ reagent, see Saladino, R.; Neri, V.; Pelliccia, A.R.; Caminiti, R.; Sadun, C. J. Org. Chem. **2002**, 67, 1323.

¹⁷⁵²Vaino, A.R. J. Org. Chem. 2000, 65, 4210.

¹⁷⁵³van Vliet, M.C.A.; Arends, I.W.C.E.; Sheldon, R.A. *Chem. Commun.* **1999**, 821; Adolfsson, H.; Copéret, C.; Chiang, J.P.; Yudin, A.K. *J. Org. Chem.* **2000**, 65, 8651; Iskra, J.; Bonnet-Delpon, D.; Bégué, J.-P. *Tetrahedron Lett.* **2002**, 43, 1001.

¹⁷⁵⁴Owens, G.S.; Abu-Omar, M.M. Chem. Commun. 2000, 1165.

¹⁷⁵⁵Monfared, H.H.; Ghorbani, M. Monat. Chem. 2001, 132, 989.

¹⁷⁵⁶Ben-Daniel, R.; Weiner, L.; Neumann, R. J. Am. Chem. Soc. 2002, 124, 8788.

¹⁷³⁸See Deubel, D.V.; Frenking, G.; Gisdakis, P.; Herrmann, W.A.; Rösch, N.; Sundermeyer, J. Acc. Chem. Res. 2004, 37, 645.

¹⁷³⁹Neimann, K.; Neumann, R. Org. Lett. **2000**, 2, 2861; van Vliet, M.C.A.; Arends, I.W.C.E.; Sheldon, R.A. Synlett **2001**, 248.

are treated with oxygen gas, *N*-hydroxyphthalimide, and a mixture of cobalt and molybdenum catalyst.¹⁷⁵⁷

Other epoxidation methods are available. Enzymatic epoxidation¹⁷⁵⁸ and epoxidation with catalytic antibodies¹⁷⁵⁹ have been reported. Chromyl chloride (CrO₂Cl₂) reacts with alkenes, even at -78° C to give an epoxide and numerous side products including chlorohydrins and dichlorides.¹⁷⁶⁰ Several mechanisms have been proposed.¹⁷⁶¹ Epoxidation has been done in ionic liquids using 10% H₂O₂ with MnSO₄¹⁷⁶² or an iron catalyst.¹⁷⁶³ Hypervalent iodine compounds, such as PhI(OAc)₂, in conjunction with a ruthenium catalyst in aqueous media, converts alkenes to epoxides.¹⁷⁶⁴ This reagent has been used in an ionic liquid with a manganese catalyst.¹⁷⁶⁵

Dioxiranes,¹⁷⁶⁶ such as dimethyl dioxirane (**178**),¹⁷⁶⁷ either isolated or generated *in situ*,¹⁷⁶⁸ are important epoxidation reagents. With dimethyloxirane, C–H insertion reactions can occur preferentially.¹⁷⁶⁹ The reaction with alkenes is rapid, mild, safe, and a variety methods have been developed using an oxidant as a coreagent. The most commonly used coreagent is probably potassium peroxomonosulfate (KHSO₅). Oxone[®] (2 KHSO₅•KHSO₄•K₂SO₄) is a common source of KHSO₅. Oxone[®] reacts with ketones¹⁷⁷⁰ and sodium bicarbonate to convert an alkene

¹⁷⁵⁹Chen, Y.; Reymond, J.-L. Synthesis 2001, 934.

¹⁷⁶⁰Sharpless, K.B.; Teranishi, A.Y.; Bäckvall, J.-E. J. Am. Chem. Soc. 1977, 99, 3120.

¹⁷⁶¹For leading references, see Rappe, A.K.; Li, S. J. Am. Chem. Soc. 2003, 125, 11188.

¹⁷⁶²In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Tong, K.-H.; Wong, K.-Y.; Chan, T.H. *Org. Lett.* **2003**, *5*, 3423.

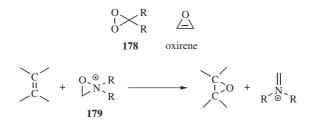
¹⁷⁶³In bmim Br, 1-butyl-3-methylimidazolium bromide: Srinivas, K.A.; Kumar, A.; Chauhan, S.M.S. *Chem. Commun.* **2002**, 2456.

¹⁷⁶⁴Tse, M.K.; Bhor, S.; Klawonn, M.; Döbler, C.; Beller, M. Tetrahedron Lett. 2003, 44, 7479.

¹⁷⁶⁵In bmim PF₆, 1-butyl-3-methylimidazolium hexafluorophosphate: Li, Z.; Xia, C.-G. *Tetrahedron Lett.* **2003**, *44*, 2069.

¹⁷⁶⁶For general leading references, see Murray, R.W. *Chem. Rev.* 1989, 89, 1187; Adam, W.; Curci, R.;
 Edwards, J.O. Acc. *Chem. Res.* 1989, 22, 205; Curci, R.; Dinoi, A.; Rubino, M.E. *Pure Appl. Chem.* 1995, 67, 811; Clennan, E.L. *Trends in Organic Chemistry*, 1995, 5, 231; Adam, W.; Smerz, A.K. Bull Soc. *Chim. Belg.* 1996, 105, 581; Denmark, S.E.; Wu, Z. Synlett 1999, 847.

¹⁷⁶⁷Frohn, M.; Wang, Z.-X.; Shi, Y. *J. Org. Chem.* **1998**, *63*, 6425. See Angelis, Y.; Zhang, X.; Organopoulos, M. *Tetrahedron Lett.* **1996**, *37*, 5991 for a discussion of the mechanism of this oxidation. ¹⁷⁶⁸See Curci, R.; Fiorentino, M.; Troisi, L.; Edwards, J.O.; Pater, R.H. *J. Org. Chem.* **1980**, *45*, 4758;


Gallopo, A.R.; Edwards, J.O. J. Org. Chem. 1981, 46, 1684; Corey, P.E; Ward, F.E. J. Org. Chem. 1986, 51, 1925; Adam, W.; Hadjiarapoglou, L.; Smerz, A. Chem. Ber. 1991, 124, 227; Yang, D.; Wong, M.K.; Yip, Y.C. J. Org. Chem. 1995, 60, 3887; Denmark, S.E.; Wu, Z. J. Org. Chem. 1998, 63, 2810, and references cited therein; Frohn, M.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 6425; Yang, D.; Yip, Y.-C.; Tang, M.-W.; Wong, M.-K.; Cheung, K.-K. J. Org. Chem. 1998, 63, 9888, and references cited therein. ¹⁷⁶⁹Adam, W.; Prechtl, F.; Richter, M.J.; Smerz, A.K. Tetrahedron Lett. 1993, 34, 8427.

¹⁷⁷⁰Ferraz, H.M.C.; Muzzi, R.M.; de O.Viera, T.; Viertler, H. *Tetrahedron Lett.* **2000**, *41*, 5021; Legros, J.; Crousse, B.; Bourdon, J.; Bonnet-Delpon, D.; Bégué, J.-P. *Tetrahedron Lett.* **2001**, *42*, 4463. For a reaction with a ketone immobilized on silica, see Sartori, G.; Armstrong, A.; Maggi, R.; Mazzacani, A.; Sartorio, R.; Bigi, F.; Dominguez-Fernandez, B. J. Org. Chem. **2003**, *68*, 3232.

¹⁷⁵⁷Iwahama, T.; Hatta, G.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 163.

 ¹⁷⁵⁸Haloperoxidases: Hu, S.; Hager, L.P. *Tetrahedron Lett.* 1999, 40, 1641; Dembitsky, V.M. *Tetrahedron* 2003, 59, 4701. E. coli JM109(pTAB19): Bernasconi, S.; Orsini, F.; Sello, G.; Colmegna, A.; Galli, E.; Bestetti, G. *Tetrahedron Lett.* 2000, 41, 9157. Cyclohexanone monoxygenase: Colonna, S.; Gaggero, N.; Carrea, G.; Ottolina, G.; Pasta, P.; Zambianchi, F. *Tetrahedron Lett.* 2002, 43, 1797.

to an epoxide. Oxone[®] also converts alkenes to epoxides in the presence of certain additives, such as *N*,*N*-dialkylalloxans.¹⁷⁷¹ Oxone, usually with hydrogen peroxide or another similar oxidant, can be used with chiral ketones¹⁷⁷² or aldehydes to convert alkenes to chiral, nonracemic epoxides.¹⁷⁷³ Chiral dioxiranes have reportedly given nonracemic epoxides.¹⁷⁷⁴ Hydrogen peroxide, in the presence of chiral ketones in acetonitrile (or other nitrile solvents), probably converts alkenes to epoxides with good enantioselectivity by *in situ* generation of dioxirane.¹⁷⁷⁵ Epoxidation does not occur in good yields with these reagents in most other solvents, and it is suggested that the active agent that generates dioxirane is peroxyimidic acid MeC(=NH)OOH.¹⁷⁷⁶ Note that benzaldehyde with Chloramine-M¹⁷⁷⁷ will convert alkenes to epoxides.¹⁷⁷⁸ Amines, including chiral amines can be similarly used with aldehydes with aqueous sodium bicarbonate.¹⁷⁷⁹

Oxone[®] oxidizes iminium salts to an oxaziridinium intermediate **179**, which can transfer oxygen to an alkene to form an epoxide and regenerate the iminium salt.¹⁷⁸⁰

¹⁷⁷¹Carnell, A.J.; Johnstone, R.A.W.; Parsy, C.C.; Sanderson, W.R. Tetrahedron Lett. 1999, 40, 8029.

¹⁷⁷²For reviews, see Shi, Y. Acc. Chem. Res. 2004, 37, 488; Yang, D. Acc. Chem. Res. 2004, 37, 497.

¹⁷⁷³For leading references, see: Denmark, S.E.; Wu, Z.; Crudden, C.M.; Matsuhashi, H. J. Org. Chem.
 1997, 62, 8288; Yang, D.; Yip, Y.-C.; Chen, J.; Cheung, K.-K. J. Am. Chem. Soc. *1998*, 120, 7659; Daly, A.M.; Renehan, M.F.; Gilheany, D.G. Org. Lett. 2001, 3, 663; Tian, H.; She, X.; Yu, H.; Shu, L.; Shi, Y. J. Org. Chem. 2002, 67, 2435; Denmark, S.E.; Matsuhashi, H. J. Org. Chem. 2002, 67, 3479; Arsmtrong, A.; Ahmed, G.; Dominguez-Fernandez, B.; Hayter, B.R.; Wailes, J.S. J. Org. Chem. 2002, 67, 8610;
 Wu, X.-Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792; Matsumoto, K.; Tomioka, K. Tetrahedron Lett. 2002, 43, 631; Bez, G.; Zhao, C.-G. Tetrahedron Lett. 2003, 44, 7403. For a carbonyl derivative bound to cyclodextrin, see Chan, W.-K.; Yu, W.-y.; Che, C.-M.; Wong, M.-K. J. Org. Chem. 2003, 68, 6576.

¹⁷⁷⁴Tian, H.; She, X.; Shu, L.; Yu, H.; Shi, Y. J. Am. Chem. Soc. 2000, 122, 11551.

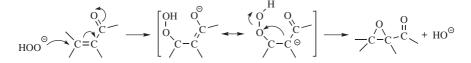
¹⁷⁷⁵Shu, L.; Shi, Y. Tetrahedron Lett. 1999, 40, 8721.

¹⁷⁷⁶Payne, G.B.; Deming, P.H.; Williams, P.H. J. Org. Chem. 1961, 26, 659; Payne, G.B. Tetrahedron
 1962, 18, 763; McIsaac, Jr., J.E.; Ball, R.E.; Behrman, E.J. J. Org. Chem. 1971, 36, 3048; Bach, R.D.;
 Knight, J.W. Org. Synth. 1981, 60, 63; Arias, L.A.; Adkins, S.; Nagel, C.J.; Bach, R.D. J. Org. Chem.
 1983, 48, 888.

¹⁷⁷⁷For the preparation of Chloramine-M, see Rudolph, J.; Sennhenn, P.C.; Vlaar, C.P.; Sharpless, K.B. Angew. Chem. Int. Ed. **1996**, *35*, 2810.

¹⁷⁷⁸Yang, D.; Zhang, C.; Wang, X.-C. J. Am. Chem. Soc. 2000, 122, 4039.

¹⁷⁷⁹Wong, M.-K.; Ho, L.-M.; Zheng, Y.-S.; Ho, C.-Y.; Yang, D. Org. Lett. 2001, 3, 2587.


¹⁷⁸⁰See Lusinchi, X.; Hanquet, G. *Tetrahedron* **1997**, *53*, 13727; Hanquet, G.; Lusinchi, X.; Milliet, P. *Tetrahedron Lett.* **1988**, *29*, 3941; Bohé, L.; Kammoun, M. *Tetrahedron Lett.* **2002**, *43*, 803; Bohé, L.; Kammoun, M. *Tetrahedron Lett.* **2004**, *45*, 747.

This variation has been applied to asymmetric¹⁷⁸¹ epoxidations using chiral iminium salt precursors.¹⁷⁸²

Although cis–trans isomerization of epoxides is not formally associated with this section, it is clearly a potential problem in the conversion of an alkene to an epoxide. There are several catalysts for this process.¹⁷⁸³

It would be useful if triple bonds could be similarly epoxidized to give oxirenes, but they are not stable compounds.¹⁷⁸⁴ Two of them have been trapped in solid argon matrices at very low temperatures, but they decayed on warming to 35 K.¹⁷⁸⁵ Oxirenes probably form in the reaction,¹⁷⁸⁶ but react further before they can be isolated. Note that oxirenes bear the same relationship to cyclobutadiene that furan does to benzene and may therefore be expected to be antiaromatic (see p. 38).

Conjugated dienes can be epoxidized (1,2-addition), although the reaction is slower than for corresponding alkenes, but α , β -unsaturated ketones do not generally give epoxides when treated with peroxyacids.¹⁷⁸⁷ The epoxidation of α , β -unsaturated ketones with hydrogen peroxide under basic conditions is known as the *Waits–Scheffer epoxidation*, discovered in 1921.¹⁷⁸⁸ This fundamental reaction has been extended to α , β -unsaturated ketones (including quinones), aldehydes, and sulfones.¹⁷⁸⁹ This is a nucleophilic addition by a Michael-type mechanism, involving attack by HO₂^{-:1790} This reaction is another example of 1,4-addition of a heteroatom containing species as discussed in **15-31**.

¹⁷⁸¹For a discussion of the origins of selectivity in these reactions, see Washington, I.; Houk, K. N. J. Am. Chem. Soc. **2000**, 122, 2948.

¹⁷⁸²See Jacobson, E.N., in Ojima, I. *Catalytic Asymmetric Synthesis*, VCH, NY, **1993**, pp. 159–203; Armstrong, A.; Ahmed, G.; Garnett, I.; Goacolou, K.; Wailes, J.S. *Tetrahedron* **1999**, 55, 2341; Minakata, S.; Takemiya, A.; Nakamura, K.; Ryu, I.; Komatsu, M. *Synlett* **2000**, 1810; Page, P.C.B.; Rassias, G.A.; Barros, D.; Ardakani, A.; Buckley, B.; Bethell, D.; Smith, T.A.D.; Slawin, A.M.Z. J. Org. Chem. **2001**, 66, 6926; Page, P.C.B.; Barros, D.; Buckley, B.R.; Ardakani, A.; Marples, B.A. J. Org. Chem. **2004**, 69, 3595; Page, P.C.B.; Buckley, B.R.; Blacker, A.J. Org. Lett. **2004**, 6, 1543; Page, P.C.B.; Rassias, G.A.; Barros, D.; Ardakani, A.; Bethell, D.; Merrifield, E. *Synlett* **2002**, 580.

¹⁷⁸³Lo, C.-Y.; Pal, S.; Odedra, A.; Liu, R.-S. Tetrahedron Lett. 2003, 44, 3143.

¹⁷⁸⁴For a review of oxirenes, see Lewars, E.G. Chem. Rev. 1983, 83, 519.

¹⁷⁸⁵Torres, M.; Bourdelande, J.L.; Clement, A.; Strausz, O.P. J. Am. Chem. Soc. **1983**, 105, 1698. See also, Laganis, E.D.; Janik, D.S.; Curphey, T.J.; Lemal, D.M. J. Am. Chem. Soc. **1983**, 105, 7457.

¹⁷⁸⁶McDonald, R.N.; Schwab, P.A. J. Am. Chem. Soc. **1964**, 86, 4866; Ibne-Rasa, K.M.; Pater, R.H.; Ciabattoni, J.; Edwards, J.O. J. Am. Chem. Soc. **1973**, 95, 7894; Ogata, Y.; Sawaki, Y.; Inoue, H. J. Org. Chem. **1973**, 38, 1044.

¹⁷⁸⁷A few exceptions are known. For example, see Hart, H.; Verma, M.; Wang, I. J. Org. Chem. **1973**, 38, 3418.

¹⁷⁸⁸Weitz, E.; Scheffer, A. Ber. Dtsch. Chem. Ges. 1921, 54, 2327.

¹⁷⁸⁹For example, see Payne, G.B.; Williams, P.H. *J. Org. Chem.* **1961**, *26*, 651; Zwanenburg, B.; ter Wiel, J. *Tetrahedron Lett.* **1970**, 935.

¹⁷⁹⁰Bunton, C.A.; Minkoff, G.J. J. Chem. Soc. **1949**, 665; Temple, R.D. J. Org. Chem. **1970**, 35, 1275; Apeloig, Y.; Karni, M.; Rappoport, Z. J. Am. Chem. Soc. **1983**, 105, 2784. For a review, see Patai, S.; Rappoport, Z., in Patai, S. The Chemistry of Alkenes, pt. 1, Wiley, NY, **1964**, pp. 512–517.

 α,β -Unsaturated compounds can be epoxidized alkyl hydroperoxides and a base,¹⁷⁹¹ or with H_2O_2 and a base or heteropoly acids.¹⁷⁹² The reaction has been done in D₂O using sodium bicarbonate with hydrogen peroxide.¹⁷⁹³ The reaction has been done with LiOH and polymer-bound quaternary ammonium salts.¹⁷⁹⁴ Epoxides can also be prepared by treating alkenes with oxygen or with an alkyl peroxide¹⁷⁹⁵ catalyzed by a complex of a transition metal such as V, Mo, Ti, La.¹⁷⁹⁶ or Co.¹⁷⁹⁷ The reaction with oxygen, which can also be carried out without a catalyst, is probably a free-radical process.¹⁷⁹⁸ Conjugated ketones are oxidized to epoxy-ketones with NaBO₃ and tetrahexylammonium hydrogen sulfate,¹⁷⁹⁹ KF-Al₂O₃/tert-butyl hydroperoxide.¹⁸⁰⁰ α,β-Unsaturated esters react normally to give glycidic esters.¹⁸⁰¹ When a carbonyl group is elsewhere in the molecule but not conjugated with the double bond, the Baeyer-Villiger reaction (18-19) may compete. Allenes¹⁸⁰² are converted by peroxyacids to allene oxides¹⁸⁰³ or spiro dioxides, both of which species can in certain cases be isolated¹⁸⁰⁴ but more often are unstable under the reaction conditions and react further to give other products.¹⁸⁰⁵

Asymmetric Weitz–Scheffer epoxidation is commonly used for the epoxidation of electron-poor alkenes. Cinchona-derived phase-transfer catalysts, initially used

¹⁷⁹¹Organolithium reagents: Bailey, P.L.; Clegg, W.; Jackson, R.F.W.; Meth-Cohn, O. J. Chem. Soc. Perkin Trans. 1, 1990, 200. KOH: Adam, W.; Rao, P.B.; Degen, H.-G.; Saha-Möller, C.R. J. Am. Chem. Soc. 2000, 122, 5654. LiOH: Arai, S.; Tsuge, H.; Oku, M.; Miura, M.; Shioiri, T. Tetrahedron 2002, 58, 1623. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene derivatives: Genski, T.; Macdonald, G.; Wei, X.; Lewis, N.; Taylor, R.J.K. Synlett 1999, 795. DBU: Yadav, V.K.; Kapoor, K.K. Tetrahedron 1995, 51, 8573. NaHCO₃: Bortolini, O.; Fogagnolo, M.; Fantin, G.; Maietti, S.; Medici, A. Tetrahedron Asymmetry 2001, 12, 1113. Hydrotalcites: Honma, T.; Nakajo, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron Lett. 2002, 43, 6229.

¹⁷⁹²Oguchi, T.; Sakata, Y.; Takeuchi, N.; Kaneda, K.; Ishii, Y.; Ogawa, M. Chem. Lett. 1989, 2053.

¹⁷⁹³Yao, H.; Richardson, D.E. J. Am. Chem. Soc. 2000, 122, 3220.

¹⁷⁹⁴Anand, R.V.; Singh, V.K. Synlett 2000, 807.

¹⁷⁹⁵For example, see Gould, E.S.; Hiatt, R.R.; Irwin, K.C. J. Am. Chem. Soc. 1968, 90, 4573; Sharpless,
 K.B.; Michaelson, R.C. J. Am. Chem. Soc. 1973, 95, 6136; Kochi, J.K. Organometallic Mechanisms and Catalysis; Academic Press, NY, 1978, pp. 69–73; Ledon, H.J.; Durbut, P.; Varescon, F. J. Am. Chem. Soc. 1981, 103, 3601; Mimoun, H.; Mignard, M.; Brechot, P.; Saussine, L. J. Am. Chem. Soc. 1986, 108, 3711; Laszlo, P.; Levart, M.; Singh, G.P. Tetrahedron Lett. 1991, 32, 3167.

¹⁷⁹⁶Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9474.

¹⁷⁹⁷For a review, see Jørgensen, K.A. Chem. Rev. 1989, 89, 431.

¹⁷⁹⁸For reviews, see Van Santen, R.A.; Kuipers, H.P.C.E. Adv. Catal. **1987**, 35, 265; Filippova, T.V.; Blyumberg, E.A. Russ. Chem. Rev. **1982**, 51, 582.

¹⁷⁹⁹Straub, T.S. Tetrahedron Lett. 1995, 36, 663.

¹⁸⁰⁰Yadav, V.K.; Kapoor, K.K. Tetrahedron Lett. 1994, 35, 9481.

¹⁸⁰¹MacPeek, D.L.; Starcher, P.S.; Phillips, B. J. Am. Chem. Soc. 1959, 81, 680.

¹⁸⁰²For a review of epoxidation of allenes, see Jacobs, T.L., in Landor, S.R. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, **1982**, pp. 417–510, 483–491.

¹⁸⁰³For a review of allene oxides, see Chan, T.H.; Ong, B.S. Tetrahedron 1980, 36, 2269.

¹⁸⁰⁴Camp, R.L.; Greene, F.D. J. Am. Chem. Soc. **1968**, 90, 7349; Crandall, J.K.; Conover, W.W.; Komin, J.B.; Machleder, W.H. J. Org. Chem. **1974**, 39, 1723; Crandall, J.K.; Batal, D.J. J. Org. Chem. **1988**, 53, 1338.

¹⁸⁰⁵For example, see Crandall, J.K.; Machleder, W.H.; Sojka, S.A. J. Org. Chem. **1973**, 38, 1149; Crandall, J.K.; Rambo, E. J. Org. Chem. **1990**, 55, 5929.

by Wynberg, are now common.¹⁸⁰⁶ Enantioselectivities can be significantly improved by changes of the catalyst structure as well as the type of oxidant.¹⁸⁰⁷ A Yb-BINOL complex, with *t*-BuOOH led to epoxidation of conjugated ketones with high asymmetric induction,¹⁸⁰⁸ as did a mixture of NaOCl and a *Cinchona* alkaloid.¹⁸⁰⁹ Other enantioselective methods include treatment with diethylzinc, O₂, in the presence of a chiral amino-alcohol, to give the epoxy-ketone.¹⁸¹⁰ Similarly, treatment with aqueous NaOCl¹⁸¹¹ or with an alkyl hydroperoxide¹⁸¹² and a chiral phase-transfer agent leads to chiral nonracemic epoxy-ketones.

Another important asymmetric epoxidation of a conjugated systems is the reaction of alkenes with polyleucine, DBU and urea— H_2O_2 , giving an epoxy-carbonyl compound with good enantioselectivity.¹⁸¹³ The hydroperoxide anion epoxidation of conjugated carbonyl compounds with a polyamino acid, such as poly-L-alanine or poly-L-leucine is known as the *Juliá–Colonna epoxidation*.¹⁸¹⁴ Epoxidation of conjugated ketones to give nonracemic epoxy-ketones was done with aq. NaOCl and a Cinchona alkaloid derivative as catalyst.¹⁸¹⁵ A triphasic phase-transfer catalysis protocol has also been developed.¹⁸¹⁶ β -Peptides have been used as catalysts in this reaction.¹⁸¹⁷

Allylic alcohols can be converted to epoxy-alcohols with *tert*-butylhydroperoxide on molecular sieves,¹⁸¹⁸ or with peroxy acids.¹⁸¹⁹ The addition of an appropriate chiral ligand to the metal-catalyzed hydroperoxide epoxidation of allylic alcohols leads to high enantioselectivity. This important modification is

¹⁸⁰⁷Arai, S.; Tsuge, H.; Shioiri, T. *Tetrahedron Lett.* 1998, 39, 7563; Arai, S.; Shirai, Y.; Ishida, T.;
 Shioiri, T. *Tetrahedron* 1999, 55, 6375; Corey, E.J.; Zhang, F.-Y. Org. Lett. 1999, 1, 1287; Lygo, B.;
 Wainwright, P.G. *Tetrahedron* 1999, 55, 6289. See Adam, W.; Rao, P.B.; Degen, H.-G.; Levai, A.;
 Patonay, T.; Saha-Moller, C.R. J. Org. Chem. 2002, 67, 259.

¹⁸⁰⁸Watanabe, S.; Arai, T.; Sasai, H.; Bougauchi, M.; Shibasaki, M. J. Org. Chem. 1998, 63, 8090.

¹⁸⁰⁹Lygo, B.; Wainwright, P.G. Tetrahedron Lett. 1998, 39, 1599.

¹⁸¹⁰Enders, D.; Zhu, J.; Kramps, L. *Liebigs Ann. Chem.* **1997**, 1101; Enders, D.; Zhu, J.; Raabe, G. *Angew. Chem. Int. Ed.* **1996**, *35*, 1725.

¹⁸¹¹Lygo, B.; To, D.C.M. Tetrahedron Lett. 2001, 42, 1343.

¹⁸¹²Adam, W.; Rao, P.B.; Degen, H.-G.; Saha-Möller, C.R. Tetrahedron Asymmetry 2001, 12, 121.

¹⁸¹³Allen, J.V.; Drauz, K.-H.; Flood, R.W.; Roberts, S.M.; Skidmore, J. *Tetrahedron Lett.* **1999**, 40, 5417; Geller, T.; Roberts, S.M. J. Chem. Soc., Perkin Trans. 1, **1999**, 1397; Bentley, P.A.; Bickley, J.F.; Roberts, S.M.; Steiner, A. *Tetrahedron Lett.* **2001**, 42, 3741.

¹⁸¹⁴Banfi, S.; Colonna, S.; Molinari, H.; Juliá, S.; Guixer, J. *Tetrahedron* **1984**, 40, 5207. For reviews, see Lin, P. *Tetrahedron: Asymmetry* **1998**, 9, 1457; Ebrahim, S.; Wills, M. *Tetrahedron; Asymmetry* **1997**, 8, 3163.

¹⁸¹⁵Lygo, B.; Wainwright, P.G. Tetrahedron 1999, 55, 6289.

¹⁸¹⁶Geller, T.; Krüger, C.M.; Militzer, H.-C. Tetrahedron Lett. 2004, 45, 5069.

¹⁸¹⁷Coffey, P.E.; Drauz-K.-H.; Roberts, S.M.; Skidmore, J.; Smith, J.A. Chem. Commun. 2001, 2330.

¹⁸¹⁸Antonioletti, R.; Bonadies, F.; Locati, L.; Scettri, A. Tetrahedron Lett. 1992, 33, 3205.

¹⁸¹⁹Fringuelli, F.; Germani, R.; Pizzo, F.; Santinelli, F.; Savelli, G. J. Org. Chem. 1992, 57, 1198.

 ¹⁸⁰⁶Helder, R.; Hummelen, J.C.; Laane, R.W.P.M.; Wiering, J.S.; Wynberg, H. *Tetrahedron Lett. 1976*, *17*, 1831; Wynberg, H.; Greijdanus, B. J. Chem. Soc., Chem. Commun. 1978, 427; Wynberg, H.; Marsman, B. J. Org. Chem. 1980, 45, 158; Pluim, H.; Wynberg, H. J. Org. Chem. 1980, 45, 2498.

known as the *Sharpless asymmetric epoxidation*,¹⁸²⁰ where allylic alcohols are converted to optically active epoxides with excellent enantioselectivity by treatment with *t*-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate.¹⁸²¹ The Ti(OCHMe₂)₄ and diethyl tartrate can be present in catalytic amounts (15–10 mol%) if molecular sieves are present.¹⁸²² Polymer-supported catalysts have also been reported.¹⁸²³ Both (+) and (-) diethyl tartrate are readily available, so either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, including substrates where the double bond is mono-, di-, tri-, and tetrasubstituted,¹⁸²⁴ and is highly useful in natural product synthesis. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound¹⁸²⁵ formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the *t*-BuOOH.¹⁸²⁶

Ordinary alkenes (without an allylic OH group) do not give optically active alcohols by the Sharpless protocol because binding to the catalyst is necessary for enantioselectivity. Simples alkenes can be epoxidized enantioselectively with sodium hypochlorite (NaOCl, commercial bleach) and an optically active manganese-complex catalyst.¹⁸²⁷ An important variation of this oxidation uses a manganese-salen complex¹⁸²⁸ with various oxidizing agents, in what is called

¹⁸²¹Sharpless, K.B.; Woodard, S.S.; Finn, M.G. Pure Appl. Chem. 1983, 55, 1823, and references cited therein.

¹⁸²²Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H.; Sharpless, K.B. J. Am. Chem. Soc. 1987, 109, 5765. See Massa, A.; D'Ambrosi, A.; Proto, A.; Screttri, A. Tetrahedron Lett. 2001, 42, 1995. For another improvement, see Wang, Z.; Zhou, W. Tetrahedron 1987, 43, 2935.

¹⁸²³Canali, L.; Karjalainen, J.K.; Sherrington, D.C.; Hormi, O. Chem. Commun. 1997, 123.

¹⁸²⁴See the table, in Finn, M.G.; Sharpless, K.B., in Morrison, J.D. Asymmetric Synthesis, Vol. 5, Academic Press, NY, *1985*, pp. 249–250. See also, Schweiter, M.J.; Sharpless, K.B. Tetrahedron Lett. *1985*, 26, 2543.

¹⁸²⁵Very similar compounds have been prepared and isolated as solids whose structures have been determined by X-ray crystallography: Williams, I.D.; Pedersen, S.F.; Sharpless, K.B.; Lippard, S.J. J. Am. Chem. Soc. **1984**, 106, 6430.

¹⁸²⁶For a review of the mechanism, see Finn, M.G.; Sharpless, K.B., in Morrison, J.D. Asymmetric Synthesis, Vol. 5, Academic Press, NY, *1985*, p. 247. For other mechanistic studies, see Jørgensen, K.A.; Wheeler, R.A.; Hoffmann, R. J. Am. Chem. Soc. *1987*, *109*, 3240; Carlier, P.R.; Sharpless, K.B. J. Org. Chem. *1989*, *54*, 4016; Corey, E.J. J. Org. Chem. *1990*, *55*, 1693; Woodard, S.S.; Finn, M.G.; Sharpless, K.B. J. Am. Chem. Soc. *1991*, *113*, 106; Finn, M.G.; Sharpless, K.B. J. Am. Chem. Soc. *1991*, *113*, 106; Finn, M.G.; Sharpless, K.B. J. Am. Chem. Soc. *1991*, *113*, 113; Takano, S.; Iwebuchi, Y.; Ogasawara, K. J. Am. Chem. Soc. *1991*, *113*, 2786. See Cui, M.; Adam, W.; Shen, J.H.; Luo, X.M.; Tan, X.J.; Chen, K.X.; Ji, R.Y.; Jiang, H.L. J. Org. Chem. *2002*, *67*, 1427.

¹⁸²⁷Jacobsen, E.N.; Zhang, W.; Muci, A.R.; Ecker, J.R.; Deng, L. J. Am. Chem. Soc. **1991**, 113, 7063. See also, Irie, R.; Noda, K.; Ito, Y.; Katsuki, T. *Tetrahedron Lett.* **1991**, 32, 1055; Halterman, R.L.; Jan, S. J. Org. Chem. **1991**, 56, 5253.

¹⁸²⁸These complexes have been characterized. See Adam, W.; Mock-Knoblauch, C.; Saha-Moller, C.R.; Herderich, M. J. Am. Chem. Soc. **2000**, 122, 9685.

¹⁸²⁰For reviews, see Pfenninger, A. Synthesis 1986, 89; Rossiter, B.E., in Morrison, J.D. Asymmetric Synthesis, Vol. 5, Academic Press, NY, 1985, pp. 193–246. For histories of its discovery, see Sharpless, K.B. Chem. Br. 1986, 38; CHEMTECH 1985, 692. Also see, Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 239–245.

the *Jacobsen–Katsuki reaction*.¹⁸²⁹ Apart from the commonly used NaOCl, urea–H₂O₂ has been used.¹⁸³⁰ With this reaction, simple alkenes can be epoxidized with high enantioselectivity.¹⁸³¹ The mechanism of this reaction has been examined.¹⁸³² Radical intermediates have been suggested for this reaction,¹⁸³³ A polymer-bound Mn^(III)–salen complex, in conjunction with NaOCl, has been used for asymmetric epoxidation.¹⁸³⁴ Chromium–salen complexes¹⁸³⁵ and ruthenium–salen complexes have been used for epoxidation. Manganese porphyrin complexes have also been used.¹⁸³⁷ Cobalt complexes give similar results.¹⁸³⁸ A related epoxidation reaction used an iron complex with molecular oxygen and isopropanal.¹⁸³⁹ Nonracemic epoxides can be prepared from racemic epoxides with salen–cobalt(II) catalysts following a modified procedure for kinetic resolution.¹⁸⁴⁰

In a different type of reaction, alkenes are photooxygenated (with singlet O_2 , see **14-7**) in the presence of a Ti, V, or Mo complex to give epoxy alcohols, such as **180**, formally derived from allylic hydroxylation followed by epoxidation.¹⁸⁴¹ In other cases, modification of the procedure gives simple epoxidation.¹⁸⁴² Alkenes react with aldehydes and oxygen, with palladium-on-silica¹⁸⁴³ or a ruthenium catalyst,¹⁸⁴⁴

¹⁸³¹For a discussion of stereocontrol factors, see Nishida, T.; Miyafuji, A.; Ito, Y.N.; Katsuki, T. *Tetrahedron Lett.* **2000**, *41*, 7053.

¹⁸³²See Linker, T. Angew. Chem., Int. Ed. **1997**, *36*, 2060. See Adam, W.; Roschmann, K.J.; Saha-Möller, C.R. Eur. J. Org. Chem. **2000**, 3519. For the importance of electronic effects, see Cavallo, L.; Jacobsen, H. J. Org. Chem. **2003**, 68, 6202.

¹⁸³³Cavallo, L.; Jacobsen, H. Angew. Chem. Int. Ed. 2000, 39, 589.

¹⁸³⁴Song, C.E.; Roh, E.J.; Yu, B.M.; Chi, D.Y.; Kim, S.C.; Lee, K.J. Chem. Commun. 2000, 615; Ahn, K.-H.; Park, S.W.; Choi, S.; Kim, H.-J.; Moon, C.J. Tetrahedron Lett. 2001, 42, 2485.

¹⁸³⁵Daly, A.M.; Renehan, M.F.; Gilheany, D.G. *Org. Lett.* **2001**, *3*, 663; O'Mahony, C.P.; McGarrigle, E.M.; Renehan, M.F.; Ryan, K.M.; Kerrigan, N.J.; Bousquet, C.; Gilheany, D.G. *Org. Lett.* **2001**, *3*, 3435. See the references cited therein.

¹⁸³⁶Nakata, K.; Takeda, T.; Mihara, J.; Hamada, T.; Irie, R.; Katsuki, T. Chem. Eur. J. 2001, 7, 3776.

¹⁸³⁷Konishi, K.; Oda, K.; Nishida, K.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1992, 114, 1313.

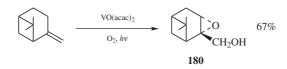
¹⁸³⁸Takai, T.; Hata, E.; Yorozu, K.; Mukaiyama, T. Chem. Lett. 1992, 2077.

¹⁸³⁹Saalfrank, R.W.; Reihs, S.; Hug, M. Tetrahedron Lett. **1993**, 34, 6033.

¹⁸⁴⁰Savle, P.S.; Lamoreaux, M.J.; Berry, J.F.; Gandour, R.D. Tetrahedron Asymmetry 1998, 9, 1843.

¹⁸⁴¹Adam, W.; Braun, M.; Griesbeck, A.; Lucchini, V.; Staab, E.; Will, B. *J. Am. Chem. Soc.* **1989**, 111, 203.

¹⁸⁴²See Iwahama, T.; Hatta, G.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 163.


¹⁸⁴³Gao, H.; Angelici, R.J. Synth. Commun. 2000, 30, 1239; Chen, W.; Yamada, J.; Matsumoto, K. Synth. Commun. 2002, 32, 17; Ragagnin, G.; Knochel, P. Synlett 2004, 951.

¹⁸⁴⁴Srikanth, A.; Nagendrappa, G.; Chandrasekaran, S. *Tetrahedron* 2003, 59, 7761; Qi, J.Y.; Qiu, L.Q.; Lam, K.H.; Yip, C.W.; Zhou, Z.Y.; Chan, A.S.C. *Chem. Commun.* 2003, 1058.

¹⁸²⁹Hosoya, N.; Hatayama, A.; Irie, R.; Sasaki, H.; Katsuki, T. *Tetrahedron* 1994, 50, 4311, and references cited therein; Brandes, B.D.; Jacobsen, E.N. J. Org. Chem. 1994, 59, 4378; Sasaki, H.; Irie, R.; Hamada, T.; Suzuki, K.; Katsuki, T. *Tetrahedron* 1994, 50, 11827; Brandes, B.D.; Jacobsen, E.N. *Tetrahedron Lett.* 1995, 36, 5123; Nishikori, H.; Ohta, C.; Katsuki, T. Synlett 2000, 1557; Tangestaninejad, S.; Habibi, M.H.; Mirkhani, V.; Moghadam, M. Synth. Commun. 2002, 32, 3331.

¹⁸³⁰Kureshy, R.I.; Khan, N.H.; Abdi, S.H.R.; Patel, S.T.; Jasra, R.V. *Tetrahedron Asymmetry* 2001, 12, 433.

to give the epoxide.

Thiiranes can be prepared directly from alkenes using specialized reagents.¹⁸⁴⁵ Thiourea with a tin catalyst gives the thiirane, for example.¹⁸⁴⁶ Interestingly, internal alkynes were converted to 1,2-dichorothiiranes by reaction with S_2Cl_2 (sulfur monochloride).¹⁸⁴⁷ It is noted that epoxides are converted to thiiranes with ammonium thiocyanate and a cerium complex.¹⁸⁴⁸ A trans-thiiration reaction occurs with a molybdenum catalyst, in which an alkene reacts with styrene thiirane to give the new thiirane.¹⁸⁴⁹

OS I, 494; IV, 552, 860; V, 191, 414, 467, 1007; VI, 39, 320, 679, 862; VII, 121, 126, 461; VIII, 546; IX, 288; X, 29; 80, 9.

15-51 Hydroxysulfenylation (Addition of Oxygen, Sulfur)

Hydroxy-arylthio-addition (overall transformation)

$$\sum_{C=C} + \text{ArS-SAr} + \text{CF}_{3}\text{COOH} \xrightarrow{Pb(OAc)_{4}} \xrightarrow{ArS} \xrightarrow{OOCCF_{3}} \xrightarrow{hydrol.} \xrightarrow{ArS} \xrightarrow{OH} \xrightarrow{C-C} \xrightarrow{OC}$$

A hydroxy and an arylthio group can be added to a double bond by treatment with an aryl disulfide and lead tetraacetate in the presence of trifluoroacetic acid.¹⁸⁵⁰ Manganese and copper acetates have been used instead of $Pb(OAc)_4$.¹⁸⁵¹ Addition of the groups OH and RSO has been achieved by treatment of alkenes with O₂ and a thiol RSH.¹⁸⁵² Two RS groups were added, to give *vic*-dithiols, by treatment of the alkene with a disulfide RSSR and BF₃-etherate.¹⁸⁵³ This reaction

¹⁸⁴⁶Tangestaninejad, S.; Mirkhani, V. Synth. Commun. 1999, 29, 2079.

¹⁸⁴⁷Nakayama, J.; Takahashi, K.; Watanabe, T.; Sugihara, Y.; Ishii, A. *Tetrahedron Lett.* 2000, 41, 8349.
 ¹⁸⁴⁸Iranpoor, N.; Tamami, B.; Shekarriz, M. *Synth. Commun.* 1999, 29, 3313.

¹⁸⁴⁹Adam, W.; Bargon, R.M.; Schenk, W.A. J. Am. Chem. Soc. 2003, 125, 3871.

¹⁸⁴⁵Capozzi, G.; Menichetti, S.; Neri, S.; Skowronska, A. Synlett **1994**, 267; Adam, W.; Bargon, R.M. Eur. J. Org. Chem. **2001**, 1959; Adam, W.; Bargon, R.M. Chem. Commun. **2001**, 1910.

¹⁸⁵⁰Trost, B.M.; Ochiai, M.; McDougal, P.G. J. Am. Chem. Soc. **1978**, 100, 7103. For a related reaction, see Zefirov, N.S.; Zyk, N.V.; Kutateladze, A.G.; Kolbasenko, S.I.; Lapin, Yu.A. J. Org. Chem. USSR **1986**, 22, 190.

 ¹⁸⁵¹Bewick, A.; Mellor, J.M.; Owton, W.M. J. Chem. Soc. Perkin Trans. 1, 1985, 1039; Bewick, A.;
 Mellor, J.M.; Milano, D.; Owton, W.M. J. Chem. Soc. Perkin Trans. 1, 1985, 1045; Samii, Z.K.M.A.E.;
 Ashmawy, M.I.A.; Mellor, J.M. Tetrahedron Lett. 1986, 27, 5289.

¹⁸⁵²Chung, M.; D'Souza, V.T.; Szmant, H.H. J. Org. Chem. 1987, 52, 1741, and other papers in this series.

¹⁸⁵³Caserio, M.C.; Fisher, C.L.; Kim, J.K. J. Org. Chem. **1985**, 50, 4390; Inoue, H.; Murata, S. Heterocycles **1997**, 45, 847.

has been carried out internally.¹⁸⁵⁴ In a similar manner, reaction of alkenes with ceric ammonium nitrate, diphenyl diselenide in methanol leads to vicinally substituted phenylselenyl methyl ethers.¹⁸⁵⁵ Dimethyl diselenide adds to alkenes to form vicinal bis-methylselenyl compounds, in the presence of tin tetrachloride.¹⁸⁵⁶

Halo-ethers can be formed by the reaction of alkenyl alcohols with various reagents. Hept-6-en-1-ol reacts with $(\text{collidine})_2 I^+ PF_6^-$, for example, to form 2-iodomethyl-1-oxacycloheptane.¹⁸⁵⁷

15-52 Oxyamination (Addition of Oxygen, Nitrogen)

Tosylamino-hydroxy-addition

$$C = C + T_{s}NCINa \cdot 3 H_{2}O \xrightarrow{1\% OsO_{4}} HO \xrightarrow{HO} NHTs$$

N-Tosylated β -hydroxy alkylamines (which can be easily hydrolyzed to β -hydroxyamines¹⁸⁵⁸) can be prepared¹⁸⁵⁹ by treatment of alkenes with the trihydrate of Chloramine-T (*N*-chloro-*p*-toluenesulfonamide sodium salt)¹⁵⁶⁶ and a catalytic amount of OsO₄.¹⁸⁶⁰ In some cases, yields can be improved by the use of phasetransfer catalysis.¹⁸⁶¹ The reaction has been carried out enantioselectively.¹⁸⁶² Alkenes can be converted to amido alcohols enantioselectivity by modification of this basic scheme. The *Sharpless asymmetric aminohydroxylation* employs a catalyst consisting of *Cinchona* alkaloid derived ligands and an osmium species in combination with a stoichiometric nitrogen source that also functions as the oxidant.¹⁸⁶³ The reaction of a carbamate with (DHQ)₂PHAL (**176**) and the osmium compound, with NaOH and *tert*-butyl hypochlorite, leads to a diastereomeric mixture of amido alcohols **181** and **182**, each formed with high enantioselectivity.¹⁸⁶⁴ In general, the nitrogen adds to the less sterically hindered carbon of the alkene to give the major product. *N*-Bromoamides, in the presence of a catalytic amount of (DHQ)₂PHAL

¹⁸⁵⁶Hermans, B.; Colard, N.; Hevesi, L. Tetrahedron Lett. 1992, 33, 4629.

¹⁸⁵⁷Brunel, Y.; Rousseau, G. Synlett 1995, 323.

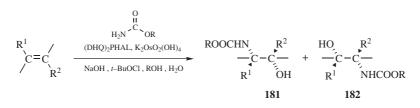
¹⁸⁶³For a review, see Bodkin, J.A.; McLeod, M.D. J. Chem. Soc., Perkin Trans. 1 2002, 2733.

¹⁸⁵⁴Tuladhar, S.M.; Fallis, A.G. *Tetrahedron Lett.* **1987**, 28, 523. For a list of other examples, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 905–908.

¹⁸⁵⁵Bosman, C.; D'Annibale, A.; Resta, S.; Trogolo, C. *Tetrahedron Lett.* **1994**, *35*, 6525. See Ogawa, A.; Tanaka, H.; Yokoyama, H.; Obayashi, R.; Yokoyama, K.; Sonoda, N. J. Org. Chem. **1992**, *57*, 111 for formation of mixed PhS–PhSe- compounds from alkenes.

¹⁸⁵⁸For some reactions of the oxyamination products, see Bäckvall, J.E.; Oshima, K.; Palermo, R.E.; Sharpless, K.B. *J. Org. Chem.* **1979**, *44*, 1953.

¹⁸⁵⁹Sharpless, K.B.; Chong, A.O.; Oshima, K. *J. Org. Chem.* **1976**, *41*, 177. See Rudolph, J.; Sennhenn, P.C.; Vlaar, C.P.; Sharpless, K.B. *Angew. Chem. Int. Ed.* **1996**, *35*, 2810 for a discussion of the influence of substituents on nitrogen in this reaction.


¹⁸⁶⁰See Fokin, V.V.; Sharpless, K.B. Angew. Chem. Int. Ed. 2001, 40, 3455.

¹⁸⁶¹Herranz, E.; Sharpless, K.B. J. Org. Chem. 1978, 43, 2544.

¹⁸⁶²Hassine, B.B.; Gorsane, M.; Pecher, J.; Martin, R.H. Bull. Soc. Chim. Belg. 1985, 94, 759.

¹⁸⁶⁴Li, G.; Chang, H.-T.; Sharpless, K.B. Angew. Chem., Int. Ed. 1996, 35, 451.

and LiOH converts conjugated esters to β -amido- α -hydroxy esters with good enantioselectivity.¹⁸⁶⁵ In another procedure, certain β -hydroxy secondary alkylamines can be prepared by treatment of alkenes with the osmium compound *t*-Bu–N=OsO₃, followed by reductive cleavage with LiAlH₄ of the initially formed osmic esters.¹⁸⁶⁶ It is presumed that Ts–N=OsO₃ is an intermediate in the Chloramine-T reaction. Another oxyamination reaction involves treatment of a palladium complex of the alkene with a secondary or primary amine, followed by lead tetraacetate or another oxidant.¹⁸⁶⁷

The organolanthanide-catalyzed alkene hydroamination has been reported.¹⁸⁶⁸ With this approach, amino alkenes (not enamines) can be cyclized to form cyclic amines,¹⁸⁶⁹ and amino alkynes lead to cyclic imine.¹⁸⁷⁰ The use of synthesized $C-1^{1871}$ and C-2 symmetric¹⁸⁷² chiral organolanthanide complexes give the amino alcohol with good enantioselectivity.

 β -Amino alcohols can be prepared by treatment of an alkene with a reagent prepared from HgO and HBF₄ along with aniline to give an aminomercurial

compound $P_{hHN}-C-C-H_{gBF_4}$ (aminomercuration; see **15-7**) which is hydrolyzed

¹⁸⁶⁵Demko, Z.P.; Bartsch, M.; Sharpless, K.B. Org. Lett. 2000, 2, 2221.

¹⁸⁶⁶Hentges, S.G.; Sharpless, K.B. *J. Org. Chem.* **1980**, 45, 2257. Also see, Rubinstein, H.; Svendsen, J.S. *Acta Chem. Scand. B* **1994**, 48, 439. For another method, in which the NH in the product is connected to an easily removable protecting group, see Herranz, E.; Sharpless, K.B. *J. Org. Chem.* **1980**, 45, 2710.

¹⁸⁶⁷Bäckvall, J.E.; Björkman, E.E. Acta Chem. Scand. Ser. B **1984**, 38, 91; Bäckvall, J.E.; Bystrom, S.E. J. Org. Chem. **1982**, 47, 1126.

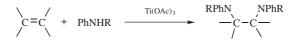
¹⁸⁶⁸Ryu, J.-S.; Li, G.Y.; Marks, T.J. J. Am. Chem. Soc. 2003, 125, 12584; Li, Y.; Marks, T.J. Organometallics 1996, 15, 3770; Gagné, M.R.; Stern, C.L.; Marks, T.J. J. Am Chem. Soc. 1992, 114, 275; Gagné, M.R.; Marks, T.J. J. Am Chem. Soc. 1989, 111, 4108. For a review, see Hong, S.; Marks, T.J. Acc. Chem. Res. 2004, 37, 673.

¹⁸⁶⁹Gagné, M.R.; Stern, C.L.; Marks, T.J. J. Am Chem. Soc. **1992**, 114, 275; Gagné, M.R.; Marks, T.J. J. Am Chem. Soc. **1989**, 111, 4108.

¹⁸⁷⁰Li, Y.; Marks, T.J. J. Am. Chem. Soc. **1996**, 118, 9295; Li, Y.; Fu, P.-F.; Marks, T.J. Organometallics **1994**, 13, 439; Li, Y.; Marks, T.J. J. Am. Chem. Soc. **1998**, 120, 1757; Li, Y.; Marks, T.J. J. Am. Chem. Soc. **1996**, 118, 707.

¹⁸⁷¹Douglass, M.R.; Ogasawara, M.; Hong, S.; Metz, M.V.; Marks, T.J. Organometallics 2002, 21, 283; Giardello, M.A.; Conticello, V.P.; Brard, L.; Gagné, M.R.; Marks, T.J. J. Am. Chem. Soc. 1994, 116, 10241; Giardello, M.A.; Conticello, V.P.; Brard, L.; Sabat, M.; Rheingold, A.L.; Stern, C.L.; Marks, T.J. J. Am. Chem. Soc. 1994, 116, 10212; Gagné, M.R.; Brard, L.; Conticello, V.P.; Giardello, M.A.; Stern, C.L.; Marks, T.J. Organometallics 1992, 11, 2003.

¹⁸⁷²Hong, S.; Tian, S.; Metz, M.V.; Marks, T.J. J. Am. Chem. Soc. 2003, 125, 14768.


to PhHN-C-C-OH.¹⁸⁷³ The use of an alcohol instead of water gives the corresponding $\begin{vmatrix} \\ \\ \\ \end{vmatrix}$

amino ether. β -Azido alcohols are prepared by the reaction of an alkene with Me₃SiOOSiMe₃, Me₃SiN₃, and 20% (Cl₂SnO)_n, followed by treatment with aqueous acetic acid.¹⁸⁷⁴

OS VII, 223, 375.

15-53 Diamination (Addition of Nitrogen, Nitrogen)

Di(alkylarylamino)-addition

Primary (R = H) and secondary aromatic amines react with alkenes in the presence of thallium(III) acetate to give *vic*-diamines in good yields.¹⁸⁷⁵ The reaction is not successful for primary aliphatic amines. In another procedure, alkenes can be diaminated by treatment with the osmium compounds R₃NOsO (R = *t*-Bu) and R₂NOsO₂,¹⁸⁷⁶ analogous to the osmium compound mentioned at **15-52**.¹⁸⁷⁷ The palladium-promoted method of **15-52** has also been extended to diamination.¹⁸⁷⁸ Alkenes can also be diaminated¹⁸⁷⁹ indirectly by treatment of the aminomercurial compound mentioned in **15-52** with a primary or secondary aromatic amine.¹⁸⁸⁰ The reaction of an alkene with *N*-arylsulfonyl dichloro-amines, ArSO₂NCl₂, followed by reaction with aqueous Na₂SO₃, gives the *anti-vic*-diacetamde.¹⁸⁸¹

Two azido groups can be added to double bonds by treatment with sodium azide and iodosobenzene in acetic acid, $C{=}C{+}NaN_3{+}PhIO{\rightarrow}N_3{-}C{-}C{-}C{-}N_3{.}^{1882}$

¹⁸⁷⁵Gómez Aranda, V.; Barluenga, J.; Aznar, F. Synthesis 1974, 504.

¹⁸⁷⁸Bäckvall, J. Tetrahedron Lett. 1978, 163.

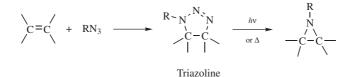
¹⁸⁷⁹For other diamination methods, see Michejda, C.J.; Campbell, D.H. J. Am. Chem. Soc. 1979, 101, 7687; Becker, P.N.; White, M.A.; Bergman, R.G. J. Am. Chem. Soc. 1980, 102, 5676; Becker, P.N.; Bergman, R.G. Organometallics 1983, 2, 787; Jung, S.; Kohn, H. Tetrahedron Lett. 1984, 25, 399; J. Am. Chem. Soc. 1985, 107, 2931; Osowska-Pacewicka, K.; Zwierzak, A. Synthesis 1990, 505.

¹⁸⁸⁰Barluenga, J.; Alonso-Cires, L.; Asensio, G. Synthesis 1979, 962.

¹⁸⁸¹Li, G.; Kim, S.H.; Wei, H.-X. Tetrahedron Lett. 2000, 41, 8699.

¹⁸⁸²Moriarty, R.M.; Khosrowshahi, J.S. *Tetrahedron Lett.* **1986**, *27*, 2809. For other methods, see Minisci, F.; Galli, R. *Tetrahedron Lett.* **1962**, 533; Fristad, W.E.; Brandvold, T.A.; Peterson, J.R.; Thompson, S.R. *J. Org. Chem.* **1985**, *50*, 3647.

¹⁸⁷³Barluenga, J.; Alonso-Cires, L.; Asensio, G. Synthesis 1981, 376.


¹⁸⁷⁴Sakurada, I.; Yamasaki, S.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2000, 41, 2415.

¹⁸⁷⁶Chong, A.O.; Oshima, K.; Sharpless, K.B. J. Am. Chem. Soc. **1977**, 99, 3420. See also, Sharpless, K.B.; Singer, S.P. J. Org. Chem. **1976**, 41, 2504.

¹⁸⁷⁷For a X-ray structure of the osmium intermediate, see Muñiz, K.; Iesato, A.; Nieger, M. Chem. Eur. J. 2003, 9, 5581.

15-54 Formation of Aziridines (Addition of Nitrogen, Nitrogen)

epi-Arylimino-addition, and so on.

Aziridines can be prepared directly from double-bond compounds by photolysis or thermolysis of a mixture of the substrate and an azide.¹⁸⁸³ The reaction has been carried out with R = aryl, cyano, EtOOC, and RSO₂, as well as other groups. The reaction can take place by at least two pathways.

In one pathway a 1,3-dipolar addition (**15-58**) takes place to give a triazoline (which can be isolated), followed thermal by extrusion of nitrogen (**17-34**). Evidence for the nitrene pathway is most compelling for R = acyl groups. In the other, the azide is converted to a nitrene, which adds to the double bond in a manner analogous to that of carbene addition (**15-64**). Sulfonyloxy amines, such as ArSO₂ONHCO₂Et, form an aziridine when treated with CaO in the presence of a conjugated carbonyl compound.¹⁸⁸⁴ In the presence of copper,¹⁸⁸⁵ cobalt,¹⁸⁸⁶ or rhodium complexes,¹⁸⁸⁷ ethyl diazoacetate adds to imines to give aziridines. Diazirines (p. 288) with *n*-butyllithium converted conjugated amides to the α , β -aziridino amide.¹⁸⁸⁸ Calcium oxide has also been used to generate the nitrene,¹⁸⁸⁹ including nitrene precursors that have an attached chiral ester.¹⁸⁹⁰ Other specialized reagents have also been used.¹⁸⁹¹ As discussed on p. 293, singlet nitrenes add stereospecifically while triplet nitrenes do not. Diphenyl sulfimide (Ph₂SNH) converts

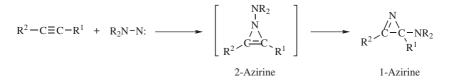
¹⁸⁸⁶Ikeno, T.; Nishizuka, A.; Sato, M.; Yamada, T. Synlett 2001, 406.

¹⁸⁸⁷Mohan, J.M.; Uphade, T.S.S.; Choudhary, V.R.; Ravindranathan, T.; Sudalai, A. *Chem. Commun.* **1997**, 1429; Moran, M.; Bernardinelli, G.; Müller, P. *Helv. Chim. Acta* **1995**, 78, 2048.

¹⁸⁸³For reviews, see Dermer, O.C.; Ham, G.E. *Ethylenimine and Other Aziridines*, Academic Press, NY, **1969**, pp. 68–79; Muller, L.L.; Hamer, J. *1,2-Cycloaddition Reactions*, Wiley, NY, **1967**.

¹⁸⁸⁴Fioravanti, S.; Pellacani, L.; Tabanella, S.; Tardella, P.A. *Tetrahedron* **1998**, *54*, 14105; Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P.A. *Synthesis* **2001**, 1975. For an enantioselective version of this reaction using a chiral ester auxiliary, see Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P.A. *J. Org. Chem.* **2002**, *67*, 4972.

¹⁸⁸⁵Li, Z.; Zheng, Z.; Chen, H. *Tetrahedron Asymmetry* **2000**, *11*, 1157; Wong, H.L.; Tian, Y.; Chan, K.S. *Tetrahedron Lett.* **2000**, *41*, 7723; Sanders, C.J.; Gillespie, K.M.; Scott, P. *Tetrahedron Asymmetry* **2001**, *12*, 1055; Ma, J.-A.; Wang, L.-X.; Zhang, W.; Zhou, W.; Zhou, Q.-L. *Tetrahedron Asymmetry* **2001**, *12*, 2801.


¹⁸⁸⁸Hori, K.; Sugihara, H.; Ito, Y.N.; Katsuki, T. *Tetrahedron Lett.* **1999**, 40, 5207; Ishihara, H.; Ito, Y.N.; Katsuki, T. *Chem. Lett.* **2001**, 984.

¹⁸⁸⁹Carducci, M.; Fioravanti, S.; Loreta, M.A.; Pellacani, L.; Tardella, P.A. *Tetrahedron Lett.* **1996**, 37, 3777.

¹⁸⁹⁰Fioravanti, S.; Morreale, A.; Pellacani, L.; Tardella, P.A. Tetrahedron Lett. 2003, 44, 3031.

¹⁸⁹¹Aires-de-Sousa, J.; Labo, A.M.; Prabhakar, S. Tetrahedron Lett. 1996, 37, 3183.

Michael-type substrates to the corresponding aziridines.¹⁸⁹² Aminonitrenes (R_2NN :) have been shown to add to alkenes¹⁸⁹³ to give *N*-substituted aziridines and to triple bonds to give 1-azirines, which arise from rearrangement of the initially formed 2-azirines.¹⁸⁹⁴ Like oxirenes (see **15-50**), 2-azirines are unstable, probably because of anti-aromaticity. 1-Azirines can be reduced to give chiral aziridines.¹⁸⁹⁵

An alternative preparation of aziridines reacts an alkene with iodine and chloramine-T, generating the corresponding *N*-tosyl aziridine.¹⁸⁹⁶ Chloramine T and NBS also gives the *N*-tosyl aziridine,¹⁸⁹⁷ and bromamine-T (TsNBr⁻Na⁺) has been used in a similar manner,¹⁸⁹⁸ and also TsNIK.¹⁸⁹⁹ Diazoalkanes react with imines to give aziridines.¹⁹⁰⁰ Another useful reagent is NsN=IPh, which reacts with alkenes in the presence of rhodium compounds¹⁹⁰¹ or Cu(OTf)₂¹⁹⁰² to give *N*-Ns aziridines. Other sulfonamide reagents can be used,¹⁹⁰³ including PhI=NTs.¹⁹⁰⁴ Enantioselective aziridination is possible using this reaction with

¹⁸⁹⁴Anderson, D.J.; Gilchrist, T.L.; Rees, C.W. Chem. Commun. 1969, 147.

¹⁸⁹⁵Roth, P.; Andersson, P.G.; Somfai, P. Chem. Commun. 2002, 1752.

¹⁸⁹⁶Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. *Tetrahedron* **1998**, *54*, 13485. For the use of TsNCl₂, see Chen, D.; Timmons, C.; Guo, L.; Xu, X.; Li, G. *Synthesis* **2004**, 2479.

¹⁸⁹⁷Thakur, V.V.; Sudalai, A. Tetrahedron Lett. 2003, 44, 989.

¹⁸⁹⁸Vyas, R.; Chanda, B.M.; Bedekar, A.V. *Tetrahedron Lett.* **1998**, *39*, 4715; Hayer, M.F.; Hossain, M.M. *J. Org. Chem.* **1998**, *63*, 6839. This reaction was catalyzed by CuCl₂ with microwave irradiation, see Chanda, B.M.; Vyas, R.; Bedekar, A.V. *J. Org. Chem.* **2001**, *66*, 30. Iron catalysts have been used, see Vyas, R.; Gao, G.-Y.; Hardin, J.D.; Zhang, X.P. Org. Lett. **2003**, *6*, 1907.

¹⁸⁹⁹Jain, S.L.; Sain, B. Tetrahedron Lett. 2003, 44, 575.

¹⁹⁰⁰Casarrubios, L.; Pérez, J.A.; Brookhart, M.; Templeton, J.L. J. Org. Chem. 1996, 61, 8358.

¹⁹⁰¹Müller, P.; Baud, C.; Jacquier, Y. *Tetrahedron* 1996, 52, 1543. Also see, Södergren, M.J.; Alonso, D.A.; Bedekar, A.V.; Andersson, P.G. *Tetrahedron Lett.* 1997, 38, 6897.

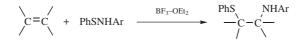
¹⁹⁰²Knight, J.G.; Muldowney, M.P. Synlett **1995**, 949. See also, Dauben, P.; Sanière, L.; Tarrade, A.; Dodd, R.H. J. Am. Chem. Soc. **2001**, 123, 7707; Shi, M.; Wang, C.-J.; Chan, A.S.C. Tetrahedron Asymmetry **2001**, 12, 3105.

¹⁹⁰³PhI=NSO₂CH₂CCl₃: GuthiKonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672. See also, Di Chenna, P.H.; Robert-Peillard, F.; Dauban, P.; Dodd, R.H. Org. Lett. 2004, 6, 4503; Kwong, H.-L.; Liu, D.; Chan, K.-Y.; Lee, C.-S.; Huang, K.-H.; Che, C.-M. Tetrahedron Lett. 2004, 45, 3965.

¹⁹⁰⁴Vedernikov, A.N.; Caulton, K.G. Org. Lett. 2003, 5, 2591; Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202. PhI=NSO₂CH₂CH₂SiMe₃: Dauban, P.; Dodd, R.H. J. Org. Chem. 1999, 64, 5304, and see Nishimura, M.; Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67, 2101.

¹⁸⁹²Furukawa, N.; Yoshimura, T.; Ohtsu, M.; Akasaka, T.; Oae, S. *Tetrahedron* **1980**, *36*, 73. For other methods, see Groves, J.T.; Takahashi, T. J. Am. Chem. Soc. **1983**, *105*, 2073; Mahy, J.; Bedi, G.; Battioni, P.; Mansuy, D. J. Chem. Soc. Perkin Trans. *2*, **1988**, 1517; Atkinson, R.S.; Kelly, B.J. J. Chem. Soc. Perkin Trans. *1*, **1989**, 1515.

¹⁸⁹³Siu, T.; Yudin, A.K. J. Am. Chem. Soc. 2002, 124, 530.


chiral ligands.¹⁹⁰⁵ This reagent has been used in ionic liquids with a copper catalyst.¹⁹⁰⁶ Such reactions are catalyzed by palladium¹⁹⁰⁷ and methyl trioxorhenium (MeReO₃) can be used in these reactions.¹⁹⁰⁸ Manganese–salen catalysts have also been used with this reagent.¹⁹⁰⁹ A nitrido manganese–salen complex was also used with ditosyl anhydride, converting a conjugated diene to an allylic *N*-tosylaziridine.¹⁹¹⁰

Nitrenes can also add to aromatic rings to give ring-expansion products analogous to those mentioned in **15-62**.¹⁹¹¹

OS VI, 56.

15-55 Aminosulfenylation (Addition of Nitrogen, Sulfur)

Arylamino-arylthio-addition

An amino and an arylthio group can be added to a double bond by treatment with a sulfenanilide PhSNHAr in the presence of BF₃-etherate.¹⁹¹² The addition is anti, and the mechanism probably involves a thiiranium ion.¹⁹¹³ In another aminosulfenylation procedure, the substrate is treated with dimethyl(methylthio)sulfonium fluoroborate (MeSSMe₂ BF₄⁻) and ammonia or an amine,¹⁹¹⁴ the latter acting as a nucleophile. This reaction was extended to other nucleophiles:¹⁹¹⁵ N₃^{-,1916}

¹⁹⁰⁷Antunes, A.M.M.; Marto, S.J.L.; Branco, P.S.; Prabhakar, S.; Lobo, A.M. *Chem. Commun.* 2001, 405.
 ¹⁹⁰⁸Jean, H.-J.; Nguyen, S.B.T. *Chem. Commun.* 2001, 235.

¹⁹⁰⁹O'Connor, K.J.; Wey, S.-J.; Burrows, C.J. *Tetrahedron Lett.* **1992**, *33*, 1001; Nishikori, H.; Katsuki, T. *Tetrahedron Lett.* **1996**, *37*, 9245; Noda, K.; Hosoya, N.; Irie, R.; Ito, Y.; Katsuki, T. *Synlett* **1993**, 469.

¹⁹¹⁰Nishimura, M.; Minakata, S.; Thonchant, S.; Ryu, I.; Komatsu, M. Tetrahedron Lett. 2000, 41, 7089.

¹⁹¹¹For example, see Hafner, K.; König, C. Angew. Chem. Int. Ed. **1963**, 2, 96; Lwowski, W.; Johnson, R.L. Tetrahedron Lett. **1967**, 891.

¹⁹¹²Benati, L.; Montavecchi, P.C.; Spagnolo, P. *Tetrahedron Lett.* 1984, 25, 2039. See also, Brownbridge, P. *Tetrahedron Lett.* 1984, 25, 3759.

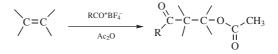
¹⁹¹⁴Trost, B.M.; Shibata, T. J. Am. Chem. Soc. **1982**, 104, 3225; Caserio, M.C.; Kim., J.K. J. Am. Chem. Soc. **1982**, 104, 3231.

¹⁹¹⁵Trost, B.M.; Shibata, T.; Martin, S.J. *J. Am. Chem. Soc.* **1982**, *104*, 3228; Trost, B.M.; Shibata, T. *J. Am. Chem. Soc.* **1982**, *104*, 3225. For an extension that allows A to be C≡CR, see Trost, B.M.; Martin, S.J. J. Am. Chem. Soc. **1984**, *106*, 4263.

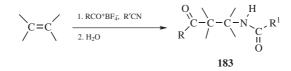
¹⁹⁰⁵See Gillespie, K.M.; Sanders, C.J.; O'Shaughnessy, P.; Westmoreland, I.; Thickitt, C.P.; Cott, P. J. Org. Chem. 2002, 67, 3450.

¹⁹⁰⁶In bmim BF₄, 1-butyl-3-methylimidazolium tetrafluoroborate: Kantam, M.L.; Neeraja, V.; Kavita, B.; Haritha, Y. *Synlett* **2004**, 525.

¹⁹¹³See Ref. 21.


¹⁹¹⁶Sreekumar, R.; Padmakumar, R.; Rugmini, P. Chem. Commun. 1997, 1133.

NO₂⁻ CN⁻, ⁻OH, and ⁻OAc to give MeS⁻C⁻C⁻C⁻A, where A = N₃, NO₂, CN, OH,


and OAc, respectively. An RS (R = alkyl or aryl) and an NHCOMe group have been added in an electrochemical procedure. 1917

15-56 Acylacyloxylation and Acylamidation (Addition of Oxygen, Carbon, or Nitrogen, Carbon)

Acyl-acyloxy-addition

An acyl and an acyloxy group can be added to a double bond by treatment with an acyl fluoroborate and acetic anhydride.¹⁹¹⁸ As expected, the addition follows Markovnikov's rule, with the electrophile Ac^+ going to the carbon with more hydrogens. In an analogous reaction, an acyl and an amido group can be added to give **183**, if a nitrile is used in place of the anhydride. Similarly, halo acetoxylation is known.¹⁹¹⁹ This reaction has also been carried out on triple bonds, to give the unsaturated analogs of **183** (syn addition).¹⁹²⁰

15-57 The Conversion of Alkenes to γ -Lactones (Addition of Oxygen, Carbon)

This reaction is clearly related to forming esters and lactones by reaction of carboxylic acids with alkenes (15-6), but the manganese reagent leads to

¹⁹¹⁷Bewick, A.; Coe, D.E.; Mellor, J.M.; Owton, M.W. J. Chem. Soc. Perkin Trans. 1, 1985, 1033.

¹⁹¹⁸Shastin, A.V.; Balenkova, E.S. J. Org. Chem. USSR 1984, 20, 870.

¹⁹¹⁹Hashem, Md.A.; Jung, A.; Ries, M.; Kirschning, A. Synlett 1998, 195.

¹⁹²⁰Gridnev, I.D.; Balenkova, E.S. J. Org. Chem. USSR 1988, 24, 1447.

differences. Alkenes react with manganese(III) acetate to give γ -lactones.¹⁹²¹ The mechanism is probably free radical, involving addition of \bullet CH₂COOH to the double bond. Ultrasound improves the efficiency of the reaction.¹⁹²² In a related reaction, cyclohexene reacted with MeO₂CCH₂CO₂K and Mn(OAc)₃ to give an α -carbomethoxy bicyclic lactone.¹⁹²³ The use of dimethyl malonate and ultrasound in this reaction gave the same type of product.¹⁹²⁴ Lactone formation has also been accomplished by treatment of alkenes with α -bromo carboxylic acids in the presence of benzoyl peroxide as catalyst,¹⁹²⁵ and with alkylidene chromium pentacarbonyl complexes.¹⁹²⁶ Alkenes can also be converted to γ - lactones by indirect routes.¹⁹²⁷ Chromium–carbene complexes add to alkenes to give β -lactones using ultrasound.¹⁹²⁸

An intramolecular variation of this reaction is known, involving amides, which generates a lactam.¹⁹²⁹

OS VII, 400.

For addition of aldehydes and ketones, see the Prins reaction (16-54), and reactions 16-95 and 16-96.

15-58 1,3-Dipolar Addition (Addition of Oxygen, Nitrogen, Carbon)

There are a large group of reactions ([3 + 2]-cycloadditions) in which fivemembered heterocyclic compounds are prepared by addition of 1,3-dipolar compounds to double bonds. This reaction is quite useful in the synthesis of alkaloids,¹⁹³⁰ including asymmetric syntheses.¹⁹³¹ These dipolar compounds have a

¹⁹²¹Bush Jr., J.B.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903; Heiba, E.I.; Dessau, R.M.; Koehl, Jr.,
 W.J. J. Am. Chem. Soc. 1968, 90, 5905; Heiba, E.I.; Dessau, R.M.; Rodewald, P.G. J. Am. Chem. Soc.
 1974, 96, 7977; Midgley, G.; Thomas, C.B. J. Chem. Soc. Perkin Trans. 2, 1984, 1537; Ernst, A.B.;
 Fristad, W.E. Tetrahedron Lett. 1985, 26, 3761; Shundo, R.; Nishiguchi, I.; Matsubara, Y.; Hirashima, T.
 Tetrahedron 1991, 47, 831. See also, Corey, E.J.; Gross, A.W. Tetrahedron Lett. 1985, 26, 4291.

¹⁹²²D'Annibale, A.; Trogolo, C. Tetrahdron Lett. 1994, 35, 2083.

¹⁹²³Lamarque, L.; Méou, A.; Brun, P. Tetrahedron 1998, 54, 6497.

¹⁹²⁴Allegretti, M.; D'Annibale, A.; Trogolo, C. Tetrahedron 1993, 49, 10705.

¹⁹²⁵Nakano, T.; Kayama, M.; Nagai, Y. Bull. Chem. Soc. Jpn. 1987, 60, 1049. See also, Kraus, G.A.; Landgrebe, K. Tetrahedron Lett. 1984, 25, 3939.

¹⁹²⁶Wang, S.L.B.; Su, J.; Wulff, W.D. J. Am. Chem. Soc. 1992, 114, 10665.

¹⁹²⁷See, for example, Boldt, P.; Thielecke, W.; Etzemüller, J. *Chem. Ber.* 1969, 102, 4157; Das Gupta, T.K.; Felix, D.; Kempe, U.M.; Eschenmoser, A. *Helv. Chim. Acta* 1972, 55, 2198; Bäuml, E.; Tscheschlok, K.; Pock, R.; Mayr, H. *Tetrahedron Lett.* 1988, 29, 6925.

¹⁹²⁸Caldwell, J.J.; Harrity, J.P.A.; Heron, N.M.; Kerr, W.J.; McKendry, S.; Middlemiss, D. *Tetrahedron Lett.* **1999**, *40*, 3481; Caldwell, J.J.; Kerr, W.J.; McKendry, S. *Tetrahedron Lett.* **1999**, *40*, 3485.

¹⁹²⁹Davies, D.T.; Kapur, N.; Parsons, A.F. Tetrahedron Lett. 1998, 39, 4397.

¹⁹³⁰See Broggini, G.; Zecchi, G. Synthesis 1999, 905.

¹⁹³¹Karlsson, S.; Högberg, H.-E. Org. Prep. Proceed. Int. 2001, 33, 103.

sequence of three atoms a-b-c, of which *a* has a sextet of electrons in the outer shell and *c* an octet with at least one unshared pair (see Table 15.3).¹⁹³² The reaction can then be formulated as shown to generate **184**. Note that the initial reaction of potassium permanganate (**15-48**) occurs by [3 + 2]-cycload-dition to give a manganate ester (**171**).¹⁹³³ [3+2]-Cycloadditions occur with other metal oxides.¹⁹³⁴ Hydrazones have also been reported to give [3 + 2]-cycloadditions.¹⁹³⁵

1,3-Dipoles of the type shown in Table 15.3 have an atom with six electrons in the outer shell, which is usually unstable, and such compounds will delocalize the change to alleviate this electronic arrangement (they are resonance stabilized). 1,3-Dipolar compounds can be divided into two main types:

1. Those in which the dipolar canonical form has a double bond on the sextet atom and the other canonical form has a triple bond on that atom:

¹⁹³²For a treatise, see Padwa, A. 1,3-Dipolar Cycloaddition Chemistry 2 vols., Wiley, NY, 1984. For general reviews, see Carruthers, W. Cycloaddition reactins in Organic Synthesis, Pergamon, Elmsford, NY, 1990; Drygina, O.V.; Garnovskii, A.D. Russ. Chem. Rev. 1986, 55, 851; Samuilov, Ya.D.; Konovalov, A.I. Russ. Chem. Rev. 1984, 53, 332; Beltrame, P., in Bamford, C.H.; Tipper, C.F.H. Comprhensive Chemical Kinetics, Vol. 9, Elsevier, NY, 1973, pp. 117-131; Huisgen, R.; Grashey, R.; Sauer, J., in Patai, S. The Chemistry of Alkenes, Vol. 1, Wiley, NY, 1964, pp. 806-878; Huisgen, R. Helv. Chim. Acta 1967, 50, 2421; Bull. Soc. Chim. Fr. 1965, 3431; Angew. Chem. Int. Ed. 1963, 2, 565, 633. For specific monographs and reviews, see Torssell, K.B.G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; VCH, NY, 1988; Scriven, E.F.V. Azides and Nitrenes; Academic Press, NY, 1984; Stanovnik, B. Tetrahedron 1991, 47, 2925 (diazoalkanes); Kanemasa, S.; Tsuge, O. Heterocycles 1990, 30, 719 (nitrile oxides); Paton, R.M. Chem. Soc. Rev. 1989, 18, 33 (nitrile sulfides); Terao, Y.; Aono, M.; Achiwa, K. Heterocycles 1988, 27, 981 (azomethine ylids); Vedejs, E. Adv. Cycloaddit. 1988, 1, 33 (azomethine ylids); DeShong, P.; Lander, Jr., S.W.; Leginus, J.M.; Dicken, C.M. Adv. Cycloaddit. 1988, 1, 87 (nitrones); Balasubramanian, N. Org. Prep. Proced. Int. 1985, 17, 23 (nitrones); Confalone, P.N.; Huie, E.M. Org. React. 1988, 36, 1 (nitrones); Padwa, A., in Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, 1984, pp. 313–374 (nitrile ylids); Bianchi, G.; Gandolfi, R.; Grünanger, P., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C, pt. 1, Wley, NY, 1983, pp. 752-784 (nitrile oxides); Black, D.S.; Crozier, R.F.; Davis, V.C. Synthesis 1975, 205 (nitrones); Stuckwisch, C.G. Synthesis 1973, 469 (azomethine ylids, azomethine imines). For reviews of intramolecular 1,3-dipolar additions, see Padwa, A., in Padwa, A. treatise cited above, Vol. 2, pp. 277-406; Padwa, A.; Schoffstall, A.M. Adv. Cycloaddit. 1990, 2, 1; Tsuge, O.; Hatta, T.; Hisano, T., in Patai, S. Supplement A: The Chemistry of Double-bonded Functional Groups, Vol. 2, pt. 1, Wiley, NY, 1989, pp. 345-475; Padwa, A. Angew. Chem. Int. Ed. 1976, 15, 123. For a review of azomethine ylids, see Tsuge, O.; Kanemasa, S. Adv. Heterocycl. Chem. 1989, 45, 231. For reviews of 1,3-dipolar cycloreversions, see Bianchi, G.; Gandolfi, R. in Padwa, A. treatise cited above, Vol. 2, pp. 451-542; Bianchi, G.; De Micheli, C.; Gandolfi, R. Angew. Chem. Int. Ed. 1979, 18, 721. For a related review, see Petrov, M.L.; Petrov, A.A. Russ. Chem. Rev. 1987, 56, 152. For the use of this reaction to synthesize natural products, see papers in Tetrahedron 1985, 41, 3447.

¹⁹³³Houk, K.N.; Strassner, T. J. Org. Chem. 1999, 64, 800.

¹⁹³⁴See Gisdakis, P.; Rösch, N. J. Am. Chem. Soc. 2001, 123, 697.

¹⁹³⁵Kobayashi, S.; Hirabayashi, R.; Shimizu, H.; Ishitani, H.; Yamashita, Y. Tetrahedron Lett. 2003, 44, 3351.

Type 1		
51	Azide	$\stackrel{\odot}{R-N-N=N} \stackrel{\odot}{\longrightarrow} \stackrel{\odot}{R-N-N=N} \stackrel{\odot}{\longrightarrow}$
	Diazoalkane ¹⁹³⁶	$R_2C-N=N^{\bigoplus} \xrightarrow{\Theta} R_2C-N\equiv N$
	Nitrous oxide	$ \overset{\Theta}{O} - N = N \overset{\Theta}{\longrightarrow} \overset{\Theta}{O} - N \equiv N $
	Nitrile imine ¹⁹³⁷	$\stackrel{\odot}{R-N-N=CR'} \stackrel{\odot}{\longleftrightarrow} \stackrel{\odot}{R-N-N=CR'}$
	Nitrile ylid ¹⁹³⁸	$\stackrel{\Theta}{R_2C} \rightarrow \stackrel{\Theta}{R_2C} \rightarrow \stackrel{\Theta}{R_2C} \stackrel{\Theta}{\longrightarrow} \stackrel{\Theta}{R_2C} \stackrel{\Theta}{\longrightarrow} \stackrel{\Theta}{R_2C} \stackrel{\Theta}{\longrightarrow} \stackrel$
	Nitrile oxide ¹⁹³⁹	
Type 2		
	Azomethine imine	$ \begin{array}{ccc} & & & & \\ R_2C - N - NR' & & & & \\ R_2 & & \\ R_2 & & \\ R_2 & & & \\ R_2 & & \\ R_2 & & & \\ R_2$
	Azoxy compound	$ \overset{\odot}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\odot}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}{\overset{\circ}}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\circ}}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\ast}}} }{\underset{R}{\overset{\ast}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{\overset{\circ}}} \overset{\circ}{\underset{R}{}} \overset{\circ}{\underset{R}{}} }{\underset{R}{}} }{\underset{R}{}} }{\underset{R}{}} }{}} }{}$ }{} }{} }{}{
	Azomethine ylid ¹⁹⁴⁰	$ \begin{array}{c} \stackrel{\odot}{\underset{R_2}{\otimes}} \stackrel{\circ}{\underset{R_2}{\otimes}} \stackrel{\sim}{\underset{R_2}{\otimes}} \stackrel{\circ}{\underset{R_2}{\otimes}} \stackrel{\sim}{\underset{R_2}{\otimes}} \stackrel{\sim}{\underset{R_2}{\circ}} \stackrel{\sim}{\underset$
	Nitrone	$ \overset{\odot}{\underset{\substack{\text{o}\\\text{o}\\\text{o}\\\text{o}\\\text{o}\\\text{o}\\\text{o}\\\text{o}$
	Carbonyl oxide ¹⁹⁴¹	$\overset{\odot}{O}$ $\overset{\odot}{-O}$ $\overset{\odot}{-CR_2}$ $\overset{\odot}{\longrightarrow}$ $\overset{\odot}{O}$ $\overset{\odot}{-O}$ $=$ CR_2
	Ozone	$ \overset{\odot}{0} \overset{\odot}{-0} \overset{\odot}{-0} \overset{\odot}{-0} \overset{\odot}{-0} \overset{\odot}{-0} \overset{\odot}{=} 0 $

 TABLE 15.3. Some Common 1,3-Dipolar Compounds

If we limit ourselves to the first row of the periodic table, b can only be nitrogen, c can be carbon or nitrogen, and a can be carbon, oxygen, or

¹⁹³⁶See Baskaran, S.; Vasu, J.; Prasad, R.; Kodukulla, K.; Trivedi, G.K. Tetrahedron 1996, 52, 4515.

¹⁹³⁷Foti, F.; Grassi, G.; Risitano, F. Tetrahedron Lett. 1999, 40, 2605.

¹⁹³⁸Raposo, C.; Wilcox, C.S. Tetrahedron Lett. 1999, 40, 1285.

¹⁹³⁹See Nishiwaki, N.; Uehara, T.; Asaka, N.; Tohda, Y.; Ariga, M.; Kanemasa, S. *Tetrahedron Lett.* **1998**, *39*, 4851; Jung, M.E.; Vu, B.T. *Tetrahedron Lett.* **1996**, *37*, 451; Weidner-Wells, M.A.; Fraga, S.A.; Demers, J.P. *Tetrahedron Lett.* **1994**, *35*, 6473; Easton, C.J.; Hughes, C.M.; Tiekink, E.R.T.; Lubin, C.E.; Savage, G.P.; Simpson, G.W. *Tetrahedron Lett.* **1994**, *35*, 3589; Brown, F.K.; Raimondi, L.; Wu, Y.-D.; Houk, K.N. *Tetrahedron Lett.* **1992**, *33*, 4405; Raimondi, L.; Wu, Y.-D.; Brown, F.K.; Houk, K.N. *Tetrahedron Lett.* **1992**, *33*, 4409. For a synthesis of nitrile oxides, see Muri, D.; Bode, J.W.; Carreira, E.M. *Org. Lett.* **2000**, *2*, 539. Nitrolic acids are precursors, see Matt, C.; Gissot, A.; Wagner, A.; Mioskowski, C. *Tetrahedron Lett.* **2000**, *41*, 1191.

¹⁹⁴⁰For a review, see Pearson, W.H.; Stoy, P. *Synlett* **2003**, 903. For chloroiminium salts as precursors, see Anderson, R.J.; Batsanov, A.S.; Belskaia, N.; Groundwater, P.W.; Meth-Cohn, O.; Zaytsev, A. *Tetrahedron Lett.* **2004**, *45*, 943.

¹⁹⁴¹See Iesce, M.R.; Cermola, F.; Giordano, F.; Scarpati, R.; Graziano, M.L. J. Chem. Soc. Perkin Trans. 1, **1994**, 3295; MuCullough, K.J.; Sugimoto, T.; Tanaka, S.; Kusabayashi, S.; Nojima, M. J. Chem. Soc. Perkin Trans. 1, **1994**, 643.

nitrogen; hence there are six types. Among these are azides (a = b = c = N) and diazoalkanes.

2. Those in which the dipolar canonical form has a single bond on the sextet atom and the other form has a double bond:

$$\overset{\odot}{a} \overset{\bullet}{-b} \overset{\odot}{-c} \overset{\bullet}{-} \overset{\odot}{-} \overset{\odot}{a} \overset{\oplus}{-b} \overset{\bullet}{=} c \overset{\bullet}{-}$$

Here *b* can be nitrogen or oxygen, and *a* and *c* can be nitrogen, oxygen, or carbon, but there are only 12 types, since, for example, N-N-C is only another form of C-N-N. Examples are shown in Table 15.3.

Of the 18 systems, some of which are unstable and must be generated *in situ*,¹⁹⁴² the reaction has been accomplished for at least 15, but not in all cases with a carbon–carbon double bond (the reaction also can be carried out with other double bonds¹⁹⁴³). Not all alkenes undergo 1,3-dipolar addition equally well. The reaction is most successful for those that are good dienophiles in the Diels–Alder reaction (**15-60**). The addition is stereospecific and syn, and the mechanism is probably a one-step concerted process,¹⁹⁴⁴ as illustrated above,¹⁹⁴⁵ largely controlled by Frontier Molecular Orbital considerations.¹⁹⁴⁶ In-plane aromaticity has been invoked for these dipolar cycloadditions.¹⁹⁴⁷ As expected for this type of mechanism, the rates do not vary much with changes in solvent,¹⁹⁴⁸ although rate acceleration has been observed in ionic liquids.¹⁹⁴⁹ Nitrile oxide cycloadditions have also been done in supercritical carbon dioxide.¹⁹⁵⁰ There are no simple rules

¹⁹⁴⁵For a review, see Huisgen, R. Adv. Cycloaddit. 1988, 1, 1. For discussions, see Huisgen, R. J. Org. Chem. 1976, 41, 403; Firestone, R.A. Tetrahedron 1977, 33, 3009; Harcourt, R.D. Tetrahedron 1978, 34, 3125; Haque, M.S. J. Chem. Educ. 1984, 61, 490; Al-Sader, B.H.; Kadri, M. Tetrahedron Lett. 1985, 26, 4661; Houk, K.N.; Firestone, R.A.; Munchausen, L.L.; Mueller, P.H.; Arison, B.H.; Garcia, L.A. J. Am. Chem. Soc. 1985, 107, 7227; Majchrzak, M.W.; Warkentin, J. J. Phys. Org. Chem. 1990, 3, 339.
¹⁹⁴⁶Caramella, P.; Gandour, R.W.; Hall, J.A.; Deville, C.G.; Houk, K.N. J. Am. Chem. Soc. 1977, 99, 385, and references cited therein.

¹⁹⁴⁸For a review of the role of solvents in this reaction, see Kadaba, P.K. Synthesis 1973, 71.

¹⁹⁴⁹Dubreuil, J.F.; Bazureau, J.P. Tetrahedron Lett. 2000, 41, 7351.

¹⁹⁴²For a review of some aspects of this, see Grigg, R. Chem. Soc. Rev. 1987, 16, 89.

¹⁹⁴³For a review of 1,3-dipolar addition to other double bonds, see Bianchi, G.; De Micheli, C.; Gandolfi, R., in Patai, S. *Supplement A: The Chemistry of Double-Bonded Functional Groups*, pt. 1, Wiley, NY, **1977**, pp. 369–532. For a review of such addition to the C=S bond, see Dunn, A.D.; Rudorf, W. *Carbon Disulfide in Organic Chemistry*, Wiley, NY, **1989**, pp. 97–119.

¹⁹⁴⁴Di Valentin, C.; Freccero, M.; Gandolfi, R.; Rastelli, A. *J. Org. Chem.* **2000**, *65*, 6112. For a theoretical study of transition states, see Lu, X.; Xu, X.; Wang, N.; Zhang, Q. *J. Org. Chem.* **2002**, *67*, 515. For a theoretical study of stepwise vs. concerted reactions, see DiValentin, C.; Freccero, M.; Gandolfi, R.; Rastelli, A. *J. Org. Chem.* **2000**, *65*, 6112. For a discussion of loss of concertedness in reactions of azomethine ylids, see Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossío, F.P. *J. Am. Chem. Soc.* **2000**, *122*, 6078.

¹⁹⁴⁷Morao, I.; Lecea, B.; Cossío, F.P. J. Org. Chem. 1997, 62, 7033; Cossío, F.P.; Marao, I.; Jiao, H.; Schleyer, P.v.R. J. Am. Chem. Soc. 1999, 121, 6737.

¹⁹⁵⁰Lee, C.K.Y; Holmes, A.B.; Al-Duri, B.; Leeke, G.A.; Santos, R.C.D.; Seville, J.P.K. *Chem. Commun.* **2004**, 2622.

covering orientation in 1,3-dipolar additions. The regioselectivity has been explained by molecular-orbital treatments,¹⁹⁵¹ where overlap of the largest orbital coefficients of the atoms forming the new bonds leads to the major regioisomer. When the 1,3-dipolar compound is a thiocarbonyl ylid ($R_2C=S^+-CH_2^-$) the addition has been shown to be nonstereospecific with certain substrates but stereospecific with others, indicating a nonsynchronous mechanism in these cases, and in fact, a diionic intermediate (see mechanism *c* on p. 1224) has been trapped in one such case.¹⁹⁵² In a theoretical study of the 1,3-dipolar cycloadditions (diazomethane and ethene; fulminic acid [H-C=N-O] and ethyne),¹⁹⁵³ calculations based on valence bond descriptions suggest that many concerted 1,3-dipolar cycloaddition reactions follow an electronic heterolytic mechanism where the movement of well-identifiable orbital pairs are retained along the entire reaction path from reactants to product.¹⁹⁵⁴

An antibody-catalyzed [3+2]-cycloaddition has been reported.¹⁹⁵⁵ Metal assisted dipolar additions are also known.¹⁹⁵⁶

Many of the cycloadducts formed from the dipoles in Table 15.3 are unstable, leading to other products. The reaction of alkyl azides with alkenes generates triazolines (15-54), which extrude nitrogen (N \equiv N) upon heating or photolysis to give an aziridine.

[3 + 2]-Cycloaddition reactions occur intramolecularly to generate bicyclic and polycyclic compounds.¹⁹⁵⁷ The intramolecular cycloaddition of azomethine imines give bicyclic pyrrazolidines for example.¹⁹⁵⁸ When diazoalkanes, including diazo acetates such as N₂CHCO₂Et react with an alkene and a chromium catalyst the initially formed product is a five-membered ring, a pyrazoline. Pyrazolines are generally unstable and extrusion of nitrogen leads to a cyclopropane.¹⁹⁵⁹

There are many cases where the [3 + 2]-cycloaddition leads to cycloadducts with high enantioselectivity.¹⁹⁶⁰ Cycloaddition of diazo esters with a cobalt catalyst having a chiral ligand leads to cyclopropane derivatives with good enantioselectivity.¹⁹⁶¹

¹⁹⁵⁴Blavins, J.J.; Karadakov, P.B.; Cooper, D.L. J. Org. Chem. 2001, 66, 4285.

¹⁹⁵⁵Toker, J.D.; Wentworth Jr., P.; Hu, Y.; Houk, K.N.; Janda, K.D. J. Am. Chem. Soc. 2000, 122, 3244.
 ¹⁹⁵⁶Kanemasa, S. Synlett 2002, 1371.

¹⁹⁵⁷For reviews, see Padwa, A. Angew. Chem. Int. Ed. **1976**, 15, 123; Oppolzer, W. Angew. Chem. Int. Ed. **1977**, 16, 10 (see pp. 18–22).

¹⁹⁵⁸Dolle, R.E.; Barden, M.C.; Brennan, P.E.; Ahmed, G.; Tran, V.; Ho, D.M. *Tetrahedron Lett.* **1999**, *40*, 2907.

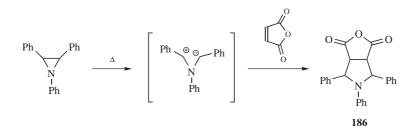
¹⁹⁵⁹Jan, D.; Simal, F.; Demonceau, A.; Noels, A.F.; Rufanov, K.A.; Ustynyuk, N.A.; Gourevitch, D.N. *Tetrahedron Lett.* **1999**, 40, 5695.

¹⁹⁶⁰Gothelf, K.V.; Jørgensen, K.A. Chem. Rev. 1998, 98, 863.

¹⁹⁶¹Niimi, T.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 3647.

¹⁹⁵¹For a review, see Houk, K.N.; Yamaguchi, K., in Padwa, A. *1,3-Dipolar Cycloaddition Chemistry* Vol. 2, Wiley, NY, *1984*, pp. 407–450. See also, Burdisso, M.; Gandolfi, R.; Quartieri, S.; Rastelli, A. *Tetrahedron 1987*, *43*, 159.

 ¹⁹⁵²Huisgen, R.; Mloston, G.; Langhals, E. J. Am. Chem. Soc. 1986, 108, 6401; J. Org. Chem. 1986, 51,
 4085; Mloston, G.; Langhals, E.; Huisgen, R. Tetrahedron Lett. 1989, 30, 5373; Huisgen, R.; Mloston, G.
 Tetrahedron Lett. 1989, 30, 7041.


¹⁹⁵³Karadakov, P.B.; Cooper, D.L.; Gerratt, J. Theor. Chem. Acc. 1998, 100, 222.

Cycloaddition of nitrones and pyrazolinones with a copper catalyst and a chiral ligand leads to pyrrolidine derivatives with good enantioselectivity.¹⁹⁶²

Conjugated dienes generally give exclusive 1,2-addition, although 1,4 addition (a [3 + 4]-cycloaddition) has been reported.¹⁹⁶³ Carbon–carbon triple bonds can also undergo 1,3-dipolar addition.¹⁹⁶⁴ For example, azides react to give triazoles, **185**.

The 1,3-dipolar reagent can in some cases be generated by the *in situ* opening of a suitable three-membered ring system. For example, aziridines open to give a zwitterion, such as **186**, which can add to activated double bonds to give pyrrolidines.¹⁹⁶⁵

Aziridines also add to $C \equiv C$ triple bonds as well as to other unsaturated linkages, including C=O, C=N, and C \equiv N.¹⁹⁶⁶ In some of these reactions it is a C–N bond of the aziridine that opens rather than the C–C bond.

For other [3+2]-cycloadditions, see **15-59**.

OS V, 957, 1124; VI, 592, 670; VIII, 231. Also see, OS IV, 380.

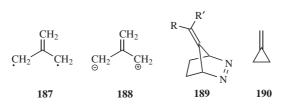
C. Carbon on Both Sides

Reactions 15-58–15-64 are cycloaddition reactions.¹⁹⁶⁷

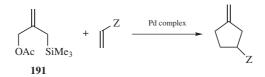
¹⁹⁶²Sibi, M.P.; Ma, Z.; Jasperse, C.P. J. Am. Chem. Soc. 2004, 126, 718.

¹⁹⁶⁴For reviews, see Bastide, J.; Hamelin, J.; Texier, F.; Quang, Y.V. *Bull. Soc. Chim. Fr.* **1973**, 2555; 2871; Fuks, R.; Viehe, H.G., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, **1969**, pp. 460–477.

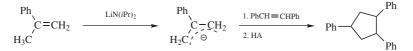
¹⁹⁶⁵For a review, see Lown, J.W., in Padwa, A. *1,3-Dipolar Cycloaddition Chemistry*, Vol 1. Wiley, NY, *1984*, pp. 683–732.


¹⁹⁶⁶For reviews, see Lown, J.W. Rec. Chem. Prog. **1971**, 32, 51; Gladysheva, F.N.; Sineokov, A.P.; Etlis, V.S. Russ. Chem. Rev. **1970**, 39, 118.

¹⁹⁶⁷For a system of classification of cycloaddition reactions, see Huisgen, R. Angew. Chem. Int. Ed. **1968**, 7, 321. For a review of certain types of cycloadditions leading to 3- to 6-membered rings involving 2, 3, or 4 components, see Posner, G.H. Chem. Rev. **1986**, 86, 831. See also, the series Advances in Cycloaddition.


¹⁹⁶³Baran, J.; Mayr, H. J. Am. Chem. Soc. 1987, 109, 6519.

15-59 All-Carbon [3+2]-Cycloadditions¹⁹⁶⁸


Several methods have been reported for the formation of cyclopentanes by [3 + 2]-cycloadditions.¹⁹⁶⁹ Heating a conjugated ketones with trialkylphosneines genrates an intermdiate that adds to conjugated alkynes.¹⁹⁷⁰ One type involves reagents that produce intermediates **187** or **188**.¹⁹⁷¹ A synthetically useful example¹⁹⁷² uses 2-[(trimethylsilyl)methyl]-2-propen-1-yl acetate (**191**) (which is commercially available) and a palladium or other transition-metal catalyst to generate **187** or **188**, which adds to double bonds, to give, in

good yields, cyclopentanes with an exocyclic double bond. Note that **95** also reacts with *N*-tosyl aziridines, with 20% *n*-butyllithium and 10% of Pd(OAc)₂, to give a vinylidene piperidine derivative.¹⁹⁷³ Similar or identical intermediates generated from bicyclic azo compounds **189** (see **17-34**) or methylenecyclopropane **190**¹⁹⁷⁴ also add to activated double bonds. With suitable substrates the addition can be enantioselective.¹⁹⁷⁵

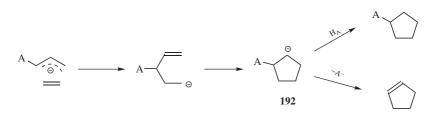
In a different type of procedure, [3 + 2]-cycloadditions are performed with allylic anions. Such reactions are called 1,3-anionic cycloadditions.¹⁹⁷⁶ For example, α -methylstyrene adds to stilbene on treatment with the strong base LDA.¹⁹⁷⁷

¹⁹⁶⁸See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 999–1010.
 ¹⁹⁶⁹For a list of methods, with references, see Trost, B.M.; Seoane, P.; Mignani, S.; Acemoglu, M. J. Am. Chem. Soc. 1989, 111, 7487.

¹⁹⁷⁰Wang, J.-C.; Ng, S.-S.; Krische, M.J. J. Am. Chem. Soc. 2003, 125, 3682.

¹⁹⁷¹For reviews, see Trost, B.M. Pure Appl. Chem. 1988, 60, 1615; Angew. Chem. Int. Ed. 1986, 25, 1.
 ¹⁹⁷²See, for example, Trost, B.M.; Lynch, J.; Renaut, P.; Steinman, D.H. J. Am. Chem. Soc. 1986, 108, 284.

¹⁹⁷³Hedley, S.J.; Moran, W.J.; Price, D.A.; Harrity, J.P.A. J. Org. Chem. 2003, 68, 4286.


¹⁹⁷⁴See Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1989, 111, 7285.

¹⁹⁷⁵See Binger, P.; Schäfer, B. *Tetrahedron Lett.* **1988**, 29, 529; Chaigne, F.; Gotteland, J.; Malacria, M. *Tetrahedron Lett.* **1989**, *30*, 1803.

¹⁹⁷⁶For reviews, see Kauffmann, T. *Top. Curr. Chem.* **1980**, *92*, 109, pp. 111–116; *Angew. Chem. Int. Ed.* **1974**, *13*, 627.

¹⁹⁷⁷Eidenschink, R.; Kauffmann, T. Angew. Chem. Int. Ed. 1972, 11, 292.

The mechanism can be outlined as

In the case above, **192** is protonated in the last step by the acid HA, but if the acid is omitted and a suitable nucleofuge is present, it may leave, resulting in a cyclopentene.¹⁹⁷⁸ In these cases the reagent is an allylic anion, but similar [3 + 2]-cycloadditions involving allylic cations have also been reported.¹⁹⁷⁹

OS VIII,173, 347.

15-60 The Diels–Alder Reaction

(4+2)cyclo-Ethylene-1/4/addition or (4+2)cyclo-[But-2-ene-1,4-diyl]-1/2/ addition, and so on.

In the prototype *Diels–Alder reaction* the double bond of an alkene adds 1,4 to a conjugated diene (a [4 + 2]-cycloaddition),¹⁹⁸⁰ so the product is always a cyclohexene. The cycloaddition is not limited to alkenes or to dienes (see **15-61**), but the substrate that reacts with the diene is called a *dienophile*. The reaction is of

¹⁹⁷⁸See, for example, Padwa, A.; Yeske, P.E. J. Am. Chem. Soc. **1988**, 110, 1617; Beak, P.; Burg, D.A. J. Org. Chem. **1989**, 54, 1647.

¹⁹⁷⁹For example, see Hoffmann, H.M.R.; Vathke-Ernst, H. Chem. Ber. **1981**, 114, 2208, 2898; Klein, H.; Mayr, H. Angew. Chem. Int. Ed. **1981**, 20, 1027; Noyori, R.; Hayakawa, Y. Tetrahedron **1985**, 41, 5879.

¹⁹⁸⁰For a monograph, see Wasserman, A. Diels-Alder Reactions, Elsevier, NY, **1965**. For reviews, see Fleming, I. Pericyclic Reactions, Oxford University Press, Oxford, **1999**, pp. 7–30; Roush, W.R. Adv. Cycloaddit. **1990**, 2, 91; Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon, Elmsford, NY, **1990**; Brieger, G.; Bennett, J.N. Chem. Rev. **1980**, 80, 63; Oppolzer, W. Angew. Chem. Int. Ed. **1977**, 16, 10; Beltrame, P., in Bamford, C.H.; Tipper, C.F.H Comprehensive Chemical Kinetics, Vol. 9, Elsevier, NY, **1973**, pp. 94–117; Huisgen, R.; Grashey, R.; Sauer, J., in Patai, S. The Chemistry of Alkenes, Vol. 1, Wiley, NY, **1964**, pp. 878–929; Carruthers, W. Some Modern Methods of Organic Synthesis, 3rd. ed., Cambridge University Press, Cambridge, **1986**, pp. 183–244; Sauer, J. Angew. Chem. Int. Ed. **1966**, 5, 211; **1967**, 6, 16. For a monograph on intramolecular Diels–Alder reactions, see Taber, D.F. Intramolecular Diels–Alder and Alder Ene Reactions, Springer, NY, **1984**. For reviews, see Deslongchamps, P. Aldrichimica Acta **1991**, 24, 43; Craig, D. Chem. Soc. Rev. **1987**, 16, 187; Salakhov, M.S.; Ismailov, S.A. Russ. Chem. Rev. **1986**, 55, 1145; Fallis, A.G. Can. J. Chem. **1984**, 62, 183. For a long list of references to various aspects of the Diels–Alder reaction, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 523–544.

very broad scope¹⁹⁸¹ and reactivity of dienes and dienophiles can be predicted based on analysis of the HOMOs¹⁹⁸² and LUMOs of these species (frontier molecular orbital theory).¹⁹⁸³ Ethylene and simple alkenes make poor dienophiles, unless high temperatures and/or pressures are used. Most dienophiles are of the form $\stackrel{-C=C-Z}{\mid}$ or $\stackrel{Z-C=C-Z'}{\mid}$, where Z and Z' are electron-withdrawing groups,¹⁹⁸⁴ such as CHO, COR,¹⁹⁸⁵ COOH, COOR, COCl, COAr, CN,¹⁹⁸⁶ NO₂,¹⁹⁸⁷ Ar, CH₂OH, CH₂Cl, CH₂NH₂, CH₂CN, CH₂COOH, halogen, PO(OEt)₂,¹⁹⁸⁸ or C=C. In the last case, the dienophile is itself a diene.¹⁹⁸⁹ Particularly common dienophiles are maleic anhydride¹⁹⁹⁰ and quinones.¹⁹⁹¹ Triple bond compounds ($-C\equiv C-Z$ or $Z-C\equiv C-Z'$)

may be dienophiles,¹⁹⁹² generating nonconjugated cyclohexadienes (**193**), and this reaction can be catalyzed by transition-metal compounds.¹⁹⁹³ Allenes react as dienophiles, but without activating groups are very poor dienophiles.¹⁹⁹⁴

¹⁹⁸¹For a review of reactivity in the Diels–Alder reaction, see Konovalov, A.I. *Russ. Chem. Rev.* **1983**, *52*, 1064.

¹⁹⁸²For a correlation of ionization potential and HOMO correlation with alkene reactions, see Nelson, D.J.; Li, R.; Brammer, C. *J. Org. Chem.* **2001**, *66*, 2422.

¹⁹⁸³For a discussion of Frontier Orbital interactions, see Spino, C.; Rezaei, H.; Dory, Y.L. J. Org. Chem. **2004**, 69, 757. For tables of experimentally determined HOMOs and LUMOs for dienes and dienophiles, see Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, **2001**, pp. 917–940.

¹⁹⁸⁴For a density-Functional theory analysis see Domingo, L.R. Eur. J. Org. Chem. 2004, 4788.

¹⁹⁸⁵For a review of Diels–Alder reactions with cyclic enones, see Fringuelli, F.; Taticchi, A.; Wenkert, E. *Org. Prep. Proced. Int.* **1990**, 22, 131.

¹⁹⁸⁶For a review of the Diels–Alder reaction with acrylonitrile, see Butskus, P.F. *Russ. Chem. Rev.* **1962**, 31, 283. For a review of tetracyanoethylene as a dienophile, see Ciganek, E.; Linn, W.J.; Webster, O.W., in Rappoport, Z. *The Chemistry of the Cyano Group*, Wiley, NY, **1970**, pp. 449–453.

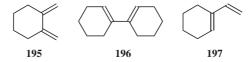
¹⁹⁸⁷For a review of the Diels-Alder reaction with nitro compounds, see Novikov, S.S.; Shuekhgeimer, G.A.; Dudinskaya, A.A. *Russ. Chem. Rev.* **1960**, *29*, 79.

¹⁹⁸⁸McClure, C.K.; Herzog, K.J.; Bruch, M.D. Tetrahedron Lett. 1996, 37, 2153.

¹⁹⁸⁹Johnstone, R.A.W.; Quan, P.M. J. Chem. Soc. 1963, 935.

¹⁹⁹⁰For a review of Diels–Alder reactions with maleic anhydride see Kloetzel, M.C. *Org. React.* **1948**, *4*, 1. ¹⁹⁹¹For reviews of Diels–Alder reactions with quinones, see Finley, K.T., in Patai, S *The Chemistry of the Quinoid Compounds*, Vol. 1, pt. 2, Wiley, NY, **1988**, pp. 986–1018; Patai, S.; Rapaport, Z. Vol. 2, pt. 1 **1988**, 537–717, 614–645. For a review of the synthesis of quinones using Diels–Alder reactions, see Naruta, Y.; Maruyama, K. in the same treatise, Vol. 2, pt. 1, pp. 241–402, 277–303.

¹⁹⁹²For reviews of triple bonds in cycloaddition reactions, see Bastide, J.; Henri-Rousseau, O., in Patai, S. *The Chemistry of the Carbon-Carbon Triple Bond*, pt. 1, Wiley, NY, **1978**, pp. 447–522, Fuks, R.; Viehe, H.G., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, **1969**, pp. 477–508.


¹⁹⁹³See Paik, S.-J.; Son, S.U.; Chung, Y.K. Org. Lett. 1999, 1, 2045.

¹⁹⁹⁴For a review of allenes as dienes or dienophiles, see Hopf, H., in Landor, S.R. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, **1982**, pp. 563–577. See Nendel, M.; Tolbert, L.M.; Herring, L.E.; Islam, Md.N.; Houk, K.N. *J. Org. Chem.* **1999**, *64*, 976.

Ketenes, however, do not undergo Diels–Alder reactions.¹⁹⁹⁵ Benzynes, although not isolable, act as dienophiles and can be trapped with dienes,¹⁹⁹⁶ for example,

The low reactivity of simple alkenes can be overcome by incorporating an electron-withdrawing group to facilitate the cycloaddition, but a group that can be removed after the cycloaddition. An example is phenyl vinyl sulfone PhSO₂CH=CH₂.¹⁹⁹⁷ The PhSO₂ group can be easily removed with Na–Hg after the ring-closure reaction. Similarly, phenyl vinyl sulfoxide (PhSOCH=CH₂) can be used as a synthon for acetylene.¹⁹⁹⁸ In this case PhSOH is lost from the sulfoxide product (**17-12**).

Electron-donating substituents in the diene accelerate the reaction; electronwithdrawing groups retard it.¹⁹⁹⁹ For the dienophile it is just the reverse: donating groups decrease the rate, and withdrawing groups increase it. The cisoid conformation is required for the cycloaddition,²⁰⁰⁰ and acyclic dienes are conformationally mobile so the cisoid conformation will be available. Cyclic dienes, in which the cisoid conformation is built in, usually react faster than the corresponding openchain compounds, which have to achieve the cisoid conformation by rotation.²⁰⁰¹ Dienes can be open-chain, inner-ring (e.g., **194**), outer-ring²⁰⁰² (e.g., **195**), across

¹⁹⁹⁵Ketenes react with conjugated dienes to give 1,2-addition (see 15-49).

¹⁹⁹⁶For a review of benzynes as dienophiles, see Hoffmann, R.W. *Dehydrobenzene and Cycloalkynes*; Academic Press, NY, *1967*, pp. 200–239. For a review of the reactions of benzynes with heterocyclic compounds see Bryce, M.R.; Vernon, J.M. *Adv. Heterocycl. Chem. 1981*, *28*, 183–229.

¹⁹⁹⁸Paquette, L.A.; Moerck, R.E.; Harirchian, B.; Magnus, P.D. J. Am. Chem. Soc. **1978**, 100, 1597. For other acetylene synthons see De Lucchi, O.; Lucchini, V.; Pasquato, L.; Modena, G. J. Org. Chem. **1984**, 49, 596; Hermeling, D.; Schäfer, H.J. Angew. Chem. Int. Ed. **1984**, 23, 233. For a review, see De Lucchi, O.; Modena, G. Tetrahedron **1984**, 40, 2585. For a review of [2+2]- and [2+4]-cycloadditions of vinylic sulfdes, sulfoxides, and sulfones, see De Lucchi, O.; Pasquato, L. Tetrahedron **1988**, 44, 6755.

¹⁹⁹⁹For a discussion of the electrophilicity power of dienes and dienophiles, see Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. *Tetrahedron* **2002**, *58*, 4417.

¹⁹⁹⁷Carr, R.V.C.; Williams, R.V.; Paquette, L.A. J. Org. Chem. 1983, 48, 4976; Kinney, W.A.; Crouse, G.D.; Paquette, L.A. J. Org. Chem. 1983, 48, 4986.

²⁰⁰⁰For a discussion of ground state conformations, see Bur, S.K.; Lynch, S.M.; Padwa, A. Org. Lett. 2002, 4, 473.

²⁰⁰¹Sauer, J.; Lang, D.; Mielert, A. Angew. Chem. Int. Ed. **1962**, *1*, 268; Sauer, J.; Wiest, H. Angew. Chem. Int. Ed. **1962**, *1*, 269. See, however, Scharf, H.; Plum, H.; Fleischhauer, J.; Schleker, W. Chem. Ber. **1979**, *112*, 862.

²⁰⁰²For reviews of Diels-Alder reactions of some of these compounds, see Charlton, J.L.; Alauddin, M.M. *Tetrahedron* **1987**, *43*, 2873; Oppolzer, W. *Synthesis* **1978**, 793.

rings (e.g., **196**), or inner-outer (e.g., **197**), except that they may not be frozen into a transoid conformation (see p. 1201). They need no special activating groups, and nearly all conjugated dienes undergo the reaction with suitable dienophiles.²⁰⁰³

In most Diels–Alder reactions, no catalyst is needed, but Lewis acids are effective catalysts in many cases,²⁰⁰⁴ particularly those in which Z in the dienophile is a C=O or C=N group. A Lewis acid catalyst usually increases both the regioselectivity of the reaction (in the sense given above) and the extent of endo addition,²⁰⁰⁵ and, in the case of enantioselective reactions, the extent of enantioselectivity. It has been shown that InCl₃ is an effective catalyst for aqueous Diels–Alder reactions,²⁰⁰⁶ which is suitable for ionic Diels–Alder reactions,²⁰⁰⁷ and there are other Lewis acid catalysts that are effective in water.²⁰⁰⁸ Brønsted acids have also been used to accelerate the rate of the Diels–Alder reaction.²⁰⁰⁹ Lanthanum triflate [La(OTf)₃] has been reported as a reusable catalyst²⁰¹⁰ and Me₃SiNTf₂ has been used as a green Lewis acid catalyst.²⁰¹¹ Cationic Diels–Alder catalysts have been developed, particularly oxazaborolidine catalysts.²⁰¹² Some Diels–Alder reactions,²⁰¹³ for

²⁰⁰⁵For discussions see Houk, K.N.; Strozier, R.W. J. Am. Chem. Soc. **1973**, 95, 4094; Alston, P.V.; Ottenbrite, R.M. J. Org. Chem. **1975**, 40, 1111.

²⁰⁰⁶Loh, T.-P.; Pei, J.; Lin, M. Chem. Commun. **1996**, 2315. For a review of Lewis acid catalysis in aqueous media, see Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Eur. J. Org. Chem. **2001**, 439.

²⁰⁰⁷Reddy, B.G.; Kumareswaran, R.; Vankar, Y.D. *Tetrahedron Lett.* **2000**, *41*, 10333. Iodine is a catalyst for ionic Diels–Alder reactions, see Chavan, S.P.; Sharma, P.; Krishna, G.R.; Thakkar, M. *Tetrahedron Lett.* **2003**, *44*, 3001.

²⁰⁰⁸Otto, S.; Engberts, J.B.F.N. *Tetrahedron Lett.* **1995**, *36*, 2645; Ward, D.E.; Gai, Y. *Tetrahedron Lett.* **1992**, *33*, 1851.

²⁰⁰⁹Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc, 1996, 118, 3049.

²⁰¹⁰Kobayashi, S.; Hachiya, I.; Takahori, T.; Araki, M.; Ishitani, H. *Tetrahedron Lett.* **1992**, *33*, 6815.
 ²⁰¹¹Mathieu, B.; Ghosez, L. *Tetrahedron* **2002**, *58*, 8219.

²⁰¹²See Sprott, K.T.; Corey, E.J. Org. Lett. 2003, 5, 2465; Corey, E.J.; Shibata, T.; Lee, T.W. J. Am. Chem. Soc. 2002, 124, 3808; Ryu, D.H.; Lee, T.W.; Corey, E.J. J. Am. Chem. Soc. 2002, 124, 9992.

²⁰¹³Gao, D.; Bauld, N.L. J. Org. Chem. 2000, 65, 6276. See Saettel, N.J.; Oxgaard, J.; Wiest, O. Eur. J. Org. Chem. 2001, 1429.

²⁰⁰³For a monograph on dienes, with tables showing > 800 types, see Fringuelli, F.; Taticchi, A. *Dienes in the Diels–Alder Reaction*, Wiley, NY, **1990**. For a review of Diels–Alder reactions with 2-pyrones, see Shusherina, N.P. *Russ. Chem. Rev.* **1974**, *43*, 851. For reviews of dienes with hetero substituents, see Danishefsky, S. *Chemtracts: Org. Chem.* **1989**, *2*, 273; Petrzilka, M.; Grayson, J.I. *Synthesis* **1981**, 753. For dienes containing a 1-CONR₂ group, see Smith, M.B. *Org. Prep. Proced. Int.* **1990**, *22*, 315; Robiette, R.; Cheboub-Benchaba, K.; Peeters, D.; Marchand-Brynaert, J. J. Org. Chem. **2003**, *68*, 9809. For dienes containing a 1-NRCO₂R group, see Huang, Y.; Iwama, T.; Rawal, V.H. J. Am. Chem. Soc. **2002**, *122*, 5950.

²⁰⁰⁴Yates, P.; Eaton, P. J. Am. Chem. Soc. **1960**, 82, 4436; Avalos, M.; Babiano, R.; Bravo, J.L.; Cintas, P.; Jiménez, J.L.; Palacios, J.C.; Silva, M.A. J. Org. Chem. **2000**, 65, 6613. For review of the role of the catalyst in increasing reactivity, see Kiselev, V.D.; Konovalov, A.I. Russ. Chem. Rev. **1989**, 58, 230. For a discussion of the transition state for the acrolein-1,3-butadiene reaction see Zheng, M.; Zhang, M.-H.; Shao, J.-G.; Zhong, Q. Org. Prep. Proceed. Int. **1996**, 28, 117. For a discussion of isotope effects see Singleton, D.A.; Merrigan, S.R.; Beno, B.R.; Houk, K.N. Tetrahedron Lett. **1999**, 40, 5817. For a discussion of three-center orbital interactions, see Yamabe, S.; Minato, T. J. Org. Chem. **2000**, 65, 1830. Chiral silica Lewis acids are known, see Mathieu, B.; de Fays, L.; Ghosez, L. Tetrahedron Lett. **2000**, 41, 9561.

example, tris(4-bromophenyl)aminium hexachloroantimonate $Ar_3N^{\bullet+}$ SbCl₆^{-.2014} Carbazoles are dienophiles for cation radical Diels-Alder reactions.²⁰¹⁵ Zirconocene-catalyzed cationic Diels-Alder reactions are known.²⁰¹⁶ Certain antibodies have been developed that catalyze Diels-Alder reactions.²⁰¹⁷ Photochemically induced Diels-Alder reactions are also known.²⁰¹⁸ Cyclodextrins exhibit noncovalent catalysis of Diels-Alder reactions.²⁰¹⁹ There are cases of hydrogen-bonding acceleration.²⁰²⁰

A number of other methods have been reported for the acceleration of Diels-Alder reactions,²⁰²¹ including the use of microwave irradiation,²⁰²² ultrasound,²⁰²³ absorption of the reactants on chromatographic absorbents,²⁰²⁴ via encapsulation techniques,²⁰²⁵ and the use of an ultracentrifuge²⁰²⁶ (one of several ways to achieve reaction at high pressures).²⁰²⁷ Solid-state Diels-Alder reactions are known.²⁰²⁸ One of the most common methods is to use water as a solvent or a cosolvent (a hydrophobic effect).²⁰²⁹ The influence of hydrophobicity of reactants

- ²⁰¹⁵Gao, D.; Bauld, N.L. Tetrahedron Lett. 2000, 41, 5997.
- ²⁰¹⁶Wipf, P.; Xu, W. Tetrahedron 1995, 51, 4551.
- ²⁰¹⁷Meekel, A.A.P.; Resmini, M.; Pandit, U.K. J. Chem. Soc., Chem. Commun. 1995, 571; Zhang, X.; Deng, Q.; Yoo, S.H.; Houk, K.N. J. Org. Chem. 2002, 67, 9043.
- ²⁰¹⁸Pandey, B.; Dalvi, P.V. Angew. Chem. Int. Ed. 1993, 32, 1612.
- ²⁰¹⁹Kim, S.P.; Leach, A.G.; Houk, K.N. J. Org. Chem. 2002, 67, 4250. For a discussion of micellar catalysis see Rispens, T.; Engberts, J.B.F.N. J. Org. Chem. 2002, 67, 7369. ²⁰²⁰Pearson, R.J.; Kassianidis, E.; Philip, D. Tetrahedron Lett. 2004, 45, 4777.
- ²⁰²¹See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 944–953.

²⁰²²Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Tetrahedron Lett. 1986, 27, 4945; Berlan, J.; Giboreau, P.; Lefeuvre, S.; Marchand, C. Tetrahedron Lett. 1991, 32, 2363; DaCunha, L.; Garrigues, B. Bull. Soc. Chim. Belg. 1997, 106, 817; Jankowski, C.K.; LeClair, G.; Bélanger, J.M.R.; Paré, J.R.J.; Van Calsteren, M.-R. Can. J. Chem. 2001, 79, 1906. For a review, see de la Hoz, A.; Díaz-Ortis, A.; Moreno, A.; Langa, F. Eur. J. Org. Chem. 2000, 3659. For the effect of pressure of microwave-enhanced Diels-Alder reactions, see Kaval, N.; Dehaen, W.; Kappe, C.O.; van der Eycken, E. Org. Biomol. Chem. 2004. 2. 154.

²⁰²³Raj. C.P.; Dhas, N.A.; Cherkinski, M.; Gedanken, A.; Braverman, S. Tetrahedron Lett. 1998, 39, 5413. ²⁰²⁴Veselovsky, V.V.; Gybin, A.S.; Lozanova, A.V.; Moiseenkov, A.M.; Smit, W.A.; Caple, R. Tetrahedron Lett. 1988, 29, 175.

²⁰²⁵Kang, J.; Hilmersson, G.; Sartamaría, J.; Rebek Jr., J. J. Am. Chem. Soc. 1998, 120, 3650. For a discussion of the Diels-Alder reaction with aqueous surfactants see Diego-Castro, M.J.; Hailes, H.C. Tetrahedron Lett. 1998, 39, 2211.

²⁰²⁶Dolata, D.P.; Bergman, R. Tetrahedron Lett. 1987, 28, 707.

²⁰²⁷For reviews, see Isaacs, N.S.; George, A.V. Chem. Br. 1987, 47-54; Asano, T.; le Noble, W.J. Chem. Rev. 1978, 78, 407. See also, Firestone, R.A.; Smith, G.M. Chem. Ber. 1989, 122, 1089.

²⁰²⁸Kim, J.H.; Hubig, S.M.; Lindeman, S.V.; Kochi, J.K. J. Am. Chem. Soc. 2001, 123, 87.

²⁰²⁹Rideout, D.C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816. For a review, see Breslow, R. Acc. Chem. Res. 1991, 24, 159; Furlani, T.R.; Gao, J. J. Org. Chem. 1996, 61, 5492. See also, Grieco, P.A.; Garner, P.; He, Z. Tetrahedron Lett. 1983, 1897; Blokzijl, W.; Blandamer, M.J.; Engberts, J.B.F.N. J. Am. Chem. Soc. 1991, 113, 4241; Breslow, R.; Rizzo, C.J. J. Am. Chem. Soc. 1991, 113, 4340; Engberts, J.B.F.N. Pure Appl. Chem. 1995, 67, 823; Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741; Otto, S.; Blokzijl, W.; Engberts, J.B.F.N. J. Org. Chem. 1994, 59, 5372; Otto, S.; Egberts, J.B.F.N. Pure. Appl. Chem. 2000, 72, 1365.

²⁰¹⁴For a review, see Bauld, N.L. Tetrahedron 1989, 45, 5307.

on the reaction has been examined²⁰³⁰ as has micellular effects.²⁰³¹ Another alternative reaction medium is the use of 5 *M* LiClO₄ in Et₂O as solvent,²⁰³² An alternative to lithium perchlorate in ether is lithium triflate in acetonitrile.²⁰³³ The addition of HPO₄⁻ – to an aqueous ethanol solution has also been shown to give an small rate enhancement.²⁰³⁴ This appears to be the only case where an anion is responsible for a rate enhancement. The *retro*-Diels–Alder reaction has also been done in water.²⁰³⁵

It is noted that the Diels–Alder reaction has been done with supercritical CO_2^{2036} and with supercritical water²⁰³⁷ as solvents. Diels–Alder reactions on solid supports have also been reported,²⁰³⁸ and zeolites have been used in conjunction with catalytic agents.²⁰³⁹ Alumina has been used to promote Diels–Alder reactions.²⁰⁴⁰ Diels–Alder reactions can be done in ionic liquids,²⁰⁴¹ including asymmetric Diels–Alder reactions.²⁰⁴²

When an unsymmetrical diene adds to an unsymmetrical dienophile, regioisomeric products (not counting stereoisomers) are possible. Rearrangements have been encountered in some cases.²⁰⁴³ In simple cases, 1-substituted dienes give cyclohexenes with a 1,2- and a 1,3- substitution pattern. 2-Substituted dienes

²⁰³¹Jaeger, D.A.; Wang, J. Tetrahedron Lett. 1992, 33, 6415.

²⁰³²Grieco, P.A.; Nunes, J.J.; Gaul, M.D. J. Am. Chem. Soc. 1990, 112, 4595. See also, Braun, R.; Sauer, J. Chem. Ber. 1986, 119, 1269; Grieco, P.A.; Handy, S.T.; Beck, J.P. Tetrahedron Lett. 1994, 35, 2663. For the possibility of migration of terminal dienes prior to cycloaddition see Grieco, P.A.; Beck, J.P.; Handy, S.T.; Saito, N.; Daeuble, J.F. Tetrahedron Lett. 1994, 35, 6783. An alternative to this catalyst is LiNTf₂ in ether, see Handy, S.T.; Grieco, P.A.; Mineur, C.; Ghosez, L. Synlett 1995, 565.

²⁰³³Augé, J.; Gil, R.; Kalsey, S.; Lubin-Germain, N. Synlett 2000, 877.

²⁰³⁵Wijnen, J.W.; Engberts, J.B.F.N. J. Org. Chem. 1997, 62, 2039.

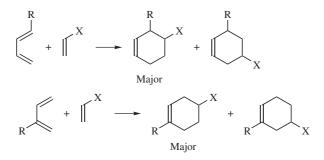
²⁰³⁶Renslo, A.R.; Weinstein, R.D.; Tester, J.W.; Danheiser, R.L. J. Org. Chem. **1997**, 62, 4530; Oakes,
 R.S.; Heppenstall, T.J.; Shezad, N.; Clifford, A.A.; Rayner, C.M. Chem. Commun. **1999**, 1459. For an asymmetric cycloaddition, see Fukuzawa, S.-i.; Metoki, K.; Esumi, S.-i. *Tetrahedron* **2003**, *59*, 10445.
 ²⁰³⁷Harano, Y.; Sato, H.; Hirata, F. J. Am. Chem. Soc. **2000**, *122*, 2289.

²⁰³⁸For a review, see Yli-Kauhaluoma, J. *Tetrahedron* **2001**, *57*, 7053. For silica and alumina-modified Lewis acid catalysts, see Cativiela, C.; Figueras, F.; García, J.I.; Mayoral, J.A.; Pires, E.; Royo, A.J. *Tetrahedron Asymmetry* **1993**, *4*, 621.

²⁰³⁹Eklund, L.; Axelsson, A.-K.; Nordahl, Å.; Carlson, R. Acta Chem. Scand. 1993, 47, 581.

²⁰⁴⁰Pagni, R.M.; Kabalka, G.W.; Hondrogiannis, G.; Bains, S.; Anosike, P.; Kurt, R. *Tetrahedron* **1993**, 49, 6743.

²⁰⁴¹In **bmim** BF₄ and ClO₄: 1-butyl-3-methylimidazolium tetrafluoroborate and perchlorate: Fischer, T.; Sethi, A.; Welton, T.; Woolf, J. *Tetrahedron Lett.* **1999**, 40, 793. In **chloroaluminates**: Lee, C.W. *Tetrahedron Lett.* **1999**, 40, 2461. In **phosphonium tosylates**: Ludley, P.; Karodia, N. *Tetrahedron Lett.* **2001**, 42, 2011. In **pyridinium salts**: Xiao, Y.; Malhotra, S.V. *Tetrahedron Lett.* **2004**, 45, 8339. In **HBuIm**, hydrogenbutylimidazolium tetrafluoroborate and **DiBuIm**, 1,3-dibutylimidazolium, tetrafluoroborate: Jaegar, D. A.; Tucker, C. E. *Tetrahedron Lett.* **1989**, 30, 1785.


²⁰⁴²Meracz, I.; Oh, T. Tetrahedron Lett. 2003, 44, 6465.

²⁰⁴³Murali, R.; Scheeren, H.W. Tetrahedron Lett. 1999, 40, 3029.

 ²⁰³⁰Meijer, A.; Otto, S.; Engberts, J.B.F.N. J. Org. Chem. 1998, 63, 8989; Rizzo, C.J. J. Org. Chem. 1992, 57, 6382.

²⁰³⁴Pai, C.K.; Smith, M.B. J. Org. Chem. **1995**, 60, 3731; Smith, M.B.; Fay, J.N.; Son, Y.C. Chem. Lett. **1992**, 2451.

lead to 1,4- and 1,3-disubstituted products.

Although mixtures are often obtained, usually one predominates, the one indicated above, but selectivity depends on the nature of the substituents on both diene and alkene. This regioselectivity, in which the "ortho" or "para" product is favored over the "meta," has been explained by molecular-orbital considerations.²⁰⁴⁴ When $X = NO_2$, regioselectivity to give the "ortho" or "para" product was very high at room temperature, and this method, combined with subsequent removal of the NO₂ (see **19-67**) has been used to perform regioselective Diels–Alder reactions.²⁰⁴⁵

The stereochemistry of the Diels–Alder reaction can be considered from several aspects:²⁰⁴⁶

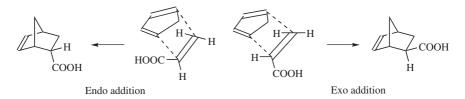
1. With respect to the dienophile, the addition is stereospecifically syn, with very few exceptions.²⁰⁴⁷ This means that groups that are cis in the alkene will be cis in the cyclohexene ring, (A–B and C–D) and groups that are trans in the alkene will be trans in the cyclohexene ring (A–D and C–B).

2. With respect to 1,4-disubstituted dienes, fewer cases have been investigated, but here too the reaction is stereospecific and syn. Thus, *trans*, *trans*-1,4-diphenylbutadiene gives *cis*-1,4-diphenylcyclohexene derivatives. This

²⁰⁴⁴Feuer, J.; Herndon, W.C.; Hall, L.H. *Tetrahedron* **1968**, 24, 2575; Inukai, T.; Sato, H.; Kojima, T. *Bull. Chem. Soc. Jpn.* **1972**, 45, 891; Epiotis, N.D. J. Am. Chem. Soc. **1973**, 95, 5624; Sustmann, R. Pure Appl. Chem. **1974**, 40, 569; Trost, B.M.; Vladuchick, W.C.; Bridges, A.J. J. Am. Chem. Soc. **1980**, 102, 3554; Alston, P.V.; Gordon, M.D.; Ottenbrite, R.M.; Cohen, T. J. Org. Chem. **1983**, 48, 5051; Kahn, S.D.; Pau, C.F.; Overman, L.E.; Hehre, W.J. J. Am. Chem. Soc. **1986**, 108, 7381.

²⁰⁴⁵Danishefsky, S.; Hershenson, F.M. J. Org. Chem. **1979**, 44, 1180; Ono, N.; Miyake, H.; Kamimura, A.; Kaji, A. J. Chem. Soc. Perkin Trans. 1, **1987**, 1929. For another method of controlling regioselectivity, see Kraus, G.A.; Liras, S. Tetrahedron Lett. **1989**, 30, 1907.

²⁰⁴⁶See Smith, M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 933–940, 968–977; Bakalova, S.M.; Santos, A.G. J. Org. Chem. 2004, 69, 8475.


²⁰⁴⁷For an exception, see Meier, H.; Eckes, H.; Niedermann, H.; Kolshorn, H. Angew. Chem. Int. Ed. 1987, 26, 1046.

selectivity is predicted by disrotatory motion of the substituent in the transition state²⁰⁴⁸ of the reaction (see **18-27**).

3. The diene must be in the cisoid conformation. If it is frozen into the transoid conformation, as in **198**, the reaction does not take place. The diene either must be frozen into the cisoid conformation or must be able to achieve it during the reaction.

4. When the diene is cyclic, there are two possible ways in which addition can occur if the dienophile is not symmetrical. The larger side of the dienophile may be under the ring (*endo addition*), or it may be the smaller side (*exo addition*):

Most of the time, the addition is predominantly endo; that is, the more bulky side of the alkene is under the ring, and this is probably true for open-chain dienes also.²⁰⁴⁹ However, exceptions are known, and in many cases mixtures of exo and endo addition products are found.²⁰⁵⁰ An imidazolidone catalyst was used to give a 1:1.3 mixture favoring the exo isomer in a reaction of conjugated aldehydes and cyclopentadiene.²⁰⁵¹ It has been argued that facial selectivity is not due to torsional angle decompression.²⁰⁵² Secondary orbital interactions.²⁰⁵³ have been invoked, but this approach has been called into question.²⁰⁵⁴ There has been a direct evaluation of such interactions, however.²⁰⁵⁵ The endo/exo ratio can be influenced by the nature of the solvent.²⁰⁵⁶

²⁰⁴⁸Robiette, R.; Marchand-Brynaert, J.; Peeters, D. J. Org. Chem. 2002, 67, 6823.

²⁰⁴⁹See, for example, Baldwin, J.E.; Reddy, V.P. J. Org. Chem. **1989**, 54, 5264. For a theoretical study for endo selectivity, see Imade, M.; Hirao, H.; Omoto, K.; Fujimoto, H. J. Org. Chem. **1999**, 64, 6697.

- ²⁰⁵⁰See, for example, Alder, K.; Günzl, W. Chem. Ber. 1960, 93, 809; Stockmann, H. J. Org. Chem. 1961,
 26, 2025; Jones, D.W.; Wife, R.L. J. Chem. Soc., Chem. Commun. 1973, 421; Lindsay Smith, J.R.;
 Norman, R.O.C.; Stillings, M.R. Tetrahedron 1978, 34, 1381; Mülle, P.; Bernardinelli, G.; Rodriguez, D.;
 Pfyffer, J.; Schaller, J. Chimia 1987, 41, 244.
- ²⁰⁵¹Ahrendt, K.A.; Borths, C.J.; MacMillan, D.W.C. J. Am. Chem. Soc. 2000, 122, 4243.

- ²⁰⁵³Hoffmann, R.; Woodward, R.B. J. Am. Chem. Soc. 1965, 87, 4388, 4389.
- ²⁰⁵⁴García, J.I.; Mayoral, J.A.; Salvatella, L. Acc. Chem. Res. 2000, 33, 658.

²⁰⁵⁵Arrieta, A.; Cossío, F.P.; Lecea, B. J. Org. Chem. 2001, 66, 6178.

²⁰⁵²Hickey, E.R.; Paquette, L.A. Tetrahedron Lett. 1994, 35, 2309, 2313.

²⁰⁵⁶Cainelli, G.; Galletti, P.; Giacomini, D.; Quintavalla, A. Tetrahedron Lett. 2003, 44, 93.

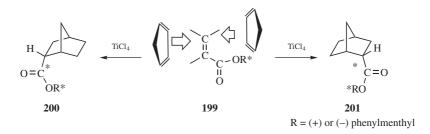
5. As we have seen, the Diels-Alder reaction can be both stereoselective and regioselective.²⁰⁵⁷ In some cases, the Diels-Alder reaction can be made enantioselective²⁰⁵⁸ Solvent effects are important in such reactions.²⁰⁵⁹ The role of reactant polarity on the course of the reaction has been examined.²⁰⁶⁰ Most enantioselective Diels-Alder reactions have used a chiral dienophile (e.g., 199) and an achiral diene,²⁰⁶¹ along with a Lewis acid catalyst (see below). In such cases, addition of the diene to the two faces²⁰⁶² of **199** takes place at different rates, and 200 and 201 are formed in different amounts.²⁰⁶³ An achiral compound A can be converted to a chiral compound by a chemical reaction with a compound B that is enantiopure. After the reaction, the resulting diastereomers can be separated, providing enantiopure compounds, each with a bond between molecule A and chiral compound B (a chiral auxiliary). Common chiral auxiliaries include chiral carboxylic acids, alcohols, or sultams. In the case illustrated, hydrolysis of the product removes the chiral R group, making it a chiral auxiliary in this reaction. Asymmetric Diels-Alder reactions have also been carried out with achiral dienes and dienophiles, but with an optically active catalyst.²⁰⁶⁴ Many chiral catalysts

²⁰⁵⁸See Corey, E.J.; Sarshar, S.; Lee, D.-H. J. Am. Chem. Soc. **1994**, 116, 12089. For reviews, see Taschner, M.J. Org. Synth: Theory Appl. **1989**, 1, 1; Helmchen, G.; Karge, R.; Weetman, J. Mod. Synth. Methods **1986**, 4, 261; Paquette, L.A. in Morrison, J.D. Asymmetric Synthesis, Vol. 3, Academic Press, NY, **1983**, pp. 455–501; Oppolzer, W. Angew. Chem. Int. Ed. **1984**, 23, 876. See also, the list of references in Macaulay, J.B.; Fallis, A.G. J. Am. Chem. Soc. **1990**, 112, 1136.

²⁰⁵⁹Ruiz-López, M.F.; Assfeld, X.; García, J.I.; Mayoral, J.A.; Salvatella, L. *J. Am. Chem. Soc.* **1993**, *115*, 8780.

²⁰⁶⁰Sustmann, R.; Sicking, W. J. Am. Chem. Soc. 1996, 118, 12562.

²⁰⁶¹For the use of chiral dienes, see Fisher, M.J.; Hehre, W.J.; Kahn, S.D.; Overman, L.E. J. Am. Chem. Soc. **1988**, *110*, 4625; Menezes, R.F.; Zezza, C.A.; Sheu, J.; Smith, M.B. *Tetrahedron Lett.* **1989**, *30*, 3295; Charlton, J.L.; Plourde, G.L.; Penner, G.H. Can. J. Chem. **1989**, *67*, 1010; Tripathy, R.; Carroll, P.J.; Thornton, E.R. J. Am. Chem. Soc. **1990**, *112*, 6743; **1991**, *113*, 7630; Rieger, R.; Breitmaier, E. Synthesis **1990**, 697.


²⁰⁶²For a discussion of facial selectivity, see Xidos, J.D.; Poirier, R.A.; Pye, C.C.; Burnell, D.J. J. Org. Chem. **1998**, 63, 105.

²⁰⁶³Oppolzer, W.; Kurth, M.; Reichlin, D.; Moffatt, F.*Tetrahedron Lett.* **1981**, 22, 2545. See also, Walborsky, H.M.; Barash, L.; Davis, T.C. *Tetrahedron* **1963**, 19, 2333; Furuta, K.; Iwanaga, K.; Yamamoto, H. *Tetrahedron Lett.* **1986**, 27, 4507; Evans, D.A.; Chapman, K.T.; Bisaha, J. J. Am. Chem. Soc. **1988**, 110, 1238; Mattay, J.; Mertes, J.; Maas, G. Chem. Ber. **1989**, 122, 327; Alonso, I.; Carretero, J.C.; Garcia Ruano, J.L. *Tetrahedron Lett.* **1980**, 30, 3853; Tomioka, K.; Hamada, N.; Suenaga, T.; Koga, K. J. Chem. Soc. Perkin Trans. 1, **1990**, 426; Cativiela, C.; López, P.; Mayoral, J.A. *Tetrahedron: Asymmetry* **1990**, 1, 61.

²⁰⁶⁴For a review, see Narasaka, K. Synthesis 1991, 1. For some recent examples, see Bir, G.; Kaufmann, D. J. Organomet. Chem. 1990, 390, 1; Rebiere, F.; Riant, O.; Kagan, H.B. Tetrahedron: Asymmetry 1990, 1, 199; Terada, M.; Mikami, K.; Nakai, T. Tetrahedron Lett. 1991, 32, 935; Corey, E.J.; Imai, N.; Zhang, H. J. Am. Chem. Soc. 1991, 113, 728; Narasaka, K.; Tanaka, H.; Kanai, F. Bull. Chem. Soc. Jpn. 1991, 64, 387; Hawkins, J.M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794; Evans, D.A.; Barnes, D.M.; Johnson, J.S.; Lectka, T.; von Matt, P.; Miller, S.J.; Murry, J.A.; Norcross, R.D.; Shaughnessy, E.A.; Campos, K.R. J. Am. Chem. Soc. 1999, 121, 7582.

 ²⁰⁵⁷Domingo, L.R.; Picher, M.T.; Andrés, J.; Safont, V.S. J. Org. Chem. 1997, 62, 1775. Also see, Smith,
 M.B. Organic Synthesis, 2nd ed., McGraw-Hill, NY, 2001, pp. 933–940, 968–977. See Ujaque, G.;
 Norton, J.E.; Houk, K.N. J. Org. Chem. 2002, 67, 7179.

have been developed. 2065 In many cases, asymmetric Lewis acids form a chiral complex with the dienophile. 2066

Many interesting compounds can be prepared by the Diels–Alder reaction,²⁰⁶⁷ some of which would be hard to make in any other way. Azelines react with dienes to form cyclohexene derivatives fused to a four-membered ring amine (azetidine).²⁰⁶⁸ The C₆₀-Fullerenes undergo Diels–Alder reactions,²⁰⁶⁹ and the reaction is reversible.²⁰⁷⁰ Bicyclic sultams can be prepared by an intramolecular Diels–Alder reaction.²⁰⁷¹ Polycyclic lactones can be prepared.²⁰⁷²Aromatic compounds can behave as dienes,²⁰⁷³ but benzene is very unreactive toward dienophiles,²⁰⁷⁴ and very few dienophiles (one of them is benzyne) have been reported to give Diels–Alder adducts with it.²⁰⁷⁵ Naphthalene and phenanthrene are also quite resistant, although naphthalene has given Diels–Alder addition at high pressures.²⁰⁷⁶ However, anthracene and other compounds with at least three linear benzene rings give Diels–Alder reactions readily. The interesting compound triptycene can be prepared by a Diels–Alder

²⁰⁶⁶Hawkins, J.M.; Loren, S.; Nambu, M. J. Am. Chem Soc. **1994**, 116, 1657. See Sibi, M.P.; Venkatraman, L.; Liu, M.; Jaspersé, C.P. J. Am. Chem. Soc. **2001**, 123, 8444.

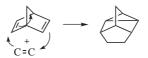
²⁰⁶⁷For a review of this reaction in synthesis, see Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilkogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1669.

- ²⁰⁶⁸Dave, P.R.; Duddu, R.; Surapaneni, R.; Gilardi, R. Tetrahedron Lett. 1999, 40, 443.
- ²⁰⁶⁹Murata, Y.; Kato, N.; Fujiwara, K.; Komatsu, K. J. Org. Chem. 1999, 64, 3483.
- ²⁰⁷⁰Wang, G.-W.; Saunders, M.; Cross, R.J. J. Am. Chem. Soc. 2001, 123, 256.

²⁰⁷¹Greig, I.R.; Tozer, M.J.; Wright, P.T. Org. Lett. 2001, 3, 369.

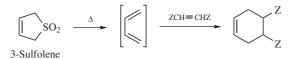
²⁰⁷²Vlaar, M.J.M.; Lor, M.H.; Ehlers, A.W.; Schakel, M.; Lutz, M.; Spek, A.L.; Lammertsma, K. J. Org. Chem. **2002**, 67, 2485.

²⁰⁷³For a review, see Wagner-Jauregg, T. *Synthesis* **1980**, 165, 769. See also, Balaban, A.T.; Biermann, D.; Schmidt, W. *Nouv. J. Chim.* **1985**, *9*, 443.


²⁰⁷⁶Plieninger, H.; Wild, D.; Westphal, J. Tetrahedron 1969, 25, 5561.

 ²⁰⁶⁵For a review, see Corey, E.J. Angew. Chem. Int. Ed. 2002, 41, 1651. See also, Doyle, M.P.; Phillips, I.M.; Hu, W. J. Am. Chem. Soc. 2001, 123, 5366; Owens, T.D.; Hollander, F.J.; Oliver A.G.; Ellman, J.A. J. Am. Chem. Soc. 2001, 123, 1539; Faller, J.W.; Grimmond, B.J.; D'Alliessi, D.G. J. Am. Chem. Soc. 2001, 123, 2525; Bolm, C.; Simić, O. J. Am. Chem. Soc. 2001, 123, 3830; Fukuzawa, S.; Komuro, Y.; Nakano, N.; Obara, S. Tetrahedron Lett. 2003, 44, 3671.

²⁰⁷⁴However, see Chordia, M.D.; Smith, P.L.; Meiere, S.H.; Sabat, M.; Harman, W.D. *J. Am. Chem. Soc.* **2001**, *123*, 10756.


²⁰⁷⁵Miller, R.G.; Stiles, M. J. Am. Chem. Soc. **1963**, 85, 1798; Meyerson, S.; Fields, E.K. Chem. Ind. (London) **1966**, 1230; Ciganek, E. Tetrahedron Lett. **1967**, 3321; Friedman, L. J. Am. Chem. Soc. **1967**, 89, 3071; Liu, R.S.H.; Krespan, C.G. J. Org. Chem. **1969**, 34, 1271.

reaction between benzyne and anthracene:²⁰⁷⁷ For both all-carbon and hetero systems, the "diene" can be a conjugated enyne. If the geometry of the molecule is suitable, the diene can even be nonconjugated, for example,²⁰⁷⁸

This last reaction is known as the *homo–Diels–Alder reaction*. A similar reaction has been reported with alkynes, using a mixture of a cobalt complex, ZnI_2 and tetrabutylammonium borohydride as catalysts.²⁰⁷⁹

Competing reactions are polymerization of the diene or dienophile, or both, and [1,2]-cycloaddition (15-63). Intramolecular versions of the Diels–Alder reaction are well-known, and this is a powerful method for the synthesis of mono- and polycyclic compounds.²⁰⁸⁰ There are many examples and variations. Internal Diels-Alder reactions can be viewed as linking the diene and alkene by a tether, usually of carbon atoms. If the tether is replaced by functional groups that allow the selectivity inherent to the intramolecular cycloaddition, but can be cleaved afterward, a powerful modification is available. Indeed, such tethered cycloaddition reactions are increasingly common. After cycloaddition, the tether can be cleaved to give a functionalized cyclohexene derivative. Such tethered reactions allow enhancement of stereoselectivity²⁰⁸¹ and sometimes reactivity, relative to an untethered reaction, giving an indirect method for enhancing those parameters. Tethers or linkages include C–O–SiR₂–C²⁰⁸² or a C–O–SiR₂–O–C,²⁰⁸³ or hydroxamides.²⁰⁸⁴ Transient tethers can be used, as in the reaction of a diene having an allylic alcohol unit in a reaction is allyl alcohol, with AlMe₃, to give the cycloadduct with good selectivity.2085

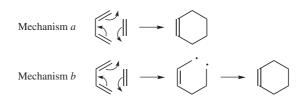
²⁰⁷⁷Wittig, G.; Niethammer, K. *Chem. Ber.* 1960, 93, 944; Wittig, G.; Härle, H.; Knauss, E.; Niethammer, K. *Chem. Ber.* 1960, 93, 951. For a review of triptycene, see Skvarchenko, V.R.; Shalaev, V.K.; Klabunovskii, E.I. *Russ. Chem. Rev.* 1974, 43, 951.

²⁰⁷⁸See, for example, Fickes, G.N.; Metz, T.E. J. Org. Chem. **1978**, 43, 4057; Paquette, L.A.; Kesselmayer, M.A.; Künzer, H. J. Org. Chem. **1988**, 53, 5183.

²⁰⁷⁹Hilt, G.; du Mesnil, F.-X. Tetrahedron Lett. 2000, 41, 6757.

²⁰⁸⁰Carlson, R.G. Ann. Rep. Med. Chem. 1974, 9, 270; Oppolzer, W. Angew. Chem. Int. Ed. 1977, 16, 10 (see pp. 10–18); Brieger, G.; Bennett, J.N. Chem. Rev. 1980, 80, 63 (see p. 67); Fallis, A.G. Can. J. Chem. 1984, 62, 183; Smith, M.B. Org. Prep. Proceed. Int. 1990, 22, 315.

²⁰⁸¹For a discussion of the origins of stereoselectivity in intramolecular tethered reactions, see Tantillo, D.J.; Houk, K.N.; Jung, M.E. J. Org. Chem. **2001**, *66*, 1938.


²⁰⁸²Stork, G.; Chan, T.Y.; Breault, G.A. J. Am. Chem. Soc. 1992, 114, 7578.

²⁰⁸³Craig, D.; Reader, J.C. Tetrahedron Lett. 1992, 33, 6165.

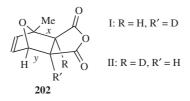
²⁰⁸⁴Ishikawa, T.; Senzaki, M.; Kadoya, R.; Morimoto, T.; Miyake, N.; Izawa, M.; Saito, S. Kobayashi, H. *J. Am. Chem. Soc.* **2001**, *123*, 4607.

²⁰⁸⁵Bertozzi, F.; Olsson, R.; Frejd, T. Org. Lett. 2000, 2, 1283.

The Diels–Alder reaction is usually reversible, although the retro reaction typically occurs at significantly higher temperatures than the forward reaction. However, the reversibility of the reaction and has been used to protect double bonds.²⁰⁸⁶ A convenient substitute for butadiene in the Diels–Alder reaction is the compound 3-sulfolene since the latter is a solid which is easy to handle while the former is gas.²⁰⁸⁷ Butadiene is generated *in situ* by a reverse Diels–Alder reaction (see **17-20**).

There are, broadly speaking, three possible mechanisms that have been considered for the uncatalyzed Diels-Alder reaction.²⁰⁸⁸ In mechanism *a* there is a cyclic sixcentered transition state and no intermediate. The reaction is concerted and occurs in one step. In mechanism *b*, one end of the diene fastens to one end of the dienophile first to give a diradical, and then, in a second step, the other ends become fastened.²⁰⁸⁹ A diradical formed in this manner must be a singlet; that is, the two unpaired electrons must have opposite spins, by an argument similar to that outlined on p. 277. The third mechanism (*c*, not shown) is similar to mechanism *b*, but the initial bond and the subsequent bond are formed by movements of electron pairs and the intermediate is a diion. There have been many mechanistic investigations of the Diels–Alder reaction. The bulk of the evidence suggests that most Diels–Alder reactions take place by the one-step cyclic mechanism *a*,²⁰⁹⁰ although it is possible

²⁰⁸⁶For reviews of the reverse Diels–Alder reaction, see Ichihara, A. Synthesis 1987, 207; Lasne, M.; Ripoll, J.L. Synthesis 1985, 121; Ripoll, J.L.; Rouessac, A.; Rouessac, F. Tetrahedron 1978, 34, 19; Brown, R.F.C. Pyrolytic Methods in Organic Chemistry, Academic Press, NY, 1980, pp. 259–281; Kwart, H.; King, K. Chem. Rev. 1968, 68, 415.


²⁰⁸⁷Sample Jr., T.E.; Hatch, L.F. Org. Synth. VI, 454. For a review, see Chou, T.; Tso, H. Org. Prep. Proced. Int. **1989**, 21, 257.

²⁰⁸⁸For reviews, see Sauer, J.; Sustmann, R. Angew. Chem. Int. Ed. **1980**, 19, 779; Houk, K.N. Top. Curr. Chem. **1979**, 79, 1; Seltzer, S. Adv. Alicyclic Chem. **1968**, 2, 1; Ref. 1981. For a review of the application of quantum-chemical methods to the study of this reaction, see Babichev, S.S.; Kovtunenko, V.A.; Voitenko, Z.V.; Tyltin, A.K. Russ. Chem. Rev. **1988**, 57, 397. For a discussion of synchronous versus nonsynchronous mechanisms, see Beno, B.R.; Houk, K.N.; Singleton, D.A. J. Am. Chem. Soc. **1996**, 118, 9984; Singleton, D.A.; Schulmeier, B.E.; Hang, C.; Thomas, A.A.; Leung, S.-W.; Merrigan, S.R. Tetrahedron **2001**, 57, 5149. Also see, Li, Y.; Houk, K.N. J. Am. Chem. Soc. **1993**, 115, 7478 for the dimerization mechanism of 1,3-butadiene.

²⁰⁸⁹For a discussion of a diradical stepwise versus concerted mechanism for reactions with chalcogens, see Orlova, G.; Goddard, J.D. *J. Org. Chem.* **2001**, *66*, 4026.

 ²⁰⁹⁰For a contrary view, see Dewar, M.J.S.; Olivella, S.; Stewart, J.J.P. J. Am. Chem. Soc. **1986**, 108, 5771.
 For arguments against this view, see Houk, K.N.; Lin, Y.; Brown, F.K. J. Am. Chem. Soc. **1986**, 108, 554;
 Hancock, R.A.; Wood, Jr., B.F. J. Chem. Soc., Chem. Commun. **1988**, 351; Gajewski, J.J.; Peterson, K.B.;
 Kagel, J.R.; Huang, Y.C.J. J. Am. Chem. Soc. **1989**, 111, 9078.

that a diradical²⁰⁹¹ or even a diion²⁰⁹² mechanism may be taking place in some cases. Radical cation Diels–Alder reactions have been considered.²⁰⁹³ The main evidence in support of mechanism *a* is as follows: (*1*) The reaction is stereospecific in both the diene and dienophile. A completely free diradical or diion probably would not be able to retain its configuration. (*2*) In general, the rates of Diels–Alder reactions depend very little on the nature of the solvent. This would rule out a diion intermediate because polar solvents increase the rates of reactions that develop charges in the transition state. (*3*) It was shown that, in the decomposition of **202**, the isotope effect k_I/k_{II} was equal to 1.00 within experimental error.²⁰⁹⁴ If bond *x* were to break before bond *y*, there

should surely be a secondary isotope effect. This result strongly indicates that the bond breaking of *x* and *y* is simultaneous. This is the reverse of a Diels–Alder reaction, and by the principle of microscopic reversibility, the mechanism of the forward reaction should involve simultaneous formation of bonds *x* and *y*. Subsequently, a similar experiment was carried out on the forward reaction²⁰⁹⁵ and the result was the same. There is also other evidence for mechanism a.²⁰⁹⁶ However, the fact that the mechanism is concerted does not necessarily mean that it is synchronous.²⁰⁹⁷ In the transition state of a synchronous reaction both new σ bonds would be formed to the same extent, but a Diels–Alder reaction with non-symmetrical components might very well be non-synchronous;²⁰⁹⁸ that is, it could have a transition state in which one

²⁰⁹¹See, for example, Bartlett, P.D.; Mallet, J.J. J. Am. Chem. Soc. **1976**, 98, 143; Jenner, G.; Rimmelin,
 J. Tetrahedron Lett. **1980**, 21, 3039; Van Mele, B.; Huybrechts, G. Int. J. Chem. Kinet. **1987**, 19, 363;
 1989, 21, 967.

²⁰⁹²For a reported example, see Gassman, P.G.; Gorman, D.B. J. Am. Chem. Soc. 1990, 112, 8624.

²⁰⁹³Haberl, U.; Wiest, O.; Steckhan, E. J. Am. Chem. Soc. 1999, 121, 6730.

²⁰⁹⁴Seltzer, S. J. Am. Chem. Soc. 1963, 85, 1360; 1965, 87, 1534. For a review of isotope effect studies of Diels–Alder and other pericyclic reactions, see Gajewski, J.J. Isot. Org. Chem. 1987, 7, 115–176.
 ²⁰⁹⁵Van Sickle, D.E.; Rodin, J.O. J. Am. Chem. Soc. 1964, 86, 3091.

²⁰⁹⁶See, for example, Dewar, M.J.S.; Pyron R.S. J. Am. Chem. Soc. 1970, 92, 3098; Brun, C.; Jenner, G. Tetrahedron 1972, 28, 3113; Doering, W. von E.; Franck-Neumann, M.; Hasselmann, D.; Kaye, R.L. J. Am. Chem. Soc. 1972, 94, 3833; McCabe, J.R.; Eckert, C.A. Acc. Chem. Res. 1974, 7, 251; Berson, J.A.; Dervan, P.B.; Malherbe, R.; Jenkins, J.A. J. Am. Chem. Soc. 1976, 98, 5937; Rücker, C.; Lang, D.; Sauer, J.; Friege, H.; Sustmann, R. Chem. Ber. 1980, 113, 1663; Tolbert, L.M.; Ali, M.B. J. Am. Chem. Soc. 1981, 103, 2104.

²⁰⁹⁸Woodward, R.B.; Katz, T.J. *Tetrahedron* 1959, 5, 70; Liu, M.T.H.; Schmidt, C. *Tetrahedron* 1971, 27,
 5289; Dewar, M.J.S.; Pyron R.S. J. Am. Chem. Soc. 1970, 92, 3098; Papadopoulos, M.; Jenner,
 G. *Tetrahedron Lett.* 1982, 23, 1889; Houk, K.N.; Loncharich, R.J.; Blake, J.F.; Jorgensen, W.L. J. Am. Chem. Soc. 1989, 111, 9172; Lehd, M.; Jensen, F. J. Org. Chem. 1990, 55, 1034.

²⁰⁹⁷For an example of a study of a reaction that is concerted but asynchronous, see Avalos, M.; Babiano, R.; Clemente, F.R.; Cintas, P.; Gordillo, R.; Jiménez, J.L.; Palacios, J.C. *J. Org. Chem.* **2000**, *65*, 8251

bond has been formed to a greater degree than the other. 2099 A biradical mechanism has been proposed for some Diels–Alder reactions. 2100

In another aspect of the mechanism, the effects of electron-donating and electron-withdrawing substituents (p. 1196) indicate that the diene is behaving as a nucleophile and the dienophile as an electrophile. However, this can be reversed. Perchlorocyclopentadiene reacts better with cyclopentene than with maleic anhydride and not at all with tetracyanoethylene, although the latter is normally the most reactive dienophile known. It is apparent, then, that this diene is the electrophile in its Diels–Alder reactions.²¹⁰¹ Reactions of this type are said to proceed with *inverse electron demand*.²¹⁰²

We have emphasized that the Diels–Alder reaction generally takes place rapidly and conveniently. In sharp contrast, the apparently similar dimerization of alkenes to cyclobutanes (**15-63**) gives very poor results in most cases, except when photochemically induced. Woodward and Hoffmann, and Fukui have shown that these contrasting results can be explained by the *principle of conservation of orbital symmetry*,²¹⁰³ which predicts that certain reactions are allowed and others forbidden. The orbital-symmetry rules (also called the Woodward–Hoffmann rules)²¹⁰⁴ apply *only to concerted reactions*, for example, mechanism *a*, and are based on the principle that reactions take place in such a way as to maintain maximum bonding throughout the course of the reaction. There are several ways of applying the orbital-symmetry principle to cycloaddition reactions, three

²¹⁰¹Sauer, J.; Wiest, H. Angew. Chem. Int. Ed. 1962, 1, 269.

²¹⁰²For a review, see Boger, D.L.; Patel, M. Prog. Heterocycl. Chem. **1989**, *1*, 30. Also see, Pugnaud, S.; Masure, D.; Hallé, J.-C.; Chaquin, P. J. Org. Chem., **1997**, 62, 8687; Wan, Z.-K.; Snyder, J.K. Tetrahedron Lett. **1998**, 39, 2487; Markó, I.E.; Evans, G.R. Tetrahedron Lett. **1994**, 35, 2767, 2771.

²¹⁰³For monographs, see Fleming, I. Pericyclic Reactions, Oxford University Press, Oxford, 1999, pp. 31–56; Gilchrist, T.L.; Storr, R.C. Organic Reactions and Orbital Symmetry, 2nd ed., Cambridge University Press, Cambridge, 1979; Fleming, I. Frontier Orbitals and Organic Chemical Reactions, Wiley, NY, 1976; Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry, Academic Press, NY, 1970 [the text of this book also appears in Angew. Chem. Int. Ed. 1969, 8, 781; Lehr, R.E.; Marchand, A.P. Orbital Symmetry, Academic Press, NY, 1972. For reviews, see Pearson, R.G. J. Chem. Educ. 1981, 58, 753; in Klopman, G. Chemical Reactivity and Reaction Paths, Wiley, NY, 1974, the articles by Fujimoto, H.; Fukui, K. pp. 23–54, Klopman, G. pp. 55–165, Herndon, W.C.; Feuer, J.; Giles, W.B.; Otteson, D.; Silber, E. pp. 275–299; Michl, J. pp. 301–338; Simonetta, M. Top. Curr. Chem. 1973, 42, 1; Houk, K.N. Surv. Prog. Chem. 1973, 6, 113; Vollmer, J.J.; Servis, K.L. J. Chem. Educ. 1970, 47, 491; Gill, G.B. Essays Chem. 1970, 1, 43; Q. Rev. Chem. Soc. 1968, 22, 338; Seebach, D. Fortschr. Chem. Forsch. 1969, 11, 177; Miller, S.I. Adv. Phys. Org. Chem. 1968, 6, 185; Miller, S.I. Bull. Soc. Chim. Fr. 1966, 4031. For a review of applications to inorganic chemistry, see Pearson, R.G. Top Curr. Chem. 1973, 41, 75.

²⁰⁹⁹For a theoretical investigation of the ionic Diels–Alder reaction, see dePascual-Teresa, B.; Houk, K.N. *Tetrahedron Lett.* **1996**, *37*, 1759. For a discussion of the origin of synchronicity in the transition state of polar Diels–Alder reactions, see Domingo, L.R.; Aurell, M.J.; Pérez, P.; Contreras, R. J. Org. Chem. **2003**, *68*, 3884.

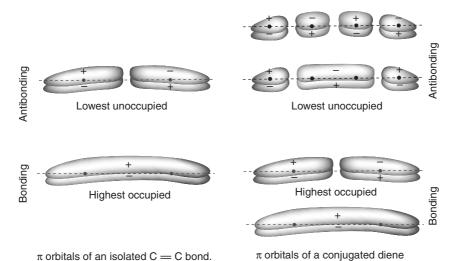
²¹⁰⁰de Echagüen, C.O.; Ortuño, R.M. *Tetrahedron Lett.* **1995**, *36*, 749. See Li, Y.; Padias, A.B.; Hall Jr., H.K. J. Org. Chem. **1993**, *58*, 7049 for a discussion of diradicals in concerted Diels–Alder reactions.

²¹⁰⁴Chattaraj, P.K.; Fuentealba, P.; Gómez, B.; Contreras, R. J. Am. Chem. Soc. 2000, 122, 348.

of which are used more frequently than others.²¹⁰⁵ Of these three, we will discuss two: the frontier-orbital method and the Möbius–Hückel method. The third, called the correlation diagram method,²¹⁰⁶ is less convenient to apply than the other two.

The Frontier Orbital Method²¹⁰⁷

As applied to cycloaddition reactions the rule is that *reactions are allowed* only when all overlaps between the highest occupied molecular orbital (HOMO) of one reactant and the lowest unoccupied molecular orbital (LUMO) of the other are such that a positive lobe overlaps only with another positive lobe and a negative lobe only with another negative lobe. We may recall that monoalkenes have two π molecular orbitals (p. 10) and that conjugated dienes have four (p. 38), as shown in Fig. 15.2. A concerted cyclization of two monoalkenes (a [2 + 2]-reaction) is not allowed because it would require that a positive lobe overlap with a negative lobe (Fig. 15.3). On the other hand, the Diels–Alder reaction (a [4 + 2]-reaction) is allowed, whether considered from either direction (Fig. 15.4).


These considerations are reversed when the ring closures are photochemically induced since in such cases an electron is promoted to a vacant orbital before the reaction occurs. Obviously, the [2+2] reaction is now allowed (Fig. 15.5) and the [4+2]-reaction disallowed. The reverse reactions follow the same rules, by the principle of microscopic reversibility. In fact, Diels–Alder adducts are usually cleaved quite readily, while cyclobutanes, despite the additional strain, require more strenuous conditions.

 ²¹⁰⁵For other approaches, see Epiotis, N.D. Theory of Organic Reactions, Springer, NY, 1978; Epiotis, N.D.; Shaik, S. J. Am. Chem. Soc. 1978, 100, 1, 9; Halevi, E.A. Angew. Chem. Int. Ed. 1976, 15, 593; Shen, K. J. Chem. Educ. 1973, 50, 238; Salem, L. J. Am. Chem. Soc. 1968, 90, 543, 553; Trindle, C. J. Am. Chem. Soc. 1970, 92, 3251, 3255; Mulder, J.J.C.; Oosterhoff, L.J. Chem. Commun. 1970, 305, 307; Goddard III, W.A. J. Am. Chem. Soc. 1970, 92, 7520; 1972, 94, 793; Herndon, W.C. Chem. Rev. 1972, 72, 157; Perrin, C.L. Chem. Br. 1972, 8, 163; Langlet, J.; Malrieu, J. J. Am. Chem. Soc. 1972, 94, 7254; Pearson, R.G. J. Am. Chem. Soc. 1975, 97, 2645; Day, A.C. J. Am. Chem. Soc. 1975, 97, 2431; Mok, K.; Nye, M.J. J. Chem. Soc. Perkin Trans. 2, 1975, 1810; Ponec, R. Collect. Czech. Chem. Commun. 1984, 49, 455; 1985, 50, 1121; Hua-ming, Z.; De-xiang, W. Tetrahedron 1986, 42, 515; Bernardi, F.; Olivucci, M.; Robb, M.A. Res. Chem. Intermed. 1989, 12, 217; Acc. Chem. Res. 1990, 23, 405.

²¹⁰⁶For excellent discussions of this method, see Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry, Academic Press, NY, **1970**; Angew. Chem. Int. Ed. **1969**, 8, 781; Jones, R.A.Y. Physical and Mechanistic Organic Chemistry 2nd ed., Cambridge University Press, Cambridge, **1984**, pp. 352– 366; Klumpp, G.W. Reactivity in Organic Chemistry, Wiley, NY, **1982**, pp. 378–389; Yates, K. Hückel Molecular Orbital Theory, Academic Press, NY, **1978**, pp. 263–276.

²¹⁰⁷Fukui, K.; Fujimoto, H. Bull. Chem. Soc. Jpn. 1967, 40, 2018; 1969, 42, 3399; Fukui, K. Fortschr. Chem. Forsch. 1970, 15, 1; Acc. Chem. Res. 1971, 4, 57; Houk, K.N. Acc. Chem. Res. 1975, 8, 361. See also, Chu, S. Tetrahedron 1978, 34, 645. For a monograph on Frontier Orbitals see Fleming, I. Pericyclic Reactions, Oxford University Press, Oxford, 1999. For reviews, see Fukui, K. Angew. Chem. Int. Ed. 1982, 21, 801; Houk, K.N., in Marchand, A.P.; Lehr, R.E. Pericyclic Reactions, Vol. 2; Academic Press, NY, 1977, pp. 181–271.

Fig. 15.2. Schematic drawings of the π -orbitals of an isolated C=C bnd and a conjugated diene.

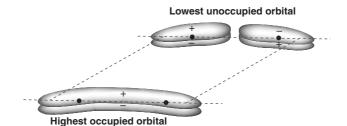
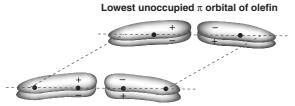
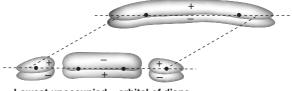
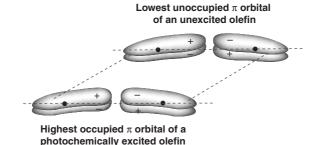




Fig. 15.3. Overlap of orbitals in a thermal [2 + 2]-cycloaddition.


Highest occupied π orbital of diene

Highest occupied π orbital of olefin

Lowest unoccupied π orbital of diene

Fig. 15.4. Two ways for orbitals to overlap in a thermal [4 + 2]-cycloaddition.

Fig. 15.5. Overlap of orbitals in a photochemical [2 + 2]-cycloaddition.

The Möbius–Hückel Method²¹⁰⁸

In this method, the orbital symmetry rules are related to the Hückel aromaticity rule discussed in Chapter 2.²¹⁰⁹ Hückel's rule, which states that a cyclic system of electrons is aromatic (hence, stable) when it consists of 4n + 2 electrons, applies of course to molecules in their ground states. In applying the orbital symmetry principle we are not concerned with ground states, but with transition states. In the present method, we do not examine the molecular orbitals themselves, but rather the *p* orbitals before they overlap to form the molecular orbitals. Such a set of *p* orbitals is called a *basis set* (Fig. 15.6). In investigating the possibility of a concerted reaction, we put the basis sets into the position they would occupy in the transition state. Figure 15.7 shows this for both the [2 + 2] and the [4 + 2] ring closures. What we look for are *sign inversions*. In Fig. 15.7, we can see that there are no sign inversions in either case. That is, the dashed line connects only lobes with a minus sign. Systems with *zero or an even number* of sign inversions, both of these systems are Hückel systems. Systems with *an odd number* of sign

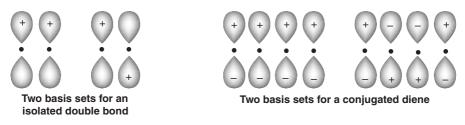


Fig. 15.6. Some basis sets.

²¹⁰⁹See Morao, I.; Cossío, F.P. J. Org. Chem. 1999, 64, 1868.

 ²¹⁰⁸Zimmerman, H.E., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY,
 1977, pp. 53–107; *Acc. Chem. Res.* **1971**, *4*, 272; *J. Am. Chem. Soc.* **1966**, 88, 1564, 1566; Dewar, M.J.S.
 Angew. Chem. Int. Ed. **1971**, *10*, 761; Jefford, C.W.; Burger, U. *Chimia*, **1971**, 25, 297; Herndon, W.C. *J. Chem. Educ.* **1981**, 58, 371.

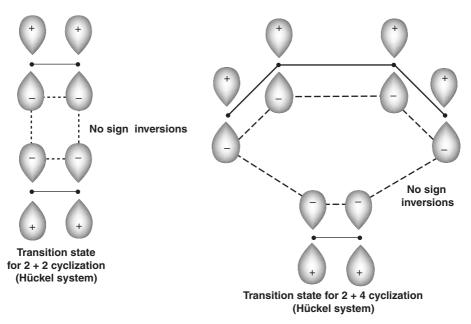


Fig. 15.7. Transition states illustrating Hückel-Möbius rules for cycloaddition reactions.

inversions are called *Möbius systems* (because of the similarity to the Möbius strip, which is a mathematical surface, shown in Fig. 15.8). Möbius systems do not enter into either of these reactions, but an example of such a system is shown on p. \$\$\$.

The rule may then be stated: A thermal pericyclic reaction involving a Hückel system is allowed only if the total number of electrons is 4n + 2. A thermal pericyclic reaction involving a Möbius system is allowed only if the total number of electrons is 4n. For photochemical reactions these rules are reversed. Since both the [4 + 2]- and [2 + 2]-cycloadditions are Hückel systems, the Möbius–Hückel method predicts that the [4 + 2]-reaction, with 6 electrons, is thermally allowed,

Fig. 15.8. A Möbius strip. Such a strip is easily constructed by twisting a thin strip of paper 180° and fastening the ends together.

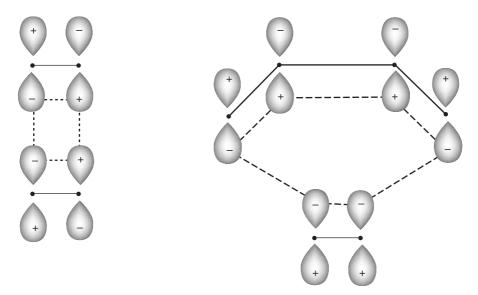


Fig. 15.9. Transition states of [2 + 2]- and [4 + 2]-cyclizations involing other basis sets.

but the [2+2]-reaction is not. One the other hand, the [2+2]-reaction is allowed photochemically, while the [4+2]-reaction is forbidden.

Note that both the [2+2] and [4+2] transition states are Hückel systems no matter what basis sets we chose. For example, Fig. 15.9 shows other basis sets we might have chosen. In every case there will be zero or an even number of sign inversions.

Thus, the frontier orbital and Hückel–Möbius methods (and the correlationdiagram method as well) lead to the same conclusions: thermal [4 + 2]-cycloadditions and photochemical [2 + 2]-cycloadditions (and the reverse ring openings) are allowed, while photochemical [4 + 2] and thermal [2 + 2] ring closings (and openings) are forbidden.

Application of the same procedures to other ring closures shows that [4 + 4] and [2 + 6] ring closures and openings require photochemical induction while the [4 + 6]- and [2 + 8]-reactions can take place only thermally (see **15-53**). In general, cycloaddition reactions allowed thermally are those with 4n + 2 electrons, while those allowed photochemically have 4n electrons.

It must be emphasized once again that the rules apply only to cycloaddition reactions that take place by cyclic mechanisms, that is, where two σ bonds are formed (or broken) at about the same time.²¹¹⁰ The rule does not apply to cases where one bond is clearly formed (or broken) before the other. It must further be emphasized that the fact that the thermal Diels–Alder reaction (mechanism *a*) is allowed by the principle of conservation of orbital symmetry does not constitute

²¹¹⁰For a discussion of concertedness in these reactions see Lehr, R.E.; Marchand, A.P., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 1, Academic Press, NY, **1977**, pp. 1–51.

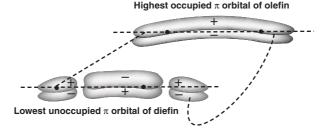
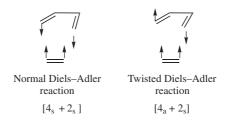


Fig. 15.10. Overlap of orbitals in an antarafacial thermal [4 + 2]-cycloaddition.


proof that any given Diels–Alder reaction proceeds by this mechanism. The principle merely says the mechanism is allowed, not that it must go by this pathway. However, the principle does say that thermal [2 + 2]-cycloadditions in which the molecules assume a face-to-face geometry cannot²¹¹¹ take place by a cyclic mechanism because their activation energies would be too high (however, see below). As we will see (**15-62**), such reactions largely occur by two-step mechanisms. Similarly, [4 + 2]-photochemical cycloadditions are also known, but the fact that they are not stereospecific indicates that they also take place by the two-step diradical mechanism (mechanism *b*).²¹¹²

In all of the above discussion we have assumed that a given molecule forms both the new σ bonds from the same face of the π system. This manner of bond formation, called *suprafacial*, is certainly most reasonable and almost always takes place. The subscript s is used to designate this geometry, and a normal Diels–Alder reaction would be called a $[\pi 2_s + \pi 4_s]$ -cycloaddition (the subscript π indicates that π electrons are involved in the cycloaddition). However, we can conceive of another approach in which the newly forming bonds of the diene lie on *opposite* faces of the π system, that is, they point in opposite directions. This type of orientation of the newly formed bonds is called *antarafacial*, and the reaction would be a $[\pi 2_s + \pi 4_a]$ -cycloaddition (a stands for antarafacial). We can easily show by the frontier-orbital method that this reaction (and consequently the reverse ring-opening reactions) are thermally forbidden and photochemically allowed. Thus in order for a $[\pi 2_s + \pi 4_a]$ -reaction to proceed, overlap between the highest occupied π orbital of the alkene and the lowest unoccupied π orbital of the diene would have to occur as shown in Fig. 15.10, with a + lobe

²¹¹¹The possibility has been raised that some disallowed reactions may nevertheless proceed by concerted mechanisms: see Schmidt, W. *Helv. Chim. Acta* **1971**, *54*, 862; *Tetrahedron Lett.* **1972**, 581; Muszkat, K.A.; Schmidt, W. *Helv. Chim. Acta* **1971**, *54*, 1195; Baldwin, J.E.; Andrist, A.H.; Pinschmidt Jr., R.K. Acc. Chem. Res. **1972**, *5*, 402; Berson, J.A. Acc. Chem. Res. **1972**, *5*, 406; Baldwin, J.E., in Marchand, A.P.; Lehr, R.E. Pericyclic Reactions, Vol. 2, Academic Press, NY, **1977**, pp. 273–302.

²¹¹²For example, see Sieber, W.; Heimgartner, H.; Hansen, H.; Schmid, H. *Helv. Chim. Acta* **1972**, 55, 3005. For discussions see Bartlett, P.D.; Helgeson, R.; Wersel, O.A. *Pure Appl. Chem.* **1968**, 16, 187; Seeley, D.A. J. Am. Chem. Soc. **1972**, 94, 4378; Kaupp, G. Angew. Chem. Int. Ed. **1972**, 11, 313, 718.

overlapping a – lobe. Since like signs are no longer overlapping, the thermal reaction is now forbidden. Similarly, thermal $[\pi 4_s + \pi 2_a]$ - and

 $[\pi^2_a + \pi^2_a]$ -cyclizations are forbidden, while thermal $[\pi^4_a + \pi^2_a]$ - and $[\pi^2_s + \pi^2_a]$ -cyclizations are allowed, and these considerations are reversed for the corresponding photochemical processes. Of course, an antarafacial approach is highly unlikely in a [4 + 2]-cyclization,²¹¹³ but larger ring closures could take place by such a pathway, and [2 + 2]-thermal cyclizations, where the $[\pi^2_s + \pi^2_s]$ pathway is forbidden, can also do so in certain cases (see **15-63**). We therefore see that whether a given cycloaddition is allowed or forbidden depends on the geometry of approach of the two molecules involved.

Symmetry considerations have also been advanced to explain predominant endo addition.²¹¹⁴ In the case of [4 + 2] addition of butadiene to itself, the approach can be exo or endo. It can be seen (Fig. 15.11) that whether the HOMO of the diene overlaps with the LUMO of the alkene or vice versa, the endo orientation is stabilized by additional secondary overlap of orbitals²¹¹⁵ of like sign (dashed lines between heavy dots). Addition from the exo direction has no such stabilization. Evidence for secondary orbital overlap as the cause of predominant endo orientation, at least in some cases, is that [4 + 6]-cycloaddition is predicted by similar considerations to proceed with predominant exo orientation, and that is what is found.²¹¹⁶ However, this explanation does not account for endo orientation in cases where the dienophile does not possess additional π orbitals, and a number of alternative explanations have been offered.²¹¹⁷

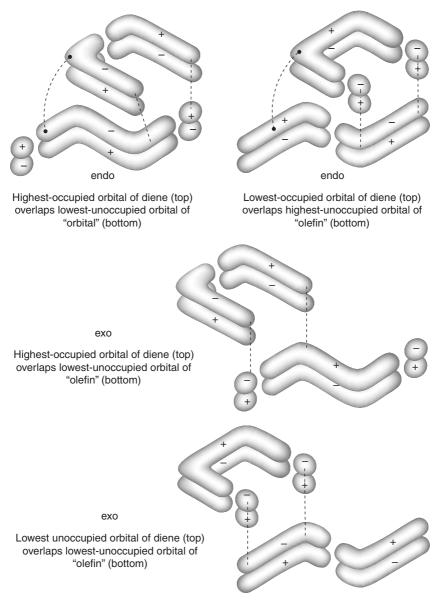
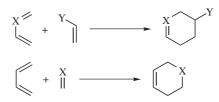
²¹¹³A possible photochemical $[\pi 2a + \pi 4_s]$ -cycloaddition has been reported: Hart, H.; Miyashi, T.; Buchanan, D.N.; Sasson, S. J. Am. Chem. Soc. **1974**, *96*, 4857.

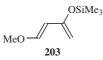
²¹¹⁴Hoffmann, R.; Woodward, R.B. J. Am. Chem. Soc. 1965, 87, 4388.

²¹¹⁵For reviews of secondary orbital interactions, see Ginsburg, D. *Tetrahedron* **1983**, *39*, 2095; Gleiter, R.; Paquette, L.A. *Acc. Chem. Res.* **1983**, *16*, 328. For a new secondary orbital interaction see Singleton, D.A. J. Am. Chem. Soc. **1992**, *114*, 6563.

²¹¹⁶See, for example, Cookson, R.C.; Drake, B.V.; Hudec, J.; Morrison, A. Chem. Commun. **1966**, 15; Itô, S.; Fujise, Y.; Okuda, T.; Inoue, Y. Bull. Chem. Soc. Jpn. **1966**, 39, 1351; Paquette, L.A.; Barrett, J.H.; Kuhla, D.E. J. Am. Chem. Soc. **1969**, 91, 3616; Houk, K.N.; Woodward, R.B. J. Am. Chem. Soc. **1970**, 92, 4143, 4145; Jones, D.W.; Kneen, G. J. Chem. Soc., Chem. Commun. **1973**, 420. Also see Apeloig, Y.; Matzner, E. J. Am. Chem. Soc. **1995**, 117, 5375.

²¹¹⁷See, for example, Houk, K.N.; Luskus, L.J. J. Am. Chem. Soc. **1971**, 93, 4606; Kobuke, Y.; Sugimoto, T.; Furukawa, J.; Fueno, T. J. Am. Chem. Soc. **1972**, 94, 3633; Jacobson, B.M. J. Am. Chem. Soc. **1973**, 95, 2579; Mellor, J.M.; Webb, C.F. J. Chem. Soc. Perkin Trans. 2, **1974**, 17, 26; Fox, M.A.; Cardona, R.; Kiwiet, N.J. J. Org. Chem. **1987**, 52, 1469.


Fig. 15.11. Overlap of orbitals in [4+2]-cycloaddition of dienes.

OS II, 102; III, 310, 807; IV, 238, 738, 890, 964; V, 414, 424, 604, 985, 1037; VI, 82, 196, 422, 427, 445, 454; VII, 4, 312, 485; VIII, 31, 38, 298, 353, 444, 597; IX, 186, 722; 75, 201; 81, 171. For a reverse Diels–Alder reaction, see OS VII, 339.

15-61 Heteroatom Diels–Alder Reactions

Carbon–carbon multiple bonds are not the only units that can participate in Diels–Alder reactions. Other double- and triple-bond compounds can be dienophiles and they give rise to heterocyclic compounds.²¹¹⁸ Among these are $N \equiv C-$, -N = C-, ²¹¹⁹ iminium salts, ²¹²⁰ -N = N-, O = N-, ²¹²¹ and -C = O compounds²¹²² and even molecular oxygen (**15-62**). It is noted that in the presence of a YbCl₃ catalyst, azirines reaction with dienes to give a 1-azabicyclo[4.1.0] heptene.²¹²³ Several catalysts can be used, depending on the nature of the heteroatoms incorporated into the alkene or diene.²¹²⁴ Intramolecular cycloaddition with a diene–imine substrate leads to pyrrolidines.²¹²⁵

Aldehydes react with suitably functionalized dienes, such as **203**, known as *Danishefsky's diene*,²¹²⁶ and the reaction usually requires a Lewis acid catalyst

²¹¹⁹Nogue, D.; Paugam, R.; Wartski, L. *Tetrahedron Lett.* 1992, 33, 1265; Collin, J.; Jaber, N.; Lannou,
M.I. *Tetrahedron Lett.* 2001, 42, 7405; Hedberg, C.; Pinho, P.; Roth, P.; Andersson, P.G. J. Org. Chem.
2000, 65, 2810. For a review see Buonora, P.; Olsen, J.-C.; Oh, T. *Tetrahedron* 2001, 57, 6099;
Anniyappan, M.; Muralidharan, D.; Perumal, P.T. *Tetrahedron Lett.* 2003, 44, 3653.

²¹²⁰Domingo, L.R. J. Org. Chem. **2001**, 66, 3211; Chou, S.-S.P.; Hung, C.-C. Synth. Commun. **2001**, 31, 1097.

²¹²¹Martin, S.F.; Hartmann, M.; Josey, J.A. Tetrahedron Lett. 1992, 33, 3583.

²¹²²For monographs on dienes and dienophiles with heteroatoms, see Boger, D.L.; Weinreb, S.M. *Hetero Diels–Alder Methodology in Organic Synthesis*, Academic Press, NY, **1987**; Hamer, J. 1,4-Cycloaddition Reactions, Academic Press, NY, **1967**. For reviews, see Weinreb, S.M.; Scola, P.M. Chem. Rev. **1989**, 89, 1525; Boger, D.L., in Lindberg, T. Strategies and Tactics in Organic Synthesis, Vol. 2, Academic Press, NY, **1989**, pp. 1–56; Kametani, T.; Hibino, S. Adv. Heterocycl. Chem. **1987**, 42, 245; Boger, D.L. Tetrahedron **1983**, 39, 2869; Weinreb, S.M.; Staib, R.R. Tetrahedron **1982**, 38, 3087; Weinreb, S.M.; Levin, J.I. Heterocycles **1979**, 12, 949; Desimoni, G.; Tacconi, G. Chem. Rev. **1975**, 75, 651; Kresze, G.; Firl, J. Fortschr. Chem. Forsch. **1969**, 11, 245. See also, Katritzky, A.R.; Dennis, N. Chem. Rev. **1989**, 89, 827; Schmidt, R.R. Acc. Chem. Res. **1986**, 19, 250; Boger, D.L. Chem. Rev. **1986**, 86, 781.

²¹²³Ray, C.A.; Risberg, E.; Somfai, P. Tetrahedron Lett. 2001, 42, 9289.

²¹²⁴See Molander, G.A.; Rzasa, R.M. J. Org. Chem. 2000, 65, 1215.

²¹²⁵Amos, D.T.; Renslo, A.R.; Danhesier, R.L. J. Am. Chem. Soc. 2003, 125, 4970.

²¹²⁶Danishefsky, S.; Kitahara, T.; Schuda, P.F.; Etheredge, S.J. J. Am. Chem. Soc. **1976**, 98, 3028; Danishefsky, S.; Kitahara, T.; McKee, R.; Schuda, P.F. J. Am. Chem. Soc. **1976**, 98, 6715; Danishefsky, S.; Schuda, P.F.; Kitahara, T. Etheredge, S.J. J. Am. Chem. Soc. **1977**, 99, 6066.

²¹¹⁸For transition structures for selected hetero Diels–Alder reactions, see McCarrick, M.A.; Wu, Y.-D.; Houk, K.N. J. Org. Chem. **1993**, 58, 3330.

such as lanthanide compounds. Aldehydes react using a chiral titanium²¹²⁷ or a zirconium²¹²⁸ catalyst to give the dihydropyran with good enantioselectivity. Note that the reaction of Danishefsky's diene with an imine, formed *in situ* by reaction of an aryl aldehyde and an aniline derivative, proceeds without a Lewis acid.²¹²⁹ Such reactions of aldehydes can be catalyzed with Lewis acids and transition-metal catalysts. The Diels–Alder reaction of aldehydes with dienes can be catalyzed by many transition-metal compounds, including cobalt²¹³⁰ and indium²¹³¹ catalyst. Ketones also react with suitably functionalized dienes.²¹³²

Azadienes undergo Diels–Alder reactions to form pyridine, dihydro- and tetrahydropyridine derivatives.²¹³³ Aza-Diels–Alder reactions have been done in ionic liquids.²¹³⁴ Similarly, acyl iminium salts C=N(R)–C=O react with alkenes via cycloaddition.²¹³⁵ *N*-Vinyl lactim ethers undergo Diels–Alder reactions with a limited set of dienophiles.²¹³⁶ Thioketones react with dienes to give Diels–Alder cycloadducts.²¹³⁷ The carbonyl group of lactams have also been shown to be a dienophile.²¹³⁸ Certain heterocyclic aromatic rings (among them furans)²¹³⁹ can also behave as dienes in the Diels–Alder reaction. Some hetero dienes that give the reaction are -C=C-C=O, O=C-C=O, and N=C-C=N.¹⁹⁹⁹ Nitroso compounds of the type *t*-BuO₂C–N=O react with dienes to give the corresponding 2-azadihydropyran.²¹⁴⁰

Catalysts, such as Fe(BuEtCHCO₂)₃, have been developed that are effective for the heteroatom Diels–Alder reaction.²¹⁴¹ Indium trichloride (InCl₃) is a good catalyst for imino-Diels–Alder reactions.²¹⁴² Hetero-Diels–Alder reactions involving carbonyls have been done in water.²¹⁴³ Ultrasound has been used to promote the Diels–Alder reactions of 1-azadienes.²¹⁴⁴ Polymer-supported dienes have been used.²¹⁴⁵

²¹²⁷Wang, B.; Feng, X.; Huang, Y.; Liu, H.; Cui, X.; Jiang, Y. J. Org. Chem. 2002, 67, 2175.

²¹²⁸Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3793.

²¹²⁹Yuan, Y.; Li, X.; Ding, K. Org. Lett. 2002, 4, 3309.

²¹³⁰Kezuka, S.; Mita, T.; Ohtsuki, N.; Ikeno, T.; Yamada, T. Bull. Chem. Soc. Jpn. 2001, 74, 1333.

²¹³¹Ali, T.; Chauhan, K.K.; Frost, C.G. Tetrahedron Lett. 1999, 40, 5621.

²¹³²Huang, Y.; Rawal, V.H.; J. Am. Chem. Soc. 2002, 124, 9662; Jørgensen, K.A. Eur. J. Org. Chem. 2004, 2093.

²¹³³Gilchrist, T.L.; Gonsalves, A.M. d'A.R.; Pinho e Melo, T.M.V.D. Pure Appl. Chem. **1996**, 68, 859; Jayakumar, S.; Ishar, M.P.S.; Mahajan, M.P. Tetrahedron **2002**, 58, 379.

- ²¹³⁴Yadav, J.S.; Reddy, B.V.S.; Reddy, J.S.S.; Rao, R.S. Tetrahedron 2003, 59, 1599.
- ²¹³⁵Suga, S.; Nagaki, A.; Tsutsui, Y.; Yoshida, J.-i. Org. Lett. 2003, 5, 945.
- ²¹³⁶Sheu, J.; Smith, M.B.; Matsumoto, K. Synth. Commun, 1993, 23, 253.
- ²¹³⁷Schatz, J.; Sauer, J. Tetrahedron Lett. 1994, 35, 4767.

²¹³⁸Degnan, A.P.; Kim, C.S.; Stout, C.W.; Kalivretenos, A.G. J. Org. Chem. 1995, 60, 7724.

²¹³⁹For reviews, see Katritzky, A.R.; Dennis, N. Chem. Rev. 1989, 89, 827; Schmidt, R.R. Acc. Chem. Res.

- 1986, 19, 250; Boger, D.L. Chem. Rev. 1986, 86, 781. See Hayashi, Y.; Nakamura, M.; Nakao, S.; Inoue,
- T.; Shoji, M. Angew. Chem. Int. Ed. 2002, 41, 4079.

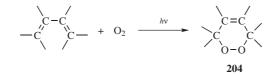
²¹⁴⁰Bach, P.; Bols, M. Tetrahedron Lett. 1999, 40, 3461.

²¹⁴¹Gorman, D.B.; Tomlinson, I.A. Chem. Commun. 1998, 25.

²¹⁴²Babu, G.; Perumal, P.T. *Tetrahedron* **1998**, 54, 1627.

²¹⁴³Lubineau, A.; Augé, J.; Grand, E.; Lubin, N. Tetrahedron 1994, 50, 10265.

²¹⁴⁴Villacampa, M.; Pérez, J.M.; Avendaño, C.; Menéndez, J.C. Tetrahedron 1994, 50, 10047.


²¹⁴⁵Pierres, C.; George, P.; van Hijfte, L.; Ducep, J.-B.; Hibert, M.; Mann, A. *Tetrahedron Lett.* **2003**, 44, 3645.

Hetero- Diels–Alder reactions that proceed with good to excellent asymmetric induction are well known.²¹⁴⁶ Chiral 1-aza-dienes have been developed as substrates, for example.²¹⁴⁷ Chiral catalysts have been developed.²¹⁴⁸ Conjugated aldehydes react with vinyl ethers, with a chiral chromium catalyst, in an inverse electron demand cycloaddition that give a dihydropyran with good enantioselectivity.²¹⁴⁹ Vinyl sulfilimines have been used in chiral Diels–Alder reactions.²¹⁵⁰

OS IV, 311; V, 60, 96; 80, 133. See also OS VII, 326.

15-62 Photooxidation of Dienes (Addition of Oxygen, Oxygen)

[4+2] OC, OC-cyclo-Peroxy-1/4/addition

Conjugated dienes react with oxygen under the influence of light to give cyclic peroxides **204**.²¹⁵¹ The reaction has mostly²¹⁵² been applied to cyclic dienes.²¹⁵³ Cycloaddition of furan has been reported using singlet oxygen.²¹⁵⁴ The scope extends to certain aromatic compounds such as phenanthrene.²¹⁵⁵ Besides those dienes and aromatic rings that can be photooxidized directly, there is a larger group that give the reaction in the presence of a photosensitizer such as eosin (see p. 340).

²¹⁴⁹Gademann, K.; Chavez, D.E.; Jacobsen, E.N. Angew. Chem. Int. Ed. 2002, 41, 3059.

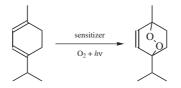
²¹⁵⁰Ruano, J.L.G.; Clemente, F.R.; Gutiérrez, L.G.; Gordillo, R.; Castro, A.M.M.; Ramos, J.H.R. *J. Org. Chem.* **2002**, *67*, 2926.

²¹⁵¹For reviews, see Clennan, E.L. Tetrahedron 1991, 47, 1343; Adv. Oxygenated Processes 1988, 1, 85;
Wasserman, H.H.; Ives, J.L. Tetrahedron 1981, 37, 1825; Denny, R.W.; Nickon, A. Org. React. 1973, 20, 133; Adams, W.R. in Augustine, R.L.; Trecker, D.J. Oxidation, Vol. 2, Marcel Dekker, NY, 1971, pp. 65–112; Gollnick, K. Adv. Photochem. 1968, 6, 1; Schönberg, A. Preparative Organic Photochemistry, Springer, NY, 1968, pp. 382–397; Gollnick, K.; Schenck, G.O., in Hamer, T. 1,4-Cycloaddition Reactions, Academic Press, NY, 1967, pp. 255–344; Arbuzov, Yu.A. Russ. Chem. Rev. 1965, 34, 558.

²¹⁵²For many examples with acyclic dienes, see Matsumoto, M.; Dobashi, S.; Kuroda, K.; Kondo, K. *Tetrahedron* **1985**, *41*, 2147.

²¹⁵³For reviews of cyclic peroxides, see Saito, I.; Nittala, S.S., in Patai, S. *The Chemistry of Peroxides*, Wiley, NY, *1983*, pp. 311–374; Balci, M. *Chem. Rev. 1981*, 81, 91; Adam, W.; Bloodworth, A.J. *Top. Curr. Chem. 1981*, 97, 121.

²¹⁵⁴Onitsuka, S.; Nishino, H.; Kurosawa, K. Tetrahedron 2001, 57, 6003.

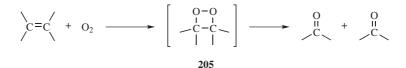

²¹⁵⁵For reviews, see in Wasserman, H.H.; Murray, R.W. Singlet Oxygen; Academic Press, NY, 1979, the articles by Wasserman, H.H.; Lipshutz, B.H. pp. 429–509; Saito, I.; Matsuura, T. pp. 511–574; Rigaudy, J. Pure Appl. Chem. 1968, 16, 169.

²¹⁴⁶Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R.G.; Jørgensen, K.A. J. Am. Chem. Soc. **1998**, 120, 8599; Pouilhès, A.; Langlois, Y.; Nshimyumkiza, P.; Mbiya, K.; Ghosez, L. Bull. Soc. Chim. Fr. **1993**, 130, 304.

²¹⁴⁷Beaudegnies, R.; Ghosez, L. Tetrahedron Asymmetry 1994, 5, 557.

²¹⁴⁸Du, H.; Long, J.; Hu, J.; Li, X.; Ding, K. Org. Lett. **2002**, *4*, 4349; Du, H.; Ding, K. Org. Lett. **2003**, *5*, 1091; Macheño, O.G.; Arrayás, R.G.; Carretero, J.C. J. Am. Chem. Soc. **2004**, *126*, 456.

Among these is α -terpinene, which is converted to ascaridole:



As in **14-7**, it is not the ground-state oxygen (the triplet), that reacts, but the excited singlet state, 2156,2157 so the reaction is actually a Diels–Alder reaction (see **15-60**) with singlet oxygen as dienophile: 2158

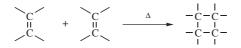
Like 15-60, this reaction is reversible.

We have previously discussed the reaction of singlet oxygen with double-bond compounds to give

hydroperoxides (14-7), but singlet oxygen can also react with double bonds in another way to give a dioxetane intermediate²¹⁵⁹ (205), which usually cleaves to

²¹⁵⁷For reviews, see Turro, N.J.; Ramamurthy, V., in de Mayo, P. *Rearrangements in Ground and Excited States*, Vol. 3, Academic Press, NY, **1980**, pp. 1–23; Murray, R.W., in Wasserman, H.H.; Murray, R.W. *Singlet Oxygen*, Academic Press, NY, **1979**, pp. 59–114. For a general monograph, see Adam, W.; Cilento, G. *Chemical and Biological Generation of Excited States*, Academic Press, NY, **1982**.

²¹⁵⁸Corey, E.J.; Taylor, W.C. J. Am. Chem. Soc. **1964**, 86, 3881; Foote, C.S.; Wexler, S.; Ando, W. Tetrahedron Lett. **1965**, 4111; Monroe, B.M. J. Am. Chem. Soc. **1981**, 103, 7253. See also, Hathaway, S.J.; Paquette, L.A. Tetrahedron Lett. **1985**, 41, 2037; O'Shea, K.E.; Foote, C.S. J. Am. Chem. Soc. **1988**, 110, 7167.


²¹⁵⁹For reviews, see Adam, W.; Cilento, G. Angew. Chem. Int. Ed. 1983, 22, 529; Schaap, A.; Zaklika, K.A. in Wasserman, H.H.; Murray, R.W. Singlet Oxygen, Academic Press, NY, 1979, pp. 173–242; Bartlett, P.D. Chem. Soc. Rev. 1976, 5, 149. For discussions of the mechanisms see Frimer, A.A. Chem. Rev. 1979, 79, 359; Clennan, E.L.; Nagraba, K. J. Am. Chem. Soc. 1988, 110, 4312.

²¹⁵⁶For books on singlet oxygen, see Frimer, A.A. Singlet O₂, 4 vols., CRC Press, Boca Raton, FL, 1985; Wasserman, H.H.; Murray, R.W. Singlet Oxygen, Academic Press, NY, 1979. For reviews, see Frimer, A.A. in Patai, S. The Chemistry of Peroxides, Wiley, NY, 1983, pp. 201–234; Gorman, A.A.; Rodgers, M.A.J. Chem. Soc. Rev. 1981, 10, 205; Shinkarenko, N.V.; Aleskovskii, V.B. Russ. Chem. Rev. 1981, 50, 220; Shlyapintokh, V.Ya.; Ivanov, V.B. Russ. Chem. Rev. 1976, 45, 99; Ohloff, G. Pure Appl. Chem. 1975, 43, 481; Kearns, D.R. Chem. Rev. 1971, 71, 395; Wayne, R.P. Adv. Photochem. 1969, 7, 311.

aldehydes or ketones,²¹⁶⁰ but has been isolated.²¹⁶¹ Both the six-membered cyclic peroxides²¹⁶² and the four-membered **205**²¹⁶³ have been formed from oxygenation reactions that do not involve singlet oxygen. If cyclic peroxides, such as **205**, are desired, better reagents²¹⁶⁴ are triphenyl phosphite ozonide (PhO)₃PO₃ and triethyl-silyl hydrotrioxide (Et₃SiOOOH), but yields are not high.²¹⁶⁵

15-63 [2+2]-Cycloadditions

[2+2]cyclo-Ethylene-1/2/addition

The thermal reaction between two molecules of alkene to give cyclobutane derivatives (a [2 + 2]-cycloaddition) can be carried out where the alkenes are the same or different, but the reaction is not a general one for alkenes.²¹⁶⁶ The cycloaddition can be catalyzed by certain transition-metal complexes.²¹⁶⁷ Dimerization of like alkenes occurs with the following compounds: F₂C=CX₂ (X = F or Cl) and certain other

²¹⁶⁰For discussions see Kearns, D.R. Chem. Rev. **1971**, 71, 395, 422–424; Foote, C.S. Pure Appl. Chem. **1971**, 27, 635.

²¹⁶¹For reviews of 1,2-dioxetanes see Adam, W., in Patai, S. *The Chemistry of Peroxides*, Wiley, NY, **1983**, pp. 829–920; Bartlett, P.D.; Landis, M.E., in Wasserman, H.H.; Murray, R.W. *Singlet Oxygen*, Academic Press, NY, **1979**, pp. 243–286; Adam, W. *Adv. Heterocycl. Chem.* **1977**, *21*, 437. See also, Inoue, Y.; Hakushi, T.; Turro, N.J. *Kokagaku Toronkai Koen Yoshishu* **1979**, 150 [*C.A.* 92, 214798q]; Adam, W.; Encarnación, L.A.A. *Chem. Ber.* **1982**, *115*, 2592; Adam, W.; Baader, W.J. *Angew. Chem. Int. Ed.* **1984**, *23*, 166.

²¹⁶²See Nelson, S.F.; Teasley, M.F.; Kapp, D.L. J. Am. Chem. Soc. 1986, 108, 5503.

²¹⁶³For a review, see Nelson, S.F. Acc. Chem. Res. 1987, 20, 269.

²¹⁶⁴For another reagent, see Curci, R.; Lopez, L.; Troisi, L.; Rashid, S.M.K.; Schaap, A.P. *Tetrahedron Lett.* **1987**, 28, 5319.

²¹⁶⁵Posner, G.H.; Weitzberg, M.; Nelson, W.M.; Murr, B.L.; Seliger, H.H. J. Am. Chem. Soc. 1987, 109, 278.
 ²¹⁶⁶For reviews, see Carruthers, W. Cycloaddition Reactions in Organic Synthesis, Pergamon, Elmsford, NY, 1990; Reinhoudt, D.N. Adv. Heterocycl. Chem. 1977, 21, 253; Roberts, J.D.; Sharts, C.M. Org. React. 1962, 12, 1; Gilchrist, T.L.; Storr, R.C. Organic Reactions and Orbital Symmetry 2nd ed., Cambridge University Press, Cambridge, 1979, pp. 173–212; Beltrame, P., in Bamford, C.H.; Tipper, C.F.H. Ref. 1, Vol. 9, pp. 131–152; Huisgen, R.; Grashey, R.; Sauer, J., in Patai, S. The Chemistry of Alkenes, Vol. 1, Wiley, NY, 1964, pp. 779–802. For a review of the use of [2 + 2]-cycloadditions in polymerization reactions, see Dilling, W.L. Chem. Rev. 1983, 83, 1. For a list of references, see Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, 1999, pp. 546–647, 1341–1344.
 ²¹⁶⁷For an example using EtAlCl₂ see Takasu, K.; Ueno, M.; Inanaga, K.; Ihara, M. J. Org. Chem. 2004, 69, 517.

fluorinated alkenes (although not $F_2C=CH_2$), allenes (to give derivatives of **206**),²¹⁶⁸ benzynes (to give biphenylene derivatives),²¹⁶⁹ activated alkenes (e.g., styrene, acrylonitrile, butadiene), and certain methylenecyclopropanes.²¹⁷⁰ Dimerization of allenes lead to bis(alkylidene) cyclobutanes.²¹⁷¹ Substituted ketenes can dimerize to give cyclobutenone derivatives, although ketene itself dimerizes in a different manner, to give an unsaturated β -lactone (**16-95**).²¹⁷² Alkenes react with activated alkynes, with a ruthenium catalyst, to give cyclobutenes.²¹⁷³

Intramolecular [2 + 2]-cycloadditions are common in which a diene is converted to a bicyclic compound with a four-membered ring fused to another ring. Heating *N*-vinyl imines, where the vinyl moiety is a silyl enol, gives β -lactams.²¹⁷⁴ Apart from photochemical initiation of such reactions, intramolecular cycloaddition of two conjugated ketone units, in the presence of PhMeSiH₂ and catalyzed by cobalt compounds, leads to the bicyclic compound with two ketone substituents.²¹⁷⁵ In a variation of this reaction, a diyne was treated with Ti(OiPr)₄/2 *i*-PrMgCl to generate a bicyclic cyclobutene with two vinylidene units.²¹⁷⁶

Ketenes react with many alkenes to give cyclobutanone derivatives²¹⁷⁷ and intermolecular cycloadditions are well known.²¹⁷⁸ typical reaction is that of dimethylketene and ethene to give 2,2-dimethylcyclobutanone.²¹⁷⁹ Ketenes react with imines via [2+2]-cycloaddition to produce β -lactams.²¹⁸⁰ Cycloaddition of an imine with a conjugated ester in the presence of Et₂MeSiH and an iridium

²¹⁶⁹For cycloaddition with a pyridyne, see Mariet, N.; Ibrahim-Ouali, M.; Santelli, M. *Tetrahedron Lett.* **2002**, *43*, 5789.

²¹⁷⁰Dolbier, Jr., W.R.; Lomas, D.; Garza, T.; Harmon, C.; Tarrant, P. Tetrahedron 1972, 28, 3185.

²¹⁷¹Saito, S.; Hirayama, K.; Kabuto, C.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 10776.

²¹⁷²Farnum, D.G.; Johnson, J.R.; Hess, R.E.; Marshall, T.B.; Webster, B. J. Am. Chem. Soc. **1965**, 87, 5191; Dehmlow, E.V.; Pickardt, J.; Slopianka, M.; Fastabend, U.; Drechsler, K.; Soufi, J. Liebigs Ann. Chem. **1987**, 377.

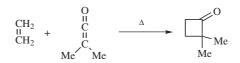
²¹⁷³Jordan, R.W.; Tam, W. Org. Lett. 2000, 2, 3031.

²¹⁷⁴Bandin, E.; Favi, G.; Martelli, G.; Panunzio, M.; Piersanti, G. Org. Lett. 2000, 2, 1077.

²¹⁷⁵Baik, T.-G.; Luis, A.L.; Wang, L.-C.; Krische, M.J. J. Am. Chem. Soc. 2001, 123, 6716.

²¹⁷⁶Delas, C.; Urabe, H.; Sato, F. Tetrahedron Lett. 2001, 42, 4147.

²¹⁷⁷An example is de Faria, A.R.; Matos, C.R.; Correia, C.R.D. Tetrahedron Lett. 1993, 34, 27.


²¹⁷⁸Krepski, L.R.; Hassner, A. J. Org. Chem. **1978**, 43, 2879; Bak, D.A.; Brady, W.T. J. Org. Chem. **1979**, 44, 107; Martin, P.; Greuter, H.; Belluš, D. Helv. Chim. Acta., **1984**, 64, 64; Brady, W.T. Synthesis **1971**, 415.

²¹⁷⁹Sustmann, R.; Ansmann, A.; Vahrenholt, F. J. Am. Chem. Soc. 1972, 94, 8099; Desimoni, G.; Tacconi,
 G.; Barco, A.; Pollini, G.P. Natural Product Synthesis Through Pericyclic Reactions, American Chemical Society, Washington, DC, 1983, pp. 119–254, 39.

²¹⁸⁰For reviews of the formation of β-lactams, see Brown, M.J. *Heterocycles* **1989**, 29, 2225; Isaacs, N.S. *Chem. Soc. Rev.* **1976**, 5, 181; Mukerjee, A.K.; Srivastava, R.C. *Synthesis* **1973**, 327. For a review of cycloaddition reactions of imines, see Sandhu, J.S.; Sain, B. *Heterocycles* **1987**, 26, 777. For a new catalyst, see Wack, H.; France, S.; Hafez, A.M.; Drury, III, W.J.; Weatherwax, A.; Lectka, T. *J. Org. Chem.* **2004**, 69, 4531.

²¹⁶⁸For a review, see Fischer, H., in Patai, S. *The Chemistry of Alkenes*, Vol. 1, Wiley, NY, *1964*, pp. 1064–1067.

catalyst also gives a β -lactam.²¹⁸¹

Different alkenes combine as follows:

- **1.** $F_2C=CX_2$ (X = F or Cl), especially $F_2C=CF_2$, form cyclobutanes with many alkenes. Compounds of this type even react with conjugated dienes to give four-membered rings rather than undergoing normal Diels–Alder reactions.²¹⁸²
- **2.** Allenes²¹⁸³ and ketenes²¹⁸⁴ react with activated alkenes and alkynes. Ketenes give 1,2-addition, even with conjugated dienes.²¹⁸⁵ Ketenes also add to unactivated alkenes if sufficiently long reaction times are used.²¹⁸⁶ Allenes and ketenes also add to each other.²¹⁸⁷
- **3.** Enamines²¹⁸⁸ form four-membered rings with Michael-type alkenes²¹⁸⁹ and ketenes.²¹⁹⁰ In both cases, only enamines from aldehydes give stable

²¹⁸³For reviews of [2 + 2]-cycloadditions of allenes, see Schuster, H.F.; Coppola, G.M. Allenes in Organic Synthesis, Wiley, NY, **1984**, pp. 286–317; Hopf, H., in Landor, S.R.I. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, **1982**, pp. 525–562; Ghosez, L.; O'Donnell, M.J., in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY, **1977**, pp. 79–140; Baldwin, J.E.; Fleming, R.H. *Fortschr. Chem. Forsch.* **1970**, *15*, 281.

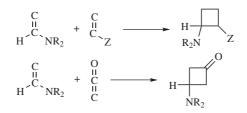
²¹⁸⁴For reviews of cycloadditions of ketenes, see Ghosez, L.; O'Donnell, M.J. in Marchand, A.P.; Lehr, R.E. *Pericyclic Reactions*, Vol. 2, Academic Press, NY, **1977**; Brady, W.T. *Synthesis* **1971**, 415; Luknitskii, F.I.; Vovsi, B.A. *Russ. Chem. Rev.* **1969**, *38*, 487; Ulrich, H. *Cycloaddition Reactions of Heterocumulenes*, Academic Press, NY, **1967**, pp. 38–121; Holder, R.W. *J. Chem. Educ.* **1976**, *53*, 81. For a review of intramolecular cycloadditions of ketenes to alkenes, see Snider, B.B. *Chem. Rev.* **1988**, *88*, 793.

²¹⁸⁵See, for example, Martin, J.C.; Gott, P.G.; Goodlett, V.W.; Hasek, R.H. J. Org. Chem. 1965, 30, 4175; Brady, W.T.; O'Neal, H.R. J. Org. Chem. 1967, 32, 2704; Huisgen, R.; Feiler, L.A.; Otto, P. Tetrahedron Lett. 1968, 4491; Chem. Ber. 1969, 102, 3475. For indirect methods of the 1,4-addition of the elements of ketene to a diene, see Freeman, P.K.; Balls, D.M.; Brown, D.J. J. Org. Chem. 1968, 33, 2211; Corey, E.J.; Ravindranathan, T.; Terashima, S. J. Am. Chem. Soc. 1971, 93, 4326. For a review of ketene equivalents, see Ranganathan, S.; Ranganathan, D.; Mehrotra, A.K. Synthesis 1977, 289.

²¹⁸⁶Huisgen, R.; Feiler, L.A. Chem. Ber. **1969**, 102, 3391; Bak, D.A.; Brady, W.T. J. Org. Chem. **1979**, 44, 107.

²¹⁸⁷Bampfield, H.A.; Brook, P.R.; McDonald, W.S. J. Chem. Soc., Chem. Commun. **1975**, 132; Gras, J.; Bertrand, M. Nouv. J. Chim. **1981**, 5, 521.

²¹⁸⁸For a review of cycloaddition reactions of enamines, see Cook, A.G., in Cook, A.G. *Enamines*, 2nd ed.; Marcel Dekker, NY, *1988*, pp. 347–440.


²¹⁸⁹Brannock, K.C.; Bell, A.; Goodlett, V.W.; Thweatt, J.G. J. Org. Chem. 1964, 29, 813.

²¹⁹⁰Berchtold, G.A.; Harvey, G.R.; Wilson, G.E. J. Org. Chem. **1961**, 26, 4776; Opitz, G.; Kleeman, M. Liebigs Ann. Chem. **1963**, 665, 114; Hasek, R.H.; Gott, P.G.; Martin, J.C. J. Org. Chem. **1966**, 31, 1931.

²¹⁸¹Townes, J.A.; Evans, M.A.; Queffelec, J.; Taylor, S.J.; Morken, J.P. Org. Lett. 2002, 4, 2537.

²¹⁸²Bartlett, P.D.; Montgomery, L.K.; Seidel, B. J. Am. Chem. Soc. **1964**, 86, 616; De Cock, C.; Piettre, S.; Lahousse, F.; Janousek, Z.; Merényi, R.; Viehe, H.G. Tetrahedron **1985**, 41, 4183.

four-membered rings:

The reaction of enamines with ketenes can be conveniently carried out by generating the ketene *in situ* from an acyl halide and a tertiary amine.

4. Alkenes with electron-withdrawing groups may form cyclobutanes with alkenes containing electron-donating groups. The enamine reactions, mentioned above, are examples of this, but it has also been accomplished with tetracyanoethylene and similar molecules, which give substituted cyclobutanes when treated with alkenes of the form C=C–A, where A may be OR^{2191} SR (enol and thioenol ethers),²¹⁹² cyclopropyl,²¹⁹³ or certain aryl groups.²¹⁹⁴

Solvents are not necessary for [2 + 2]-cycloadditions. They are usually carried out at 100–225°C under pressure, although the reactions in Group 4 (IVB) occur under milder conditions.

It has been found that certain [2 + 2]-cycloadditions, which do not occur thermally can be made to take place without photochemical initiation by the use of certain catalysts, usually transition-metal compounds.²¹⁹⁵ Photochemical²¹⁹⁶ $[\pi 2 + {}_{\rm s}2]$ -cycloadditions have also been reported. Among the catalysts used are Lewis acids²¹⁹⁷ and phosphine–nickel complexes.²¹⁹⁸ Certain of the reverse cyclobutane ring openings can also be catalytically induced (**18-38**). The role of the catalyst is not certain and may be different in each case. One possibility is that the

²¹⁹²Williams, J.K., Wiley, D.W.; McKusick, B.C. J. Am. Chem. Soc. 1962, 84, 2210.

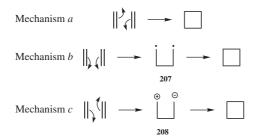
²¹⁹³Nishida, S.; Moritani, I.; Teraji, T. J. Org. Chem. 1973, 38, 1878.

²¹⁹⁴Nagata, J.; Shirota, Y.; Nogami, T.; Mikawa, H. Chem. Lett. **1973**, 1087; Shirota, Y.; Yoshida, K.; Nogami, T.; Mikawa, H. Chem. Lett. **1973**, 1271.

²¹⁹⁵For reviews, see Dzhemilev, U.M.; Khusnutdinov, R.I.; Tolstikov, G.A. *Russ. Chem. Rev.* **1987**, 56, 36; Kricka, L.J.; Ledwith, A. *Synthesis* **1974**, 539.

 ²¹⁹⁶Freeman, P.K.; Balls, D.M. J. Org. Chem. 1967, 32, 2354; Wiskott, E.; Schleyer, P.v.R. Angew. Chem. Int. Ed. 1967, 6, 694; Prinzbach, H.; Eberbach, W. Chem. Ber. 1968, 101, 4083; Prinzbach, H.; Sedelmeier, G.; Martin, H. Angew. Chem. Int. Ed. 1977, 16, 103.

²¹⁹⁷Yamazaki, S.; Fujitsuka, H.; Yamabe, S.; Tamura, H. J. Org. Chem. **1992**, 57, 5610. West, R.; Kwitowski, P.T. J. Am. Chem. Soc. **1968**, 90, 4697; Lukas, J.H.; Baardman, F.; Kouwenhoven, A.P. Angew. Chem. Int. Ed. **1976**, 15, 369.


²¹⁹⁸See, for example, Hoover, F.W.; Lindsey Jr., R.V. J. Org. Chem. **1969**, *34*, 3051; Noyori, R.; Ishigami, T.; Hayashi, N.; Takaya, H. J. Am. Chem. Soc. **1973**, *95*, 1674; Yoshikawa, S.; Aoki, K.; Kiji, J.; Furukawa, J. Tetrahedron **1974**, *30*, 405.

²¹⁹¹For a review with ketene acetals R₂C=C(OR')₂, see Scheeren, J.W. *Recl. Trav. Chim. Pays-Bas* **1986**, 105, 71–84.

presence of the catalyst causes a forbidden reaction to become allowed, through coordination of the catalyst to the π or s bonds of the substrate.²¹⁹⁹ In such a case, the reaction would of course be a concerted $[2_s + 2_s]$ -process.²²⁰⁰ However, the available evidence is more consistent with nonconcerted mechanisms involving metal–carbon σ -bonded intermediates, at least in most cases.²²⁰¹ For example, such an intermediate was isolated in the dimerization of norbornadiene, catalyzed by iridium complexes.²²⁰²

Thermal cycloadditions leading to four-membered rings can also take place between a cyclopropane ring and an alkene or alkyne²²⁰³ bearing electronwithdrawing groups.²²⁰⁴ These reactions are $[\pi 2 + s^2]$ -cycloadditions. Ordinary cyclopropanes do not undergo the reaction, but it has been accomplished with strained systems such as bicyclo[1.1.0]butanes²²⁰⁵ and bicyclo[2.1.0]pentanes. For example, bicyclo[2.1.0]pentane reacts with maleonitrile (or fumaronitrile) to give all three isomers of 2,3-dicyanonorbornane, as well as four other products.²²⁰⁶ The lack of stereospecificity and the negligible effect of solvent on the rate indicate a diradical mechanism.

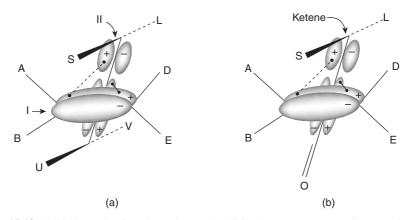
The reaction is similar to the Diels–Alder (in action, not in scope), and if dienes are involved, the latter reaction may compete, although most alkenes react with a diene either entirely by 1,2 or entirely by 1,4 addition. Three mechanisms can be proposed²²⁰⁷ analogous to those proposed for the Diels–Alder reaction. Mechanism *a* is a

²¹⁹⁹For discussions, see Labunskaya, V.I.; Shebaldova, A.D.; Khidekel, M.L. *Russ. Chem. Rev.* 1974, 43,
 1; Mango, F.D. *Top. Curr. Chem.* 1974, 45, 39; *Tetrahedron Lett.* 1973, 1509; *Intra-Sci. Chem. Rep.* 1972,
 6 (3), 171; CHEMTECH 1971, 1, 758; Adv. Catal. 1969, 20, 291; Mango, F.D.; Schachtschneider, J.H. J.
 Am. Chem. Soc. 1971, 93, 1123; 1969, 91, 2484; van der Lugt, W.T.A.M. Tetrahedron Lett. 1970, 2281;
 Wristers, J.; Brener, L.; Pettit, R. J. Am. Chem. Soc. 1970, 92, 7499.

²²⁰⁰See Bachrach, S.M.; Gilbert, J.C. J. Org. Chem. 2004, 69, 6357; Ozkan, I.; Kinal, A. J. Org. Chem. 2004, 69, 5390.

²²⁰¹See, for example, Cassar, L.; Halpern, J. Chem. Commun. **1970**, 1082; Doyle, M.J.; McMeeking, J.; Binger, P. J. Chem. Soc., Chem. Commun. **1976**, 376; Grubbs, R.H.; Miyashita, A.; Liu, M.M.; Burk, P.L. J. Am. Chem. Soc. **1977**, 99, 3863.

²²⁰²Fraser, A.R.; Bird, P.H.; Bezman, S.A.; Shapley, J.R.; White, R.; Osborn, J.A. *J. Am. Chem. Soc.* **1973**, 95, 597.


²²⁰³Gassman, P.G.; Mansfield, K.T. J. Am. Chem. Soc. 1968, 90, 1517, 1524.

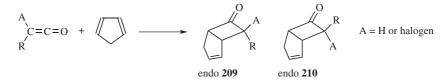
²²⁰⁴For a review, see Gassman, P.G. Acc. Chem. Res. 1971, 4, 128.

²²⁰⁵Cairncross, A.; Blanchard, E.P. J. Am. Chem. Soc. 1966, 88, 496.

²²⁰⁶Gassman, P.G.; Mansfield, K.T.; Murphy, T.J. J. Am. Chem. Soc. 1969, 91, 1684.

²²⁰⁷For a review, see Bartlett, P.D. Q. Rev. Chem. Soc. 1970, 24, 473.

Fig. 15.12. Orbital overlap in $[\pi 2_s + \pi 2_s]$ -cycloaddition between (*a*) two alkene molecules and (*b*) a ketene and an alkene. S and L stand for small and large


concerted pericyclic process, and mechanisms b and c are two-step reactions involving, respectively, a diradical (207) and a diion (208) intermediate. As in 15-60, a diradical intermediate must be a singlet. In searching for ways to tell which mechanism is operating in a given case, we would expect mechanism c to be sensitive to changes in solvent polarity, while mechanisms a and b should be insensitive. We would also expect mechanism a to be stereospecific, while mechanisms b and c probably would not be stereospecific, although if the second step of these processes takes place very rapidly, before 207 or 208 has a chance to rotate about the newly formed single bond, stereospecificity might be observed. Because of entropy considerations such rapid ring closure might be more likely here than in a [4 + 2]-cycloaddition.

There is evidence that the reactions can take place by all three mechanisms, depending on the structure of the reactants. A thermal $[\pi 2_s + \pi 2_s]$ mechanism is ruled out for most of these substrates by the orbital symmetry rules, but a $[\pi 2_s + \pi 2_a]$ mechanism is allowed (p. 1212), and there is much evidence that ketenes and certain other linear molecules²²⁰⁸ in which the steric hindrance to such an approach is minimal can and often do react by this mechanism. In a $[\pi 2_s + \pi 2_a]$ -cycloaddition the molecules must approach each other in such a way (Fig. 15.12*a*) that the + lobe of the HOMO of one molecule (I) overlaps with both + lobes of the LUMO of the other (II), even although these lobes are on opposite sides of the nodal plane of II. The geometry of this approach requires that the groups S and U of molecule II project *into* the plane of molecule I. This has not been found to happen for ordinary alkenes,²²⁰⁹ but if

²²⁰⁸There is evidence that a cyclopentyne (generated *in situ*) also adds to a double bond by an antarafacial process: Gilbert, J.C.; Baze, M.E. *J. Am. Chem. Soc.* **1984**, *106*, 1885.

²²⁰⁹See, for example, Padwa, A.; Koehn, W.; Masaracchia, J.; Osborn, C.L.; Trecker, D.J. J. Am. Chem. Soc. **1971**, 93, 3633; Bartlett, P.D.; Cohen, G.M.; Elliott, S.P.; Hummel, K.; Minns, R.A.; Sharts, C.M.; Fukunaga, J.Y. J. Am. Chem. Soc. **1972**, 94, 2899.

molecule II is a ketene (Fig. 15.12*b*), the group marked U is not present and the $[\pi 2_s + \pi 2_a]$ -reaction can take place. Among the evidence²²¹⁰ for this mechanism²²¹¹ is the following: (1) The reactions are stereospecific.²²¹² (2) The isomer that forms is the *more-hindered one*. Thus methylketene plus cyclopentadiene gave only the endo product (**209**, A = H, R = CH₃).²²¹³ Even more remarkably, when

haloalkyl ketenes RXC=C=O were treated with cyclopentadiene, the endo/exo ratio of the product (**209**, **210**, A = halogen) actually *increased* substantially when R was changed from Me to *i*-Pr to *t*-Bu!²²¹⁴ One would expect preferential formation of the exo products (**210**) from $[\pi 2_s + \pi 2_s]$ -cycloadditions where the molecules approach each other face-to-face, but a $[\pi 2_s + \pi 2_a]$ process leads to endo products because the ketene molecule (which for steric reasons would approach with its smaller group directed toward the alkene) must twist as shown in Fig. 15.13 (L = larger; S = smaller group) in order for the + lobes to interact and this swings the larger group into the endo position.²²¹⁵ The experimental results in which the amount of endo isomer increases with the increasing size of the R group would seem to be contrary to what would be expected from

 ²²¹⁰For other evidence, see Baldwin, J.E.; Kapecki, J.A. J. Am. Chem. Soc. 1970, 92, 4874; Brook, P.R.;
 Griffiths, J.G. Chem. Commun. 1970, 1344; Egger, K.W. Int. J. Chem. Kinet. 1973, 5, 285; Moon, S.;
 Kolesar, T.F. J. Org. Chem. 1974, 39, 995; Isaacs, N.S.; Hatcher, B.G. J. Chem. Soc., Chem. Commun. 1974, 593; Hassner, A.; Cory, R.M.; Sartoris, N. J. Am. Chem. Soc. 1976, 98, 7698; Gheorghiu, M.D.;
 Pårvulescu, L.; Drâghici, C.; Elian, M. Tetrahedron 1981, 37 Suppl., 143. See, however, Holder, R.W.;
 Graf, N.A.; Duesler, E.; Moss, J.C. J. Am. Chem. Soc. 1983, 105, 2929.

²²¹¹On the other hand, molecular-orbital calculations predict that the cycloaddition of ketenes to alkenes does not take place by a [$_{\pi}2_{s} + _{\pi}2_{a}$] mechanism: Wang, X.; Houk, K.N. J. Am. Chem. Soc. **1990**, 112, 1754; Bernardi, F.; Bottoni, A.; Robb, M.A.; Venturini, A. J. Am. Chem. Soc. **1990**, 112, 2106; Valentí, E.; Pericàs, M.A.; Moyano, A. J. Org. Chem. **1990**, 55, 3582.

 ²²¹²Huisgen, R.; Feiler, L.A.; Binsch, G. Angew. Chem. Int. Ed. 1964, 3, 753; Chem. Ber. 1969, 102, 3460;
 Martin, J.C.; Goodlett, V.W.; Burpitt, R.D. J. Org. Chem. 1965, 30, 4309; Montaigne, R.; Ghosez, L. Angew. Chem. Int. Ed. 1968, 7, 221 Bertrand, M.; Gras, J.L.; Goré, J. Tetrahedron 1975, 31, 857;
 Marchand-Brynaert, J.; Ghosez, L. J. Am. Chem. Soc. 1972, 94, 2870; Huisgen, R.; Mayr, H. Tetrahedron Lett. 1975, 2965, 2969.

 ²²¹³Brady, W.T.; Hoff, E.F.; Roe, Jr., R.; Parry III, F.H. J. Am. Chem. Soc. 1969, 91, 5679; Rey, M.;
 Roberts, S.; Dieffenbacher, A.; Dreiding, A.S. Helv. Chim. Acta 1970, 53, 417. See also, Brady, W.T.;
 Parry III, F.H.; Stockton, J.D. J. Org. Chem. 1971, 36, 1486; DoMinh, T.; Strausz, O.P. J. Am. Chem. Soc. 1970, 92, 1766; Isaacs, N.S.; Stanbury, P. Chem. Commun. 1970, 1061; Brook, P.R.; Harrison, J.M.; Duke,
 A.J. Chem. Commun. 1970, 589; Dehmlow, E.V. Tetrahedron Lett. 1973, 2573; Rey, M.; Roberts, S.M.;
 Dreiding, A.S.; Roussel, A.; Vanlierde, H.; Toppet, S.; Ghosez, L. Helv. Chim. Acta 1982, 65, 703.
 ²²¹⁴Brady, W.T.; Roe Jr., R. J. Am. Chem. Soc. 1970, 92, 4618.

²²¹⁵Brook, P.R.; Harrison, J.M.; Duke, A.J. Chem. Commun. 1970, 589

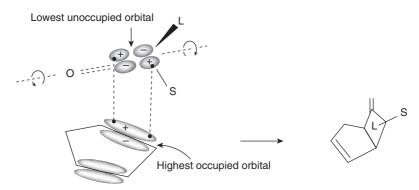


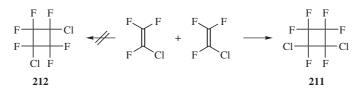
Fig. 15.13. Orbital overlap in the reaction of a ketene with cyclopentadiene. S and L stand for small and large.

considerations of steric hindrance (we may call them *masochistic steric effects*), but they are just what is predicted for a $[\pi 2_s + \pi 2_a]$ -reaction. (3) There is only moderate polar solvent acceleration.²²¹⁶ (4) The rate of the reaction is not very sensitive to the presence of electron-withdrawing or electron-donating substituents.²²¹⁷ Because cycloadditions involving allenes are often stereospecific, it has been suggested that these also take place by the $[\pi 2_s + \pi 2_a]$ mechanism,²²¹⁸ but the evidence in these cases is more consistent with the diradical mechanism $b.^{2219}$

The diradical mechanism *b* is most prominent in the reactions involving fluorinated alkenes.²²²⁰ These reactions are generally not stereospecific²²²¹ and are insensitive to solvent effects. Further evidence that a diion is not involved is that head-to-head coupling is found when an unsymmetrical molecule is dimerized. Thus dimerization of F₂C=CFCl gives **211**, not **212**. If one pair of electrons moved before the other, the positive end of one molecule would be expected to attack the

²²¹⁶Brady, W.T.; O'Neal, H.R. J. Org. Chem. **1967**, 32, 612; Huisgen, R.; Feiler, L.A.; Otto, P. Tetrahedron Lett. **1968**, 4485, Chem. Ber. **1969**, 102, 3444; Sterk, H. Z. NaturForsch. Teil B **1972**, 27, 143.

²²¹⁷Baldwin, J.E.; Kapecki, J.A. J. Am. Chem. Soc. **1970**, 92, 4868; Isaacs, N.S.; Stanbury, P. J. Chem. Soc. Perkin Trans. 2, **1973**, 166.


 ²²¹⁸For example, see Kiefer, E.F.; Okamura, M.Y. J. Am. Chem. Soc. 1968, 90, 4187; Baldwin, J.E.; Roy,
 U.V. Chem. Commun. 1969, 1225; Moore, W.R.; Bach, R.D.; Ozretich, T.M. J. Am. Chem. Soc. 1969, 91,
 5918.

 ²²¹⁹Muscio Jr., O.J.; Jacobs, T.L. *Tetrahedron Lett.* 1969, 2867; Taylor, D.R.; Warburton, M.R.; Wright,
 D.B. J. Chem. Soc. C 1971, 385; Dai, S.; Dolbier Jr., W.R. J. Am. Chem. Soc. 1972, 94, 3946; Duncan,
 W.G.; Weyler Jr., W.; Moore, H.W. *Tetrahedron Lett.* 1973, 4391; Grimme, W.; Rother, H. Angew. Chem.
 Int. Ed. 1973, 12, 505; Levek, T.J.; Kiefer, E.F. J. Am. Chem. Soc. 1976, 98, 1875; Pasto, D.J.; Yang, S.H.
 J. Org. Chem. 1986, 51, 1676; Dolbier, D.W.; Seabury, M. Tetrahedron Lett. 1987, 28, 1491; J. Am. Chem.
 Soc. 1987, 109, 4393; Dolbier Jr., W.R.; Weaver, S.L. J. Org. Chem. 1990, 55, 711; Becker, D.; Denekamp,
 C.; Haddad, N. Tetrahedron Lett. 1992, 33, 827.

²²²⁰It has been argued that the mechanism here is not the diradical mechanism, but the $[\pi 2_s + \pi 2_a]$ mechanism: Roberts, D.W. *Tetrahedron* **1985**, *41*, 5529.

²²²¹Bartlett, P.D.; Hummel, K.; Elliott, S.P.; Minns, R.A. J. Am. Chem. Soc. 1972, 94, 2898.

negative end of the other.²²²²

The diion mechanism²²²³ c has been reported for at least some of the reactions²²²⁴ in categories 3 and 4,²²²⁵ as well as some ketene dimerizations.²²²⁶ For example, the rate of the reaction between 1,2-bis(trifluoromethyl)-1,2-dicyanoethene and ethyl vinyl ether was strongly influenced by changes in solvent polarity.²²²⁷ Some of these reactions are nonstereospecific, but others are stereospecific.²²²⁸ As previously indicated, it is likely that in the latter cases the diionic intermediate closes before rotation can take place. Such rapid ring closure is more likely for a diion than for a diradical because of the attraction between the opposite charges. Other evidence for the diion mechanism in these cases is that reaction rates are greatly dependent on the presence of electron-donating and electronwithdrawing groups and that it is possible to trap the diionic intermediates.

Whether a given alkene reacts by the diradical or diion mechanism depends, among other things, on the groups attached to it. For example, phenyl and vinyl groups at the α positions of **207** or **208** help to stabilize a diradical, while donors, such as oxygen and nitrogen, favor a diion (they stabilize the positively charged end).²²²⁹ A table on p. 451 of Ref. 2230 shows which mechanism is more likely for [2 + 2]-cycloadditions of various pairs of alkenes.

Thermal cleavage of cyclobutanes²²³⁰ to give two alkene molecules (*cycloreversion*,²²³¹ the reverse of [2 + 2]-cycloaddition) operates by the diradical mechanism,

²²²⁶See Moore, H.W.; Wilbur, D.S. J. Am. Chem. Soc. 1978, 100, 6523.

²²³⁰See Frey, H.M. Adv. Phys. Org. Chem. 1966, 4, 147, see pp. 170–175, 180–183.

²²²²For additional evidence based on radical stabilities, see Silversmith, E.F.; Kitahara, Y.; Caserio, M.C.; Roberts, J.D. *J. Am. Chem. Soc.* **1958**, *80*, 5840; Bartlett, P.D.; Montgomery, L.K.; Seidel, B. *J. Am. Chem. Soc.* **1964**, *86*, 616; De Cock, C.; Piettre. S.; Lahousse, F.; Janousek, Z.; Merényi, R.; Viehe, H.G. Tetrahedron **1985**, *41*, 4183; Doering, W. von E.; Guyton, C.A. *J. Am. Chem. Soc.* **1978**, *100*, 3229.

²²²³For reviews of this mechanism, see Huisgen, R. Acc. Chem. Res. **1977**, 10, 117, 199; Huisgen, R.; Schug, R.; Steiner, G. Bull. Soc. Chim. Fr. **1976**, 1813.

²²²⁴For a review of cycloadditions with polar intermediates, see Gompper, R. *Angew. Chem. Int. Ed.* **1969**, 8, 312.

²²²⁵The reactions of ketenes with enamines are apparently not concerted, but take place by the diionic mechanism: Otto, P.; Feiler, L.A.; Huisgen, R. *Angew. Chem. Int. Ed.* **1968**, *7*, 737.

²²²⁷Proskow, S.; Simmons, H.E.; Cairns, T.L. J. Am. Chem. Soc. **1966**, 88, 5254. See also, Huisgen, R. Pure Appl. Chem. **1980**, 52, 2283.

²²²⁸Proskow, S.; Simmons, H.E.; Cairns, T.L. J. Am. Chem. Soc. **1966**, 88, 5254; Huisgen, R.; Steiner, G. J. Am. Chem. Soc. **1973**, 95, 5054, 5055.

²²²⁹Hall, Jr., H.K. Angew. Chem. Int. Ed. 1983, 22, 440.

²²³¹For reviews of [2 + 2]-cycloreversions, see Schaumann, E.; Ketcham, R. Angew. Chem. Int. Ed. 1982, 21, 225; Brown, R.F.C. Pyrolytic Methods in Organic Chemistry, Academic Press, NY, 1980, pp. 247–259. See also, Reddy, G.D.; Wiest, O.; Hudlický, T.; Schapiro, V.; Gonzalez, D. J. Org. Chem. 1999, 64, 2860.

and the $[\sigma 2_s + \sigma 2_a]$ pathway has not been found²²³² (the subscripts σ indicate that σ bonds are involved in this reaction).

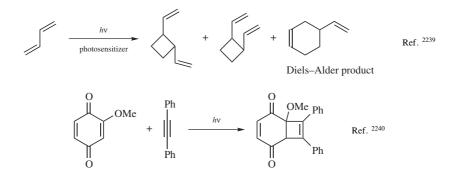
In some cases, double bonds add to triple bonds to give cyclobutenes, apparently at about the same rate that they add to double bonds. The addition of triple bonds to triple bonds would give cyclobutadienes, and this has not been observed, except where these rearrange before they can be isolated (see **15-65**)²²³³ or in the presence of a suitable coordination compound, so that the cyclobutadiene is produced in the form of a complex (p. 76).²²³⁴

Although thermal [2 + 2]-cycloaddition reactions are essentially limited to the cases described above, many (although by no means all) double-bond compounds undergo such reactions *when photochemically excited* (either directly or by a photosensitizer, see p. 340), even if they are not in the above categories.²²³⁵ Simple alkenes absorb in the far UV (p. 332), which is difficult to reach experimentally, although this problem can sometimes be overcome by the use of suitable photosensitizers. The reaction has been applied to simple alkenes²²³⁶ (especially to strained compounds, such as cyclopropenes and cyclobutenes), but more often the double-bond compounds involved are conjugated dienes,²²³⁷ α , β -unsaturated ketones,²²³⁸

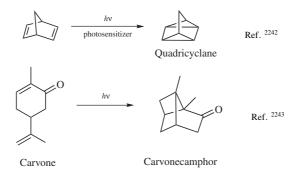
²²³²See, for example, Cocks, A.T.; Frey, H.M.; Stevens, I.D.R. *Chem. Commun.* 1969, 458; Srinivasan, R.;
Hsu, J.N.C. J. Chem. Soc., Chem. Commun. 1972, 1213; Paquette, L.A.; Carmody, M.J. J. Am. Chem. Soc. 1976, 98, 8175. See however Cant, P.A.E.; Coxon, J.M.; Hartshorn, M.P. Aust. J. Chem. 1975, 28, 391;
Doering, W. von E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.; Fessner, W.; Prinzbach, H. Chem. Ber. 1988, 121, 1.

²²³³For a review of these cases, and of cycloadditions of triple to double bonds, see Fuks, R.; Viehe, H.G., in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, *1969*, pp. 435–442.

²²³⁴D'Angelo, J.; Ficini, J.; Martinon, S.; Riche, C.; Sevin, A. J. Organomet. Chem. **1979**, 177, 265. For a review, see Hogeveen, H.; Kok, D.M., in Patai, S.; Rappoport, Z. The Chemistry of Functional Groups, Supplement C, pt. 2, Wiley, NY, **1983**, pp. 981–1013.


²²³⁵For reviews, see Demuth, M.; Mikhail, G. Synthesis 1989, 145; Ninomiya, I.; Naito, T. Photochemical Synthesis, Academic Press, NY, 1989, pp. 58–109; Ramamurthy, V.; Venkatesan, K. Chem. Rev. 1987, 87, 433; Lewis, F.D. Adv. Photochem. 1986, 13, 165; Wender, P.A., in Coyle, J.D. Photochemistry in Organic Synthesis, Royal Society of Chemistry, London, 1986, pp. 163–188; Schreiber, S.L. Science, 1985, 227, 857; Neckers, D.C.; Tinnemans, A.H.A., in Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, 1984, pp. 285–311; Baldwin, S.W. Org. Photochem. 1981, 5, 123; Turro, N.J. Modern Molecular Photochemistry, W.A. Benjamin, NY, 1978, pp. 417–425, 458–465; Kricka, L.J.; Ledwith, A. Synthesis 1974, 539; Herndon, W.C. Top. Curr. Chem. 1974, 46, 141; Sammes, P.G. Q. Rev. Chem. Soc. 1970, 24, 37, 46–55; Crowley, K.J.; Mazzochi, P.H., in Zabicky, J. The Chemistry of Alkenes, Vol. 2, Wiley, NY, 1970, 297–316; Turro, N.J.; Dalton, J.C.; Weiss, D.S. Org. Photochem. 1969, 2, 1; Trecker, D.J. Org. Photochem. 1969, 2, 63; Scharf, H. Fortschr. Chem. Forsch. 1969, 11, 216; Steinmetz, R. Fortschr. Chem. Forsch. 1967, 7, 445; Fonken, G.J. Org. Photochem. 1967, 1, 197; Chapman, O.L.; Lenz, G. Org. Photochem. 1967, 1, 283; Schönberg, A. Preparative Organic Photochemistry, Springer, NY, 1968, pp. 70–96, 109–117; Warrener, R.N.; Bremner, J.B. Rev. Pure Appl. Chem. 1966, 16, 117, 122–128.

²²³⁶For examples of nonphotosensitized dimerization of simple alkenes, see Arnold, D.R.; Abraitys, V.Y. Chem. Commun. 1967, 1053; Yamazaki, H.; Cvetanović, R.J. J. Am. Chem. Soc. 1969, 91, 520.


²²³⁷For a review, see Dilling, W.L. Chem. Rev. 1969, 69, 845.

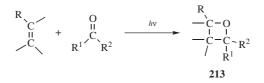
²²³⁸For reviews of various aspects of this subject, see Cossy, J.; Carrupt, P.; Vogel, P., in Patai, S. Supplement A: The Chemistry of Double-Bonded Functional Groups, Vol. 2, pt. 2, Wiley, NY, 1989, pp. 1369–1565; Kemernitskii, A.V.; Ignatov, V.N.; Levina, I.S. Russ. Chem. Rev. 1988, 57, 270; Weedon, A.C., in Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, 1984, pp. 61–143; Lenz, G.R. Rev. Chem. Intermed. 1981, 4, 369; Margaretha, P. Chimia, 1975, 29, 203; Bauslaugh, P.G. Synthesis 1970, 287; Eaton, P.E. Acc. Chem. Res. 1968, 1, 50; Schuster, D.I.; Lem, G.; Kaprinidis, N.A. Chem. Rev. 1993, 93, 3; Erickson, J.A.; Kahn, S.D. Tetrahedron 1993, 49, 9699.

acids, or acid derivatives, or quinones, since these compounds, because they are conjugated, absorb at longer wavelengths (p. 332). Both dimerizations and mixed additions are common, some examples being (see also, the example on p. 347):

Photochemical [2+2]-cycloadditions can also take place intramolecularly if a molecule has two double bonds that are properly oriented.²²⁴¹ The cyclization of the quinone dimer shown above is one example. Other examples are

It is obvious that many molecules can be constructed in this way that would be difficult to make by other procedures. However, attempted cyclizations of this kind are not always successful. In many cases, polymeric or other side products are

 ²²³⁹Liu, R.S.H.; Turro, N.J.; Hammond, G.S. J. Am. Chem. Soc. 1965, 87, 3406; Cundall, R.B.; Griffiths,
 P.A. Trans. Faraday Soc. 1965, 61, 1968; DeBoer, C.D.; Turro, N.J.; Hammond, G.S. Org. Synth. V, 528.
 ²²⁴⁰Papas, S.P.; Pappas, B.C. Tetrahedron Lett. 1967, 1597.


 ²²⁴¹For reviews, see Becker, D.; Haddad, N. Org. Photochem. 1989, 10, 1–162; Crimmins, M.T. Chem. Rev. 1988, 88, 1453; Oppolzer, W. Acc. Chem. Res. 1982, 15, 135; Prinzbach, H. Pure Appl. Chem. 1968, 16, 17; Dilling, W.L. Chem. Rev. 1966, 66, 373.

²²⁴²Hammond, G.S.; Turro, N.J.; Fischer, A. J. Am. Chem. Soc. **1961**, 83, 4674; Dauben, W.G.; Cargill, R.L. *Tetrahedron* **1961**, 15, 197. See also, Cristol, S.J.; Snell, R.L. J. Am. Chem. Soc. **1958**, 80, 1950.

²²⁴³Ciamician, G.; Silber, P. Ber. **1908**, 41, 1928; Büchi, G.; Goldman, I.M. J. Am. Chem. Soc. **1957**, 79, 4741.

CHAPTER 15

obtained instead of the desired product.

The photochemical cycloaddition of a carbonyl, generally from an aldehyde or ketone, and an alkene is called the *Paternò–Büchi reaction*.²²⁴⁴ This [2 + 2]-cycloaddition gives an oxetane (**213**) and the reaction is believed to proceed via a diradical intermediate. Silyl enol ethers react with aldehydes under nonphotochemical conditions using ZnCl₂ at 25°C or SnCl₄ at $-78^{\circ}C$.²²⁴⁵

It is possible that some of these photochemical cycloadditions take place by a $[{}_{\pi}2_{s} + {}_{\pi}2_{s}]$ mechanism (which is of course allowed by orbital symmetry); when and if they do, one of the molecules must be in the excited singlet state (S_{1}) and the other in the ground state.²²⁴⁶ The nonphotosensitized dimerizations of *cis*- and *trans*-2-butene are stereospecific,²²⁴⁷ making it likely that the $[{}_{\pi}2_{s} + {}_{\pi}2_{s}]$ mechanism is operating in these reactions. However, in most cases it is a triplet excited state that reacts with the ground-state molecule; in these cases the diradical (or in certain cases, the diionic) mechanism is taking place.²²⁴⁸ In one intramolecular case, the intermediate diradical has been trapped.²²⁴⁹ Photosensitized $[2\pi + 2\pi]$ -cycloadditions almost always involve the triplet state, and hence a diradical (or diionic) mechanism.

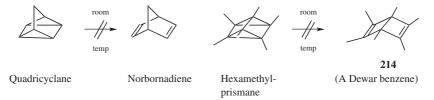
The photochemical diradical mechanism is not quite the same as the thermal diradical mechanism. In the thermal mechanism the initially formed diradical must be a singlet, but in the photochemical process a triplet excited state is adding to a ground state (which is of course a singlet). Thus, in order to conserve spin,²²⁵⁰ the initially formed diradical must be a triplet; that is, the two electrons must have the same spin. Consequently, the second, or ring-closing, step of the mechanism cannot take place at once, because a new bond cannot form from a combination of two electrons with the same spin, and the diradical has a reasonably long lifetime before collisions with molecules in the environment allow a spin inversion to take

²²⁴⁵Wang, Y.; Zhao, C.; Romo, D. Org. Lett. 1999, 1, 1197.

²²⁴⁶We have previously seen (p. \$\$\$) that reactions between two excited molecules are extremely rare.

²²⁴⁷Yamazaki, H.; Cvetanović, R.J. J. Am. Chem. Soc. **1969**, 91, 520; Yamazaki, H.; Cvetanović, R.J.; Irwin, R.S. J. Am. Chem. Soc. **1976**, 98, 2198. For other likely examples, see Lewis, F.D.; Hoyle, C.E.; Johnson, D.E. J. Am. Chem. Soc. **1975**, 97, 3267; Lewis, F.D.; Kojima, M. J. Am. Chem. Soc. **1988**, 110, 8660.

²²⁴⁸Maradyn, D.J.; Weedon, A.C. Tetrahedron Lett. 1994, 35, 8107.


²²⁴⁹Becker, D.; Haddad, N.; Sahali, Y. Tetrahedron Lett. 1989, 30, 2661.

²²⁵⁰This is an example of the Wigner spin conservation rule (p. 340). Note that spin conservation is something entirely different from symmetry conservation.

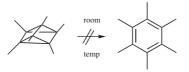
²²⁴⁴Paternò, E.; Chieffi, C. *Gazz. Chim. Ital.* **1909**, *39*, 341; Büchi, G.; Inman, C.G.; Lipinsky, E.S. *J. Am. Chem. Soc.* **1954**, *76*, 4327. See García-Expósito, E.; Bearpark, M.J.; Ortuño, R.M.; Robb, M.A.; Branchadell, V. J. Org. Chem. **2002**, *67*, 6070.

place and the diradical to cyclize. We would therefore predict nonstereospecificity, and that is what is found.²²⁵¹ It has been believed that at least some [2 + 2]-photocycloadditions take place by way of exciplex intermediates²²⁵² [an *exciplex*²²⁵³ is an excited EDA complex (p. 342) that is dissociated in the ground state; in this case one double bond is the donor and the other the acceptor], but there is evidence against this.²²⁵⁴

In **15-60**, we used the principle of conservation of orbital symmetry to explain why certain reactions take place readily and others do not. The orbital-symmetry principle can also explain why certain molecules are stable although highly strained. For example, quadricyclane and hexamethylprismane²²⁵⁵ are thermodynamically much less stable (because much more strained) than their corresponding isomeric dienes, norbornadiene and

hexamethylbicyclo[2.2.0]hexadiene (**214**).²²⁵⁶ Yet the former two compounds can be kept indefinitely at room temperature, although in the absence of orbital-symmetry considerations it is not easy to understand why the electrons simply do not move over to give the more stable diene isomers. The reason is that both these reactions involve the conversion of a cyclobutane ring to a pair of double bonds (a $_{s}2 + _{s}2$ process) and, as we have seen, a thermal process of this sort is forbidden by the Woodward–Hoffmann rules. The process is allowed photochemically, and we are not surprised to find that both quadricyclane and hexamethylprismane are photochemically converted to the respective dienes at room temperature or below.²²⁵⁷ It is also possible to conceive of simple

²²⁵¹See, for example, Liu, R.S.H.; Hammond, G.S. J. Am. Chem. Soc. **1967**, 89, 4936; Kramer, B.D.; Bartlett, P.D. J. Am. Chem. Soc. **1972**, 94, 3934.


²²⁵²See, for example, Farid, S.; Doty, J.C.; Williams, J.L.R. J. Chem. Soc., Chem. Commun. 1972, 711; Mizuno, K.; Pac, C.; Sakurai, H. J. Am. Chem. Soc. 1974, 96, 2993; Caldwell, R.A.; Creed, D. Acc. Chem. Res. 1980, 13, 45; Mattes, S.L.; Farid, S. Acc. Chem. Res. 1982, 15, 80; Swapna, G.V.T.; Lakshmi, A.B.; Rao, J.M.; Kunwar, A.C. Tetrahedron 1989, 45, 1777.

²²⁵³For a review of exciplexes, see Davidson, R.S. Adv. Phys. Org. Chem. 1983, 19, 1–130.

²²⁵⁴Schuster, D.I.; Heibel, G.E.; Brown, P.B.; Turro, N.J.; Kumar, C.V. J. Am. Chem. Soc. **1988**, 110, 8261.
²²⁵⁵This compound can be prepared by photolysis of **210**, another example of an intramolecular photochemical [2 + 2]-cycloaddition: Lemal, D.M.; Lokensgard, J.P. J. Am. Chem. Soc. **1966**, 88, 5934; Schäfer, W.; Criegee, R.; Askani, R.; Grüner, H. Angew. Chem. Int. Ed. **1967**, 6, 78.

 ²²⁵⁶For a review of this compound, see Schäfer, W.; Hellmann, H. Angew. Chem. Int. Ed. 1967, 6, 518.
 ²²⁵⁷These conversions can also be carried out by the use of transition-metal catalysts: Hogeveen, H.;
 Volger, H.C. Chem. Commun. 1967, 1133; J. Am. Chem. Soc. 1967, 89, 2486; Kaiser, K.L.; Childs, R.F.;
 Maitlis, P.M. J. Am. Chem. Soc. 1971, 93, 1270; Landis, M.E.; Gremaud, D.; Patrick, T.B. Tetrahedron Lett. 1982, 23, 375; Maruyama, K.; Tamiaki, H. Chem. Lett. 1987, 683.

bond rearrangements whereby hexamethylprismane is converted to hexamethylbenzene, which

of course is far more stable than either hexamethylprismane or **214**. It has been calculated that hexamethylbenzene is at least 90 kcal mol⁻¹ (380 kJ mol⁻¹) more stable than hexamethylprismane. The fact that hexamethylprismane does not spontaneously undergo this reaction has prompted the observation²²⁵⁸ that the prismane has "the aspect of an angry tiger unable to break out of a paper cage." However, a correlation diagram for this reaction²²⁵⁹ discloses that it too is a symmetry-forbidden process. All three of these "forbidden" reactions do take place when the compounds are heated, but the diradical mechanism is likely under these conditions.²²⁵⁹

Bicyclo[2.2.0]hexadienes and prismanes are *valence isomers* of benzenes.²²⁶⁰ These compounds actually have the structures that were proposed for benzenes in the nineteenth century. Prismanes have the Ladenburg formula, and bicyclo[2.2.0]hexadienes have the Dewar formula. Because of this bicyclo[2.2.0]hexadiene is often called Dewar benzene. On p. 32, it was mentioned that Dewar formulas are canonical forms (although not very important) of benzenes. Yet they also exist as separate compounds in which the positions of the nuclei are different from those of benzenes.

OS V, 54, 235, 277, 297, 370, 393, 424, 459, 528; VI, 378, 571, 962, 1002, 1024, 1037; VII, 177, 256, 315; VIII, 82, 116, 306, 377; IX, 28, 275; 80, 160. For the reverse reaction, see OS V, 734.

15-64 The Addition of Carbenes and Carbenoids to Double and Triple Bonds

epi-Methylene-addition

²²⁵⁸Woodward, R.B.; Hoffmann, R. *The Conservation of Orbital Symmetry* Acaademic Press, NY, **1970**, pp. 107–112.

²²⁵⁹See, for example, Oth, J.F.M. Recl. Trav. Chim. Pays-Bas 1968, 87, 1185.

²²⁶⁰For reviews of valence isomers of benzene, see Kobayashi, Y.; Kumadaki, I. Adv. Heterocycl. Chem. 1982, 31, 169; Acc. Chem. Res. 1981, 14, 76; van Tamelen, E.E. Acc. Chem. Res. 1972, 5, 186; Angew. Chem. Int. Ed. 1965, 4, 738; Bolesov, I.G. Russ. Chem. Rev. 1968, 37, 666; Viehe, H.G. Angew. Chem. Int. Ed. 1965, 4, 746; Schäfer, W.; Hellmann, H. Angew. Chem. Int. Ed. 1967, 6, 518.

1234 ADDITION TO CARBON–CARBON MULTIPLE BONDS

Carbenes and substituted carbenes add to double bonds to give cyclopropane derivatives by what can be considered as a formal [1 + 2]-cycloaddition.²²⁶¹ Many carbene derivatives, for example, PhCH, ROCH,²²⁶² Me₂C=C, C(CN)₂, have been added to double bonds, but the reaction is often performed with CH₂ itself, with halo and dihalocarbenes,²²⁶³ and with carbalkoxycarbenes²²⁶⁴ (generated from diazoacetic esters). Alkylcarbenes HCR have been added to alkenes,²²⁶⁵ but more often these rearrange to give alkenes (p. 291). The carbene can be generated in any of the ways normally used (p. 287). However, most reactions in which a cyclopropane is formed by treatment of an alkene with a carbene "precursor" do not actually involve free carbene intermediates. In some cases, it is certain that free carbenes are not involved, and in other cases there is doubt. Because of this, the term *carbene transfer* is often used to cover all reactions in which a double bond is converted to a cyclopropane, whether a carbene or a carbenoid (p. 288) is actually involved.

Carbene itself (:CH₂) is extremely reactive and gives many side reactions, especially insertion reactions (**12-21**), which greatly reduce yields. This competition is also true with rhodium-catalyzed diazoalkane cyclopropanations²²⁶⁶ (see below). When it is desired to add :CH₂ for preparative purposes, free carbene is not used, but the Simmons–Smith procedure (p. 1241) or some other method that does not involve free carbenes is employed instead. Halocarbenes are less active than carbenes, and this reaction proceeds quite well, since insertion reactions do not interfere.²²⁶⁷ The absolute rate constant for addition of selected alkoxychlorocarbene to butenes has been measured to range from 330 to $1 \times 10^4 M^{-1} s^{-1.2268} A$ few of the many ways²²⁶⁹ in which halocarbenes or carbenoids are generated for

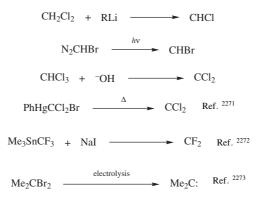
²²⁶¹For reviews, see, in Rappoport, Z. *The Chemistry of the Cyclopropyl Group*, Wiley, NY, **1987**, the reviews by Tsuji, T.; Nishida, S., pt. 1, pp. 307–373; Verhé, R.; De Kimpe, N. pt. 1, pp. 445–564; Marchand, A.P., in Patai, S. *Supplement A: The Chemistry of Double-Bonded Functional Groups*, pt. 1, Wiley, NY, **1977**, pp. 534–607, 625–635; Bethell, D., in McManus, S.P. *Organic Reactive Intermediates*; Academic Press, NY, **1973**, pp. 101–113; in Patai, S. *The Chemistry of Alkenes*, Vol. 1, Wiley, NY, **1964**, the articles by Cadogan, J.I.G.; Perkins, M.J. pp. 633–671; Huisgen, R.; Grashey, R.; Sauer, J. pp. 755–776; Kirmse, W. *Carbene Chemistry* 2nd ed.; Academic Press, NY, **1971**, pp. 85–122, 267–406. For a review of certain intramolecular additions, see Burke, S.D.; Grieco, P.A. *Org. React.* **1979**, *26*, 361. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, **1999**, pp. 135–153.

²²⁶²For a review, see Schöllkopf, U. Angew. Chem. Int. Ed. 1968, 7, 588.

²²⁶⁴For a review, see Dave, V.; Warnhoff, E.W. Org. React. 1970, 18, 217.

²²⁶⁵For example see Frey, H.M. J. Chem. Soc. 1962, 2293.

²²⁶⁶Doyle, M.P.; Phillips, I.M. *Tetrahedron Lett.* **2001**, *42*, 3155. For a review, see Merlic, C.A.; Zechman, A.L. *Synthesis* **2003**, 1137.


²²⁶⁷For reviews of carbene selectivity in this reaction, see Moss, R.A. *Acc. Chem. Res.* **1989**, *22*, 15; **1980**, *13*, 58. For a review with respect to halocarbenes, see Kostikov, R.R.; Molchanov, A.P.; Khlebnikov, A.F. *Russ. Chem. Rev.* **1989**, *58*, 654.

²²⁶⁸Moss, R.A.; Ge, C.-S.; Wostowska, J.; Jang, E.G.; Jefferson, E.A.; Fan, H. *Tetrahedron Lett.* **1995**, 36, 3083.

²²⁶⁹Much of the work in this field has been carried out by Seyferth, D. and co-workers; see, for example, Seyferth, D.; Haas, C.K. J. Org. Chem. **1975**, 40, 1620; Seyferth, D.; Haas, C.K.; Dagani, D. J. Organomet. Chem. **1976**, 104, 9.

²²⁶³For a review of the addition of halocarbenes, see Parham, W.E.; Schweizer, E.E. Org. React. 1963, 13, 55.

this reaction are the following, 2270 most of which involve formal elimination (the first two steps of the S_N1cB mechanism, p. 521):

The reaction between CHCl₃ and HO– is often carried out under phase transfer conditions.²²⁷⁴ It has been shown that the reaction between PhCHCl₂ and *t*-BuOK produces a carbenoid, but when the reaction is run in the presence of a crown ether, the free Ph(Cl)C: is formed instead.²²⁷⁵ The reaction of iodoform and CrCl₂ leads to iodocyclopropanes upon reaction with alkenes.²²⁷⁶ Dihalocyclopropanes are very useful compounds²²⁷⁷ that can be reduced to cyclopropanes, treated with magnesium or sodium to give allenes (**18-3**), or converted to a number of other products.

Alkenes of all types can be converted to cyclopropane derivatives by this reaction, but difficulty may be encountered with sterically hindered ones.²²⁷⁸

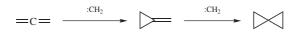
²²⁷²For reviews of flourinated carbenes, see Seyferth, D., in Moss, R.A.; Jones, Jr., M. *Carbenes*, Vol. 2, Wiley, NY, *1975*, pp. 101–158; Sheppard, W.A.; Sharts, C.M. *Organic Fluorine Chemistry*, W. A. Benjamin, NY, *1969*, pp. 237–270.

²²⁷³Léonel, E.; Paugam, J.P.; Condon-Gueugnot, S.; Nédélec, Y.-Y. Tetrahedron 1998, 54, 3207.

²²⁷⁴For reviews of the use of phase-transfer catalysis in the addition of dihalocarbenes to C=C bonds, see Starks, C.M.; Liotta, C. *Phase Transfer Catalysis*, Academic Press, NY, **1978**, pp. 224–268; Weber, W.P.; Gokel, G.W. *Phase Transfer Catalysis in Organic Synthesis*, Springer, NY, **1977**, pp. 18–43, 58–62. For a discussion of the mechanism, see Gol'dberg, Yu.Sh.; Shimanskaya, M.V. *J. Org. Chem. USSR* **1984**, 20, 1212.

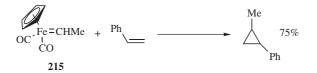
²²⁷⁵Moss, R.A.; Pilkiewicz, F.G. J. Am. Chem. Soc. **1974**, 96, 5632; Moss, R.A.; Lawrynowicz, W. J. Org. Chem. **1984**, 49, 3828.

²²⁷⁶Takai, K.; Toshikawa, S.; Inoue, A.; Kokumai, R. J. Am. Chem. Soc. 2003, 125, 12990.


²²⁷⁰A much longer list, with references, is given, in Kirmse, W. Carbene Chemistry Carbene Chemistry 2nd ed., Academic Press, NY, **1971**, pp. 313–319. See also, Larock, R.C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, NY, **1999**, pp. 135–143.

²²⁷¹For a review of the use of phenyl(trihalomethyl)mercury compounds as dihalocarbene or dihalocarbenoid precursors, see Seyferth, D. *Acc. Chem. Res.* **1972**, *5*, 65. For a review of the synthesis of cyclopropanes with the use of organomercury reagents, see Larock, R.C. *Organomercurcury Compounds in Organic Synthesis*, Springer, NY, **1985**, pp. 341–380.

²²⁷⁷For reviews of dihalocyclopropanes, see Banwell, M.G.; Reum, M.E. Adv. Strain Org. Chem. **1991**, 1, 19–64; Kostikov, R.R.; Molchanov, A.P.; Hopf, H. Top. Curr. Chem. **1990**, 155, 41–80; Barlet, R.; Vo-Quang, Y. Bull. Soc. Chim. Fr. **1969**, 3729–3760.


²²⁷⁸Dehmlow, E.V.; Eulenberger, A. Liebigs Ann. Chem. 1979, 1112.

Even tetracyanoethylene, which responds very poorly to electrophilic attack, gives cyclopropane derivatives with carbenes.²²⁷⁹ Conjugated dienes give 1,2-addition to give a vinylcyclopropane.²²⁸⁰ Addition of a second mole gives bicyclopropyl derivatives.²²⁸¹ 1,4-Addition is rare but has been reported in certain cases.²²⁸² Carbene adds to ketene to give cyclopropanoe.²²⁸³ Allenes react with carbenes to give cyclopropanes with exocyclic unsaturation:²²⁸⁴

A second equivalent gives spiropentanes. In fact, any size ring with an exocyclic double bond can be converted by a carbene to a spiro compound.²²⁸⁵

Free carbenes can also be avoided by using transition-metal–carbene complexes $L_nM=CRR'$ (L = a ligand, M = a metal),²²⁸⁶ which add the group CRR' to double bonds.²²⁸⁷ An example is the reaction of iron carbene **215**.²²⁸⁸

These complexes can be isolated in some cases; in others they are generated *in situ* from appropriate precursors, of which diazo compounds are among the

²²⁸²Anastassiou, A.G.; Cellura, R.P.; Ciganek, E. *Tetrahedron Lett.* 1970, 5267; Jefford, C.W.; Mareda, J.;
Gehret, J-C.E.; Kabengele, T.; Graham, W.D.; Burger, U. J. Am. Chem. Soc. 1976, 98, 2585; Mayr, H.;
Heigl, U.W. Angew. Chem. Int. Ed. 1985, 24, 579; Le, N.A.; Jones, Jr., M.; Bickelhaupt, F.; de Wolf, W.H.
J. Am. Chem. Soc. 1989, 111, 8491; Kraakman, P.A.; de Wolf, W.H.; Bickelhaupt, F. J. Am. Chem. Soc.
1989, 111, 8534; Hudlický, T.; Seoane, G.; Price, J.D.; Gadamasetti, K.G. Synlett 1990, 433; Lambert, J.B.; Ziemnicka-Merchant, B.T. J. Org. Chem. 1990, 55, 3460.

²²⁸⁴For reviews of the addition of carbenes and carbenoids to allenes, see Landor, S.R., in Landor, S.R. *The Chemistry of Allenes*, Vol. 2, Academic Press, NY, **1982**, pp. 351–360; Bertrand, M. *Bull. Soc. Chim. F:* **1968**, 3044–3054. For a review of the synthetic uses of methylenecyclopropanes and cyclopropenes, see Binger, P.; Büch, H.M. *Top. Curr. Chem.* **1987**, 135, 77.

²²⁷⁹Cairns, T.L.; McKusick, B.C. Angew. Chem. 1961, 73, 520.

²²⁸⁰Woodworth, R.C.; Skell, P.S. J. Am. Chem. Soc. 1957, 79, 2542.

 ²²⁸¹Orchin, M.; Herrick, E.C. J. Org. Chem. 1959, 24, 139; Nakhapetyan, L.A.; Safonova, I.L.; Kazanskii,
 B.A. Bull. Acad. Sci. USSR Div. Chem. Sci. 1962, 840; Skattebøl, L. J. Org. Chem. 1964, 29, 2951.

²²⁸³Turro, N.J.; Hammond, W.B. *Tetrahedron* **1968**, *24*, 6017; Rothgery, E.F.; Holt, R.J.; McGee, Jr., H.A. J. Am. Chem. Soc. **1975**, *97*, 4971. For a review of cyclopropanones, see Wasserman, H.H.; Berdahl, D.R.; Lu, T., in Rappoport, Z. The Chemistry of the Cyclopropyl Group, Wiley, NY, **1987**, pt. 2, pp. 1455–1532.

²²⁸⁵For a review of the preparation of spiro compounds by this reaction, see Krapcho, A.P. *Synthesis* **1978**, 77–126.

²²⁸⁶Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, NY, **1998**.

²²⁸⁷For reviews, see Helquist, P. Adv. Met.-Org. Chem. **1991**, 2, 143; Brookhart, M.; Studabaker, W.B. Chem. Rev. **1987**, 87, 411; Syatkovskii, A.I.; Babitskii, B.D. Russ. Chem. Rev. **1984**, 53, 672.

²²⁸⁸Brookhart, M.; Tucker, J.R.; Husk, G.R. J. Am. Chem. Soc. 1983, 105, 258.

most important. Chromium complexes have been used for the cyclopropanation of alkenes.²²⁸⁹

Polymer-supported benzenesulfonyl azides have been developed as a safe diazotransfer reagent.²²⁹⁰ These compounds, including CH_2N_2 and other diazoalkanes, react with metals or metal salts (copper, palladium,²²⁹¹ and rhodium are most commonly used) to give the carbene complexes that add: CRR' to double bonds.²²⁹² Diazoketones and diazoesters with alkenes to give the cyclopropane derivative, usually with a transition-metal catalyst, such as a copper complex.²²⁹³ The ruthenium catalyst reaction of diazoesters with an alkyne give a cyclopropene.²²⁹⁴ An X-ray structure of an osmium catalyst intermediate has been determined.²²⁹⁵ Electron-rich alkenes react faster than simple alkenes.²²⁹⁶

Optically active complexes have been used for enantioselective cyclopropane synthesis.²²⁹⁷ Decomposition of diazoalkanes in the presence of chiral rhodium²²⁹⁸ copper,²²⁹⁹ or ruthenium²³⁰⁰ complexes leads to optically active cyclopropanes.

²²⁹⁰Green, G.M.; Peet, N.P.; Metz, W.A. J. Org. Chem. 2001, 66, 2509.

²²⁹¹For a discussion of the mechanism of the palladium-catalyzed reaction, see Rodríguez-García, C.; Oliva, A.; Ortuño, R.M.; Branchadell, V. J. Am. Chem. Soc. **2001**, *123*, 6157.

²²⁹²For reviews, see Adams, J.; Spero, D.M. *Tetrahedron* 1991, 47, 1765; Collman, J.P., Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry* University Science Books, Mill Valley, CA 1987, pp. 800–806; Maas, G. *Top. Curr. Chem.* 1987, 137, 75; Doyle, M.P. *Chem. Rev.* 1986, 86, 919; Acc. *Chem. Res.* 1986, 19, 348; Heck, R.F. *Palladium Reagents in Organic Synthesis*, Academic Press, NY, 1985, pp. 401–407; Wulfman, D.S.; Poling, B. *React. Intermed. (Plenum)* 1980, 1, 321; Müller, E.; Kessler, H.; Zeeh, B. *Fortschr. Chem. Forsch.* 1966, 7, 128.

²²⁹³Díaz-Requejo, M.M.; Belderraín, T.R.; Trofimenko, S.; Pérez, P.J. J. Am. Chem. Soc. 2001, 123, 3167.
 For a discussion of the mechanism and selectivity, see Bühl, M.; Terstegen, F.; Löffler, F.; Meynhardt, B.;
 Kierse, S.; Müller, M.; Näther, C.; Lüning, U. Eur. J. Org. Chem. 2001, 2151.

²²⁹⁴Lou, Y.; Horikawa, M.; Kloster, R.A.; Hawryluk, N.A.; Corey, E.J. J. Am. Chem. Soc. 2004, 126, 8916.

²²⁹⁵Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M. J. Am. Chem. Soc. 2001, 123, 4843.

²²⁹⁶See Davies, H.M.L.; Xiang, B.; Kong, N.; Stafford, D.G. J. Am. Chem. Soc. 2001, 123, 7461.

²²⁹⁷Brookhart, M.; Liu, Y.; Goldman, E.W.; Timmers, D.A.; Williams, G.D. J. Am. Chem. Soc. 1991, 113, 927; Lowenthal, R.E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005; Evans, D.A.; Woerpel, K.A.; Hinman, M.M.; Faul, M.M. J. Am. Chem. Soc. 1991, 113, 726; Ito, K.; Katsuki, T. Tetrahedron Lett. 1993, 34, 2661. For a review of enantioselective cyclopropanation using carbenoid chemistry see Singh, V.K.; DattaGupta, A.; Sekar, G. Synthesis 1997, 137. For the effect of diazoalkane structure of stereoselectivity, see Davies, H.M.L.; Bruzinski, P.R.; Fall, M.J. Tetrahedron Lett. 1996, 37, 4133.

²²⁹⁸Davies, H.M.L.; Rusiniak, L. *Tetrahedron Lett.* **1998**, *39*, 8811; Haddad, N.; Galili, N. *Tetrahedron Asymmetry* **1997**, *8*, 3367; Ichiyanagi, T.; Shimizu, M.; Fujisawa, T. *Tetrahedron* **1997**, *53*, 9599; Fukuda, T.; Katsuki, T. *Tetrahedron* **1997**, *53*, 7201; Frauenkron M.; Berkessel, A. *Tetrahedron Lett.* **1997**, *38*, 7175; Doyle, M.P.; Zhou, Q.-L.; Charnsangavej, C.; Longoria, M.A.; McKervey, M.A.; Garcia, C.F. Tetrahedron Lett. **1996**, *37*, 4129.

²²⁹⁹Díaz-Requejo, M.M.; Caballero, A.; Belderraín, T.R.; Nicasio, M.C.; Trofimenko, S.; Pérez, P.J. *J. Am. Chem. Soc.* **2002**, *124*, 978.

²³⁰⁰Uchida, T.; Irie, R.; Katsuki, T. *Synlett* 1999, 1163; Uchida, T.; Irie, R.; Katsuki, T. *Synlett* 1999, 1793;
 Iwasa, S.; Takezawa, F.; Tuchiya, Y.; Nishiyama, H. *Chem. Commun.* 2001, 59. For a discussion of the mechanism, see Oxgaard, J.; Goddard II, W.A. J. Am. Chem. Soc. 2004, 126, 442.

²²⁸⁹Barluenga, J.; Aznar, F.; Gutiérrez, I.; García-Granda, S. Llorca-Baragaño, M.A. Org. Lett. 2002, 4, 4233.

The use of chiral additives with a rhodium complex also leads to cyclopropanes enantioselectively.²³⁰¹ An important chiral rhodium species is Rh₂(S-DOSP)₄,²³⁰² which leads to cyclopropanes with excellent enantioselectivity in carbene cyclopropanation reactions.²³⁰³ Asymmetric, intramolecular cyclopropanation reactions have been reported.²³⁰⁴ The copper catalyzed diazoester cyclopropanation was reported in an ionic liquid.²³⁰⁵ It is noted that the reaction of a diazoester with a chiral dirhodium catalyst leads to β-lactones with modest enantioselectivity.²³⁰⁶ Phosphonate esters have been incorporated into the diazo compound.²³⁰⁷

Triple-bond compounds²³⁰⁸ react with carbenes to give cyclopropenes, except that in the case of acetylene itself, the cyclopropenes first formed cannot be isolated because they rearrange to allenes.²³⁰⁹ Cyclopropenones (p. 73) are obtained by hydrolysis of dihalocyclopropenes.²³¹⁰

Most carbenes are electrophilic, and, in accord with this, electron-donating substituents on the alkene increase the rate of the reaction, and electron-withdrawing groups decrease it,²³¹¹ although the range of relative rates is not very great.²³¹² As discussed on p. 284, carbenes in the singlet state (which is the most common state) react stereospecifically and syn,²³¹³ probably by a one-step mechanism,²³¹⁴ similar

²³⁰³Davies, H.M.L.; Townsend, R.J. J. Org. Chem. 2001, 66, 6595; Davies, H.M.; Boebel, T.A. Tetrahedron Lett. 2000, 41, 8189.

²³⁰⁴Piqué, C.; Fähndrich, B.; Pfaltz, A. Synlett 1995, 491; Barberis, M.; Pérez-Prieto, J.; Stiriba, S.-E.; Lahuerta, P. Org. Lett. 2001, 3, 3317; Saha, B.; Uchida, T.; Katsuki, T. Synlett 2001, 114; Honma, M.; Sawada, T.; Fujisawa, Y.; Utsugi, M.; Watanabe, H.; Umino, A.; Matsumura, T.; Hagihara, T.; Takano, M.; Nakada, M. J. Am. Chem. Soc. 2003, 125, 2860.

²³⁰⁵In emim NTf₂, 1-ethyl-3-methylimidazolium triflimide: Fraile, J.M.; García, J.I.; Herrerías, C.I.; Mayoral, J.A.; Carrié, D.; Vaultier, M. Tetrahedron Asymmetry 2001, 12, 1891.

²³⁰⁶Doyle, M.P.; May, E.J. Synlett 2001, 967.

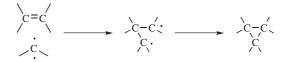
²³⁰⁷Ferrand, Y.; Le Maux, P.; Simonneaux, G. Org. Lett. 2004, 6, 3211.

²³⁰⁸For reviews, see Fuks, R.; Viehe, H.G., in Viehe, H.G. Acetylenes, Marcel Dekker, NY, 1969, pp. 427–434; Closs, G.L. Adv. Alicyclic Chem. **1966**, 1, 53–127, see pp. 58–65. ²³⁰⁹Frey, H.M. Chem. Ind. (London) **1960**, 1266.

²³¹⁰Vol'pin, M.E.; Koreshkov, Yu.D.; Kursanov, D.N. Bull. Acad. Sci. USSR Div. Chem. Sci. 1959, 535. ²³¹¹Skell, P.S.; Garner, A.Y. J. Am. Chem. Soc. 1956, 78, 5430; Doering, W. von E.; Henderson, Jr., W.A. J. Am. Chem. Soc. 1958, 80, 5274; Mitsch, R.A.; Rodgers, A.S. Int. J. Chem. Kinet. 1969, 1, 439.

²³¹²For a review of reactivity in this reaction, with many comprehensive tables of data, see Moss, R.A., in Jones, Jr. M.; Moss, R.A. Carbenes, Vol. 1, Wiley, NY, 1973, pp. 153-304. See also, Cox, D.P.; Gould, I.R.; Hacker, N.P.; Moss, R.A.; Turro, N.J. Tetrahedron Lett. 1983, 24, 5313.

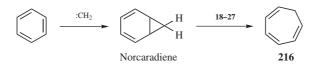
²³¹³Woodworth, R.C.; Skell, P.S. J. Am. Chem. Soc. 1959, 81, 3383; Jones Jr., M.; Ando, W.; Hendrick, M.E.; Kulczycki Jr., A.; Howley, P.M.; Hummel, K.F.; Malament, D.S. J. Am. Chem. Soc. 1972, 94, 7469. ²³¹⁴For evidence that at least some singlet carbenes add by a two-step mechanism, see Giese, B.; Lee, W.; Neumann, C. Angew. Chem. Int. Ed. 1982, 21, 310.


²³⁰¹Aggarwal, V.K.; Smith, H.W.; Hynd, G.; Jones, R.V.H.; Fieldhouse, R.; Spey, S.E. J. Chem. Soc., Perkin Trans. 1 2000, 3267; Yao, X.; Qiu, M.; Lü, W.; Chen, H.; Zheng, Z. Tetrahedron Asymmetry 2001, 12. 197.

²³⁰²Doyle, M.P. Pure Appl. Chem. 1998, 70 1123; Doyle, M.P.; Protopopova, M.N. Tetrahedron 1998, 54, 7919; Martin, S.F.; Spaller, M.R.; Liras, L.; Hartman, B. J. Am. Chem. Soc. 1994, 116, 4493; Davies, H.M.L.; Hansen, T.; Churchill, M.R. J. Am. Chem. Soc. 2000, 122, 3063; Davies, H.M.L.; Hansen, T. J. Am. Chem. Soc. 1997, 119, 9075. See also, Davies, H.M.L. Aldrichimica Acta 1997, 30, 107. For related chiral ligands see Nagashima, T.; Davies, H.M.L. Org. Lett. 2002, 4, 1989; Davies, H.M.L.; Lee, G.H. Org. Lett. 2004, 6, 2117.

to mechanism *a* of **15-60** and **15-63**:

Infrared spectra of a carbene and the cyclopropane product have been observed in an argon matrix at 12–45 K.²³¹⁵ Carbenes in the triplet state react nonstereospecifically,²³¹⁶ probably by a diradical mechanism, similar to mechanism *b* of **15-49** and **15-63**:

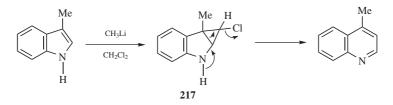


For carbenes or carbenoids of the type R-C-R' there is another aspect of stereochemistry.²³¹⁷ When these species are added to all but symmetrical alkenes, two isomers are possible, even if the four groups originally on the double–bond carbons maintain their configurations:

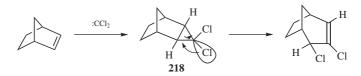
$$\overset{A}{\overset{}_{c}} \overset{M}{\underset{B}{\overset{}_{D}}} + \overset{H}{\underset{R}{\overset{}_{c}}} \overset{H}{\underset{R^{1}}{\overset{}_{c}}} + \overset{H}{\underset{B}{\overset{}_{c}}} \overset{R}{\underset{B}{\overset{}_{c}}} \overset{M}{\underset{B}{\overset{}_{c}}} + \overset{A}{\underset{B}{\overset{}_{c}}} \overset{R}{\underset{B}{\overset{}_{c}}}$$

Which isomer is predominantly formed depends on R, R', and on the method by which the carbene or carbenoid is generated. Most studies have been carried out on monosubstituted species (R' = H), and in these studies it is found that aryl groups generally prefer the more substituted side (syn addition) while carbethoxy groups usually show anti stereoselectivity. When R = halogen, free halocarbenes show little or no stereochemical preference, while halocarbenoids exhibit a preference for syn addition. Beyond this, it is difficult to make simple generalizations.

Carbenes are so reactive that they add to the "double bonds" of aromatic rings.²³¹⁸ The products are usually unstable and rearrange to give ring expansion. Carbene reacts with benzene to give cycloheptatriene (**216**),²³¹⁹


²³¹⁵Nefedov, O.M.; Zuev, P.S.; Maltsev, A.K.; Tomilov, Y.V. Tetrahedron Lett. 1989, 30, 763.

²³¹⁶Skell, P.S.; Klebe, J. J. Am. Chem. Soc. 1960, 82, 247. See also, Jones, Jr., M.; Tortorelli, V.J.; Gaspar, P.P.; Lambert, J.B. Tetrahedron Lett. 1978, 4257.

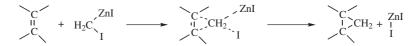

²³¹⁷For reviews of the stereochemistry of carbene and carbenoid addition to double bonds, see Moss, R.A. *Sel. Org. Transform.*, **1970**, *1*, 35–88; Closs, G.L. *Top Stereochem.* **1968**, *3*, 193–235. For a discussion of enantioselectivity in this reaction, see Nakamura, A. *Pure Appl. Chem.* **1978**, *50*, 37.
 ²³¹⁸See Giese, C.M.; Hadad, C.M. J. Org. Chem. **2002**, *67*, 2532.

²³¹⁹Doering, W. von E.; Knox, L.H. J. Am. Chem. Soc. **1951**, 75, 297.

but not all carbenes are reactive enough to add to benzene. The norcaradiene intermediate cannot be isolated in this case 2^{2320} (it undergoes an electrocyclic rearrangement, 18-27), although certain substituted norcaradienes, for example, the product of addition of: C(CN)₂ to benzene,²³²¹ have been isolated.²³²² With: CH₂, insertion is a major side reaction, and, for example, benzene gives toluene as well as cycloheptatriene. A method of adding: CH₂ to benzene rings without the use of free carbene is the catalytic decomposition of diazomethane (CH₂N₂) in the aromatic compound as solvent with CuCl or CuBr.²³²³ By this method better yields of cycloheptatrienes are obtained without insertion side products. Picosecond optical grating calorimetry has been used to investigate the photochemical decomposition of diazomethane in benzene, and it appears that a transient is formed that is consistent with a weak complex between singlet methylene and benzene.²³²⁴ Chlorocarbene, :CHCl, is active enough to add to benzene, but dihalocarbenes do not add to benzene or toluene, only to rings with greater electron density. Pyrroles and indoles can be expanded, respectively, to pyridines and quinolines by treatment with halocarbenes²³²⁵ via the initially formed adduct **217** in the case of the indole.

In such cases, a side reaction that sometimes occurs is expansion of the *six-membered* ring. Ring expansion can occur even with non-aromatic compounds, when the driving force is supplied by relief of strain (see **218**).²³²⁶

²³²⁰It has been detected by uv spectroscopy: Rubin, M.B. J. Am. Chem. Soc. 1981, 103, 7791.
 ²³²¹Ciganek, E. J. Am. Chem. Soc. 1967, 89, 1454.


²³²²See, for example, Mukai, T.; Kubota, H.; Toda, T. *Tetrahedron Lett.* **1967**, 3581; Maier, G.; Heep, U. Chem. Ber. **1968**, 101, 1371; Ciganek, E. J. Am. Chem. Soc. **1971**, 93, 2207; Dürr, H.; Kober, H. *Tetrahedron Lett.* **1972**, 1255, 1259; Vogel, E.; Wiedemann, W.; Roth, H.D.; Eimer, J.; Günther, H. *Liebigs Ann. Chem.* **1972**, 759, 1; Bannerman, C.G.F.; Cadogan, J.I.G.; Gosney, I.; Wilson, N.H. J. Chem. Soc., Chem. Commun. **1975**, 618; Takeuchi, K.; Kitagawa, T.; Senzaki, Y.; Okamoto, K. Chem. Lett. **1983**, 73; Kawase, T.; Iyoda, M.; Oda, M. Angew. Chem. Int. Ed. **1987**, 26, 559.

²³²³Wittig, G.; Schwarzenbach, K. *Liebigs Ann. Chem.* 1961, 650, 1; Müller, E.; Fricke, H. *Liebigs Ann. Chem.* 1963, 661, 38; Müller, E.; Kessler, H.; Fricke, H.; Kiedaisch, W. *Liebigs Ann. Chem.* 1961, 675, 63.
 ²³²⁴Khan, M.I.; Goodman, J.L. J. Am. Chem. Soc. 1995, 117, 6635.

²³²⁵For a review of the reactions of heterocyclic compounds with carbenes, see Rees, C.W.; Smithen, C.E. *Adv. Heterocycl. Chem.* **1964**, *3*, 57–78.

²³²⁶Jefford, C.W.; Gunsher, J.; Hill, D.T.; Brun, P.; Le Gras, J.; Waegell, B. *Org. Synth.* VI, 142. For a review of the addition of halocarbenes to bridged bicyclic alkenes see Jefford, C.W. *Chimia*, 1970, 24, 357–363.

As previously mentioned, free carbene is not very useful for additions to double bonds since it gives too many side products. The *Simmons–Smith procedure* accomplishes the same result without a free carbene intermediate and without insertion side products.²³²⁷ This procedure involves treatment of the double-bond compound with CH₂I₂ and a Zn–Cu couple and leads to cyclopropane derivatives in good yields.²³²⁸ The Zn–Cu couple can be prepared in several ways,²³²⁹ of which heating Zn dust with CuCl in ether under nitrogen²³³⁰ is particularly convenient. The reaction has also been done with unactivated zinc and ultrasound.²³³¹ When TiCl₄ is used along with Zn and CuCl, CH₂I₂ can be replaced by the cheaper CH₂Br₂.²³²² The actual attacking species is an organozinc intermediate, probably (ICH₂)₂Zn•ZnI₂, which is stable enough for isolable solutions.²³³³ An X-ray crystallographic investigation of the intermediate, complexed with a diether, has been reported.²³³⁴ The addition is stereospecifically syn, and a concerted mechanism²³³⁵ is likely, perhaps²³³⁶

Asymmetric induction is possible when chiral additives are used.²³³⁷ With the Simmons–Smith procedure, as with free carbenes, conjugated dienes give 1,2-addition,²³³⁸ and allenes give methylenecyclopropanes or spiropentanes.²³³⁹

An alternative way of carrying out the Simmons–Smith reaction is by treatment of the substrate with CH_2I_2 or another dihalomethane and Et_2Zn in ether.²³⁴⁰ This method can be adapted to the introduction of RCH and ArCH by the use of RCHI₂

²³²⁸Simmons, H.E.; Smith, R.D. J. Am. Chem. Soc. 1959, 81, 4256.

²³²⁹Shank, R.S.; Shechter, H. J. Org. Chem. **1959**, 24, 1525; LeGoff, E. J. Org. Chem. **1964**, 29, 2048. For the use of a Zn–Ag couple, see Denis, J.M.; Girard, C.; Conia, J.M. Synthesis **1972**, 549.

²³³⁰Rawson, R.J.; Harrison, I.T. J. Org. Chem. 1970, 35, 2057.

²³³¹Repič; O.; Lee, P.G.; Giger, U. Org. Prep. Proced. Int. 1984, 16, 25.

²³³²Friedrich, E.C.; Lunetta, S.E.; Lewis, E.J. J. Org. Chem. 1989, 54, 2388.

²³³³Blanchard, E.P.; Simmons, H.E. J. Am. Chem. Soc. **1964**, 86, 1337. For an analysis of the reaction by density functional theory, see Fang, W.-H.; Phillips, D.L.; Wang, D.-q.; Li, Y.-L. J. Org. Chem. **2002**, 67, 154.

²³³⁴Denmark, S.E.; Edwards, J.P.; Wilson, S.R. J. Am. Chem. Soc. 1991, 113, 723.

²³³⁵Dargel, T.K.; Koch, W. J. Chem. Soc. Perkin Trans. 2, 1996, 877.

²³³⁶Simmons, H.E.; Blanchard, E.P.; Smith, R.D. J. Am. Chem. Soc. **1964**, 86, 1347. For a discussion of the transition state and intermediate in this reaction, see Bernardi, F.; Bottoni, A.; Miscione, G.P. J. Am. Chem. Soc. **1997**, *119*, 12300.

²³³⁸Overberger, C.G.; Halek, G.W. J. Org. Chem. 1963, 28, 867.

²³²⁷For reviews, see Simmons, H.E.; Cairns, T.L.; Vladuchick, S.A.; Hoiness, C.M. Org. React. 1973, 20,

^{1–131;} Furukawa, J.; Kawabata, N. Adv. Organomet. Chem. 1974, 12, 83–134, see pp. 84–103.

 ²³³⁷Charette, A.B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc. 1998, 120, 11943; Kitajima, H.;
 Ito, K.; Aoki, Y.; Katsuki, T. Bull. Chem. Soc. Jpn. 1997, 70, 207; Imai, N.; Sakamoto, K.; Maeda, M.;
 Kouge, K.; Yoshizane, K.; Nokami, J. Tetrahedron Lett, 1997, 38, 1423; Denmark, S.E.; Edwards, J.P.
 Synlett 1992, 229; Balsells, J.; Walsh, P.J. J. Org. Chem. 2000, 65, 5005.

²³³⁹Charette, A.B.; Jolicoeur, E.; Bydlinski, G.A.S. Org. Lett. 2001, 3, 3293.

²³⁴⁰See Charette, A.B.; Beauchemin, A.; Marcoux, J.-F. *Tetrahedron Lett.* **1999**, 40, 33; Zhao, C.; Wang, D.; Phillips, D.L. J. Am. Chem. Soc. **2002**, 124, 12903.

or ArCHI₂ instead of the dihalomethane.²³⁴¹ The reaction is compatible with other functionality in the carbenoid complex. The reaction of RCO₂CH₂I with diethyl zinc and an alkene under photolysis conditions give a cyclopropane.²³⁴² Chiral additives lead to enantioselectivity in the cyclopropanation reaction.²³⁴³ In another method, CH₂I₂ or MeCHI₂ is used along with an alane R₃Al to transfer CH₂ or CHMe.²³⁴⁴ Titanium complexes have been used similarly.²³⁴⁵ Samarium and CH₂I₂ has been used for the cyclopropanation of conjugated amides.²³⁴⁶ For the conversion of enolates to cyclopropanols, CH₂I₂ has been used along with SmI₂.²³⁴⁷

Other cyclopropanation techniques have been developed. Treatment of an alkene with ArCH(SnBu₃)OCO₂Me and BF₃•OEt₂ leads to the cyclopropane with high cis-selectivity.²³⁴⁸ Diodomethane in the presence of isopropylmagnesium chloride has been used to cyclopropanate allyl alcohols.²³⁴⁹

The Simmons–Smith reaction is the basis of a method for the indirect α methylation of a ketone.²³⁵⁰ The ketone (illustrated for cyclohexanone) is first converted to an enol ether, an enamine (16-13) or silvl enol ether²³⁵¹ (12-17) and cyclopropanation via the Simmons-Smith reaction is followed by hydrolysis to give the α methylated ketone. A related procedure using diethylzinc and diiodomethane allows ketones to be chain-extended by one carbon.²³⁵² In another variation, phenols can be ortho-methylated in one laboratory step, by treatment with Et₂Zn and CH₂I₂.²³⁵³

Diazoesters react with amines with a rhodium catalyst to give a-amino esters.²³⁵⁴ Diazoesters also react with aldehydes and a rhodium catalyst, and the product is an α,β -epoxy ester.²³⁵⁵ Diazoalkanes react similarly with aldehvdes to give an alkene (Me₃SiCH=N₂ + ArCHO \rightarrow ArCH=CHOSiMe₃).²³⁵⁶

OS V, 306, 855, 859, 874; VI, 87, 142, 187, 327, 731, 913, 974; VII, 12, 200, 203; VIII, 124, 196, 321, 467; IX, 422; 76, 86.

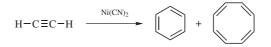
²³⁴³Long, J.; Yuan, Y.; Shi, Y. J. Am. Chem. Soc. 2003, 125, 13632.

- ²³⁴⁵Charette, A.B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168.
- ²³⁴⁶Concellón, J.M.; Rodríguez-Solla, H.; Gómez, C. Angew. Chem. Int. Ed. 2002, 41, 1917.

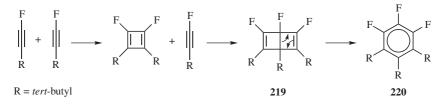
- ²³⁴⁸Sugawara, M.; Yoshida, J. J. Am. Chem. Soc. 1997, 119, 11986.
- ²³⁴⁹Bolm, C.; Pupowicz, D. Tetrahedron Lett. 197, 38, 7349.

²³⁵⁰See Wenkert, E.; Mueller, R.A.; Reardon Jr., E.J.; Sathe, S.S.; Scharf, D.J.; Tosi, G. J. Am. Chem. Soc. 1970, 92, 7428 for the enol ether procedure; Kuehne, M.E.; King, J.C. J. Org. Chem. 1973, 38, 304 for the enamine procedure; Conia, J.M. Pure Appl. Chem. 1975, 43, 317-326 for the silvl ether procedure.

- ²³⁵¹In the case of silyl enol ethers, the inner bond can be cleaved with FeCl₃, giving a ring-enlarged
- β-chloro ketone: Ito, Y.; Fujii, S.; Saegusa, T. J. Org. Chem. **1976**, 41, 2073; Org. Synth. VI, 327. ²³⁵²Brogan, J.B.; Zercher, C.K. J. Org. Chem. **1997**, 62, 6444.
- ²³⁵³Lehnert, E.K.; Sawyer, J.S.; Macdonald, T.L. Tetrahedron Lett. 1989, 30, 5215.
- ²³⁵⁴Yang, M.; Wang, X.; Li, H.; Livant, P. J. Org. Chem. 2001, 66, 6729.
- ²³⁵⁵Doyle, M.P.; Hu, W.; Timmons, D.J. Org. Lett. 2001, 3, 933.
- ²³⁵⁶Dias, E.L.; Brookhart, M.; White, P.S. J. Am. Chem. Soc. 2001, 123, 2442.


²³⁴¹Nishimura, J.; Kawabata, N.; Furukawa, J. Tetrahedron 1969, 25, 2647; Miyano, S.; Hashimoto, H.

Bull. Chem. Soc. Jpn. 1973, 46, 892; Friedrich, E.C.; Biresaw, G. J. Org. Chem. 1982, 47, 1615. ²³⁴²Charette, A.B.; Beauchemin, A.; Fraancoeur, S. J. Am. Chem. Soc. 2001, 123, 8139.


²³⁴⁴Maruoka, K.; Fukutani, Y.; Yamamoto, H. J. Org. Chem. 1985, 50, 4412; Org. Synth., 67, 176.

²³⁴⁷Imamoto, T.; Takiyama, N. Tetrahedron Lett. 1987, 28, 1307. See also, Molander, G.A.; Harring, L.S. J. Org. Chem. 1989, 54, 3525.

15-65 Trimerization and Tetramerization of Alkynes

Aromatic compounds can be prepared by cyclotrimerization of alkynes²³⁵⁷ or triynes. Cyclotrimerization is possible by heating to 450–600°C with no catalyst.²³⁵⁸ The *spontaneous* (no catalyst) trimerization of *t*-BuC≡CF gave 1,2,3-tri*tert*-butyl-4,5,6-trifluorobenzene (**220**), the first time three adjacent *tert*-butyl groups had been put onto a benzene ring.²³⁵⁹ The fact that this is a head-to-head joining allows formation of **220** from two alkynes. The fact that **219** (a Dewar benzene) was also isolated lends support to this scheme.²³⁶⁰ Three equivalents of 3-hexyne trimerized to hexaethylbenzene at 200°C in the presence of Si₂Cl₆.²³⁶¹

When acetylene is heated with nickel cyanide, other Ni(II) or Ni(0) compounds, or similar catalysts, it gives benzene and cyclooctatetraene.²³⁶² It is possible to get more of either product by a proper choice of catalyst. Substituted acetylenes give substituted benzenes.²³⁶³ This reaction has been used to prepare very crowded

²³⁵⁷For a review, see Rubin, M.; Sromek, A.W.; Gevorgyan, V. Synlett 2003, 2265.

²³⁵⁸Kociolek, M.G.; Johnson, R.P. Tetrahedron Lett. 1999, 40, 4141.

²³⁵⁹Viehe, H.G.; Merényi, R.; Oth, J.F.M.; Valange, P. Angew. Chem. Int. Ed. 1964, 3, 746; Viehe, H.G.; Merényi, R.; Oth, J.F.M.; Senders, J.R.; Valange, P. Angew. Chem. Int. Ed. 1964, 3, 755.

 ²³⁶⁰For other reactions between cyclobutadienes and triple bonds to give Dewar benzenes, see Wingert,
 H.; Regitz, M. *Chem. Ber.* 1986, 119, 244.

²³⁶¹Yang, J.; Verkade, J.G. J. Am. Chem. Soc. 1998, 120, 6834.

²³⁶²For reviews, see Winter, M.J., in Hartley, F.R.; Patai, S. *The Chemistry of the Metal–Carbon Bond*, Vol. 3,
Wiley, NY, *1985*, pp. 259–294; Vollhardt, K.P.C. *Angew. Chem. Int. Ed. 1984*, 23, 539; *Acc. Chem. Res. 1977*, *10*, 1; Maitlis, P.M. *J. Organomet. Chem. 1980*, 200, 161; *Acc. Chem. Res. 1976*, *9*, 93; *Pure Appl. Chem. 1972*, 30, 427; Yur'eva, L.P. *Russ. Chem. Rev. 1974*, 43, 48; Khan, M.M.T.; Martell, A.E. *Homogeneous Catalysis by Metal Complexes*, Vol. 2, Academic Press, NY, *1974*, pp. 163–168; Reppe, W.; Kutepow, N.V.; Magin, A. *Angew. Chem. Int. Ed. 1969*, *8*, 727; Fuks, R.; Viehe, H.G. in Viehe, H.G. *Acetylenes*, Marcel Dekker, NY, *1969*, pp. 450–460; Hoogzand, C.; Hübel, W., in Wender, I.; Pino, P. *Organic Syntheses Via Metal Carbonyls*, Vol. 1, Wiley, NY, *1968*, pp. 343–371; Reikhsfel'd, V.O.; Makovetskii, K.L. *Russ. Chem. Rev. 1966*, *35*, 510. For a list of reagents, with references, see Larock, R.C. *Comprehensive Organic Transformations*, 2nd ed., Wiley-VCH, NY, *1999*, pp. 198–201. For a review of metal-catalyzed cycloadditions of alkynes to give rings of all sizes, see Schore, N.E. *Chem. Rev. 1988*, *88*, 1081.

 ²³⁶³Sigman, M.S.; Fatland, A.W.; Eaton, B.E. J. Am. Chem. Soc. 1998, 120, 5130; Gevorgyan, V.; Takeda,
 A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313; Takeda, A.; Ohno, A.; Kadota, I.; Gevorgyan, V.;
 Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 4547; Larock, R.C.; Tian, Q. J. Org. Chem. 1998, 63, 2002;
 Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133; Grissom, J.W.; Calkins, T.L. Tetrahedron Lett. 1992, 33, 2315.

molecules. Diisopropylacetylene was trimerized over $\text{CO}_2(\text{CO})_8^{2364}$ and over $\text{Hg}[\text{Co}(\text{CO})_4]_2$ to hexaisopropylbenzene.²³⁶⁵ The six isopropyl groups are not free to rotate but are lined up perpendicular to the plane of the benzene ring. Highly substituted benzene derivatives have also been prepared using a rhodium,²³⁶⁶ nickel,²³⁶⁷ titanium,²³⁶⁸ molybdenum,²³⁶⁹ ruthenium,²³⁷⁰ cobalt,²³⁷¹ or a palladium²³⁷² catalyst. Alkynes react with allenes and a nickel catalyst go give highly substituted benzene derivatives.²³⁷³ Conjugated ketones react with internal alkynes with Me₃Al and a nickel catalyst²³⁷⁴ leads to an aromatic ring fused to a cyclic ketone after reaction with DBU and air.²³⁷⁵ *N*-Aryl chloroimines react with alkynes and a rhodium catalyst to give quinolines,²³⁷⁶ as do *N*-aryl alkynyl imines with a tungsten complex.²³⁷⁷

An intramolecular cyclotrimerization has been reported by condensation of a diyne²³⁷⁸ with an alkyne in the presence of a palladium,²³⁷⁹ molybdenum,²³⁸⁰ nickel,²³⁸¹ rhodium,²³⁸² iridium,²³⁸³ or ruthenium catalyst.²³⁸⁴ Triynes have been

- ²³⁶⁶Taber, D.F.; Rahimizadeh, M. *Tetrahedron Lett.* **1994**, 35, 9139; Tanaka, K.; Shirasaka, K. Org. Lett. **2003**, 5, 4697.
- ²³⁶⁷Mori, N.; Ikeda, S.-i.; Odashima, K. Chem. Commun. 2001, 181.
- ²³⁶⁸Tanaka, R.; Nakano, Y.; Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 9682.
- ²³⁶⁹Nishida, M.; Shiga, H.; Mori, M. J. Org. Chem. 1998, 63, 8606.
- ²³⁷⁰Yamamoto, Y.; Ishii, J.-i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712.
- ²³⁷¹Sugihara, T.; Wakabayashi, A.; Nagai, Y.; Takao, H.; Imagawa, H.; Nishizawa, M. Chem. Commun. 2002, 576.
- ²³⁷²Gevorgyan, V.; Takeda, A.; Homma, M.; Sadayori, N.; Radhakrishnan, U.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 6391; Gevorgyan, V.; Quan, L.G.; Yamamoto, Y. J. Org. Chem. 2000, 65, 568. For a reaction in conjunction with silver carbonate, see Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 6836; In conjunction with CuCl₂, see Li, J.-H.; Xie, Y.-X. Synth. Commun. 2004, 34, 1737.
- ²³⁷³Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233.
- ²³⁷⁴Ikeda, S.; Kondo, H.; Arii, T.; Odashima, K. Chem. Commun. 2002, 2422.
- ²³⁷⁵Mori, N.; Ikeda, S.-i.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 2722.
- ²³⁷⁶Amii, H.; Kishikawa, Y.; Uneyama, K. Org. Lett. 2001, 3, 1109.
- ²³⁷⁷Sangu, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2004, 6, 353.
- ²³⁷⁸See Kawathar, S.P.; Schreiner, P.R. Org. Lett. 2002, 4, 3643.
- ²³⁷⁹Yamamoto, Y.; Nagata, A.; Itoh, K. Tetrahedron Lett. 1999, 40, 5035; Gevorgyan, V.; Radhakrishnan,
- U.; Takeda, A.; Rubina, M.; Rubin, M.; Yamamoto, Y. J. Org. Chem. 2001, 66, 2835. See also, Tsukada,
- N.; Sugawara, S.; Nakaoka, K.; Inoue, Y. J. Org. Chem. 2003, 68, 5961.
- ²³⁸⁰Hara, R.; Guo, Q.; Takahashi, T. Chem. Lett. 2000, 140.
- ²³⁸¹Jeevanandam, A.; Korivi, R.P.; Huang, I.-w.; Cheng, C.-H. Org. Lett. 2002, 4, 807.
- ²³⁸²Witulski, B.; Zimmermann, A. Synlett 2002, 1855.
- ²³⁸³Takeuchi, R.; Tanaka, S.; Nakaya, Y. *Tetrahedron Lett.* **2001**, 42, 2991; Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. **2004**, 126, 8382.
- ²³⁸⁴Yamamoto, Y.; Ogawa, R.; Itoh, K. Chem. Commun. 2000, 549; Witulski, B.; Stengel, T.; Fernández-Hernandez, J.M. Chem. Commun. 2000, 1965.

²³⁶⁴See Yong, L.; Butenschön, H. *Chem. Commun.* 2002, 2852. For a modification that gives a phenol from 3,3-dimethyl-1-butyne, see Marchueta, I.; Olivella, S.; Solà, L.; Moyano, A.; Pericàs, M.A.; Riera, A. *Org. Lett.* 2001, *3*, 3197.

²³⁶⁵Arnett, E.M.; Bollinger, J.M. J. Am. Chem. Soc. **1964**, 86, 4729; Hopff, H.; Gati, A. Helv. Chim. Acta **1965**, 48, 509.

similarly condensed with a rhodium catalyst.²³⁸⁵ The internal cyclotrimerization of a trivne, utilizing a siloxy tether and a cobalt catalyst has been reported.²³⁸⁶ Fused ring aromatic compounds are prepared by this method. Similar results were obtained from diynes and allenes with a nickel catalyst.²³⁸⁷ bis(Enynes) are cyclized to bicyclic arenes using a palladium catalyst.²³⁸⁸ Diynes with nitriles and a ruthenium catalyst lead to isoquinolines.²³⁸⁹ Pyridines fused to carboxylic rings can be prepared by similar methodology using a cyanoamine and a cobalt catalyst.²³⁹⁰ In the presence of PhMe₂SiH, CO and a rhodium catalyst, a nonconjugated trivne leads to a tricyclic compound in which a benzene ring is fused to two carbocyclic rings.²³⁹¹ Internal cyclotrimerization of an aryl alkynyl ketone where the aryl group has an ortho trimethylsiylalkyne substituent gives a tetracyclic naphthalene derivative with a fused cyclopentanone unit.²³⁹² An isocyanate (Ar-N=C=O) reacts with a divne and a ruthenium catalyst to give a bicyclic pyridone.²³⁹³ Benzene derivatives with ortho alkyne units can be converted to naphthalene derivatives in aqueous NaOH with hydrazine, Te, NaBH₄ and sonication.²³⁹⁴ Benzene derivatives having ortho imine and alkyne substituents give an isoquinoline when treated with iodine 2^{2395} or with a palladium catalyst.²³⁹⁶ Imino and iodo substituents with a silyl alkyne and a palladium catalyst leads to an isoquinoline.²³⁹⁷ Vinyl and alkyne substituents with a ruthenium catalyst lead to naphthalene derivatives.²³⁹⁸ Ortho alkynyl and epoxy substituents leads to β-naphthols using a ruthenium catalyst.²³⁹⁹ Cyclotrimerization occurs with alkynyl boronic esters.²⁴⁰⁰

In contrast to the spontaneous reaction, the catalyzed process seldom gives the 1,2,3-trisubstituted benzene isomer from an acetylene $RC \equiv CH$. The chief product is usually the 1,2,4-isomer,²⁴⁰¹ with lesser amounts of the 1,3,15-isomer also generally obtained, but little if any of the 1,2,3-isomer. The mechanism of

- ²³⁸⁸Kawasaki, T.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2002, 67, 2653.
- ²³⁸⁹Yamamoto, Y.; Okuda, S.; Itoh, K. Chem. Commun. 2001, 1102; Varela, J.A.; Castedo, L.; Saá, C. J. Org. Chem. 2003, 68, 8595.
- ²³⁹⁰Boñaga, L.V.R.; Zhang, H.-C.; Maryanoff, B.E. Chem. Commun. 2004, 2394.
- ²³⁹¹Ojima, I.; Vu, A.T.; McCullagh, J.V.; Kinoshita, A. J. Am. Chem. Soc. 1999, 121, 3230.
- ²³⁹²Atienza, C.; Mateo, C.; de Frutos, Ó.; Echavarren, A.M. Org. Lett. 2001, 3, 153.
- ²³⁹³Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3, 2117.

²³⁹⁴Landis, C.A.; Payne, M.M.; Eaton, D.L.; Anthony, J.E. J. Am. Chem. Soc. 2004, 126, 1338.

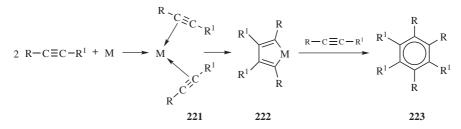
²³⁹⁵Huang, Q.; Hunter, J.A.; Larock, R.C. Org. Lett. 2001, 3, 2973.

²³⁹⁶Dai, G.; Larock, R.C. Org. Lett. **2001**, *3*, 4035; Dai, G.; Larock, R.C. J. Org. Chem. **2003**, 68, 920; Dai, G.; Larock, R.C. Org. Lett. **2002**, *4*, 193.

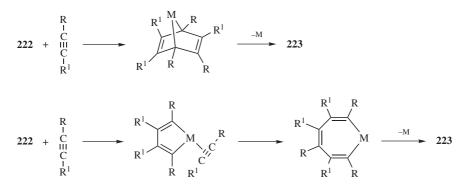
- ²³⁹⁷Roesch, K.R.; Larock, R.C. J. Org. Chem. 2002, 67, 86.
- ²³⁹⁸Klumpp, D.A.; Beauchamp, P.S.; Sanchez, Jr., G.V.; Aguirre, S.; de Leon, S. *Tetrahedron Lett.* 2001, 42, 5821.

²³⁹⁹Madhusaw, R.J.; Lin, M.-Y.; Shoel, S.Md.A.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 6895.

²⁴⁰⁰Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K.P.C.; Malacria, M.; Aubert, C. *Org. Lett.* **2004**, *6*, 3405.


²⁴⁰¹See Saito, S.; Kawasaki, T.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. 2001, 66, 796.

²³⁸⁵Kinoshita, H.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2003, 125, 7784.


²³⁸⁶Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519.

²³⁸⁷Shanmugasundaram, M.; Wu, M.-S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.-H. J. Org. Chem. **2002**, 67, 7724.

the catalyzed

reaction to form benzenes²⁴⁰² is believed to go through a species **221** in which two molecules of alkyne coordinate with the metal, and another species **222**, a five-membered heterocyclic intermediate.²⁴⁰³ Such intermediates (where M = Rh, Ir, Zr,²⁴⁰⁴ or Ni) have been isolated and shown to give benzenes (**223**) when treated with alkynes.²⁴⁰⁵ Note that this pathway accounts for the predominant formation of the 1,2,4-isomer. Two possibilities for the last step are a Diels– Alder reaction, and a ring expansion, each followed by extrusion of the metal:²⁴⁰⁶

²⁴⁰²For studies of the mechanism of the reaction that produces cyclooctatetraenes, see Diercks, R.; Stamp, L.; Kopf, J.; Tom Dieck, H. Angew. Chem. Int. Ed. 1984, 23, 893; Colborn, R.E.; Vollhardt, K.P.C. J. Am. Chem. Soc. 1986, 108, 5470; Lawrie, C.J.; Gable, K.P.; Carpenter, B.K. Organometallics 1989, 8, 2274.
 ²⁴⁰³See, for example, Colborn, R.E.; Vollhardt, K.P.C. J. Am. Chem. Soc. 1981, 103, 6259; Kochi, J.K. Organometallic Mechanisms and Catalysis, Academic Press, NY, 1978, pp. 428–432; Collman, J.P., Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA 1987, pp. 870–877; Eisch, J.J.; Sexsmith, S.R. Res. Chem. Intermed. 1990, 13, 149–192.

²⁴⁰⁴Takahahsi, T.; Ishikawa, M.; Huo, S. J. Am. Chem. Soc. 2002, 124, 388.

²⁴⁰⁵See, for example, Collman, J.P. Acc. Chem. Res. **1968**, 1, 136; Yamazaki, H.; Hagihara, N. J. Organomet. Chem. **1967**, 7, P22; Wakatsuki, Y.; Kuramitsu, T.; Yamazaki, H. Tetrahedron Lett. **1974**, 4549; Moseley, K.; Maitlis, P.M. J. Chem. Soc. Dalton Trans. **1974**, 169; Müller, E. Synthesis **1974**, 761; Eisch, J.J.; Galle, J.E. J. Organomet. Chem. **1975**, 96, C23; McAlister, D.R.; Bercaw, J.E.; Bergman, R.G. J. Am. Chem. Soc. **1977**, 99, 1666.

²⁴⁰⁶There is evidence that the mechanism of the last step more likely resembles the Diels–Alder pathway than the ring expansion pathway: Bianchini, C.; Caulton, K.G.; Chardon, C.; Eisenstein, O.; Folting, K.; Johnson, T.J.; Meli, A.; Peruzzini, M.; Raucher, D.J.; Streib, W.E.; Vizza, F. *J. Am. Chem. Soc.* **1991**, *113*, 5127.

In at least one case the mechanism is different, going through a cyclobutadiene– nickel complex (see p. 76), which has been isolated.²⁴⁰⁷ Similar results were obtained with a titanium complex.²⁴⁰⁸ Using a mixture of PdCl₂ and CuCl₂, however, aliphatic alkynes are converted to the 1,3,5-trialkyl benzene derivative.²⁴⁰⁹

Alkoxy chromium carbenes (Fischer carbene complexes) react with phenylalkynes to give naphthalene derivatives.²⁴¹⁰ These chromium carbenes react with alkynyl boronates, cerium(IV) compounds, and then PhBr and a palladium catalyst to give a naphthoquinone.²⁴¹¹ Diynes react to give cyclotrimerization.²⁴¹² It is noted that vinyl chromium carbenes react directly with alkynes to give spirocyclic compounds (spiro[4.4]nona-1,3,6-trienes).²⁴¹³ Benzofurans can be prepared using methoxy carbenes.²⁴¹⁴ Amino-substituted chromium carbenes react with alkynes and then silica to give substituted benzene derivatives that have an aminoalkyl ($-NR_2$) substituent.²⁴¹⁵ Imino-substituted chromium carbenes react with alkynes to give pyrrole derivatives.²⁴¹⁶ Fischer carbene complexes react with alkynes to give the *Dötz benzannulation*,²⁴¹⁷ giving *p*-alkoxylphenol derivatives. Modification of this basic technique can lead to eight-membered ring carbocycles (see **15-66**).²⁴¹⁸

When benzene, in the gas phase, was adsorbed onto a surface of 10% rhodium-on-alumina, the reverse reaction took place, and acetylene was formed.²⁴¹⁹

In a related reaction, heating ketones in the presence of TlCl₃OTf leads to 1,3,5-trisubstituted arenes.²⁴²⁰ Heating acetophenone with TiCl₄ gives 1,3,5-triphenylbenzene.²⁴²¹ Nitriles react with 2 mol of acetylene, in the presence of a cobalt catalyst, to give 2-substituted pyridines.²⁴²² Propargyl amines react with cyclohexanone derivatives and a gold complex give tetrahydroquinolines.²⁴²³ Treatment of alkynes with Cp₂ZrEt₂ followed by reaction with acetonitrile and then a second alkyne with a nickel catalyst gives a highly substituted pyridine.²⁴²⁴ This reaction can be done intramolecularly using a photochemically induced reaction with a

- ²⁴⁰⁸Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925.
- ²⁴⁰⁹Li, J.; Jiang, H.; Chen, M. J. Org. Chem. 2001, 66, 3627.

- ²⁴¹¹Davies, M.W.; Johnson, C.N.; Harrity, J.P.A. J. Org. Chem. 2001, 66, 3525.
- ²⁴¹²Jiang, M.X.-W.; Rawat, M.; Wulff, W.D. J. Am. Chem. Soc. 2004, 126, 5970.

²⁴¹³Schirmer, H.; Flynn, B.L.; de Meijere, A. Tetrahedron 2000, 56, 4977.

- ²⁴¹⁴Herndon, J.W.; Zhang, Y.; Wang, H.; Wang, K. Tetrahedron Lett. 2000, 41, 8687.
- ²⁴¹⁵Barluenga, J.; López, L.A.; Martínez, S.; Tomás, M. Tetrahedron 2000, 56, 4967.
- ²⁴¹⁶Campos, P.J.; Sampedro, D.; Rodríquez, M.A. J. Org. Chem. 2003, 68, 4674.
- ²⁴¹⁷Dötz, K.H. Angew. Chem. Int. Ed. 1975, 14, 644.
- ²⁴¹⁸Barluenga, J.; Aznar, F.; Palomero, M.A. Angew. Chem. Int. Ed. 2000, 39, 4346.
- ²⁴¹⁹Parker, W.L.; Hexter, R.M.; Siedle, A.R. J. Am. Chem. Soc. 1985, 107, 4584.
- ²⁴²⁰Iranpoor, N.; Zeynizaded, B. Synlett 1998, 1079.
- ²⁴²¹Li, Z.; Sun, W.-H.; Jin, X.; Shao, C. Synlett 2001, 1947.
- ²⁴²²Heller, B.; Oehme, G. J. Chem. Soc., Chem. Commun. 1995, 179.
- ²⁴²³Abbiati, G.; Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. **2003**, 68, 6959.
- ²⁴²⁴Takahashi, T.; Tsai, F.Y.; Kotora, M. J. Am. Chem. Soc. 2000, 122, 4994.

²⁴⁰⁷Mauret, P.; Alphonse, P. J. Organomet. Chem. **1984**, 276, 249. See also, Pepermans, H.; Willem, R.; Gielen, M.; Hoogzand, C. Bull. Soc. Chim. Belg. **1988**, 97, 115.


²⁴¹⁰Pulley, S.R.; Sen, S.; Vorogushin, A.; Swanson, E. Org. Lett. **1999**, 1, 1721; Jackson, T.J.; Herndon, J.W. Tetrahedron **2001**, 57, 3859.

cobalt catalyst and *p*-TolCN to give pyridines incorporated into macrocycles.²⁴²⁵ Alkynyl esters react with enamino esters with a ZnBr₂ catalyst to give substituted pyridines.²⁴²⁶ α -Halo oxime ethers react with alkynes and Grignard reagents, with a mixture of palladium and copper catalysts, to give pyrimidines.²⁴²⁷ Triketones fix nitrogen gas in the presence of TiCl₄ and lithium metal to form bicyclic pyrrole derivatives.²⁴²⁸

OS VII, 256; IX, 1; 80, 93.

15-66 Other Cycloaddition Reactions

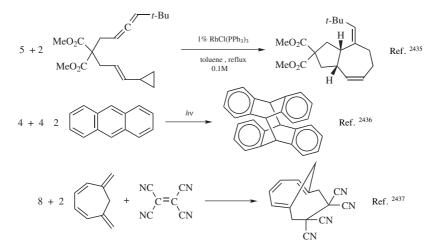
cyclo-[But-2-en-1,4-diyl]-1/4/addition, and so on

Cycloaddition reactions other than [4 + 2], [3 + 2], or [2 + 2] are possible, often providing synthetically useful routes to cyclic compounds. Conjugated dienes can be dimerized or trimerized at their 1,4 positions (formally, [4 + 4]and [4 + 4 + 4]-cycloadditions) by treatment with certain complexes or other transition-metal compounds.²⁴²⁹ Thus butadiene gives 1,5-cyclooctadiene and 1,5,9-cyclododecatriene.²⁴³⁰ The relative amount of each product can be controlled by use of the proper catalyst. For example, Ni:P(OC₆H₄-o-Ph)₃ gives predominant dimerization, while Ni(cyclooctadiene)₂ gives mostly trimerization. The products arise, not by direct 1,4 to 1,4 attack, but by stepwise mechanisms involving metal–alkene complexes.²⁴³¹ The rhodium catalyzed intramolecular cycloaddition of a furan with a conjugated diazoester gives a [3 + 4]-cycloadduct.²⁴³² The suprafacial thermal addition of an allylic cation to a diene (a [4 + 3]cycloaddition) is allowed by the Woodward–Hoffmann rules (this reaction would

²⁴²⁵Moretto, A.F.; Zhang, H.-C.; Maryanoff, B.E. J. Am. Chem. Soc. 2001, 123, 3157.

 ²⁴²⁶Bagley, M.C.; Dale, J.W.; Hughes, D.D.; Ohnesorge, M.; Philips, N.G.; Bower, J. Synlett 2001, 1523.
 ²⁴²⁷Kikiya, H.; Yagi, K.; Shinokubo, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124, 9032.

²⁴²⁸Mori, M.; Hori, M.; Sato, Y. J. Org. Chem. **1998**, 63, 4832; Mori, M.; Hori, K.; Akashi, M.; Hori, M.; Sato, Y.; Nishida, M. Angew. Chem. Int. Ed. **1998**, 37, 636.

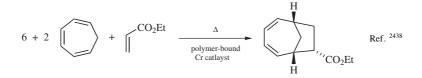

 ²⁴²⁹For reviews, see Wilke, G. Angew. Chem. Int. Ed. 1988, 27, 186; Tolstikov, G.A.; Dzhemilev, U.M. Sov. Sci. Rev. Sect. B 1985, 7, 237, 278–290; Heimbach, P.; Schenkluhn, H. Top Curr. Chem. 1980, 92, 45; Baker, R. Chem. Rev. 1973, 73, 487, see pp. 489–512; Semmelhack, M.F. Org. React. 1972, 19, 115, pp. 128–143; Khan, M.M.T.; Martell, A.E. Homogeneous Catalysis by Metal Complexes, Vol. 2, Academic Press, NY, 1974, pp. 159–163; Heck, R.F. Organotransition Metal Chemistry, Academic Press, NY, 1974, pp. 157–164.
 ²⁴³⁰For a review of the 1,5,9-cyclododecatrienes (there are four stereoisomers, of which the *ttt* is shown above), see Rona, P. Intra-Sci. Chem. Rep. 1971, 5, 105.

 ²⁴³¹For example, see Heimbach, P.; Wilke, G. *Liebigs Ann. Chem.* 1969, 727, 183; Barnett, B.;
 Büssemeier, B.; Heimbach, P.; Jolly, P.W.; Krüger, C.; Tkatchenko, I.; Wilke, G. *Tetrahedron Lett.* 1972, 1457; Barker, G.K.; Green, M.; Howard, J.A.K.; Spencer, J.L.; Stone, F.G.A. J. Am. Chem. Soc. 1976, 98, 3373; Graham, G.R.; Stephenson, L.M. J. Am. Chem. Soc. 1977, 99, 7098.

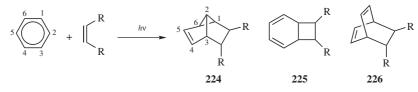
 ²⁴³²Davies, H.M.L.; Calvo, R.L.; Townsend, R.-J.; Ren, P.; Churchill, R.M. J. Org. Chem. 2000, 65, 4261.
 For reviews of [3 + 4]-cycloadditions see Mann, J. Tetrahedron 1986, 42, 4611; Hoffmann, H.M.R.
 Angew. Chem. Int. Ed. 1984, 23, 1; 1973, 12, 819; Noyori, R. Acc. Chem. Res. 1979, 12, 61.

be expected to follow the same rules as the Diels–Alder reaction²⁴³³). Chiral cations have been used in [4 + 3]-cycloadditions.²⁴³⁴

As we saw in **15-60**, the Woodward–Hoffmann rules allow suprafacial concerted cycloadditions to take place thermally if the total number of electrons is 4n+2 and photochemically if the number is 4n. Furthermore, forbidden reactions become allowed if one molecule reacts antarafacially. It would thus seem that syntheses of many large rings could easily be achieved. However, when the newly formed ring is eight-membered or greater, concerted mechanisms, although allowed by orbital symmetry for the cases stated, become difficult to achieve because of the entropy factor (the two ends of one system must simultaneously encounter the two ends of the other), unless one or both components are cyclic, in which case the molecule has many fewer possible conformations. There have been a number of reports of cycloaddition reactions leading to eight-membered and larger rings, some thermally and some photochemically induced, but (apart from the dimerization and trimerization of butadienes mentioned above, which are known not to involve direct [4 + 4]- or [4 + 4 + 4]-cycloaddition) in most cases evidence is lacking to indicate whether they are concerted or stepwise processes. Some examples are



²⁴³³Garst, M.E.; Roberts, V.A.; Houk, K.N.; Rondan, N.G. J. Am. Chem. Soc. **1984**, 106, 3882.


²⁴³⁴Harmata, M; Jones, D.E.; Kahraman, M.; Sharma, U.; Barnes, C.L. *Tetrahedron Lett.* **1999**, 40, 1831.
 ²⁴³⁵Wender, P.A.; Glorius, F.; Husfeld, C.O.; Langkopf, E.; Love, J.A. *J. Am. Chem. Soc.* **1999**, 121, 5348.
 For another example, see Trost, B.M.; Toste, F.D.; Shen, H. *J. Am. Chem. Soc.* **2000**, 122, 2379. See also, Wender, P.A.; Gamber, G.G.; Scanio, M.J.C. *Angew. Chem. Int. Ed.* **2001**, 40, 3895; Wender, P.A.; Pedersen, T.M.; Scanio, M.J.C. *J. Am. Chem. Soc.* **2002**, 124, 15154; Wender, P.A.; Love, J.A.; Williams, T.J. *Synlett* **2003**, 1295.

²⁴³⁶Shönberg, A. Preparative Organic Photochemistry, Springer, NY, **1968**, pp. 97–99. For other examples see Sieburth, S.Mc.N.; McGee, Jr., K.F.; Al-Tel, T.H. Tetrahedron Lett. **1999**, 40, 4007; Sieburth, S.Mc.N.; Lin, C.H.; Rucando, D. J. Org. Chem. **1999**, 64, 950, 954; Zhu, M.; Qiu, Z.; Hiel, G.P.; Sieburth, S.Mc.N. J. Org. Chem. **2002**, 67, 3487.

²⁴³⁷Farrant, G.C.; Feldmann, R. Tetrahedron Lett. 1970, 4979.

Benzene rings can undergo photochemical cycloaddition with alkenes.²⁴³⁹ The major product is usually the 1,3-addition product **224** (in which a three-membered ring has also been formed), although some of the 1,2 product **225**

(15-63) is sometimes formed as well. (225 is usually the main product where the alkene bears electron-withdrawing groups and the aromatic compound electron-donating groups, or vice versa.) The 1,4 product 226 is rarely formed. The reaction has also been run with benzenes substituted with alkyl, halo, OR, CN, and other groups, and with acyclic and cyclic alkenes bearing various groups.²⁴⁴⁰

A [2+2+2]-cycloaddition reaction is also known, facilitated by Ni(cod)₂²⁴⁴¹ or a cobalt catalyst.²⁴⁴² [2+2+1]-Cycloaddition is known.²⁴⁴³ A cobalt catalyst is used for a [4+2+2]-cycloaddition of 1,3-butadiene and bicyclo[2.2.2]octa-2,5-diene.²⁴⁴⁴ Eight-membered rings are products by a rhodium catalyzed [4+2+2]-cycloaddition.²⁴⁴⁵ Chromium catalysts are available for [6+4]-cycloadditions.²⁴⁴⁶

OS VI, 512; VII, 485; X, 1, 336.

 ²⁴³⁸Rigby, J.H.; Kondratenko, M.A.; Fiedler, C. *Org. Lett.* 2000, 2, 3917; Rigby, J.H.; Mann, L.W.; Myers,
 B.J. *Tetrahedron Lett.* 2001, 42, 8773. See Rigby, J.H.; Ateeq, H.S.; Charles, N.R.; Henshilwood, J.A.;
 Short, K.M.; Sugathapala, P.M. *Tetrahedron* 1993, 49, 5495.

²⁴³⁹For reviews, see Wender, P.A.; Ternansky, R.; deLong, M.; Singh, S.; Olivero, A.; Rice, K. Pure Appl. Chem. 1990, 62, 1597; Gilbert, A., in Horspool, W.M. Synthetic Organic Photochemistry, Plenum, NY, 1984, pp. 1–60. For a review of this and related reactions, see McCullough, J.J. Chem. Rev. 1987, 87, 811.

 ²⁴⁴⁰See the table, in Wender, P.A.; Siggel, L.; Nuss, J.M. Org. Photochem. **1989**, 10, 357, pp. 384–415.
 ²⁴⁴¹Lautens, M.; Edwards, L.G.; Tam, W.; Lough, A.J. J. Am. Chem. Soc. **1995**, 117, 10276; Louie, J.;
 Gibby, J.E.; Farnsworth, M.V.; Tekavec, T.N. J. Am. Chem. Soc. **2002**, 124, 15188.

²⁴⁴²Slowinski, F.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1999, 40, 5849.

²⁴⁴³Knölker, H.-J.; Braier, A.; Bröcher, D.J.; Jones, P.G.; Piotrowski, H. *Tetrahedron Lett.* **1999**, 40, 8075; Chatani, N.; Tobisu, M.; Asaumi, T.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. **1999**, 121, 7160.

²⁴⁴⁴Kiattansakul, R.; Snyder, J.K. Tetrahedron Lett. 1999, 40, 1079.

²⁴⁴⁵Gilbertson, S. R.; DeBoef, B.J. Am. Chem. Soc. 2002, 124, 8784.

²⁴⁴⁶Kündig, E.P.; Robvieux, F.; Kondratenko, M. Synthesis 2002, 2053.